WO2022188744A1 - 传输方法、装置、设备及可读存储介质 - Google Patents

传输方法、装置、设备及可读存储介质 Download PDF

Info

Publication number
WO2022188744A1
WO2022188744A1 PCT/CN2022/079532 CN2022079532W WO2022188744A1 WO 2022188744 A1 WO2022188744 A1 WO 2022188744A1 CN 2022079532 W CN2022079532 W CN 2022079532W WO 2022188744 A1 WO2022188744 A1 WO 2022188744A1
Authority
WO
WIPO (PCT)
Prior art keywords
ris
unit
information
units
base station
Prior art date
Application number
PCT/CN2022/079532
Other languages
English (en)
French (fr)
Inventor
姜大洁
杨坤
刘选兵
刘昊
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Priority to JP2023552562A priority Critical patent/JP2024508864A/ja
Priority to EP22766267.3A priority patent/EP4307735A1/en
Publication of WO2022188744A1 publication Critical patent/WO2022188744A1/zh
Priority to US18/462,939 priority patent/US20230421209A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/04013Intelligent reflective surfaces
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/02Processing of mobility data, e.g. registration information at HLR [Home Location Register] or VLR [Visitor Location Register]; Transfer of mobility data, e.g. between HLR, VLR or external networks
    • H04W8/08Mobility data transfer
    • H04W8/14Mobility data transfer between corresponding nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition

Definitions

  • the present application belongs to the field of communication technologies, and in particular relates to a transmission method, apparatus, device, and readable storage medium.
  • RIS Reconfigurable Intelligent Surface
  • the purpose of the embodiments of the present application is to provide a transmission method, apparatus, device, and readable storage medium, so as to solve the problem of how the RIS-related device controls the reflection or transmission behavior of the RIS.
  • a transmission method executed by a first device, including:
  • a transmission method executed by a second device, including:
  • First information is received from the first device, the first information indicating at least one of a RIS capability, a RIS type, and a RIS parameter.
  • a transmission device applied to the first device, comprising:
  • the first sending module is configured to send first information to the second device, where the first information is used to indicate at least one of the RIS capability, RIS type and RIS parameter of the reconfigurable smart surface.
  • a transmission device applied to a second device, comprising:
  • the second receiving module is configured to receive first information from the first device, where the first information is used to indicate at least one of RIS capability, RIS type and RIS parameter.
  • a communication device comprising: a processor, a memory, and a program stored on the memory and executable on the processor, the program being executed by the processor to implement the first aspect or the steps of the method of the second aspect.
  • a sixth aspect provides a readable storage medium, wherein a program or an instruction is stored on the readable storage medium, and when the program or instruction is executed by a processor, the first aspect or the second aspect is implemented steps of the method.
  • a program product is provided, the program product is stored in a non-volatile storage medium, the program product is executed by at least one processor to implement the processing according to the first aspect or the second aspect steps of the method.
  • a chip in an eighth aspect, includes a processor and a communication interface, the communication interface is coupled to the processor, and the processor is configured to run a program or an instruction to implement the first aspect or the second aspect the described method of treatment.
  • a communication device configured to perform the steps of the method of the first aspect or the second aspect.
  • the first device may send the first information to the second device, so that the second device associated with the RIS can acquire the RIS capability, RIS type, and/or RIS parameter of the RIS, so that the second device can Depending on the RIS capability, RIS type, and/or RIS parameters of the RIS, the reflection or transmission behavior of the RIS can be controlled.
  • FIG. 1 is a block diagram of a wireless communication system to which an embodiment of the present application can be applied;
  • FIG. 2 is one of the flowcharts of the transmission method provided by the embodiment of the present application.
  • FIG. 3 is the second flowchart of the transmission method provided by the embodiment of the present application.
  • FIG. 4 is one of the schematic diagrams of the transmission device provided by the embodiment of the present application.
  • FIG. 5 is the second schematic diagram of the transmission device provided by the embodiment of the present application.
  • FIG. 6 is a schematic diagram of a communication device provided by an embodiment of the present application.
  • first, second, etc. in the description and claims of the present application are used to distinguish similar objects, and are not used to describe a specified order or sequence. It is to be understood that the data so used are interchangeable under appropriate circumstances so that the embodiments of the present application can be practiced in sequences other than those illustrated or described herein, and "first”, “second” distinguishes Usually it is a class, and the number of objects is not limited.
  • the first object may be one or multiple.
  • “and” in the description and claims indicates at least one of the connected objects, and the character “/" generally indicates that the associated objects are in an "or” relationship.
  • LTE Long Term Evolution
  • LTE-Advanced LTE-Advanced
  • LTE-A Long Term Evolution
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single-carrier Frequency-Division Multiple Access
  • system and “network” in the embodiments of the present application are often used interchangeably, and the described technology can be used not only for the above-mentioned systems and radio technologies, but also for other systems and radio technologies.
  • NR New Radio
  • NR terminology is used in most of the following description, although these techniques are also applicable to applications other than NR system applications, such as 6th generation ( 6th Generation, 6G) communication system.
  • LIS Large Intelligent Surface
  • SRA Smart Reflect Array
  • RRA Reconfigurable Reflect Array
  • the smart surface device is composed of a large-scale device array and an array control module.
  • the large-scale device array is a large number of device units that are regularly and repeatedly arranged on a flat bottom plate. In order to achieve considerable signal manipulation effects, hundreds or thousands of device units are usually required to form a device array.
  • the array control module of the smart surface can control the working state of each device unit, so as to dynamically or semi-statically control the response mode of each device unit to the wireless signal.
  • the wireless response signals of each device unit of the large-scale device array are superimposed on each other, forming a specific beam propagation characteristic on the macroscopic level.
  • the control module is the "brain" of the smart surface device. It determines the wireless signal response beam of the smart surface according to the needs of the communication system, making the original static communication environment “smart" and "controllable”.
  • Smart surface technology has been applied in many technical fields, and there are many different design schemes according to different application scenarios.
  • the device unit includes tunable resonator (Tunable Resonator) variable capacitance type, guided wave (Guided Wave) waveguide type, element rotation (Element Rotation) polarization type, etc.; according to the wireless signal output form, it is divided into reflection Type intelligent surface and transmission type intelligent surface; according to the wireless signal response parameter classification, including phase control type intelligent surface, amplitude control type intelligent surface and amplitude-phase joint control type intelligent surface; according to the response parameter control classification is divided into continuous control type and discrete control type ; According to the frequency or speed of controlling the amplitude and phase of the smart surface, it is divided into static, semi-static/dynamically controlled smart surfaces, of which static smart surfaces can be applied to existing systems, for example, the fourth generation generation, 4G)/fifth generation mobile communication technology (fifth-generation, 5G) system.
  • Smart surface devices are thin in thickness and light in weight, enabling flexible deployment.
  • Tunable resonator A variable capacitor is integrated into the resonator to generate a phase shift by changing the frequency-agile patch resonator frequency.
  • Rotation technology of circularly polarized waves design using the reflection law of electromagnetic waves.
  • reflect array/smart surface devices are divided into two categories:
  • Static reflective array/smart surface device The structure and function of the reflective array can be fixed. For an incident wave at an angle, the metasurface unit causes a fixed change in the amplitude, phase, polarization and other characteristics of the incident wave. , the corresponding reflected waves are obtained.
  • Dynamic reflective array/smart surface device The structure and function of the reflective array can be controlled. For an incident wave at an angle, the amplitude, phase, polarization and other characteristics of the incident wave can be changed through programmable control. , the corresponding reflected waves are obtained.
  • switching elements such as diodes, etc.
  • PIN diodes are currently a common choice for controlling reconfigurable metasurfaces. PIN diodes have a wide range of RF impedance and low distortion, and are widely used in microwave RF fields.
  • the switching element in the reflection unit has a plurality of different states, and the switching of the different states can be realized by controlling the on-off of the switching element. When the switching element is on or off, the structure and performance of the corresponding reflection unit have great changes. That is, the reflection units in different states have different control modes for the amplitude, phase, polarization and other characteristics of the incident wave.
  • Such smart surfaces are called passive smart surfaces because they consist of a large number of passive device units and have no radio frequency and baseband processing capabilities.
  • Active and passive combined smart surfaces or active smart surfaces:
  • the passive smart surface is composed of a large number of passive device units and has no radio frequency and baseband processing capabilities, the passive device unit itself cannot receive, measure or transmit signals, so the base station cannot obtain the channels from the base station to the smart surface and the smart surface to the terminal respectively. information.
  • the received signal of the base station or terminal is formed by the superposition of the response signals of a large number of smart surface device units, and changing the working state of one or a small number of device units cannot make the received signal change significantly.
  • a possible measurement scheme is to install a small number of active device units in the smart surface, so that the smart surface can perform channel measurement and feedback; the base station uses compressed sensing or deep learning algorithms to calculate reasonable smart surface configuration parameters from limited channel information .
  • Communication systems based on smart surfaces need an efficient channel measurement mechanism to improve end-to-end signal quality as much as possible on the premise of ensuring low complexity of smart surfaces.
  • This smart surface with some active devices installed has the ability to receive signals and even transmit signals, and is a smart surface (or active smart surface) that combines active and passive components.
  • the wireless communication system includes a terminal 11 , a network side device 12 and a smart surface device 13 .
  • the terminal 11 may also be called a terminal device or a user terminal (User Equipment, UE), and the terminal 11 may be a mobile phone, a tablet computer (Tablet Personal Computer), a laptop computer (Laptop Computer) or a notebook computer, a personal digital computer Assistant (Personal Digital Assistant, PDA), handheld computer, netbook, ultra-mobile personal computer (ultra-mobile personal computer, UMPC), mobile Internet device (Mobile Internet Device, MID), wearable device (Wearable Device) or vehicle-mounted device (VUE), pedestrian terminal (PUE) and other terminal-side devices, wearable devices include: bracelets, headphones, glasses, etc. It should be noted that, the embodiment of the present application does not limit the specific type of the terminal 11 .
  • the network side device 12 may be a base station or a core network network device, wherein the base station may be referred to as a Node B, an evolved Node B, an access point, a Base Transceiver Station (BTS), a radio base station, a radio transceiver, a basic Service Set (BasicServiceSet, BSS), Extended Service Set (ExtendedServiceSet, ESS), Node B, Evolved Node B (eNB), Home Node B, Home Evolved Node B, Wireless Local Area Networks (WLAN) Ingress point, Wireless Fidelity (WiFi) node, Transmitting Receiving Point (TRP), wireless access network node or some other suitable term in the field, as long as the same technical effect is achieved, all
  • the base station described above is not limited to the specified technical vocabulary. It should be noted that, in the embodiments of this application, only the base station in the NR system is used as an example, but the specific type of the base station is not limited.
  • an embodiment of the present application provides a transmission method
  • the execution body of the method may be a first device
  • the first device includes but is not limited to one of the following: a RIS, a relay (relay) node (for example, a layer 1 relay, Layer 2 relay, Layer 3 relay, or Integrated Access and Backhaul (IAB) node, repeater (repeater), etc.
  • a RIS a relay
  • IAB Integrated Access and Backhaul
  • the first device has some capabilities or some features of RIS;
  • the specific steps of the method include: step 201 .
  • Step 201 Send first information to the second device, where the first information is used to indicate the RIS capability, RIS type and/or RIS parameter of the reconfigurable smart surface.
  • the method further includes:
  • Second information sent by the second device is received, where the second information is used to instruct the first device to send the first information.
  • the first device may be a RIS or a relay node
  • the second device may be a base station to which the RIS or a relay node belongs; or, the first device may be a first base station, and the The second device may be a second base station, or the second device may be a terminal served by the first base station, or the second device may be a RIS or a relay node served by the first base station; or, The first device may be a first RIS or a first relay node, and the second device may be a second RIS or a second relay node.
  • the first device is a RIS
  • the second device is a base station.
  • the base station may be a base station to which the RIS belongs, or any one of multiple base stations associated with the RIS.
  • the base station inquires the RIS for related information of the RIS through the second information, and the second information triggers the RIS to report the RIS capability, the RIS type and/or the RIS parameter to the base station.
  • Scenario 2 The first device is the first base station, and the second device is the second base station.
  • the first base station transmits the RIS capability, RIS type and/or RIS parameters of the RIS associated with the first base station to the second base station.
  • the first device is the first base station
  • the second device is the UE served by the first base station or the RIS served by the first base station.
  • the first base station sends the RIS capability, RIS type and/or RIS parameter of the RIS associated with the first base station to the UE served by the first base station or the RIS served by the first base station.
  • Scenario 4 The first device is the first RIS and the second device is the second RIS.
  • the first RIS sends the RIS capability, RIS type and/or RIS parameters of the first RIS to the second RIS.
  • the first device may send the first information to the second device in the following manner:
  • the first information is actively sent to the second device.
  • the first information is periodically sent to the second device.
  • the above-mentioned sending of the first information may be sending the first information by means of wired transmission, or may also be sending the first information by means of wireless transmission.
  • the RIS type includes one of the following:
  • Transflective RIS refers to a RIS that supports both reflection and transmission.
  • control device may be a variable capacitance diode, a switching diode, a liquid crystal, or graphene, a ferroelectric, a ferromagnet, a phase-variable material, or other semiconductors.
  • the type of RIS unit (the type of RIS reflective or transmissive unit) can be metal, dielectric or tunable elements, etc.;
  • the RIS capability includes one or more of the following:
  • the first signal is a signal sent by a device other than the first device.
  • the first signal may be sent by a base station associated with the RIS signal of;
  • the characteristics include one or more of the following: phase, amplitude, polarization, frequency, orbital angular momentum (Orbital Angular Momentum, OAM).
  • an adjustment method for the first signal includes: a continuous adjustment method or a discrete adjustment method
  • the adjustment to the first signal may be a continuous adjustment or a discrete adjustment.
  • the RIS adjusts the phase (or amplitude) of the first signal, whether it is continuous phase adjustment or discrete phase adjustment (or continuous amplitude adjustment or discrete amplitude adjustment) needs to be reported to the base station.
  • the number of states of discrete features needs to be reported to the base station; for example, for a RIS reflection unit controlled by a switch diode, if each RIS unit controls the phase of the first signal through the on and off of a switch diode , it is equivalent to 1 bit (bit) controlling the number of two states; for another example, if each RIS unit controls the phase of the first signal through the on and off of two switching diodes, it is equivalent to 2 bits controlling the number of four states.
  • the state of the RIS unit corresponds to a combination of the multiple parameters, and at least one of the parameters is different from the other states.
  • the relationship between the number of states N of the RIS unit and the number of control information bits B, N ⁇ 2 ⁇ B, and N and B are greater than or equal to 1.
  • the unit of the adjustment speed may be milliseconds, microseconds, nanoseconds, and the like.
  • the steerable beam information of the RIS may include: the identification of the steerable beams of the RIS, and the direction and beam width (eg, 3 dB) of each steerable beam, and the like.
  • the steerable beam corresponds to the state pattern of the controller of each RIS unit.
  • the working bandwidth of RIS is to support the working bandwidth of 2GHz-3GHz.
  • the RIS parameters include one or more of the following:
  • the arrangement of the RIS units includes: matrix arrangement, circular arrangement or other shape arrangement, such as sparse arrangement and the like.
  • the size of the RIS unit includes one or more of the following: the length of the RIS unit, the width of the RIS unit, and the thickness of the RIS unit.
  • the size of the RIS unit is determined according to the wavelength ⁇ of the center frequency point of the working bandwidth of the RIS unit and the scaling factor ⁇ , that is, the size of the RIS unit is ⁇ .
  • the first device includes one or more sub-RIS devices, for example, a large RIS device includes a plurality of small sub-RIS devices that are pieced together device, the sub-RIS device is equivalent to a part of the RIS unit.
  • the RIS unit may include a total of 400 RIS units with 20 ⁇ 20 on one side.
  • the sub-RIS device can be understood as dividing 400 units into 4 areas, each area has 100 units, that is, one area is a sub-RIS device.
  • the supported valid area provide the area ID (Area ID) or support one or more cells.
  • RIS reports RIS parameters related to transmission and reflection respectively, such as the different RIS unit positions and the number of RIS units corresponding to the two; this is because the control circuit of RIS (such as Field Programmable Gate Array, FPGA)) may be placed on the back of the RIS, which will affect the transmission performance of some RIS units near the FPGA, but basically does not affect the reflection performance of the RIS unit; therefore, the RIS parameters related to transmission and reflection need to be reported separately For example, there are a total of 100 RIS units, only 80 RIS units can be used as transmission, and the remaining 20 RIS units cannot be used as transmission surfaces due to the control circuit on the back; so that the base station can only control the transmission of 80 RIS units in a targeted manner. related adjustments.
  • FPGA Field Programmable Gate Array
  • the first information further includes: a control mode of the RIS unit; wherein, the control mode of the RIS unit includes one or more of the following: electrical control, magnetic control, optical control, temperature control.
  • the tunable materials or devices used in RIS have some properties, such as relatively obvious and rapid changes in physical properties of such substances under external environmental stimuli.
  • the properties of such materials will be adjusted accordingly, enabling RIS to achieve different modulation mechanisms.
  • the type of substance used in the electronic control mode can also be reported to the second device; for example, the electronic control mode can use nematic liquid crystal or graphene, etc.; the magnetic control mode can use ferrite magnet rods, ferrite sheets, etc. ;
  • Light control methods include silicon, gallium arsenide or optoelectronic semiconductor materials, etc.; thermal control methods include phase change materials, such as vanadium dioxide.
  • the first device may send the first information to the second device, so that the second device associated with the RIS can acquire the RIS capability, RIS type, and/or RIS parameter of the RIS, so that the second device can Depending on the RIS capability, RIS type, and/or RIS parameters of the RIS, the reflection or transmission behavior of the RIS can be controlled.
  • an embodiment of the present application provides a transmission method, where the execution body of the method is a second device, and the second device includes but is not limited to one of the following: RIS, relay node (for example, layer 1 relay, layer 2 relay, layer 2 3 relay, or IAB node, repeater), base station, terminal, etc.
  • the specific steps include: Step 301 .
  • Step 301 Receive first information from a first device, where the first information is used to indicate at least one of RIS capability, RIS type and RIS parameter.
  • the method further includes: sending second information, where the second information is used to instruct the first device to send the first information.
  • the first device may be a RIS or a relay node
  • the second device may be a base station to which the RIS or a relay node belongs; or, the first device may be a first base station, and the The second device is a second base station, or the second device may be a terminal served by the first base station, or the second device may be a RIS or a relay node served by the first base station; or, all The first device may be a first RIS or a first relay node, and the second device may be a second RIS or a second relay node.
  • the RIS type includes one of the following:
  • the RIS capability includes one or more of the following:
  • the first signal being a signal sent by other devices than the first device
  • an adjustment method for the first signal includes: a continuous adjustment method or a discrete adjustment method
  • the characteristics include one or more of the following: phase, amplitude, polarization, frequency, OAM.
  • the RIS parameters include one or more of the following:
  • the first device includes one or more sub-RIS devices
  • the arrangement of the RIS units includes: matrix arrangement, circular arrangement or other shape arrangement.
  • the size of the RIS unit includes one or more of the following: the length of the RIS unit, the width of the RIS unit, and the thickness of the RIS unit;
  • the size of the RIS unit is determined according to the wavelength of the center frequency point of the working bandwidth of the RIS unit and the scaling factor.
  • the first information further includes: a control mode of the RIS unit; wherein, the control mode of the RIS unit includes one or more of the following: electrical control, magnetic control, optical control, temperature control.
  • the first device may send the first information to the second device, so that the second device associated with the RIS can acquire the RIS capability, RIS type, and/or RIS parameter of the RIS, so that the second device can Depending on the RIS capability, RIS type, and/or RIS parameters of the RIS, the reflection or transmission behavior of the RIS can be controlled.
  • an embodiment of the present application provides a transmission apparatus, which is applied to a first device.
  • the execution body of the method may be the first device, and the first device includes but is not limited to one of the following: a RIS, a relay node, and a base station. etc., the apparatus 400 includes:
  • the first sending module 401 is configured to send first information to the second device, where the first information is used to indicate at least one of the RIS capability, RIS type and RIS parameter of the reconfigurable smart surface.
  • the apparatus 400 further includes:
  • a first receiving module configured to receive second information sent by the second device, where the second information is used to instruct the first device to send the first information.
  • the first device is a RIS or a relay node
  • the second device is a base station to which the RIS or relay node belongs; or, the first device is a first base station, and the second device is a second base station, or the second device is a terminal served by the first base station, or the second device is a RIS or relay node served by the first base station; or, the first device is a The first RIS or the first relay node, and the second device is the second RIS or the second relay node.
  • the first device may send the first information to the second device in the following manner:
  • the RIS type includes one of the following:
  • the RIS capability includes one or more of the following:
  • the first signal being a signal sent by other devices than the first device
  • an adjustment method for the first signal includes: a continuous adjustment method or a discrete adjustment method
  • the characteristics include one or more of the following: phase, amplitude, polarization, frequency, OAM.
  • the RIS parameters include one or more of the following:
  • the first device includes one or more sub-RIS devices
  • the arrangement of the RIS units includes: matrix arrangement, circular arrangement or other shape arrangement.
  • the size of the RIS unit includes: the length of the RIS unit, the width of the RIS unit, and/or the thickness of the RIS unit.
  • the size of the RIS unit is determined according to the wavelength of the center frequency point of the working bandwidth of the RIS unit and the scaling factor.
  • the first information further includes: a control mode of the RIS unit; wherein, the control mode of the RIS unit includes one or more of the following: electrical control, magnetic control, optical control, temperature control.
  • the apparatus provided in the embodiment of the present application can implement each process implemented by the method embodiment shown in FIG. 2 , and achieve the same technical effect. To avoid repetition, details are not described here.
  • an embodiment of the present application provides a transmission apparatus, and the execution subject applied to the method is a second device, where the second device includes but is not limited to one of the following: a RIS, a relay node, a base station, a terminal, etc.
  • Apparatus 500 includes:
  • the second receiving module 501 is configured to receive first information from the first device, where the first information is used to indicate at least one of RIS capability, RIS type and RIS parameter.
  • the device further includes:
  • a second sending module configured to send second information, where the second information is used to instruct the first device to send the first information.
  • the first device is a RIS or a relay node
  • the second device is a base station to which the RIS or relay node belongs; or, the first device is a first base station, and the second device is a second base station, or the second device is a terminal served by the first base station, or the second device is a RIS or relay node served by the first base station; or, the first device is a The first RIS or the first relay node, and the second device is the second RIS or the second relay node.
  • the RIS type includes one of the following:
  • the RIS capability includes one or more of the following:
  • the first signal being a signal sent by other devices than the first device
  • an adjustment method for the first signal includes: a continuous adjustment method or a discrete adjustment method
  • the characteristics include one or more of the following: phase, amplitude, polarization, frequency, OAM.
  • the RIS parameters include one or more of the following:
  • the first device includes one or more sub-RIS devices
  • the arrangement of the RIS units includes: matrix arrangement, circular arrangement or other shape arrangement.
  • the size of the RIS unit includes one or more of the following: the length of the RIS unit, the width of the RIS unit, and the thickness of the RIS unit;
  • the size of the RIS unit is determined according to the wavelength of the center frequency point of the working bandwidth of the RIS unit and the scaling factor.
  • the first information further includes: a control mode of the RIS unit; wherein, the control mode of the RIS unit includes one or more of the following: electrical control, magnetic control, optical control, temperature control.
  • the apparatus provided in this embodiment of the present application can implement each process implemented by the method embodiment shown in FIG. 3 , and achieve the same technical effect. To avoid repetition, details are not described here.
  • an embodiment of the present invention provides a communication device 600, including: a processor 601, a transceiver 602, a memory 603, a user interface 604, and a bus interface.
  • the processor 601 may be responsible for managing the bus architecture and general processing.
  • Memory 603 may store data used by processor 601 in performing operations.
  • the communication device 600 may further include: a computer program stored in the memory 603 and executable on the processor 601 , and when the computer program is executed by the processor 601, implements the functions of the embodiment shown in FIG. 2 or FIG. 3 . step.
  • the bus architecture may include any number of interconnected buses and bridges, in particular one or more processors represented by processor 601 and various circuits of memory represented by memory 603 linked together.
  • the bus architecture can also link together various other circuits, such as peripheral devices, voltage regulators, and power management circuits, which are well known in the art, and therefore will not be further described in this embodiment of the present invention .
  • the bus interface provides the interface.
  • Transceiver 602 may be a number of elements, including a transmitter and a receiver, that provide a means for communicating with various other devices over a transmission medium.
  • the communication device provided in this embodiment of the present invention can execute the above method embodiment in FIG. 2 or FIG. 3 , and the implementation principle and technical effect thereof are similar, and details are not described herein again in this embodiment.
  • An embodiment of the present application further provides a program product, the program product is stored in a non-volatile storage medium, and the program product is executed by at least one processor to implement the processing method described in FIG. 2 or FIG. 3 A step of.
  • An embodiment of the present application further provides a communication device, which is configured to perform the various processes of the foregoing method embodiments, and can achieve the same technical effect. To avoid repetition, details are not described here.
  • An embodiment of the present application further provides a readable storage medium, where a program or an instruction is stored on the readable storage medium, and when the program or instruction is executed by a processor, each process of the method embodiment shown in FIG. 2 or FIG. 3 is implemented. , and can achieve the same technical effect, in order to avoid repetition, it is not repeated here.
  • the processor is the processor in the terminal described in the foregoing embodiment.
  • the readable storage medium includes a computer-readable storage medium, such as a computer read-only memory (Read-Only Memory, ROM), a random access memory (Random Access Memory, RAM), a magnetic disk or an optical disk, and the like.
  • An embodiment of the present application further provides a chip, where the chip includes a processor and a communication interface, the communication interface is coupled to the processor, and the processor is used to run a network-side device program or instruction to implement the above-mentioned FIG. 3 or
  • the various processes of the method embodiment shown in FIG. 4 can achieve the same technical effect, and are not repeated here in order to avoid repetition.
  • the chip mentioned in the embodiments of the present application may also be referred to as a system-on-chip, a system-on-chip, a system-on-chip, or a system-on-a-chip, or the like.
  • the method of the above embodiment can be implemented by means of software plus a necessary general hardware platform, and of course can also be implemented by hardware, but in many cases the former is better implementation.
  • the technical solution of the present application can be embodied in the form of a software product in essence or in a part that contributes to the prior art, and the computer software product is stored in a storage medium (such as ROM/RAM, magnetic disk, CD-ROM), including several instructions to make a terminal (which may be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.) execute the methods described in the various embodiments of this application.
  • a storage medium such as ROM/RAM, magnetic disk, CD-ROM

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Databases & Information Systems (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Relay Systems (AREA)
  • Information Transfer Systems (AREA)
  • Signal Processing For Digital Recording And Reproducing (AREA)
  • Computer And Data Communications (AREA)

Abstract

本申请公开了一种传输方法、装置、设备及可读存储介质,该方法包括:向第二设备发送第一信息,所述第一信息用于指示可重构智能表面RIS能力、RIS类型和RIS参数中的至少一项。

Description

传输方法、装置、设备及可读存储介质
相关申请的交叉引用
本申请主张在2021年03月09日在中国提交的中国专利申请No.202110257318.8的优先权,其全部内容通过引用包含于此。
技术领域
本申请属于通信技术领域,具体涉及一种传输方法、装置、设备及可读存储介质。
背景技术
可重构智能表面(Reconfigurable Intelligent Surface,RIS)的种类众多,不同类型的RIS的各项参数也不尽相同。如果与RIS关联的通信设备不了解该RIS的种类、参数或能力,导致该通信设备无法控制RIS的反射或透射行为。
发明内容
本申请实施例的目的是提供一种传输方法、装置、设备及可读存储介质,解决RIS关联的设备如何控制该RIS的反射或透射行为的问题。
第一方面,提供一种传输方法,由第一设备执行,包括:
向第二设备发送第一信息,所述第一信息用于指示RIS能力、RIS类型和RIS参数中的至少一项。
第二方面,提供一种传输方法,由第二设备执行,包括:
从第一设备接收第一信息,所述第一信息用于指示RIS能力、RIS类型和RIS参数中的至少一项。
第三方面,提供一种传输装置,应用于第一设备,包括:
第一发送模块,用于向第二设备发送第一信息,所述第一信息用于指示可重构智能表面RIS能力、RIS类型和RIS参数中的至少一项。
第四方面,提供一种传输装置,应用于第二设备,包括:
第二接收模块,用于从第一设备接收第一信息,所述第一信息用于指示 RIS能力、RIS类型和RIS参数中的至少一项。
第五方面,提供一种通信设备,包括:处理器、存储器及存储在所述存储器上并可在所述处理器上运行的程序,所述程序被所述处理器执行时实现如第一方面或第二方面所述的方法的步骤。
第六方面,提供一种可读存储介质,其特征在于,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如第一方面或第二方面所述的方法的步骤。
第七方面,提供一种程序产品,所述程序产品被存储在非易失的存储介质中,所述程序产品被至少一个处理器执行以实现如第一方面或第二方面所述的处理的方法的步骤。
第八方面,提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如第一方面或第二方面所述的处理的方法。
第九方面,提供了一种通信设备,被配置为执行如第一方面或第二方面所述的方法的步骤。
在本申请实施例中,第一设备可以向第二设备发送第一信息,使得与RIS关联的第二设备可以获取该RIS的RIS能力、RIS类型和/或RIS参数,进而使得第二设备可以根据该RIS的RIS能力、RIS类型和/或RIS参数,可以控制该RIS的反射或透射行为。
附图说明
图1是本申请实施例可应用的一种无线通信系统的框图;
图2是本申请实施例提供的传输方法的流程图之一;
图3是本申请实施例提供的传输方法的流程图之二;
图4是本申请实施例提供的传输装置的示意图之一;
图5是本申请实施例提供的传输装置的示意图之二;
图6是本申请实施例提供的通信设备的示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述指定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施,且“第一”、“第二”所区别的对象通常为一类,并不限定对象的个数,例如第一对象可以是一个,也可以是多个。此外,说明书以及权利要求中“和”表示所连接对象的至少其中之一,字符“/”一般表示前后关联对象是一种“或”的关系。
值得指出的是,本申请实施例所描述的技术不限于长期演进型(Long Term Evolution,LTE)/LTE的演进(LTE-Advanced,LTE-A)系统,还可用于其他无线通信系统,诸如码分多址(Code Division Multiple Access,CDMA)、时分多址(Time Division Multiple Access,TDMA)、频分多址(Frequency Division Multiple Access,FDMA)、正交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA)、单载波频分多址(Single-carrier Frequency-Division Multiple Access,SC-FDMA)和其他系统。本申请实施例中的术语“系统”和“网络”常被可互换地使用,所描述的技术既可用于以上提及的系统和无线电技术,也可用于其他系统和无线电技术。然而,以下描述出于示例目的描述了新空口(New Radio,NR)系统,并且在以下大部分描述中使用NR术语,尽管这些技术也可应用于NR系统应用以外的应用,如第6代(6th Generation,6G)通信系统。
为了便于理解本申请实施例,下面先介绍以下技术点:
一、智能表面/超材料表面:
智能表面是一种新兴的技术,有如下多个相关的术语,它们表示的都是类似的技术或者实体,这些术语包括:
大型智能表面(Large Intelligent Surface,LIS);
智能反射阵列(Smart Reflect Array,SRA);
可配置反射阵列(Reconfigurable Reflect Array,RRA);
智能反射表面(Intelligent Reflecting Surface,IRS);
可重构智能表面(Reconfigurable Intelligent Surface,RIS)。
智能表面设备由大规模器件阵列和阵列控制模块构成,大规模器件阵列是在平面底板上规则的重复排列的大量器件单元。为达到可观的信号操控效果,通常需要几百或者几千个器件单元组成器件阵列。智能表面的阵列控制模块可以控制每个器件单元的工作状态,从而动态或半静态的控制每个器件单元对无线信号的响应模式。大规模器件阵列的每个器件单元的无线响应信号互相叠加,在宏观上形成特定的波束传播特征。控制模块是智能表面设备的“大脑”,根据通信系统的需求确定智能表面的无线信号响应波束,使得原来静态的通信环境变得“智能”、“可控”。
智能表面技术在多个技术领域有所应用,根据应用场景不同有很多种不同的设计方案。按照器件单元的物理原理分类包含可调谐谐振器(Tunable Resonator)可变电容型、导波(Guided Wave)波导型、元素旋转(Element Rotation)极化型等;按照无线信号输出形式,分为反射型智能表面和透射型智能表面;按照无线信号响应参数分类包括相位控制型智能表面,幅度控制型智能表面和幅度相位联合控制型智能表面;按照响应参数控制分类分为连续控制型和离散控制型;按照控制智能表面幅度和相位的频次或快慢分为静态,半静态/动态控制的智能表面,其中静态的智能表面目前就可以应用到已有系统中,例如,第四代移动通信技术(fourth generation,4G)/第五代移动通信技术(fifth-generation,5G)系统。考虑器件设计和制作的复杂度,学术界普遍选择使用单一无线信号响应参数的离散控制型器件单元进行研究。目前,学术界广泛讨论的智能反射表面(Intelligent Reflecting Surface,IRS)就是一种基于信号反射的相位控制智能表面,通过1比特(bit)的指示信息控制器单元的反射信号的相位,实现0或π的相位翻转。
得益于不需要射频和基带处理电路,智能表面设备相比传统无线通信收发设备有几点优势:
(1)智能表面设备有更低的成本和实现复杂度;
(2)智能表面设备具有更低的功耗;
(3)智能表面不会引入额外的接收端热噪声;
(4)智能表面设备厚度薄、重量小,可以实现灵活的部署。
其中,RIS种类的有以下几种:
(1)可调谐谐振器:一个可变电容器被整合到谐振器中,通过改变频率捷变(frequency-agile)贴片谐振器频率,产生相移。
(2)导波控制法:在这种情况下,到达的空间波被天线耦合到导波上,随后导波相移,再重新发射,形成了一个天线移相器。
(3)圆极化波的旋转技术:利用电磁波的反射规律进行设计。
进一步地,从是否可动态控制的角度划分,反射阵列/智能表面设备分为两大类:
(1)静态的反射阵列/智能表面设备:反射阵列的结构和功能可以是固定的,对于一个角度的入射波,超表面单元导致入射波的幅度、相位、极化方式等特性发生固定的改变,得到相应的反射波。
(2)动态的反射阵列/智能表面设备:反射阵列的结构和功能是可以控制的,对于一个角度的入射波,可以通过可编程控制使得入射波的幅度、相位、极化方式等特性发生不同的改变,得到相应的反射波。对反射超表面实现可编程控制,须在反射单元中引入开关元件(如二极管等)。PIN二极管是目前控制可重构超表面的常见选择,PIN二极管具备较宽范围的射频阻抗,并且失真低,在微波射频领域具有广泛应用。反射单元中的开关元件使其具有多个不同的状态,并且通过控制开关元件的通断可实现不同状态的切换。开关元件在通、断两种情况下,对应反射单元的结构和性能均有较大变化。即,不同状态的反射单元对入射波的幅度、相位、极化等特性有不同的调控模式。
二、无源智能表面:
由于智能表面由大量的无源器件单元构成并且没有射频和基带处理能力,因此称此类智能表面为无源智能表面。
三、有源无源结合的智能表面(或有源智能表面):
由于无源智能表面由大量的无源器件单元构成并且没有射频和基带处理能力,无源器件单元本身无法接收、测量或者发送信号,所以基站无法分别 获得基站到智能表面以及智能表面到终端的信道信息。基站或终端的接收信号由大量的智能表面器件单元的响应信号叠加形成,改变一个或者少量的器件单元的工作状态并不能使接收信号产生明显的变化。一种可能的测量方案是在智能表面中安装少量有源器件单元,使得智能表面能够进行信道测量和反馈;基站使用压缩感知或者深度学习算法从有限的信道信息中推算出合理的智能表面配置参数。基于智能表面的通信系统需要一个高效的信道测量机制,在保证智能表面低复杂度的前提下,尽量提升端到端的信号质量。这种安装了部分有源器件的智能表面具备接收信号甚至发送信号的能力,是一种有源无源结合的智能表面(或有源智能表面)。
参见图1,图中示出本申请实施例可应用的一种无线通信系统的框图。无线通信系统包括终端11、网络侧设备12和智能表面设备13。其中,终端11也可以称作终端设备或者用户终端(User Equipment,UE),终端11可以是手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)或称为笔记本电脑、个人数字助理(Personal Digital Assistant,PDA)、掌上电脑、上网本、超级移动个人计算机(ultra-mobile personal computer,UMPC)、移动上网装置(Mobile Internet Device,MID)、可穿戴式设备(Wearable Device)或车载设备(VUE)、行人终端(PUE)等终端侧设备,可穿戴式设备包括:手环、耳机、眼镜等。需要说明的是,在本申请实施例并不限定终端11的具体类型。
网络侧设备12可以是基站或核心网网络设备,其中,基站可被称为节点B、演进节点B、接入点、基收发机站(Base TransceiverStation,BTS)、无线电基站、无线电收发机、基本服务集(BasicServiceSet,BSS)、扩展服务集(ExtendedServiceSet,ESS)、B节点、演进型B节点(eNB)、家用B节点、家用演进型B节点、无线局域网络(Wireless Local Area Networks,WLAN)接入点、无线保真(Wireless Fidelity,WiFi)节点、发送接收点(Transmitting Receiving Point,TRP)、无线接入网节点或所述领域中其他某个合适的术语,只要达到相同的技术效果,所述基站不限于指定技术词汇,需要说明的是,在本申请实施例中仅以NR系统中的基站为例,但是并不限定基站的具体类型。
下面结合附图,通过一些实施例及其应用场景对本申请实施例提供的一种传输方法、装置、设备及可读存储介质进行详细地说明。
参见图2,本申请实施例提供一种传输方法,该方法的执行主体可以为第一设备,该第一设备包括但不限于以下之一:RIS、中继(relay)节点(例如层1relay,层2relay,层3relay,或者接入和回传一体化(Integrated Access and Backhaul,IAB)节点、中继器(repeater)等,需要说明的是,该第一设备具备RIS的部分能力或者部分特征;该方法的具体步骤包括:步骤201。
步骤201:向第二设备发送第一信息,所述第一信息用于指示可重构智能表面RIS能力、RIS类型和/或RIS参数。
在本申请的一种实施方式中,所述方法还包括:
接收所述第二设备发送的第二信息,所述第二信息用于指示所述第一设备发送所述第一信息。
可选地,所述第一设备可以为RIS或中继节点,所述第二设备可以为所述RIS或中继节点所属的基站;或者,所述第一设备可以为第一基站,所述第二设备可以为第二基站,或者,所述第二设备可以为所述第一基站服务的终端,或者所述第二设备可以为所述第一基站服务的RIS或中继节点;或者,所述第一设备可以为第一RIS或第一中继节点,所述第二设备可以为第二RIS或第二中继节点。
场景1:第一设备是RIS,第二设备是基站,该基站可以是RIS所属的基站,或者是RIS关联的多个基站中的任意一个基站。
在本示例中,基站通过第二信息向RIS询问RIS的相关信息,第二信息触发RIS向基站上报RIS能力、RIS类型和/或RIS参数。
场景2:第一设备是第一基站,第二设备是第二基站。
在本示例中,第一基站向第二基站发送与第一基站关联的RIS的RIS能力、RIS类型和/或RIS参数。
场景3:第一设备是第一基站,第二设备是第一基站服务的UE或者是第一基站服务的RIS。
在本示例中,第一基站向第一基站服务的UE或者是第一基站服务的RIS发送与第一基站关联的RIS的RIS能力、RIS类型和/或RIS参数。
场景4:第一设备是第一RIS,第二设备是第二RIS。
在本示例中,第一RIS向第二RIS发送第一RIS的RIS能力、RIS类型和/或RIS参数。
在本申请的一种实施方式中,第一设备可以通过以下方式向第二设备发送第一信息:
(1)在所述第一设备上电之后,向所述第二设备发送所述第一信息;
例如,在RIS注册过程或添加过程中,主动向所述第二设备发送所述第一信息。
(2)根据预设周期,向所述第二设备发送所述第一信息。
也就是,周期性地向第二设备发送第一信息。
可以理解的是,上述发送第一信息可以是通过有线传输的方式发送第一信息,或者也可以是通过无线传输的方式发送第一信息。
在本申请的一种实施方式中,所述RIS类型包括以下之一:
(1)透射型RIS;
(2)反射型RIS;
(3)透射反射型RIS;
透射反射型RIS是指既支持反射又支持透射的RIS。
(4)有源RIS;
(5)无源RIS;
(6)有源和无源结合的RIS;
(7)控制RIS单元的控制器的类型;
例如,控制器件可以是可变电容二极管,开关二极管,液晶,或者石墨烯,铁电体,铁磁体,相位可变材料,或者其他半导体等。
(8)RIS单元的类型。
可选地,RIS单元的类型(RIS反射或透射单元的类型)可以是金属,介质或可调的元件等;
在本申请的一种实施方式中,所述RIS能力包括以下一项或多项:
(1)调整或操控第一信号的特征,所述第一信号是所述第一设备以外的其他设备发送的信号,例如,第一设备为RIS,则第一信号可以是RIS关联 的基站发送的信号;
可选地,所述特征包括以下一项或多项:相位、幅度、极化方式、频率、轨道角动量(Orbital Angular Momentum,OAM)。
(2)对所述第一信号的调整方式,所述调整方式包括:连续调整方式或者离散调整方式;
可以理解的是,对第一信号的调整可以是连续调整或离散调整。例如,如果RIS调整第一信号的相位(或幅度),那么是连续相位调整还是离散相位调整(或者连续幅度调整还是离散幅度调整)需要上报给基站。
(3)所述离散调整方式中离散特征的状态数量;
可以理解的是,如果是离散调整,离散特征的状态数量需要上报给基站;例如,开关二极管控制的RIS反射单元,如果每个RIS单元通过一个开关二极管的通和断来控制第一信号的相位,则相当于1比特(bit)控制两种状态数量;再例如,如果每个RIS单元通过2个开关二极管的通和断来控制第一信号的相位,则相当于2bit控制4种状态数量。
如果RIS单元可以调整多个参数(例如,控制幅度和相位),则RIS单元的状态对应于所述多个参数的组合,并且其中至少有一个参数与其他状态不同。RIS单元的状态数量N与控制信息比特数B的关系,N≤2^B,N、B大于等于1。
(4)RIS的调整速度;
可以理解的是,调整速度的单位可以是毫秒、微秒、纳秒等。
(5)RIS收到控制信令到完成调整的时间间隔(gap);
(6)RIS单元间的同步精度;
(7)RIS的可调波束信息;
例如,RIS的可调波束信息可以包括:RIS的可调波束的标识、以及每个可调波束的方向和波束宽度(例如3dB)等。
其中,可调波束对应各个RIS单元的控制器的状态图案(pattern)。
(8)RIS的工作带宽和/或频率信息。
例如,RIS的工作带宽是支持2GHz-3GHz的工作带宽。
在本申请的一种实施方式中,所述RIS参数包括以下一项或多项:
(1)RIS单元的排列方式;
可选地,RIS单元的排列方式包括:矩阵排列,圆环排列或其他形状排列,比如稀疏排列等。
可以理解的是,上报RIS单元的排列方式的时候可以携带必要的参数信息,例如矩阵排列的行数和列数或长宽尺寸,圆环排列的半径或者RIS数量,稀疏排列的规则和生成方式等。
(2)RIS单元的数量;
(3)RIS单元的尺寸和/或厚度;
可选地,所述RIS单元的尺寸包括以下一项或多项:所述RIS单元的长度、所述RIS单元的宽度、所述RIS单元的厚度。
具体的,所述RIS单元的尺寸是根据所述RIS单元的工作带宽中心频点的波长λ和缩放因子β确定的,即RIS单元的尺寸为βλ。
(4)RIS单元的形状;
(5)RIS单元间的间距;
(6)RIS单元的曲率;
可以理解的是,如果RIS所有单元构成一个曲面,则RIS单元的曲率可以上报给第二设备;
(7)无源器件单元或有源器件单元的位置;
可以理解的是,对于包含无源器件单元和有源器件单元的RIS阵列,分别上报无源器件单元或者有源器件单元的位置,进一步地,可以间接确定有源器件单元之间的位置关系。
(8)子RIS设备的数量和/或各个子RIS设备的相对位置,所述第一设备包括一个或多个子RIS设备,例如,一个大的RIS设备包括多个拼凑在一起的小的子RIS设备,子RIS设备相当于RIS单元的一部分。
示例性地,RIS单元可以包括一面RIS有20×20个共400个单元。子RIS设备可以理解为是将400个单元分成4个区域,每个区域100个单元,即一个区域就是一个子RIS设备。
(9)RIS单元的位置;
(10)RIS单元的位置可调范围;
(11)RIS单元的高度;
(12)RIS单元的高度可调范围;
(13)RIS单元的倾角;
(14)RIS单元的倾角可调范围;
(15)RIS单元的正面朝向角度;
(16)RIS单元的水平转角的可调范围;
(17)RIS的标识信息;
(18)RIS关联的TRP标识;
(19)RIS关联的小区标识;
比如,支持的有效区域,提供区域标识(Area ID)或者支持的一个或多个小区。
(20)RIS关联的公共陆地移动网(Public Land Mobile Network,PLMN)列表(list);
(21)RIS的有效期或者出厂日期。
可以理解的是,RIS分别上报透射和反射相关的RIS参数,例如二者对应的不同的RIS单元位置和RIS单元的数量等;这是因为RIS的控制电路(例如现场可编程门阵列(Field Programmable Gate Array,FPGA))可能放置在RIS的背部,此时会影响到FPGA附近的部分RIS单元的透射性能,但基本不影响RIS单元的反射性能;因此,需要分别上报透射和反射相关的RIS参数,例如一共100个RIS单元,能用作透射的只有80个RIS单元,其余20个RIS单元由于其背部有控制电路因此无法用作透射型表面;这样基站可以有的放矢只控制80个RIS单元的透射相关的调整。
在本申请的一种实施方式中,所述第一信息还包括:RIS单元的控制方式;其中,所述RIS单元的控制方式包括以下一项或多项:电控、磁控、光控、温控。
在RIS中使用的可调材料或器件具有一些特性,如这类物质在外界环境刺激下发生相对明显和快速的物理性质变化。当外界环境的磁场、电场、温度、湿度、压力以及光强发生变化的时候,这类材料的特性就会相应的发生调整,进而使得RIS能够实现不同的调制机制。可选的,电控方式使用的物 质类型也可以上报给第二设备;例如,电控方式可利用向列液晶或者石墨烯等;磁控方式可利用铁氧体磁棒、铁氧体片等;光控方式包含有硅、砷化镓或光电半导体材料等;热控方式包含有相位变化材料,如二氧化钒等。
在本申请实施例中,第一设备可以向第二设备发送第一信息,使得与RIS关联的第二设备可以获取该RIS的RIS能力、RIS类型和/或RIS参数,进而使得第二设备可以根据该RIS的RIS能力、RIS类型和/或RIS参数,可以控制该RIS的反射或透射行为。
参见图3,本申请实施例提供一种传输方法,该方法的执行主体是第二设备,该第二设备包括但不限于以下之一:RIS、中继节点(例如层1relay,层2relay,层3relay,或者IAB节点、中继器)、基站、终端等,具体步骤包括:步骤301。
步骤301:从第一设备接收第一信息,所述第一信息用于指示RIS能力、RIS类型和RIS参数中的至少一项。
在本申请的一种实施方式中,所述方法还包括:发送第二信息,所述第二信息用于指示所述第一设备发送所述第一信息。
可选地,所述第一设备可以为RIS或中继节点,所述第二设备可以为所述RIS或中继节点所属的基站;或者,所述第一设备可以为第一基站,所述第二设备为第二基站,或者,所述第二设备可以为所述第一基站服务的终端,或者所述第二设备可以为所述第一基站服务的RIS或中继节点;或者,所述第一设备可以为第一RIS或第一中继节点,所述第二设备为第二RIS或第二中继节点。
在本申请的一种实施方式中,所述RIS类型包括以下之一:
(1)透射型RIS;
(2)反射型RIS;
(3)透射反射型RIS;
(4)有源RIS;
(5)无源RIS;
(6)有源和无源结合的RIS;
(7)控制RIS单元的控制器的类型;
(8)RIS单元的类型。
在本申请的一种实施方式中,所述RIS能力包括以下一项或多项:
(1)调整或操控第一信号的特征,所述第一信号是所述第一设备以外的其他设备发送的信号;
(2)对所述第一信号的调整方式,所述调整方式包括:连续调整方式或者离散调整方式;
(3)所述离散调整方式中离散特征的状态数量;
(4)RIS的调整速度;
(5)RIS收到控制信令到完成调整的时间间隔;
(6)RIS单元间的同步精度;
(7)RIS的可调波束信息;
(8)RIS单元的工作带宽和/或频率信息。
在本申请的一种实施方式中,所述特征包括以下一项或多项:相位、幅度、极化方式、频率、OAM。
在本申请的一种实施方式中,所述RIS参数包括以下一项或多项:
(1)RIS单元的排列方式;
(2)RIS单元的数量;
(3)RIS单元的尺寸和/或厚度;
(4)RIS单元的形状;
(5)RIS单元间的间距;
(6)RIS单元的曲率;
(7)无源器件单元或有源器件单元的位置;
(8)子RIS设备的数量和/或各个子RIS设备相对位置,所述第一设备包括一个或多个子RIS设备;
(9)RIS单元的位置;
(10)RIS单元的位置可调范围;
(11)RIS单元的高度;
(12)RIS单元的高度可调范围;
(13)RIS单元的倾角;
(14)RIS单元的倾角可调范围;
(15)RIS单元的正面朝向角度;
(16)RIS单元的水平转角的可调范围;
(17)RIS的标识信息;
(18)RIS关联的TRP标识;
(19)RIS关联的小区标识;
(20)RIS关联的PLMN列表;
(21)RIS的有效期或者出厂日期。
在本申请的一种实施方式中,所述RIS单元的排列方式包括:矩阵排列,圆环排列或其他形状排列。
在本申请的一种实施方式中,所述RIS单元的尺寸包括以下一项或多项:所述RIS单元的长度、所述RIS单元的宽度、所述RIS单元的厚度;
具体的,所述RIS单元的尺寸是根据所述RIS单元的工作带宽中心频点的波长和缩放因子确定的。
在本申请的一种实施方式中,所述第一信息还包括:RIS单元的控制方式;其中,所述RIS单元的控制方式包括以下一项或多项:电控、磁控、光控、温控。
在本申请实施例中,第一设备可以向第二设备发送第一信息,使得与RIS关联的第二设备可以获取该RIS的RIS能力、RIS类型和/或RIS参数,进而使得第二设备可以根据该RIS的RIS能力、RIS类型和/或RIS参数,可以控制该RIS的反射或透射行为。
参见图4,本申请实施例提供一种传输装置,应用于第一设备,该方法的执行主体可以为第一设备,该第一设备包括但不限于以下之一:RIS、中继节点、基站等,该装置400包括:
第一发送模块401,用于向第二设备发送第一信息,所述第一信息用于指示可重构智能表面RIS能力、RIS类型和RIS参数中的至少一项。
在本申请的一种实施方式中,所述装置400还包括:
第一接收模块,用于接收所述第二设备发送的第二信息,所述第二信息用于指示所述第一设备发送所述第一信息。
可选地,所述第一设备为RIS或中继节点,所述第二设备为所述RIS或中继节点所属的基站;或者,所述第一设备为第一基站,所述第二设备为第二基站,或者,所述第二设备为所述第一基站服务的终端,或者所述第二设备为所述第一基站服务的RIS或中继节点;或者,所述第一设备为第一RIS或第一中继节点,所述第二设备为第二RIS或第二中继节点。
在本申请的一种实施方式中,第一设备可以通过以下方式向第二设备发送第一信息:
(1)在所述第一设备上电之后,向所述第二设备发送所述第一信息;
(2)根据预设周期,向所述第二设备发送所述第一信息。
在本申请的一种实施方式中,所述RIS类型包括以下之一:
(1)透射型RIS;
(2)反射型RIS;
(3)透射反射型RIS;
(4)有源RIS;
(5)无源RIS;
(6)有源和无源结合的RIS;
(7)控制RIS单元的控制器的类型;
(8)RIS单元的类型。
在本申请的一种实施方式中,所述RIS能力包括以下一项或多项:
(1)调整或操控第一信号的特征,所述第一信号是所述第一设备以外的其他设备发送的信号;
(2)对所述第一信号的调整方式,所述调整方式包括:连续调整方式或者离散调整方式;
(3)所述离散调整方式中离散特征的状态数量;
(4)RIS的调整速度;
(5)RIS收到控制信令到完成调整的时间间隔;
(6)RIS单元间的同步精度;
(7)RIS的可调波束信息;
(8)RIS的工作带宽和/或频率信息。
在本申请的一种实施方式中,所述特征包括以下一项或多项:相位、幅度、极化方式、频率、OAM。
在本申请的一种实施方式中,所述RIS参数包括以下一项或多项:
(1)RIS单元的排列方式;
(2)RIS单元的数量;
(3)RIS单元的尺寸和/或厚度;
(4)RIS单元的形状;
(5)RIS单元间的间距;
(6)RIS单元的曲率;
(7)无源器件单元或有源器件单元的位置;
(8)子RIS设备的数量和/或各个子RIS设备的相对位置,所述第一设备包括一个或多个子RIS设备;
(9)RIS单元的位置;
(10)RIS单元的位置可调范围;
(11)RIS单元的高度;
(12)RIS单元的高度可调范围;
(13)RIS单元的倾角;
(14)RIS单元的倾角可调范围;
(15)RIS单元的正面朝向角度;
(16)RIS单元的水平转角的可调范围;
(17)RIS的标识信息;
(18)RIS关联的TRP标识;
(19)RIS关联的小区标识;
(20)RIS关联的PLMN列表;
(21)RIS的有效期或者出厂日期。
在本申请的一种实施方式中,所述RIS单元的排列方式包括:矩阵排列,圆环排列或其他形状排列。
在本申请的一种实施方式中,所述RIS单元的尺寸包括:所述RIS单元的长度、所述RIS单元的宽度、和/或所述RIS单元的厚度。
可选地,所述RIS单元的尺寸是根据所述RIS单元的工作带宽中心频点的波长和缩放因子确定的。
在本申请的一种实施方式中,所述第一信息还包括:RIS单元的控制方式;其中,所述RIS单元的控制方式包括以下一项或多项:电控、磁控、光控、温控。
本申请实施例提供的装置能够实现图2所示的方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
参见图5,本申请实施例提供一种传输装置,应用于该方法的执行主体是第二设备,该第二设备包括但不限于以下之一:RIS、中继节点、基站、终端等,该装置500包括:
第二接收模块501,用于从第一设备接收第一信息,所述第一信息用于指示RIS能力、RIS类型和RIS参数中的至少一项。
在本申请的一种实施方式中,所述装置还包括:
第二发送模块,用于发送第二信息,所述第二信息用于指示所述第一设备发送所述第一信息。
可选地,所述第一设备为RIS或中继节点,所述第二设备为所述RIS或中继节点所属的基站;或者,所述第一设备为第一基站,所述第二设备为第二基站,或者,所述第二设备为所述第一基站服务的终端,或者所述第二设备为所述第一基站服务的RIS或中继节点;或者,所述第一设备为第一RIS或第一中继节点,所述第二设备为第二RIS或第二中继节点。
在本申请的一种实施方式中,所述RIS类型包括以下之一:
(1)透射型RIS;
(2)反射型RIS;
(3)透射反射型RIS;
(4)有源RIS;
(5)无源RIS;
(6)有源和无源结合的RIS;
(7)控制RIS单元的控制器的类型;
(8)RIS单元的类型。
在本申请的一种实施方式中,所述RIS能力包括以下一项或多项:
(1)调整或操控第一信号的特征,所述第一信号是所述第一设备以外的其他设备发送的信号;
(2)对所述第一信号的调整方式,所述调整方式包括:连续调整方式或者离散调整方式;
(3)所述离散调整方式中离散特征的状态数量;
(4)RIS的调整速度;
(5)RIS收到控制信令到完成调整的时间间隔;
(6)RIS单元间的同步精度;
(7)RIS的可调波束信息;
(8)RIS单元的工作带宽和/或频率信息。
在本申请的一种实施方式中,所述特征包括以下一项或多项:相位、幅度、极化方式、频率、OAM。
在本申请的一种实施方式中,所述RIS参数包括以下一项或多项:
(1)RIS单元的排列方式;
(2)RIS单元的数量;
(3)RIS单元的尺寸和/或厚度;
(4)RIS单元的形状;
(5)RIS单元间的间距;
(6)RIS单元的曲率;
(7)无源器件单元或有源器件单元的位置;
(8)子RIS设备的数量和/或各个子RIS设备相对位置,所述第一设备包括一个或多个子RIS设备;
(9)RIS单元的位置;
(10)RIS单元的位置可调范围;
(11)RIS单元的高度;
(12)RIS单元的高度可调范围;
(13)RIS单元的倾角;
(14)RIS单元的倾角可调范围;
(15)RIS单元的正面朝向角度;
(16)RIS单元的水平转角的可调范围;
(17)RIS的标识信息;
(18)RIS关联的TRP标识;
(19)RIS关联的小区标识;
(20)RIS关联的PLMN列表;
(21)RIS的有效期或者出厂日期。
在本申请的一种实施方式中,所述RIS单元的排列方式包括:矩阵排列,圆环排列或其他形状排列。
在本申请的一种实施方式中,所述RIS单元的尺寸包括以下一项或多项:所述RIS单元的长度、所述RIS单元的宽度、所述RIS单元的厚度;
可选地,所述RIS单元的尺寸是根据所述RIS单元的工作带宽中心频点的波长和缩放因子确定的。
在本申请的一种实施方式中,所述第一信息还包括:RIS单元的控制方式;其中,所述RIS单元的控制方式包括以下一项或多项:电控、磁控、光控、温控。
本申请实施例提供的装置能够实现图3所示的方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
参见图6,本发明实施例提供了一种通信设备600,包括:处理器601、收发机602、存储器603、用户接口604和总线接口。
其中,处理器601可以负责管理总线架构和通常的处理。存储器603可以存储处理器601在执行操作时所使用的数据。
本发明实施例中,通信设备600还可以包括:存储在存储器603上并可在处理器601上运行的计算机程序,该计算机程序被处理器601执行时实现图2或图3所示实施例的步骤。
在图6中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器601代表的一个或多个处理器和存储器603代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本发明实施例 不再对其进行进一步描述。总线接口提供接口。收发机602可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元。
本发明实施例提供的通信设备,可以执行上述图2或图3方法实施例,其实现原理和技术效果类似,本实施例此处不再赘述。
本申请实施例还提供一种程序产品,所述程序产品被存储在非易失的存储介质中,所述程序产品被至少一个处理器执行以实现如图2或图3所述的处理的方法的步骤。
本申请实施例还提供了一种通信设备,被配置为执行如上述方法各个实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供一种可读存储介质,所述可读存储介质上存储有程序或指令,该程序或指令被处理器执行时实现上述图2或图3所示方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
其中,所述处理器为上述实施例中所述的终端中的处理器。所述可读存储介质,包括计算机可读存储介质,如计算机只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等。
本申请实施例另提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行网络侧设备程序或指令,实现上述图3或图4所示方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。此外,需要指出的是,本申请实施方式中的方法和装置的范围不限按示出或讨论的顺序来执行功能,还 可包括根据所涉及的功能按基本同时的方式或按相反的顺序来执行功能,例如,可以按不同于所描述的次序来执行所描述的方法,并且还可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本申请各个实施例所述的方法。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (28)

  1. 一种传输方法,由第一设备执行,包括:
    向第二设备发送第一信息,所述第一信息用于指示可重构智能表面RIS能力、RIS类型和RIS参数中的至少一项。
  2. 根据权利要求1所述的方法,其中,所述方法还包括:
    接收所述第二设备发送的第二信息,所述第二信息用于指示所述第一设备发送所述第一信息。
  3. 根据权利要求1所述的方法,其中,所述向第二设备发送第一信息的步骤,包括:
    在所述第一设备上电之后,向所述第二设备发送所述第一信息;
    或者,
    根据预设周期,向所述第二设备发送所述第一信息。
  4. 根据权利要求1所述的方法,其中,所述RIS类型包括以下之一:
    透射型RIS;
    反射型RIS;
    透射反射型RIS;
    有源RIS;
    无源RIS;
    有源和无源结合的RIS;
    控制RIS单元的控制器的类型;
    RIS单元的类型。
  5. 根据权利要求1所述的方法,其中,所述RIS能力包括以下一项或多项:
    调整或操控第一信号的特征,所述第一信号是所述第一设备以外的其他设备发送的信号;
    对所述第一信号的调整方式,所述调整方式包括:连续调整方式或者离散调整方式;
    所述离散调整方式中离散特征的状态数量;
    RIS的调整速度;
    RIS收到控制信令到完成调整的时间间隔;
    RIS单元间的同步精度;
    RIS的可调波束信息;
    RIS的工作带宽和/或频率信息。
  6. 根据权利要求5所述的方法,其中,所述第一信号的特征包括以下一项或多项:相位、幅度、极化方式、频率、轨道角动量OAM。
  7. 根据权利要求1所述的方法,其中,所述RIS参数包括以下一项或多项:
    RIS单元的排列方式;
    RIS单元的数量;
    RIS单元的尺寸和/或厚度;
    RIS单元的形状;
    RIS单元间的间距;
    RIS单元的曲率;
    无源器件单元或有源器件单元的位置;
    子RIS设备的数量和/或各个子RIS设备的相对位置,所述第一设备包括一个或多个子RIS设备;
    RIS单元的位置;
    RIS单元的位置可调范围;
    RIS单元的高度;
    RIS单元的高度可调范围;
    RIS单元的倾角;
    RIS单元的倾角可调范围;
    RIS单元的正面朝向角度;
    RIS单元的水平转角的可调范围;
    RIS的标识信息;
    RIS关联的传输接收节点TRP标识;
    RIS关联的小区标识;
    RIS关联的公共陆地移动网PLMN列表;
    RIS的有效期或者出厂日期。
  8. 根据权利要求7所述的方法,其中,所述RIS单元的排列方式包括:矩阵排列,圆环排列或其他形状排列。
  9. 根据权利要求7所述的方法,其中,所述RIS单元的尺寸包括以下一项或多项:所述RIS单元的长度、所述RIS单元的宽度、所述RIS单元的厚度。
  10. 根据权利要求1所述的方法,其中,所述第一信息还包括:RIS单元的控制方式;其中,所述RIS单元的控制方式包括以下一项或多项:电控、磁控、光控、温控。
  11. 根据权利要求1所述的方法,其中,所述第一设备为RIS或中继节点,所述第二设备为所述RIS或中继节点所属的基站;
    或者,
    所述第一设备为第一基站,所述第二设备为第二基站,或者,所述第二设备为所述第一基站服务的终端,或者所述第二设备为所述第一基站服务的RIS或中继节点;
    或者,
    所述第一设备为第一RIS或第一中继节点,所述第二设备为第二RIS或第二中继节点。
  12. 一种传输方法,由第二设备执行,包括:
    从第一设备接收第一信息,所述第一信息用于指示RIS能力、RIS类型和RIS参数中的至少一项。
  13. 根据权利要求12所述的方法,其中,所述方法还包括:
    发送第二信息,所述第二信息用于指示所述第一设备发送所述第一信息。
  14. 根据权利要求12所述的方法,其中,所述RIS类型包括以下之一:
    透射型RIS;
    反射型RIS;
    透射反射型RIS;
    有源RIS;
    无源RIS;
    有源和无源结合的RIS;
    控制RIS单元的控制器的类型;
    RIS单元的类型。
  15. 根据权利要求12所述的方法,其中,所述RIS能力包括以下一项或多项:
    调整或操控第一信号的特征,所述第一信号是所述第一设备以外的其他设备发送的信号;
    对所述第一信号的调整方式,所述调整方式包括:连续调整方式或者离散调整方式;
    所述离散调整方式中离散特征的状态数量;
    RIS的调整速度;
    RIS收到控制信令到完成调整的时间间隔;
    RIS单元间的同步精度;
    RIS的可调波束信息;
    RIS单元的工作带宽和/或频率信息。
  16. 根据权利要求15所述的方法,其中,所述特征包括以下一项或多项:相位、幅度、极化方式、频率、OAM。
  17. 根据权利要求12所述的方法,其中,所述RIS参数包括以下一项或多项:
    RIS单元的排列方式;
    RIS单元的数量;
    RIS单元的尺寸和/或厚度;
    RIS单元的形状;
    RIS单元间的间距;
    RIS单元的曲率;
    无源器件单元或有源器件单元的位置;
    子RIS设备的数量和/或各个子RIS设备相对位置,所述第一设备包括一个或多个子RIS设备;
    RIS单元的位置;
    RIS单元的位置可调范围;
    RIS单元的高度;
    RIS单元的高度可调范围;
    RIS单元的倾角;
    RIS单元的倾角可调范围;
    RIS单元的正面朝向角度;
    RIS单元的水平转角的可调范围;
    RIS的标识信息;
    RIS关联的TRP标识;
    RIS关联的小区标识;
    RIS关联的公共陆地移动网PLMN列表;
    RIS的有效期或者出厂日期。
  18. 根据权利要求17所述的方法,其中,所述RIS单元的排列方式包括:矩阵排列,圆环排列或其他形状排列。
  19. 根据权利要求17所述的方法,其中,所述RIS单元的尺寸包括以下一项或多项:所述RIS单元的长度、所述RIS单元的宽度、所述RIS单元的厚度。
  20. 根据权利要求12所述的方法,其中,所述第一信息还包括:RIS单元的控制方式;其中,所述RIS单元的控制方式包括以下一项或多项:电控、磁控、光控、温控。
  21. 根据权利要求12所述的方法,其中,所述第一设备为RIS或中继节点,所述第二设备为所述RIS或中继节点所属的基站;
    或者,
    所述第一设备为第一基站,所述第二设备为第二基站,或者,所述第二设备为所述第一基站服务的终端,或者所述第二设备为所述第一基站服务的RIS或中继节点;
    或者,
    所述第一设备为第一RIS或第一中继节点,所述第二设备为第二RIS或 第二中继节点。
  22. 一种传输装置,应用于第一设备,包括:
    第一发送模块,用于向第二设备发送第一信息,所述第一信息用于指示可重构智能表面RIS能力、RIS类型和RIS参数中的至少一项。
  23. 一种传输装置,应用于第二设备,包括:
    第二接收模块,用于从第一设备接收第一信息,所述第一信息用于指示RIS能力、RIS类型和RIS参数中的至少一项。
  24. 一种通信设备,包括:处理器、存储器及存储在所述存储器上并可在所述处理器上运行的程序,其中,所述程序被所述处理器执行时实现如权利要求1至21中任一项所述的方法的步骤。
  25. 一种可读存储介质,所述可读存储介质上存储程序或指令,其中,所述程序或指令被处理器执行时实现如权利要求1至21中任一项所述的方法的步骤。
  26. 一种芯片,包括处理器和通信接口,其中,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如权利要求1至21中任一项所述的方法的步骤。
  27. 一种计算机程序产品,其中,所述计算机程序产品被存储在非易失的存储介质中,所述计算机程序产品被至少一个处理器执行时实现如权利要求1至21中任一项所述的方法的步骤。
  28. 一种通信设备,被配置为执行如权利要求1至21中任一项所述的方法的步骤。
PCT/CN2022/079532 2021-03-09 2022-03-07 传输方法、装置、设备及可读存储介质 WO2022188744A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2023552562A JP2024508864A (ja) 2021-03-09 2022-03-07 伝送方法、装置、機器、及び読み取り可能な記憶媒体
EP22766267.3A EP4307735A1 (en) 2021-03-09 2022-03-07 Transmission method and apparatus, device and readable storage medium
US18/462,939 US20230421209A1 (en) 2021-03-09 2023-09-07 Transmission method and apparatus, device, and readable storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110257318.8A CN115052282A (zh) 2021-03-09 2021-03-09 传输方法、装置、设备及可读存储介质
CN202110257318.8 2021-03-09

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/462,939 Continuation US20230421209A1 (en) 2021-03-09 2023-09-07 Transmission method and apparatus, device, and readable storage medium

Publications (1)

Publication Number Publication Date
WO2022188744A1 true WO2022188744A1 (zh) 2022-09-15

Family

ID=83156255

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/079532 WO2022188744A1 (zh) 2021-03-09 2022-03-07 传输方法、装置、设备及可读存储介质

Country Status (5)

Country Link
US (1) US20230421209A1 (zh)
EP (1) EP4307735A1 (zh)
JP (1) JP2024508864A (zh)
CN (1) CN115052282A (zh)
WO (1) WO2022188744A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024104249A1 (en) * 2022-11-18 2024-05-23 Qualcomm Incorporated Power saving in reconfigurable intelligent surface (ris) -based sensing

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220322321A1 (en) * 2021-04-01 2022-10-06 Qualcomm Incorporated Reconfigurablle intelligent surface (ris) information update

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110278017A (zh) * 2019-06-27 2019-09-24 广东工业大学 一种基于智能反射面的多天线无线能量传输系统与方法
CN111245494A (zh) * 2020-01-13 2020-06-05 东南大学 基于智能反射面的定位信息辅助波束控制方法
CN113747465A (zh) * 2020-05-29 2021-12-03 华为技术有限公司 一种协作通信方法及通信装置
CN113747464A (zh) * 2020-05-29 2021-12-03 华为技术有限公司 一种免授权传输方法及终端、通信装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101698131B1 (ko) * 2015-10-22 2017-01-19 아주대학교 산학협력단 메타표면을 이용한 광대역 원형편파 안테나
CN111901014B (zh) * 2020-01-07 2022-05-10 中兴通讯股份有限公司 一种电磁单元的调控方法、装置、设备和存储介质
CN111181662B (zh) * 2020-02-19 2023-12-05 西南交通大学 一种增强列车车地无线通信系统接收性能的装置和方法
CN111817768B (zh) * 2020-06-03 2021-06-15 北京交通大学 一种用于智能反射表面无线通信的信道估计方法
CN111818533B (zh) * 2020-06-04 2021-08-17 浙江大学 一种基于智能反射面的无线通信系统设计方法
CN111866726A (zh) * 2020-06-30 2020-10-30 中兴通讯股份有限公司 接收装置的定位方法及装置、系统、存储介质和电子装置
CN111865387A (zh) * 2020-08-04 2020-10-30 同济大学 智能反射面辅助无线通信系统的波束成形设计方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110278017A (zh) * 2019-06-27 2019-09-24 广东工业大学 一种基于智能反射面的多天线无线能量传输系统与方法
CN111245494A (zh) * 2020-01-13 2020-06-05 东南大学 基于智能反射面的定位信息辅助波束控制方法
CN113747465A (zh) * 2020-05-29 2021-12-03 华为技术有限公司 一种协作通信方法及通信装置
CN113747464A (zh) * 2020-05-29 2021-12-03 华为技术有限公司 一种免授权传输方法及终端、通信装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024104249A1 (en) * 2022-11-18 2024-05-23 Qualcomm Incorporated Power saving in reconfigurable intelligent surface (ris) -based sensing

Also Published As

Publication number Publication date
CN115052282A (zh) 2022-09-13
US20230421209A1 (en) 2023-12-28
JP2024508864A (ja) 2024-02-28
EP4307735A1 (en) 2024-01-17

Similar Documents

Publication Publication Date Title
WO2022188744A1 (zh) 传输方法、装置、设备及可读存储介质
Liang et al. Reconfigurable intelligent surfaces for smart wireless environments: channel estimation, system design and applications in 6G networks
US10524216B1 (en) Communication of wireless signals through physical barriers
WO2022095978A1 (zh) 指示工作模式的方法、装置及设备
US20230246674A1 (en) Intelligent surfaces for use in a wireless communication system
EP3813196B1 (en) Microwave device and network system
EP4221296A1 (en) Node identification method and apparatus, device, and readable storage medium
US20240063863A1 (en) Adaptive Phase-Changing Device Power-Saving Operations
Basharat et al. Exploring reconfigurable intelligent surfaces for 6G: State‐of‐the‐art and the road ahead
WO2022012596A1 (zh) 终端信息获取方法、终端及网络侧设备
Alexandropoulos et al. RIS-enabled smart wireless environments: Deployment scenarios, network architecture, bandwidth and area of influence
CN114172773A (zh) 调制方法及装置、通信设备和可读存储介质
EP4152631A1 (en) Information transmission method and node device
US20230209642A1 (en) Working state switching method and apparatus, terminal, and read storage medium
US20200236571A1 (en) Radio channel fast scanning
WO2022249821A1 (ja) 通信制御方法、無線端末、及び基地局
US11876587B1 (en) Systems and methods for switched antenna array configuration
US20240171237A1 (en) Communication system and communication method using reconfigurable intelligent surface and reconfigurable intelligent surface device
Youn et al. Cognitive Reconfigurable Intelligent Surface (RIS) for mmWave Integrated Sensing and Communication
Yang et al. Theoretical Investigation of the Passive Transmitter Based on Reconfigurable Metasurface
Chawanonphithak et al. Characteristics of an elliptical ring antenna excited by a linear electric probe
KR20240043418A (ko) 액정 기반 투과형 재구성 가능한 지능형 표면(ris) 장치와 이를 위한 ris 단위 셀 구조
Mohamed et al. Received Power Analysis In Non-interfering Intelligent Reflective Surface Environments

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22766267

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023552562

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2022766267

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022766267

Country of ref document: EP

Effective date: 20231009