WO2022190522A1 - 三角測距式変位センサ - Google Patents
三角測距式変位センサ Download PDFInfo
- Publication number
- WO2022190522A1 WO2022190522A1 PCT/JP2021/046920 JP2021046920W WO2022190522A1 WO 2022190522 A1 WO2022190522 A1 WO 2022190522A1 JP 2021046920 W JP2021046920 W JP 2021046920W WO 2022190522 A1 WO2022190522 A1 WO 2022190522A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- light
- light receiving
- optical module
- displacement sensor
- detection
- Prior art date
Links
- 238000006073 displacement reaction Methods 0.000 title claims abstract description 28
- 238000001514 detection method Methods 0.000 claims abstract description 77
- 230000003287 optical effect Effects 0.000 claims abstract description 50
- 238000005259 measurement Methods 0.000 claims abstract description 30
- 238000003384 imaging method Methods 0.000 claims abstract description 27
- 230000000694 effects Effects 0.000 abstract description 10
- 238000012935 Averaging Methods 0.000 abstract description 8
- 238000010586 diagram Methods 0.000 description 27
- 238000013461 design Methods 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 230000002093 peripheral effect Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000001427 coherent effect Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical techniques
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C3/00—Measuring distances in line of sight; Optical rangefinders
- G01C3/02—Details
- G01C3/06—Use of electric means to obtain final indication
Definitions
- the present invention has been made to solve such problems, and even if a small light receiving element is adopted, the averaging effect in the line direction for the unevenness of the surface of the object to be measured can be maintained to a certain extent over the measurable range. It is an object of the present invention to provide a triangulation displacement sensor that can be maintained.
- a triangulation-type displacement sensor includes a light projecting module that projects detection light that forms a spot shape having a longitudinal direction and a lateral direction when irradiated on a measurement object, and a measurement object: An optical module that collects the reflected detection light, and a plurality of rectangular light receiving areas arranged along the short side direction of the rectangle, and the optical module so that the longitudinal direction of the spot shape is along the long side direction of the light receiving area. and a light-receiving element that outputs a detection signal corresponding to the arrival position of the detection light condensed by the optical module, wherein the magnification adjustment is such that the imaging magnification in the short side direction is larger than the imaging magnification in the long side direction.
- the lens includes a light projecting module that projects detection light that forms a spot shape having a longitudinal direction and a lateral direction when irradiated on a measurement object, and a measurement object: An optical module that collects the reflected detection light, and a plurality of rectangular light receiving areas
- the optical module may be configured to include a convex lens and a magnification adjustment lens. Also, it may be configured to include a plurality of magnification adjusting lenses. By configuring in this way, the principal point position of the optical module can be brought closer to the light receiving element side, so even if it is out of the Scheimpflug optical system, blurring in the peripheral portion can be suppressed.
- the magnification adjustment lens should be selected from a toroidal lens and a cylindrical lens. Adoption of these lenses facilitates realization of an optical design that adjusts the imaging magnification in the short-side direction and the imaging magnification in the long-side direction.
- the light projecting module projects the detection light so that the spot shape expands as it irradiates the object to be measured farther away, and the optical module projects the detection light within a set detection range.
- the detection light may be condensed so that the detection light reflected by the object to be measured farther away has a better imaging state on the light receiving element.
- FIG. 2 is a perspective view showing a usage state of the triangulation displacement sensor according to the present embodiment
- 3A and 3B are diagrams for explaining the principle of a triangulation method, the arrangement of elements, the configuration of light receiving elements, and the like
- FIG. It is a figure explaining the relationship of the spot image and light receiving element in a prior art. It is a figure explaining the relationship of the spot image and light receiving element in this embodiment. It is a schematic diagram explaining the structure of an optical module.
- FIG. 5 is a schematic diagram illustrating the imaging relationship of a spot image with respect to a measurement position of a workpiece when parallel light is projected
- FIG. 5 is a schematic diagram illustrating the imaging relationship of a spot image with respect to a measurement position of a workpiece when diffused light is projected;
- FIG. 1 is a perspective view showing how the displacement sensor 100 is used.
- a displacement sensor 100 according to the present embodiment is an example of a triangulation-type displacement sensor, and is used by being installed, for example, in a production line of a factory.
- the displacement sensor 100 emits detection light L1 from a light projecting element such as a laser diode toward the workpiece Wk, which is an object to be measured, and detects the return detection light L2 reflected by the workpiece Wk with, for example, a CMOS sensor. Light is received by a certain light receiving element.
- the light receiving element receives the detection light L2 and outputs a detection signal corresponding to the distance to the work Wk.
- the detection signal is transmitted to the amplifier unit via the cable 112.
- the amplifier unit converts the received detection signal into a numerical value and displays the numerical value on the display unit, or outputs the numerical value to an external device such as a PLC or a PC.
- the displacement sensor 100 may incorporate the function of an amplifier unit.
- the housing 111 includes a display unit for displaying numerical values and a communication unit for communicating with external devices.
- the x-, y-, and z-axes are defined as shown. In subsequent drawings, the same coordinate axes as in FIG. 1 are used to indicate the orientation of the constituent elements represented in each drawing.
- FIG. 2 is a diagram for explaining the principle of the triangulation method, the arrangement of each element, the configuration of the light receiving element 124, and the like.
- the upper diagram in FIG. 2A shows the optical paths of the detection lights (L1, L2) when the workpiece Wk is positioned near the center of the detection range (Center)
- the lower diagram in FIG. represents a spot image formed on the light receiving surface of the light receiving element 124 by the detection light L2 at that time.
- the upper diagram in FIG. 2B shows the optical paths of the detection lights (L1, L2) when the workpiece Wk is positioned near the near end (Near) of the detection range
- FIG. 2(C) shows the appearance of the spot image formed on the light receiving surface of the light receiving element 124 by the detection light L2 at that time.
- the upper diagram of FIG. 2(C) represents the optical path of the detection light (L1, L2) when the workpiece Wk is positioned near the far end (Far) of the detection range
- the lower diagram of FIG. shows the appearance of the spot image formed on the light receiving surface of the light receiving element 124 by the detection light L2 at that time.
- the w-axis which is the baseline direction of the light receiving element 124, is shown.
- the w-axis is orthogonal to the y-axis.
- a light projecting element 121 as a light projecting module, a light projecting lens 122, an optical module 123 as a light receiving module, and a light receiving element 124 are arranged and fixed inside the housing 111.
- the light projecting module projects the detection light L1 that forms an elliptical spot shape when the work Wk is irradiated with the detection light L1.
- the laser light emitted from the light projecting element 121 which is a laser diode, is adjusted to parallel light by the light projecting lens 122 and projected toward the workpiece Wk as the detection light L1.
- the light projecting element 121 is provided with an elliptical diaphragm as an aperture diaphragm.
- the light projecting element 121 is not limited to a laser diode that projects coherent light, and an element such as an LED that projects incoherent light may be used.
- the light projecting module may omit the light projecting lens 122 when the light projecting element 121 itself emits parallel light.
- a light projecting module that forms an elliptical spot shape when the workpiece Wk is irradiated with the detection light L1 is employed.
- a different light projecting module may be adopted. For example, it may be rectangular.
- the optical module 123 includes a lens for adjusting the magnification in the line direction, and the line direction does not satisfy the Scheimpflug condition. direction).
- the detection light L2 is the center of the light receiving surface of the light receiving element 124 along the w axis. reach nearby.
- the lower diagram of FIG. 2A is a diagram schematically showing how the light-receiving surface of the light-receiving element 124 is observed from the optical module 123 side. , are formed near the center in the w-axis direction on the light-receiving surface of the light-receiving element 124 .
- the light-receiving element 124 has a plurality of pixels 124a each having a rectangular light-receiving region arranged along the short side direction of the rectangle, that is, along the w-axis direction. At this time, the long side direction of the rectangle is parallel to the y-axis direction.
- the spot image Sp is condensed by the optical module 123 such that the long axis direction is along the long side direction of the light receiving area and the short axis direction is along the short side direction of the light receiving area.
- the light projecting module and the light receiving module are arranged in the housing 111 so that the spot image Sp and the pixel 124a have such a relationship.
- An optical element such as a mirror that refracts the optical path may be added to the light projecting module or the light receiving module as long as the arrangement satisfies such a relationship.
- the light receiving element 124 outputs a detection signal corresponding to the position of the spot image Sp. Specifically, since each pixel 124a outputs a voltage value corresponding to the amount of light received, the output value array indicates a distribution waveform corresponding to the position of the spot image Sp. In the case of the lower diagram of FIG. 2A, the center of the spot image Sp is present in a pixel near the center in the w-axis direction, so the light receiving element 124 outputs a detection signal having a peak value at that pixel.
- the amplifier unit receives such a detection signal and converts it into the distance to the workpiece Wk.
- the w-axis direction which is the arrangement direction (short side direction) of the pixels forming the distributed waveform, is referred to as the baseline direction
- the long side direction of the pixels is referred to as the line direction.
- the amount of reflection in the abnormal direction is relatively reduced according to the size of the spot irradiated thereon, and the reflection Light is averaged as a whole. That is, even if the surface of the workpiece Wk is rough to some extent, the influence of the unevenness can be averaged by enlarging the spot, so that the measurement error can be reduced.
- the spot length in the direction corresponding to the base line direction of the light receiving element is increased, the half-value width of the distribution waveform, which is the detection signal, is increased, and the accuracy of distance measurement is lowered.
- an ellipse having a short base line direction and a long line direction is adopted as the spot shape.
- a light receiving element 124 in which pixels having a rectangular light receiving region whose long sides are in the line direction and whose short sides are in the baseline direction is employed.
- the shape of the light-receiving region may be substantially rectangular even if there is some chipping in the periphery due to the wiring layer or the like.
- the light receiving element 124 having a one-dimensional arrangement in which a plurality of rectangular pixels as described above are arranged along the short side direction is adopted. If treated as one group, a light receiving element in which a plurality of pixels are arranged also in the line direction can be adopted.
- a light-receiving element in which square pixels are arranged two-dimensionally, if the output is added for each line, a plurality of substantially rectangular light-receiving regions are arranged along the short side direction. It can be said that it is a light receiving element.
- the incident angle of the detection light L2 with respect to the optical module 123 changes.
- the spot image Sp is displaced in the positive direction of the w-axis on the light receiving surface of the light receiving element 124 .
- the light receiving element 124 outputs a detection signal whose peak value is the pixel where the center of the displaced spot image Sp is present.
- the amplifier unit receives such a detection signal and converts it into the distance to the workpiece Wk.
- the incident angle of the detection light L2 with respect to the optical module 123 changes.
- the spot image Sp is displaced in the negative direction of the w-axis on the light receiving surface of the light receiving element 124 .
- the light receiving element 124 outputs a detection signal whose peak value is the pixel where the center of the displaced spot image Sp is present.
- the amplifier unit receives such a detection signal and converts it into the distance to the workpiece Wk.
- the spot image Sp-C at the center and the spot image Sp-F at the far end sometimes protrude from the light-receiving area in the line direction. Since the light in the area protruding from the light-receiving area is not photoelectrically converted, the effect of averaging the effects of unevenness on the surface of the object to be measured is lost accordingly. That is, it can be said that if the spot image protrudes from the light receiving area in the line direction, a measurement error is likely to occur.
- the optical module 123 of the displacement sensor 100 has a higher imaging magnification in the base line direction than in the line direction so that the formed spot image does not protrude from the light receiving area in the line direction.
- FIG. 4 is a diagram for explaining the relationship between the spot image and the light receiving element 124 in this embodiment. Although the details will be described later, the optical module 123 is adjusted so that the spot image Sp-F on the far end side is formed on the light-receiving surface of the light-receiving element 124 in the best possible state. As shown, the spot image Sp-F on the far end side is adjusted so as not to protrude from the light receiving area in the line direction.
- the optical module 123 includes a magnification adjustment lens in the line direction, the Scheimpflug condition in the line direction is no longer satisfied. (in this embodiment, the light receiving position of Far is assumed), no image is formed on the light receiving element 124, and the image is blurred only in the line direction. Therefore, the central spot image Sp-C is slightly blurred at the ends in the line direction.
- the approximate image forming portion is indicated by black, and the blurred portion is indicated by halftone lines.
- the spot image Sp-N on the near-end side has a larger blurred portion at the end in the line direction than the central spot image Sp-C. suppressed. Therefore, regardless of the position of the spot image in the light-receiving area, the amount of protrusion from the light-receiving area in the line direction can be greatly suppressed compared to the conventional technology, so the effect of averaging the effects of unevenness on the surface of the object to be measured can be achieved. is maintained and the measurement error can be reduced.
- FIG. 5 is a schematic diagram for explaining the configuration of the optical module 123.
- the optical module 123 is composed of two magnification adjustment lenses, a first light receiving lens 123a and a second light receiving lens 123b.
- FIG. 5A is a diagram showing the optical path of a light ray emitted from the center of the spot Sp on the workpiece Wk to the center line of the light receiving element 124 so that the arrival position of the light receiving element 124 in the base line direction can be understood. .
- 5B is a diagram showing the optical path of a light ray emitted from the end of the spot Sp on the workpiece Wk in the long axis direction to the light receiving element 124 so that the arrival position of the light receiving element 124 in the line direction can be understood. . It should be noted that the distances between elements and the like are shown differently from the actual ones for the sake of clarity in any of the drawings.
- m be the imaging magnification in the baseline direction
- m' be the imaging magnification in the line direction.
- m′ m/n, where n is a positive real number.
- the focal length of the first light-receiving lens 123a in the baseline direction is f 0
- the focal length of the second light-receiving lens 123b is ⁇ .
- f 1 be the focal length of the first light receiving lens 123a in the line direction
- f 2 be the focal length of the second light receiving lens 123b.
- a be the distance from the spot Sp to the main surface of the first light receiving lens 123a
- b be the distance from the main surface of the first light receiving lens 123a to the light receiving surface of the light receiving element .
- d be the distance between the main surface of the first light receiving lens 123a and the main surface of the second light receiving lens 123b
- R be the effective radius in the line direction of both the first light receiving lens 123a and the second light receiving lens 123b.
- Lsp be the major axis width of the spot Sp
- h0 be half of it.
- the width of the light receiving area of the light receiving element 124 in the line direction is defined as LCM .
- ⁇ , ⁇ , ⁇ ', b', b′′, c, h 1 , h 2 , h 3 and h 4 are defined as shown.
- d, f', f 1 and f 2 should be designed so that h 1 , h 2 , h 3 and h 4 are within LCM as much as possible.
- FIG. 6 is a diagram for explaining the imaging relationship of the spot image with respect to the measurement position of the workpiece Wk when the light projecting module projects parallel light.
- FIG. 6A shows the imaging relationship when the workpiece Wk is positioned near the far end (Far) of the detection range.
- FIG. 6B shows the imaging relationship when the workpiece Wk is positioned near the center of the detection range (Center).
- FIG. 6C shows the imaging relationship when the workpiece Wk is positioned near the near end (Near) of the detection range.
- 5(B) the light beam emitted from the end of the spot Sp on the workpiece Wk in the long axis direction reaches the light receiving element 124. is a diagram shown in FIG.
- the width of each spot Sp in the long axis direction is L Sp .
- the spot image is best formed on the light receiving surface of the light receiving element 124 when the workpiece Wk is positioned near the far end (Far) of the detection range.
- the light beam emitted from the end of the spot Sp in the long axis direction is imaged slightly before the light receiving surface of the light receiving element 124. do. Therefore, it reaches the light-receiving surface after being slightly diffused. That is, as shown in FIG. 4, the peripheral portion of the spot image is slightly blurred.
- the light beam emitted from the end of the spot Sp in the long axis direction forms an image further in front of the light receiving surface of the light receiving element 124 . Therefore, the light reaches the light-receiving surface more diffusely. That is, as shown in FIG. 4, the peripheral portion of the spot image is further blurred. Then, in the state of FIG. 6C, part of the blur protrudes from the light receiving area of the light receiving element 124 .
- the imaging state is adjusted based on the case where the workpiece Wk is positioned near the far end, the amount of blurring is suppressed and the amount of protrusion from the light receiving area is reduced more than when adjusting based on the vicinity of the center or near the near end. suppressed.
- the optical module (123) is a triangulation displacement sensor including magnification adjusting lenses (123a, 123b) whose imaging magnification in the short side direction is larger than that in the long side direction.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Engineering & Computer Science (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Length Measuring Devices By Optical Means (AREA)
- Measurement Of Optical Distance (AREA)
Abstract
三角測距式変位センサは、測定対象物に照射されたときに長手方向と短手方向を有するスポット形状となる検出光を投光する投光モジュールと、測定対象物で反射した検出光を集光する光学モジュールと、長方形の受光領域が長方形の短辺方向に沿って複数配列されており、スポット形状のうち長手方向が受光領域の長辺方向に沿うように光学モジュールによって集光された検出光の到達位置に応じた検出信号を出力する受光素子とを備え、上記の光学モジュールは、短辺方向の結像倍率が長辺方向の結像倍率よりも大きい倍率調整レンズを含む。このような三角測距式変位センサであれば、小型の受光素子を採用しても、測定対象物表面の凹凸に対するライン方向の平均化効果を計測可能範囲にわたって一定程度に維持することができる。
Description
本発明は、三角測距式変位センサに関する。
シャインプルーフ光学系を用いた三角測距式変位センサが知られている。例えば、特許文献1によれば、測定対象物との距離によらず受光素子の受光面における像のサイズが一定になるように、光源から投光される検出光の焦点位置を調整している。
三角測距式変位センサでは、測定対象物に照射される照射光のスポット内で計測値は平均化される。すなわち、測定対象物の表面がある程度の粗面であっても、スポットを大きくすることでその凹凸の影響を平均化することができるので、計測誤差を低減することができる。しかし、受光素子の基線方向に対応する方向のスポット長を大きくしてしまうと受光波形の半値幅が大きくなり、測距の計測精度が低下してしまう。そこで、基線方向のスポット長は長くせず、基線方向に直交する方向であるライン方向のスポット長を長くすることにより、粗面による計測誤差の低減と測距の計測精度の確保を両立することが考えられる。
このような観点から、測定対象物に照射されたときに例えば楕円のスポット形状となる検出光が用いられる。このとき、従来のシャインプルーフ光学系を採用すると、測定対象物の距離に応じて受光素子の表面に結像する受光像の大きさが大きく変化してしまい、測定対象物の距離によっては、受光像がライン方向において画素の受光領域からはみ出てしまう場合があった。受光像においてはみ出る領域が存在すると、凹凸に対する平均化効果が低減してしまい、計測誤差の増大につながる。一方で、受光像がはみ出ないように受光素子を大型化すると、装置の大型化や製造コストの増大を招くことになる。
本発明は、このような問題を解決するためになされたものであり、小型の受光素子を採用しても、測定対象物表面の凹凸に対するライン方向の平均化効果を計測可能範囲にわたって一定程度に維持することができる三角測距式変位センサを提供することを目的とする。
本発明の一態様における三角測距式変位センサは、測定対象物に照射されたときに長手方向と短手方向を有するスポット形状となる検出光を投光する投光モジュールと、測定対象物で反射した検出光を集光する光学モジュールと、長方形の受光領域が長方形の短辺方向に沿って複数配列されており、スポット形状のうち長手方向が受光領域の長辺方向に沿うように光学モジュールによって集光された検出光の到達位置に応じた検出信号を出力する受光素子とを備え、上記の光学モジュールは、短辺方向の結像倍率が長辺方向の結像倍率よりも大きい倍率調整レンズを含むものである。
このように構成することにより、受光素子の受光面上でのスポット像が画素の受光領域に対してライン方向にはみ出ることを抑制することができる。すなわち、測定対象物が計測可能範囲のいずれに位置していても、測定対象物表面の凹凸に対するライン方向の平均化効果を享受することができる。換言すれば、計測可能範囲内の同一距離に存在する測定対象物に対して変位センサが平行に移動しながら距離計測を行う場合において、測定結果にばらつきが生じにくく、高い移動分解能を発揮することができる。
上記の三角測距式変位センサにおいて、光学モジュールは、凸レンズと、倍率調整レンズを含むように構成してもよい。また、倍率調整レンズを複数含むように構成してもよい。このように構成することにより、光学モジュールの主点位置を受光素子側へ寄せることができるので、シャインプルーフ光学系から外れても、周辺部のボケを抑制することができる。
上記の三角測距式変位センサにおいて、倍率調整レンズは、トロイダルレンズ及びシリンドリカルレンズから選択するとよい。これらのレンズを採用すれば、短辺方向の結像倍率と長辺方向の結像倍率をそれぞれ調整する光学設計を実現しやすい。
また、上記の三角測距式変位センサにおいて、投光モジュールは、遠方の測定対象物に照射されるほどスポット形状が拡大するように検出光を投光し、光学モジュールは、設定された検出範囲において、遠方の測定対象物で反射した検出光ほど受光素子での結像状態が良好となるように検出光を集光するように構成してもよい。このように構成すれば、良好な性能を発揮しづらい遠距離の測定においても、近距離の場合と同様に、測定対象物表面の凹凸に対するライン方向の平均化効果が得られる。
本発明により、小型の受光素子を採用しても、測定対象物表面の凹凸に対するライン方向の平均化効果を計測可能範囲にわたって一定程度に維持することができる三角測距式変位センサを提供することができる。
添付図面を参照して、本発明の実施形態について説明する。なお、各図において、同一の符号を付したものは、同一又は同様の構成を有する。また、各図において、同一又は同様の構成を有する構造物が複数存在する場合には、煩雑となることを回避するため、一部に符号を付し、他に同一符号を付すことを省く場合がある。
図1は、変位センサ100の使用状態を示す斜視図である。本実施形態に係る変位センサ100は、三角測距式変位センサの一例であり、例えば工場の製造ラインなどに設置されて利用される。変位センサ100は、例えばレーザダイオードである投光素子から検出光L1を測定対象物であるワークWkへ向けて投光し、ワークWkで反射して戻ってくる検出光L2を、例えばCMOSセンサである受光素子で受光する。受光素子は、検出光L2を受光し、ワークWkまでの距離に応じた検出信号を出力する。
検出信号は、ケーブル112を介してアンプユニットへ送信される。アンプユニットは、受信した検出信号を数値に変換して表示部に表示したり、外部機器であるPLCやPCへ出力したりする。なお、変位センサ100がアンプユニットの機能を内蔵してもよい。その場合、筐体111は数値等を表示する表示ユニットや外部機器と通信を行う通信ユニットを備える。また、図示するようにx軸、y軸及びz軸を定める。以後の図面においても図1と同様の座標軸を併記することにより、それぞれの図面が表す構成要素の向きを示す。
図2は、三角測距方式の原理、各要素の配列、受光素子124の構成等を説明する図である。具体的には、図2(A)の上図は、ワークWkが検出範囲の中心付近(Center)に位置する場合の検出光(L1,L2)の光路を表し、図2(A)の下図は、そのときに検出光L2が受光素子124の受光面に形成するスポット像の様子を表す。同様に、図2(B)の上図は、ワークWkが検出範囲の近端付近(Near)に位置する場合の検出光(L1,L2)の光路を表し、図2(B)の下図は、そのときに検出光L2が受光素子124の受光面に形成するスポット像の様子を表す。同様に、図2(C)の上図は、ワークWkが検出範囲の遠端付近(Far)に位置する場合の検出光(L1,L2)の光路を表し、図2(C)の下図は、そのときに検出光L2が受光素子124の受光面に形成するスポット像の様子を表す。なお、上述のx軸、y軸、z軸に加え、受光素子124の基線方向であるw軸を示している。w軸は、y軸に直交する。
それぞれの上図に示すように、筐体111の内部には、投光モジュールとしての投光素子121、投光レンズ122と、受光モジュールとしての光学モジュール123、受光素子124が配置され固定されている。投光モジュールは、ワークWkに照射されたときに楕円のスポット形状となる検出光L1を投光する。本実施形態においては、レーザダイオードである投光素子121から出射されたレーザー光を、投光レンズ122が平行光に調整し、検出光L1としてワークWkへ向けて投光する。投光素子121には、開口絞りとして楕円絞りが設けられている。
なお、投光素子121は、コヒーレント光を投光するレーザダイオードに限らず、LEDなどのインコヒーレント光を投光する素子を用いてもよい。また、投光モジュールは、投光素子121自体が平行光を出射する場合などには、投光レンズ122を省いてもよい。また、本実施形態においては、検出光L1がワークWkに照射されたときに楕円のスポット形状となる投光モジュールを採用するが、楕円に限らず、長手方向と短手方向を有するスポット形状となる投光モジュールを採用すればよい。例えば、長方形であってもよい。具体的には後述するが、長手方向(楕円においては長軸方向に相当)が測定対象物表面の凹凸に対する平均化効果を奏するライン方向に対応し、短手方向(楕円においては短軸方向に相当)が測距の計測精度に影響する基線方向に対応する。
検出光L1がワークWkで反射すると、その一部は検出光L2となって光学モジュール123へ向かって戻ってくる。光学モジュール123は、検出光L2を集光して受光素子124へ導く。光学モジュール123は、1つ以上の光学レンズを含む。具体的な構成については後に詳述する。受光素子124は、本実施形態においてはラインセンサを採用し、光電変換を行う画素がw軸に沿って配列されている。受光モジュールは、検出光L1の光軸に対してシャインプルーフ条件を満たすように配列されている。すなわち、ワークWkに形成されるスポットは、ワークWkが変位センサ100から検出範囲のいずれの距離に存在しても、受光素子124の受光面に良好に結像される。ただし、本実施形態においては、後述するように光学モジュール123にライン方向の倍率を調整するレンズを含み、ライン方向がシャインプルーフ条件を満たさなくなるので、受光素子124上の像はライン方向(y軸方向)にボケる。
図2(A)の上図に示すように、ワークWkが検出範囲の中心付近(Center)に位置する場合には、検出光L2は、受光素子124のw軸に沿った受光面のうち中心付近に到達する。図2(A)の下図は、光学モジュール123の側から受光素子124の受光面を観察した様子を模式的に表した図であり、ワークWkに形成されたスポットの像であるスポット像Spが、受光素子124の受光面においてw軸方向の中心付近に形成されている様子を示す。
受光素子124は、長方形の受光領域を有する画素124aが長方形の短辺方向、すなわちw軸方向に沿って複数配列されている。このとき、長方形の長辺方向は、y軸方向と平行である。図示するようにスポット像Spは、長軸方向が受光領域の長辺方向に、短軸方向が受光領域の短辺方向に沿うように光学モジュール123によって集光される。換言すれば、スポット像Spと画素124aの関係がこのような関係となるように、筐体111において投光モジュールと受光モジュールが配列されている。なお、このような関係を満たす配列であれば、投光モジュールや受光モジュールに光路を屈折させるミラー等の光学素子が追加されてもよい。
受光素子124は、スポット像Spの位置に応じた検出信号を出力する。具体的には、それぞれの画素124aが受光量に応じた電圧値を出力するので、その出力値配列は、スポット像Spの位置に応じた分布波形を示す。図2(A)の下図の場合、スポット像Spの中心はw軸方向の中心付近の画素に存在するので、受光素子124は、当該画素をピーク値とする検出信号を出力する。アンプユニットは、このような検出信号を受信して、ワークWkまでの距離に換算する。本実施形態においては、分布波形を形成する画素の配列方向(短辺方向)であるw軸方向を基線方向と称し、画素の長辺方向をライン方向と称する。
このような三角測距方式においては、ワークWkの表面がある程度の粗面であっても、そこに照射されたスポットの大きさに応じて異常方向への反射量が相対的に減少し、反射光は全体として平均化される。すなわち、ワークWkの表面がある程度の粗面であっても、スポットを大きくすることによりその凹凸の影響を平均化することができるので、計測誤差を低減することができる。しかし、受光素子の基線方向に対応する方向のスポット長を大きくしてしまうと検出信号である分布波形の半値幅が大きくなり、測距の計測精度が低下してしまう。そこで、本実施形態においては、スポット形状として、基線方向が短くライン方向が長い楕円を採用する。また、これに応じて、ライン方向が長辺であり、基線方向が短辺である長方形の受光領域を有する画素を配列した受光素子124を採用する。なお、受光領域の形状は、配線層等の都合により周囲に多少の欠けがあったとしても、実質的に長方形であればよい。なお、本実施形態においては、上記のような長方形の画素がその短辺方向に沿って複数配列されている一次元配列の受光素子124を採用するが、ライン方向に沿ったそれぞれの列を一つのグループとして扱うのであれば、ライン方向にも複数の画素が配列された受光素子を採用し得る。例えば、正方画素が二次元状に配列された受光素子であっても、ラインごとに出力を合算するなどすれば、実質的には長方形の受光領域がその短辺方向に沿って複数配列された受光素子であると言える。
図2(B)の上図に示すように、ワークWkを中心付近(Center)から近端付近(Near)へ変位させると、光学モジュール123に対する検出光L2の入射角が変化する。その結果、図2(B)の下図に示すように、スポット像Spは、受光素子124の受光面において、w軸の正方向へ変位する。受光素子124は、変位したスポット像Spの中心が存在する画素をピーク値とする検出信号を出力する。アンプユニットは、このような検出信号を受信して、ワークWkまでの距離に換算する。
図2(C)の上図に示すように、ワークWkを中心付近(Center)から遠端付近(Far)へ変位させると、光学モジュール123に対する検出光L2の入射角が変化する。その結果、図2(C)の下図に示すように、スポット像Spは、受光素子124の受光面において、w軸の負方向へ変位する。受光素子124は、変位したスポット像Spの中心が存在する画素をピーク値とする検出信号を出力する。アンプユニットは、このような検出信号を受信して、ワークWkまでの距離に換算する。
図3は、従来技術におけるスポット像と受光素子の関係を説明する図である。従来技術においては、光学モジュールとして例えば非球面レンズを採用していた。非球面レンズを採用する場合、ライン方向における結像倍率と基線方向における結像倍率が等しい。従来においては、遠端のスポット像Sp-Fが最も小さく、スポット像が近点側へ変位するに連れて徐々にスポット像が大きくなる。すなわち、遠端のスポット像Sp-Fよりも中心のスポット像Sp-Cの方が大きく、中心のスポット像Sp-Cよりも近端のスポット像Sp-Nの方が大きい。そして、中心のスポット像Sp-C、遠端のスポット像Sp-Fは、図示するように、受光領域からライン方向へはみ出てしまうことがあった。受光領域からはみ出てしまった領域の光は光電変換されないので、測定対象物表面の凹凸の影響を平均化する効果がその分失われてしまう。すなわち、スポット像が受光領域からライン方向へはみ出てしまうと、計測誤差が生じやすくなると言える。
本実施形態における変位センサ100の光学モジュール123は、形成されるスポット像が受光領域からライン方向へあまりはみ出ないように作用する、基線方向の結像倍率がライン方向の結像倍率よりも大きい倍率調整レンズを含む。図4は、本実施形態におけるスポット像と受光素子124の関係を説明する図である。具体的には後述するが、光学モジュール123は、遠端側のスポット像Sp-Fが受光素子124の受光面で最も良好な結像状態となるように調整されている。図示するように、遠端側のスポット像Sp-Fは、受光領域からライン方向へはみ出ることがないように調整されている。
スポット像が遠端側から中心へ向かって変位しても、倍率調整レンズの作用によりスポット像が受光領域からはみ出る量が抑えられる。ただし、光学モジュール123がライン方向の倍率調整レンズを含むことによりライン方向のシャインプルーフの条件が満たされなくなるので、受光素子124上の基線方向の結像状態は保たれるものの、ライン方向はピントを合わせた一点(本実施形態ではFarの受光位置を想定する)を除き、受光素子124上で結像することはなく、ライン方向にのみボケた像となる。したがって、中心のスポット像Sp-Cは、ライン方向の端にボケが若干生じる。図においては、およその結像部分を黒塗りで、ボケ部分を網線で表している。
近端側のスポット像Sp-Nは、中心のスポット像Sp-Cよりもライン方向の端のボケ部分が大きくなるが、それでも従来技術に比べると、受光領域からライン方向へはみ出る量が大幅に抑えられている。したがって、スポット像が受光領域のいずれの位置に存在しても、受光領域からライン方向へはみ出る量は従来技術に比べて大幅に抑えられるので、測定対象物表面の凹凸の影響を平均化する効果が維持され、計測誤差を低減することができると言える。
図5は、光学モジュール123の構成を説明する模式図である。ここでは、光学モジュール123が、第1受光レンズ123aと第2受光レンズ123bの2つの倍率調整レンズによって構成されている場合を例として説明する。図5(A)は、ワークWk上のスポットSpの中心から出射する光線が受光素子124の中心線へ至るまでの光路を、受光素子124の基線方向における到達位置がわかるよう示した図である。図5(B)は、ワークWk上のスポットSpの長軸方向の端から出射する光線が受光素子124へ至る光路を、受光素子124のライン方向における到達位置がわかるように示した図である。なお、いずれの図もわかりやすくするために、要素間の距離等を実際とは異ならせて表している。
基線方向における結像倍率をm、ライン方向における結像倍率をm’とする。nを正の実数として、m’=m/nとする。また、基線方向における第1受光レンズ123aの焦点距離をf0、第2受光レンズ123bの焦点距離を∞とする。また、ライン方向における第1受光レンズ123aの焦点距離をf1、第2受光レンズ123bの焦点距離をf2とする。また、スポットSpから第1受光レンズ123aの主面までの距離をa、第1受光レンズ123aの主面から受光素子124の受光面までの距離をbとする。また、第1受光レンズ123aの主面と第2受光レンズ123bの主面の間の距離をdとし、第1受光レンズ123a、第2受光レンズ123b共にライン方向の有効半径をRとする。また、スポットSpの長軸幅をLspとし、その半分をh0とする。受光素子124の受光領域のライン方向における幅をLCMとする。また、φ,ψ,ψ’,b’,b”,c,h1,h2,h3,h4を図示するように定義する。
このような関係式において、h1,h2,h3,h4が、できるだけLCMに収まるように、d,f’,f1,f2を設計すればよい。このような設計を実現する第1受光レンズ123aと第2受光レンズ123bの組み合わせは、トロイダルレンズとシリンドリカルレンズが考えられる。また、第1受光レンズ123aと第2受光レンズ123bを共にトロイダルレンズとしてもよい。また、f0=f1として第1受光レンズ123aを倍率調整の機能を有さない凸レンズとし、第2受光レンズ123bを倍率調整レンズとしてもよい。この場合、第2受光レンズ123bは、トロイダルレンズでもシリンドリカルレンズでもよい。また、第1受光レンズ123aと第2受光レンズ123bに加えて第3受光レンズや第4受光レンズを追加して、設計の自由度を高めてもよい。
図6は、投光モジュールが平行光を投光した場合の、ワークWkの測定位置に対するスポット像の結像関係を説明する図である。図6(A)は、ワークWkが検出範囲の遠端付近(Far)に位置する場合の結像関係を示す。図6(B)は、ワークWkが検出範囲の中心付近(Center)に位置する場合の結像関係を示す。図6(C)は、ワークWkが検出範囲の近端付近(Near)に位置する場合の結像関係を示す。いずれの図も図5(B)と同様に、ワークWk上のスポットSpの長軸方向の端から出射する光線が受光素子124へ至る光路を、受光素子124のライン方向における到達位置がわかるように示した図である。ここでは、投光モジュールが平行光を投光するので、スポットSpの長軸方向の幅はいずれもLSpである。
本実施形態においては、ワークWkが検出範囲の遠端付近(Far)に位置する場合に、スポット像が最も良好に受光素子124の受光面に結像するように調整されている。このように調整すると、ワークWkが検出範囲の中心付近(Center)に位置する場合には、スポットSpの長軸方向の端から出射する光線は、受光素子124の受光面の少し手前で結像する。したがって、受光面へは少し拡散して到達する。すなわち、図4でも示したように、スポット像の周辺部が若干ボケる。
ワークWkが検出範囲の近端付近(Near)に位置する場合には、スポットSpの長軸方向の端から出射する光線は、受光素子124の受光面のさらに手前で結像する。したがって、受光面へはより拡散して到達する。すなわち、図4でも示したように、スポット像の周辺部がさらにボケる。そして、図6(C)の状態では、ボケの一部が受光素子124の受光領域からはみ出ている。しかしながら、ワークWkが遠端付近に位置する場合を基準に結像状態を調整すると、中心付近や近端付近を基準に調整する場合よりも、ボケ量が抑えられ、受光領域からのはみだし量も抑えられる。
本実施形態の変形例として、さらに受光領域からのはみだし量を抑制する構成について説明する。図7は、拡散光を投光した場合の、ワークWkの測定位置に対するスポット像の結像関係を説明する図である。図7(A)は、ワークWkが検出範囲の遠端付近(Far)に位置する場合の結像関係を示す。図7(B)は、ワークWkが検出範囲の中心付近(Center)に位置する場合の結像関係を示す。図7(C)は、ワークWkが検出範囲の近端付近(Near)に位置する場合の結像関係を示す。
それぞれ図示するように、図6の場合のそれぞれと比べて、スポットSpの長軸方向の幅が互いに異なる。すなわち、本変形例においては、投光モジュールが遠方のワークWkに照射されるほどスポット形状が拡大するように検出光L1を投光する。具体的には、投光素子121から出射されたレーザー光を、投光レンズ122が少しだけ拡散させるように調整する。拡散の度合いは、設定される検出範囲に応じて決定される。
本変形例においても、ワークWkが検出範囲の遠端付近(Far)に位置する場合に、スポット像が最も良好に受光素子124の受光面に結像するように調整されている。このように調整すると、ワークWkが検出範囲の中心付近(Center)に位置する場合には、スポットSpの長軸方向の端から出射する光線は、受光素子124の受光面の少し手前で結像する。したがって、受光面へは少し拡散して到達する。しかし、スポットSpの長軸方向の幅がLSp-FからLSp-Cへ短くなっている分、図6(B)の場合に比べて主光線が光軸に近づくので、スポット像の周辺部のボケが抑制される。
ワークWkが検出範囲の近端付近(Near)に位置する場合には、スポットSpの長軸方向の端から出射する光線は、受光素子124の受光面のさらに手前で結像する。したがって、受光面へはより拡散して到達する。しかし、スポットSpの長軸方向の幅がLSp-CからLSp-Nへ短くなっている分、図6(C)の場合に比べて主光線が光軸に近づくので、やはりスポット像の周辺部のボケが抑制される。このように検出光L1を調整すれば、スポット像の受光領域からのはみだし量をさらに抑制することができる。
[付記]
測定対象物(Wk)に照射されたときに長手方向と短手方向を有するスポット形状となる検出光(L1)を投光する投光モジュール(121、122)と、
前記測定対象物(Wk)で反射した前記検出光(L2)を集光する光学モジュール(123)と、
長方形の受光領域(124a)が前記長方形の短辺方向に沿って複数配列されており、前記スポット形状のうち前記長手方向が前記受光領域の長辺方向に沿うように前記光学モジュール(123)によって集光された前記検出光(L2)の到達位置に応じた検出信号を出力する受光素子(124)と
を備え、
前記光学モジュール(123)は、前記短辺方向の結像倍率が前記長辺方向の結像倍率よりも大きい倍率調整レンズ(123a、123b)を含む三角測距式変位センサ。
測定対象物(Wk)に照射されたときに長手方向と短手方向を有するスポット形状となる検出光(L1)を投光する投光モジュール(121、122)と、
前記測定対象物(Wk)で反射した前記検出光(L2)を集光する光学モジュール(123)と、
長方形の受光領域(124a)が前記長方形の短辺方向に沿って複数配列されており、前記スポット形状のうち前記長手方向が前記受光領域の長辺方向に沿うように前記光学モジュール(123)によって集光された前記検出光(L2)の到達位置に応じた検出信号を出力する受光素子(124)と
を備え、
前記光学モジュール(123)は、前記短辺方向の結像倍率が前記長辺方向の結像倍率よりも大きい倍率調整レンズ(123a、123b)を含む三角測距式変位センサ。
100…変位センサ、111…筐体、112…ケーブル、121…投光素子、122…投光レンズ、123…光学モジュール、123a…第1受光レンズ、123b…第2受光レンズ、124…受光素子、124a…画素
Claims (5)
- 測定対象物に照射されたときに長手方向と短手方向を有するスポット形状となる検出光を投光する投光モジュールと、
前記測定対象物で反射した前記検出光を集光する光学モジュールと、
長方形の受光領域が前記長方形の短辺方向に沿って複数配列されており、前記スポット形状のうち前記長手方向が前記受光領域の長辺方向に沿うように前記光学モジュールによって集光された前記検出光の到達位置に応じた検出信号を出力する受光素子と
を備え、
前記光学モジュールは、前記短辺方向の結像倍率が前記長辺方向の結像倍率よりも大きい倍率調整レンズを含む三角測距式変位センサ。 - 前記光学モジュールは、凸レンズと、前記倍率調整レンズを含む請求項1に記載の三角測距式変位センサ。
- 前記光学モジュールは、前記倍率調整レンズを複数含む請求項1または2に記載の三角測距式変位センサ。
- 前記倍率調整レンズは、トロイダルレンズ及びシリンドリカルレンズから選択される請求項1から3のいずれか1項に記載の三角測距式変位センサ。
- 前記投光モジュールは、遠方の測定対象物に照射されるほど前記スポット形状が拡大するように前記検出光を投光し、
前記光学モジュールは、設定された検出範囲において、遠方の測定対象物で反射した前記検出光ほど前記受光素子での結像状態が良好となるように前記検出光を集光する請求項1から4のいずれか1項に記載の三角測距式変位センサ。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021-038554 | 2021-03-10 | ||
JP2021038554A JP2022138590A (ja) | 2021-03-10 | 2021-03-10 | 三角測距式変位センサ |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022190522A1 true WO2022190522A1 (ja) | 2022-09-15 |
Family
ID=83227554
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/046920 WO2022190522A1 (ja) | 2021-03-10 | 2021-12-20 | 三角測距式変位センサ |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2022138590A (ja) |
WO (1) | WO2022190522A1 (ja) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57104803A (en) * | 1980-12-20 | 1982-06-30 | Anritsu Corp | Displacement measuring apparatus |
JPS6247613A (ja) * | 1985-08-27 | 1987-03-02 | Fuji Photo Film Co Ltd | 測距装置の光学系 |
US4830485A (en) * | 1987-11-23 | 1989-05-16 | General Electric Company | Coded aperture light detector for three dimensional camera |
JPH01185410A (ja) * | 1988-01-20 | 1989-07-25 | Toyota Motor Corp | 光学式測長方法 |
JPH1183473A (ja) * | 1997-09-10 | 1999-03-26 | Toshiba Fa Syst Eng Kk | 距離計測装置および距離計測方法 |
JP2009085745A (ja) * | 2007-09-28 | 2009-04-23 | Sunx Ltd | Bga半田ボールの高さ測定装置 |
JP2012078152A (ja) * | 2010-09-30 | 2012-04-19 | Omron Corp | 投光ビームの調整方法 |
-
2021
- 2021-03-10 JP JP2021038554A patent/JP2022138590A/ja active Pending
- 2021-12-20 WO PCT/JP2021/046920 patent/WO2022190522A1/ja active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57104803A (en) * | 1980-12-20 | 1982-06-30 | Anritsu Corp | Displacement measuring apparatus |
JPS6247613A (ja) * | 1985-08-27 | 1987-03-02 | Fuji Photo Film Co Ltd | 測距装置の光学系 |
US4830485A (en) * | 1987-11-23 | 1989-05-16 | General Electric Company | Coded aperture light detector for three dimensional camera |
JPH01185410A (ja) * | 1988-01-20 | 1989-07-25 | Toyota Motor Corp | 光学式測長方法 |
JPH1183473A (ja) * | 1997-09-10 | 1999-03-26 | Toshiba Fa Syst Eng Kk | 距離計測装置および距離計測方法 |
JP2009085745A (ja) * | 2007-09-28 | 2009-04-23 | Sunx Ltd | Bga半田ボールの高さ測定装置 |
JP2012078152A (ja) * | 2010-09-30 | 2012-04-19 | Omron Corp | 投光ビームの調整方法 |
Also Published As
Publication number | Publication date |
---|---|
JP2022138590A (ja) | 2022-09-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10048064B2 (en) | Optical three dimensional scanners and methods of use thereof | |
US20040004727A1 (en) | Three-dimensional shape measuring method, and three-dimensional shape measuring apparatus | |
EP3683542B1 (en) | Distance measuring module | |
JP2015152739A (ja) | 固体撮像素子及び撮像装置 | |
JPH10221064A (ja) | 光学式測距装置 | |
JP2510786B2 (ja) | 物体の形状検出方法及びその装置 | |
JP2013257162A (ja) | 測距装置 | |
JP2018152713A (ja) | 画像読取装置 | |
JP2013050352A (ja) | ステレオカメラの取り付け調整方法及びステレオカメラ | |
US8094179B2 (en) | Light source device, optical scanning device, and image forming apparatus | |
US7830605B2 (en) | Longitudinal interference fringe pattern projection lens, optical system, and three-dimensional image acquisition apparatus | |
US5572368A (en) | Light projecting device with cylindrical lens | |
EP2538172B1 (en) | Method for adjusting optical displacement sensor and method for manufacturing optical displacement sensor | |
WO2022190522A1 (ja) | 三角測距式変位センサ | |
US20230069195A1 (en) | Camera module manufacturing device | |
JP7353644B2 (ja) | 光学スキャナ装置の校正方法、光学スキャナ装置及び光学式三次元形状測定装置 | |
EP2538173A1 (en) | Method for arranging photoreceiving lens, and optical displacement sensor | |
JP4345856B2 (ja) | レーザー走査装置 | |
US20200201189A1 (en) | Exposure apparatus | |
JP2021018081A (ja) | 撮像装置、計測装置、及び、計測方法 | |
JP7039902B2 (ja) | 多焦点レンズ、計測装置および計測方法 | |
JP2018197743A (ja) | 光電式エンコーダ | |
US11942489B2 (en) | Image reading device | |
EP3637044B1 (en) | Multi-image projector and electronic device having the multi-image projector | |
WO2024048242A1 (ja) | 測距装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21930367 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21930367 Country of ref document: EP Kind code of ref document: A1 |