WO2022188825A1 - 苯二亚甲基二异氰酸酯组合物及其制备方法和应用 - Google Patents

苯二亚甲基二异氰酸酯组合物及其制备方法和应用 Download PDF

Info

Publication number
WO2022188825A1
WO2022188825A1 PCT/CN2022/080069 CN2022080069W WO2022188825A1 WO 2022188825 A1 WO2022188825 A1 WO 2022188825A1 CN 2022080069 W CN2022080069 W CN 2022080069W WO 2022188825 A1 WO2022188825 A1 WO 2022188825A1
Authority
WO
WIPO (PCT)
Prior art keywords
xylylene diisocyanate
composition
bis
group
solvent
Prior art date
Application number
PCT/CN2022/080069
Other languages
English (en)
French (fr)
Inventor
朱付林
尚永华
李建峰
刘伟杰
王鹏
李文滨
王鹏飞
吴谦
刘伟
黎源
Original Assignee
万华化学集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202210217405.5A external-priority patent/CN115073707B/zh
Application filed by 万华化学集团股份有限公司 filed Critical 万华化学集团股份有限公司
Priority to JP2023555433A priority Critical patent/JP2024510194A/ja
Priority to KR1020237031504A priority patent/KR20230145183A/ko
Priority to EP22766347.3A priority patent/EP4306509A1/en
Priority to US18/281,208 priority patent/US20240166795A1/en
Publication of WO2022188825A1 publication Critical patent/WO2022188825A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/76Polyisocyanates or polyisothiocyanates cyclic aromatic
    • C08G18/7614Polyisocyanates or polyisothiocyanates cyclic aromatic containing only one aromatic ring
    • C08G18/7628Polyisocyanates or polyisothiocyanates cyclic aromatic containing only one aromatic ring containing at least one isocyanate or isothiocyanate group linked to the aromatic ring by means of an aliphatic group
    • C08G18/7642Polyisocyanates or polyisothiocyanates cyclic aromatic containing only one aromatic ring containing at least one isocyanate or isothiocyanate group linked to the aromatic ring by means of an aliphatic group containing at least two isocyanate or isothiocyanate groups linked to the aromatic ring by means of an aliphatic group having a primary carbon atom next to the isocyanate or isothiocyanate groups, e.g. xylylene diisocyanate or homologues substituted on the aromatic ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C263/00Preparation of derivatives of isocyanic acid
    • C07C263/10Preparation of derivatives of isocyanic acid by reaction of amines with carbonyl halides, e.g. with phosgene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C263/00Preparation of derivatives of isocyanic acid
    • C07C263/18Separation; Purification; Stabilisation; Use of additives
    • C07C263/20Separation; Purification
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C265/00Derivatives of isocyanic acid
    • C07C265/02Derivatives of isocyanic acid having isocyanate groups bound to acyclic carbon atoms
    • C07C265/06Derivatives of isocyanic acid having isocyanate groups bound to acyclic carbon atoms of an unsaturated carbon skeleton
    • C07C265/08Derivatives of isocyanic acid having isocyanate groups bound to acyclic carbon atoms of an unsaturated carbon skeleton the carbon skeleton containing rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C265/00Derivatives of isocyanic acid
    • C07C265/14Derivatives of isocyanic acid containing at least two isocyanate groups bound to the same carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/09Processes comprising oligomerisation of isocyanates or isothiocyanates involving reaction of a part of the isocyanate or isothiocyanate groups with each other in the reaction mixture
    • C08G18/092Processes comprising oligomerisation of isocyanates or isothiocyanates involving reaction of a part of the isocyanate or isothiocyanate groups with each other in the reaction mixture oligomerisation to isocyanurate groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/10Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/16Catalysts
    • C08G18/22Catalysts containing metal compounds
    • C08G18/24Catalysts containing metal compounds of tin
    • C08G18/242Catalysts containing metal compounds of tin organometallic compounds containing tin-carbon bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/32Polyhydroxy compounds; Polyamines; Hydroxyamines
    • C08G18/3203Polyhydroxy compounds
    • C08G18/3206Polyhydroxy compounds aliphatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/38Low-molecular-weight compounds having heteroatoms other than oxygen
    • C08G18/3855Low-molecular-weight compounds having heteroatoms other than oxygen having sulfur
    • C08G18/3876Low-molecular-weight compounds having heteroatoms other than oxygen having sulfur containing mercapto groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/71Monoisocyanates or monoisothiocyanates
    • C08G18/711Monoisocyanates or monoisothiocyanates containing oxygen in addition to isocyanate oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/77Polyisocyanates or polyisothiocyanates having heteroatoms in addition to the isocyanate or isothiocyanate nitrogen and oxygen or sulfur
    • C08G18/78Nitrogen
    • C08G18/79Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates
    • C08G18/791Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates containing isocyanurate groups
    • C08G18/794Nitrogen characterised by the polyisocyanates used, these having groups formed by oligomerisation of isocyanates or isothiocyanates containing isocyanurate groups formed by oligomerisation of aromatic isocyanates or isothiocyanates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/80Masked polyisocyanates
    • C08G18/8003Masked polyisocyanates masked with compounds having at least two groups containing active hydrogen
    • C08G18/8006Masked polyisocyanates masked with compounds having at least two groups containing active hydrogen with compounds of C08G18/32
    • C08G18/8009Masked polyisocyanates masked with compounds having at least two groups containing active hydrogen with compounds of C08G18/32 with compounds of C08G18/3203
    • C08G18/8022Masked polyisocyanates masked with compounds having at least two groups containing active hydrogen with compounds of C08G18/32 with compounds of C08G18/3203 with polyols having at least three hydroxy groups
    • C08G18/8029Masked aromatic polyisocyanates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • G02B1/041Lenses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V1/00Shades for light sources, i.e. lampshades for table, floor, wall or ceiling lamps
    • F21V1/14Covers for frames; Frameless shades
    • F21V1/16Covers for frames; Frameless shades characterised by the material
    • F21V1/22Covers for frames; Frameless shades characterised by the material the material being plastics

Definitions

  • the present application relates to the technical field of isocyanates, in particular to a xylylene diisocyanate composition and a preparation method and application thereof.
  • Xylylene diisocyanate belongs to aliphatic isocyanate, which can be used as raw material of polyurethane resin in various industrial products, especially in optical materials.
  • Xylylene diisocyanate can be obtained by reacting xylylenediamine with phosgene (phosgene (phosgene), which is known to generate chloride as a by-product (see, for example, patent application GB1194459A).
  • the polyurethane resin is required to have excellent discoloration resistance depending on the purpose and use.
  • sufficient discoloration resistance may not be ensured for a polyurethane resin produced from xylylene diisocyanate described in patent application GB1194459A.
  • one of the purposes of the present application is to provide a xylylene diisocyanate composition.
  • the polyurethane resin prepared from the xylylene diisocyanate composition has excellent discoloration resistance.
  • the present application provides a xylylene diisocyanate composition
  • a xylylene diisocyanate composition comprising xylylene diisocyanate and 0.2-500 ppm (eg 0.4 ppm, 0.6 ppm, 0.8 ppm, 1 ppm) , 5ppm, 6ppm, 10ppm, 12ppm, 15ppm, 20ppm, 40ppm, 50ppm, 60ppm, 100ppm, 150ppm, 200ppm, 210ppm, 250ppm, 300ppm, 320ppm, 350ppm, 400ppm, 450ppm, 500ppm, etc.) shown in formula (1) compound;
  • the researchers of the present application found that when the xylylene diisocyanate composition contains 0.2-500 ppm of the compound of formula (1), the prepared resin has excellent discoloration resistance, effectively inhibiting resin yellowing and/or cloudy. If the content is lower than 0.2ppm or higher than 500ppm, the discoloration resistance will be deteriorated.
  • the xylylene diisocyanate composition of the present application is a substantially single compound (ie, xylylene diisocyanate) containing 97 wt.
  • the compound shown in 1) is defined as a xylylene diisocyanate composition as an accessory component.
  • the xylylene diisocyanate composition is referred to as the XDI composition
  • the xylylene diisocyanate is referred to as XDI
  • the compound represented by the chemical formula (1) is referred to as for IBA.
  • the xylylene diisocyanate composition further includes a bromine-containing compound
  • the content of the bromine-containing compound is 0.5-50ppm, such as 1ppm, 2ppm, 3ppm, 4ppm, 5ppm, 6ppm, 7ppm, 8ppm, 9ppm, 10ppm, 11ppm, 12ppm, 13ppm, 14ppm, 15ppm, 16ppm, 17ppm, 18ppm, 19ppm, 20ppm, 21ppm, 22ppm, 23ppm, 24ppm, 25ppm, 26ppm, 27ppm, 28ppm, 29ppm, 30ppm, 31ppm, 32ppm, 33ppm, 34ppm, 35ppm, 36ppm, 37ppm, 38ppm, 39ppm, 40ppm, 41ppm, 42ppm, 43ppm, 44ppm, 45ppm, 46ppm, 47ppm, 48ppm, 49ppm, etc. If the bromine content is too high, the yellowing resistance of the prepared resin will be deteriorated, and if the bromine content
  • the content of the compound represented by the formula (1) and the bromine-containing compound is based on the total mass of the composition.
  • the xylylene diisocyanate includes 1,2-xylylene diisocyanate (ortho-xylylene diisocyanate, o-XDI), 1,3-xylylene diisocyanate (m-xylylene diisocyanate, m-XDI) or 1,4-xylylene diisocyanate (tere-xylylene diisocyanate, p-XDI) any one or a combination of at least two , preferably 1,3-xylylene diisocyanate and/or 1,4-xylylene diisocyanate, more preferably 1,3-xylylene diisocyanate.
  • 1,2-xylylene diisocyanate ortho-xylylene diisocyanate, o-XDI
  • 1,3-xylylene diisocyanate m-xylylene diisocyanate
  • p-XDI 1,4-xylylene diisocyanate
  • the compound represented by the formula (1) includes any one or a combination of at least two of the following compounds:
  • IBA is produced as a by-product in the production of XDI described later, but of course, it may be artificially added to obtain a desired content.
  • IBA includes ortho-IBA, meta-IBA, and para-IBA as structural isomers. These structural isomers of IBA may be contained in the XDI composition alone or in two or more kinds.
  • the content ratio of IBA can be measured by analyzing by gas chromatography.
  • the second purpose of this application is to provide a preparation method of the xylylene diisocyanate composition, the preparation method comprising:
  • Isocyanation step performing isocyanate reaction with xylylenediamine or xylylenediamine hydrochloride with phosgene in the presence of a reaction solvent to obtain a compound containing xylylenediisocyanate and formula (1) the reaction product;
  • step (2) solvent separation and purification process: the reaction product obtained in step (1) is carried out solvent removal, and after the removal, solvent purification is obtained to obtain a reused solvent, and then returns to the reaction system of step (1);
  • step (3) Separation step: the desolvation reaction product obtained in step (2) is separated and purified to obtain the xylylene diisocyanate composition.
  • the isocyanation process of step (1) can be called a phosgenation method, and the isocyanation reaction is a phosgenation reaction.
  • the phosgenation method include, for example, a method of directly reacting xylylenediamine with phosgene (also referred to as a cold-hot two-stage phosgenation method), and a method of reacting xylylenediamine with hydrochloric acid (hydrogen chloride).
  • a method in which the obtained hydrochloride and phosgene are reacted in a reaction solvent also referred to as a phosgenation method of an amine hydrochloride
  • a reaction solvent also referred to as a phosgenation method of an amine hydrochloride
  • the xylylenediamine hydrochloride is prepared through a salt-forming process, and the salt-forming process includes: in the presence of a reaction solvent, mixing xylylenediamine and hydrogen chloride to perform a salt-forming reaction to obtain the Xylylenediamine hydrochloride.
  • the salt-forming process includes: in the presence of a reaction solvent, mixing xylylenediamine and hydrogen chloride to perform a salt-forming reaction to obtain the Xylylenediamine hydrochloride.
  • What is actually obtained in the salt forming process is a slurry containing xylylenediamine hydrochloride, and the slurry is directly used in the isocyanateization process.
  • the xylylenediamine (XDA) comprises 1,2-xylylenediamine (o-xylylenediamine (o-XDA)), 1,3-xylylenediamine (m-xylylenediamine (m-xylylenediamine) -XDA)) or 1,4-xylylenediamine (p-xylylenediamine (p-XDA)) any one or a combination of at least two.
  • o-XDA 1,2-xylylenediamine
  • m-xylylenediamine m-xylylenediamine
  • p-XDA 1,4-xylylenediamine
  • the salt-forming process specifically includes: feeding hydrogen chloride gas into the reaction solvent, then adding a reaction solvent amine solution containing xylylenediamine, and then stirring and mixing the hydrogen chloride gas and the amine solution to perform a salt-forming reaction, The xylylenediamine hydrochloride is obtained.
  • the content of xylylenediamine in the amine solution is more than 1.0wt.%, such as 4wt.%, 5wt.%, 6wt.%, 7wt.%, 8wt.%, 9wt.%, 10wt.% , 11wt.%, 12wt.%, 13wt.%, 14wt.%, 15wt.%, 16wt.%, 17wt.%, 18wt.%, 19wt.%, 20wt.%, etc., preferably 3.0wt.% or more.
  • the content of xylylenediamine in the amine solution is below 50 wt.%, preferably below 30 wt.%.
  • the salt-forming temperature in the salt-forming process is above 0°C, such as 1°C, 5°C, 10°C, 20°C, 30°C, 40°C, 50°C, 60°C, 70°C, 80°C, 90°C °C, 100°C, 110°C, 120°C, 130°C, 140°C, 150°C, etc., preferably 10°C or higher.
  • the salt formation temperature in the salt formation step is 160°C or lower, preferably 150°C or lower, and more preferably 140°C or lower.
  • the salt forming process is carried out under normal pressure or pressurized conditions.
  • the pressure (gauge pressure) of the salt forming process is 0.01 MPaG or more, such as 0.1 MPaG, 0.2 MPaG, 0.5 MPaG, 0.6 MPaG, 0.7 MPaG, 0.8 MPaG, 0.9 MPaG, etc., more preferably 0.02 MPaG or more.
  • the pressure (gauge pressure) of the salt formation step is 1.0 MPaG or less, preferably 0.5 MPaG or less, and more preferably 0.4 MPaG or less.
  • step (1) specifically includes: introducing phosgene gas into xylylenediamine hydrochloride to carry out isocyanate reaction to obtain a reaction product containing xylylenediisocyanate and a compound represented by formula (1) .
  • the target content of the compound of formula (1) can be obtained by optimizing the following parameters.
  • the content ratio of IBA in XDI composition can also be adjusted by adding IBA to XDI composition.
  • the molar amount of the phosgene is more than 4 times the molar amount of the xylylenediamine hydrochloride, such as 5 times, 6 times, 7 times, 8 times, 9 times, 10 times, 12 times, 14 times, and 14 times. times, 16 times, 18 times, 20 times, 22 times, 24 times, 26 times, 28 times, 30 times, 32 times, 34 times, 36 times, 38 times, 40 times, 42 times, 44 times, 46 times, 48 times or the like, preferably 5 times or more, and more preferably 6 times or more.
  • the molar amount of the phosgene is 50 times or less of the molar amount of the xylylenediamine hydrochloride, preferably 40 times or less, and more preferably 30 times or less.
  • the reaction temperature in the isocyanation step is 80°C or higher, such as 90°C, 100°C, 110°C, 120°C, 130°C, 140°C, 150°C, etc., preferably 100°C or higher.
  • the reaction temperature in the isocyanate-forming step is 180°C or lower, preferably 170°C or lower, and more preferably 160°C or lower.
  • the time of the isocyanate reaction is more than 2h, such as 3h, 4h, 6h, 8h, 10h, 12h, 14h, 16h, 18h, 20h, 22h, 24h, etc., preferably more than 4h.
  • the time of the isocyanate reaction is less than 25h, preferably less than 20h.
  • the isocyanate reaction is carried out under normal pressure or pressurized conditions.
  • the pressure (gauge pressure) of the isocyanate reaction is above 0 MPaG, such as 0.0004 MPaG, 0.0008 MPaG, 0.001 MPaG, 0.002 MPaG, 0.006 MPaG, 0.01 MPaG, 0.02 MPaG, 0.03 MPaG, 0.05 MPaG, 0.1 MPaG, 0.2 MPaG, 0.3MPaG, 0.4MPaG, 0.5MPaG, 0.6MPaG, etc., preferably 0.0005MPaG or more, more preferably 0.001MPaG or more, still more preferably 0.003MPaG or more, particularly preferably 0.01MPaG or more, particularly preferably 0.02MPaG or more, most Preferably, it is 0.03 MPaG or more.
  • the pressure (gauge pressure) of the isocyanate reaction is 0.6 MPaG or less, preferably 0.4 MPaG or less, and more preferably 0.2 MPaG or less.
  • the isocyanation process is a batch process or a continuous process, preferably a continuous process.
  • the continuous process is that the slurry (XDA hydrochloride) generated in the stirring tank is continuously transported from the stirring tank to a reaction tank different from the stirring tank, and the XDA hydrochloride and phosgene are reacted in the reaction tank, and, The reaction liquid (reaction substance) was continuously taken out from the reaction tank.
  • the present application does not specifically limit the number of reactors for the continuous process, for example, there may be two, three, four, five or more.
  • a degassing step, a solvent separation, and a purification step may be performed on the reaction product of the isocyanateization step, and a known degassing tower may be used to remove the remaining phosgene, hydrogen chloride and other gases generated as by-products from the reaction product. removed in.
  • the solvent separation and purification step the reaction solvent is distilled off from the reaction liquid by a known distillation column. After the solvent is purified, most of it is returned to the salt-forming and isocyanate-forming processes.
  • examples of the reaction solvent include aromatic hydrocarbons such as benzene, toluene, and xylene; aliphatic hydrocarbons such as octane and decane; Alicyclic hydrocarbons such as hexane, halogenated aromatic hydrocarbons such as chlorotoluene, chlorobenzene, dichlorobenzene, dibromobenzene, and trichlorobenzene, such as nitrobenzene, N,N-dimethylformamide, Nitrogen-containing compounds such as N,N-dimethylacetamide, N,N'-dimethylimidazolidinone, and ethers such as dibutyl ether, ethylene glycol dimethyl ether, and ethylene glycol diethyl ether ketones such as heptanone, diisobutyl ketone, methyl isobutyl ketone, methyl ethyl ketone, etc., fatty acid esters such as e
  • reaction solvent such as aromatic carboxylic acid esters such as methyl salicylate, dimethyl phthalate, dibutyl phthalate, and methyl benzoate.
  • the reaction solvent may be used alone or in combination of two or more.
  • halogenated aromatic hydrocarbons are preferable, and chlorobenzene and dichlorobenzene are more preferable.
  • the reaction solvent includes fresh solvent and/or recycled solvent; "fresh solvent” refers to the reaction solvent that has undergone the isocyanate process for the first time or the solvent added as the solvent is consumed in the system.
  • the moisture content of the reaction solvent is 1-500ppm, such as 2ppm, 5ppm, 10ppm, 20ppm, 30ppm, 40ppm, 50ppm, 60ppm, 70ppm, 80ppm, 90ppm, 100ppm, 110ppm, 120ppm, 130ppm, 140ppm, 150ppm, 160ppm, 170ppm, 180ppm, 190ppm, 200ppm, 210ppm, 220ppm, 230ppm, 240ppm, 250ppm, 260ppm, 270ppm, 280ppm, 290ppm, 300ppm, 310ppm, 320ppm, 330ppm, 340ppm, 350ppm, 360ppm, 370ppm, 380ppm, 390ppm, 400ppm 410ppm, 420ppm, 430ppm, 440ppm, 450ppm, 460ppm, 470ppm, 480ppm, 490ppm, etc.
  • the moisture content of the recycled solvent is 1-500ppm, such as 2ppm, 5ppm, 10ppm, 20ppm, 30ppm, 40ppm, 50ppm, 60ppm, 70ppm, 80ppm, 90ppm, 100ppm, 110ppm, 120ppm, 130ppm, 140ppm, 150ppm ,160ppm,170ppm,180ppm,190ppm,200ppm,210ppm,220ppm,230ppm,240ppm,250ppm,260ppm,270ppm,280ppm,290ppm,300ppm,310ppm,320ppm,330ppm,340ppm,350ppm,360ppm,370ppm,380ppm,390ppm,400ppm , 410ppm, 420ppm, 430ppm, 440ppm, 450ppm, 460ppm, 470ppm, 480ppm, 490ppm, etc.
  • the moisture content of the recycled solvent is controlled at 1-500 ppm, which helps to obtain a composition with an IBA content in the range of 0.2-500 ppm. If the moisture content is too high, it will lead to the isocyanate process and separation. The number of side reactions in the process increases, which in turn leads to an excessively high IBA content. If the moisture content is too low, it is not conducive to the generation of IBA.
  • the moisture of the fresh solvent is not qualified, it needs to be purified by the solvent after entering the system, and participate in the reaction after the moisture is qualified.
  • the moisture content of the reaction solvent and/or the reused solvent in the present application can be controlled by a solvent purification tower.
  • the solvent purification column comprises a tray distillation column or a packed distillation column.
  • the number of theoretical plates of the solvent purification column is 2 or more, such as 4, 6, 8, 10, 14, 18, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, etc., preferably 5 or more.
  • the theoretical plate number of the solvent purification column is 60 or less, preferably 40 or less.
  • the top pressure of the solvent purification tower is 0.1kPa or more, such as 0.2kPa, 1kPa, 5kPa, 10kPa, 30kPa, 50kPa, 70kPa, 100kPa, etc., preferably 1kPa or more.
  • the top pressure of the solvent purification tower is below 300 kPa, preferably below 100 kPa.
  • the column top reflux ratio of the solvent purification column is above 0.01, such as 0.05, 0.1, 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 14, 18, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 70, 80, 90, etc., preferably 5 or more.
  • the column top reflux ratio of the solvent purification tower is 100 or less, preferably 90 or less.
  • the moisture content of the recycled solvent is 1-500ppm, such as 10ppm, 20ppm, 40ppm, 50ppm, 80ppm, 100ppm, 120ppm, 140ppm, 160ppm, 180ppm, 200ppm, 220ppm, 240ppm, 260ppm, 280ppm, 300ppm, 320ppm, 340ppm, 360ppm, 380ppm, 400ppm, 420ppm, 440ppm, 460ppm, 480ppm, etc.
  • 1-500ppm such as 10ppm, 20ppm, 40ppm, 50ppm, 80ppm, 100ppm, 120ppm, 140ppm, 160ppm, 180ppm, 200ppm, 220ppm, 240ppm, 260ppm, 280ppm, 300ppm, 320ppm, 340ppm, 360ppm, 380ppm, 400ppm, 420ppm, 440ppm, 460ppm, 480ppm, etc.
  • a detar step can be performed on the reaction product of the desolvation.
  • the tar component is removed from the reaction liquid using a known detarring device such as a short-path evaporator. It should be noted that the reaction substance from which the tar component was removed by the detar step was referred to as an intermediate substance.
  • the intermediate substance can be distilled and purified, and the purification method is not particularly limited, and it can be implemented by industrial separation techniques such as distillation, crystallization, and the like.
  • the distillation is carried out in a distillation column.
  • the distillation column comprises a plate distillation column or a packed distillation column.
  • the ratio of IBA can be adjusted to the above-mentioned range by controlling the reaction conditions and the separation conditions.
  • the content ratio of IBA in XDI composition can also be adjusted by adding IBA to XDI composition.
  • the theoretical plate number of the distillation column is 2 or more, such as 4, 6, 8, 10, 14, 18, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42 , 44, 46, 48, 50, 52, 54, 56, 58, etc., preferably 5 or more.
  • the theoretical plate number of the distillation column is 60 or less, preferably 40 or less.
  • the top pressure of the distillation column is 0.1kPa or more, such as 0.2kPa, 0.4kPa, 0.6kPa, 0.8kPa, 1kPa, 1.5kPa, 2kPa, 2.5kPa, 3kPa, 3.5kPa, etc., preferably 0.15kPa or more .
  • the column top pressure of the distillation column is below 4 kPa, preferably below 2.5 kPa.
  • the column top reflux ratio of the distillation column is above 0.01, such as 0.05, 0.1, 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 14, 18, 22, 24 , 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, etc., preferably 0.1 or more.
  • the column top reflux ratio of the distillation column is 60 or less, preferably 40 or less.
  • the above-mentioned manufacturing method of the XDI composition can be implemented, for example, by using the equipment flow chart shown in FIG. 1 .
  • Figure 1 mainly includes a salt-forming still 1, in the isocyanate unit described later, implements a 3-step continuous isocyanate process (sequentially in the first photochemical kettle 2, the second photochemical kettle 3 and the photochemical three
  • the production amount of XDI and IBA was adjusted by appropriately adjusting the water content of the solvent, the supply ratio of phosgene, the reaction temperature, the reaction pressure, and the average residence time, etc.
  • a dephosgenation tower 5 and a solvent removal tower 6 are arranged behind the photochemical kettle, and the reaction solution is subjected to the removal of phosgene and solvent, and the solvent is controlled by a solvent purification tower 9 to control the moisture content and then reused.
  • a detarizer 7 is installed after the desolvation tower 6, and the desolventized reaction product is subjected to a detar process, and then enters the rectification tower 8 for rectification to obtain the final product.
  • the content ratio of IBA in the XDI composition is adjusted by appropriately adjusting the above-mentioned column top reflux ratio and the like in the rectification separation described later.
  • the reaction solvent is charged into the salt-forming kettle.
  • the hydrogen chloride gas was continuously supplied to the bottom of the salt-forming kettle through the hydrogen chloride supply line at the above-mentioned supply ratio.
  • the above-mentioned amine solution in which XDA was dissolved in the reaction solvent was continuously supplied to the top of the salt-forming kettle through the amine supply line.
  • the hydrogen chloride gas and the amine solution are stirred and mixed by a stirring blade while maintaining the inside of the salt forming pot at the above-mentioned salt forming temperature and salt forming pressure (salting step).
  • salting step a slurry containing XDA hydrochloride was produced.
  • the slurry containing XDA hydrochloride was continuously conveyed to the top of the photochemical kettle through the hydrochloride conveying line. That is, while continuously supplying the hydrogen chloride gas and the amine solution to the salt-forming kettle, the slurry containing XDA hydrochloride was continuously taken out from the salt-forming kettle and transported to the photochemical kettle.
  • phosgene was continuously supplied to the top of each of the photochemical reactor 1, the photochemical reactor 2, and the photochemical reactor 3 in a manner of inserting a tube. Then, the slurry and phosgene were stirred and mixed while maintaining the inside of the photochemical tank at the above-mentioned reaction temperature and reaction pressure (the first step of isocyanateization). Thereby, XDA hydrochloride reacts with phosgene to produce XDI as a main component, and IBA and a bromine-containing compound or an intermediate thereof are produced as by-products.
  • a reaction solution containing XDI, IBA, a bromine-containing compound, a reaction solvent, and the like is continuously conveyed to the top of the second photochemical tank through the reaction material conveying line. That is, while continuously supplying the slurry and phosgene to the first photochemical tank, the primary photochemical liquid is continuously taken out from the first photochemical tank and transported to the second photochemical tank.
  • the third photochemical reactor is also carrying out the phosgenation reaction while inputting the secondary reaction material (the third step of the isocyanate process).
  • reaction solution containing XDI, IBA, and a bromine-containing compound or an intermediate thereof, a reaction solvent, and the like is produced.
  • the sum total of the residence time in the three-step isocyanate formation process is the said range.
  • the above-mentioned photochemical reaction liquid is continuously conveyed to the middle part of the dephosgenation tower through the reaction material conveying line.
  • the photochemical liquid is separated into a gas containing phosgene, hydrogen chloride, etc., a liquid degassed substance containing XDI, IBA, a bromine-containing compound or its intermediate, a reaction solvent, and the like by a dephosgenation tower (degassing step).
  • the degassed substance is continuously conveyed to the column of the desolvation tower through the degassed substance delivery line. Then, the reaction solvent is distilled off from the degassed substance using a desolvation tower (solvent separation and purification step) to obtain a desolventized substance containing XDI, IBA, and a bromine-containing compound or an intermediate thereof.
  • the reaction solvent is returned to the salt-forming and photochemical reaction system through the solvent purification tower, and the water content of the recycled solvent is controlled by controlling the operating conditions of the tower (top pressure, top reflux ratio, residence time).
  • the desolventizing substance is continuously conveyed to the upper part of the detarizer through the desolventizing substance conveying line.
  • the tar component is removed from the desolventized substance by a detarizer to obtain an intermediate substance including XDI, IBA and a bromine-containing compound (detar step).
  • the intermediate substance is continuously conveyed to the column of the rectifying column through the intermediate substance conveying line. Then, under the conditions of the above-mentioned rectification process (the column bottom temperature, the column top temperature, the column top pressure, the column bottom reflux ratio, the column top reflux ratio and the residence time), the low boilers are distilled from the intermediate quality Go, take the XDI composition down the middle of the tower.
  • the XDI composition containing XDI, IBA, and a bromine-containing compound can be manufactured continuously.
  • the third object of the present application is to provide a modified composition of xylylene diisocyanate composition
  • the modified composition is that the xylylene diisocyanate composition described in one of the objects is modified
  • the modified xylylene diisocyanate in the modified composition contains any one or at least two combinations of the following (a)-(e) groups: (a) ) isocyanurate group, (b) uretdione group, (c) biuret group, (d) urethane group, (e) urea group, (f) iminooxadiazinedione group , (g) allophanate group, (h) uretonimine group or (i) carbodiimide group.
  • the XDI modified composition serves as the polyisocyanate component and the active hydrogen group-containing component as the raw material of the polyurethane resin. be used appropriately.
  • the modified XDI containing the functional group (isocyanurate group) of the above (a) is a trimer of XDI. It is obtained by reacting the XDI composition and isocyanurating the XDI in it.
  • the modified XDI containing the functional group (allophanate group) of the above (b) can be further reacted by reacting the XDI composition with an alcohol in the presence of a known allophanate catalyst and get.
  • Modified XDI containing the functional group (biuret group) of the above (c) can be obtained by mixing the XDI composition with, for example, water, tertiary alcohol (for example, tert-butanol, etc.), secondary amine (for example, dimethylamine, dimethicone, etc.) ethylamine etc.) and the like are obtained by further reacting in the presence of a known biuretization catalyst.
  • tertiary alcohol for example, tert-butanol, etc.
  • secondary amine for example, dimethylamine, dimethicone, etc.
  • ethylamine etc. ethylamine etc.
  • the modified XDI containing the functional group (urethane group) of the above (d) can be obtained by reacting the XDI composition with a polyol component (for example, trimethylolpropane, etc.).
  • a polyol component for example, trimethylolpropane, etc.
  • the modified XDI containing the functional group (urea group) of the above (e) can be obtained by reacting the XDI composition with water, a polyamine component (described later), or the like.
  • Modified XDI containing the functional group (iminooxadiazinedione group) of the above (f) can be combined by combining XDI in the presence of a known iminooxadiazinedione catalyst It can be obtained by reacting XDI with iminooxadiazine diketonization (eg trimerization).
  • the modified XDI containing the functional group (uretdione group) of the above (g) can be prepared by heating the XDI composition at about 90°C to 200°C, or in the presence of a known uretdione catalyst. It is obtained by reacting and subjecting XDI to uretionization (eg, dimerization).
  • the modified XDI containing the functional group (uretonimide group) of the above (h) can be prepared by reacting the XDI composition in the presence of a known carbodiimide group to form a carbodiimide group, and adding the carbodiimide group to the modified XDI. Obtained by addition of imino to XDI.
  • the modified XDI containing the functional group (carbodiimide group) of the above (i) can be obtained by reacting the XDI composition in the presence of a known carbodiimide catalyst.
  • the XDI modified composition should just contain at least 1 type of the functional group of said (a)-(i), and may contain 2 or more types.
  • Such an XDI-modified composition can be produced by appropriately combining the above-mentioned reactions.
  • the XDI modified composition may be used alone or in combination of two or more.
  • the fourth purpose of this application is to provide a two-component polyurethane raw material, the two-component polyurethane raw material includes A agent and B agent;
  • the A agent includes the xylylene diisocyanate composition described in one of the purposes and/or the modified composition described in the third purpose;
  • the agent B includes substances containing active hydrogen groups.
  • Two-component resin raw materials containing the isocyanate component of the XDI composition and/or the XDI-modified composition as agent A and the component containing active hydrogen groups as agent B can be suitably applied to coatings such as paints and adhesives, for example. Coating raw materials, two-component curing sealing materials, potting agents, etc.
  • Such a two-component type resin raw material is a raw material obtained by mixing the separately prepared agent A (curing agent) and agent B (main agent) immediately before use.
  • the coating raw material is a two-component curable resin raw material used to form a coating, including A (curing agent) and B (main agent). Coatings may contain paints, adhesives, and the like.
  • a coating material for example, coatings for plastics, coatings for automobile exterior decoration, coatings for automobile interior decoration, coatings for electrical/electronic materials, coatings for optical materials (lenses, etc.), coatings for building materials, and glass coatings are mentioned.
  • Agent A contains, for example, an XDI modified composition (hereinafter, referred to as XDI modified composition for coating) as a polyisocyanate component, preferably a functional group (isocyanuric acid) containing the above (a). ester group) XDI modified composition and/or XDI modified composition containing the functional group (urethane group) of the above (d).
  • XDI modified composition for coating a polyisocyanate component, preferably a functional group (isocyanuric acid) containing the above (a).
  • ester group XDI modified composition and/or XDI modified composition containing the functional group (urethane group) of the above (d).
  • a agent may contain other aromatic isocyanate, aliphatic isocyanate, and araliphatic isocyanate as needed.
  • the content ratio of IBA in the XDI composition used for modification in the XDI modification composition is 0.2 ppm or more and 500 ppm or less.
  • the agent B contains, for example, the above-mentioned high-molecular-weight polyol as a component containing an active hydrogen group.
  • the high-molecular-weight polyol (hereinafter, referred to as a high-molecular-weight polyol for coating) as a coating raw material includes, for example, the above-mentioned acrylic polyol, the above-mentioned polyester polyol, and the above-mentioned fluoropolyol.
  • a urethane catalyst an anti-hydrolysis agent, an antifoaming agent, a surfactant, a slip imparting agent, a surface conditioner, an antioxidant, a weather-resistant stabilizer, a Pigments, dyes, fillers, resin powders, etc.
  • agent A and agent B are mixed, and the mixed liquid is applied to an object to be coated by a known method and cured.
  • Such a coating material is excellent in discoloration resistance.
  • the color difference ( ⁇ b) of the coating in the wet heat endurance test (2000 hours) is, for example, 0.5 or more, for example, 2.4 or less, preferably 2.2 or less, more preferably 2.0 or less, and still more preferably 1.9 or less.
  • the fifth object of the present application is to provide a polyurethane resin obtained by reacting the xylylene diisocyanate composition described in the first object with a substance containing an active hydrogen group, or by the third object
  • the modified composition is formed by reacting with a substance containing an active hydrogen group.
  • Examples of the active hydrogen group-containing substance include polyol components (components mainly containing polyols having two or more hydroxyl groups), polythiol components (mainly containing polyols having two or more mercapto groups (thiol groups) thiol component), polyamine component (mainly a compound containing a polyamine having two or more amino groups), and the like.
  • a polyol component a low molecular weight polyol and a high molecular weight polyol are mentioned, for example.
  • the low molecular weight polyol is a compound having two or more hydroxyl groups and having a number average molecular weight of 60 or more and less than 400.
  • low molecular weight polyols examples include ethylene glycol, propylene glycol, 1,3-propanediol, 1,4-butanediol, 1,3-butanediol, 1,2-butanediol, 1,5- Pentylene glycol, 1,6-hexanediol, neopentyl glycol, alkane(7-22) glycol, diethylene glycol, triethylene glycol, dipropylene glycol, 3-methyl-1,5-pentanediol alcohol, alkane-1,2-diol (C (carbon number, the same applies hereinafter.) 17-20), isosorbide, 1,3- or 1,4-cyclohexanedimethanol, and mixtures thereof, 1,4-cyclohexanediol, hydrogenated bisphenol A, 1,4-dihydroxy-2-butene, 2,6-dimethyl-1-octene-3,8-diol, bisphenol A, etc.
  • Dihydric alcohols such as glycerol, trihydric alcohols such as trimethylolpropane, such as tetramethylolmethane (pentaerythritol), tetrahydric alcohols such as diglycerol, pentahydric alcohols such as xylitol, such as sorbitol, mannose Alcohol, allicitol, iditol, dulcitol, altrolitol, inositol, dipentaerythritol and other hexahydric alcohols, for example, heptahydric alcohols such as avocado, and octahydric alcohols such as sucrose.
  • trihydric alcohols such as trimethylolpropane, such as tetramethylolmethane (pentaerythritol), tetrahydric alcohols such as diglycerol, pentahydric alcohols such as xylitol, such as sorbitol, man
  • polyalkylene oxide (containing two or more kinds of alkylene oxides) having a number average molecular weight of 60 or more and less than 400, obtained by adding alkylene oxides such as ethylene oxide and propylene oxide using the above-mentioned alcohol as an initiator of random and/or block copolymers.) are also included in low molecular weight polyols.
  • the high molecular weight polyol is a compound having two or more hydroxyl groups and a number average molecular weight of 400 or more, for example, 10,000 or less, or preferably 5,000 or less.
  • high molecular weight polyols include polyether polyols, polyester polyols, polycarbonate polyols, polyurethane polyols, epoxy polyols, vegetable oil polyols, polyolefin polyols, acrylic polyols, polyols Siloxane polyols, fluoropolyols, and vinyl monomer-modified polyols.
  • polyether polyol polyoxy (C2-C3) alkylene polyol, polytetramethylene ether glycol, polytrimethylene ether glycol, etc. are mentioned, for example.
  • polyoxy(C2-C3)alkylene polyols include addition polymers of C2-3 alkylene oxides such as ethylene oxide and propylene oxide using the above-mentioned low molecular weight polyols as initiators. (A random and/or block copolymer containing two or more kinds of alkylene oxides.).
  • polyoxy (C2-3) alkylene group polyethylene glycol, a polypropylene glycol, a polyethylene polypropylene copolymer, etc. are mentioned specifically,.
  • polytetramethylene ether glycol for example, a ring-opening polymer obtained by cationic polymerization of tetrahydrofuran (polytetramethylene ether glycol), a polymer unit of tetrahydrofuran and the above-mentioned diol obtained by copolymerizing The obtained amorphous polytetramethylene ether glycol and the like.
  • plant-derived polytetramethylene ether glycols using tetrahydrofuran produced from plant-derived raw materials such as furfural as a starting material can also be mentioned.
  • polytrimethylene ether glycol for example, a polyol produced by polycondensation of plant-derived 1,3-propanediol is mentioned.
  • polyester polyol As a polyester polyol, the polycondensate obtained by making the above-mentioned low molecular weight polyol (preferably a dihydric alcohol) and a polybasic acid (preferably a dibasic acid) react under known conditions, for example is mentioned.
  • polybasic acids examples include oxalic acid, malonic acid, succinic acid, methylsuccinic acid, glutaric acid, adipic acid, 1,1-dimethyl-1,3-dicarboxypropane, and 3-methyl.
  • -Saturated aliphatic dicarboxylic acids such as 3-ethylglutaric acid, azelaic acid, and sebacic acid
  • unsaturated aliphatic dicarboxylic acids such as maleic acid, fumaric acid, and itaconic acid
  • aromatic dicarboxylic acids such as phthalic acid, isophthalic acid, terephthalic acid, toluene dicarboxylic acid, and naphthalene dicarboxylic acid
  • alicyclic dicarboxylic acids such as hexahydrophthalic acid, such as dimer acid , hydrogenated dimer acid, other carboxylic acids such as HET acid, and acid anhydrides derived from these carboxylic acids, such as oxalic anhydride, succinic anhydride, maleic anhydride, phthalic anhydride, 2-alkyl (C12-C18) succinic anhydride Acid anhydride, tetrahydrophthal
  • polyester polyol the above-mentioned low-molecular-weight polyol and hydroxyl group-containing vegetable oil fatty acid (for example, ricinoleic acid-containing castor oil fatty acid, 12-hydroxystearic acid-containing Vegetable oil-based polyester polyols, etc., obtained by condensation reaction of hydroxycarboxylic acids such as hydrogenated castor oil fatty acids, etc.
  • hydroxycarboxylic acids such as hydrogenated castor oil fatty acids, etc.
  • polyester polyols include ring-opening polymerization of lactones such as ⁇ -caprolactone and ⁇ -valerolactone using the above-mentioned low-molecular-weight polyols (preferably diols) as initiators.
  • lactones such as ⁇ -caprolactone and ⁇ -valerolactone
  • low-molecular-weight polyols preferably diols
  • the obtained polycaprolactone polyol, polyvalerolactone polyol, and lactone-based polyester polyol obtained by copolymerizing these with the above-mentioned diol, and the like.
  • polycarbonate polyol for example, a ring-opening polymer of ethylene carbonate using the above-mentioned low-molecular-weight polyol (preferably a diol) as an initiator, for example, the above-mentioned diol and a ring-opening polymer can be mentioned.
  • Amorphous polycarbonate polyol etc. obtained by copolymerization.
  • polyurethane polyols include polyester polyols, polyether polyols, and/or polycarbonate polyols obtained in the above-described manner by making the equivalent ratio of hydroxyl groups and isocyanate groups (OH/NCO) more than 1.
  • epoxy polyols examples include epoxy polyols obtained by reacting the above-mentioned low molecular weight polyols with polyfunctional halohydrin such as epichlorohydrin and ⁇ -methyl epichlorohydrin.
  • a vegetable oil polyol the vegetable oil containing a hydroxyl group, such as castor oil and coconut oil, etc. are mentioned, for example.
  • castor oil polyol, or ester-modified castor oil polyol obtained by the reaction of castor oil polyol and polypropylene polyol, etc. are mentioned.
  • polystyrene resin As a polyolefin polyol, a polybutadiene polyol, a partially saponified ethylene-vinyl acetate copolymer, etc. are mentioned, for example.
  • acrylic polyol examples include copolymers obtained by copolymerizing a hydroxyl group-containing acrylate and a copolymerizable vinyl monomer copolymerizable with a hydroxyl group-containing acrylate.
  • hydroxyl-containing acrylates examples include 2-hydroxyethyl (meth)acrylate, hydroxypropyl (meth)acrylate, hydroxybutyl (meth)acrylate, and 2,2-di (meth)acrylate. Hydroxymethylbutyl ester, polyhydroxyalkyl maleate, polyhydroxyalkyl fumarate, etc. Preferably, 2-hydroxyethyl (meth)acrylate etc. are mentioned.
  • copolymerizable vinyl monomers examples include methyl (meth)acrylate, ethyl (meth)acrylate, propyl (meth)acrylate, isopropyl (meth)acrylate, and (meth)acrylic acid.
  • Alkyl (meth)acrylates such as hexyl acrylate, isononyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, cyclohexyl acrylate, isobornyl (meth)acrylate ( carbon number 1-12), such as styrene, vinyltoluene, ⁇ -methylstyrene, and the like.
  • Aromatic vinyl monomers vinyl cyanide such as (meth)acrylonitrile, vinyl monomers containing carboxyl groups such as (meth)acrylic acid, fumaric acid, maleic acid, and itaconic acid, or alkyl groups thereof
  • Esters such as ethylene glycol di(meth)acrylate, butanediol di(meth)acrylate, hexanediol di(meth)acrylate, oligoethylene glycol di(meth)acrylate, triethylene glycol Alkane polyol poly(meth)acrylates such as methylolpropane di(meth)acrylate, trimethylolpropane tri(meth)acrylate, such as 3-(2-isocyanate-2-propyl)- An isocyanate group-containing vinyl monomer, etc., such as ⁇ -methylstyrene.
  • an acrylic polyol can be obtained by copolymerizing these hydroxyl-containing acrylates and a copolymerizable vinyl monomer in the presence of a suitable solvent and a polymerization initiator.
  • the acrylic polyol includes, for example, a polysiloxane polyol and a fluoropolyol.
  • polysiloxane polyol for example, a vinyl group-containing polysiloxane compound such as ⁇ -methacryloxypropyltrimethoxysilane is blended in the copolymerization of the above-mentioned acrylic polyol.
  • Acrylic polyol obtained from vinyl monomers.
  • the fluoropolyol includes, for example, an acrylic polyol obtained by blending a fluorine compound containing a vinyl group such as tetrafluoroethylene and chlorotrifluoroethylene as a copolymerizable vinyl monomer in the copolymerization of the above-mentioned acrylic polyol. .
  • the vinyl monomer-modified polyol can be obtained by reacting the above-mentioned high-molecular-weight polyol with a vinyl monomer such as the above-mentioned alkyl (meth)acrylate.
  • polyol components may be used alone or in combination of two or more.
  • the equivalence ratio of the active hydrogen group to the isocyanate group when the equivalence ratio of the active hydrogen group to the isocyanate group is less than 1, an isocyanate group-terminated polymer having an isocyanate group at the molecular terminal is generated, and the active hydrogen group When the equivalence ratio to the isocyanate group is greater than 1, an active hydrogen group-terminated polymer having an active hydrogen group at the molecular terminal is generated.
  • Both the isocyanate group-terminated polymer and the active hydrogen group-terminated polymer are contained in the resin (urethane resin).
  • the isocyanate group-terminated polymer is a one-component curable resin.
  • the urethane resin As the application of the urethane resin, specifically, it can be suitably applied to ink, transfer foil, adhesive, adhesive, gel, elastomer, foam, adhesive, liquid-curable sealing material, RIM molded product , Micro-foamed polyurethane, various microcapsules, optical materials, water-based resins, thermosetting resins, active energy ray (eg, electron beam, ultraviolet, etc.) curable resins, artificial and synthetic leather, coagulation powder, robot components, moving components, Healthcare materials, carbon fiber reinforced plastic (CFRP) substrate resins, transparent rubber, transparent rigid resins, waterproof materials, films, sheets, tubes, panels, speakers, sensors, organic electroluminescent components, sunlight Power generation components, robot components, wearable components, sporting goods, leisure products, medical products, nursing products, residential components, audio components, lighting components, chandeliers, outdoor lamps, packaging, anti-vibration / anti-vibration / shock absorption components, Soundproof components, daily necessities, miscellaneous goods, buffers, bedding, stress
  • the sixth object of the present application is to provide an elastomer material comprising the polyurethane resin described in the fifth object.
  • thermoplastic polyurethane elastomer TPU
  • thermosetting polyurethane elastomer TSU
  • rollable polyurethane elastomer etc.
  • the elastomer contains soft segments formed by the reaction of XDI with high molecular weight polyols and hard segments formed by the reaction of XDI with low molecular weight polyols and/or low molecular weight polyamines.
  • Such an elastomer can be produced, for example, by reacting a polyisocyanate component, a high molecular weight polyol (active hydrogen group-containing component) with a low molecular weight polyol and/or a low molecular weight polyamine (active hydrogen group containing component). That is, the polyisocyanate component, the high-molecular-weight polyol, the low-molecular-weight polyol, and/or the low-molecular-weight polyamine are elastomer raw materials.
  • polyester polyol for example, polycaprolactone polyol, adipic acid-based polyester polyol (polyester using adipic acid as a polybasic acid)
  • polyol the above-mentioned polyester polyol
  • polycarbonate polyol the above-mentioned polytetramethylene ether glycol
  • polytetramethylene ether glycol for example, polytetramethylene ether glycol
  • ethylene glycol 1, 4- butanediol, etc. are mentioned, for example, Preferably, 1, 4- butanediol is mentioned.
  • the above-mentioned low molecular weight polyamine is mentioned, for example.
  • the elastomer can be produced, for example, by a known method such as a one-shot method or a prepolymer method.
  • an elastomer for example, a bulk polymerization, a solution polymerization, etc. can be utilized.
  • urethanization catalysts such as amines, organometallic compounds (for example, organotin-based compounds, preferably dibutyltin dichloride, etc.) can be added. into elastomer raw materials.
  • a plasticizer, an anti-blocking agent, a heat-resistant stabilizer, a light-resistant stabilizer, an ultraviolet absorber, an anti-yellowing agent, an antioxidant, a mold release agent, and a pigment may be blended into the elastomer in an appropriate ratio. , dyes, lubricants, nucleating agents, fillers, anti-hydrolysis agents, etc.
  • Such an elastomer suppresses cloudiness and is excellent in discoloration resistance and is excellent in mechanical properties (elongation and strength).
  • the color difference ( ⁇ b) of the elastomer in the xenon lamp irradiation test (240 hours) is, for example, 1.0 or more, for example, less than 3.9, preferably 3.5 or less, and more preferably 3.0 or less.
  • the color difference of the elastomer in the xenon lamp irradiation test can be measured according to the method described in the examples described later.
  • the seventh object of the present application is to provide an optical material obtained by polymerizing the xylylene diisocyanate composition described in the first object and a polythiol compound, or by the third object
  • the modified composition is polymerized with a polythiol compound.
  • a polythiol compound refers to a compound containing at least two thiol groups.
  • the optical materials include plastic lens materials, automotive lampshade materials, transparent roof materials, and lens materials for smart phones or tablets.
  • the polythiol compound is selected from the group consisting of methanedithiol, 1,2-ethanedithiol, 1,1-propanedithiol, 1,2-propanedithiol, 1,3-propanedithiol Alcohol, 2,2-propanedithiol, 1,6-hexanedithiol, 1,2,3-propanetrithiol, 1,1-cyclohexanedithiol, 1,2-cyclohexanedithiol , 2,2-dimethylpropane-1,3-dithiol, 3,4-dimethoxybutane-1,2-dithiol, 2-methylcyclohexane-2,3-dithiol Thiol, 1,1-bis(mercaptomethyl)cyclohexane, bis(2-mercaptoethyl thiomalate), 2,3-dimercapto-1-propanol (2-mercaptoacetate) , 2,3-dimercapto-1
  • Aromatic polythiol compounds containing sulfur atoms other than mercapto groups 1,2-bis(mercaptoethylthio)benzene, 1,3-bis(mercaptoethylthio)benzene, 1,4-bis(mercaptoethylthio)benzene, 1,2,3-tris(mercaptomethylthio) benzene, 1,2,4-tris(mercaptomethylthio)benzene, 1,3,5-tris(mercaptomethylthio)benzene, 1,2,3-tris(mercaptoethylthio)benzene, 1 , 2,4-tris(mercaptoethylthio)benzene, 1,3,5-tris(mercaptoethylthio)benzene, etc., and their alkylates, etc.
  • Aromatic polythiol compounds containing sulfur atoms other than mercapto groups Aromatic polythiol compounds containing sulfur atoms other than mercapto groups ;
  • 2-mercaptoethanol 3-mercapto-1,2-propanediol, glycerol bis(thioglycolate), 1-hydroxy-4-mercaptocyclohexane, 2,4-dimercaptophenol, 2-mercaptohydroquinone, 4 -Mercaptophenol, 3,4-dimercapto-2-propanol, 1,3-dimercapto-2-propanol, 2,3-dimercapto-1-propanol, 1,2-dimercapto-1,3 - Butanediol, pentaerythritol tris(3-mercaptopropionate), pentaerythritol mono(3-mercaptopropionate), pentaerythritol bis(3-mercaptopropionate), pentaerythritol tris(mercaptoacetate), dipentaerythritol penta (3-mercaptopropionate), hydroxymethyl-tris(mercaptoethy
  • polythiol compound is not limited to the above-mentioned compounds.
  • each compound mentioned above may be used individually or in mixture of 2 or more types.
  • the preparation method of the optical material is carried out in the presence of a polymerization catalyst
  • the polymerization catalyst is preferably an organotin compound, such as dibutyltin dichloride, dimethyltin dichloride and other dioxanes can be mentioned.
  • organotin compound such as dibutyltin dichloride, dimethyltin dichloride and other dioxanes can be mentioned.
  • tin halides tin dialkyl dicarboxylates such as tin dimethyl diacetate, tin dibutyl dioctoate, and tin dibutyl dilaurate.
  • a chain extender in the preparation method of the optical material, a chain extender, a crosslinking agent, a light stabilizer, an ultraviolet absorber, an antioxidant, an oil-soluble dye, a filler, a mold release agent, etc. are optionally added.
  • Various auxiliaries are optionally added.
  • Optical materials formed from polyurethane-based resins are generally produced by injection polymerization. Specifically, the polythiol compound and the isocyanate compound are mixed, and suitable adjuvants are optionally added. If necessary, this mixed solution (polymerizable composition) is degassed by an appropriate method, and then poured into an injection mold for optical materials, and usually it is gradually heated from a low temperature to a high temperature to polymerize it. Then, the optical material is obtained by demolding.
  • the optical material can be stably produced from the XDI composition for optical materials or the XDI modified composition.
  • the content ratio of IBA in the XDI composition for optical materials or the XDI modified composition is equal to or less than the above upper limit, discoloration of the optical material can be suppressed.
  • the yellowing index YI of the optical material provided by this application can be controlled within 1.7, and the minimum can be as low as 1.5.
  • the xylylene diisocyanate composition provided by the present application contains 0.2-500 ppm of the compound of formula (1), and the resin prepared by the xylylene diisocyanate composition has excellent discoloration resistance and effectively inhibits resin yellowing and/or white turbidity.
  • Fig. 1 is the device flow chart of preparing xylylene diisocyanate composition in the specific embodiment of the application;
  • Inlet temperature 280°C
  • Carrier gas helium
  • Carrier gas flow 1mL/min (constant flow);
  • Injection volume 1 ⁇ L
  • Chromatographic column DB-5 (30m ⁇ 0.25mm ⁇ 0.25 ⁇ m); (2) Injection volume: 0.5 ⁇ L; (3) Split ratio: 1/30; (4) Injection port temperature: 260°C; (5) Column flow rate: 1.5 mL/min; (6) Program temperature: 100 °C for 1 min, 10 °C/min to increase to 280 °C, and hold for 20 min; (7) FID detector temperature: 280 °C; (8) Hydrogen flow rate : 40mL/min, air flow rate: 400mL/min.
  • the water content of the recycled solvent is measured by Karl Fischer moisture analyzer
  • the yellowness index of the lens was determined according to the national standard GB/T-2409-1980.
  • injection molding machine model: NEX-140, Taifu Machinery
  • the elastomers of each Example and each Comparative Example described later were set at a screw speed of 100rpm and a barrel temperature of 150-235°C.
  • injection molding was performed under the conditions of a mold temperature of 20° C., an injection time of 10 seconds, an injection speed of 60 mm/s, and a cooling time of 45 seconds.
  • the obtained sheet (thickness 2 mm) was cured for 7 days under the conditions of constant temperature and humidity of 23° C. and relative humidity of 55%, and the elastomer sheets of the respective Examples and Comparative Examples described later were obtained.
  • the b value (b1, initial stage) of a polyethylene terephthalate substrate (hereinafter, referred to as a sample) on which the coating layers of the respective Examples and Comparative Examples described later were formed was measured with a color-difference meter (3nh NR10QC). value).
  • a color-difference meter 3nh NR10QC
  • the sample was kept for 2000 hours under the conditions of 85° C. and 85% relative humidity using a thermo-hygrostat (high-speed rail instrument).
  • the b value (b2) of the sample after the lapse of 2000 hours was measured in the same manner as above.
  • the IBA represented by the above chemical formula (1) was synthesized according to the following synthetic route.
  • the preparation method of the XDI composition is as follows:
  • the XDI composition was produced using the flow shown in FIG. 1 . Specifically, 800 parts by mass of chlorobenzene was charged into the salt-forming kettle shown in FIG. 1 . Next, the salt formation temperature in the salt formation kettle was adjusted to 30°C, and the salt formation pressure (gauge pressure) in the salt formation kettle was adjusted to 0.05 MPaG. Then, from the hydrogen chloride supply line, 128 parts by mass of HCl gas was passed into the salt forming kettle, and, from the amine supply line, a mixed solution of 150 parts by mass of 1,3-XDA and 1050 parts by mass of chlorobenzene was charged into the salt forming kettle (amine solution). Thus, a slurry having a concentration of 1,3-XDA hydrochloride of 11.5 wt. % was prepared.
  • HCl gas was continuously blown into the salt-forming kettle from the hydrogen chloride supply line at a supply rate of 64 parts by mass/hr, and was continuously blown into the salt-forming kettle from the amine supply line at a supply rate of 1,000 parts by mass/hr.
  • An amine solution with a concentration of 7.5 wt. % of 1,3-XDA was charged at the same time, and the slurry containing 1,3-XDA hydrochloride was transported into the photochemical tank through the hydrochloride transport line.
  • Table 1 shows the reaction temperature and reaction pressure (gauge pressure) of the three reactors, the supply ratio of phosgene relative to 1 mol of 1,3-XDA hydrochloride, and the water content of the recycled solvent.
  • 1,3-XDA hydrochloride and phosgene are reacted, 1,3-XDI is produced
  • a part of unreacted phosgene is condensed in the photochemical still by the condenser.
  • the photochemical reaction liquid is continuously conveyed to the dephosgenation tower.
  • the reaction mass is then degassed in a dephosgenation column.
  • the degassed substance is discharged from the dephosgenation tower through the degassed substance conveying line, and is continuously conveyed to the desolvation tower.
  • the desolventized substance is discharged from the desolvation tower through the desolvation substance conveying line, and the removed solvent is purified by the solvent purification tower and reused.
  • the solvent purification column is filled with a packing equivalent to 15 theoretical plates, and its operating conditions are as follows:
  • the desolventized material is continuously conveyed to the detarizer. Then, the desolventized substance is detared in a detarizer to prepare an intermediate substance.
  • the content ratios of chlorobenzene (MCB), XDI, IBA and bromine in the intermediate substances are shown in Table 1
  • the intermediate substance was continuously fed into the rectification column at a feed rate of 100 parts by mass/hr.
  • the rectification column was packed with a packing equivalent to 20 theoretical plates. Then, in the rectification column, the light components are removed overhead, and the XDI composition product is withdrawn from the column.
  • Table 1 shows the production amount and the top reflux ratio of the rectification step.
  • Table 1 shows the content ratios of XDI, IBA, and bromine elements in the XDI composition.
  • Example 2 The XDI composition obtained in Example 1 was mixed with the XDI composition in Comparative Example 3 1:1 under nitrogen protection to obtain the XDI composition of Comparative Example 2
  • the liquid mixture was poured into a stainless steel pan whose temperature was adjusted to 150° C. in advance, and the reaction was performed at 150° C. for 1 hour, and then at 100° C. for 23 hours to produce an elastic body.
  • the elastomer was removed from the tray and cured for 7 days under constant temperature and humidity conditions of room temperature of 23° C. and relative humidity of 55%.
  • the polymerizable composition was defoamed at 600 Pa for 1 hour, and then filtered with a 3 ⁇ m PTFE filter. Then, it is poured into a casting mold formed from a glass mold and tape. The casting mold was put into an oven, the temperature was gradually increased from 10°C to 120°C, and polymerization was performed for 18 hours. After the completion of the polymerization, the mold was taken out from the oven, and the mold was released to manufacture an optical material.
  • Two-component polyurethane coating material including agent A and agent B
  • the XDI modifier composition contains carbamate groups that are the reaction product of XDI and trimethylolpropane.
  • Ethyl acetate was added to this XDI modifier composition so that the solid content would be 75 wt. % to produce a polyisocyanate component (Agent-1).
  • the NCO group content in the polyisocyanate component was 11.8 wt.%.
  • the isocyanurization reaction was completed.
  • the obtained reaction solution was passed through a thin film distillation apparatus (temperature 150° C., vacuum degree 50 Pa) to remove unreacted XDI (distillation yield 60 wt.%), thereby producing a modified XDI composition.
  • the XDI modifier composition contains isocyanurate groups that are terpolymers of XDI. Ethyl acetate was added to this XDI modifier composition so that the solid content would be 75 wt. % to produce a polyisocyanate component (agent A-2).
  • the obtained polyisocyanate component (A agent-1 or A agent-2) and the active hydrogen group-containing component (B agent) were mixed so that the equivalent ratio of the isocyanate group to the hydroxyl group (NCO/OH) became 1.0 to prepare a mixed liquid.
  • butyl acetate was added to the liquid mixture so that the NV value (mass of coating film components) would become 60%.
  • the mixed solution was applied to the surface of a polyethylene terephthalate (PET) base material, and heated and cured at 120° C. for 2 minutes.
  • the PET substrate to which the mixed solution was applied was cured at 60° C. for 2 days.
  • a coating layer having a thickness of about 15 ⁇ m was formed on the PET substrate.
  • the present application can effectively improve the discoloration resistance of the resin prepared from the composition by controlling the content of IBA in the XDI composition within 0.2-500 ppm, and the content of IBA is higher than 500 nm (Comparative Example 1), If it is lower than 0.2 ppm (Comparative Example 2) or does not contain IBA at all, the discoloration resistance performance is inferior to that of the present application, and the XDI composition provided by the present application has better application prospects in various resin materials.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Polyurethanes Or Polyureas (AREA)

Abstract

一种苯二亚甲基二异氰酸酯组合物及其制备方法和应用,所述苯二亚甲基二异氰酸酯组合物包含苯二亚甲基二异氰酸酯和0.2-500ppm的式(1)所示的化合物。提供的苯二亚甲基二异氰酸酯组合物制备得到的树脂具有优异的耐变色性能,能够有效抑制树脂黄变和/或白浊。

Description

[根据细则37.2由ISA制定的发明名称] 苯二亚甲基二异氰酸酯组合物及其制备方法和应用 技术领域
本申请涉及异氰酸酯技术领域,尤其涉及一种苯二亚甲基二异氰酸酯组合物及其制备方法和应用。
背景技术
苯二亚甲基二异氰酸酯属于脂肪族异氰酸酯,一直以来,可以作为聚氨酯树脂的原料在各种产业制品中使用,尤其是在光学材料中有广泛的应用。苯二亚甲基二异氰酸酯可通过使苯二甲胺与光气(碳酰氯)反应而得到,已知在进行该反应时,作为副产物而产生氯化物(例如,参见专利申请GB1194459A)。
然而对于聚氨酯树脂而言,根据目的及用途,要求具有优异的耐变色性。但是,对于由专利申请GB1194459A中记载的苯二亚甲基二异氰酸酯制造的聚氨酯树脂而言,有时不能确保充分的耐变色性。
因此,本领域亟待提供一种能够稳定地制造耐变色性优异的树脂的苯二亚甲基二异氰酸酯原料。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
针对现有技术的不足,本申请的目的之一在于提供一种苯二亚甲基二异氰酸酯组合物。所述苯二亚甲基二异氰酸酯组合物制备得到的聚氨酯树脂具有优异的耐变色性能。
为达此目的,本申请采用如下技术方案:
本申请提供一种苯二亚甲基二异氰酸酯组合物,所述苯二亚甲基二异氰酸酯组合物包含苯二亚甲基二异氰酸酯和0.2-500ppm(例如0.4ppm、0.6ppm、0.8ppm、1ppm、5ppm、6ppm、10ppm、12ppm、15ppm、20ppm、40ppm、50ppm、60ppm、100ppm、150ppm、200ppm、210ppm、250ppm、300ppm、320ppm、350ppm、400ppm、450ppm、500ppm等)的式(1)所示的化合物;
Figure PCTCN2022080069-appb-000001
本申请研究人员在研究中发现,苯二亚甲基二异氰酸酯组合物中含有0.2-500ppm的式(1)化合物时,制备得到的树脂具有优异的耐变色性能,有效抑制树脂黄变和/或白浊。含量低于0.2ppm或是高于500ppm,均会使耐变色性能变差。
本申请的苯二亚甲基二异氰酸酯组合物是含有97wt.%以上苯二亚甲基二异氰酸酯作为主成分的大致单一的化合物(即,苯二亚甲基二异氰酸酯),但由于含有化学式(1)所示的化合物作为副成分,因此定义为苯二亚甲基二异氰酸酯组合物。
本申请中,将苯二亚甲基二异氰酸酯组合物记为XDI组合物,将苯二亚甲基二异氰酸酯记为XDI,将化学式(1)所示的化合物(异氰酸酯甲酯基苯甲醛)记为IBA。
优选地,所述苯二亚甲基二异氰酸酯组合物中还包括含溴化合物;
以溴元素的质量计,所述含溴化合物的含量为0.5-50ppm,例如1ppm、2ppm、3ppm、4ppm、5ppm、6ppm、7ppm、8ppm、9ppm、10ppm、11ppm、12ppm、13ppm、14ppm、15ppm、16ppm、17ppm、18ppm、19ppm、20ppm、21ppm、22ppm、23ppm、24ppm、25ppm、26ppm、27ppm、28ppm、29ppm、30ppm、31ppm、32ppm、33ppm、34ppm、35ppm、36ppm、37ppm、38ppm、39ppm、40ppm、41ppm、42ppm、43ppm、44ppm、45ppm、46ppm、47ppm、48ppm、49ppm等。若溴含量过高,会导致制备得到的树脂耐黄变性能变差,若溴含量过低,会导致活性偏高,制备得到的树脂不均匀。
本申请中,式(1)所示的化合物以及含溴化合物的含量均基于组合物的总质量而言。
优选地,所述苯二亚甲基二异氰酸酯包括1,2-苯二亚甲基二异氰酸酯(邻苯二亚甲基二异氰酸酯、o-XDI)、1,3-苯二亚甲基二异氰酸酯(间苯二亚甲基二异氰酸酯、m-XDI)或1,4-苯二亚甲基二异氰酸酯(对苯二亚甲基二异氰酸酯、p-XDI)中的任意一种或至少两种组合,优选1,3-苯二亚甲基二异氰酸酯和/或1,4-苯二亚甲基二异氰酸酯,更优选1,3-苯亚甲基二异氰酸酯。
优选地,所述式(1)所示的化合物包括如下化合物中的任意一种或至少两种组合:
Figure PCTCN2022080069-appb-000002
本申请中,IBA是在后述的XDI的制造中作为副产物而产生的,当然,也可以人为添加以获得所要求的含量。对于IBA而言,作为结构异构体,包含邻IBA、间IBA、对IBA。这些IBA的结构异构体可以在XDI组合物中含有1种或2种以上。
本申请中,IBA的含有比例可通过气相色谱法进行分析来测定。
本申请的目的之二在于提供一种所述的苯二亚甲基二异氰酸酯组合物的制备方法,所述制备方法包括:
(1)异氰酸酯化工序:使苯二甲胺或者苯二甲胺盐酸盐在反应溶剂存在下与光气进行异氰酸酯化反应,得到含有苯二亚甲基二异氰酸酯和式(1)所示化合物的反应产物;
(2)溶剂分离和精制工序:对步骤(1)得到的反应产物进行溶剂脱除,脱除后溶剂精制得到回用溶剂,然后返回步骤(1)的反应系统中;
(3)分离工序:对步骤(2)得到的脱溶剂反应产物进行分离纯化,得到所述苯二亚甲基二异氰酸酯组合物。
步骤(1)的异氰酸酯化工序可称为光气化法,异氰酸酯化反应即为光气化反应。
作为光气化法,具体而言,可举出例如使苯二甲胺直接与光气反应的方法(也为冷热二阶段光气化法)、使苯二甲胺与盐酸(氯化氢)反应而得到的盐酸盐与光气在反应溶剂中反应的方法(也称为胺盐酸盐的光气化法)等,优选可举出胺盐酸盐的光气化法。
优选地,所述苯二甲胺盐酸盐通过成盐工序制备得到,所述成盐工序包括:在反应溶剂的存在下,使苯二甲胺与氯化氢混合,进行成盐反应,得到所述苯二甲胺盐酸盐。成盐工序实际得到的为含有苯二甲胺盐酸盐的浆料,该浆料直接应用于异氰酸酯化工序中。
优选地,所述苯二甲胺(XDA)包括1,2-苯二甲胺(邻苯二甲胺(o-XDA))、1,3-苯二甲胺(间苯二甲胺(m-XDA))或1,4-苯二甲胺(对苯二甲胺(p-XDA))中的任意一种或至少两种组合。
优选地,所述成盐工序具体包括:向反应溶剂中通入氯化氢气体,然后加入含有苯二甲胺的反应溶剂胺溶液,随后将所述氯化氢气体及胺溶液搅拌混合,进行成盐反应,得到所述苯二甲胺盐酸盐。
优选地,所述胺溶液中的苯二甲胺的含量为1.0wt.%以上,例如4wt.%、5wt.%、6wt.%、7wt.%、8wt.%、9wt.%、10wt.%、11wt.%、12wt.%、13wt.%、14wt.%、15wt.%、16wt.%、17wt.%、18wt.%、19wt.%、20wt.%等,优选为3.0wt.%以上。
优选地,所述胺溶液中的苯二甲胺的含量为50wt.%以下,优选为30wt.%以下。
优选地,所述成盐工序中的成盐温度为0℃以上,例如1℃、5℃、10℃、20℃、30℃、40℃、50℃、60℃、70℃、80℃、90℃、100℃、110℃、120℃、130℃、140℃、150℃等,优选为10℃以上。
优选地,所述成盐工序中的成盐温度为160℃以下,优选为150℃以下,更优选为140℃以下。
优选地,所述成盐工序中在常压或者加压条件下进行。
优选地,所述成盐工序的压力(表压)为0.01MPaG以上,例如0.1MPaG、0.2MPaG、0.5MPaG、0.6MPaG、0.7MPaG、0.8MPaG、0.9MPaG等,更优选为0.02MPaG以上。
优选地,所述成盐工序的压力(表压)为1.0MPaG以下,优选为0.5MPaG以下,更优选为0.4MPaG以下。
优选地,步骤(1)具体包括:向苯二甲胺盐酸盐中通入光气气体,进行异氰酸酯化反应,得到含有苯二亚甲基二异氰酸酯和式(1)所示化合物的反应产物。
当采用苯二甲胺盐酸盐与光气进行异氰酸酯化反应时,可以通过优选如下参数来获得目标含量的式(1)化合物。需要说明的是,也可通过将IBA添加至XDI组合物中,来调节XDI组合物中的IBA的含有比例。
优选地,所述光气的摩尔量为所述苯二甲胺盐酸盐摩尔量的4倍以上,例如5倍、6倍、7倍、8倍、9倍、10倍、12倍、14倍、16倍、18倍、20倍、22倍、24倍、26倍、28倍、30倍、32倍、34倍、36倍、38倍、40倍、42倍、44倍、46倍、48倍等,优选5倍以上,更优选6倍以上。
优选地,所述光气的摩尔量为所述苯二甲胺盐酸盐摩尔量的50倍以下,优选40倍以下,更优选30倍以下。
优选地,所述异氰酸酯化工序中的反应温度为80℃以上,例如90℃、100℃、110℃、120℃、 130℃、140℃、150℃等,优选为100℃以上。
优选地,所述成异氰酸酯化工序中的反应温度为180℃以下,优选为170℃以下,更优选为160℃以下。
优选地,所述异氰酸酯化反应的时间为2h以上,例如3h、4h、6h、8h、10h、12h、14h、16h、18h、20h、22h、24h等,优选为4h以上。
优选地,所述异氰酸酯化反应的时间为25h以下,优选为20h以下。
优选地,所述异氰酸酯化反应在常压或者加压条件下进行。
优选地,所述异氰酸酯化反应的压力(表压)为0MPaG以上,例如0.0004MPaG、0.0008MPaG、0.001MPaG、0.002MPaG、0.006MPaG、0.01MPaG、0.02MPaG、0.03MPaG、0.05MPaG、0.1MPaG、0.2MPaG、0.3MPaG、0.4MPaG、0.5MPaG、0.6MPaG等,优选为0.0005MPaG以上,更优选为0.001MPaG以上,进一步优选为0.003MPaG以上,尤其优选为0.01MPaG以上,特别优选为0.02MPaG以上,最优选为0.03MPaG以上。
优选地,所述异氰酸酯化反应的压力(表压)为0.6MPaG以下,优选为0.4MPaG以下,更优选为0.2MPaG以下。
优选地,所述异氰酸酯化工序为间歇工序或连续工序,优选连续工序。
连续工序即为在搅拌槽中生成的浆料(XDA盐酸盐)从搅拌槽连续地输送至与搅拌槽不同的反应槽中,在反应槽中使XDA盐酸盐与光气反应,并且,将反应液(反应物质)连续地从反应槽中取出。本申请对于连续工序的反应釜个数不做具体限定,示例性地,可以为两个、三个、四个、五个或更多。
根据需要,可以对于异氰酸酯化工序的反应产物,实施脱气工序、溶剂分离和精制工序,利用已知的脱气塔将剩余的碳酰氯光气、作为副产物而产生的氯化氢等气体从反应产物中除去。溶剂分离和精制工序中,利用已知的蒸馏塔将反应溶剂从反应液中馏去。溶剂经过精制以后大部分回到成盐及异氰酸酯化工序。
本申请中,作为反应溶剂,可举出例如苯、甲苯、二甲苯等芳香族烃类、例如辛烷、癸烷等脂肪族烃类、例如环己烷、甲基环己烷、乙基环己烷等脂环族烃类、例如氯甲苯、氯苯、二氯苯、二溴苯、三氯苯等卤代芳香族烃类、例如硝基苯、N,N-二甲基甲酰胺、N,N-二甲基乙酰胺、N,N'-二甲基咪唑啉酮等含氮化合物类、例如二丁基醚、乙二醇二甲基醚、乙二醇二乙基醚等醚类、例如庚酮、二异丁基酮、甲基异丁基酮、甲基乙基酮等酮类、例如乙酸乙酯、乙酸丁酯、乙酸戊酯、乙酸乙氧基乙酯等脂肪酸酯类、例如水杨酸甲酯、邻苯二甲酸二甲酯、邻苯二甲酸二丁酯、苯甲酸甲酯等芳香族羧酸酯类等。反应溶剂可以单独使用或并用2种以上。反应溶剂中,优选卤代芳香族烃类,更优选氯苯及二氯苯。
所述反应溶剂包括新鲜溶剂和/或回用溶剂;“新鲜溶剂”指的是第一次经历异氰酸酯化工序的反应溶剂或随着溶剂在系统中的消耗补加的溶剂。
优选地,所述反应溶剂的水分含量为1-500ppm,例如2ppm、5ppm、10ppm、20ppm、30ppm、40ppm、50ppm、60ppm、70ppm、80ppm、90ppm、100ppm、110ppm、120ppm、 130ppm、140ppm、150ppm、160ppm、170ppm、180ppm、190ppm、200ppm、210ppm、220ppm、230ppm、240ppm、250ppm、260ppm、270ppm、280ppm、290ppm、300ppm、310ppm、320ppm、330ppm、340ppm、350ppm、360ppm、370ppm、380ppm、390ppm、400ppm、410ppm、420ppm、430ppm、440ppm、450ppm、460ppm、470ppm、480ppm、490ppm等。
优选地,所述回用溶剂的水分含量为1-500ppm,例如2ppm、5ppm、10ppm、20ppm、30ppm、40ppm、50ppm、60ppm、70ppm、80ppm、90ppm、100ppm、110ppm、120ppm、130ppm、140ppm、150ppm、160ppm、170ppm、180ppm、190ppm、200ppm、210ppm、220ppm、230ppm、240ppm、250ppm、260ppm、270ppm、280ppm、290ppm、300ppm、310ppm、320ppm、330ppm、340ppm、350ppm、360ppm、370ppm、380ppm、390ppm、400ppm、410ppm、420ppm、430ppm、440ppm、450ppm、460ppm、470ppm、480ppm、490ppm等。
在本申请的优选技术方案中,回用溶剂的水分含量控制在1-500ppm,有助于获得IBA含量在0.2-500ppm范围内的组合物,若水分含量过高,会导致异氰酸酯化工序及分离工序副反应增多,进而导致IBA含量过高。若水分含量过低则不利于IBA的生成。
值得注意的是,新鲜溶剂水分不合格需进入系统后先通过溶剂精制,水分合格后参与反应。
本申请中反应溶剂和/或回用溶剂的水分可以通过溶剂精制塔控制。
优选地,所述溶剂精制塔包括板式蒸馏塔或填充式蒸馏塔。
优选地,所述溶剂精制塔的理论塔板数为2以上,例如4、6、8、10、14、18、22、24、26、28、30、32、34、36、38、40、42、44、46、48、50、52、54、56、58等,优选5以上。
优选地,所述溶剂精制塔的理论塔板数为60以下,优选为40以下。
优选地,所述溶剂精制塔的塔顶压力为0.1kPa以上,例如0.2kPa、1kPa、5kPa、10kPa、30kPa、50kPa、70kPa、100kPa等,优选为1kPa以上。
优选地,所述溶剂精制塔的塔顶压力为300kpa以下,优选为100kPa以下。
优选地,所述溶剂精制塔的塔顶回流比为0.01以上,例如0.05、0.1、0.5、1、2、3、4、5、6、7、8、9、10、14、18、22、24、26、28、30、32、34、36、38、40、42、44、46、48、50、52、54、56、58、60、70、80、90等,优选为5以上。
优选地,所述溶剂精制塔的塔顶回流比为100以下,优选为90以下。
优选地,所述回用溶剂的水分含量1-500ppm,例如10ppm、20ppm、40ppm、50ppm、80ppm、100ppm、120ppm、140ppm、160ppm、180ppm、200ppm、220ppm、240ppm、260ppm、280ppm、300ppm、320ppm、340ppm、360ppm、380ppm、400ppm、420ppm、440ppm、460ppm、480ppm等。
根据需要,可以对上述脱溶剂的反应产物,实施脱焦油工序。利用已知的脱焦油设备如短程蒸发器,将焦油成分从反应液中除去。需要说明的是,将通过脱焦油工序而除去了焦油 成分的反应物质记为中间品物质。
另外根据需要,可通过将中间品物质进行蒸馏及纯化,纯化的方法没有特别限制,可利用工业分离技术、例如蒸馏、晶析等来实施。
优选地,所述蒸馏在蒸馏塔中进行。
优选地,所述蒸馏塔包括板式蒸馏塔或填充式蒸馏塔。
在本申请的优选技术方案中,通过控制反应条件和分离条件可以将IBA的比例调剂至上述的范围。需要说明的是,也可通过将IBA添加至XDI组合物中,来调节XDI组合物中的IBA的含有比例。
优选地,所述蒸馏塔的理论塔板数为2以上,例如4、6、8、10、14、18、22、24、26、28、30、32、34、36、38、40、42、44、46、48、50、52、54、56、58等,优选5以上。
优选地,所述蒸馏塔的理论塔板数为60以下,优选为40以下。
优选地,所述蒸馏塔的塔顶压力为0.1kPa以上,例如0.2kPa、0.4kPa、0.6kPa、0.8kPa、1kPa、1.5kPa、2kPa、2.5kPa、3kPa、3.5kPa等,优选为0.15kPa以上。
优选地,所述蒸馏塔的塔顶压力为4kPa以下,优选为2.5kPa以下。
优选地,所述蒸馏塔的塔顶回流比为0.01以上,例如0.05、0.1、0.5、1、2、3、4、5、6、7、8、9、10、14、18、22、24、26、28、30、32、34、36、38、40、42、44、46、48、50、52、54、56、58等,优选为0.1以上。
优选地,所述蒸馏塔的塔顶回流比为60以下,优选为40以下。
在本申请的一个优选技术方案中,上述的XDI组合物的制造方法例如可利用图1所示的设备流程图来实施。如图1所示,主要包括一个成盐釜1,在后述的异氰酸酯化单元中,实施3步的连续式的异氰酸酯化工序(依次在光化一釜2、光化二釜3和光化三釜4中进行),通过适当调节上述的溶剂的含水量、光气的供给比例、反应温度、反应压力及平均滞留时间等,来调节XDI及IBA的生成量。光化釜后设置脱光气塔5和脱溶剂塔6,对反应液进行光气和溶剂的脱除,溶剂经过溶剂精制塔9控制水分含量然后回用。并且,在脱溶剂塔6后设置脱焦油器7,对脱溶剂的反应产物进行脱焦油工序,随后进入精馏塔8中精馏,得到最终产物。
而且,在后述的精馏分离中通过适当调节上述的塔顶回流比等,来调节XDI组合物中的IBA的含有比例。
具体的,首先,在成盐釜中装入反应溶剂。而后,以上述的供给比例,通过氯化氢供给线路向成盐釜的底部连续地供给氯化氢气体。另外,通过胺供给线路,向成盐釜的顶部连续地供给在反应溶剂中溶解有XDA的上述的胺溶液。而后,在将成盐釜的内部维持为上述的成盐温度及成盐压力的同时,通过搅拌叶片将氯化氢气体及胺溶液搅拌混合(成盐工序)。由此,制造包含XDA盐酸盐的浆料。
而后,通过盐酸盐输送线路向光化釜的顶部连续地输送包含XDA盐酸盐的浆料。即,一边向成盐釜中连续地供给氯化氢气体及胺溶液,一边将包含XDA盐酸盐的浆料从成盐釜 中连续地取出,输送至光化釜。
接下来,以上述的供给比例,向光化一釜、光化二釜及光化三釜的各自的顶部以插入管的方式连续地供给光气。而后,一边将光化一釜的内部维持为上述的反应温度及反应压力,一边将浆料及光气搅拌混合(第1步的异氰酸酯化工序)。由此,XDA盐酸盐与碳酰氯进行反应,作为主成分而生成XDI,作为副产物而生成IBA及含溴化合物或者其中间体。
而后,通过反应物质输送线路,向光化二釜的顶部连续地输送含有XDI、IBA及含溴化合物及反应溶剂等的反应液。即,一边向光化一釜连续地供给浆料及光气,一边将一次光化液从光化一釜中连续地取出,输送至光化二釜。
接下来,一边将光化二釜的内部维持为上述的反应温度及反应压力,一边在光化二釜中将一次反应物质及光气搅拌混合(第2步的异氰酸酯化工序)。
同理的,光化三釜也是边输入二次反应物质,边进行光气化反应(第3步的异氰酸酯化工序)。
由此,连续地实施成盐工序及异氰酸酯化工序。
而后,制造含有XDI、IBA及含溴化合物或者其中间体及反应溶剂等反应液。需要说明的是,3步的异氰酸酯化工序中的停留时间的总和为上述的范围。
接下来,通过反应物质输送线路向脱光气塔的塔中部位连续地输送上述的光化反应液。通过脱光气塔,将光化液分离成包含光气及氯化氢等的气体、包含XDI、IBA及含溴化合物或其中间体及反应溶剂等的液态的脱气物质(脱气工序)。
接下来,通过脱气物质输送线路,向脱溶剂塔的塔中连续地输送脱气物质。而后,利用脱溶剂塔,将反应溶剂从脱气物质中馏去(溶剂分离和精制工序)得到包含XDI、IBA及含溴化合物或其中间体的脱溶剂物质。
反应溶剂经过溶剂精制塔重新回到成盐及光化反应系统,通过控制塔的操作条件(塔顶压力、塔顶回流比、停留时间),控制回用溶剂的含水量。
接下来,通过脱溶剂物质输送线路,向脱焦油器的上部连续地输送脱溶剂物质。而后,利用脱焦油器将焦油成分从脱溶剂物质中除去得到包含XDI、IBA及含溴化合物中间品物质(脱焦油工序)。
接下来,通过中间品物质输送线路,向精馏塔的塔中连续地输送中间品物质。而后,在上文所述的精馏工序的条件(塔底温度、塔顶温度、塔顶压力、塔底回流比、塔顶回流比及停留时间)下,将低沸物从中间品质中馏去,从塔中部偏下采出XDI组合物。
由此,可连续地制造包含XDI、IBA及含溴化合物的XDI组合物。
本申请的目的之三在于提供一种苯二亚甲基二异氰酸酯组合物的改性组合物,所述改性组合物是目的之一所述的苯二亚甲基二异氰酸酯组合物被改性而得到的改性物组合物,所述改性组合物中改性的苯二亚甲基二异氰酸酯含有如下(a)-(e)基团中的任意一种或至少两种组合:(a)异氰脲酸酯基、(b)脲二酮基、(c)缩二脲基、(d)氨基甲酸酯基、(e)脲基、(f)亚氨基噁二嗪二酮基、(g)脲基甲酸酯基、(h)脲酮亚胺基或(i)碳二亚胺基。
本领域技术人员可以根据需要利用已知的方法对XDI组合物进行改性,得到XDI改性组合物,XDI改性组合物作为多异氰酸酯成分和含有活性氢基团的成分作为聚氨酯树脂的原料而被合适地利用。
更具体而言,含有上述(a)的官能团(异氰脲酸酯基)的改性XDI即为XDI的三聚物,例如可通过在已知的异氰脲酸酯化催化剂的存在下使XDI组合物反应、使其中的XDI进行异氰脲酸酯化而得到。
含有上述(b)的官能团(脲基甲酸酯基)的改性XDI可通过在使XDI组合物与醇反应后、在已知的脲基甲酸酯化催化剂的存在下进一步使其进行反应而得到。
含有上述(c)的官能团(缩二脲基)的改性XDI可通过在使XDI组合物与例如水、叔醇(例如,叔丁醇等)、仲胺(例如,二甲基胺、二乙基胺等)等反应后在已知的缩二脲化催化剂的存在下进一步使其反应而得到。
含有上述(d)的官能团(氨基甲酸酯基)的改性XDI可通过XDI组合物与多元醇成分(例如,三羟甲基丙烷等)的反应而得到。
含有上述(e)的官能团(脲基)的改性XDI可通过XDI组合物与水、多胺成分(后述)等的反应而得到。
含有上述(f)的官能团(亚氨基噁二嗪二酮基)的改性XDI(非对称性三聚体)可通过在已知的亚氨基噁二嗪二酮化催化剂的存在下使XDI组合物反应、使XDI进行亚氨基噁二嗪二酮化(例如三聚化)而得到。
含有上述(g)的官能团(脲二酮基)的改性XDI可通过于90℃-200℃左右对XDI组合物进行加热的方法、或在已知的脲二酮化催化剂的存在下使其反应、使XDI进行脲二酮化(例如二聚化)而得到。
含有上述(h)的官能团(脲酮亚胺基)的改性XDI可通过在已知的碳二亚胺化催化剂的存在下使XDI组合物反应形成碳二亚胺基后、向该碳二亚胺基加成XDI而得到。
含有上述(i)的官能团(碳二亚胺基)的改性XDI可通过在已知的碳二亚胺化催化剂的存在下使XDI组合物反应而得到。
需要说明的是,XDI改性组合物含有至少1种上述(a)-(i)的官能团即可,也可含有2种以上。这样的XDI改性组合物可通过适当地并用上述的反应而生成。另外,XDI改性组合物可以单独使用或并用2种以上。
本申请的目的之四在于提供一种双组份聚氨酯原料,所述双组份聚氨酯原料包括A剂和B剂;
所述A剂包括目的之一所述的苯二亚甲基二异氰酸酯组合物和/或目的之三所述的改性组合物;
所述B剂包括含有活性氢基团的物质。
将含有XDI组合物及/或XDI改性组合物的异氰酸酯成分作为A剂、将含有活性氢基团的成分作为B剂的二液型树脂原料例如可合适地应用于涂料、粘接剂等涂覆原料、双组份固 化型密封原料、灌封剂等用途。这样的双组份型树脂原料是在即将使用之前将分别制备的A剂(固化剂)和B剂(主剂)进行配合的原料。
涂覆原料为用于形成涂层的双组份固化型树脂原料,包含A剂(固化剂)及B剂(主剂)。涂层中可包含涂料、粘接剂等。
使用涂覆原料作为涂料时,可举出例如塑料用涂料、汽车外部装饰用涂料、汽车内部装饰用涂料、电气/电子材料用涂料、光学材料(透镜等)用涂料、建材用涂料、玻璃涂层涂料、木工涂料、膜涂覆涂料、油墨涂料、人造革用涂料(涂层剂)、罐用涂料(涂层剂)等。
对于A剂而言,例如,作为多异氰酸酯成分,例如含有XDI改性组合物(以下,记为涂覆用XDI改性组合物),优选含有:含有上述(a)的官能团(异氰脲酸酯基)的XDI改性组合物、及/或含有上述(d)的官能团(氨基甲酸酯基)的XDI改性组合物。另外,根据需要,A剂可以含有其他芳香族异氰酸酯、脂肪族异氰酸酯、芳香脂肪族异氰酸酯。
XDI改性组合物中改性所用的XDI组合物中的IBA的含有比例为0.2ppm以上,为500ppm以下。
若涂覆用XDI组合物中的IBA的含有比例为上述范围内,则能抑制涂覆材料的变色。
对于B剂而言,例如,作为含有活性氢基团的成分,例如含有上述的高分子量多元醇。关于作为涂覆原料的高分子量多元醇(以下,记为涂覆用高分子量多元醇),可举出例如上述的丙烯酸系多元醇、上述的聚酯多元醇、上述的氟多元醇。
另外,根据需要,可以以适当的比例在B剂中配合氨基甲酸酯化催化剂、防水解剂、消泡剂、表面活性剂、滑动赋予剂、表面调节剂、抗氧化剂、耐气候稳定剂、颜料、染料、填料、树脂粉末等。
作为涂覆材料的形成方法,例如,将A剂和B剂混合,利用已知的方法将该混合液涂布于涂覆对象物而使其固化。
由此,可形成涂覆材料。这样的涂覆材料的耐变色性优异。
湿热耐久试验(2000小时)中的涂层的色差(Δb)例如为0.5以上,例如为2.4以下,优选为2.2以下,更优选为2.0以下,进一步优选为1.9以下。
本申请的目的之五在于提供一种聚氨酯树脂,所述聚氨酯树脂通过目的之一所述的苯二亚甲基二异氰酸酯组合物与含有活性氢基团的物质反应而成,或者通过目的之三所述的改性组合物与含有活性氢基团的物质反应而成。
作为含有活性氢基团的物质,可举出例如多元醇成分(主要含有具有2个以上羟基的多元醇的成分)、多硫醇成分(主要含有具有2个以上巯基(硫醇基)的多硫醇的成分)、多胺成分(主要含有具有2个以上氨基的多胺的化合物)等。
作为多元醇成分,可举出例如低分子量多元醇及高分子量多元醇。
低分子量多元醇为具有2个以上羟基的数均分子量为60以上且小于400的化合物。
作为低分子量多元醇,可举出例如乙二醇、丙二醇、1,3-丙二醇、1,4-丁二醇、1,3-丁二醇、1,2-丁二醇、1,5-戊二醇、1,6-己二醇、新戊二醇、烷烃(7-22)二醇、二乙二醇、三乙二 醇、二丙二醇、3-甲基-1,5-戊二醇、烷烃-1,2-二醇(C(碳数,在下文中也同样。)17-20)、异山梨醇、1,3-或1,4-环己烷二甲醇及它们的混合物、1,4-环己二醇、氢化双酚A、1,4-二羟基-2-丁烯、2,6-二甲基-1-辛烯-3,8-二醇、双酚A等二元醇、例如甘油、三羟甲基丙烷等三元醇、例如四羟甲基甲烷(季戊四醇)、二甘油等四元醇、例如木糖醇等五元醇、例如山梨糖醇、甘露糖醇、蒜糖醇、艾杜糖醇、卫矛醇、阿卓糖醇、肌醇、二季戊四醇等六元醇、例如鳄梨糖醇等七元醇、例如蔗糖等八元醇等。
另外,将上述的醇作为引发剂使环氧乙烷、环氧丙烷等环氧烷加成而得到的、数均分子量为60以上且小于400的聚环氧烷(包含2种以上环氧烷的无规及/或嵌段共聚物。)也被包含在低分子量多元醇中。
高分子量多元醇为具有2个以上羟基的数均分子量为400以上、例如为10000以下、优选为5000以下的化合物。作为高分子量多元醇,可举出例如聚醚多元醇、聚酯多元醇、聚碳酸酯多元醇、聚氨酯多元醇、环氧多元醇、植物油多元醇、聚烯烃多元醇、丙烯酸系多元醇、聚硅氧烷多元醇、氟多元醇、及乙烯基单体改性多元醇。
作为聚醚多元醇,可举出例如聚氧(C2-C3)亚烷基多元醇、聚四亚甲基醚二醇、聚三亚甲基醚二醇等。作为聚氧(C2-C3)亚烷基多元醇,可举出例如以上述的低分子量多元醇为引发剂的、环氧乙烷、环氧丙烷等C2-3环氧烷的加成聚合物(包含2种以上环氧烷的无规及/或嵌段共聚物。)。另外,作为聚氧(C2-3)亚烷基,具体而言,也可举出聚乙二醇、聚丙二醇、聚乙烯聚丙烯共聚物等。
作为聚四亚甲基醚二醇,可举出例如通过四氢呋喃的阳离子聚合而得到的开环聚合物(聚四亚甲基醚二醇)、将四氢呋喃的聚合单元与上述的二元醇共聚而得到的非晶性聚四亚甲基醚二醇等。
另外,还可举出以基于糠醛等来自植物的原料制造的四氢呋喃为起始原料的来自植物的聚四亚甲基醚二醇。
作为聚三亚甲基醚二醇,可举出例如通过来自植物的1,3-丙二醇的缩聚而制造的多元醇。
作为聚酯多元醇,可举出例如在已知的条件下使上述的低分子量多元醇(优选二元醇)与多元酸(优选二元酸)反应而得到的缩聚物。
作为多元酸,可举出例如草酸、丙二酸、琥珀酸、甲基琥珀酸、戊二酸、己二酸、1,1-二甲基-1,3-二羧基丙烷、3-甲基-3-乙基戊二酸、壬二酸、癸二酸等饱和脂肪族二羧酸(C11-C13)、例如马来酸、富马酸、衣康酸等不饱和脂肪族二羧酸、例如邻苯二甲酸、间苯二甲酸、对苯二甲酸、甲苯二羧酸、萘二甲酸等芳香族二羧酸、例如六氢邻苯二甲酸等脂环族二羧酸、例如二聚酸、氢化二聚酸、HET酸等其他的羧酸、及由这些羧酸衍生的酸酐、例如草酸酐、琥珀酸酐、马来酸酐、邻苯二甲酸酐、2-烷基(C12-C18)琥珀酸酐、四氢邻苯二甲酸酐、偏苯三甲酸酐、以及由这些羧酸等衍生的酰卤、例如草酰二氯、己二酰二氯、癸二酰二氯等。
另外,作为聚酯多元醇,可举出例如在已知的条件下使上述的低分子量多元醇与含有羟基的植物油脂肪酸(例如,含有蓖麻油酸的蓖麻油脂肪酸、含有12-羟基硬脂酸的氢化蓖麻油 脂肪酸等)等羟基羧酸进行缩合反应而得到的植物油系聚酯多元醇等。
另外,作为聚酯多元醇,可举出例如以上述的低分子量多元醇(优选二元醇)为引发剂、将例如ε-己内酯、γ-戊内酯等内酯类开环聚合而得到的聚己内酯多元醇、聚戊内酯多元醇、以及将它们与上述的二元醇共聚而得到的内酯系聚酯多元醇等。
作为聚碳酸酯多元醇,可举出例如以上述的低分子量多元醇(优选二元醇)为引发剂的碳酸亚乙酯的开环聚合物、例如将上述的二元醇与开环聚合物共聚而得到的非晶性聚碳酸酯多元醇等。
另外,关于聚氨酯多元醇,可举出通过以羟基与异氰酸酯基的当量比(OH/NCO)大于1的比例使通过上述方式得到的聚酯多元醇、聚醚多元醇及/或聚碳酸酯多元醇与上述多异氰酸酯(包含XDI。在下文中也同样)反应而得到的聚酯聚氨酯多元醇、聚醚聚氨酯多元醇、聚碳酸酯聚氨酯多元醇、或聚酯聚醚聚氨酯多元醇等。
作为环氧多元醇,可举出例如通过上述的低分子量多元醇与例如表氯醇、β-甲基表氯醇等多官能卤代醇的反应而得到的环氧多元醇。
作为植物油多元醇,可举出例如蓖麻油、椰子油等含有羟基的植物油等。可举出例如蓖麻油多元醇、或通过蓖麻油多元醇与聚丙烯多元醇的反应而得到的酯改性蓖麻油多元醇等。
作为聚烯烃多元醇,可举出例如聚丁二烯多元醇、部分皂化乙烯-乙酸乙烯酯共聚物等。
作为丙烯酸系多元醇,可举出例如通过使含有羟基的丙烯酸酯与可与含有羟基的丙烯酸酯共聚的共聚性乙烯基单体共聚而得到的共聚物。
作为含有羟基的丙烯酸酯,可举出例如(甲基)丙烯酸2-羟基乙酯、(甲基)丙烯酸羟基丙酯、(甲基)丙烯酸羟基丁酯、(甲基)丙烯酸2,2-二羟基甲基丁酯、聚羟基烷基马来酸酯、聚羟基烷基富马酸酯等。优选可举出(甲基)丙烯酸2-羟基乙酯等。
作为共聚性乙烯基单体,可举出例如(甲基)丙烯酸甲酯、(甲基)丙烯酸乙酯、(甲基)丙烯酸丙酯、(甲基)丙烯酸异丙酯、(甲基)丙烯酸丁酯、(甲基)丙烯酸异丁酯、(甲基)丙烯酸仲丁酯、(甲基)丙烯酸叔丁酯、(甲基)丙烯酸戊酯、(甲基)丙烯酸异戊酯、(甲基)丙烯酸己酯、(甲基)丙烯酸异壬酯、(甲基)丙烯酸2-乙基己酯、丙烯酸环己酯、(甲基)丙烯酸异冰片基酯等(甲基)丙烯酸烷基酯(碳数1-12)、例如苯乙烯、乙烯基甲苯、α-甲基苯乙烯等。
芳香族乙烯基单体、例如(甲基)丙烯腈等乙烯基氰、例如(甲基)丙烯酸、富马酸、马来酸、衣康酸等包含羧基的乙烯基单体、或其烷基酯、例如乙二醇二(甲基)丙烯酸酯、丁二醇二(甲基)丙烯酸酯、己二醇二(甲基)丙烯酸酯、低聚乙二醇二(甲基)丙烯酸酯、三羟甲基丙烷二(甲基)丙烯酸酯、三羟甲基丙烷三(甲基)丙烯酸酯等烷烃多元醇聚(甲基)丙烯酸酯、例如3-(2-异氰酸酯-2-丙基)-α-甲基苯乙烯等包含异氰酸酯基的乙烯基单体等。
而且,丙烯酸系多元醇可通过在适当的溶剂及聚合引发剂的存在下使这些含有羟基的丙烯酸酯及共聚性乙烯基单体共聚而得到。
另外,丙烯酸系多元醇例如包含聚硅氧烷多元醇、氟多元醇。
作为聚硅氧烷多元醇,可举出例如在上述的丙烯酸系多元醇的共聚中配合例如γ-甲基丙 烯酰氧基丙基三甲氧基硅烷等包含乙烯基的聚硅氧烷化合物作为共聚性乙烯基单体而得到的丙烯酸系多元醇。
作为氟多元醇,可举出例如在上述的丙烯酸系多元醇的共聚中配合例如四氟乙烯、氯三氟乙烯等包含乙烯基的氟化合物作为共聚性乙烯基单体而得到的丙烯酸系多元醇。
乙烯基单体改性多元醇可通过上述的高分子量多元醇、与上述的(甲基)丙烯酸烷基酯等乙烯基单体的反应而得到。
上述多元醇成分可以单独使用或并用2种以上。
另外,在多异氰酸酯成分与含有活性氢基团的成分的反应中,活性氢基团与异氰酸酯基的当量比小于1时,生成在分子末端具有异氰酸酯基的异氰酸酯基末端聚合物,活性氢基团与异氰酸酯基的当量比大于1时,生成在分子末端具有活性氢基团的活性氢基团末端聚合物。异氰酸酯基末端聚合物及活性氢基团末端聚合物均被包含在树脂(聚氨酯树脂)中。异氰酸酯基末端聚合物为单组分固化型树脂。
作为聚氨酯树脂的用途,具体而言,可合适地应用于油墨、转印箔、粘合剂、粘结剂、凝胶、弹性体、泡沫、粘接剂、液固化型密封材料、RIM成型品、微发泡聚氨酯、各种微囊、光学材料、水性树脂、热固性树脂、活性能量射线(例如,电子束、紫外线等)固化性树脂、人工及合成皮革、凝固粉、机器人构件、移动构件、医疗保健材料、碳纤维增强塑料(CFRP)的基材树脂、透明性橡胶、透明性硬质树脂、防水材料、膜、片材、管、板、扬声器、传感器类、有机电致发光构件、太阳光发电构件、机器人构件、可穿戴构件、体育用品、休闲用品、医疗用品、护理用品、住宅用构件、音响构件、照明构件、枝形吊灯、屋外电灯、包装、防振/抗震/减震构件、防音构件、日用品、杂货、缓冲器、卧具、应力吸收材料、应力缓和材料、汽车的内外装饰部件、输送机构件、办公室自动化设备用构件、杂货表面保护构件、自修复材料、健康器具等用途。
本申请的目的之六在于提供一种弹性体材料,所述弹性体材料包括目的之五所述的聚氨酯树脂。
作为弹性体,可举出例如热塑性聚氨酯弹性体(TPU)、热固性聚氨酯弹性体(TSU)、可轧型聚氨酯弹性体等。
弹性体包含通过XDI与高分子量多元醇的反应而形成的软链段和通过XDI与低分子量多元醇及/或低分子量多胺的反应而形成的硬链段。
这样的弹性体例如可通过多异氰酸酯成分、高分子量多元醇(含有活性氢基团的成分)与低分子量多元醇及/或低分子量多胺(含有活性氢基团的成分)的反应来制造。即,多异氰酸酯成分、高分子量多元醇和低分子量多元醇及/或低分子量多胺为弹性体原料。
关于作为弹性体原料的高分子量多元醇,可举出例如上述的聚酯多元醇(例如,聚己内酯多元醇、己二酸系聚酯多元醇(使用己二酸作为多元酸的聚酯多元醇))、上述的聚碳酸酯多元醇、上述的聚四亚甲基醚二醇(例如,聚四亚甲基醚二醇),优选可举出己二酸系聚酯多元醇。
关于作为弹性体原料的低分子量多元醇,可举出例如乙二醇、1,4-丁二醇等,优选可举出1,4-丁二醇。
关于作为弹性体原料的低分子量多胺,可举出例如上述的低分子量多胺。
弹性体例如可利用一次完成法或预聚物法等已知的方法来制造。
需要说明的是,关于弹性体的制造方法,例如,可利用本体聚合、溶液聚合等。
另外,弹性体的制造方法中,根据需要,可将例如胺类、有机金属化合物(例如,有机锡系化合物,优选二丁基二氯化锡等)等已知的氨基甲酸酯化催化剂添加至弹性体原料中。进而,根据需要,可以以适当的比例在弹性体中配合增塑剂、防结块剂、耐热稳定剂、耐光稳定剂、紫外线吸收剂、黄变防止剂、抗氧化剂、脱模剂、颜料、染料、润滑剂、成核剂、填料、防水解剂等。
由此,可制造弹性体。这样的弹性体不仅抑制了白浊,耐变色性优异,而且机械物性(伸长率及强度)优异。
氙灯照射试验(240小时)时的弹性体的色差(Δb)例如为1.0以上,例如小于3.9,优选为3.5以下,更优选为3.0以下。氙灯照射试验中的弹性体的色差可按照后述的实施例中记载的方法测定。
本申请的目的之七在于提供一种光学材料,所述光学材料通过目的之一所述的苯二亚甲基二异氰酸酯组合物与多硫醇化合物聚合而成,或者通过目的之三所述的改性组合物与多硫醇化合物聚合而成。
本申请中,多硫醇化合物指的是含有至少两个硫醇基团的化合物。
优选地,所述光学材料包括塑料透镜材料、汽车灯罩材料、透明屋顶材料、智能手机或平板的镜头材料。
优选地,所述多硫醇化合物选自甲二硫醇、1,2-乙二硫醇、1,1-丙二硫醇、1,2-丙二硫醇、1,3-丙二硫醇、2,2-丙二硫醇、1,6-己二硫醇、1,2,3-丙三硫醇、1,1-环己二硫醇、1,2-环己二硫醇、2,2-二甲基丙烷-1,3-二硫醇、3,4-二甲氧基丁烷-1,2-二硫醇、2-甲基环己烷-2,3-二硫醇、1,1-双(巯基甲基)环己烷、硫代苹果酸双(2-巯基乙基酯)、2,3-二巯基-1-丙醇(2-巯基乙酸酯)、2,3-二巯基-1-丙醇(3-巯基丙酸酯)、二甘醇双(2-巯基乙酸酯)、二甘醇双(3-巯基丙酸酯)、1,2-二巯基丙基甲基醚、2,3-二巯基丙基甲基醚、2,2-双(巯基甲基)-1,3-丙烷二硫醇、双(2-巯基乙基)醚、乙二醇双(2-巯基乙酸酯)、乙二醇双(3-巯基丙酸酯)、三羟甲基丙烷双(2-巯基乙酸酯)、三羟甲基丙烷双(3-巯基丙酸酯)、季戊四醇四(2-巯基乙酸酯)、季戊四醇四(3-巯基丙酸酯)、四(巯基甲基)甲烷等脂肪族多硫醇化合物;
1,2-二巯基苯、1,3-二巯基苯、1,4-二巯基苯、1,2-双(巯基甲基)苯、1,3-双(巯基甲基)苯、1,4-双(巯基甲基)苯、1,2-双(巯基乙基)苯、1,3-双(巯基乙基)苯、1,4-双(巯基乙基)苯、1,2,3-三巯基苯、1,2,4-三巯基苯、1,3,5-三巯基苯、1,2,3-三(巯基甲基)苯、1,2,4-三(巯基甲基)苯、1,3,5-三(巯基甲基)苯、1,2,3-三(巯基乙基)苯、1,2,4-三(巯基乙基)苯、1,3,5-三(巯基乙基)苯、2,5-甲苯二硫醇、3,4-甲苯二硫醇、1,3-二(对甲氧基苯基)丙烷-2,2-二硫醇、1,3-二苯基丙烷-2,2- 二硫醇、苯基甲烷-1,1-二硫醇、2,4-二(对巯基苯基)戊烷等芳香族多硫醇化合物;
1,2-双(巯基乙硫基)苯、1,3-双(巯基乙硫基)苯、1,4-双(巯基乙硫基)苯、1,2,3-三(巯基甲硫基)苯、1,2,4-三(巯基甲硫基)苯、1,3,5-三(巯基甲硫基)苯、1,2,3-三(巯基乙硫基)苯、1,2,4-三(巯基乙硫基)苯、1,3,5-三(巯基乙硫基)苯等、及它们的烷基化物等除巯基以外含有硫原子的芳香族多硫醇化合物;
双(巯基甲基)硫醚、双(巯基甲基)二硫醚、双(巯基乙基)硫醚、双(巯基乙基)二硫醚、双(巯基丙基)硫醚、双(巯基甲硫基)甲烷、双(2-巯基乙硫基)甲烷、双(3-巯基丙硫基)甲烷、1,2-双(巯基甲硫基)乙烷、1,2-双(2-巯基乙硫基)乙烷、1,2-双(3-巯基丙基)乙烷、1,3-双(巯基甲硫基)丙烷、1,3-双(2-巯基乙硫基)丙烷、1,3-双(3-巯基丙硫基)丙烷、1,2,3-三(巯基甲硫基)丙烷、1,2,3-三(2-巯基乙硫基)丙烷、1,2,3-三(3-巯基丙硫基)丙烷、1,2-双[(2-巯基乙基)硫代]-3-巯基丙烷、4,8-二巯基甲基-1,11-二巯基-3,6,9-三硫杂十一烷、4,7-二巯基甲基-1,11-二巯基-3,6,9-三硫杂十一烷、5,7-二巯基甲基-1,11-二巯基-3,6,9-三硫杂十一烷、双(巯基甲基)-3,6,9-三硫杂-1,11-十一烷二硫醇、四(巯基甲硫基甲基)甲烷、四(2-巯基乙硫基甲基)甲烷、四(3-巯基丙硫基甲基)甲烷、双(2,3-二巯基丙基)硫醚、双(1,3-二巯基丙基)硫醚、2,5-二巯基-1,4-二噻烷、2,5-二巯基甲基-1,4-二噻烷、2,5-二巯基甲基-2,5-二甲基-1,4-二噻烷、双(巯基甲基)二硫醚、双(巯基乙基)二硫醚、双(巯基丙基)二硫醚等除巯基以外含有硫原子的脂肪族多硫醇化合物、及它们的巯基乙酸及巯基丙酸的酯;
羟甲基硫醚双(2-巯基乙酸酯)、羟甲基硫醚双(3-巯基丙酸酯)、羟乙基硫醚双(2-巯基乙酸酯)、羟乙基硫醚双(3-巯基丙酸酯)、羟丙基硫醚双(2-巯基乙酸酯)、羟丙基硫醚双(3-巯基丙酸酯)、羟甲基二硫醚双(2-巯基乙酸酯)、羟甲基二硫醚双(3-巯基丙酸酯)、羟乙基二硫醚双(2-巯基乙酸酯)、羟乙基二硫醚双(3-巯基丙酸酯)、羟丙基二硫醚双(2-巯基乙酸酯)、羟丙基二硫醚双(3-巯基丙酸酯)、2-巯基乙基醚双(2-巯基乙酸酯)、2-巯基乙基醚双(3-巯基丙酸酯)、1,4-二噻烷-2,5-二醇双(2-巯基乙酸酯)、1,4-二噻烷-2,5-二醇双(3-巯基丙酸酯)、亚硫基二乙酸双(2-巯基乙基酯)、硫代二丙酸双(2-巯基乙基酯)、4,4-硫代二丁酸双(2-巯基乙基酯)、亚二硫基二乙酸双(2-巯基乙基酯)、二硫代二丙酸双(2-巯基乙基酯)、4,4-二硫代二丁酸双(2-巯基乙基酯)、亚硫基二乙酸双(2,3-二巯基丙基酯)、硫代二丙酸双(2,3-二巯基丙基酯)、亚二硫基二乙酸双(2,3-二巯基丙基酯)、二硫代二丙酸双(2,3-二巯基丙基酯)等其他的除巯基以外含有硫原子和酯键的脂肪族多硫醇化合物;
3,4-噻吩二硫醇、2,5-二巯基-1,3,4-硫杂二唑等除巯基以外含有硫原子的杂环化合物;
2-巯基乙醇、3-巯基-1,2-丙二醇、甘油二(巯基乙酸酯)、1-羟基-4-巯基环己烷、2,4-二巯基苯酚、2-巯基氢醌、4-巯基苯酚、3,4-二巯基-2-丙醇、1,3-二巯基-2-丙醇、2,3-二巯基-1-丙醇、1,2-二巯基-1,3-丁二醇、季戊四醇三(3-巯基丙酸酯)、季戊四醇单(3-巯基丙酸酯)、季戊四醇双(3-巯基丙酸酯)、季戊四醇三(巯基乙酸酯)、二季戊四醇五(3-巯基丙酸酯)、羟甲基-三(巯基乙硫基甲基)甲烷、1-羟基乙硫基-3-巯基乙硫基苯等除巯基以外含有羟基的化合物;
1,1,3,3-四(巯基甲硫基)丙烷、1,1,2,2-四(巯基甲硫基)乙烷、4,6-双(巯基甲硫基)-1,3-二硫 杂环己烷、1,1,5,5-四(巯基甲硫基)-3-硫杂戊烷、1,1,6,6-四(巯基甲硫基)-3,4-二硫杂己烷、2,2-双(巯基甲硫基)乙硫醇、2-(4,5-二巯基-2-硫杂戊基)-1,3-二硫杂环戊烷、2,2-双(巯基甲基)-1,3-二硫杂环戊烷、2,5-双(4,4-双(巯基甲硫基)-2-硫杂丁基)-1,4-二噻烷、2,2-双(巯基甲硫基)-1,3-丙烷二硫醇、3-巯基甲硫基-1,7-二巯基-2,6-二硫杂庚烷、3,6-双(巯基甲硫基)-1,9-二巯基-2,5,8-三硫杂壬烷、4,6-双(巯基甲硫基)-1,9-二巯基-2,5,8-三硫杂壬烷、3-巯基甲硫基-1,6-二巯基-2,5-二硫杂己烷、2-(2,2-双(巯基甲硫基)乙基)-1,3-二硫杂环丁烷、1,1,9,9-四(巯基甲硫基)-5-(3,3-双(巯基甲硫基)-1-硫杂丙基)3,7-二硫杂壬烷、三(2,2-双(巯基甲硫基)乙基)甲烷、三(4,4-双(巯基甲硫基)-2-硫杂丁基)甲烷、四(2,2-双(巯基甲硫基)乙基)甲烷、四(4,4-双(巯基甲硫基)-2-硫杂丁基)甲烷、3,5,9,11-四(巯基甲硫基)-1,13-二巯基-2,6,8,12-四硫杂十三烷、3,5,9,11,15,17-六(巯基甲硫基)-1,19-二巯基-2,6,8,12,14,18-六硫杂十九烷、9-(2,2-双(巯基甲硫基)乙基)-3,5,13,15-四(巯基甲硫基)-1,17-二巯基-2,6,8,10,12,16-六硫杂十七烷、3,4,8,9-四(巯基甲硫基)-1,11-二巯基-2,5,7,10-四硫杂十一烷、3,4,8,9,13,14-六(巯基甲硫基)-1,16-二巯基-2,5,7,10,12,15-六硫杂十六烷、8-{双(巯基甲硫基)甲基}-3,4,12,13-四(巯基甲硫基)-1,15-二巯基-2,5,7,9,11,14-六硫杂十五烷、4,6-双{3,5-双(巯基甲硫基)-7-巯基-2,6-二硫杂庚硫基}-1,3-二噻烷、4-{3,5-双(巯基甲硫基)-7-巯基-2,6-二硫杂庚硫基}-6-巯基甲硫基-1,3-二噻烷、1,1-双{4-(6-巯基甲硫基)-1,3-二噻烷基硫基}-3,3-双(巯基甲硫基)丙烷、1,3-双{4-(6-巯基甲硫基)-1,3-二噻烷基硫基}-1,3-双(巯基甲硫基)丙烷、1-{4-(6-巯基甲硫基)-1,3-二噻烷基硫基}-3-{2,2-双(巯基甲硫基)乙基}-7,9-双(巯基甲硫基)-2,4,6,10-四硫杂十一烷、1-{4-(6-巯基甲硫基)-1,3-二噻烷基硫基}-3-{2-(1,3-二硫杂环丁基)}甲基-7,9-双(巯基甲硫基)-2,4,6,10-四硫杂十一烷、1,5-双{4-(6-巯基甲硫基)-1,3-二噻烷基硫基}-3-{2-(1,3-二硫杂环丁基)}甲基-2,4-二硫杂戊烷、4,6-双[3-{2-(1,3-二硫杂环丁基)}甲基-5-巯基-2,4-二硫杂戊硫基]-1,3-二噻烷、4,6-双{4-(6-巯基甲硫基)-1,3-二噻烷基硫基}-1,3-二噻烷、4-{4-(6-巯基甲硫基)-1,3-二噻烷基硫基}-6-{4-(6-巯基甲硫基)-1,3-二噻烷基硫基}-1,3-二噻烷、3-{2-(1,3-二硫杂环丁基)}甲基-7,9-双(巯基甲硫基)-1,11-二巯基-2,4,6,10-四硫杂十一烷、9-{2-(1,3-二硫杂环丁基)}甲基-3,5,13,15-四(巯基甲硫基)-1,17-二巯基-2,6,8,10,12,16-六硫杂十七烷、3-{2-(1,3-二硫杂环丁基)}甲基-7,9,13,15-四(巯基甲硫基)-1,17-二巯基-2,4,6,10,12,16-六硫杂十七烷、3,7-双{2-(1,3-二硫杂环丁基)}甲基-1,9-二巯基-2,4,6,8-四硫杂壬烷、4-{3,4,8,9-四(巯基甲硫基)-11-巯基-2,5,7,10-四硫杂十一烷基}-5-巯基甲硫基-1,3-二硫杂环戊烷、4,5-双{3,4-双(巯基甲硫基)-6-巯基-2,5-二硫杂己硫基}-1,3-二硫杂环戊烷、4-{3,4-双(巯基甲硫基)-6-巯基-2,5-二硫杂己硫基}-5-巯基甲硫基-1,3-二硫杂环戊烷、4-{3-双(巯基甲硫基)甲基-5,6-双(巯基甲硫基)-8-巯基-2,4,7-三硫杂辛基}-5-巯基甲硫基-1,3-二硫杂环戊烷、2-[双{3,4-双(巯基甲硫基)-6-巯基-2,5-二硫杂己硫基}甲基]-1,3-二硫杂环丁烷、2-{3,4-双(巯基甲硫基)-6-巯基-2,5-二硫杂己硫基}巯基甲硫基甲基-1,3-二硫杂环丁烷、2-{3,4,8,9-四(巯基甲硫基)-11-巯基-2,5,7,10-四硫杂十一烷硫基}巯基甲硫基甲基-1,3-二硫杂环丁烷、2-{3-双(巯基甲硫基)甲基-5,6-双(巯基甲硫基)-8-巯基-2,4,7-三硫杂辛基}巯基甲硫基甲基-1,3-二硫杂环丁烷、4,5-双[1-{2-(1,3-二硫杂环丁基)}-3-巯基-2-硫杂丙硫基]-1,3-二硫杂环戊烷、4-[1-{2-(1,3-二硫杂环丁基)}-3-巯基-2-硫 杂丙硫基]-5-{1,2-双(巯基甲硫基)-4-巯基-3-硫杂丁硫基}-1,3-二硫杂环戊烷、2-[双{4-(5-巯基甲硫基-1,3-二硫戊环基)硫代}]甲基-1、3-二硫杂环丁烷、4-{4-(5-巯基甲硫基-1,3-二硫戊环基)硫代}-5-[1-{2-(1,3-二硫杂环丁基)}-3-巯基-2-硫杂丙硫基]-1,3-二硫杂环戊烷、以及它们的寡聚物等具有二硫缩醛(dithioacetal)或二硫缩酮(dithioketal)骨架的化合物;
三(巯基甲硫基)甲烷、三(巯基乙硫基)甲烷、1,1,5,5-四(巯基甲硫基)-2,4-二硫杂戊烷、双(4,4-双(巯基甲硫基)-1,3-二硫杂丁基)(巯基甲硫基)甲烷、三(4,4-双(巯基甲硫基)-1,3-二硫杂丁基)甲烷、2,4,6-三(巯基甲硫基)-1,3,5-三硫杂环己烷、2,4-双(巯基甲硫基)-1,3,5-三硫杂环己烷、1,1,3,3-四(巯基甲硫基)-2-硫杂丙烷、双(巯基甲基)甲硫基-1,3,5-三硫杂环己烷、三((4-巯基甲基-2,5-二硫杂环己基-1-基)甲硫基)甲烷、2,4-双(巯基甲硫基)-1,3-二硫杂环戊烷、2-巯基乙硫基-4-巯基甲基-1,3-二硫杂环戊烷、2-(2,3-二巯基丙硫基)-1,3-二硫杂环戊烷、4-巯基甲基-2-(2,3-二巯基丙硫基)-1,3-二硫杂环戊烷、4-巯基甲基-2-(1,3-二巯基-2-丙硫基)-1,3-二硫杂环戊烷、三(2,2-双(巯基甲硫基)-1-硫杂乙基)甲烷、三(3,3-双(巯基甲硫基)-2-硫杂丙基)甲烷、三(4,4-双(巯基甲硫基)-3-硫杂丁基)甲烷、2,4,6-三(3,3-双(巯基甲硫基)-2-硫杂丙基)-1,3,5-三硫杂环己烷、四(3,3-双(巯基甲硫基)-2-硫杂丙基)甲烷等、以及它们的寡聚物等具有三硫代原甲酸酯骨架的化合物;
3,3’-二(巯基甲硫基)-1,5-二巯基-2,4-二硫杂戊烷、2,2’-二(巯基甲硫基)-1,3-二硫杂环戊烷、2,7-二(巯基甲基)-1,4,5,9-四硫杂螺[4,4]壬烷、3,9-二巯基-1,5,7,11-四硫杂螺[5,5]十一烷、以及它们的寡聚物等具有四硫代原碳酸酯骨架的化合物等。
但是,多硫醇化合物并不限定于以上举出的各化合物。另外,以上举出的各化合物可以单独使用,也可以2种以上混合使用。
以上举出的化合物中,特别优选使用由1,2-双[(2-巯基乙基)硫代]-3-巯基丙烷、双(巯基甲基)-3,6,9-三硫杂-1,11-十一烷二硫醇、季戊四醇四(3-巯基丙酸酯)、1,1,3,3-四(巯基甲硫基)丙烷及2-巯基乙醇构成的组中的至少1种多硫醇化合物。
优选地,光学材料的制备方法是在聚合催化剂的存在下进行的,所述聚合催化剂优选为有机锡类化合物,可举出二丁基二氯化锡、二甲基二氯化锡等二烷基卤化锡类;二甲基二乙酸锡、二丁基二辛酸锡、二丁基二月桂酸锡等二烷基二羧酸锡类。
另外,根据目的,在所述的光学材料的制备方法中,任选的添加扩链剂、交联剂、光稳定剂、紫外线吸收剂、抗氧化剂、油溶染料、填充剂、脱模剂等各种助剂。
由聚氨酯类树脂形成的光学材料通常采用注塑聚合制造。具体而言,将多硫醇化合物和异氰酸酯化合物混合,任选的加入合适的助剂。必要时采用适当的方法将此混合液(聚合性组合物)脱泡后,注入光学材料用注塑模中,通常将其缓缓地从低温加热至高温,使其聚合。然后,经脱模得到光学材料。
若光学材料用XDI组合物或XDI改性组合物的IBA的含有比例为0.2ppm以上,为500ppm以下,则可由光学材料用XDI组合物或XDI改性组合物稳定地制造光学材料。若光学材料用XDI组合物或XDI改性组合物中的IBA的含有比例为上述上限以下,则能抑制光 学材料的变色。
本申请提供的光学材料的黄变指数YI可控制在1.7以内,最低可至1.5。
相较于现有技术,本申请具有如下有益效果:
本申请提供的苯二亚甲基二异氰酸酯组合物中含有0.2-500ppm的式(1)化合物,其制备得到的树脂具有优异的耐变色性能,有效抑制树脂黄变和/或白浊。
在阅读并理解了详细描述后,可以明白其他方面。
附图说明
图1是本申请的具体实施方式中制备苯二亚甲基二异氰酸酯组合物的装置流程图;
1-成盐釜,2-光化一釜,3-光化二釜,4-光化三釜,5-脱光气塔,6-脱溶剂塔,7-脱焦油器,8-精馏塔,9-溶剂精制塔。
具体实施方式
(一)本申请中相关测试的测定方法如下:
1、化合物IBA的含有比例
首先,使用在下文所述合成的纯度为99mol%的IBA作为标准物质,在下述的条件下利用气相色谱法进行分析,由得到的气相色谱图的面积值制成标准曲线(外标法)。
分析仪器:Agilent 5977B GCMS;
柱子:DB-5(30m×0.25mm×0.25um);
柱箱温度:50℃保持2min,以5mL/min的速度升温至80℃,再以15mL/min的速度升温至280℃,保持10min;
分离比:不分流;
进样口温度:280℃;
检测温度:300℃;
载气:氦气;
载气流量:1mL/min(恒定流量);
进样量:1μL;
检测方法:SIM选择离子扫描模式(161、132)。
2、苯二亚甲基二异氰酸酯的含有比例
将后述的实施例中的纯度99mol%的XDI作为标准物质,利用内标法,在下述的条件下利用气相色谱法进行分析。
仪器:Agilent 7890
(1)色谱柱:DB-5(30m×0.25mm×0.25μm);(2)进样量:0.5μL;(3)分流比:1/30;(4)进样口温度:260℃;(5)柱流速:1.5mL/min;(6)程序升温:100℃保持1min,10℃/min升温至280℃,保持20min;(7)FID检测器温度:280℃;(8)氢气流速:40mL/min,空气流速:400mL/min。
3、XDI中的溴元素含量通过ICP-OES分析测定;
仪器:Thermo Scientific ICAP 7200 ICP-OES
4、回用溶剂的含水量通过卡尔费休水分仪测定;
仪器:瑞士万通915 KF Ti-Touch
5、光学材料的黄色指数的值(Y.I.值)的计算
根据国标GB/T-2409-1980测定透镜的黄度指数。
将后述的各实施例及各比较例的光学材料制成厚度9mm、直径75mm的圆形平板塑料透镜,使用分光光度计,测定三刺激值x、y、z。利用下述式算出Y.I.。
Figure PCTCN2022080069-appb-000003
需要说明的是,存在以下关系:Y.I.值越小,塑料透镜的色相越好,Y.I.值越大,色相越不良。
6、弹性体的耐气候性试验
接下来,使用注射成型机(型号:NEX-140,台富机械),将后述的各实施例及各比较例的弹性体,在螺杆转速100rpm、料筒温度150-235℃的设定下,在模具温度20℃、注射时间10秒、注射速度60mm/s及冷却时间45秒的条件下实施注射成型。
在23℃、相对湿度55%的恒温恒湿条件下,将得到的片材(厚度2mm)养护7天,得到后述的各实施例及各比较例的弹性体片材。
而且,利用色彩色素计测定弹性体片材的b值(b1,初始值),然后实施氙灯照射试验。经过240小时后,与上述同样地测定弹性体片材的b值(b2)。计算氙灯照射试验(240小时)中的弹性体片材的色差Δb(=∣b2-b1∣)。
需要说明的是,对于氙灯照射试验而言,使用超级氙灯气候试验箱(威邦仪器),在黑面板温度89℃、相对湿度50%、氙灯辐照度100W/m 2(照射波长300-400nm)的条件下实施。
7、涂层的湿热耐久试验中的色差(变色及着色)
利用色差计(3nh NR10QC)测定形成了后述的各实施例及各比较例的涂层的聚对苯二甲酸乙二醇酯基材(以下,记为样品。)的b值(b1,初始值)。接下来,使用恒温恒湿器(高铁仪器),在85℃、相对湿度85%的条件下,将样品保持2000小时。与上述同样地测定经过2000小时后的样品的b值(b2)。算出湿热试验中的涂层的色差Δb(=∣b2-b1∣)。
(二)标准物质的准备
按照下述合成路径,合成上述化学式(1)所示的IBA。
Figure PCTCN2022080069-appb-000004
在装有回流冷凝管和分水器的50ml三口烧瓶中,加入3-氰基苯甲醛6.5g(50mmol)、乙二醇4.35g(70mmol)、带水剂环己烷15mL和硅藻土0.4g(3-氰基苯甲醛质量的6%),加热回流搅拌2h后,冷却,过滤回收硅藻土,旋蒸除去环己烷后,得到无色透明芳香液体3-氰基苯甲醛缩乙二醇7.88g,收率90%。
在室温下,向3-氰基苯甲醛缩乙二醇674mg(3.85mmol)与四氢呋喃14.0mL的混合溶液中,滴加硼烷-二甲基硫醚复合物的四氢呋喃溶液10.1mL(19.2mmol),然后,进行23小时搅拌,进行反应。
反应后,一边用冰冷却反应液,一边向反应液中滴加水10mL,然后,添加2M盐酸2.5mL(5.0mmol)室温反应2h。接下来,向反应液中添加乙酸乙酯20mL,一边搅拌一边洗涤反应液。将乙酸乙酯层分液除去,然后向反应液中添加1M氢氧化钠6mL,用二氯甲烷15mL对反应液进行4次萃取操作,用硫酸镁干燥得到的二氯甲烷层。干燥后,从二氯甲烷层过滤硫酸镁,然后,将二氯甲烷馏去,得到3-(胺甲基)苯甲醛434.0mg(2.28mmol)。
利用 1H-NMR(270MHz,CDCl 3)对得到的3-(胺甲基)苯甲醛进行分析。
1H NMR(400MHz,DMSO)δ9.88(s,1H),8.69(b,2H),7.65-7.40(m,4H),4.35(s,2H)。
接下来,向上文中得到的3-(胺甲基)苯甲醛337.4mg(1.78mmol)与氯苯7.0mL的混合溶液中通入光气,然后于120℃进行反应,反应液澄清时停止反应。冷却至室温,将氯苯馏去,得到浓缩液,得到3-(异氰酸甲酯基)苯甲醛(IBA)278.0mg(1.29mmol)。
利用 1H-NMR(270MHz,CDCl 3)、 13C-NMR(100MHz,CDCl 3),对得到的3-(异氰酸甲酯基)苯甲醛(IBA)进行分析。
1H-NMR(400MHz,CDCl 3)δ9.86(s,1H)、7.65-7.36(m,4H)、4.63(s,2H)
13C-NMR(100MHz,CDCl 3)δ191.0、139.4、139.2、133.7、130.1、129.1、126.9、125.0、54.6。
为便于理解本申请,本申请列举实施例如下。本领域技术人员应该明了,所述实施例仅仅是帮助理解本申请,不应视为对本申请的具体限制。
需要说明的是,只要没有特别说明,“份”及“%”是以质量为基准。
实施例1-7、比较例1
上述实施例和比较例分别提供一种XDI组合物,其具体组成详见表1。
XDI组合物的制备方法如下:
利用图1所示的流程制造XDI组合物。详细而言,将氯苯800质量份装入图1所示的成盐釜中。接下来,将成盐釜内的成盐温度调节为30℃,并且,将成盐釜内的成盐压力(表压)调节为0.05MPaG。然后,由氯化氢供给线路,向成盐釜通入HCl气体128质量份,并且,由胺供给线路,向成盐釜中装入1,3-XDA 150质量份与氯苯1050质量份的混合溶液(胺溶液)。由此,制备1,3-XDA盐酸盐的浓度为11.5wt.%的浆料。
接下来,以64质量份/hr的供给速度,由氯化氢供给线路向成盐釜连续地吹入HCl气体,并且,以1000质量份/hr的供给速度,由胺供给线路,向成盐釜连续地装入1,3-XDA的浓度为7.5wt.%的胺溶液,同时通过盐酸盐输送线路向光化一釜中输送包含1,3-XDA盐酸盐的浆料。
接下来,以表1所示的供给速度,向光化一、二、三釜连续地导入光气。将三个反应釜的反应温度及反应压力(表压)、及相对于1,3-XDA盐酸盐1mol而言的光气的供给比例以及回用溶剂水分含量示于表1。
由此,使1,3-XDA盐酸盐与光气反应,生成1,3-XDI,制备包含1,3-XDI的反应物质。另外,未反应的光气的一部分被冷凝器,冷凝至光化釜中。
接下来,将光化反应液向脱光气塔中连续地输送。然后,在脱光气塔中将反应物质脱气。接下来,通过脱气物质输送线路,将脱气物质从脱光气塔中排出,向脱溶剂塔中连续地输送。由此,制备间1,3-XDI的浓度为95wt.%的脱溶剂物质120质量份。
接下来,通过脱溶剂物质输送线路将脱溶剂物质从脱溶剂塔中排出,脱除的溶剂经溶剂精制塔精制后回用。
溶剂精制塔填充有相当于理论塔板数为15的填充物,其操作条件如下所示:
塔底温度:80-130℃
塔顶温度:60-120℃
塔顶压力:如表1所示
塔顶回流比:如表1所示
停留时间:0.5-10h
控制回用溶剂中的水分含量:如表1所示。
将脱完溶剂的物料向脱焦油器中连续地输送。然后,在脱焦油器中将脱溶剂物质进行脱焦油,制备中间品物质。将中间品物质中的氯苯(MCB)、XDI、IBA及溴元素的含有比例示于表1
接下来,通过以100质量份/hr的供给速度,向精馏塔中连续地输送中间品物质。对于精馏塔而言,填充有相当于理论塔板数为20的填充物。然后,在精馏塔中,从塔顶脱除轻组分,从塔中采出XDI组合物产品。
精馏塔中的精馏条件如下所示:
塔底温度:145-160℃
塔顶温度:100-130℃
塔顶压力:0-500Pa
停留时间:1-10h
精馏工序的采出量和塔顶回流比示于表1。
由此,制造XDI组合物。将XDI组合物中的XDI、IBA、溴元素含有比例示于表1。
比较例2
将实施例1中得到的XDI组合物氮气保护下与比较例3中XDI组合物1:1混合得到比较例2的XDI组合物
比较例3
采用专利申请US5196572A实施例1制备XDI作为比较例3。
表1 实施例1-7及对比例1-3条件及结果
Figure PCTCN2022080069-appb-000005
Figure PCTCN2022080069-appb-000006
应用性能测试
将上述实施例和对比例的XDI组合物用于制备各类树脂材料,并进行性能评价,具体如下:
1、弹性体(TPU)
(1)制备方法:
向具备搅拌器、温度计、回流管及氮供给线路的四颈烧瓶中,装入实施例1-7及比较例1、2、3的各自的XDI组合物(多异氰酸酯成分)198质量份、和数均分子量为2000的己二酸系聚酯多元醇(三井化学公司制,TAKELAC U-2024,含有活性氢基团的成分)531.2质量份,在氮气气氛下,于80℃进行反应,直至NCO基含量成为9.1wt.%,制造异氰酸酯基末端预聚物。
此外,将耐热稳定剂(Ciba Specialty Chemicals,IRGANOX 245)3.9质量份和利用己二酸二异壬酯(西亚试剂)将催化剂辛酸锡(伊诺凯试剂)稀释成4wt.%而得到的溶液0.07质量份添加至异氰酸酯基末端预聚物中,使用机械搅拌器(德国IKA,RW20),在600rpm的搅拌下,进行约1分钟搅拌混合。接下来,将作为扩链剂的已预先调节至80℃的1,4-丁二醇(伊诺凯试剂)131.9质量份添加至异氰酸酯基末端预聚物中。进而,对异氰酸酯基末端预聚物与扩链剂的混合液进行充分搅拌约2分钟,直至整体变得均匀。
接下来,将混合液流入至已预先将温度调节为150℃的不锈钢制的盘中,于150℃反应1小时,接下来,于100℃反应23小时,制造弹性体。
然后,将弹性体从盘中取下,在室温23℃、相对湿度55%的恒温恒湿条件下养护7天。
(2)性能评价:
测定得到的弹性体(TPU)的氙灯照射试验中的色差及将其结果示于表2。
2、光学材料(塑料透镜材料)
(1)制备方法:
向烧瓶中装入二丁基二氯化锡0.001质量份、内部脱模剂(Stepan公司制,ZELECUN,酸性磷酸酯)0.07质量份、紫外线吸收剂(堺化学工业公司制,Biosorb 583)0.05质量份、实施例1-7及比较例1、2、3的各自的XDI组合物36.4质量份。而后,于25℃对它们进行1小时搅拌,使其溶解,制备多异氰酸酯成分。
然后,向该多异氰酸酯成分中装入1,2-双[(2-巯基乙基)硫基]-3-巯基丙烷(多硫醇成分)33.6质量份并进行混合,制备聚合性组合物。
以600Pa对该聚合性组合物进行1小时脱泡,然后用3μm的PTFE过滤器进行过滤。然 后,注入至由玻璃模具和带形成的铸模中。将该铸模投入至烘箱中,从10℃缓缓升温至120℃,进行18小时聚合。聚合结束后,将铸模从烘箱中取出,进行脱模,制造光学材料。
(2)性能评价:
测定得到的塑料透镜的Y.I.值。将其结果示于表2。
3、双组份聚氨酯涂布材料(包括A剂和B剂)
(1)制备方法:
A剂-1的制备:
将实施例1-7及比较例1、2、3的各自的XDI组合物463.3质量份与三羟甲基丙烷36.7质量份混合,在氮气气氛下,于70℃进行6小时反应。针对该反应液,使用薄膜蒸馏装置,将未反应的XDI馏去,由此,制造XDI改性物组合物。XDI改性物组合物含有作为XDI与三羟甲基丙烷的反应产物的氨基甲酸酯基。
以固态成分成为75wt.%的方式,在该XDI改性物组合物中添加乙酸乙酯,制造多异氰酸酯成分(A剂-1)。需要说明的是,多异氰酸酯成分中的NCO基含量为11.8wt.%。
A剂-2的制备:
向实施例1-7及比较例1、2、3的各自的XDI组合物100质量份中添加1,3-丁二醇2质量份,在氮气气氛下升温至75℃,进行2小时氨基甲酸酯化反应。XDI的异氰酸酯基与1,3-丁二醇的羟基的当量比(NCO/OH)为24。接下来,在相同温度下,作为异氰脲酸酯化催化剂,配合四丁基铵的氢氧化物的溶液(37%甲醇溶液)0.1p h r(换算为固态成分为0.037phr),在反应开始后4小时,结束异氰脲酸酯化反应。使得到的反应液通过薄膜蒸馏装置(温度150℃,真空度50Pa),将未反应的XDI除去(蒸馏收率60wt.%),由此,制造XDI改性物组合物。XDI改性物组合物含有作为XDI的三聚物的异氰脲酸酯基。以固态成分成为75wt.%的方式,在该XDI改性物组合物中添加乙酸乙酯,制造多异氰酸酯成分(A剂-2)。
B剂的制备:
用油漆搅拌器对氟多元醇(DAIKIN INDUSTRIES,LTD.制,ZEFFLE GK-570,固态成分羟值:64mgKOH/g,溶剂:乙酸丁酯)40质量份、氧化钛(石原产业公司制,CR93)52.5质量份、乙酸丁酯33.8质量份和直径2mm玻璃珠110质量份进行2小时搅拌。然后,通过过滤将玻璃珠从该混合液中除去。而后,以固态成分浓度成为58wt.%的方式,添加溶剂,制造含有活性氢基团的成分(B剂)。含有活性氢基团的成分中的氧化钛的含有比例为45wt.%。
(2)性能评价:
以异氰酸酯基与羟基(NCO/OH)的当量比成为1.0的方式将得到的多异氰酸酯成分(A剂-1或A剂-2)和含有活性氢基团的成分(B剂)混合,制备混合液。接下来,以NV值(涂膜成分质量)成为60%的方式,向混合液中添加乙酸丁酯。然后,将混合液涂布于聚对苯二甲酸乙二醇酯(PET)基材的表面,于120℃进行2分钟加热固化。接下来,于60℃将涂布了混合液的PET基材养护2天。由此,在PET基材上形成厚度约15μm的涂层。
对该涂层的耐气候性(湿热试验中的涂层的色差Δb(=∣b2-b1∣)进行测定。将其结 果示于表2。
表2 XDI组合物应用效果数据
Figure PCTCN2022080069-appb-000007
由表1可知,本申请通过将XDI组合物中IBA的含量控制在0.2-500ppm之内,能够有效提高组合物制备得到的树脂的耐变色性能,IBA的含量高于500nm(比较例1)、低于0.2ppm(比较例2)或者完全不含有IBA,耐变色性能均不及本申请,本申请提供的XDI组合物在各类树脂材料中具有更佳的应用前景。

Claims (10)

  1. 一种苯二亚甲基二异氰酸酯组合物,其包含苯二亚甲基二异氰酸酯和0.2-500ppm的式(1)所示的化合物;
    Figure PCTCN2022080069-appb-100001
  2. 根据权利要求1所述的苯二亚甲基二异氰酸酯组合物,其还包括含溴化合物;
    以溴元素的质量计,所述含溴化合物的含量为0.5-50ppm。
  3. 根据权利要求1或2所述的苯二亚甲基二异氰酸酯组合物,其中,所述苯二亚甲基二异氰酸酯包括1,2-苯二亚甲基二异氰酸酯、1,3-苯二亚甲基二异氰酸酯或1,4-苯二亚甲基二异氰酸酯中的任意一种或至少两种组合,优选1,3-苯二亚甲基二异氰酸酯和/或1,4-苯二亚甲基二异氰酸酯,更优选1,3-苯亚甲基二异氰酸酯;
    优选地,所述式(1)所示的化合物包括如下化合物中的任意一种或至少两种组合:
    Figure PCTCN2022080069-appb-100002
  4. 一种根据权利要求1-3中任一项所述的苯二亚甲基二异氰酸酯组合物的制备方法,其包括:
    (1)异氰酸酯化工序:使苯二甲胺或者苯二甲胺盐酸盐在反应溶剂存在下与光气进行异氰酸酯化反应,得到含有苯二亚甲基二异氰酸酯和式(1)所示化合物的反应产物;
    (2)溶剂分离和精制工序:对步骤(1)得到的反应产物进行溶剂脱除,脱除后溶剂精制得到回用溶剂,然后返回步骤(1)的反应系统中;
    (3)分离工序:对步骤(2)得到的脱溶剂反应产物进行分离纯化,得到所述苯二亚甲基二异氰酸酯组合物。
  5. 根据权利要求4所述的制备方法,其中,所述反应溶剂包括新鲜溶剂和/或回用溶剂;
    优选地,所述反应溶剂的水分含量为1-500ppm;
    优选地,所述回用溶剂的水分含量为1-500ppm。
  6. 一种苯二亚甲基二异氰酸酯组合物的改性组合物,其是权利要求1-3中任一项所述的苯二亚甲基二异氰酸酯组合物被改性而得到的改性物组合物,所述改性组合物中改性的苯二亚甲基二异氰酸酯含有如下(a)-(e)基团中的任意一种或至少两种组合:(a)异氰脲酸酯基、(b)脲二酮基、(c)缩二脲基、(d)氨基甲酸酯基、(e)脲基、(f)亚氨基噁二嗪二酮基、(g)脲基甲酸酯基、(h)脲酮亚胺基或(i)碳二亚胺基。
  7. 一种双组份聚氨酯原料,其包括A剂和B剂;
    所述A剂包括权利要求1-3中任一项所述的苯二亚甲基二异氰酸酯组合物和/或权利要求6所述的改性组合物;
    所述B剂包括含有活性氢基团的物质。
  8. 一种聚氨酯树脂,其通过权利要求1-3中任一项所述的苯二亚甲基二异氰酸酯组合物与含有活性氢基团的物质反应而成,或者通过权利要求6所述的改性组合物与含有活性氢基团的物质反应而成。
  9. 一种弹性体材料,其包括权利要求8所述的聚氨酯树脂。
  10. 一种光学材料,其通过权利要求1-3中任一项所述的苯二亚甲基二异氰酸酯组合物与多硫醇化合物聚合而成,或者通过权利要求6所述的改性组合物与多硫醇化合物聚合而成;
    优选地,所述光学材料包括塑料透镜材料、汽车灯罩材料、透明屋顶材料、智能手机或平板的镜头材料。
PCT/CN2022/080069 2021-03-10 2022-03-10 苯二亚甲基二异氰酸酯组合物及其制备方法和应用 WO2022188825A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2023555433A JP2024510194A (ja) 2021-03-10 2022-03-10 キシリレンジイソシアネート組成物及びその調製方法と使用
KR1020237031504A KR20230145183A (ko) 2021-03-10 2022-03-10 자일릴렌 디이소시아네이트 조성물 및 그의 제조방법과 응용
EP22766347.3A EP4306509A1 (en) 2021-03-10 2022-03-10 Xylylene diisocynate composition, preparation method therefor and use thereof
US18/281,208 US20240166795A1 (en) 2021-03-10 2022-03-10 Xylylene diisocynate composition, preparation method therefor and use thereof

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202110262179.8 2021-03-10
CN202110262179 2021-03-10
CN202210217405.5A CN115073707B (zh) 2021-03-10 2022-03-07 一种苯二亚甲基二异氰酸酯组合物及其制备方法和应用
CN202210217405.5 2022-03-07

Publications (1)

Publication Number Publication Date
WO2022188825A1 true WO2022188825A1 (zh) 2022-09-15

Family

ID=83227448

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/080069 WO2022188825A1 (zh) 2021-03-10 2022-03-10 苯二亚甲基二异氰酸酯组合物及其制备方法和应用

Country Status (5)

Country Link
US (1) US20240166795A1 (zh)
EP (1) EP4306509A1 (zh)
JP (1) JP2024510194A (zh)
KR (1) KR20230145183A (zh)
WO (1) WO2022188825A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1194459A (en) 1967-10-31 1970-06-10 Takeda Chemical Industries Ltd Method for the Purification of Isocyanates
US4465639A (en) * 1983-01-26 1984-08-14 The Upjohn Company Process for polyisocyanates
JPH037253A (ja) * 1989-02-23 1991-01-14 Mitsui Toatsu Chem Inc キシリレンジイソシアネートの製造方法
US5196572A (en) 1990-12-20 1993-03-23 Mitsubishi Gas Chemical Company, Inc. Process for producing xylylene diisocyanate
CN106748887A (zh) * 2017-01-11 2017-05-31 黄河三角洲京博化工研究院有限公司 一种苯二亚甲基二异氰酸酯的制备方法
CN108101810A (zh) * 2017-12-18 2018-06-01 甘肃银光聚银化工有限公司 一种直接光气化法制备苯二亚甲基二异氰酸酯的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1194459A (en) 1967-10-31 1970-06-10 Takeda Chemical Industries Ltd Method for the Purification of Isocyanates
US4465639A (en) * 1983-01-26 1984-08-14 The Upjohn Company Process for polyisocyanates
JPH037253A (ja) * 1989-02-23 1991-01-14 Mitsui Toatsu Chem Inc キシリレンジイソシアネートの製造方法
US5196572A (en) 1990-12-20 1993-03-23 Mitsubishi Gas Chemical Company, Inc. Process for producing xylylene diisocyanate
CN106748887A (zh) * 2017-01-11 2017-05-31 黄河三角洲京博化工研究院有限公司 一种苯二亚甲基二异氰酸酯的制备方法
CN108101810A (zh) * 2017-12-18 2018-06-01 甘肃银光聚银化工有限公司 一种直接光气化法制备苯二亚甲基二异氰酸酯的方法

Also Published As

Publication number Publication date
JP2024510194A (ja) 2024-03-06
EP4306509A1 (en) 2024-01-17
US20240166795A1 (en) 2024-05-23
KR20230145183A (ko) 2023-10-17

Similar Documents

Publication Publication Date Title
EP3444236B1 (en) Xylylenediisocyanate composition, resin, and polymerizable composition
JP7103879B2 (ja) キシリレンジイソシアネート組成物、キシリレンジイソシアネート変性体組成物、二液型樹脂原料および樹脂
JP5710065B1 (ja) 繊維、布帛、不織布、フィルム、シートおよび衣料
JP5832400B2 (ja) 硬質熱可塑性ポリウレタン樹脂、その製造方法および成形品
CN115073707B (zh) 一种苯二亚甲基二异氰酸酯组合物及其制备方法和应用
JP6373536B1 (ja) キシリレンジイソシアネート組成物、キシリレンジイソシアネート変性体組成物、二液型樹脂原料および樹脂
CN114031744B (zh) 双(异氰酸甲酯基)环己烷组合物、其改性物组合物及制备方法
JP5675011B1 (ja) 1,4−ビス(イソシアナトメチル)シクロヘキサン、ポリイソシアネート組成物、ポリウレタン樹脂および成形品
JPWO2016143898A1 (ja) イソ(チオ)シアネート組成物及びそれを用いた光学部材用樹脂組成物
WO2022188825A1 (zh) 苯二亚甲基二异氰酸酯组合物及其制备方法和应用
CN117801222A (zh) 一种环己烷二亚甲基二异氰酸酯组合物、改性组合物及聚氨酯树脂和光学树脂
CN116970144A (zh) 一种苯二亚甲基二异氰酸酯组合物及其改性组合物,一种聚氨酯树脂及一种光学材料

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22766347

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18281208

Country of ref document: US

Ref document number: 2023555433

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20237031504

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020237031504

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2022766347

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022766347

Country of ref document: EP

Effective date: 20231010