WO2022188919A1 - Hybrid device having a spring-loading connection element - Google Patents

Hybrid device having a spring-loading connection element Download PDF

Info

Publication number
WO2022188919A1
WO2022188919A1 PCT/DE2022/100120 DE2022100120W WO2022188919A1 WO 2022188919 A1 WO2022188919 A1 WO 2022188919A1 DE 2022100120 W DE2022100120 W DE 2022100120W WO 2022188919 A1 WO2022188919 A1 WO 2022188919A1
Authority
WO
WIPO (PCT)
Prior art keywords
damper
hybrid device
output
connecting element
clutch
Prior art date
Application number
PCT/DE2022/100120
Other languages
German (de)
French (fr)
Inventor
Stephan Maienschein
Original Assignee
Schaeffler Technologies AG & Co. KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schaeffler Technologies AG & Co. KG filed Critical Schaeffler Technologies AG & Co. KG
Publication of WO2022188919A1 publication Critical patent/WO2022188919A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/10Suppression of vibrations in rotating systems by making use of members moving with the system
    • F16F15/12Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon
    • F16F15/121Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon using springs as elastic members, e.g. metallic springs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/38Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the driveline clutches
    • B60K6/387Actuated clutches, i.e. clutches engaged or disengaged by electric, hydraulic or mechanical actuating means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/40Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the assembly or relative disposition of components
    • B60K6/405Housings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D13/00Friction clutches
    • F16D13/58Details
    • F16D13/60Clutching elements
    • F16D13/64Clutch-plates; Clutch-lamellae
    • F16D13/68Attachments of plates or lamellae to their supports
    • F16D13/683Attachments of plates or lamellae to their supports for clutches with multiple lamellae
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D25/00Fluid-actuated clutches
    • F16D25/06Fluid-actuated clutches in which the fluid actuates a piston incorporated in, i.e. rotating with the clutch
    • F16D25/062Fluid-actuated clutches in which the fluid actuates a piston incorporated in, i.e. rotating with the clutch the clutch having friction surfaces
    • F16D25/063Fluid-actuated clutches in which the fluid actuates a piston incorporated in, i.e. rotating with the clutch the clutch having friction surfaces with clutch members exclusively moving axially
    • F16D25/0635Fluid-actuated clutches in which the fluid actuates a piston incorporated in, i.e. rotating with the clutch the clutch having friction surfaces with clutch members exclusively moving axially with flat friction surfaces, e.g. discs
    • F16D25/0638Fluid-actuated clutches in which the fluid actuates a piston incorporated in, i.e. rotating with the clutch the clutch having friction surfaces with clutch members exclusively moving axially with flat friction surfaces, e.g. discs with more than two discs, e.g. multiple lamellae
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • B60K2006/4825Electric machine connected or connectable to gearbox input shaft
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Definitions

  • the invention relates to a hybrid device according to the preamble of claim 1.
  • EP 3215 753 A1 describes a hybrid module which has an electric motor with a stator and a rotor, a separating clutch and a torsional vibration damper.
  • the separating clutch is arranged between an internal combustion engine and the rotor and is set up to enable or interrupt a torque transmission to an output side depending on an actuation.
  • the torsional vibration damper is arranged between the rotor and the output side.
  • the object of the present invention is to construct a hybrid device in a more compact and cost-effective manner.
  • the number of components of the hybrid device should be reduced.
  • At least one of these tasks is effectively achieved by a hybrid device between a first drive element and an output side, having a torsional vibration damper that reduces torsional vibrations of the first drive element, with a damper input that can rotate about an axis of rotation and a damper output that can rotate to a limited extent against the action of at least one spring element, an electric motor with a stator and a rotor connected to the output side in a torque-transmitting manner via a connecting element, the connecting element being rotatable relative to the damper input and having a loading area resting against the spring element in a force-transmitting manner.
  • the torsional vibration damper can be constructed more efficiently, more cost-effectively and more compactly.
  • the number of components of the hybrid device can be reduced.
  • the hybrid device may be arranged in a powertrain of a vehicle.
  • the first drive element can be an internal combustion engine.
  • the torsional vibration damper can be single-stage or multi-stage.
  • Several spring elements can be arranged. At least two spring elements can be connected in series or in parallel.
  • the spring element can be an arc spring or a compression spring.
  • the spring element can have a single-stage or multi-stage spring characteristic.
  • the torsional vibration damper can have at least one friction element, which sets a specified friction between the clutch input and the clutch output.
  • the Torsional vibration damper may be located radially inward of the rotor.
  • the torsional vibration damper can be arranged so that it overlaps axially with respect to the rotor.
  • the connecting element can be a stamped part, molded part and/or sheet metal part.
  • the connecting element can be connected to the rotor in a form-fitting, force-fitting and/or material-fitting manner.
  • the connecting element can be non-rotatably connected to a rotor carrier receiving the rotor, preferably designed in one piece.
  • the rotor can be centered via the connecting element.
  • the connecting element can be connected to the output side on the damper output side in a torque-transmitting manner.
  • the connecting element can transmit a torque provided by the electric motor to the output side, bypassing the spring elements.
  • the torsional vibration damper can be optimally designed for torsional vibrations of the first drive element.
  • the mass moment of inertia of the rotor can also interact with the mass moment of inertia of the output side to reduce the natural frequency of a natural mode of the output side. This is particularly advantageous when the torsional rigidity between the rotor and the output side is high due to the design, for example in the case of a front-transverse design.
  • the connecting element is arranged in series between the rotor and the output side in a torque-transmitting manner. Torque is preferably transmitted between the rotor and the output side solely via the connecting element. A drive torque emanating from the first drive element can be transmitted to the connecting element via a first torque transmission path via the damper input and the spring element. The connecting element can transmit the drive torque on the damper output side to the output side.
  • a preferred embodiment of the invention is advantageous in which the connecting element is firmly connected to a disc part which has a further loading area coupled in a force-transmitting manner to the spring element.
  • the disc part can be designed as a side disc of the torsional vibration damper.
  • a preferred embodiment of the invention is advantageous in which the disk part is arranged at an axial distance from the connecting element.
  • the spring element can be accommodated axially between the connecting element and the disk part.
  • the connecting element and the disc part form the damper outlet and the damper inlet is arranged axially between them. This allows him Torsional vibration dampers can be constructed to save space and the spring element can be loaded evenly over the loading areas.
  • the damper input comprises a first disk part and a second disk part which is firmly connected thereto and is arranged at an axial distance therefrom, and the connecting element is arranged axially between the first and second disk parts.
  • the loading area of the connecting element can abut axially centrally on the spring element.
  • the connecting element can have at least one cutout, through which a connecting element for connecting the first and second pane part extends.
  • the loading area is designed as a tab protruding from the connecting element.
  • the loading area can be extended in the axial direction.
  • the loading area can be formed from the connecting element.
  • a separating clutch with a friction region for the controllable connection between a clutch input connected on the drive side and a clutch output connected non-rotatably to the damper input is arranged.
  • the torsional vibration damper can be effectively arranged between the separating clutch and the output side.
  • the first drive element can be selectively decoupled from the output side.
  • the disconnect clutch may be a KO clutch.
  • the disconnect clutch may be located radially inward of the rotor.
  • the separating clutch can be arranged axially next to the torsional vibration damper.
  • the separating clutch can be arranged in relation to the torsional vibration damper in the direction of the first drive element.
  • the friction area and the spring element can radially overlap at least in sections.
  • the friction area can be operated dry or wet.
  • the friction area can have at least one input-side clutch disk connected to the clutch input and at least one output-side clutch disk connected to the clutch output.
  • the clutch plate on the output side can be hung in the clutch output in an axially displaceable manner with teeth.
  • the input-side clutch plate can be hung in the clutch input in an axially displaceable manner with teeth.
  • Several input-side and/or output-side clutch disks can be arranged.
  • the clutch input or clutch output can be designed as an inner plate carrier or outer plate carrier.
  • the input-side and output-side clutch plates can be frictionally connected to one another by an axial force of an actuating element.
  • the actuating element can be arranged axially between the torsional vibration damper and the friction area.
  • the actuating element can be acted upon by a fluid pressure in a fluid chamber to introduce the axial force onto the friction area.
  • the fluid chamber can be arranged axially between the friction area, preferably the actuating element, and the torsional vibration damper.
  • the fluid chamber can be delimited at least in sections by the clutch outlet, the damper inlet and/or the damper outlet.
  • a preferred embodiment of the invention is advantageous in which the clutch output and the damper input are designed in one piece.
  • the hybrid device can be constructed in a cost-effective and space-saving manner.
  • the connecting element is connected in a torque-transmitting manner to an output element on the output side.
  • the connecting element can be connected to the output element in a positive, non-positive and/or material connection.
  • the connecting element can be connected to the output element in a torque-proof manner.
  • the rotor can be accommodated via the connecting element as a rotor carrier on the driven element.
  • the output element can be designed as an output hub.
  • the output element can be connected to a transmission input shaft.
  • Figure 1 A half-section of a hybrid device in a special embodiment of the invention.
  • FIG. 2 A detail of a half section of a hybrid device in a further special embodiment of the invention.
  • Figure 3 A detail of a half section of a hybrid device in a further special embodiment of the invention.
  • Figure 1 shows a half section of a hybrid device 10 in a special embodiment of the invention.
  • the hybrid device 10 is arranged in a drive train of a vehicle operatively between a first drive element 12 and an output side 14, for example a transmission.
  • the first drive element 12 is an internal combustion engine, for example, which is connected to the hybrid device 10 via a dual-mass flywheel 16 on the input side.
  • the dual mass flywheel 16 may also be associated with the hybrid device 10 .
  • the dual-mass flywheel 16 has a primary side 18 that can be bolted to a crankshaft 20 of the internal combustion engine.
  • the primary side 18 can be rotated to a limited extent relative to a secondary side 24 via at least one spring element 22, in particular a bow spring.
  • the secondary side 24 can be formed by a curved spring flange 26 on which a torsional vibration damper 28, preferably a centrifugal pendulum 30 is arranged radially inside the spring element 22.
  • the arc spring flange 26 can be designed in one piece with a pendulum mass carrier 32 on which pendulum masses 34 are accommodated so that they can be deflected to a limited extent along an aerial tramway.
  • the secondary side 24 is splined to a drive shaft 36 .
  • the drive shaft 36 can form an input of the hybrid device 10 and is connected to the output side 14 via a separating clutch 38 and a torsional vibration damper 40 connected in series.
  • the separating clutch 38 includes a clutch input 50 which is firmly connected to the drive shaft 36 .
  • the clutch input 50 can be frictionally connected to a clutch output 54 via a friction area 52 .
  • torque can be transmitted within the first torque transmission path 42 between the clutch input 50 and the clutch output 54 and when the separating clutch 38 is open, the torque transmission can be interrupted.
  • the friction area 52 is formed by input-side clutch plates 56, which are non-rotatably connected to the clutch input 50 and axially displaceable via teeth, and output-side clutch plates 58, which are non-rotatably and axially displaceably connected to the clutch output 54 via teeth.
  • the clutch input 50 is designed in particular as an inner disk carrier and the clutch output 54 as an outer disk carrier.
  • An axially displaceable actuating element 60 can exert an actuating force on the friction area 52 and thereby bring about a frictional connection between the drive-side and output-side clutch plates 56, 58 for torque transmission between the clutch input 50 and the clutch output 54.
  • the actuating element 60 can be displaced axially in a fluid chamber 62 as a function of a fluid pressure.
  • the actuating element 60 is reset to open the separating clutch 38 via a reset element 64, for example a disk spring.
  • the fluid chamber 62 is connected through a bore 66 in an output element 68 to a fluid channel 70 via which the fluid pressure in the fluid chamber 62 can be controlled.
  • the clutch output 54 is coupled to the output element 68 via the torsional vibration damper 40 .
  • a damper input 72 of the torsional vibration damper 40 can be rotated to a limited extent relative to a damper output 76 via the action of at least one spring element 74 .
  • the clutch output 54 is connected to the damper input 72 of the torsional vibration damper 40, preferably in one piece.
  • the actuating force exerted by the actuating element 60 on the friction area 52 is supported via the clutch outlet 54 , the damper inlet 72 and a support bearing 75 .
  • the damper outlet 76 comprises a disk part 78 which is arranged axially next to the damper inlet 72 and has an axially extending section 80 radially on the outside, on which the actuating element 60 is accommodated in an axially displaceable and sealing manner.
  • the fluid chamber 62 is at least partially delimited by the disk part 78 which is accommodated on the output element 68 in a radially inner sealing manner for this purpose.
  • the output element 68 has internal teeth 82 for connection to a transmission input shaft.
  • the rotor 48 is connected in a torque-transmitting manner to the output element 68 via a connecting element 84 .
  • the connecting element 84 is assigned to the damper outlet 76 and is firmly connected to the disk part 78 .
  • the damper input 72 is arranged axially between the disk part 78 and the connecting element 84 .
  • the connecting element 84 is fastened to the rotor 48 radially on the outside, for example screwed and riveted to the output element 68 radially on the inside.
  • a loading area 86 is implemented on the connecting element 84 and rests against the spring element 74 in a force-transmitting manner. As a result, the hybrid device 10 can be constructed in a space-saving manner.
  • the disk part 78 comprises a further loading area 88 which rests against the spring element 74 in a force-transmitting manner.
  • a drive torque emanating from the first drive element 12 is transmitted to the spring element 74 when it is introduced into the damper input 72 and from there via the loading areas 86, 88 to the damper output 76 and the connecting element 84 to the output element 68.
  • the rotor 48 of the electric motor 44 is thus over the connecting element 84 is non-rotatably connected to the damper outlet 76 .
  • a torque provided by the electric motor 44 via the rotor 48 is applied to the output side 14 , bypassing a torque transmission via the spring element 74 .
  • the torsional vibration damper 40 can thus be tuned more optimally to a torque of the first drive element 12 .
  • the torsional vibration damper 40 can better reduce the torsional vibrations of the first drive element 12 and can be implemented more cost-effectively.
  • the torsional vibration damper 40, the driven element 68 and the connecting element 84 are mounted on a housing 92 via a rotor support 90 via a bearing element 94.
  • the bearing element 94 is arranged between a housing wall 96 and the rotor support 90 .
  • the housing wall 96 extends axially between the dual-mass flywheel 16 on the one hand and the electric motor 44, the separating clutch 38 and the torsional vibration damper 40 on the other.
  • the separating clutch 38 and the torsional vibration damper 40 are arranged radially inside of and at least partially axially overlapping the rotor 48 .
  • the torsional vibration damper 40 and the separating clutch 38 are arranged axially next to one another and radially overlapping.
  • FIG. 2 shows a detail of a half section of a hybrid device 10 in a further special embodiment of the invention.
  • the damper input 72 is formed by a first disc part 98 and an axially spaced second disc part 100 which are firmly connected to one another.
  • the first and second disk parts 98, 100 can be rotated to a limited extent in relation to the damper outlet 76 via the action of the spring element 74.
  • the damper outlet 76 is accommodated axially centrally between the first and second disk parts 98, 100 and is designed in one piece with the connecting element 84.
  • the connecting element 84 comprises at least one recess 102, through which a connecting element 104 for connecting the first and second disk parts 98, 100 extends.
  • the connecting element 84 has a loading area 86 on which the spring element 74 rests in a force-transmitting manner.
  • Window sashes 106 are formed radially at the height of the loading area 86 on the first and second pane elements, which receive the spring element 74 radially and axially.
  • the connecting element 84 is riveted to the output element 68 radially on the inside.
  • the rivet element 108 used for this purpose is arranged so that it overlaps the spring element 74 in the axial direction.
  • the output element 68 can be connected to a transmission input shaft via internal teeth 82 .
  • FIG. 3 shows a detail of a half section of a hybrid device 10 in a further specific embodiment of the invention.
  • the damper input 72 is designed as a spring retainer and is attached to the clutch output 54 via at least one rivet element 110 .
  • the damper input 72 has an exposed loading area 112 for force-transmitting coupling to the spring element 74 .
  • the loading area 86 of the connecting element 84 is designed as a tab protruding from the connecting element 84 .
  • the loading area 86 is extended in the axial direction, starting from the connecting element 84 , and engages in the spring element 74 radially above the loading area 112 of the damper input 72 .
  • the torsional vibration damper 40 can also have a form-fitting limitation of a maximum torsion between the damper inlet 72 and the damper outlet 76 .
  • the limitation can be arranged directly between the damper inlet 72 and the damper outlet 76 .
  • the loading area 86 of the connecting element 84 can positively engage in the spring retainer with torsional play.
  • the damper input 72 and damper output 76 can be twisted against one another to a limited extent within the torsional play via the action of the spring element 74 .

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Mechanical Operated Clutches (AREA)

Abstract

The invention relates to a hybrid device (10) which is active between a first drive element (12) and an output side (14), comprising a torsional vibration damper (40) which reduces torsional vibrations of the first drive element (12) and has a damper input (72), which is rotatable about an axis of rotation, and a damper output (76) which, counter to the action of at least one spring element (74), can be rotated in a limited manner in relation thereto, an electric motor (44) having a stator (46) and a rotor (48) which is connected in a torque-transmitting manner to the output side (14) via a connection element (84), wherein the connection element (84) is rotatable in relation to the damper input (72) and rests with an application area (86) in a force-transmitting manner on the spring element (74).

Description

Hvbridvorrichtunq mit einem federbeaufschlaqenden Verbindunqselement Hybrid device with a spring-loaded connecting element
Die Erfindung betrifft eine Hybridvorrichtung nach dem Oberbegriff von Anspruch 1. The invention relates to a hybrid device according to the preamble of claim 1.
In EP 3215 753 A1 ist ein Hybridmodul beschrieben, das einen Elektromotor mit einem Stator und einem Rotor, eine Trennkupplung und einen Drehschwingungsdämpfer aufweist. Die Trennkupplung ist zwischen einem Verbrennungsmotor und dem Rotor angeordnet und dazu eingerichtet, in Abhängigkeit einer Betätigung eine Drehmomentübertragung zu einer Abtriebsseite zu ermöglichen oder zu unterbrechen. Der Drehschwingungsdämpfer ist zwischen dem Rotor und der Abtriebsseite angeordnet. EP 3215 753 A1 describes a hybrid module which has an electric motor with a stator and a rotor, a separating clutch and a torsional vibration damper. The separating clutch is arranged between an internal combustion engine and the rotor and is set up to enable or interrupt a torque transmission to an output side depending on an actuation. The torsional vibration damper is arranged between the rotor and the output side.
Die Aufgabe der vorliegenden Erfindung liegt darin, eine Hybridvorrichtung kompakter und kostengünstiger aufzubauen. Die Anzahl an Bauteilen der Hybridvorrichtung soll verringert werden. The object of the present invention is to construct a hybrid device in a more compact and cost-effective manner. The number of components of the hybrid device should be reduced.
Wenigstens eine dieser Aufgaben wird durch eine Hybridvorrichtung wirksam zwischen einem ersten Antriebselement und einer Abtriebsseite gelöst, aufweisend einen Drehschwingungen des ersten Antriebselements verringernden Drehschwingungsdämpfer mit einem um eine Drehachse drehbaren Dämpfereingang und einem entgegen der Wirkung wenigstens eines Federelements gegenüber diesem begrenzt verdrehbaren Dämpferausgang, einen Elektromotor mit einem Stator und einem mit der Abtriebsseite drehmomentübertragend über ein Verbindungselement verbundenen Rotor, wobei das Verbindungselement gegenüber dem Dämpfereingang verdrehbar ist und mit einem Beaufschlagungsbereich kraftübertragend an dem Federelement anliegt. Dadurch kann der Drehschwingungsdämpfer effizienter, kostengünstiger und kompakter aufgebaut werden. Die Anzahl an Bauteilen der Hybridvorrichtung kann verringert werden. At least one of these tasks is effectively achieved by a hybrid device between a first drive element and an output side, having a torsional vibration damper that reduces torsional vibrations of the first drive element, with a damper input that can rotate about an axis of rotation and a damper output that can rotate to a limited extent against the action of at least one spring element, an electric motor with a stator and a rotor connected to the output side in a torque-transmitting manner via a connecting element, the connecting element being rotatable relative to the damper input and having a loading area resting against the spring element in a force-transmitting manner. As a result, the torsional vibration damper can be constructed more efficiently, more cost-effectively and more compactly. The number of components of the hybrid device can be reduced.
Die Hybridvorrichtung kann in einem Antriebsstrang eines Fahrzeugs angeordnet sein. Das erste Antriebselement kann ein Verbrennungsmotor sein. The hybrid device may be arranged in a powertrain of a vehicle. The first drive element can be an internal combustion engine.
Der Drehschwingungsdämpfer kann einstufig oder mehrstufig ausgeführt sein. Es können mehrere Federelemente angeordnet sein. Wenigstens zwei Federelemente können in Reihe oder parallel geschaltet sein. Das Federelement kann eine Bogenfeder oder Druckfeder sein. Das Federelement kann eine einstufige oder mehrstufige Federkennlinie aufweisen. The torsional vibration damper can be single-stage or multi-stage. Several spring elements can be arranged. At least two spring elements can be connected in series or in parallel. The spring element can be an arc spring or a compression spring. The spring element can have a single-stage or multi-stage spring characteristic.
Der Drehschwingungsdämpfer kann wenigstens ein Reibelement aufweisen, das eine festgelegte Reibung zwischen dem Kupplungseingang und Kupplungsausgang einstellt. Der Drehschwingungsdämpfer kann radial innerhalb von dem Rotor angeordnet sein. Der Drehschwingungsdämpfer kann axial überlappend zu dem Rotor angeordnet sein. The torsional vibration damper can have at least one friction element, which sets a specified friction between the clutch input and the clutch output. Of the Torsional vibration damper may be located radially inward of the rotor. The torsional vibration damper can be arranged so that it overlaps axially with respect to the rotor.
Das Verbindungselement kann ein Stanzteil, Formteil und/oder Blechteil sein. Das Verbindungselement kann form-, kraft- und/oder stoffschlüssig mit dem Rotor verbunden sein. Das Verbindungselement kann mit einem den Rotor aufnehmenden Rotorträger drehfest verbunden, bevorzugt einteilig ausgeführt, sein. Der Rotor kann über das Verbindungselement zentriert sein. The connecting element can be a stamped part, molded part and/or sheet metal part. The connecting element can be connected to the rotor in a form-fitting, force-fitting and/or material-fitting manner. The connecting element can be non-rotatably connected to a rotor carrier receiving the rotor, preferably designed in one piece. The rotor can be centered via the connecting element.
Das Verbindungselement kann dämpferausgangsseitig drehmomentübertragend mit der Abtriebsseite verbunden sein. Das Verbindungselement kann ein von dem Elektromotor bereitgestelltes Drehmoment unter Umgehung der Federelemente an die Abtriebsseite übertragen. Dadurch kann der Drehschwingungsdämpfer optimaler auf Drehschwingungen des ersten Antriebselements ausgelegt werden. Auch kann das Massenträgheitsmoment des Rotors mit dem Massenträgheitsmoment der Abtriebsseite zur Verringerung der Eigenfrequenz einer Eigenform der Abtriebsseite Zusammenwirken. Dies ist besonders bei aufbaubedingt großer Torsionssteifigkeit zwischen dem Rotor und der Abtriebsseite, beispielsweise bei einem Front-Quer-Aufbau, vorteilhaft. The connecting element can be connected to the output side on the damper output side in a torque-transmitting manner. The connecting element can transmit a torque provided by the electric motor to the output side, bypassing the spring elements. As a result, the torsional vibration damper can be optimally designed for torsional vibrations of the first drive element. The mass moment of inertia of the rotor can also interact with the mass moment of inertia of the output side to reduce the natural frequency of a natural mode of the output side. This is particularly advantageous when the torsional rigidity between the rotor and the output side is high due to the design, for example in the case of a front-transverse design.
Bei einer bevorzugten Ausführung der Erfindung ist es vorteilhaft, wenn das Verbindungselement drehmomentübertragend in Reihe wirksam zwischen dem Rotor und der Abtriebsseite angeordnet ist. Bevorzugt erfolgt eine Drehmomentübertragung zwischen dem Rotor und der Abtriebsseite alleinig über das Verbindungselement. Ein von dem ersten Antriebselement ausgehendes Antriebsmoment kann über einen ersten Drehmomentübertragungsweg über den Dämpfereingang und das Federelement auf das Verbindungselement übertragen werden. Das Verbindungselement kann das Antriebsmoment dämpferausgangsseitig an die Abtriebsseite übertragen. In a preferred embodiment of the invention, it is advantageous if the connecting element is arranged in series between the rotor and the output side in a torque-transmitting manner. Torque is preferably transmitted between the rotor and the output side solely via the connecting element. A drive torque emanating from the first drive element can be transmitted to the connecting element via a first torque transmission path via the damper input and the spring element. The connecting element can transmit the drive torque on the damper output side to the output side.
Eine bevorzugte Ausgestaltung der Erfindung ist vorteilhaft, bei der das Verbindungselement mit einem Scheibenteil fest verbunden ist, das einen mit dem Federelement kraftübertragend gekoppelten weiteren Beaufschlagungsbereich aufweist. Das Scheibenteil kann als Seitenscheibe des Drehschwingungsdämpfers ausgeführt sein. A preferred embodiment of the invention is advantageous in which the connecting element is firmly connected to a disc part which has a further loading area coupled in a force-transmitting manner to the spring element. The disc part can be designed as a side disc of the torsional vibration damper.
Eine bevorzugte Ausgestaltung der Erfindung ist vorteilhaft, bei der das Scheibenteil axial beabstandet zu dem Verbindungselement angeordnet ist. Das Federelement kann axial zwischen dem Verbindungselement und dem Scheibenteil aufgenommen sein. A preferred embodiment of the invention is advantageous in which the disk part is arranged at an axial distance from the connecting element. The spring element can be accommodated axially between the connecting element and the disk part.
Bei einer vorteilhaften Ausführung der Erfindung ist vorgesehen, dass das Verbindungselement und das Scheibenteil den Dämpferausgang bilden und der Dämpfereingang axial dazwischen angeordnet ist. Dadurch kann der Drehschwingungsdämpfer bauraumsparend aufgebaut und das Federelement gleichmäßig über die Beaufschlagungsbereiche beaufschlagt werden. In an advantageous embodiment of the invention, it is provided that the connecting element and the disc part form the damper outlet and the damper inlet is arranged axially between them. This allows him Torsional vibration dampers can be constructed to save space and the spring element can be loaded evenly over the loading areas.
Bei einer vorzugsweisen Ausführung der Erfindung ist vorgesehen, dass der Dämpfereingang ein erstes und ein damit fest verbundenes und axial beabstandet dazu angeordnetes zweites Scheibenteil umfasst und das Verbindungselement axial zwischen dem ersten und zweiten Scheibenteil angeordnet ist. Der Beaufschlagungsbereich des Verbindungselements kann axial mittig an dem Federelement anliegen. Das Verbindungselement kann wenigstens eine Aussparung aufweisen, durch die ein Verbindungselement zur Verbindung des ersten und zweiten Scheibenteils durchgreift. In a preferred embodiment of the invention, it is provided that the damper input comprises a first disk part and a second disk part which is firmly connected thereto and is arranged at an axial distance therefrom, and the connecting element is arranged axially between the first and second disk parts. The loading area of the connecting element can abut axially centrally on the spring element. The connecting element can have at least one cutout, through which a connecting element for connecting the first and second pane part extends.
Bei einer speziellen Ausgestaltung der Erfindung ist es vorteilhaft, wenn der Beaufschlagungsbereich als aus dem Verbindungselement ausgestellte Lasche ausgeführt ist. Der Beaufschlagungsbereich kann von dem Verbindungselement ausgehend in axialer Richtung ausgestellt sein. Der Beaufschlagungsbereich kann aus dem Verbindungselement geformt sein. In a special embodiment of the invention, it is advantageous if the loading area is designed as a tab protruding from the connecting element. Starting from the connecting element, the loading area can be extended in the axial direction. The loading area can be formed from the connecting element.
Bei einer vorteilhaften Ausführung der Erfindung ist vorgesehen, dass eine Trennkupplung mit einem Reibbereich zur steuerbaren Verbindung zwischen einem antriebsseitig verbundenen Kupplungseingang und einem mit dem Dämpfereingang drehfest verbundenen Kupplungsausgang angeordnet ist. Der Drehschwingungsdämpfer kann wirksam zwischen der Trennkupplung und der Abtriebsseite angeordnet sein. Dadurch kann das erste Antriebselement wahlweise von der Abtriebsseite abgekoppelt werden. Die Trennkupplung kann eine KO-Kupplung sein. In an advantageous embodiment of the invention, it is provided that a separating clutch with a friction region for the controllable connection between a clutch input connected on the drive side and a clutch output connected non-rotatably to the damper input is arranged. The torsional vibration damper can be effectively arranged between the separating clutch and the output side. As a result, the first drive element can be selectively decoupled from the output side. The disconnect clutch may be a KO clutch.
Die Trennkupplung kann radial innerhalb von dem Rotor angeordnet sein. Die Trennkupplung kann axial neben dem Drehschwingungsdämpfer angeordnet sein. Die Trennkupplung kann in Bezug auf den Drehschwingungsdämpfer in Richtung zu dem ersten Antriebselement angeordnet sein. Der Reibbereich und das Federelement können sich zumindest abschnittsweise radial überlappen. The disconnect clutch may be located radially inward of the rotor. The separating clutch can be arranged axially next to the torsional vibration damper. The separating clutch can be arranged in relation to the torsional vibration damper in the direction of the first drive element. The friction area and the spring element can radially overlap at least in sections.
Der Reibbereich kann trocken oder nass laufend betrieben sein. Der Reibbereich kann wenigstens eine mit dem Kupplungseingang verbundene eingangsseitige Kupplungslamelle und wenigstens eine mit dem Kupplungsausgang verbundene ausgangsseitige Kupplungslamelle aufweisen. Die ausgangsseitige Kupplungslamelle kann axial verschiebbar verzahnt in dem Kupplungsausgang eingehängt sein. Die eingangsseitige Kupplungslamelle kann axial verschiebbar verzahnt in dem Kupplungseingang eingehängt sein. Es können mehrere eingangsseitige und/oder ausgangsseitige Kupplungslamellen angeordnet sein. Der Kupplungseingang oder Kupplungsausgang kann als Innenlamellenträger oder Aussenlamellenträger ausgeführt sein. The friction area can be operated dry or wet. The friction area can have at least one input-side clutch disk connected to the clutch input and at least one output-side clutch disk connected to the clutch output. The clutch plate on the output side can be hung in the clutch output in an axially displaceable manner with teeth. The input-side clutch plate can be hung in the clutch input in an axially displaceable manner with teeth. Several input-side and/or output-side clutch disks can be arranged. Of the The clutch input or clutch output can be designed as an inner plate carrier or outer plate carrier.
Die eingangsseitige und ausgangsseitige Kupplungslamelle können durch eine Axialkraft eines Betätigungselements reibschlüssig miteinander verbunden sein. Das Betätigungselement kann axial zwischen dem Drehschwingungsdämpfer und dem Reibbereich angeordnet sein. Das Betätigungselement kann durch einen Fluiddruck in einem Fluidraum zur Einleitung der Axialkraft auf den Reibbereich beaufschlagt sein. Der Fluidraum kann axial zwischen dem Reibbereich, bevorzugt dem Betätigungselement, und dem Drehschwingungsdämpfer angeordnet sein. Der Fluidraum kann wenigstens abschnittsweise durch den Kupplungsausgang, den Dämpfereingang und/oder den Dämpferausgang begrenzt sein. The input-side and output-side clutch plates can be frictionally connected to one another by an axial force of an actuating element. The actuating element can be arranged axially between the torsional vibration damper and the friction area. The actuating element can be acted upon by a fluid pressure in a fluid chamber to introduce the axial force onto the friction area. The fluid chamber can be arranged axially between the friction area, preferably the actuating element, and the torsional vibration damper. The fluid chamber can be delimited at least in sections by the clutch outlet, the damper inlet and/or the damper outlet.
Eine bevorzugte Ausgestaltung der Erfindung ist vorteilhaft, bei der der Kupplungsausgang und der Dämpfereingang einteilig ausgeführt sind. Dadurch kann die Hybridvorrichtung kostengünstig und bauraumsparend aufgebaut werden. A preferred embodiment of the invention is advantageous in which the clutch output and the damper input are designed in one piece. As a result, the hybrid device can be constructed in a cost-effective and space-saving manner.
Bei einer bevorzugten Ausführung der Erfindung ist es vorteilhaft, wenn das Verbindungselement mit einem abtriebsseitigen Abtriebselement drehmomentübertragend verbunden ist. Das Verbindungselement kann form-, kraft- und/oder stoffschlüssig mit dem Abtriebselement verbunden sein. Das Verbindungselement kann drehfest mit dem Abtriebselement verbunden sein. Der Rotor kann über das Verbindungselement als Rotorträger auf dem Abtriebselement aufgenommen sein. Das Abtriebselement kann als Abtriebsnabe ausgeführt sein. Das Abtriebselement kann mit einer Getriebeeingangswelle verbunden sein. In a preferred embodiment of the invention, it is advantageous if the connecting element is connected in a torque-transmitting manner to an output element on the output side. The connecting element can be connected to the output element in a positive, non-positive and/or material connection. The connecting element can be connected to the output element in a torque-proof manner. The rotor can be accommodated via the connecting element as a rotor carrier on the driven element. The output element can be designed as an output hub. The output element can be connected to a transmission input shaft.
Weitere Vorteile und vorteilhafte Ausgestaltungen der Erfindung ergeben sich aus der Figurenbeschreibung und den Abbildungen. Further advantages and advantageous configurations of the invention result from the description of the figures and the illustrations.
Die Erfindung wird im Folgenden unter Bezugnahme auf die Abbildungen ausführlich beschrieben. Es zeigen im Einzelnen: The invention is described in detail below with reference to the figures. They show in detail:
Figur 1: Einen Halbschnitt einer Hybridvorrichtung in einer speziellen Ausführungsform der Erfindung. Figure 1: A half-section of a hybrid device in a special embodiment of the invention.
Figur 2: Einen Ausschnitt eines Halbschnitts einer Hybridvorrichtung in einer weiteren speziellen Ausführungsform der Erfindung. FIG. 2: A detail of a half section of a hybrid device in a further special embodiment of the invention.
Figur 3: Einen Ausschnitt eines Halbschnitts einer Hybridvorrichtung in einerweiteren speziellen Ausführungsform der Erfindung. Figur 1 zeigt einen Halbschnitt einer Hybridvorrichtung 10 in einer speziellen Ausführungsform der Erfindung. Die Hybridvorrichtung 10 ist in einem Antriebsstrang eines Fahrzeugs wirksam zwischen einem ersten Antriebselement 12 und einer Abtriebsseite 14, beispielsweise einem Getriebe, angeordnet. Das erste Antriebselement 12 ist beispielsweise ein Verbrennungsmotor, der über ein Zweimassenschwungrad 16 eingangsseitig mit der Hybridvorrichtung 10 verbunden ist. Das Zweimassenschwungrad 16 kann auch der Hybridvorrichtung 10 zugeordnet sein. Das Zweimassenschwungrad 16 weist eine Primärseite 18 auf, die mit einer Kurbelwelle 20 des Verbrennungsmotors verschraubt werden kann. Die Primärseite 18 ist über wenigstens ein Federelement 22, insbesondere eine Bogenfeder, gegenüber einer Sekundärseite 24 begrenzt verdrehbar. Die Sekundärseite 24 kann durch einen Bogenfederflansch 26 gebildet werden, an dem ein Drehschwingungstilger 28, bevorzugt ein Fliehkraftpendel 30 radial innerhalb des Federelements 22 angeordnet ist. Der Bogenfederflansch 26 kann dabei einteilig mit einem Pendelmassenträger 32 ausgeführt sein, an dem Pendelmassen 34 entlang einer Pendelbahn begrenzt auslenkbar aufgenommen sind. Die Sekundärseite 24 ist mit einer Antriebswelle 36 verzahnt verbunden. Figure 3: A detail of a half section of a hybrid device in a further special embodiment of the invention. Figure 1 shows a half section of a hybrid device 10 in a special embodiment of the invention. The hybrid device 10 is arranged in a drive train of a vehicle operatively between a first drive element 12 and an output side 14, for example a transmission. The first drive element 12 is an internal combustion engine, for example, which is connected to the hybrid device 10 via a dual-mass flywheel 16 on the input side. The dual mass flywheel 16 may also be associated with the hybrid device 10 . The dual-mass flywheel 16 has a primary side 18 that can be bolted to a crankshaft 20 of the internal combustion engine. The primary side 18 can be rotated to a limited extent relative to a secondary side 24 via at least one spring element 22, in particular a bow spring. The secondary side 24 can be formed by a curved spring flange 26 on which a torsional vibration damper 28, preferably a centrifugal pendulum 30 is arranged radially inside the spring element 22. The arc spring flange 26 can be designed in one piece with a pendulum mass carrier 32 on which pendulum masses 34 are accommodated so that they can be deflected to a limited extent along an aerial tramway. The secondary side 24 is splined to a drive shaft 36 .
Die Antriebswelle 36 kann einen Eingang der Hybridvorrichtung 10 bilden und ist über eine Trennkupplung 38 und einen in Reihe geschalteten Drehschwingungsdämpfer 40 mit der Abtriebsseite 14 verbunden. Parallel zu diesem ausgehend von dem ersten Antriebselement 12, über die Trennkupplung 38 und den Drehschwingungsdämpfer 40 gebildeten ersten Drehmomentübertragungsweg 42 ist ein Elektromotor 44 mit einem Stator 46 und einem gegenüber diesem drehbaren Rotor 48 wirksam angeordnet, der ein weiteres Antriebsmoment zur Übertragung an die Abtriebsseite 14 bereitstellen kann. The drive shaft 36 can form an input of the hybrid device 10 and is connected to the output side 14 via a separating clutch 38 and a torsional vibration damper 40 connected in series. Parallel to this first torque transmission path 42 formed by the first drive element 12, via the separating clutch 38 and the torsional vibration damper 40, there is an electric motor 44 with a stator 46 and a rotor 48 which can be rotated relative to it and which generates a further drive torque for transmission to the output side 14 can provide.
Die Trennkupplung 38 umfasst einen Kupplungseingang 50, der mit der Antriebswelle 36 fest verbunden ist. Der Kupplungseingang 50 ist über einen Reibbereich 52 mit einem Kupplungsausgang 54 reibschlüssig verbindbar. Dabei kann bei geschlossener Trennkupplung 38 eine Drehmomentübertragung innerhalb des ersten Drehmomentübertragungswegs 42 zwischen dem Kupplungseingang 50 zu dem Kupplungsausgang 54 erfolgen und bei offener Trennkupplung 38 die Drehmomentübertragung unterbrochen werden. The separating clutch 38 includes a clutch input 50 which is firmly connected to the drive shaft 36 . The clutch input 50 can be frictionally connected to a clutch output 54 via a friction area 52 . When the separating clutch 38 is closed, torque can be transmitted within the first torque transmission path 42 between the clutch input 50 and the clutch output 54 and when the separating clutch 38 is open, the torque transmission can be interrupted.
Der Reibbereich 52 wird durch eingangsseitige Kupplungslamellen 56, die mit dem Kupplungseingang 50 drehfest und über eine Verzahnung axial verschiebbar verbunden sind und ausgangsseitige Kupplungslamellen 58, die mit dem Kupplungsausgang 54 drehfest und axial verschiebbar über eine Verzahnung verbunden sind, gebildet. Der Kupplungseingang 50 ist insbesondere als Innenlamellenträger und der Kupplungsausgang 54 als Aussenlamellenträger ausgeführt. The friction area 52 is formed by input-side clutch plates 56, which are non-rotatably connected to the clutch input 50 and axially displaceable via teeth, and output-side clutch plates 58, which are non-rotatably and axially displaceably connected to the clutch output 54 via teeth. The clutch input 50 is designed in particular as an inner disk carrier and the clutch output 54 as an outer disk carrier.
Ein axial verschiebbares Betätigungselement 60 kann eine Betätigungskraft auf den Reibbereich 52 ausüben und dadurch eine reibschlüssige Verbindung zwischen den antriebsseitigen und ausgangsseitigen Kupplungslamellen 56, 58 zur Drehmomentübertragung zwischen dem Kupplungseingang 50 und dem Kupplungsausgang 54 bewirken. Das Betätigungselement 60 ist abhängig von einem Fluiddruck in einem Fluidraum 62 axial verschiebbar. Eine Rückstellung des Betätigungselements 60 zum Öffnen der Trennkupplung 38 erfolgt über ein Rückstellelement 64, beispielsweise eine Tellerfeder. Der Fluidraum 62 ist durch eine Bohrung 66 in einem Abtriebselement 68 mit einem Fluidkanal 70 verbunden, über den der Fluiddruck in dem Fluidraum 62 steuerbar ist. An axially displaceable actuating element 60 can exert an actuating force on the friction area 52 and thereby bring about a frictional connection between the drive-side and output-side clutch plates 56, 58 for torque transmission between the clutch input 50 and the clutch output 54. The actuating element 60 can be displaced axially in a fluid chamber 62 as a function of a fluid pressure. The actuating element 60 is reset to open the separating clutch 38 via a reset element 64, for example a disk spring. The fluid chamber 62 is connected through a bore 66 in an output element 68 to a fluid channel 70 via which the fluid pressure in the fluid chamber 62 can be controlled.
Der Kupplungsausgang 54 ist über den Drehschwingungsdämpfer 40 mit dem Abtriebselement 68 gekoppelt. Ein Dämpfereingang 72 des Drehschwingungsdämpfers 40 ist über die Wirkung wenigstens eines Federelements 74 gegenüber einem Dämpferausgang 76 begrenzt verdrehbar. Der Kupplungsausgang 54 ist mit dem Dämpfereingang 72 des Drehschwingungsdämpfers 40 verbunden, bevorzugt einteilig ausgeführt. Die durch das Betätigungselement 60 auf den Reibbereich 52 ausgeübte Betätigungskraft ist über den Kupplungsausgang 54, den Dämpfereingang 72 und ein Abstützlager 75 abgestützt. The clutch output 54 is coupled to the output element 68 via the torsional vibration damper 40 . A damper input 72 of the torsional vibration damper 40 can be rotated to a limited extent relative to a damper output 76 via the action of at least one spring element 74 . The clutch output 54 is connected to the damper input 72 of the torsional vibration damper 40, preferably in one piece. The actuating force exerted by the actuating element 60 on the friction area 52 is supported via the clutch outlet 54 , the damper inlet 72 and a support bearing 75 .
Der Dämpferausgang 76 umfasst ein Scheibenteil 78, das axial neben dem Dämpfereingang 72 angeordnet ist und radial außen einen axial verlaufenden Abschnitt 80 aufweist, an dem das Betätigungselement 60 axial verschiebbar abdichtend aufgenommen ist. Der Fluidraum 62 wird dabei zumindest teilweise durch das Scheibenteil 78 begrenzt, das hierfür radial innen abdichtend an dem Abtriebselement 68 aufgenommen ist. Das Abtriebselement 68 weist eine Innenverzahnung 82 zur Verbindung mit einer Getriebeeingangswelle auf. The damper outlet 76 comprises a disk part 78 which is arranged axially next to the damper inlet 72 and has an axially extending section 80 radially on the outside, on which the actuating element 60 is accommodated in an axially displaceable and sealing manner. The fluid chamber 62 is at least partially delimited by the disk part 78 which is accommodated on the output element 68 in a radially inner sealing manner for this purpose. The output element 68 has internal teeth 82 for connection to a transmission input shaft.
Der Rotor 48 ist über ein Verbindungselement 84 mit dem Abtriebselement 68 drehmomentübertragend verbunden. Das Verbindungselement 84 ist dem Dämpferausgang 76 zugeordnet und mit dem Scheibenteil 78 fest verbunden. Der Dämpfereingang 72 ist axial zwischen dem Scheibenteil 78 und dem Verbindungselement 84 angeordnet. Das Verbindungselement 84 ist radial außen an dem Rotor 48 befestigt, beispielsweise verschraubt und radial innen mit dem Abtriebselement 68 vernietet. An dem Verbindungselement 84 ist ein Beaufschlagungsbereich 86 ausgeführt, der an dem Federelement 74 kraftübertragend anliegt. Dadurch kann die Hybridvorrichtung 10 bauraumsparend aufgebaut werden. Das Scheibenteil 78 umfasst einen weiteren Beaufschlagungsbereich 88, der an dem Federelement 74 kraftübertragend anliegt. Ein von dem ersten Antriebselement 12 ausgehendes Antriebsmoment wird bei Einleitung in den Dämpfereingang 72 auf das Federelement 74 geleitet und davon über die Beaufschlagungsbereiche 86, 88 auf den Dämpferausgang 76 und das Verbindungselement 84 zu dem Abtriebselement 68. Der Rotor 48 des Elektromotors 44 ist somit über das Verbindungselement 84 drehfest mit dem Dämpferausgang 76 verbunden. Ein durch den Elektromotor 44 über den Rotor 48 bereitgestelltes Drehmoment liegt dabei an der Abtriebsseite 14 unter Umgehung einer Drehmomentübertragung über das Federelement 74 an. Der Drehschwingungsdämpfer 40 kann dadurch optimaler auf ein Drehmoment des ersten Antriebselements 12 abgestimmt werden. Der Drehschwingungsdämpfer 40 kann die Drehschwingungen des ersten Antriebselements 12 besser verringern und kostengünstiger ausgeführt werden. The rotor 48 is connected in a torque-transmitting manner to the output element 68 via a connecting element 84 . The connecting element 84 is assigned to the damper outlet 76 and is firmly connected to the disk part 78 . The damper input 72 is arranged axially between the disk part 78 and the connecting element 84 . The connecting element 84 is fastened to the rotor 48 radially on the outside, for example screwed and riveted to the output element 68 radially on the inside. A loading area 86 is implemented on the connecting element 84 and rests against the spring element 74 in a force-transmitting manner. As a result, the hybrid device 10 can be constructed in a space-saving manner. The disk part 78 comprises a further loading area 88 which rests against the spring element 74 in a force-transmitting manner. A drive torque emanating from the first drive element 12 is transmitted to the spring element 74 when it is introduced into the damper input 72 and from there via the loading areas 86, 88 to the damper output 76 and the connecting element 84 to the output element 68. The rotor 48 of the electric motor 44 is thus over the connecting element 84 is non-rotatably connected to the damper outlet 76 . A torque provided by the electric motor 44 via the rotor 48 is applied to the output side 14 , bypassing a torque transmission via the spring element 74 . The torsional vibration damper 40 can thus be tuned more optimally to a torque of the first drive element 12 . The torsional vibration damper 40 can better reduce the torsional vibrations of the first drive element 12 and can be implemented more cost-effectively.
Der Drehschwingungsdämpfer 40, das Abtriebselement 68 und das Verbindungselement 84 sind über einen Rotorträger 90 an einem Gehäuse 92 über ein Lagerelement 94 gelagert.The torsional vibration damper 40, the driven element 68 and the connecting element 84 are mounted on a housing 92 via a rotor support 90 via a bearing element 94.
Das Lagerelement 94 ist zwischen einer Gehäusewand 96 und dem Rotorträger 90 angeordnet. Die Gehäusewand 96 erstreckt sich axial zwischen dem Zweimassenschwungrad 16 einerseits und dem Elektromotor 44, der Trennkupplung 38 und dem Drehschwingungsdämpfer 40 andererseits. Die Trennkupplung 38 und der Drehschwingungsdämpfers 40 sind radial innerhalb von und zumindest teilweise axial überlappend zu dem Rotor 48 angeordnet. Der Drehschwingungsdämpfer 40 und die Trennkupplung 38 sind axial nebeneinander und radial überlappend angeordnet. The bearing element 94 is arranged between a housing wall 96 and the rotor support 90 . The housing wall 96 extends axially between the dual-mass flywheel 16 on the one hand and the electric motor 44, the separating clutch 38 and the torsional vibration damper 40 on the other. The separating clutch 38 and the torsional vibration damper 40 are arranged radially inside of and at least partially axially overlapping the rotor 48 . The torsional vibration damper 40 and the separating clutch 38 are arranged axially next to one another and radially overlapping.
Figur 2 zeigt einen Ausschnitt eines Halbschnitts einer Hybridvorrichtung 10 in einerweiteren speziellen Ausführungsform der Erfindung. Der Dämpfereingang 72 wird durch ein erstes Scheibenteil 98 und axial beabstandetes zweites Scheibenteil 100 gebildet, die miteinander fest verbunden sind. Das erste und zweite Scheibenteil 98, 100 sind über die Wirkung des Federelements 74 gegenüber dem Dämpferausgang 76 begrenzt verdrehbar. FIG. 2 shows a detail of a half section of a hybrid device 10 in a further special embodiment of the invention. The damper input 72 is formed by a first disc part 98 and an axially spaced second disc part 100 which are firmly connected to one another. The first and second disk parts 98, 100 can be rotated to a limited extent in relation to the damper outlet 76 via the action of the spring element 74.
Der Dämpferausgang 76 ist axial mittig zwischen dem ersten und zweiten Scheibenteil 98, 100 aufgenommen und einteilig mit dem Verbindungselement 84 ausgeführt. Das Verbindungselement 84 umfasst wenigstens eine Aussparung 102, durch die ein Verbindungselement 104 zur Verbindung des ersten und zweiten Scheibenteils 98, 100 durchgreift. The damper outlet 76 is accommodated axially centrally between the first and second disk parts 98, 100 and is designed in one piece with the connecting element 84. The connecting element 84 comprises at least one recess 102, through which a connecting element 104 for connecting the first and second disk parts 98, 100 extends.
Das Verbindungselement 84 weist einen Beaufschlagungsbereich 86 auf, an dem das Federelement 74 kraftübertragend anliegt. Radial auf Höhe des Beaufschlagungsbereichs 86 sind an dem ersten und zweiten Scheibenelement jeweils Fensterflügel 106 ausgeformt, die das Federelement 74 radial und axial aufnehmen. Das Verbindungselement 84 ist radial innen mit dem Abtriebselement 68 vernietet. Das hierfür verwendete Nietelement 108 ist axial überlappend zu dem Federelement 74 angeordnet. Das Abtriebselement 68 kann über eine Innenverzahnung 82 mit einer Getriebeeingangswelle verbunden werden. The connecting element 84 has a loading area 86 on which the spring element 74 rests in a force-transmitting manner. Window sashes 106 are formed radially at the height of the loading area 86 on the first and second pane elements, which receive the spring element 74 radially and axially. The connecting element 84 is riveted to the output element 68 radially on the inside. The rivet element 108 used for this purpose is arranged so that it overlaps the spring element 74 in the axial direction. The output element 68 can be connected to a transmission input shaft via internal teeth 82 .
Figur 3 zeigt einen Ausschnitt eines Halbschnitts einer Hybridvorrichtung 10 in einerweiteren speziellen Ausführungsform der Erfindung. Der Dämpfereingang 72 ist als Federretainer ausgeführt und mit dem Kupplungsausgang 54 über wenigstens ein Nietelement 110 befestigt. Der Dämpfereingang 72 weist einen ausgestellten Beaufschlagungsbereich 112 zur kraftübertragenden Kopplung mit dem Federelement 74 auf. FIG. 3 shows a detail of a half section of a hybrid device 10 in a further specific embodiment of the invention. The damper input 72 is designed as a spring retainer and is attached to the clutch output 54 via at least one rivet element 110 . The damper input 72 has an exposed loading area 112 for force-transmitting coupling to the spring element 74 .
Der Beaufschlagungsbereich 86 des Verbindungselements 84 ist als aus dem Verbindungselement 84 ausgestellte Lasche ausgeführt. Der Beaufschlagungsbereich 86 ist ausgehend von dem Verbindungselement 84 in axialer Richtung ausgestellt und greift radial oberhalb des Beaufschlagungsbereichs 112 des Dämpfereingangs 72 in das Federelement 74 ein. Auch kann der Drehschwingungsdämpfer 40 eine formschlüssige Begrenzung einer maximalen Verdrehung zwischen dem Dämpfereingang 72 und Dämpferausgang 76 aufweisen. Dadurch kann das Federelement 74 vor einer überhöhten Belastung geschützt werden. Die Begrenzung kann unmittelbar zwischen dem Dämpfereingang 72 und Dämpferausgang 76 angeordnet sein. Beispielsweise kann der Beaufschlagungsbereich 86 des Verbindungselements 84 in den Federretainer mit Verdrehspiel formschlüssig eingreifen. Der Dämpfereingang 72 und Dämpferausgang 76 sind dabei innerhalb des Verdrehspiels über die Wirkung des Federelements 74 gegeneinander begrenzt verdrehbar. The loading area 86 of the connecting element 84 is designed as a tab protruding from the connecting element 84 . The loading area 86 is extended in the axial direction, starting from the connecting element 84 , and engages in the spring element 74 radially above the loading area 112 of the damper input 72 . The torsional vibration damper 40 can also have a form-fitting limitation of a maximum torsion between the damper inlet 72 and the damper outlet 76 . As a result, the spring element 74 can be protected against an excessive load. The limitation can be arranged directly between the damper inlet 72 and the damper outlet 76 . For example, the loading area 86 of the connecting element 84 can positively engage in the spring retainer with torsional play. The damper input 72 and damper output 76 can be twisted against one another to a limited extent within the torsional play via the action of the spring element 74 .
Bezuqszeichenliste Hybridvorrichtung erstes Antriebselement Abtriebsseite Zweimassenschwungrad Primärseite Kurbelwelle Federelement Sekundärseite Bogenfederflansch Drehschwingungstilger Fliehkraftpendel Pendelmassenträger Pendelmasse Antriebswelle Trennkupplung Drehschwingungsdämpfer erster Drehmomentübertragungsweg Elektromotor Stator Rotor Kupplungseingang Reibbereich Kupplungsausgang eingangsseitige Kupplungslamelle ausgangsseitige Kupplungslamelle Betätigungselement Fluidraum Bezuqszeichenliste hybrid device first drive element output side dual mass flywheel primary side crankshaft spring element secondary side arc spring flange torsional vibration absorber centrifugal pendulum pendulum mass carrier pendulum mass drive shaft separating clutch torsional vibration damper first torque transmission path electric motor stator rotor clutch input friction area clutch output input-side clutch plate output-side clutch plate actuating element fluid space
Rückstellelement Bohrungreturn element drilling
Abtriebselementoutput element
Fluidkanalfluid channel
Dämpfereingangdamper input
Federelementspring element
Abstützlagersupport bearing
Dämpferausgangdamper output
Scheibenteildisc part
Abschnittsection
Innenverzahnunginternal teeth
Verbindungselementfastener
Beaufschlagungsbereichimpingement area
Beaufschlagungsbereichimpingement area
Rotorträger rotor carrier
GehäuseHousing
Lagerelementbearing element
Gehäusewand erstes Scheibenteil zweites ScheibenteilHousing wall first disc part second disc part
Aussparungrecess
Verbindungselementfastener
Fensterflügelcasement
Nietelementrivet element
Nietelement rivet element
Beaufschlagungsbereich impingement area

Claims

Patentansprüche patent claims
1. Hybridvorrichtung (10) wirksam zwischen einem ersten Antriebselement (12) und einer Abtriebsseite (14) und aufweisend einen Drehschwingungen des ersten Antriebselements (12) verringernden Drehschwingungsdämpfer (40) mit einem um eine Drehachse drehbaren Dämpfereingang (72) und einem entgegen der Wirkung wenigstens eines Federelements (74) gegenüber diesem begrenzt verdrehbaren Dämpferausgang (76), einen Elektromotor (44) mit einem Stator (46) und einem mit der Abtriebsseite (14) drehmomentübertragend über ein Verbindungselement (84) verbundenen Rotor (48), dadurch gekennzeichnet, dass das Verbindungselement (84) gegenüber dem Dämpfereingang (72) verdrehbar ist und mit einem Beaufschlagungsbereich (86) kraftübertragend an dem Federelement (74) anliegt. 1. Hybrid device (10) effective between a first drive element (12) and an output side (14) and having a torsional vibration damper (40) reducing torsional vibrations of the first drive element (12) with a damper input (72) rotatable about an axis of rotation and a counteracting effect at least one spring element (74) opposite this damper output (76) which can be rotated to a limited extent, an electric motor (44) with a stator (46) and a rotor (48) connected to the output side (14) via a connecting element (84) in a torque-transmitting manner, characterized in that that the connecting element (84) can be rotated in relation to the damper input (72) and rests against the spring element (74) in a force-transmitting manner with a loading region (86).
2. Hybridvorrichtung (10) nach Anspruch 1, dadurch gekennzeichnet, dass das Verbindungselement (84) drehmomentübertragend in Reihe wirksam zwischen dem Rotor (48) und der Abtriebsseite (14) angeordnet ist. 2. Hybrid device (10) according to claim 1, characterized in that the connecting element (84) is arranged to transmit torque in series between the rotor (48) and the output side (14).
3. Hybridvorrichtung (10) nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das Verbindungselement (84) mit einem Scheibenteil (78) fest verbunden ist, das einen mit dem Federelement (74) kraftübertragend gekoppelten weiteren Beaufschlagungsbereich (88) aufweist. 3. Hybrid device (10) according to claim 1 or 2, characterized in that the connecting element (84) is fixedly connected to a disk part (78) which has a further loading area (88) coupled in a force-transmitting manner to the spring element (74).
4. Hybridvorrichtung (10) nach Anspruch 3, dadurch gekennzeichnet, dass das Scheibenteil (78) axial beabstandet zu dem Verbindungselement (84) angeordnet ist. 4. Hybrid device (10) according to claim 3, characterized in that the disk part (78) is arranged at an axial distance from the connecting element (84).
5. Hybridvorrichtung (10) nach Anspruch 3 oder 4, dadurch gekennzeichnet, dass das Verbindungselement (84) und das Scheibenteil (78) den Dämpferausgang (76) bilden und der Dämpfereingang (72) axial dazwischen angeordnet ist. 5. Hybrid device (10) according to claim 3 or 4, characterized in that the connecting element (84) and the disc part (78) form the damper outlet (76) and the damper inlet (72) is arranged axially therebetween.
6. Hybridvorrichtung (10) nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass der Dämpfereingang (72) ein erstes Scheibenteil (98) und ein damit fest verbundenes und axial beabstandet dazu angeordnetes zweites Scheibenteil (100) umfasst und das Verbindungselement (84) axial zwischen dem ersten und zweiten Scheibenteil (98, 100) angeordnet ist. 6. Hybrid device (10) according to one of the preceding claims, characterized in that the damper input (72) comprises a first disc part (98) and a second disc part (100) which is firmly connected thereto and is arranged at an axial distance therefrom and the connecting element (84) is axial located between the first and second disk parts (98, 100).
7. Hybridvorrichtung (10) nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass der Beaufschlagungsbereich (86) als aus dem Verbindungselement (84) ausgestellte Lasche ausgeführt ist. 7. Hybrid device (10) according to any one of the preceding claims, characterized in that the loading area (86) is designed as a tab protruding from the connecting element (84).
8. Hybridvorrichtung (10) nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass eine Trennkupplung (38) mit einem Reibbereich (52) zur steuerbaren Verbindung zwischen einem antriebsseitig verbundenen Kupplungseingang (50) und einem mit dem Dämpfereingang (72) drehfest verbundenen Kupplungsausgang (54) angeordnet ist. 8. Hybrid device (10) according to one of the preceding claims, characterized in that a separating clutch (38) with a friction area (52) for the controllable connection between a drive-side connected clutch input (50) and a damper input (72) non-rotatably connected clutch output ( 54) is arranged.
9. Hybridvorrichtung (10) nach Anspruch 8, dadurch gekennzeichnet, dass der Kupplungsausgang (54) und der Dämpfereingang (72) einteilig ausgeführt sind. 9. Hybrid device (10) according to claim 8, characterized in that the clutch output (54) and the damper input (72) are made in one piece.
10. Hybridvorrichtung (10) nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass das Verbindungselement (84) mit einem abtriebsseitigen Abtriebselement (68) drehmomentübertragend verbunden ist. 10. Hybrid device (10) according to one of the preceding claims, characterized in that the connecting element (84) is connected in a torque-transmitting manner to an output-side output element (68).
PCT/DE2022/100120 2021-03-11 2022-02-14 Hybrid device having a spring-loading connection element WO2022188919A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102021105886.4A DE102021105886B3 (en) 2021-03-11 2021-03-11 Hybrid device with a spring-loaded connecting element
DE102021105886.4 2021-03-11

Publications (1)

Publication Number Publication Date
WO2022188919A1 true WO2022188919A1 (en) 2022-09-15

Family

ID=79300827

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2022/100120 WO2022188919A1 (en) 2021-03-11 2022-02-14 Hybrid device having a spring-loading connection element

Country Status (2)

Country Link
DE (1) DE102021105886B3 (en)
WO (1) WO2022188919A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102022133827A1 (en) 2022-12-19 2024-06-20 Schaeffler Technologies AG & Co. KG Torsional vibration damper system and drive train for a motor vehicle

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009042838A1 (en) * 2008-10-27 2010-04-29 Luk Lamellen Und Kupplungsbau Beteiligungs Kg Rotational vibration damper for damping torsional vibrations entered into hybrid drive train of internal combustion engine, has friction unit operated parallel to another friction unit outside of damper
WO2016070878A1 (en) * 2014-11-06 2016-05-12 Schaeffler Technologies AG & Co. KG Hybrid module for a motor vehicle
DE102018106290A1 (en) * 2018-03-19 2019-09-19 Schaeffler Technologies AG & Co. KG Hybrid module with friction damper secondary damper input element
DE102019118220A1 (en) * 2019-07-05 2021-01-07 Schaeffler Technologies AG & Co. KG Drive device for a hybrid drive train

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009042838A1 (en) * 2008-10-27 2010-04-29 Luk Lamellen Und Kupplungsbau Beteiligungs Kg Rotational vibration damper for damping torsional vibrations entered into hybrid drive train of internal combustion engine, has friction unit operated parallel to another friction unit outside of damper
WO2016070878A1 (en) * 2014-11-06 2016-05-12 Schaeffler Technologies AG & Co. KG Hybrid module for a motor vehicle
EP3215753A1 (en) 2014-11-06 2017-09-13 Schaeffler Technologies AG & Co. KG Hybrid module for a motor vehicle
DE102018106290A1 (en) * 2018-03-19 2019-09-19 Schaeffler Technologies AG & Co. KG Hybrid module with friction damper secondary damper input element
DE102019118220A1 (en) * 2019-07-05 2021-01-07 Schaeffler Technologies AG & Co. KG Drive device for a hybrid drive train

Also Published As

Publication number Publication date
DE102021105886B3 (en) 2022-02-03

Similar Documents

Publication Publication Date Title
EP2300736B2 (en) Hydrodynamic torque converter
DE19861492B4 (en) Hydrodynamic torque converter
WO2018228634A1 (en) Torque-transmitting device
DE102011010342A1 (en) Torque transfer device
WO2011006468A1 (en) Torque transmission device
WO2014079442A1 (en) Hydrodynamic torque converter
DE102018124860A1 (en) Torsional vibration damper
DE102020126654A1 (en) Torsional vibration damper with torque limiter and friction lining with plug connection
DE102021105886B3 (en) Hybrid device with a spring-loaded connecting element
WO2020228906A1 (en) Torque transmission apparatus having dry-operated separating clutch
DE102021105887B3 (en) Hybrid device with a one-piece wall element and damper component
DE102011011922A1 (en) Power transmission flange for a torque transmission device or a damper device, and torque transmission device or damper device
EP1496288B1 (en) Torsional vibration damper
WO2022188918A1 (en) Hybrid device having a rotor connected on the damper output side
WO2015003700A1 (en) Torsional vibration damper
DE19954676B4 (en) Split flywheel
DE19709342A1 (en) Torsional vibration damper
EP4025797A1 (en) Torque transmission device
DE102021106477A1 (en) torsional vibration damper
WO2021254555A1 (en) Torque transmission device and installation method
DE102009030970A1 (en) Torsional vibration damper for use as dual-mass flywheel in crank shaft of internal combustion engine, has retainer for retaining energy storage units and attached to metal parts, which radially overlap fastening diameter of bearing dome
EP4025798A1 (en) Torque transmitting device
DE102020127711A1 (en) Torsional vibration damper with a balancing element
WO2023057003A1 (en) Drive train device
DE102020112024A1 (en) Torsional vibration damper

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22709572

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 22709572

Country of ref document: EP

Kind code of ref document: A1