WO2022190293A1 - 熱伝導性樹脂シート - Google Patents

熱伝導性樹脂シート Download PDF

Info

Publication number
WO2022190293A1
WO2022190293A1 PCT/JP2021/009632 JP2021009632W WO2022190293A1 WO 2022190293 A1 WO2022190293 A1 WO 2022190293A1 JP 2021009632 W JP2021009632 W JP 2021009632W WO 2022190293 A1 WO2022190293 A1 WO 2022190293A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermally conductive
conductive particles
resin sheet
conductive resin
plate
Prior art date
Application number
PCT/JP2021/009632
Other languages
English (en)
French (fr)
Inventor
裕希 星山
賢人 土屋
延彦 乾
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to JP2021538100A priority Critical patent/JP6978639B1/ja
Priority to KR1020237030090A priority patent/KR20230154839A/ko
Priority to CN202180095442.7A priority patent/CN116964731A/zh
Priority to EP21930147.0A priority patent/EP4307363A1/en
Priority to PCT/JP2021/009632 priority patent/WO2022190293A1/ja
Publication of WO2022190293A1 publication Critical patent/WO2022190293A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3737Organic materials with or without a thermoconductive filler
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/367Cooling facilitated by shape of device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/42Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2309/00Characterised by the use of homopolymers or copolymers of conjugated diene hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters
    • C08J2333/06Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters of esters containing only carbon, hydrogen, and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2383/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen, or carbon only; Derivatives of such polymers
    • C08J2383/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/001Conductive additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/005Additives being defined by their particle size in general

Definitions

  • the present invention relates to a thermally conductive resin sheet.
  • a thermally conductive resin sheet is mainly placed between a heating element such as a semiconductor package and a radiator such as aluminum or copper, and has the function of quickly transferring the heat generated by the heating element to the radiator. have.
  • a heating element such as a semiconductor package
  • a radiator such as aluminum or copper
  • thermally conductive resin sheets that can promote more rapid heat dissipation with improved efficiency.
  • Patent Document 1 describes an invention relating to a thermally conductive resin sheet containing liquid polybutene and a thermally conductive filler.
  • Patent Document 2 describes an epoxy resin and hexagonal boron nitride or the like as a thermally conductive filler.
  • An invention relating to a thermally conductive resin sheet containing Further, Patent Document 3 describes a resin composition using both specific plate-shaped heat conductive particles and spherical heat conductive particles, and describes that the resin composition is excellent in heat conductivity.
  • thermally conductive resin sheets become hard when the content of thermally conductive filler is increased in order to improve thermal conductivity. There is a concern that warpage or the like will occur and damage the electronic components. That is, it is difficult to maintain good flexibility while increasing the thermal conductivity of the thermally conductive resin sheet.
  • the assembly process has been automated, and thermally conductive resin sheets are compressed at high speed and assembled inside electronic devices. When the thermally conductive resin sheet is compressed at a high speed, stress is likely to be applied to the substrates and electronic components inside the electronic device, which causes the substrates to warp.
  • the present invention has been made in view of the above-mentioned conventional problems, and provides a thermally conductive resin sheet that is excellent in thermal conductivity and flexibility and can suppress an increase in stress even when compressed at high speed. intended to provide
  • the present inventors have made intensive studies in order to achieve the above object.
  • a thermally conductive resin sheet containing plate-shaped thermally conductive particles, spherical thermally conductive particles, and resin was found to have thermal conductivity, 30% compression strength, and volume ratio of plate-shaped thermally conductive particles to spherical thermally conductive particles.
  • the inventors have found that the above problems can be solved by a thermally conductive resin sheet in which the total volume of plate-shaped thermally conductive particles and spherical thermally conductive particles is within a certain range, and have completed the present invention.
  • the present inventors further found that a thermally conductive resin sheet containing plate-shaped thermally conductive particles, spherical thermally conductive particles, and a resin, the thermal conductivity, 30% compression measured at a compression rate of 1.0 mm / min
  • the present inventors have found that the above problems can be solved by a thermally conductive resin sheet having a certain range of specific compression strength ratios measured at different compression speeds, and have completed the present invention.
  • the present invention relates to the following [1] to [9].
  • [1] A thermally conductive resin sheet containing plate-shaped thermally conductive particles, spherical thermally conductive particles, and a resin, having a thermal conductivity of 5 W/m K or more and a compression rate of 1.0 mm/min.
  • the % compressive strength B is 1500 kPa or less
  • the volume ratio of the plate-shaped heat conductive particles and the spherical heat-conductive particles is 30/70 to 90/10
  • the % compressive strength B is 1500 kPa or less
  • the 30% compressive strength measured at a compression speed of 0.1 mm / min is the compressive strength A
  • the 30% compressive strength measured at a compression speed of 10.0 mm / min is the compressive strength C
  • a thermally conductive resin sheet having a compression strength B/compression strength A ratio of 2 or less, or a compression strength C/compression strength B ratio of 2 or less [3] The thermal conductivity according to [1] or [2] above, wherein the plate-shaped thermally conductive particles have an average particle size of 1 to 400 ⁇ m, and the spherical thermally conductive particles have an average particle size of 1 to 100 ⁇ m. resin sheet.
  • thermally conductive resin sheet according to any one of [1] to [3] above which has a thermal resistance value of 5 K/W or less when compressed by 10%.
  • thermally conductive resin sheet according to any one of [1] to [4] above which has an average filler aspect ratio of 5 or more.
  • thermally conductive resin sheet according to any one of [1] to [5] above wherein the major axes of the plate-like thermally conductive particles are oriented at an angle of 60° or more with respect to the sheet surface.
  • the resin is an elastomer resin.
  • thermoly conductive resin sheet that is excellent in thermal conductivity and flexibility, and that can suppress an increase in stress even when compressed at high speed.
  • FIG. 1 is a schematic cross-sectional view of a thermally conductive resin sheet made of a laminate
  • FIG. 2 is a schematic cross-sectional view of a thermally conductive resin sheet composed of a laminate in use.
  • the thermally conductive resin sheet of the present invention is a thermally conductive resin sheet containing plate-shaped thermally conductive particles, spherical thermally conductive particles, and a resin, and has a thermal conductivity of 5 W/m ⁇ K or more and a compression rate of 1.5 W/m ⁇ K or more.
  • the 30% compressive strength B measured at 0 mm/min is 1500 kPa or less.
  • the volume ratio of the plate-shaped thermally conductive particles to the spherical thermally conductive particles volume of plate-shaped thermally conductive particles/volume of spherical thermally conductive particles
  • the total volume of the plate-like heat-conducting particles and the spherical heat-conducting particles is 30 to 90% by volume.
  • a thermally conductive sheet according to another aspect of the present invention is a thermally conductive resin sheet containing plate-shaped thermally conductive particles, spherical thermally conductive particles, and a resin, wherein the thermal conductivity is 5 W/m ⁇ K or more,
  • the 30% compression strength B measured at a compression speed of 1.0 mm/min is 1500 kPa or less.
  • the thermally conductive sheet according to another invention of the present invention has a compressive strength A of 30% compression strength measured at a compression speed of 0.1 mm / min, and a compression strength of 30% measured at a compression speed of 10.0 mm / min.
  • thermally conductive resin sheets tend to become less flexible as the thermal conductivity increases. is below a certain level, and flexibility is excellent.
  • the thermally conductive resin sheet of the present invention can suppress an increase in stress even when compressed at high speed, so it is easy to assemble inside the electronic device and It is possible to suppress the warpage of the substrate of.
  • the thermal conductivity of the thermally conductive resin sheet of the present invention is 5 W/m ⁇ K or more. If the thermal conductivity is less than 5 W/m ⁇ K, the heat generated from the heating element cannot be radiated sufficiently. From the viewpoint of improving the heat dissipation property of the thermally conductive resin sheet, the thermal conductivity of the thermally conductive resin sheet is preferably 8 W/mK or more, more preferably 10 W/m ⁇ K or more. Moreover, the higher the thermal conductivity of the thermally conductive resin sheet, the better, but it is usually 100 W/m ⁇ K or less.
  • the thermal conductivity can be easily adjusted to a desired value by adjusting, for example, the content of spherical heat conductive particles and the content and orientation of plate-shaped heat conductive particles, which will be described later.
  • the 30% compression strength B measured at a compression rate of 1.0 mm/min of the thermally conductive resin sheet of the present invention is 1500 kPa or less.
  • the 30% compressive strength B exceeds 1500 kPa the flexibility of the sheet is reduced, and the electronic components inside the electronic equipment using the sheet are likely to be damaged.
  • the 30% compressive strength B of the thermally conductive resin sheet is preferably 1000 kPa or less, more preferably 800 kPa or less.
  • the 30% compressive strength B of the thermally conductive resin sheet is usually 50 kPa or more, preferably 200 kPa or more.
  • the 30% compressive strength refers to the load when compressed by a thickness corresponding to 30% of the initial thickness.
  • the 30% compressive strength of the thermally conductive resin sheet can be adjusted by the type of resin constituting the thermally conductive resin sheet described later, the presence or absence of cross-linking, the amount of spherical thermally conductive particles, plate-shaped thermally conductive particles, and the like.
  • the 30% compressive strength B is the 30% compressive strength measured under the conditions of a compression speed of 1.0 mm/min, a test piece size of 15 mm square, and a test piece thickness of 2.0 mm. can be measured.
  • the thermally conductive resin sheet of the present invention contains plate-like thermally conductive particles and spherical thermally conductive particles, and these thermally conductive particles are dispersed in the resin.
  • the thermal conductivity of the heat conductive particles is not particularly limited, it is preferably 12 W/m ⁇ K or more, more preferably 15 to 300 W/m ⁇ K, still more preferably 25 to 300 W/m ⁇ K.
  • the thermal conductivity of the thermally conductive resin sheet is increased.
  • the plate-like thermally conductive particles can effectively increase the thermal conductivity by orienting them in the thickness direction of the thermally conductive resin sheet as described later.
  • thermal conductivity of a thermally conductive resin sheet is increased by using plate-shaped thermally conductive particles, the stress tends to increase during high-speed compression.
  • heat conductive particles it is possible to suppress an increase in stress during high-speed compression.
  • the volume ratio of the plate-shaped heat conductive particles to the spherical heat-conductive particles (plate-shaped heat-conductive particles/spherical heat-conductive particles) in the heat-conductive resin sheet is 30/70 to 90/10. If the volume ratio is less than 30/70, the thermal conductivity of the thermally conductive resin sheet is lowered, or if the thermal conductivity is increased, the flexibility is lowered. Moreover, when the volume ratio exceeds 90/10, the degree of increase in stress when the thermally conductive resin sheet is compressed at high speed becomes large. It is considered that this is because when the content of the plate-shaped thermally conductive particles is large, the repulsive force increases when the thermally conductive resin sheet is compressed at high speed.
  • the volume ratio of the particles is preferably 30/60 to 80/20, more preferably 40/60 to 80/20.
  • the above-mentioned volume ratio means the volume of the plate-shaped thermally conductive particles with respect to the volume of the spherical thermally conductive particles in the thermally conductive resin sheet.
  • the volume of the spherical heat conductive particles in the heat conductive resin sheet can be calculated from the mass of the spherical heat conductive particles and the mass per unit volume of the spherical heat conductive particles.
  • the volume of the plate-shaped heat conductive particles in the heat conductive resin sheet can be calculated from the mass of the plate-shaped heat conductive particles and the mass per unit volume of the plate-shaped heat conductive particles.
  • the total volume of the plate-shaped thermally conductive particles and the spherical thermally conductive particles is 30 to 90% by volume. If the total volume of the plate-shaped thermally-conductive particles and the spherical thermally-conductive particles is less than 30% by volume, the thermal conductivity of the thermally-conductive resin sheet will be low, resulting in poor heat dissipation. On the other hand, if the total volume of the plate-shaped thermally conductive particles and the spherical thermally conductive particles exceeds 90% by volume, the flexibility of the thermally conductive sheet will be low.
  • the total volume of the plate-shaped thermally conductive particles and the spherical thermally conductive particles is preferably 40 to 80% by volume, more preferably 50 to 70% by volume, more preferably 50 to 58% by volume.
  • the volume of the plate-like thermally conductive particles in the thermally conductive resin sheet is preferably 5 to 80% by volume, more preferably 10 to 60% by volume, and still more preferably 15 to 50% by volume.
  • the volume of the spherical heat conductive particles in the heat conductive resin sheet is preferably 3 to 50% by volume, more preferably 5 to 45% by volume, still more preferably 5 to 40% by volume.
  • the plate-like thermally conductive particles in the present invention are flaky or scaly particles, and each particle has a long diameter sufficiently larger than its thickness, and has an aspect ratio of, for example, 2 or more, preferably 3 or more. It becomes.
  • the aspect ratio of the plate-like thermally conductive particles means the ratio of the maximum length to the thickness of the particles (maximum length/thickness).
  • the average particle size of the plate-shaped thermally conductive particles is not particularly limited, but is preferably 1 to 400 ⁇ m, more preferably 5 to 300 ⁇ m.
  • the average particle diameter of the plate-shaped thermally conductive particles is obtained by laser diffraction particle size distribution measurement, and represents the particle diameter at which the cumulative particle amount is 50% on a volume basis.
  • the spherical heat conductive particles in the present invention have a particle shape that is spherical or nearly spherical, and have an aspect ratio of 1 or close to 1. The aspect ratio is, for example, 1.0 or more and less than 2.0, preferably 1.0.
  • the aspect ratio of the spherical heat conductive particles means the ratio of the major axis to the minor axis (long axis/short axis).
  • the aspect ratio is preferably obtained as an average value by observing a sufficient number (for example, 250) of heat conductive particles with a scanning electron microscope.
  • the average particle size of the spherical heat-conducting particles is not particularly limited, but is preferably 1 to 100 ⁇ m, more preferably 1 to 80 ⁇ m. By setting the average particle diameter of the spherical thermally conductive particles within the above range, it becomes easier to adjust the compression strength ratio described later to a desired value, and an increase in stress during high-speed compression of the thermally conductive resin sheet can be suppressed. .
  • the average particle diameter of the spherical thermally conductive particles is determined by laser diffraction particle size distribution measurement, and represents the particle diameter at which the cumulative particle amount is 50% on a volume basis.
  • the average filler aspect ratio in the thermally conductive sheet of the present invention is preferably 5 or more.
  • the average filler aspect ratio is more preferably 10 or more, more preferably 20 or more, and preferably 100 or less. When the average filler aspect ratio is at least these lower limits, the thermal conductivity of the thermally conductive resin sheet tends to increase. , an increase in stress is likely to be suppressed.
  • the average filler aspect ratio means the average aspect ratio of the thermally conductive particles contained in the thermally conductive resin sheet. Specifically, the average filler aspect ratio can be determined by volume-averaging the aspect ratio of the plate-shaped heat conductive particles and the aspect ratio of the spherical heat conductive particles.
  • the aspect ratio of the spherical thermally conductive particles is calculated to be 1.5.
  • the average filler aspect ratio can be determined by the following formula (1).
  • the volume fraction of the plate-shaped thermally conductive particles means the ratio (%) of the volume of the plate-shaped thermally conductive particles to the total volume of the thermally conductive particles in the thermally conductive sheet
  • the volume fraction of the spherical thermally conductive particles means the ratio (%) of the volume of the spherical heat conductive particles to the volume of all the heat conductive particles in the heat conductive sheet.
  • Examples of the material for each of the plate-shaped heat conductive particles and the spherical heat conductive particles in the present invention include carbides, nitrides, oxides, hydroxides, metals, and carbonaceous materials.
  • Carbides include, for example, silicon carbide, boron carbide, aluminum carbide, titanium carbide, and tungsten carbide.
  • Examples of nitrides include silicon nitride, boron nitride, boron nitride nanotubes, aluminum nitride, gallium nitride, chromium nitride, tungsten nitride, magnesium nitride, molybdenum nitride, and lithium nitride.
  • oxides include iron oxide, silicon oxide (silica), aluminum oxide (alumina) (including hydrates of aluminum oxide (boehmite, etc.)), magnesium oxide, titanium oxide, cerium oxide, zirconium oxide, and the like. mentioned.
  • oxides include transition metal oxides such as barium titanate, and metal ion-doped materials such as indium tin oxide and antimony tin oxide.
  • Hydroxides include, for example, aluminum hydroxide, calcium hydroxide, magnesium hydroxide and the like.
  • Metals include, for example, copper, gold, nickel, tin, iron, or alloys thereof.
  • Carbon-based materials include, for example, carbon black, graphite, diamond, graphene, fullerene, carbon nanotubes, carbon nanofibers, nanohorns, carbon microcoils, and nanocoils.
  • the plate-like thermally conductive particles are preferable as the plate-like thermally conductive particles.
  • the spherical heat conductive particles are preferably at least one selected from aluminum oxide (alumina), magnesium oxide, aluminum nitride and aluminum hydroxide. It should be noted that each of the plate-shaped heat conductive particles and the spherical heat conductive particles may be made of a plurality of materials.
  • the thermally conductive resin sheet of the present invention contains a resin, and the type of the resin is not particularly limited, and examples thereof include elastomer resins, acrylic resins, and silicone resins. , preferably an elastomer resin.
  • the type of elastomer resin is not particularly limited, but examples include acrylonitrile-butadiene rubber, ethylene-propylene-diene rubber, ethylene-propylene rubber, natural rubber, polyisoprene rubber, polybutadiene rubber, hydrogenated polybutadiene rubber, styrene-butadiene block copolymerization.
  • the elastomer resin described above may be a solid elastomer at normal temperature (23° C.) and normal pressure (1 atm), or may be a liquid elastomer.
  • the elastomer resin in the thermally conductive resin sheet preferably contains a liquid elastomer resin.
  • the liquid elastomer resin is not particularly limited, and for example, among the elastomer resins described above, liquid ones can be used. Rubber is preferred. Only one type of elastomer resin may be used, or a plurality of types may be used in combination.
  • the viscosity of the liquid elastomer resin at 25°C is preferably 1 to 150 Pa ⁇ s, more preferably 10 to 100 Pa ⁇ s.
  • the viscosity after mixing is preferably as described above. Within the above range, it is easy to suppress oil seepage, and it is easy to prevent contamination of electronic components, which are adherends.
  • the content of the liquid elastomer is preferably 60% by mass or more, more preferably 90% by mass or more, and still more preferably 100% by mass, based on the total amount of the elastomer resin.
  • acrylic resin is not particularly limited, it may be an acrylate, a methacrylate, or a polymer obtained by polymerizing a monomer containing both of them.
  • one or both of acrylate and methacrylate are collectively referred to as (meth)acrylate.
  • Acrylic resins usually have structural units derived from alkyl (meth)acrylates. Alkyl (meth)acrylates having an alkyl group of 12 or less carbon atoms are generally used, and those having an alkyl group of 3 to 12 carbon atoms are preferably used.
  • silicone resin is not particularly limited, it may be either a condensation curing silicone resin or an addition reaction curing silicone resin, but the addition reaction curing silicone resin is preferred.
  • the silicone resin is preferably obtained by cross-linking and curing a silicone compound with a cross-linking agent.
  • the silicone compound an organopolysiloxane having two or more alkenyl groups such as vinyl groups is preferably used, and an organopolysiloxane having vinyl groups at both ends is more preferable.
  • organopolysiloxanes having vinyl groups at both ends include vinyl-terminated polydimethylsiloxane, vinyl-terminated polyphenylmethylsiloxane, vinyl-terminated dimethylsiloxane-diphenylsiloxane copolymer, vinyl-terminated dimethylsiloxane-phenylmethylsiloxane copolymer, vinyl A double-ended dimethylsiloxane-diethylsiloxane copolymer and the like can be mentioned.
  • the cross-linking agent is not limited as long as it can cross-link the silicone compound described above, and includes compounds having two or more hydrosilyl groups (SiH).
  • hydrosilyl group-containing polyorganosiloxane polyorganosiloxane having two or more hydrosilyl groups
  • Hydrosilyl group-containing polyorganosiloxanes include methylhydrosiloxane-dimethylsiloxane copolymers, polymethylhydrosiloxanes, polyethylhydrosiloxanes, methylhydrosiloxane-phenylmethylsiloxane copolymers, and the like.
  • both terminals may be blocked with a trimethylsilyl group, a triethylsilyl group, or the like. Only one type of silicone resin may be used, or a plurality of types may be used in combination.
  • the volume of the resin in the thermally conductive resin sheet is preferably 10-70% by volume, more preferably 20-60% by volume, and even more preferably 30-50% by volume.
  • the thermally conductive resin sheet of the present invention may optionally contain antioxidants, thermal stabilizers, colorants, flame retardants, antistatic agents, fillers other than the thermally conductive particles, decomposition temperature adjusters, and other heat additives. Additives commonly used in conductive resin sheets may be added.
  • the long axis of the plate-like thermally conductive particles is preferably oriented at an angle of 45° or more, more preferably 50° or more, with respect to the sheet surface, which is the surface of the thermally conductive resin sheet. , more preferably 60° or more, more preferably 70° or more, still more preferably 80° or more.
  • the thermal conductivity in the thickness direction of the thermally conductive resin sheet is improved.
  • the thermal conductivity can be improved by using a relatively small amount of the thermally conductive particles, both thermal conductivity and flexibility of the thermally conductive resin sheet can be easily improved.
  • the long axis of the plate-shaped heat conductive particles is aligned with the maximum length of the plate-shaped heat conductive particles.
  • the above angle can be measured by observing a cross section in the thickness direction of the thermally conductive resin sheet with a scanning electron microscope. For example, first, a thin film slice of the central portion in the thickness direction of the thermally conductive resin sheet is produced. Then, the plate-like thermally conductive particles in the thin film section were observed with a scanning electron microscope (SEM) at a magnification of 3000, and the long axis of the observed plate-like thermally conductive particles and the surface constituting the sheet surface formed. It can be obtained by measuring the angle. In this specification, angles of 45°, 50°, 60°, 70°, 80° or more mean that the average value of the values measured as described above is the angle or more.
  • orientation angle of 70° or more does not deny the existence of plate-like thermally conductive particles with an orientation angle of less than 70°, since 70° is an average value. If the angle exceeds 90°, the supplementary angle is taken as the measured value.
  • the thermally conductive resin sheet of the present invention has a compression strength A of 30% compression strength measured at a compression speed of 0.1 mm / min, a compression strength B of 30% compression strength measured at a compression speed of 1.0 mm / min, and a compression speed
  • the compressive strength B/compressive strength A is preferably 2 or less, or the compressive strength C/compressive strength B is 2 or less.
  • Compressive strength B/compressive strength A represents the ratio of compressive strength B to compressive strength A
  • compressive strength C/compressive strength B similarly represents the ratio of compressive strength C to compressive strength B
  • these compressive strengths The smaller the ratio, the smaller the increase in stress when the compression speed is increased. Therefore, when the thermally conductive resin sheet satisfies the value of the compressive strength ratio, it becomes easy to suppress an increase in stress during high-speed compression. From the viewpoint of further suppressing an increase in stress during high-speed compression of the thermally conductive resin sheet, it is more preferable that the ratio of compressive strength B/compressive strength A is 2 or less and the ratio of compressive strength C/compressive strength B is 2 or less. .
  • the ratio of compressive strength B/compressive strength A is preferably 1.8 or less, more preferably 1.6 or less, and usually 1.0 or more.
  • the ratio of compressive strength C/compressive strength B is preferably 1.8 or less, more preferably 1.6 or less, and usually 1.0 or more.
  • the thermally conductive resin sheet of the present invention preferably has a thermal resistance value of 5 K/W or less when compressed by 10%.
  • the thermal resistance value at 10% compression is 5 K/W or less, heat dissipation is improved when the thermally conductive resin sheet is used after being compressed.
  • the thermal resistance value at 10% compression is preferably 4 K/W or less, more preferably 3 K/W or less.
  • the thermal resistance value at 10% compression can be measured by the method described in Examples.
  • the thermally conductive resin sheet of the present invention is preferably a crosslinked thermally conductive resin sheet, and therefore the gel fraction is preferably within a certain range.
  • the gel fraction of the thermally conductive resin sheet is preferably 50% by mass or less, more preferably 40% by mass or less, from the viewpoint of good flexibility.
  • the gel fraction is preferably 5% by mass or more, more preferably 10% by mass or more, from the viewpoint of reducing changes in physical properties during long-term use.
  • the thermally conductive resin sheet of the present invention may be a single layer or a laminate. From the viewpoint of improving thermal conductivity, a laminate obtained by laminating plate-shaped thermally conductive particles, spherical thermally conductive particles, and a resin layer containing a resin is preferable.
  • An example of an embodiment of a laminate in which plate-shaped heat-conducting particles, spherical heat-conducting particles, and a resin layer containing a resin are laminated will be described below with reference to FIG. In each figure, the plate-shaped thermally conductive particles partly overlap with the vertically adjacent particles, but in the present invention, the plate-shaped thermally conductive particles do not necessarily have to overlap each other.
  • the thermally conductive resin sheet 1 has a structure in which a plurality of resin layers 2 are laminated. A surface perpendicular to the lamination surface of the plurality of resin layers 2 is a sheet surface 5 which is the surface of the resin sheet 1 .
  • the thickness T1 of the thermally conductive resin sheet 1 (that is, the distance between the sheet surfaces 5) is not particularly limited, but can be in the range of 0.1 to 30 mm, for example.
  • the thickness of one layer of the resin layer 2 (resin layer width W1) is not particularly limited, but is preferably 1000 ⁇ m or less, more preferably 500 ⁇ m or less, and preferably 0.1 ⁇ m or more, more preferably 0.5 ⁇ m or more, More preferably, it can be 1 ⁇ m or more. Thermal conductivity can be improved by adjusting the thickness in this way.
  • the resin layer 2 is a thermally conductive resin layer 7 containing plate-like thermally conductive particles 6 , spherical thermally conductive particles 9 and resin 8 .
  • the thermally conductive resin layer 7 has a structure in which plate-shaped thermally conductive particles 6 and spherical thermally conductive particles 9 are dispersed in a resin 8 .
  • the plate-like thermally conductive particles 6 have their long axes at an angle of more than 45°, more preferably 50° or more, still more preferably 60°C or more, still more preferably 60°C or more, with respect to the sheet surface as described above. is oriented at an angle of 70° or more, more preferably 80° or more.
  • the thickness of the heat conductive resin layer 7 is preferably 1 to 1000 times, more preferably 1 to 500 times the thickness of the plate-like heat conductive particles 6 contained in the heat conductive resin layer 7 .
  • the method for producing the thermally conductive resin sheet of the present invention is not particularly limited.
  • a thermally conductive resin sheet may be formed by extruding the thermally conductive resin composition, which is a mixture obtained by supplying additives to an extruder and melt-kneading them, from the extruder in the form of a sheet.
  • the method for producing the thermally conductive resin sheet comprising the laminate of the present invention is not particularly limited. can.
  • a thermally conductive resin composition is produced by kneading plate-shaped thermally conductive particles, spherical thermally conductive particles, a resin, and additives that are blended as necessary.
  • the thermally conductive filler and the resin are preferably kneaded under heating using a twin-screw kneader such as Plastomill or a twin-screw extruder. is uniformly dispersed in the resin to obtain a thermally conductive resin composition. Then, by pressing the thermally conductive resin composition, a sheet-like resin layer (thermally conductive resin layer) can be obtained.
  • the resin layers obtained in the kneading step are laminated to form a laminate having an n-layer structure.
  • a lamination method for example, the resin layer produced in the kneading step is divided into xi and laminated, and after producing a laminate having an xi layer structure, hot pressing is performed as necessary, and then, further, if necessary. Accordingly, it is possible to use a method of repeating the division, lamination, and the above-described hot press to fabricate a laminated body having a width of D ⁇ m and an n-layer structure.
  • the width W2 (D ⁇ m) of the laminate after the lamination step and the thickness (d ⁇ m) of the plate-shaped thermally conductive particles are 0.0005 ⁇ d/(D/n) ⁇ 1. is preferably satisfied, more preferably 0.001 ⁇ d/(D/n) ⁇ 1, and even more preferably 0.02 ⁇ d/(D/n) ⁇ 1.
  • the molding pressure in each time can be made smaller than in the case of performing molding once, so phenomena such as destruction of the laminated structure caused by molding can be prevented. can be avoided.
  • an extruder equipped with a multilayer forming block is used, the multilayer forming block is prepared, and co-extrusion is performed to obtain a laminate having the n-layer structure and the thickness of D ⁇ m.
  • the thermally conductive resin composition obtained in the kneading step is introduced into both the first extruder and the second extruder, and the thermally conductive resin composition is introduced from the first extruder and the second extruder.
  • the resin composition is extruded at the same time.
  • the thermally conductive resin composition extruded from the first extruder and the second extruder is sent to the feedblock.
  • the thermally conductive resin composition extruded from the first extruder and the second extruder join together. Thereby, a two-layer body in which the thermally conductive resin composition is laminated can be obtained.
  • the two-layer body is transferred to a multi-layer forming block, divided into a plurality of layers along a plurality of planes parallel to the direction of extrusion and perpendicular to the plane of lamination, and then laminated.
  • n-layer structure, and a laminate having a thickness of D ⁇ m can be produced.
  • the thickness per layer (D/n) can be adjusted to a desired value by adjusting the multi-layer formation block.
  • a thermally conductive resin sheet can be produced by slicing the laminate obtained in the lamination step in a direction parallel to the lamination direction.
  • cross-linking In the method for producing a thermally conductive resin sheet, it is preferable to provide a step of cross-linking the resin. By cross-linking, it becomes easier to reduce changes in physical properties during use. Crosslinking may be carried out by, for example, a method of irradiating ionizing radiation such as electron beams, ⁇ -rays, ⁇ -rays, and ⁇ -rays, a method of using an organic peroxide, or the like. In the case of cross-linking by irradiation with ionizing radiation, it is preferable to irradiate the sheet surface (sheet surface) with ionizing radiation after the above-described slicing step, and among ionizing radiation, electron beams are preferable.
  • the acceleration voltage for electron beam irradiation is preferably 50 to 800 kV.
  • the dose of electron beam irradiation is preferably 50 to 700 kGy.
  • the thermally conductive resin sheet of the present invention is excellent in thermal conductivity and flexibility, and can suppress an increase in stress during high-speed compression. Therefore, the thermally conductive resin sheet of the present invention can promote heat dissipation from the heat generating body to the heat radiating body by, for example, compressing and arranging it between the heat generating body and the heat radiating body inside the electronic device. Moreover, when it is arranged between the heating element and the radiator, it can be compressed at a high speed (for example, a compression speed exceeding 1.0 mm/min, preferably a compression speed of 1.5 mm/min or more). Improve productivity.
  • a high speed for example, a compression speed exceeding 1.0 mm/min, preferably a compression speed of 1.5 mm/min or more.
  • thermally conductive resin sheet 1 A mode of arranging a thermally conductive resin sheet between a heating element and a radiator will be described using the thermally conductive resin sheet 1 described with reference to FIG.
  • the thermally conductive resin sheet 1 is arranged so that the sheet surface 5 is in contact with the heating element 3 and the radiator 4 .
  • the thermally conductive resin sheet 1 is arranged in a compressed state between two members such as the heating element 3 and the radiator 4 .
  • the heating element 3 is, for example, a semiconductor package or the like
  • the radiator 4 is, for example, metal such as aluminum or copper.
  • Resin/liquid elastomer 1 Liquid polybutadiene rubber, manufactured by Kuraray Co., Ltd., trade name “L-1203”
  • Silicone resin Asahi Kasei Wacker Silicone, trade name “SEMICOSIL 962TC”
  • Acrylic resin manufactured by Nagase ChemteX, trade name “SG-280 EK23”
  • ⁇ Orientation angle> A cross section of the thermally conductive resin sheet was observed with a scanning electron microscope (S-4700 manufactured by Hitachi, Ltd.). From an observation image at a magnification of 3000 times, the angle between the long axis and the sheet surface was measured for any 20 plate-shaped thermally conductive particles, and the average value was taken as the orientation angle.
  • ⁇ Thermal conductivity> The thermal conductivity in the thickness direction of the obtained thermally conductive resin sheet was measured using a laser flash method thermal constant measuring device (“LFA447” manufactured by NETZSCH).
  • the thermal resistance value at 10% compression of the thermally conductive resin sheet was measured with the sample compressed by 10% by a steady method using a trade name "T3Ster (registered trademark) DynTIM Tester” manufactured by Mentor Graphics. Measured according to ASTM D5470. ⁇ 10%, 30%, 40% compression strength, ratio of compression strength> The 10, 30 and 40% compressive strengths of the obtained thermally conductive resin sheets were measured using "RTG-1250" manufactured by A&D. The measurement was performed with a sample size of 2 mm ⁇ 15 mm ⁇ 15 mm, a measurement temperature of 23° C., and a compression rate of 1 mm/min. In addition, the compression speed was changed to 0.1 mm / min and 10.0 mm / min, and the 30% compression speed was measured under each condition, and the compression strength B / compression strength A and compression strength C / compression strength B was found.
  • Heat dissipation was evaluated when the thermally conductive resin sheet was compressed by 10%. If the compressive strength exceeds 2500 kPa, the flexibility is low and it is difficult to use as a thermally conductive resin sheet.
  • NG Compressive strength of more than 2500 kPa
  • Example 1 100 parts by mass of liquid elastomer 1 (manufactured by Kuraray Co., Ltd., product name “L-1203”), 360 parts by mass of alumina (manufactured by HUBER, product name “TM2410”), and boron nitride-1 (manufactured by Denka Co., Ltd., product (named "SGP”) was melt-kneaded to prepare a thermally conductive resin composition. By pressing the composition, a sheet-like resin layer having a thickness of 0.5 mm, a width of 80 mm and a depth of 80 mm was obtained.
  • the obtained resin layer was divided into 16 equal parts and overlapped to obtain a laminate consisting of 16 resin layers having a total thickness of 8 mm, a width of 20 mm and a depth of 20 mm. Then, it was sliced parallel to the stacking direction to obtain a thermally conductive resin sheet having a thickness of 2 mm, a width of 8 mm and a depth of 20 mm. The thickness of one of the resin layers constituting the laminate of the thermally conductive resin sheets was 0.5 mm. Next, both surfaces of the thermally conductive resin sheet were irradiated with an electron beam at an acceleration voltage of 525 kV and a dose of 600 kGy to crosslink the sheet. Each item in Table 1 was evaluated for this thermally conductive resin sheet.
  • Examples 2 to 8, Comparative Examples 1 to 4 A thermally conductive resin sheet was obtained in the same manner as in Example 1, except that the types and amounts of the resin and thermally conductive particles were changed as shown in Tables 1 and 2. Each item in the table was evaluated for this thermally conductive resin sheet.
  • Example 9-10 Comparative Examples 5-6
  • a thermally conductive resin sheet was obtained in the same manner as in Example 1, except that the types and amounts of the resin and thermally conductive particles were changed as shown in Tables 1 and 2, and that electron beam irradiation was not performed. .
  • the thermally conductive resin sheet of the present invention shown in each example has both excellent thermal conductivity and flexibility because the thermal conductivity and 30% compressive strength are within the predetermined ranges. Furthermore, it was found that the assembling performance was good when assembling at various compression speeds, and an increase in stress was suppressed when compression was performed at high speed. On the other hand, the thermally conductive resin sheets shown in the comparative examples had poor results in the evaluation of heat dissipation or poor results in the assembly test, and it was found that the degree of increase in stress was large when compressed at high speed. rice field.

Abstract

本発明の熱伝導性樹脂シートは、板状熱伝導粒子、球状熱伝導粒子、及び樹脂を含有し、熱伝導率が5W/m・K以上、圧縮速度1.0mm/分で測定した30%圧縮強度Bが1500kPa以下である。さらに、板状熱伝導粒子と球状熱伝導粒子の体積比率(板状熱伝導粒子の体積/球状熱伝導粒子の体積)が30/70~90/10であり、板状熱伝導粒子及び球状熱伝導粒子の体積の合計が30~90体積%である。 本発明によれば、熱伝導性、柔軟性に優れ、かつ高速で圧縮した場合であっても応力の増加を抑制可能な熱伝導性樹脂シートを提供することができる。

Description

熱伝導性樹脂シート
 本発明は、熱伝導性樹脂シートに関する。
 熱伝導性樹脂シートは、主に、半導体パッケージのような発熱体と、アルミニウムや銅等の放熱体との間に配置して、発熱体で発生する熱を放熱体に速やかに移動させる機能を有する。近年、半導体素子の高集積化や半導体パッケージにおける配線の高密度化によって、半導体パッケージの単位面積当たりの発熱量が大きくなっており、これに伴い、従来の熱伝性樹脂シートに比べ、熱伝導率が向上した、より速やかな熱放散を促すことができる熱伝導性樹脂シートへの需要が高まってきている。
 このような熱伝導性樹脂シートとして、熱伝導性フィラーを含有させた熱伝導性樹脂シートが知られている。例えば、特許文献1では、液状のポリブテンと熱伝導性フィラーを含有する熱伝導性樹脂シートに関する発明が記載されており、特許文献2では、エポキシ樹脂と、熱伝導性フィラーとして六方晶窒化ホウ素などを含有する熱伝導性樹脂シートに関する発明が記載されている。
 また、特許文献3では、特定の板状熱伝導粒子及び球状熱伝導粒子を併用した樹脂組成物が記載されており、熱伝導性に優れることが記載されている。
特開2012-38763号公報 特開2013-254880号公報 特開2015-174906号公報
 熱伝導性樹脂シートは、一般には、熱伝導率を向上させるために、熱伝導性フィラーの含有量を高くすると、シートが硬くなってしまい、シートを使用する電子機器内部でハンダクラックや基板の反りなどが生じ、電子部品にダメージを与えることが懸念される。すなわち、熱伝導性樹脂シートの熱伝導率を高くしつつ、柔軟性を良好に保つことは難しく、これらを両立する技術が望まれている。
 また近年、電子モジュールの複雑化、部品点数の増加などにより、アッセンブリー工程が自動化され、熱伝導性樹脂シートを高速で圧縮して、電子機器内部に組み付けることが行われている。熱伝導性樹脂シートを高速で圧縮した場合には、電子機器内部の基板や電子部品に応力がかかり易くなり、基板などの反りの原因になる。また、熱伝導性樹脂シートを高速で圧縮しようとした場合に、応力の増加により、所望の圧縮率に圧縮することが難しくなり、電子機器内部に組み付けすることが困難になる場合がある。
 本発明は、上記従来の課題に鑑みてなされたものであって、熱伝導性、柔軟性に優れ、かつ高速で圧縮した場合であっても応力の増加を抑制可能な熱伝導性樹脂シートを提供することを目的とする。
 本発明者らは、前記目的を達成するために鋭意研究を重ねた。その結果、板状熱伝導粒子、球状熱伝導粒子、及び樹脂を含有する熱伝導性樹脂シートであって、熱伝導率、30%圧縮強度、板状熱伝導粒子と球状熱伝導粒子の体積比率、板状熱伝導粒子及び球状熱伝導粒子の合計の体積が一定範囲にある熱伝導性樹脂シートにより、上記課題が解決できることを見出し、本発明を完成させた。
 本発明者らは、さらに、板状熱伝導粒子、球状熱伝導粒子、及び樹脂を含有する熱伝導性樹脂シートであって、熱伝導率、圧縮速度1.0mm/分で測定した30%圧縮強度、及び異なる圧縮速度で測定した特定の圧縮強度比が一定範囲にある熱伝導性樹脂シートによっても、上記課題が解決できることを見出し、本発明を完成させた。
 すなわち、本発明は、下記[1]~[9]に関する。
[1]板状熱伝導粒子、球状熱伝導粒子、及び樹脂を含有する熱伝導性樹脂シートであって、熱伝導率が5W/m・K以上、圧縮速度1.0mm/分で測定した30%圧縮強度Bが1500kPa以下であり、板状熱伝導粒子と球状熱伝導粒子の体積比率(板状熱伝導粒子の体積/球状熱伝導粒子の体積)が30/70~90/10であり、板状熱伝導粒子及び球状熱伝導粒子の体積の合計が30~90体積%である、熱伝導性樹脂シート。
[2]板状熱伝導粒子、球状熱伝導粒子、及び樹脂を含有する熱伝導性樹脂シートであって、熱伝導率が5W/m・K以上、圧縮速度1.0mm/分で測定した30%圧縮強度Bが1500kPa以下であり、圧縮速度0.1mm/分で測定した30%圧縮強度を圧縮強度A、圧縮速度10.0mm/分で測定した30%圧縮強度を圧縮強度Cとした場合に、圧縮強度B/圧縮強度Aが2以下、または圧縮強度C/圧縮強度Bが2以下である、熱伝導性樹脂シート。
[3]前記板状熱伝導粒子の平均粒径が1~400μmであり、前記球状熱伝導粒子の平均粒径が1~100μmである、上記[1]又は[2]に記載の熱伝導性樹脂シート。
[4]10%圧縮時の熱抵抗値が5K/W以下である、上記[1]~[3]のいずれかに記載の熱伝導性樹脂シート。
[5]平均フィラーアスペクト比が5以上である、上記[1]~[4]のいずれかに記載の熱伝導性樹脂シート。
[6]前記板状熱伝導粒子の長軸がシート面に対して60°以上の角度で配向している、上記[1]~[5]のいずれかに記載の熱伝導性樹脂シート。
[7]前記樹脂がエラストマー樹脂である、上記[1]~[6]のいずれかに記載の熱伝導性樹脂シート。
[8]前記エラストマー樹脂が、液状エラストマー樹脂を含有する、上記[7]に記載の熱伝導性樹脂シート。
[9]架橋されている、上記[1]~[8]のいずれかに記載の熱伝導性樹脂シート。
 本発明によれば、熱伝導性、柔軟性に優れ、かつ高速で圧縮した場合であっても応力の増加を抑制可能な熱伝導性樹脂シートを提供することができる。
積層体からなる熱伝導性樹脂シートの模式的断面図である。 積層体からなる熱伝導性樹脂シートの使用状態における模式的断面図である。
[熱伝導性樹脂シート]
 本発明の熱伝導性樹脂シートは、板状熱伝導粒子、球状熱伝導粒子、及び樹脂を含有する熱伝導性樹脂シートであって、熱伝導率が5W/m・K以上、圧縮速度1.0mm/分で測定した30%圧縮強度Bが1500kPa以下である。これに加えて、本発明の熱伝導性樹脂シートは、板状熱伝導粒子と球状熱伝導粒子の体積比率(板状熱伝導粒子の体積/球状熱伝導粒子の体積)が30/70~90/10であり、板状熱伝導粒子及び球状熱伝導粒子の体積の合計が30~90体積%である。
 本発明の別の発明に係る熱伝導性シートは、板状熱伝導粒子、球状熱伝導粒子、及び樹脂を含有する熱伝導性樹脂シートであって、熱伝導率が5W/m・K以上、圧縮速度1.0mm/分で測定した30%圧縮強度Bが1500kPa以下である。これに加えて、本発明の別の発明に係る熱伝導性シートは、圧縮速度0.1mm/分で測定した30%圧縮強度を圧縮強度A、圧縮速度10.0mm/分で測定した30%圧縮強度を圧縮強度Cとした場合に、圧縮強度B/圧縮強度Aが2以下、または圧縮強度C/圧縮強度Bが2以下である。
 一般に、熱伝導性樹脂シートは、熱伝導率を高めるにつれて、柔軟性が低下する傾向があるが、本発明の熱伝導性樹脂シートは、熱伝導率が高いにも関わらず、30%圧縮強度が一定以下であり、柔軟性にも優れている。これに加えて、本発明の熱伝導性樹脂シートは、高速で圧縮した場合であっても応力の増加を抑制することができるため、電子機器内部への組付けを行いやすく、かつ電子機器内部の基板などの反りを抑制することができる。
<熱伝導率>
 本発明の熱伝導性樹脂シートの熱伝導率は5W/m・K以上である。熱伝導率が5W/m・K未満であると、発熱体から発生する熱を十分に放熱することができない。熱伝導性樹脂シートの放熱性を向上させる観点から、熱伝導性樹脂シートの熱伝導率は、好ましくは8W/mK以上であり、より好ましくは10W/m・K以上である。また、熱伝導性樹脂シートの熱伝導率は、高ければ高い方がよいが、通常、100W/m・K以下である。熱伝導率は、例えば、後述する球状熱伝導粒子の含有量、板状熱伝導粒子の含有量や配向などを調節することで、所望の値に調整しやすくなる。
<30%圧縮強度>
 本発明の熱伝導性樹脂シートの圧縮速度1.0mm/分で測定した30%圧縮強度Bは、1500kPa以下である。30%圧縮強度Bが1500kPaを超えると、シートの柔軟性が低下し、シートを使用する電子機器内部の電子部品などにダメージを与えやすくなる。熱伝導性樹脂シートの柔軟性を高める観点から、熱伝導性樹脂シートの30%圧縮強度Bは、好ましくは1000kPa以下、より好ましくは800kPa以下である。また、熱伝導性樹脂シートの30%圧縮強度Bは、通常50kPa以上であり、好ましくは200kPa以上である。なお、30%圧縮強度とは、当初の厚さの30%に相当する厚さ分だけ圧縮したときの荷重をいう。
 熱伝導性樹脂シートの30%圧縮強度は、後述する熱伝導性樹脂シートを構成する樹脂の種類、架橋の有無、球状熱伝導粒子、板状熱伝導粒子の量などにより調節することができる。
 上記30%圧縮強度Bは、圧縮速度1.0mm/分、試験片サイズ15mm角、試験片厚み2.0mmの条件で測定した30%圧縮強度であり、詳細には実施例に記載の方法で測定することができる。
<熱伝導粒子>
 本発明の熱伝導性樹脂シートは、板状熱伝導粒子及び球状熱伝導粒子を含有し、これら熱伝導粒子は樹脂中に分散している。熱伝導粒子の熱伝導率は特に限定されないが、好ましくは12W/m・K以上であり、より好ましくは15~300W/m・K、さらに好ましくは25~300W/m・Kである。これら熱伝導粒子を含有することにより、熱伝導樹脂シートの熱伝導率が高くなる。特に、板状熱伝導粒子は、後述するように熱伝導性樹脂シートの厚さ方向に配向させることで、熱伝導率を効果的に高くすることができる。一般には、板状熱伝導粒子を使用して、熱伝導性樹脂シートの熱伝導率を高くすると、高速圧縮時に、応力が増加しやすくなるが、本発明の熱伝導性樹脂シートは、板状熱伝導粒子を用いた上で、高速圧縮時における応力の増加を抑制することができる。
 熱伝導樹脂シートにおける板状熱伝導粒子と球状熱伝導粒子の体積比率(板状熱伝導粒子/球状熱伝導粒子)は、30/70~90/10である。上記体積比率が30/70未満である場合、熱伝導性樹脂シートの熱伝導率が低下するか又は熱伝導率を高くした場合は柔軟性が低下する。
 また、上記体積比率が90/10を超えると、熱伝導性樹脂シートを高速で圧縮した場合の応力の増加の度合いが大きくなる。これは、板状熱伝導粒子の含有量が多いと、熱伝導性樹脂シートを高速で圧縮した場合の反発力が高くなるからと考えられる。
 熱伝導性樹脂シートを高速で圧縮した場合の応力の増加をより抑制する観点、並びに熱伝導率及び柔軟性を良好にする観点から、熱伝導性樹脂シートにおける板状熱伝導粒子と球状熱伝導粒子の体積比率(板状熱伝導粒子の体積/球状熱伝導粒子の体積)は、好ましくは30/60~80/20であり、より好ましくは40/60~80/20である。
 上記体積比率は、熱伝導性樹脂シートにおける球状熱伝導粒子の体積に対する板状熱伝導粒子の体積を意味する。なお、熱伝導性樹脂シートにおける球状熱伝導粒子の体積は、球状熱伝導粒子の質量と、球状熱伝導粒子の単位体積あたりの質量から算出することができる。同様に、熱伝導樹脂シート中の板状熱伝導粒子の体積は、板状熱伝導粒子の質量と、板状熱伝導粒子の単位体積あたりの質量から算出することができる。
 本発明の熱伝導性樹脂シートにおいて、板状熱伝導粒子及び球状熱伝導粒子の体積の合計は30~90体積%である。板状熱伝導粒子及び球状熱伝導粒子の体積の合計が30体積%未満であると、熱伝導性樹脂シートの熱伝導率が低くなり、放熱性が悪くなる。一方、板状熱伝導粒子及び球状熱伝導粒子の体積の合計が90体積%を超えると、熱伝導性シートの柔軟性が低くなる。熱伝導性樹脂シートの熱伝導率及び柔軟性のバランスを良好にする観点から、板状熱伝導粒子及び球状熱伝導粒子の体積の合計は、好ましくは40~80体積%であり、より好ましくは50~70体積%、さらに好ましくは50~58体積%である。
 熱伝導性樹脂シートにおいて板状熱伝導粒子の体積は、好ましくは5~80体積%であり、より好ましくは10~60体積%であり、さらに好ましくは15~50体積%である。また、熱伝導性樹脂シートにおいて球状熱伝導粒子の体積は、好ましくは3~50体積%であり、より好ましくは5~45体積%であり、さらに好ましくは5~40体積%である。
 本発明における板状熱伝導粒子は、粒子の形状が薄片状、鱗片状の粒子で、各粒子の長径が、厚さよりも十分に大きいものであり、例えばアスペクト比が2以上、好ましくは3以上となるものである。ここで、板状熱伝導粒子のアスペクト比は、粒子の最大長さの厚みに対する比(最大長さ/厚み)を意味する。
 板状熱伝導粒子の平均粒径は、特に限定されないが、好ましくは1~400μmであり、より好ましくは5~300μmである。板状熱伝導粒子の平均粒径を上記範囲とすることにより、後述する異なる圧縮速度で測定した圧縮強度の比を所望の値に調整しやすくなり、熱伝導性樹脂シートの高速圧縮時における応力の増加を抑制することができる。板状熱伝導粒子の平均粒径は、レーザー回折式粒度分布測定により求められ、体積基準で、積算粒子量が50%である粒子径を表す。
 本発明における球状熱伝導粒子は、粒子形状が球形及び球形に近いもので、アスペクト比が1又は1に近いものであり、アスペクト比が例えば1.0以上2.0未満、好ましくは1.0以上1.5以下となるものである。ここで、球状熱伝導粒子のアスペクト比は、長径の短径に対する比(長径/短径)を意味する。
 なお、本明細書において、アスペクト比は走査型電子顕微鏡で、十分な数(例えば250個)の熱伝導粒子を観察して平均値として求めるとよい。
 球状熱伝導粒子の平均粒径は、特に限定されないが、好ましくは1~100μmであり、より好ましくは1~80μmである。球状熱伝導粒子の平均粒径を上記範囲とすることにより、後述する圧縮強度比を所望の値に調整しやすくなり、熱伝導性樹脂シートの高速圧縮時における応力の増加を抑制することができる。球状熱伝導粒子の平均粒径は、レーザー回折式粒度分布測定により求められ、体積基準で、積算粒子量が50%である粒子径を表す。
 本発明の熱伝導性シートにおける、平均フィラーアスペクト比は好ましくは5以上である。平均フィラーアスペクト比は、より好ましくは10以上であり、さらに好ましくは20以上であり、そして好ましくは100以下である。平均フィラーアスペクト比がこれら下限値以上であると、熱伝導性樹脂シートの熱伝導率が高まりやすく、平均フィラーアスペクト比がこれら上限値以下であると、熱伝導性樹脂シートを高速で圧縮した際の、応力の増加が抑制されやすい。
 平均フィラーアスペクト比は、熱伝導性樹脂シートに含まれる熱伝導粒子のアスペクト比の平均値を意味する。具体的には、平均フィラーアスペクト比は、板状熱伝導粒子のアスペクト比と球状熱伝導粒子のアスペクト比を体積平均することにより求めることができる。また計算上球状熱伝導粒子のアスペクト比は1.5とする。
 具体的には、平均フィラーアスペクト比は、以下の式(1)で求めることができる。
板状熱伝導粒子のアスペクト比×板状熱伝導粒子の体積分率/100+球状熱伝導粒子のアスペクト比×球状熱伝導粒子の体積分率/100  (1)
 ここで、板状熱伝導粒子の体積分率は、熱伝導性シートにおける全熱伝導粒子の体積に対する板状熱伝導粒子の体積の割合(%)を意味し、球状熱伝導粒子の体積分率は、熱伝導性シートにおける全熱伝導粒子の体積に対する球状熱伝導粒子の体積の割合(%)を意味する。
 本発明における板状熱伝導粒子及び球状熱伝導粒子のそれぞれの材質としては、例えば、炭化物、窒化物、酸化物、水酸化物、金属、炭素系材料などが挙げられる。
 炭化物としては、例えば、炭化ケイ素、炭化ホウ素、炭化アルミニウム、炭化チタン、炭化タングステンなどが挙げられる。
 窒化物としては、例えば、窒化ケイ素、窒化ホウ素、窒化ホウ素ナノチューブ、窒化アルミニウム、窒化ガリウム、窒化クロム、窒化タングステン、窒化マグネシウム、窒化モリブデン、窒化リチウムなどが挙げられる。
 酸化物としては、例えば、酸化鉄、酸化ケイ素(シリカ)、酸化アルミニウム(アルミナ)(酸化アルミニウムの水和物(ベーマイトなど)を含む。)、酸化マグネシウム、酸化チタン、酸化セリウム、酸化ジルコニウムなどが挙げられる。また、酸化物として、チタン酸バリウムなどの遷移金属酸化物などや、さらには、金属イオンがドーピングされている、例えば、酸化インジウムスズ、酸化アンチモンスズなどが挙げられる。
 水酸化物としては、例えば、水酸化アルミニウム、水酸化カルシウム、水酸化マグネシウムなどが挙げられる。
 金属としては、例えば、銅、金、ニッケル、錫、鉄、または、それらの合金が挙げられる。
 炭素系材料としては、例えば、カーボンブラック、黒鉛、ダイヤモンド、グラフェン、フラーレン、カーボンナノチューブ、カーボンナノファイバー、ナノホーン、カーボンマイクロコイル、ナノコイルなどが挙げられる。
 上記した中でも、板状熱伝導粒子としては、窒化ホウ素が好ましい。また、球状熱伝導粒子としては、酸化アルミニウム(アルミナ)、酸化マグネシウム、窒化アルミニウム及び水酸化アルミニウムから選ばれる少なくとも1種であることが好ましい。
 なお、板状熱伝導粒子及び球状熱伝導粒子のそれぞれは、複数の材質のものを併用してもよい。
<樹脂>
 本発明の熱伝導性樹脂シートは、樹脂を含有し、その樹脂の種類は、特に制限されず、例えば、エラストマー樹脂、アクリル樹脂、シリコーン樹脂などが挙げられ、中でも柔軟性を良好とする観点から、エラストマー樹脂であることが好ましい。
 エラストマー樹脂の種類としては、特に制限されないが、例えば、アクリロニトリルブタジエンゴム、エチレン-プロピレン-ジエンゴム、エチレン-プロピレンゴム、天然ゴム、ポリイソプレンゴム、ポリブタジエンゴム、水素添加ポリブタジエンゴム、スチレン-ブタジエンブロック共重合体、水素添加スチレン-ブタジエンブロック共重合体、水素添加スチレン-ブタジエン-スチレンブロック共重合体、水素添加スチレン-イソプレンブロック共重合体、水素添加スチレン-イソプレン-スチレンブロック共重合体等が挙げられる。
 上記したエラストマー樹脂は、常温(23℃)かつ常圧(1気圧)で固体状のエラストマーであってもよいし、液状のエラストマーであってもよい。
 本発明の熱伝導性樹脂シートの柔軟性を向上させる観点から、熱伝導性樹脂シート中のエラストマー樹脂は、液状エラストマー樹脂を含有することが好ましい。液状エラストマー樹脂としては、特に限定されず、例えば、上記したエラストマー樹脂のうち液状のものを用いることができるが、中でも、液状アクリロニトリルブタジエンゴム、液状エチレン-プロピレン-ジエンゴム、液状ポリイソプレンゴム、液状ポリブタジエンゴムが好ましい。エラストマー樹脂は、1種のみを用いてもよいし、複数種類を併用してもよい。
 液状エラストマー樹脂の25℃における粘度は、好ましくは1~150Pa・sであり、より好ましくは10~100Pa・sである。液状エラストマー樹脂を2種以上混合して使用する場合は、混合した後の粘度が上記のとおりであることが好ましい。上記範囲であると、オイルの染み出しが抑制されやすく、被着体である電子部品の汚染を防止しやすくなる。
 液状エラストマーを用いる場合は、エラストマー樹脂全量基準に対して、液状エラストマーの含有量は、好ましくは60質量%以上であり、より好ましくは90質量%以上であり、更に好ましくは100質量%である。
 上記アクリル樹脂の種類としては、特に制限されないが、アクリレート、メタクリレート、及びこれらの両方を含むモノマーを重合した重合体である。なお、以下では、アクリレート及びメタクリレートの一方又は両方を、(メタ)アクリレートと総称する。
 アクリル樹脂は、通常、アルキル(メタ)アクリレート由来の構成単位を有する。アルキル(メタ)アクリレートは、通常、アルキル基の炭素数が12以下のものが使用され、好ましくはアルキル基の炭素数が3~12のものが使用される。具体的には、n-プロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、n-アミル(メタ)アクリレート、n-ヘキシル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、n-オクチル(メタ)アクリレート、イソオクチル(メタ)アクリレート、n-ノニル(メタ)アクリレート、イソノニル(メタ)アクリレート、n-デシル(メタ)アクリレート等のアルキル(メタ)アクリレートが挙げられる。
 アクリル樹脂は、1種のみを用いてもよいし、複数種類を併用してもよい。
 シリコーン樹脂の種類としては、特に制限されないが、縮合硬化型シリコーン樹脂、付加反応硬化型シリコーン樹脂のいずれでもよいが、付加反応硬化型シリコーン樹脂が好ましい。シリコーン樹脂は、シリコーン化合物を架橋剤により架橋させて硬化させたものが好ましい。シリコーン化合物としては、ビニル基などのアルケニル基を2つ以上有するオルガノポリシロキサンを使用することが好ましく、両末端にビニル基を有するオルガノポリシロキサンがより好ましい。両末端にビニル基を有するオルガノポリシロキサンとしては、ビニル両末端ポリジメチルシロキサン、ビニル両末端ポリフェニルメチルシロキサン、ビニル両末端ジメチルシロキサン-ジフェニルシロキサンコポリマー、ビニル両末端ジメチルシロキサン-フェニルメチルシロキサンコポリマー、ビニル両末端ジメチルシロキサン-ジエチルシロキサンコポリマーなどが挙げられる。
 架橋剤としては、上記したシリコーン化合物を架橋できるものであれば限定されないが、ヒドロシリル基(SiH)を2つ以上有する化合物が挙げられ、中でもヒドロシリル基を2つ以上有するポリオルガノシロキサン(以下、「ヒドロシリル基含有ポリオルガノシロキサン」ともいう)が好ましい。
 ヒドロシリル基含有ポリオルガノシロキサンとしては、メチルヒドロシロキサン-ジメチルシロキサンコポリマー、ポリメチルヒドロシロキサン、ポリエチルヒドロシロキサン、メチルヒドロシロキサン-フェニルメチルシロキサンコポリマーなどが挙げられる。これらは、末端にヒドロシリル基を含有していてもよいが、含有していなくてもよく、例えば、両末端がトリメチルシリル基、トリエチルシリル基などによって封鎖されてもよい。
 シリコーン樹脂は、1種のみを用いてもよいし、複数種類を併用してもよい。
 熱伝導性樹脂シートにおいて樹脂の体積は、好ましくは10~70体積%であり、より好ましくは20~60体積%であり、さらに好ましくは30~50体積%である。
<その他の添加剤>
 本発明の熱伝導性樹脂シートには、必要に応じて、酸化防止剤、熱安定剤、着色剤、難燃剤、帯電防止剤、前記熱伝導粒子以外の充填材、分解温度調整剤等の熱伝導性樹脂シートに一般的に使用する添加剤を配合されてもよい。
<配向>
 熱伝導性樹脂シートにおいて、板状熱伝導粒子の長軸が熱伝導性樹脂シートの表面であるシート面に対して45°より大きい角度で配向していることが好ましく、より好ましくは50°以上、更に好ましくは60°以上、更に好ましくは70°以上、更に好ましくは80°以上の角度で配向していることが好ましい。板状熱伝導粒子がこのような配向をしている場合は、熱伝導性樹脂シートの厚み方向の熱伝導率が向上する。さらに、熱伝導粒子の使用量を比較的少量にして熱伝導率を向上させることができるため、熱伝導性樹脂シートの熱伝導率と柔軟性の双方を良好にしやすくなる。なお、板状熱伝導粒子の長軸は、前記した板状熱伝導粒子の最大長さと方向が一致している。
 上記角度は、熱伝導性樹脂シートの厚さ方向の断面を走査型電子顕微鏡により観察することにより測定できる。例えば、まず、熱伝導性樹脂シートの厚み方向の中央部分の薄膜切片を作製する。そして、走査型電子顕微鏡(SEM)により倍率3000倍で該薄膜切片中の板状熱伝導粒子を観察し、観察された板状熱伝導粒子の長軸と、シート面を構成する面とのなす角度を測定することにより、求めることができる。本明細書において、45°、50°、60°、70°、80°以上の角度とは、上記のように測定された値の平均値がその角度以上であることを意味する。例えば「70°以上の角度で配向している」は、70°は平均値であるため、配向角度が70°未満の板状熱伝導粒子の存在を否定するものではない。なお、なす角度が90°を超える場合は、その補角を測定値とする。
(圧縮強度の比)
 本発明の熱伝導性樹脂シートは、圧縮速度0.1mm/分で測定した30%圧縮強度を圧縮強度A、圧縮速度1.0mm/分で測定した30%圧縮強度を圧縮強度B、圧縮速度10.0mm/分で測定した30%圧縮強度を圧縮強度Cとした場合に、圧縮強度B/圧縮強度Aが2以下、または圧縮強度C/圧縮強度Bが2以下であることが好ましい。
 圧縮強度B/圧縮強度Aは、圧縮強度Aに対する圧縮強度Bの比を表し、圧縮強度C/圧縮強度Bも同様に、圧縮強度Bに対する圧縮強度Cの比を表しており、これら圧縮強度の比が小さいほど、圧縮速度を速くした場合の応力の増加の度合いが小さくなる。
 したがって、熱伝導性樹脂シートが、上記圧縮強度の比の値を満足することにより、高速圧縮時における応力の増加を抑制しやすくなる。熱伝導性樹脂シートの高速圧縮時における応力の増加をより抑制する観点から、圧縮強度B/圧縮強度Aが2以下であり、かつ圧縮強度C/圧縮強度Bが2以下であることがより好ましい。また、同様の観点から、圧縮強度B/圧縮強度Aは、好ましくは1.8以下であり、より好ましくは1.6以下であり、そして通常は1.0以上である。また、同様の観点から、圧縮強度C/圧縮強度Bは、好ましくは1.8以下であり、より好ましくは1.6以下であり、そして通常は1.0以上である。
(10%圧縮時の熱抵抗値)
 本発明の熱伝導性樹脂シートは、10%圧縮時の熱抵抗値が5K/W以下であることが好ましい。10%圧縮時の熱抵抗値が5K/W以下であることにより、熱伝導性樹脂シートを圧縮して使用する際の放熱性が向上する。放熱性をより向上させる観点から、10%圧縮時の熱抵抗値は、好ましくは4K/W以下であり、より好ましくは3K/W以下である。10%圧縮時の熱抵抗値は、実施例に記載の方法で測定することができる。
(ゲル分率)
 本発明の熱伝導性樹脂シートは、架橋されている熱伝導性樹脂シートであることが好ましく、そのため、ゲル分率も一定範囲であることが好ましい。
 熱伝導性樹脂シートのゲル分率は、柔軟性を良好とする観点から、好ましくは50質量%以下であり、より好ましくは40質量%以下であり、また、一定の機械強度を確保したり、長期間使用時の物性変化を少なくするなどの観点から、ゲル分率は5質量%以上が好ましく、10質量%以上が好ましい。
(積層体)
 本発明の熱伝導性樹脂シートは単層でもよいし、積層体でもよい。熱伝導性を良好とする観点から、板状熱伝導粒子、球状熱伝導粒子、及び樹脂を含む樹脂層が積層された積層体が好ましい。以下、板状熱伝導粒子、球状熱伝導粒子、及び樹脂を含む樹脂層が積層された積層体の実施形態の一例を図1により説明する。
 各図において、板状熱伝導粒子は上下に隣接する粒子と一部重複しているが、本発明において板状熱伝導粒子同士は必ずしも重複していなくてよい。
 図1に示すように、熱伝導性樹脂シート1は、複数の樹脂層2を積層した構造を有している。複数の樹脂層2の積層面に対する垂直面が樹脂シート1の表面であるシート面5となる。
 熱伝導性樹脂シート1の厚みT1(すなわち、シート面5とシート面5との間の距離)は特に限定されないが、例えば、0.1~30mmの範囲とすることができる。
 樹脂層2の1層の厚み(樹脂層幅W1)は特に限定されないが、好ましくは1000μm以下、より好ましくは500μm以下であり、そして、好ましくは0.1μm以上、より好ましくは0.5μm以上、更に好ましくは1μm以上とすることができる。このように厚みを調整することにより、熱伝導性を高めることができる。
 樹脂層2は、板状熱伝導粒子6、球状熱伝導粒子9、及び樹脂8を含有する熱伝導性樹脂層7である。熱伝導性樹脂層7は、樹脂8中に、板状熱伝導粒子6及び球状熱伝導粒子9が分散した構造を有する。
 各樹脂層2においては、板状熱伝導粒子6は、その長軸が上記のようにシート面に対して45°より大きい角度、より好ましくは50°以上、更に好ましくは60℃以上、更に好ましくは70°以上、更に好ましくは80°以上の角度で配向している。
 熱伝導性樹脂層7の厚みは、熱伝導性樹脂層7中に含まれる板状熱伝導粒子6の厚みの好ましくは1~1000倍、より好ましくは1~500倍である。
 熱伝導性樹脂層7の厚み(幅)を上記範囲とすることにより、板状熱伝導粒子6を、その長軸が、前記シート面に対して90°に近い角度に配向させやすくなる。なお熱伝導性樹脂層7の幅は、上記範囲内であれば均等でなくてもよい。
[熱伝導性樹脂シートの製造方法]
 本発明の熱伝導性樹脂シートの製造方法は、特に限定されないが、単層の熱伝導性樹脂シートを製造する場合は、例えば、板状熱伝導粒子、球状熱伝導粒子、樹脂、及び必要に応じて添加剤を押出機に供給し溶融混練して得た混合物である熱伝導性樹脂組成物を、押出機からシート状に押出すことによって熱伝導性樹脂シートを成形すればよい。
(積層体の製造方法)
 本発明の積層体からなる熱伝導性樹脂シートの製造方法は、特に限定されないが、以下に説明するように、混練工程、積層工程、さらに必要に応じてスライス工程を含む方法により製造することができる。
<混練工程>
 板状熱伝導粒子、球状熱伝導粒子、樹脂、及び必要に応じて配合される添加剤とを混練して、熱伝導性樹脂組成物を作製する。
 前記の混練は、例えば、熱伝導性フィラーと樹脂とを、プラストミル等の二軸スクリュー混練機や二軸押出機等を用いて、加熱下において混練することが好ましく、これにより、熱伝導性フィラーが樹脂中に均一に分散された熱伝導性樹脂組成物を得ることができる。
 次いで、該熱伝導性樹脂組成物をプレスすることにより、シート状の樹脂層(熱伝導性樹脂層)を得ることができる。
<積層工程>
 積層工程では、前記混練工程で得た樹脂層を積層してn層構造の積層体を作成する。積層方法としては、例えば、混練工程で作製した樹脂層をx分割して積層し、x層構造の積層体を作製後、必要に応じて、熱プレスを行い、その後、更に、必要に応じて、分割と積層と前記の熱プレスを繰り替えして、幅がDμmでn層構造の積層体を作製する方法を用いることができる。
 熱伝導性フィラーが板状である場合、積層工程後の積層体の幅W2(Dμm)、前記板状熱伝導粒子の厚み(dμm)は、0.0005≦d/(D/n)≦1を満足することが好ましく、0.001≦d/(D/n)≦1を満足することがより好ましく、0.02≦d/(D/n)≦1を満足することが更に好ましい。
 このように、複数回の成形を行う場合には、各回における成形圧を、1回の成形で行う場合に比べて、小さくすることができるため、成形に起因する積層構造の破壊等の現象を回避することができる。
 その他の積層方法として、例えば、多層形成ブロックを備える押出機を用い、前記多層形成ブロックを調製して、共押出し成形により、前記n層構造で、かつ、前記厚さDμmの積層体を得る方法を用いることもできる。
 具体的には、第1の押出機及び第2の押出機の双方に前記混練工程で得た熱伝導性樹脂組成物を導入し、第1の押出機及び第2の押出機から熱伝導性樹脂組成物を同時に押出す。第1の押出機及び第2の押出機から押出された熱伝導性樹脂組成物は、フィードブロックに送られる。フィードブロックでは、第1の押出機及び上記第2の押出機から押出された熱伝導性樹脂組成物が合流する。それによって、熱伝導性樹脂組成物が積層された2層体を得ることができる。次に、前記の2層体を多層形成ブロックへと移送し、押出し方向に平行な方向であり、かつ積層面に垂直な複数の面に沿って2層体を複数に分割後、積層して、n層構造で、厚みDμmの積層体を作製することができる。このとき、1層当たりの厚み(D/n)は、多層形成ブロックを調整して所望の値とすることができる。
(スライス工程)
 前記積層工程で得た積層体を積層方向に対して平行方向にスライスすることにより、熱伝導性樹脂シートを作製することができる。
(その他工程)
 熱伝導性樹脂シートの製造方法においては、樹脂を架橋する工程を設けることが好ましい。架橋することにより、使用時の物性変化を小さくしやすくなる。架橋は、例えば、電子線、α線、β線、γ線等の電離性放射線を照射する方法、有機過酸化物を用いる方法等により行えばよい。電離性放射線の照射により架橋させる場合には、上記したスライス工程の後に、シート面(シート表面)に電離性放射線を照射することが好ましく、電離性放射線の中でも、電子線が好ましい。電子線照射を行う場合の加速電圧は50~800kVが好ましい。電子線照射の照射量は50~700kGyが好ましい。
 本発明の熱伝導性樹脂シートは、熱伝導性及び柔軟性に優れ、かつ高速圧縮時における応力の増加を抑制することができる。したがって、本発明の熱伝導性樹脂シートは、例えば、電子機器内部の発熱体と放熱体の間に圧縮して配置させることで、発熱体から放熱体への熱放散を促進させることができる。しかも発熱体と放熱体との間に配置する際には、高速で圧縮(例えば、1.0mm/分を超える圧縮速度、好ましくは1.5mm/分以上の圧縮速度)して配置できるため、生産性が向上する。
 熱伝導性樹脂シートを発熱体と放熱体の間に配置する態様を、図1で説明した熱伝導性樹脂シート1を用いて説明する。
 図2に示すように、熱伝導性樹脂シート1は、シート面5が発熱体3や放熱体4と接するように配置される。また、熱伝導性樹脂シート1は、発熱体3と放熱体4等の2つの部材の間において、圧縮した状態で配置される。なお、発熱体3は、例えば、半導体パッケージ等であり、放熱体4は、例えば、アルミニウムや銅などの金属等である。熱伝導性樹脂シート1をこのような状態で使用することにより、発熱体3で発生した熱が、放熱体4へ熱拡散しやすくなり、効率的な放熱が可能となる。
 本発明を実施例により更に詳細に説明するが、本発明はこれらの例によってなんら限定されるものではない。
 以下の実施例及び比較例で使用した材料は以下のとおりである。
樹脂
・液状エラストマー1:液状ポリブタジエンゴム、株式会社クラレ社製、商品名「L-1203」
・シリコーン樹脂:旭化成ワッカーシリコーン製、商品名「SEMICOSIL 962TC」
・アクリル樹脂:ナガセケムテックス社製、商品名「SG-280 EK23」
(2)球状熱伝導粒子
(i)アルミナ HUBER社製「TM2410」
   アスペクト比:1.5
   平均粒径:3.5μm
   熱伝導率=35W/mK
(ii)窒化アルミニウム トクヤマ社製「HF-05」
   アスペクト比:1.5
   平均粒径:4.5μm
   熱伝導率=250W/mK
(iii)水酸化アルミニウム 日本軽金属株式会社製「BF013」
   アスペクト比:1.5
   平均粒径:1μm
   熱伝導率=30W/mK
(iv)酸化マグネシウム-1 協和化学工業(株)製「パイロキスマ 3320」
   アスペクト比:1.5
   平均粒径:17μm
   熱伝導率=50W/mK
(v)酸化マグネシウム-2 協和化学工業(株)製「パイロキスマ 5301」
   アスペクト比:1.5
   平均粒径:2.9μm
   熱伝導率=50W/mK
(3)板状熱伝導粒子
(i)窒化ホウ素-1(鱗片状) デンカ社製「SGP」
   アスペクト比:81
   平均粒径:18μm
   面方向熱伝導率=250W/mK
   厚み方向熱伝導率=3W/mK
(ii)窒化ホウ素-2(鱗片状) デンカ社製「MGP」
   アスペクト比:41
   平均粒径:13μm
   面方向熱伝導率=250W/mK
   厚み方向熱伝導率=3W/mK
 各種物性、評価方法は以下のとおりである。
<配向角度>
 熱伝導性樹脂シートの断面を走査型電子顕微鏡(株式会社日立製作所製 S-4700)で観察した。倍率3000倍の観察画像から、任意の20個の板状熱伝導粒子について、長軸とシート面とのなす角を測定し、その平均値を配向角度とした。
<熱伝導率>
 得られた熱伝導性樹脂シートの厚み方向の熱伝導率を、レーザーフラッシュ法熱定数測定装置(NETZSCH社製「LFA447」)を用いて測定を行った。
<10%圧縮時の熱抵抗値>
 熱伝導性樹脂シートの10%圧縮時の熱抵抗値を、サンプルを10%圧縮した状態で、定常法により、メンター・グラフィックス社製の商品名「T3Ster(登録商標)DynTIM Tester」を用いてASTM D5470に準拠して測定した。
<10%、30%、40%圧縮強度、圧縮強度の比>
 得られた熱伝導性樹脂シートの10、30、40%圧縮強度を、エー・アンド・ディ社製「RTG-1250」を用いて測定した。サンプル寸法を2mm×15mm×15mm、測定温度を23℃、圧縮速度を1mm/分として測定を行った。また、圧縮速度を0.1mm/分及び10.0mm/分の条件に変更し、それぞれの条件で30%圧縮速度を測定し、圧縮強度B/圧縮強度A、及び圧縮強度C/圧縮強度Bの値を求めた。
<組み付け試験>
(1)組み付け性の評価
 BGA(Ball Grid Array)の実装されたテスト用基板に、得られた熱伝導性樹脂シートを30%圧縮となるように組み付け試験を行い、組み付け後のハンダクラック、ショートなどの不良の有無をX線装置、もしくは電気抵抗値を用いて観察した。以下の評価基準で評価した。なお組み付け試験は、圧縮速度が0.1mm/分の条件、1.0mm/分の条件、10.0mm/分の条件でそれぞれ30%まで圧縮した条件、および1.0mm/分の速度でそれぞれ10%、30%、40%まで圧縮する条件で評価した。
A:組み付けができて、かつ不良なし
B:組み付けができたが、不良や電気抵抗値の上昇が確認された。
C:組み付けができなかった。
<放熱性評価>
 熱伝導性樹脂シートの10%圧縮時について、放熱性評価を行った。なお、圧縮強度が2500kPaを超える場合は、柔軟性が低く、熱伝導性樹脂シートとして使用し難いため、熱抵抗値に関わらず、以下のとおり「NG」とした。
A:熱抵抗値が5K/W以下であり、かつ圧縮強度が2500kPa以下
C:熱抵抗値が5K/W超であり、かつ圧縮強度が2500kPa以下
NG:圧縮強度が2500kPa超
(実施例1)
 液状エラストマー1(株式会社クラレ社製、商品名「L-1203」)100質量部と、アルミナ(HUBER社製、商品名「TM2410」)360質量部と、窒化ホウ素-1(デンカ社製、商品名「SGP」)100質量部とからなる混合物を溶融混練して熱伝導性樹脂組成物を調製した。該組成物をプレスすることにより厚さ0.5mm、幅80mm、奥行き80mmのシート状の樹脂層を得た。次に積層工程として、得られた樹脂層を16等分して重ねあわせて総厚さ8mm、幅20mm、奥行き20mmの16層の樹脂層からなる積層体を得た。次いで積層方向に平行にスライスし、厚さ2mm、幅8mm、奥行き20mmの熱伝導性樹脂シートを得た。該熱伝導性樹脂シートの積層体を構成する樹脂層の1層の厚みは0.5mmであった。次いで該熱伝導性樹脂シートの両面にそれぞれ加速電圧525kV、線量600kGyの電子線を照射してシートを架橋させた。この熱伝導性樹脂シートについて表1の各項目について評価した。
(実施例2~8、比較例1~4)
 表1、表2のとおりに樹脂及び熱伝導粒子の種類及び量を変更した以外は、実施例1と同様にして熱伝導性樹脂シートを得た。この熱伝導性樹脂シートについて表の各項目について評価した。
(実施例9~10、比較例5~6)
 表1、表2のとおりに樹脂及び熱伝導粒子の種類及び量を変更したこと、及び電子線の照射を行わなかったこと以外は、実施例1と同様にして熱伝導性樹脂シートを得た。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 各実施例に示す本発明の熱伝導性樹脂シートは、熱伝導率及び30%圧縮強度が所定の範囲であることより、熱伝導性及び柔軟性が共に優れることが分かった。さらに、種々の圧縮速度で組み付けた場合の組付け性が良好で、高速で圧縮した場合の応力の増加が抑制されることが分かった。
 これに対して、比較例に示す熱伝導性樹脂シートは、放熱性評価の結果が悪いか、又は組み付け試験の結果が悪く、高速で圧縮した場合に、応力の増加の度合いが大きいことが分かった。
 1 熱伝導性樹脂シート
 2 樹脂層
 3 発熱体
 4 放熱体
 5 シート面
 6 板状熱伝導粒子
 7 熱伝導性樹脂層
 8 樹脂
 9 球状熱伝導粒子

Claims (9)

  1.  板状熱伝導粒子、球状熱伝導粒子、及び樹脂を含有する熱伝導性樹脂シートであって、
     熱伝導率が5W/m・K以上、圧縮速度1.0mm/分で測定した30%圧縮強度Bが1500kPa以下であり、
     板状熱伝導粒子と球状熱伝導粒子の体積比率(板状熱伝導粒子の体積/球状熱伝導粒子の体積)が30/70~90/10であり、
     板状熱伝導粒子及び球状熱伝導粒子の体積の合計が30~90体積%である、熱伝導性樹脂シート。
  2.  板状熱伝導粒子、球状熱伝導粒子、及び樹脂を含有する熱伝導性樹脂シートであって、
     熱伝導率が5W/m・K以上、圧縮速度1.0mm/分で測定した30%圧縮強度Bが1500kPa以下であり、
     圧縮速度0.1mm/分で測定した30%圧縮強度を圧縮強度A、圧縮速度10.0mm/分で測定した30%圧縮強度を圧縮強度Cとした場合に、圧縮強度B/圧縮強度Aが2以下、または圧縮強度C/圧縮強度Bが2以下である、熱伝導性樹脂シート。
  3.  前記板状熱伝導粒子の平均粒径が1~400μmであり、前記球状熱伝導粒子の平均粒径が1~100μmである、請求項1又は2に記載の熱伝導性樹脂シート。
  4.  10%圧縮時の熱抵抗値が5K/W以下である、請求項1~3のいずれかに記載の熱伝導性樹脂シート。
  5.  平均フィラーアスペクト比が5以上である、請求項1~4のいずれかに記載の熱伝導性樹脂シート。
  6.  前記板状熱伝導粒子の長軸がシート面に対して60°以上の角度で配向している、請求項1~5のいずれかに記載の熱伝導性樹脂シート。
  7.  前記樹脂がエラストマー樹脂である、請求項1~6のいずれかに記載の熱伝導性樹脂シート。
  8.  前記エラストマー樹脂が液状エラストマー樹脂を含有する、請求項7に記載の熱伝導性樹脂シート。
  9.  架橋されている、請求項1~8のいずれかに記載の熱伝導性樹脂シート。
     
PCT/JP2021/009632 2021-03-10 2021-03-10 熱伝導性樹脂シート WO2022190293A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2021538100A JP6978639B1 (ja) 2021-03-10 2021-03-10 熱伝導性樹脂シート
KR1020237030090A KR20230154839A (ko) 2021-03-10 2021-03-10 열전도성 수지 시트
CN202180095442.7A CN116964731A (zh) 2021-03-10 2021-03-10 导热性树脂片
EP21930147.0A EP4307363A1 (en) 2021-03-10 2021-03-10 Thermally conductive resin sheet
PCT/JP2021/009632 WO2022190293A1 (ja) 2021-03-10 2021-03-10 熱伝導性樹脂シート

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/009632 WO2022190293A1 (ja) 2021-03-10 2021-03-10 熱伝導性樹脂シート

Publications (1)

Publication Number Publication Date
WO2022190293A1 true WO2022190293A1 (ja) 2022-09-15

Family

ID=78815597

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/009632 WO2022190293A1 (ja) 2021-03-10 2021-03-10 熱伝導性樹脂シート

Country Status (5)

Country Link
EP (1) EP4307363A1 (ja)
JP (1) JP6978639B1 (ja)
KR (1) KR20230154839A (ja)
CN (1) CN116964731A (ja)
WO (1) WO2022190293A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210332280A1 (en) * 2018-11-07 2021-10-28 Dow Global Technologies Llc Thermally conductive composition and methods and devices in which said composition is used

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018030430A1 (ja) * 2016-08-08 2018-02-15 積水化学工業株式会社 熱伝導シート及びその製造方法
JP2019024045A (ja) * 2017-07-24 2019-02-14 積水化学工業株式会社 熱伝導シート
WO2020153377A1 (ja) * 2019-01-22 2020-07-30 積水化学工業株式会社 熱伝導性樹脂シート
JP2020196892A (ja) * 2020-08-04 2020-12-10 積水化学工業株式会社 熱伝導シート

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5740864B2 (ja) 2010-08-03 2015-07-01 日立化成株式会社 熱伝導シート、熱伝導シートの製造方法、及び熱伝導シートを用いた放熱装置
JP6023474B2 (ja) 2012-06-08 2016-11-09 デンカ株式会社 熱伝導性絶縁シート、金属ベース基板及び回路基板、及びその製造方法
JP6460365B2 (ja) 2014-03-14 2019-01-30 Dic株式会社 樹脂組成物、熱伝導性接着剤及び積層体

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018030430A1 (ja) * 2016-08-08 2018-02-15 積水化学工業株式会社 熱伝導シート及びその製造方法
JP2019024045A (ja) * 2017-07-24 2019-02-14 積水化学工業株式会社 熱伝導シート
WO2020153377A1 (ja) * 2019-01-22 2020-07-30 積水化学工業株式会社 熱伝導性樹脂シート
JP2020196892A (ja) * 2020-08-04 2020-12-10 積水化学工業株式会社 熱伝導シート

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210332280A1 (en) * 2018-11-07 2021-10-28 Dow Global Technologies Llc Thermally conductive composition and methods and devices in which said composition is used
US11851603B2 (en) * 2018-11-07 2023-12-26 Dow Silicones Corporation Thermally conductive composition and methods and devices in which said composition is used

Also Published As

Publication number Publication date
CN116964731A (zh) 2023-10-27
JP6978639B1 (ja) 2021-12-08
KR20230154839A (ko) 2023-11-09
JPWO2022190293A1 (ja) 2022-09-15
EP4307363A1 (en) 2024-01-17

Similar Documents

Publication Publication Date Title
JP6746540B2 (ja) 熱伝導シート
JP5560630B2 (ja) 熱伝導シート、この熱伝導シートの製造方法及び熱伝導シートを用いた放熱装置
JP5423455B2 (ja) 熱伝導シート、その製造方法及び熱伝導シートを用いた放熱装置
WO2020153377A1 (ja) 熱伝導性樹脂シート
EP3549974B1 (en) Thermally conductive sheet
JP7067571B2 (ja) 熱伝導シート及び熱伝導シートを用いた放熱装置
KR20110085991A (ko) 열전도 시트, 그 제조방법 및 이것을 이용한 방열 장치
JPWO2019164002A1 (ja) 絶縁放熱シート
WO2022190293A1 (ja) 熱伝導性樹脂シート
WO2021065899A1 (ja) 熱伝導性樹脂シート
JP2023104942A (ja) 熱伝導シート
JP7235633B2 (ja) 熱伝導性樹脂シート
US20240141222A1 (en) Thermally conductive resin sheet
EP3950328A1 (en) Thermally conductive resin sheet, layered thermal radiation sheet, heat-dissipating circuit base board, and power semiconductor device
JP2021054969A (ja) 熱伝導性樹脂シート
JP2021123661A (ja) 熱伝導性樹脂シート
WO2023063406A1 (ja) 熱伝導性樹脂シート
JP7327566B2 (ja) 熱伝導シート及び熱伝導シートを用いた放熱装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021538100

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21930147

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18280824

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202180095442.7

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2021930147

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021930147

Country of ref document: EP

Effective date: 20231010