WO2022095978A1 - 指示工作模式的方法、装置及设备 - Google Patents

指示工作模式的方法、装置及设备 Download PDF

Info

Publication number
WO2022095978A1
WO2022095978A1 PCT/CN2021/129117 CN2021129117W WO2022095978A1 WO 2022095978 A1 WO2022095978 A1 WO 2022095978A1 CN 2021129117 W CN2021129117 W CN 2021129117W WO 2022095978 A1 WO2022095978 A1 WO 2022095978A1
Authority
WO
WIPO (PCT)
Prior art keywords
working mode
ris
relay
moment
information
Prior art date
Application number
PCT/CN2021/129117
Other languages
English (en)
French (fr)
Inventor
姜大洁
杨坤
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Priority to EP21888670.3A priority Critical patent/EP4228097A4/en
Publication of WO2022095978A1 publication Critical patent/WO2022095978A1/zh
Priority to US18/139,935 priority patent/US20240080067A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/155Ground-based stations
    • H04B7/15557Selecting relay station operation mode, e.g. between amplify and forward mode, decode and forward mode or FDD - and TDD mode
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/0006Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices
    • H01Q15/0013Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices said selective devices working as frequency-selective reflecting surfaces, e.g. FSS, dichroic plates, surfaces being partly transmissive and reflective
    • H01Q15/002Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices said selective devices working as frequency-selective reflecting surfaces, e.g. FSS, dichroic plates, surfaces being partly transmissive and reflective said selective devices being reconfigurable or tunable, e.g. using switches or diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/0006Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices
    • H01Q15/0086Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices said selective devices having materials with a synthesized negative refractive index, e.g. metamaterials or left-handed materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/44Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the electric or magnetic characteristics of reflecting, refracting, or diffracting devices associated with the radiating element
    • H01Q3/46Active lenses or reflecting arrays
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • H04B1/401Circuits for selecting or indicating operating mode
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/04013Intelligent reflective surfaces
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver

Definitions

  • the present application belongs to the field of communication technologies, and in particular relates to a method, an apparatus, and a device for indicating a reconfigurable intelligent surface (Reconfigurable Intelligent Surface, RIS) working mode.
  • RIS reconfigurable Intelligent Surface
  • Smart surface devices consist of large-scale device arrays and array control modules.
  • a large-scale device array is a large number of device units arranged regularly and repeatedly on a planar substrate. In order to achieve considerable signal manipulation effects, hundreds or thousands of device units are usually required to form a device array.
  • Each device unit has a variable device structure.
  • the device unit contains a Positive Intrinsic-Negative (PIN) diode. The switching state of the PIN diode determines the response of the device unit to external wireless signals. model.
  • the array control module of the smart surface can control the working state of each device unit, so as to dynamically or semi-statically control the response mode of each device unit to the wireless signal.
  • PIN Positive Intrinsic-Negative
  • the wireless response signals of each device unit of the large-scale device array are superimposed on each other, forming a specific beam propagation characteristic on the macroscopic level.
  • the control module is the "brain" of the smart surface device. It determines the wireless signal response beam of the smart surface according to the needs of the communication system, making the original static communication environment “smart” and “controllable”.
  • the working mode of the RIS corresponds to the emission or transmission effect of the RIS on the incident signal, and the emission or transmission effect can be controlled by switching patterns of diodes corresponding to all units of the RIS.
  • the switching patterns of diodes corresponding to all cells of each RIS correspond to the working mode of one RIS.
  • the base station sends a signal to the RIS, and the RIS reflects the signal to the terminal. If the signal is transmitted from the UE, the base station can also receive the signal transmitted through the RIS. That is to say, the RIS working mode has upstream and downstream symmetry. However, the upstream and downstream symmetry of the RIS working mode will affect the downstream signal reception and upstream signal transmission of the same terminal. Similarly, the relay working mode also has similar problems.
  • the purpose of the embodiments of the present application is to provide a method, apparatus and device for indicating the working mode, so as to realize the indicating of the working mode of the RIS or the relay.
  • a first aspect provides a method for indicating a working mode, which is performed by a first device, where the first device is a terminal, or the first device is a RIS node or a relay node, including:
  • First information sent by the network side device is received, where the first information indicates the RIS working mode or the relay working mode.
  • a method for indicating a working mode executed by a network side device, including:
  • Send first information where the first information indicates the RIS working mode or the relay working mode.
  • a device for indicating a working mode comprising:
  • the first receiving module is configured to receive first information, where the first information indicates the RIS working mode or the relay working mode.
  • a device for indicating a working mode comprising:
  • the first sending module is configured to send first information, where the first information indicates the RIS working mode or the relay working mode.
  • a first device is provided, where the first device is a terminal, or the first device is a RIS node or a relay node, including: a processor, a memory, and a device stored in the memory and available at A program running on the processor, when the program is executed by the processor, implements the steps of the method according to the first aspect.
  • a network-side device comprising: a processor, a memory, and a program stored on the memory and executable on the processor, the program being executed by the processor to achieve the second The steps of the method of the aspect.
  • a readable storage medium on which a program or an instruction is stored, and when the program or instruction is executed by a processor, the steps of the method according to the first aspect or the second aspect are implemented.
  • a computer program product is provided, the computer program product is stored in a non-volatile storage medium, the computer program product is executed by at least one processor to implement the first aspect or the second aspect. The steps of the method of processing.
  • a chip in a ninth aspect, includes a processor and a communication interface, the communication interface is coupled to the processor, and the processor is configured to run a program or an instruction to implement the first aspect or the second aspect the described method of treatment.
  • the network side indicates the RIS working mode or the relay working mode, so that the uplink transmission and downlink reception of the same terminal pass through the same RIS working mode or the relay working mode, and the RIS working mode or the relay working mode is solved.
  • FIG. 1a and 1b are schematic diagrams of the upstream and downstream symmetry of the RIS working mode
  • FIG. 2 is a block diagram of a wireless communication system to which an embodiment of the present application can be applied;
  • FIG. 3 is one of the flowcharts of the method for indicating a working mode according to an embodiment of the present application
  • FIG. 4 is the second flowchart of the method for indicating a working mode according to an embodiment of the present application
  • FIG. 5 is a schematic diagram of indicating a RIS working mode in an embodiment of the present application.
  • FIG. 6 is one of the schematic diagrams of the apparatus for indicating the working mode in the embodiment of the present application.
  • FIG. 7 is the second schematic diagram of the apparatus for indicating the working mode in the embodiment of the present application.
  • FIG. 8 is a schematic diagram of a first device in an embodiment of the present application.
  • FIG. 9 is a schematic diagram of a network side device in an embodiment of the present application.
  • first, second, etc. in the description and claims of this application are used to distinguish similar objects, and are not used to describe a specified order or precedence. It is to be understood that the data so used are interchangeable under appropriate circumstances so that the embodiments of the present application can be practiced in sequences other than those illustrated or described herein, and "first”, “second” distinguishes Usually it is a class, and the number of objects is not limited.
  • the first object may be one or multiple.
  • “and” in the description and claims indicates at least one of the connected objects, and the character “/" generally indicates that the associated objects are in an "or” relationship.
  • LTE Long Term Evolution
  • LTE-Advanced LTE-Advanced
  • LTE-A Long Term Evolution-Advanced
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single-carrier Frequency-Division Multiple Access
  • system and “network” in the embodiments of the present application are often used interchangeably, and the described technology can be used not only for the above-mentioned systems and radio technologies, but also for other systems and radio technologies.
  • NR New Radio
  • the following description describes a New Radio (NR) system for example purposes, and NR terminology is used in most of the description below, although these techniques are also applicable to applications other than NR system applications, such as 6th generation ( 6th Generation , 6G) communication system.
  • 6th generation 6th Generation
  • LIS Large Intelligent Surface
  • SRA Smart Reflect Array
  • RRA Reconfigurable Reflect Array
  • Smart surface technology has been applied in many technical fields, and there are many different design schemes according to different application scenarios.
  • the device unit includes tunable resonator (Tunable Resonator) variable capacitance type, guided wave (Guided Wave) waveguide type, element rotation (Element Rotation) polarization type, etc.; according to the wireless signal output form, it is divided into reflection Type intelligent surface and transmission type intelligent surface; according to the wireless signal response parameter classification, including phase control type intelligent surface, amplitude control type intelligent surface and amplitude-phase joint control type intelligent surface; according to the response parameter control classification is divided into continuous control type and discrete control type ; According to the frequency or speed of controlling the amplitude and phase of the smart surface, it is divided into static, semi-static/dynamically controlled smart surfaces, of which static smart surfaces can be applied to existing systems, for example, the fourth generation generation, 4G)/fifth generation mobile communication technology (fifth-generation, 5G) system.
  • the Intelligent Reflecting Surface which is widely discussed in the academic circle, is a phase control intelligent surface based on signal reflection, which controls the phase of the reflected signal of the device unit through 1-bit (bit) indication information to achieve 0 or Phase flip of ⁇ .
  • Smart surface devices are thin in thickness and light in weight, enabling flexible deployment.
  • RIS reflection units The types of RIS reflection units are as follows:
  • Tunable resonator A variable capacitor is integrated into the resonator to generate a phase shift by changing the frequency-agile patch resonator frequency.
  • Rotation technology of circularly polarized waves design using the reflection law of electromagnetic waves.
  • reflect arrays/smart surfaces are divided into two categories:
  • Static reflective array/smart surface The structure and function of the reflective array can be fixed. For an incident wave at an angle, the metasurface unit causes a fixed change in the amplitude, phase, and polarization of the incident wave. The corresponding reflected waves are obtained.
  • Dynamic reflective array/smart surface The structure and function of the reflective array can be controlled. For an incident wave at an angle, the amplitude, phase, polarization and other characteristics of the incident wave can be changed through programmable control. change to get the corresponding reflected wave.
  • switching elements such as diodes, etc.
  • PIN diodes are currently a common choice for controlling reconfigurable metasurfaces. PIN diodes have a wide range of RF impedance and low distortion, and are widely used in microwave RF fields.
  • the switching element in the reflection unit has a plurality of different states, and the switching of the different states can be realized by controlling the on-off of the switching element. When the switching element is on or off, the structure and performance of the corresponding reflection unit have great changes. That is, the reflection units in different states have different control modes for the amplitude, phase, polarization and other characteristics of the incident wave.
  • smart surfaces are composed of a large number of device units and have no RF and baseband processing capabilities, such smart surfaces are called passive smart surfaces.
  • Active and passive combined smart surfaces or active smart surfaces:
  • the base station Since the smart surface is composed of a large number of device units and has no radio frequency and baseband processing capabilities, the base station cannot obtain channel information from the base station to the smart surface and from the smart surface to the terminal, respectively.
  • the received signal of the base station or terminal is formed by the superposition of the response signals of a large number of smart surface device units, and changing the working state of one or a small number of device units cannot make the received signal change significantly.
  • a possible measurement solution is to install a small number of active device units in the smart surface, so that the smart surface can perform channel measurement and feedback; the base station uses compressed sensing or deep learning algorithms to calculate reasonable smart surface configuration parameters from limited channel information .
  • Communication systems based on smart surfaces need an efficient channel measurement mechanism to improve end-to-end signal quality as much as possible on the premise of ensuring low complexity of smart surfaces.
  • This smart surface with some active devices installed has the ability to receive signals and even transmit signals, and is a smart surface (or active smart surface) that combines active and passive components.
  • the working mode of the RIS corresponds to the emission or transmission effect of the RIS on the incident signal, and the emission or transmission effect can be controlled by switching patterns of diodes corresponding to all units of the RIS.
  • the switching patterns of diodes corresponding to all cells of each RIS correspond to the working mode of one RIS.
  • RIS can only work in one mode at a time.
  • the base station sends a signal to the RIS, and the RIS reflects the signal to the terminal. At this time, the RIS works in working mode 1.
  • the base station can also receive the signal transmitted through the RIS.
  • the reflection effect of the RIS on the incident signal is symmetrical or equivalent to some extent.
  • the fifth-generation mobile communication technology (5G) allocates the ratio of uplink and downlink resources in units of time slots (Slots) or even Orthogonal Frequency Division Multiplex (Orthogonal Frequency Division Multiplex, OFDM) symbols.
  • the communication system supports the use of cell-specific (Cell-specific) and terminal-specific (UE-specific) radio resource control (Radio Resource Control, RRC) signaling to indicate the UE uplink and downlink subframe ratio;
  • Cell-specific Cell-specific
  • UE-specific terminal-specific
  • RRC Radio Resource Control
  • the communication system supports flexibly adjusting the ratio of uplink and downlink resources through downlink control information (Downlink Control Information, DCI) signaling, and pre-defined 55 standardized structures (up to 254 structures are reserved).
  • DCI Downlink Control Information
  • D represents that the symbol is a downlink symbol
  • U represents that the symbol is an uplink symbol
  • F represents that the symbol is a flexible symbol (that is, it is uncertain whether it is an uplink or downlink symbol).
  • the wireless communication system includes a terminal 21 , a network side device 22 and a smart surface device 23 .
  • the terminal 21 may also be called a terminal device or a user terminal (User Equipment, UE), and the terminal 21 may be a mobile phone, a tablet computer (Tablet Personal Computer), a laptop computer (Laptop Computer) or a notebook computer, a personal digital computer Assistant (Personal Digital Assistant, PDA), PDA, Netbook, Ultra-Mobile Personal Computer (UMPC), Mobile Internet Device (Mobile Internet Device, MID), Wearable Device (Wearable Device) or vehicle-mounted device (VUE), pedestrian terminal (PUE) and other terminal-side devices, wearable devices include: bracelets, headphones, glasses, etc. It should be noted that, the embodiment of the present application does not limit the specific type of the terminal 21 .
  • the network side device 22 may be a base station or a core network, where the base station may be referred to as a Node B, an evolved Node B, an access point, a Base Transceiver Station (BTS), a radio base station, a radio transceiver, a basic service set (BasicServiceSet, BSS), Extended Service Set (ExtendedServiceSet, ESS), Node B, Evolved Node B (eNB), Home Node B, Home Evolved Node B, Wireless Local Area Network (WLAN) access point, Wireless Fidelity (WiFi) node, Transmitting Receiving Point (TRP), wireless access network node or some other suitable term in the field, as long as the same technical effect is achieved, the base station does not Limited to the specified technical vocabulary, it should be noted that in the embodiments of this application, only the base station in the NR system is used as an example, but the specific type of the base station is not limited.
  • an embodiment of the present application provides a method for indicating a working mode, which is performed by a first device, where the first device is a terminal, or the first device is a RIS node or a relay node, such as Layer 1 relay, layer 2 relay, layer 3 relay, or integrated access and backhaul (Integrated Access and Backhaul, IAB) node, including: step 301.
  • the first device is a terminal
  • the first device is a RIS node or a relay node, such as Layer 1 relay, layer 2 relay, layer 3 relay, or integrated access and backhaul (Integrated Access and Backhaul, IAB) node, including: step 301.
  • Step 301 Receive first information sent by a network side device, where the first information indicates a RIS working mode or a relay working mode.
  • the first information may also be radio resource control (Radio Resource Control, RRC) signaling;
  • RRC Radio Resource Control
  • the first time unit may be each time unit in a specific period, and the time unit may be a time slot (slot) or a symbol (symbol) or other time granularity.
  • the RIS working mode or the relay working mode is associated with at least one of the following:
  • the beam direction of the reflected signal or the refracted signal of the RIS or relay for example, different working modes correspond to different beam directions of the reflected signal, or, different working modes correspond to different beam directions of the refracted signal;
  • the beamforming mode of the reflected signal or the refracted signal of the RIS or relay for example, the beamforming mode of the RIS is obtained by adjusting the on or off of the diode associated with the RIS unit, that is, the on or off of different diodes.
  • the broken patterns correspond to the beamforming modes of different RIS reflected signals or refracted signals, thus corresponding to different RIS working modes;
  • the polarization mode of the reflected signal or the refracted signal of the RIS or relay includes: horizontal polarization or vertical polarization; for example, different working modes correspond to different polarization modes; and,
  • Orbital Angular Momentum Orbital Angular Momentum, OAM
  • the RIS working mode relay working mode is quasi co-location (Quasi co-location, QCL) with at least one of the following:
  • the synchronization signal block (Synchronization Signal and PBCH block, SSB) sent by the network side device;
  • CSI-RS Channel State Information Reference Signal
  • TRS tracking reference signal
  • DMRS Demodulation Reference Signal
  • Positioning reference signals (Positioning reference signals, PRS) sent by the network side device.
  • the first information further indicates an uplink configuration or a downlink configuration corresponding to the RIS working mode or the relay working mode. That is, the first information may simultaneously indicate the RIS working mode and the uplink/downlink configuration of each time unit, for example, the time division duplex uplink downlink configuration (tdd-UL-DL-Configuration).
  • the uplink configuration or downlink configuration includes different configurations in Table 1.
  • the first information is cell-specific (Cell-specific) signaling, or terminal-specific (UE-specific) signaling.
  • the types of the RIS working modes include: a definite working mode and a flexible working mode.
  • the method further includes:
  • the first information indicates that the type of the RIS working mode or the relay working mode is a flexible working mode
  • receive second information the second information indicating that the RIS working mode or the relay working mode is a definite working mode
  • the first working mode among the modes, that is, the second information may further indicate which definite working mode the uncertain working mode is.
  • the second information is layer 1 signaling.
  • the RIS working mode or the relay working mode is the RIS working mode or the relay working mode on at least part of the time unit in one cycle or multiple cycles.
  • the uplink and downlink symmetry of the RIS working mode will affect the downlink signal reception and uplink signal transmission of the same UE, because it must be ensured that the working mode of the RIS at the moment of downlink signal reception and uplink signal transmission of the same UE is the same.
  • the working mode of the RIS at the moment of downlink signal reception and uplink signal transmission of the same UE is the same.
  • the time in the one cycle has the same RIS working mode or the relay working mode
  • the number of units is greater than 1; if the RIS working mode or the relay working mode is the RIS working mode or the relay working mode on the unit at least part of the time in multiple cycles, then in each of the multiple cycles
  • the number of time units with the same RIS working mode or relay working mode is greater than 1.
  • the first device is a RIS or a relay node
  • the method further includes: updating a working mode according to the first information.
  • the first device is a terminal
  • the method further includes: performing corresponding transmission according to the RIS working mode or the relay working mode indicated by the first information.
  • performing corresponding transmission according to the RIS working mode or relay working mode indicated by the first information includes one of the following:
  • the RIS working mode or the relay working mode indicated by the first information perform a two-step random access procedure or a four-step random access procedure;
  • the transmission of uplink data or downlink data is performed;
  • Hybrid automatic repeat request Hybrid automatic repeat request, HARQ
  • performing a four-step random access process according to the RIS working mode or relay working mode indicated by the first information includes:
  • the RIS working mode or the relay working mode at the first moment is the same as the RIS working mode or the relay working mode corresponding to the time unit where the target SSB is located, and the first moment is the same as corresponding to the random access opportunity associated with the index of the target SSB; after the terminal sends message 1 (MSG1), it monitors message 2 (MSG2) at the second moment; wherein, the RIS working mode or relay operation at the second moment
  • the mode is the same as the RIS working mode or the relay working mode corresponding to the moment when the MSG1 is located.
  • the method further includes: after the terminal monitors the message 2, sending a message 3 (MSG3) at a third moment; wherein the RIS working mode or the relay working mode at the third moment is the same as the The RIS working mode or the relay working mode corresponding to the moment at which the message 2 is located is the same;
  • the terminal After the terminal sends MSG3, it receives message 4 (MSG4) at the fourth moment; wherein, the RIS working mode or relay working mode at the fourth moment is the RIS working mode or the relay working mode corresponding to the moment at which the MSG3 is located.
  • MSG4 message 4
  • performing a two-step random access process according to the RIS working mode or relay working mode indicated by the first information includes:
  • the RIS working mode or the relay working mode at the fifth moment is the same as the RIS working mode or the relay working mode corresponding to the target SSB.
  • the fifth time corresponds to the random access opportunity associated with the index of the target SSB;
  • the MSGA is sent at the sixth time, and the RIS working mode or relay working mode at the sixth time corresponds to the time at which the target SSB is located.
  • the RIS working mode or the relay working mode is the same; after the MSGA is sent, the message B (MSGB) is monitored at the seventh moment, and the RIS working mode or the relay working mode at the seventh moment corresponds to the moment at which the MSGA is located.
  • RIS working mode or relay working mode is the same.
  • performing the transmission of uplink data or downlink data according to the RIS working mode indicated by the first information includes:
  • receiving fourth information determining the target SSB index; receiving downlink data or sending uplink data at the eighth time element, wherein the eighth time is a time resource for receiving downlink data or sending uplink data indicated by the fourth information, and
  • the RIS working mode or the relay working mode at the eighth moment is the same as the RIS working mode or the relay working mode at the moment of the target SSB index.
  • performing the HARQ process according to the RIS working mode or the relay working mode indicated by the first information includes:
  • a positive acknowledgment (Acknowledgement, ACK) or negative acknowledgment (Negative Acknowledgement, NACK) corresponding to the first channel is sent at the ninth moment, and the RIS working mode or relay working mode at the ninth moment is the same as the moment when the first channel is transmitted
  • the RIS working mode or the relay working mode is the same, and the first channel is a physical downlink control channel (Physical downlink control channel, PDCCH)/physical downlink shared channel (Physical Downlink shared channel, PDSCH).
  • the ninth moment is selected autonomously, or determined based on network side configuration.
  • the network side indicates the RIS working mode or the relay working mode, so that the uplink transmission and downlink reception of the same terminal pass through the same RIS working mode or relay working mode, which solves the problem of RIS working mode or relay working mode.
  • an embodiment of the present application provides a method for indicating a working mode, which is performed by a network side device, and the specific steps include: step 401 .
  • Step 401 Send first information, where the first information indicates the RIS working mode or the relay working mode.
  • the first information is sent to the terminal, or the first information is sent to the RIS or the relay.
  • the RIS working mode or the relay working mode is associated with at least one of the following: (1) the beam pointing of the reflected signal or the refracted signal of the RIS or the relay; (2) the reflected signal of the RIS or the relay or the beamforming mode of the refracted signal; (3) the polarization mode of the RIS or relayed reflected or refracted signal; and, (4) the OAM mode of the RIS or relayed reflected or refracted signal.
  • the RIS working mode or the relay working mode is quasi-co-located with at least one of the following: (1) SSB sent by the network side device, (2) CSI-RS sent by the network side device, (3) The TRS sent by the network side device, (4) the DMRS sent by the network side device, and (5) the PRS sent by the network side device.
  • the first information further indicates an uplink configuration or a downlink configuration corresponding to the RIS working mode or the relay working mode.
  • the first information is cell-specific signaling or terminal-specific signaling.
  • the types of the RIS working mode or the relay working mode include: a definite working mode and a flexible working mode.
  • the method further includes: if the first information indicates that the type of the RIS working mode or the relay working mode is the flexible working mode, sending second information, the second information indicating the RIS working mode or The relay working mode is the first working mode in the uncertain working modes.
  • the second information is layer 1 signaling.
  • the RIS working mode or the relay working mode is the RIS working mode or the relay working mode on at least part of the time unit in one cycle or multiple cycles.
  • the network side indicates the RIS working mode or the relay working mode, so that the uplink transmission and downlink reception of the same terminal pass through the same RIS working mode or relay working mode, and the RIS working mode or the relay working mode is solved.
  • the RIS working mode is indicated by the base station SIB (cell specific) or RRC signaling (UE specific).
  • the RIS working mode at each moment is determined.
  • RRC signaling UE specific
  • the tdd-UL-DL-Configuration is indicated through another signaling.
  • the RIS working mode can be indicated through SIB or RRC signaling.
  • the SIB or RRC signaling indicates that the RIS working mode of the time slot or symbol with index 0 is working mode 0, the RIS working mode of the time slot or symbol with index 1 is working mode 1, and the RIS working mode of the time slot or symbol with index 2 is working mode 1.
  • the working mode is working mode 2
  • the RIS working mode of the time slot or symbol of index 3 is working mode 1
  • the RIS working mode of the time slot or symbol of index 4 is working mode 2
  • the RIS working mode of the time slot or symbol of index 5 is working mode It is working mode 0,
  • the RIS working mode of the time slot or symbol of index 6 is working mode 1
  • the RIS working mode of the time slot or symbol of index 7 is working mode 2
  • the RIS working mode of the time slot or symbol of index 8 is working mode Mode 0,
  • the RIS working mode of the slot or symbol with index 9 is working mode 0.
  • the SIB or RRC signaling indicates that the RIS working mode of terminal 1 is working mode 0, the RIS working mode of indicating terminal 2 is working mode 1, and the RIS working mode of indicating terminal 3 is working mode 2.
  • the RIS working mode is indicated by the base station SIB (cell specific) or RRC signaling (UE specific).
  • the RIS operating mode for part of the time unit is undefined.
  • RRC signaling UE specific
  • the tdd-UL-DL-Configuration is indicated through another signaling.
  • the RIS working mode that can be indicated by SIB or RRC signaling (which is the pending/flexible working mode indicated by layer 1 signaling).
  • F stands for uncertain which working mode of RIS, or uncertain/pending/flexible working mode.
  • the SIB or RRC signaling indicates that the RIS working mode of the time slot or symbol with index 0 is working mode 0, the RIS working mode of the time slot or symbol with index 1 is working mode 1, and the RIS working mode of the time slot or symbol with index 2 is working mode 1.
  • the working mode is working mode 2
  • the RIS working mode of the time slot or symbol of index 3 is the indeterminate working mode
  • the RIS working mode of the time slot or symbol of index 4 is the working mode of uncertainty
  • the time slot or symbol of index 5 is the working mode of uncertainty.
  • the RIS working mode is working mode 0, the RIS working mode of the time slot or symbol of index 6 is working mode 1, the RIS working mode of the time slot or symbol of index 7 is working mode 2, and the RIS working mode of the time slot or symbol of index 8 is working mode 2.
  • the working mode is an uncertain working mode, and the RIS working mode of the time slot or symbol of index 9 is an uncertain working mode.
  • the RIS working mode and tdd-UL-DL-Configuration are simultaneously indicated through the base station SIB (cell specific) or RRC signaling (UE specific).
  • RRC signaling (UE specific) can replace the uncertain working mode indicated by SIB (cell specific) signaling, for example, indicating that the uncertain working mode is working mode 1.
  • the RIS working mode of each time unit is determined.
  • RIS working modes that can be indicated through SIB or RRC signaling (which working mode is the pending/flexible working mode indicated through layer 1 signaling).
  • SIB or RRC signaling indicates: the RIS working mode of the time slot or symbol with index 0 is working mode 0, the time slot or symbol is the downlink time slot or symbol, and the RIS working mode of the time slot or symbol with index 1 is working mode Mode 1, the time slot or symbol is a downlink time slot or symbol, the RIS working mode of the time slot or symbol of index 2 is working mode 2, the time slot or symbol is a special time slot or special symbol, the time slot or symbol of index 3 is The RIS working mode of the symbol is the uncertain working mode, the time slot or symbol is the uplink time slot or symbol, the RIS working mode of the time slot or symbol with index 4 is the uncertain working mode, and the time slot or symbol is the upstream time slot or symbol.
  • the RIS working mode of the time slot or symbol with index 5 is working mode 0
  • the time slot or symbol is the downlink time slot or symbol
  • the RIS working mode of the time slot or symbol with index 6 is working mode 1
  • the time slot or symbol is working mode 1.
  • the slot or symbol is S
  • the RIS working mode of the time slot or symbol with index 7 is working mode 2
  • the time slot or symbol is the uplink time slot or symbol
  • the RIS working mode of the time slot or symbol with index 8 is uncertain work mode
  • the time slot or symbol is a flexible time slot or symbol
  • the RIS working mode of the time slot or symbol with index 9 is an uncertain working mode
  • the time slot or symbol is a flexible time slot or symbol.
  • the DL/UL in way 3 can be different configurations in Table 1.
  • the RIS working mode and tdd-UL-DL-Configuration are simultaneously indicated through the base station SIB (cell specific) or RRC signaling (UE specific).
  • RRC signaling UE specific
  • RRC signaling can replace the uncertain working mode indicated by SIB (cell specific) signaling, for example, indicating that the uncertain working mode is working mode 1.
  • the RIS working mode of a part of the time unit is an uncertain working mode.
  • the uncertain RIS working mode is indicated through layer 1 signaling.
  • the layer 1 signaling can simultaneously indicate which working mode the uncertain RIS working mode is, and which symbol/slot (uplink or downlink) the uncertain uplink and downlink symbols/timeslots are.
  • SIB or RRC signaling indicates: the RIS working mode of the time slot or symbol with index 0 is working mode 0, the time slot or symbol is the downlink time slot or symbol, and the RIS working mode of the time slot or symbol with index 1 is working mode Mode 1, the time slot or symbol is a downlink time slot or symbol, the RIS working mode of the time slot or symbol with index 2 is working mode 2, the time slot or symbol is a special number time slot or special symbol, and the time slot with index 3
  • the RIS working mode of the symbol is an uncertain working mode
  • the time slot or symbol is an upstream time slot or symbol
  • the RIS working mode of the time slot or symbol with index 4 is an uncertain working mode, and this time slot or symbol is an upstream time slot or symbol.
  • the time slot or symbol, the RIS working mode of the time slot or symbol with index 5 is working mode 0, the time slot or symbol is the downlink time slot or symbol, the RIS working mode of the time slot or symbol with index 6 is working mode 1, the The time slot or symbol is a special number time slot or special symbol, the RIS working mode of the time slot or symbol of index 7 is working mode 2, the time slot or symbol is the uplink time slot or symbol, and the RIS of the time slot or symbol of index 8
  • the working mode is an uncertain working mode
  • the time slot or symbol is a flexible time slot or symbol
  • the RIS working mode of the time slot or symbol with index 9 is an uncertain working mode
  • the time slot or symbol is a flexible time slot or symbol.
  • the DL/UL in mode 4 can be different configurations in Table 1.
  • Embodiment 1 Four-step Random Access Channel (RACH)
  • the target SSB index After measuring and determining the target SSB index (for example, selecting an SSB whose reference signal received power (Reference Signal Received Power, RSRP) meets a certain threshold as the target SSB index), the random access opportunity (RACH Occasion, RO) associated with the SSB and satisfying The RIS working mode and the RIS working mode corresponding to the SSB index send MSG1 in the same time unit; or, the UE determines
  • the UE After the UE sends MSG1, it monitors MSG2 within the first time window and satisfies the same time unit of the RIS working mode as the RIS working mode corresponding to MSG1;
  • the UE After the UE monitors MSG2, it sends MSG3 in the time unit indicated by MSG2;
  • the RIS working mode corresponding to the time unit is the same as the RIS working mode corresponding to MSG2.
  • the UE After the UE sends MSG3, it receives MSG4 within the second time window and satisfies the same time unit of RIS working mode as the RIS working mode corresponding to MSG3;
  • the UE determines the RIS working mode corresponding to each time unit according to one of the above four indication modes.
  • the target SSB index After measuring and determining the target SSB index (for example, selecting the SSB whose RSRP meets a certain threshold as the target SSB index), send the preamble of MSGA in the RO associated with the SSB and meeting the same time unit as the RIS working mode corresponding to the RIS working mode corresponding to the SSB index (preamble);
  • the UE sends the physical uplink shared channel (PUSCH) of the MSGA in the same time unit as the RIS working mode corresponding to the SSB index in the RIS working mode;
  • PUSCH physical uplink shared channel
  • the UE After the UE sends the MSGA, it monitors the MSGB within the third time window and satisfies the same time unit of the RIS working mode as the RIS working mode corresponding to the MSGA;
  • the UE determines the RIS working mode corresponding to each time unit according to one of the above-mentioned four indication modes.
  • Embodiment 3 Configured scheduling (configured scheduling)/granted free (grant free) related configuration.
  • the UE receives base station signaling, such as RRC signaling or layer 1 (L1) signaling, etc.;
  • the RRC signaling or L1 signaling instructs the UE to receive downlink data/transmit uplink data at multiple times, time-frequency resources, modulation and coding scheme (Modulation and coding scheme, MCS) and other information;
  • modulation and coding scheme Modulation and coding scheme, MCS
  • the UE (periodically) measures and determines the target SSB index (for example, selecting an SSB whose RSRP meets a certain threshold as the target SSB index);
  • the UE receives the data according to the time resource for receiving downlink data/transmitting uplink data indicated by RRC signaling or L1 signaling (the first condition), and the same time as the working mode of the RIS corresponding to the target SSB index time (the second condition). Downlink data/send uplink data.
  • Embodiment 4 PDSCH and corresponding Positive Acknowledgement (ACK)/Negative Acknowledgement (NACK).
  • ACK Positive Acknowledgement
  • NACK Negative Acknowledgement
  • the UE On the basis of determining the ACK/NACK sending time according to the prior art, the UE must also satisfy the RIS working mode at the ACK/NACK sending time and the associated physical downlink control channel (PDCCH)/physical downlink shared channel (Physical downlink).
  • the RIS working mode at the time of shared channel, PDSCH) is the same;
  • the UE autonomously selects the ACK/NACK sending time that meets the conditions, or the base station indicates the ACK/NACK sending time that meets the conditions, for example, through PDCCH.
  • the RIS in the above embodiment may also be some kind of relay (relay), such as a layer 1 relay, a layer 2 relay, a layer 3 relay, or an integrated access and backhaul (Integrated Access and Backhaul, IAB) node.
  • relay such as a layer 1 relay, a layer 2 relay, a layer 3 relay, or an integrated access and backhaul (Integrated Access and Backhaul, IAB) node.
  • IAB integrated Access and Backhaul
  • an embodiment of the present application provides an apparatus for indicating a working mode, and the apparatus 600 includes:
  • the first receiving module 601 is configured to receive first information sent by a network side device, where the first information indicates a RIS working mode or a relay working mode.
  • the apparatus 600 further includes:
  • An update module configured to update the working mode according to the first information.
  • the apparatus 600 further includes:
  • the execution module is configured to execute the corresponding transmission according to the RIS working mode or the relay working mode indicated by the first information.
  • the RIS working mode or the relay working mode is associated with at least one of the following:
  • the RIS working mode or the relay working mode is quasi-co-located with at least one of the following: SSB sent by the network-side device, CSI-RS sent by the network-side device, and the network-side device
  • SSB sent by the network-side device
  • CSI-RS sent by the network-side device
  • PRS sent by the network side device
  • the first information further indicates an uplink configuration or a downlink configuration corresponding to the RIS working mode or the relay working mode.
  • the first information is cell-specific signaling or terminal-specific signaling.
  • the types of the RIS working mode or the relay working mode include: a definite working mode and a flexible working mode.
  • the device further includes:
  • the second receiving module is configured to receive second information if the first information indicates that the type of the RIS working mode or the relay working mode is the flexible working mode, the second information indicating that the RIS working mode or the relay working mode is A first working mode of the determined working modes.
  • the second information is layer 1 signaling.
  • the RIS working mode or the relay working mode is the RIS working mode or the relay working mode on at least part of the time unit within one cycle or multiple cycles.
  • the RIS working mode in the one cycle has the same RIS working mode Or the number of time units of the relay working mode is greater than 1; if the RIS working mode or the relay working mode is the RIS working mode or the relay working mode on at least part of the time unit in multiple cycles, then the multiple The number of time units with the same RIS working mode or relay working mode in each cycle in the cycle is greater than one.
  • the execution module is further configured to: perform a two-step random access procedure or a four-step random access procedure according to the RIS working mode or the relay working mode indicated by the first information; or, according to the The RIS working mode or the relay working mode indicated by the first information executes the transmission of uplink data or downlink data; or, according to the RIS working mode or the relay working mode indicated by the first information, executes the hybrid automatic repeat request HARQ process .
  • the execution module includes:
  • the first sending unit is configured to send the message 1 at the first moment, the RIS working mode or the relay working mode at the first moment is the same as the RIS working mode or the relay working mode corresponding to the moment at which the target SSB is located, and the first moment is the same. corresponding to the random access opportunity associated with the index of the target SSB;
  • a first monitoring unit configured to monitor message 2 at a second moment after the terminal sends message 1;
  • the RIS working mode or the relay working mode at the second moment is the same as the RIS working mode or the relay working mode corresponding to the moment at which the message 1 is located.
  • the execution module further includes:
  • the second sending unit is configured to send the message 3 at a third moment after the terminal monitors the message 2; wherein the RIS working mode or the relay working mode at the third moment is the RIS corresponding to the moment of the message 2
  • the working mode or relay working mode is the same;
  • a first receiving unit configured to receive MSG4 at a fourth moment after the terminal sends MSG3;
  • the RIS working mode or the relay working mode at the fourth moment is the same as the RIS working mode or the relay working mode corresponding to the moment at which the MSG3 is located.
  • the execution module includes:
  • a second determining unit configured to determine the index of the target SSB
  • the third sending unit is configured to send the preamble of the MSGA at the fifth moment, where the RIS working mode or the relay working mode at the fifth moment is the same as the RIS working mode or the relay working mode corresponding to the moment at which the target SSB is located, and the first The fifth time corresponds to the random access opportunity associated with the index of the target SSB;
  • a third sending unit configured to send the MSGA at the sixth moment, where the RIS working mode or the relay working mode at the sixth moment is the same as the RIS working mode or the relay working mode corresponding to the moment at which the target SSB is located;
  • the second monitoring unit is configured to monitor the MSGB at the seventh moment after sending the MSGA, and the RIS working mode or the relay working mode at the seventh moment is the RIS working mode or the relay working mode corresponding to the moment when the MSGA is located
  • the pattern is the same.
  • the execution module includes:
  • a second receiving unit configured to receive fourth information
  • the third determining unit is used to determine the target SSB index
  • a transceiver unit configured to receive downlink data or send uplink data at an eighth moment, where the eighth moment belongs to the time resource for receiving downlink data or sending uplink data indicated by the fourth information, and the eighth moment of The RIS working mode or the relay working mode is the same as the RIS working mode or the relay working mode at the time of the target SSB index.
  • the execution module is further configured to: send a positive acknowledgement or a negative acknowledgement corresponding to the first channel at the ninth moment, and the RIS working mode or relay working mode at the ninth moment is the same as transmitting the first channel.
  • the RIS working mode or the relay working mode at the moment of a channel is the same; wherein, the first channel is a physical downlink control channel or a physical downlink shared channel.
  • the ninth moment is independently selected or determined based on network side configuration.
  • the apparatus provided in this embodiment of the present application can implement each process implemented by the method embodiment shown in FIG. 3 , and achieve the same technical effect. To avoid repetition, details are not described here.
  • an embodiment of the present application provides an apparatus for indicating a working mode, and the apparatus 700 includes:
  • the first sending module 701 is configured to send first information, where the first information indicates the RIS working mode or the relay working mode.
  • the RIS working mode or the relay working mode is associated with at least one of the following:
  • the beam pointing of the reflected or refracted signal of the RIS or relay
  • the beamforming mode of the reflected or refracted signal of the RIS or relay
  • the RIS working mode or the relay working mode is quasi-co-located with at least one of the following: SSB sent by the network side device, CSI-RS sent by the network side device, TRS sent by the network side device, network The DMRS sent by the side device and the PRS sent by the network side device.
  • the first information further indicates an uplink configuration or a downlink configuration corresponding to the RIS working mode or the relay working mode.
  • the first information is cell-specific signaling or terminal-specific signaling.
  • the types of the RIS working mode or the relay working mode include: a definite working mode and a flexible working mode.
  • the device further includes:
  • the second sending module is configured to send second information if the first information indicates that the type of the RIS working mode or the relay working mode is an uncertain working mode, where the second information indicates the RIS working mode or the relay working mode The mode is the first working mode among the determined working modes.
  • the second information is layer 1 signaling.
  • the RIS working mode or the relay working mode is the RIS working mode or the relay working mode on at least part of the time unit in one cycle or multiple cycles.
  • the apparatus provided in this embodiment of the present application can implement each process implemented by the method embodiment shown in FIG. 4 , and achieve the same technical effect. To avoid repetition, details are not repeated here.
  • FIG. 8 is a schematic diagram of a hardware structure of a first device implementing an embodiment of the present application, where the first device is a terminal, or the first device is a reconfigurable smart surface RIS or a relay.
  • the first device 800 includes but is not limited to: a radio frequency unit 801 , a network module 802 , an audio output unit 803 , an input unit 804 , a sensor 805 , a display unit 806 , a user input unit 807 , an interface unit 808 , a memory 809 , and a processor 810 and other parts.
  • the first device 800 may also include a power source (such as a battery) for supplying power to various components, and the power source may be logically connected to the processor 810 through a power management system, so as to manage charging, discharging, and Power management and other functions.
  • a power source such as a battery
  • the structure of the first device shown in FIG. 8 does not constitute a limitation to the first device.
  • the first device may include more or less components than those shown in the figure, or combine some components, or arrange different components. Here No longer.
  • the input unit 804 may include a graphics processor (Graphics Processing Unit, GPU) 8041 and a microphone 8042. Such as camera) to obtain still pictures or video image data for processing.
  • the display unit 806 may include a display panel 8061, which may be configured in the form of a liquid crystal display, an organic light emitting diode, or the like.
  • the user input unit 807 includes a touch panel 8071 and other input devices 8072 .
  • the touch panel 8071 is also called a touch screen.
  • the touch panel 8071 may include two parts, a touch detection device and a touch controller.
  • Other input devices 8072 may include, but are not limited to, physical keyboards, function keys (such as volume control keys, switch keys, etc.), trackballs, mice, and joysticks, which will not be described herein again.
  • the radio frequency unit 801 receives the downlink data from the network side device, and then processes it to the processor 810; in addition, sends the uplink data to the network side device.
  • the radio frequency unit 801 includes, but is not limited to, an antenna, at least one amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, and the like.
  • Memory 809 may be used to store software programs or instructions as well as various data.
  • the memory 809 may mainly include a stored program or instruction area and a storage data area, wherein the stored program or instruction area may store an operating system, an application program or instruction required for at least one function (such as a sound playback function, an image playback function, etc.) and the like.
  • the memory 809 may include a high-speed random access memory, and may also include a non-volatile memory, wherein the non-volatile memory may be a read-only memory (Read-Only Memory, ROM), a programmable read-only memory (Programmable ROM) , PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electrically erasable programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • ROM Read-Only Memory
  • PROM programmable read-only memory
  • PROM erasable programmable read-only memory
  • Erasable PROM Erasable PROM
  • EPROM electrically erasable programmable read-only memory
  • EEPROM electrically erasable programmable read-only memory
  • flash memory for example at least one magnetic disk storage device, flash memory device, or other non-volatile solid state storage device.
  • the processor 810 may include one or more processing units; optionally, the processor 810 may integrate an application processor and a modem processor, wherein the application processor mainly processes the operating system, user interface, application programs or instructions, etc., Modem processors mainly deal with wireless communications, such as baseband processors. It can be understood that, the above-mentioned modulation and demodulation processor may not be integrated into the processor 810.
  • the first device provided in this embodiment of the present application can implement each process implemented by the method embodiment shown in FIG. 3 , and achieve the same technical effect. To avoid repetition, details are not described here.
  • the network side device 900 includes: an antenna 901 , a radio frequency device 902 , and a baseband device 903 .
  • the antenna 901 is connected to the radio frequency device 902 .
  • the radio frequency device 902 receives information through the antenna 901, and sends the received information to the baseband device 903 for processing.
  • the baseband device 903 processes the information to be sent and sends it to the radio frequency device 902
  • the radio frequency device 902 processes the received information and sends it out through the antenna 901 .
  • the above-mentioned frequency band processing apparatus may be located in the baseband apparatus 903 , and the method performed by the network side device in the above embodiments may be implemented in the baseband apparatus 903 .
  • the baseband apparatus 903 includes a processor 904 and a memory 905 .
  • the baseband device 903 may include, for example, at least one baseband board on which multiple chips are arranged. As shown in FIG. 9 , one of the chips is, for example, the processor 904 and is connected to the memory 905 to call the program in the memory 905 to execute The network devices shown in the above method embodiments operate.
  • the baseband device 903 may further include a network interface 906 for exchanging information with the radio frequency device 902, and the interface is, for example, a common public radio interface (CPRI for short).
  • CPRI common public radio interface
  • the network-side device in this embodiment of the present application further includes: instructions or programs that are stored in the memory 905 and run on the processor 904, and the processor 904 invokes the instructions or programs in the memory 905 to execute the modules shown in FIG. 7 .
  • Embodiments of the present application further provide a computer program product, where the computer program product is stored in a non-volatile storage medium, and the computer program product is executed by at least one processor to implement the process described in FIG. 3 or FIG. 4 .
  • An embodiment of the present application further provides a readable storage medium, where a program or an instruction is stored on the readable storage medium, and when the program or instruction is executed by a processor, each process of the method embodiment shown in FIG. 3 or FIG. 4 is implemented. , and can achieve the same technical effect, in order to avoid repetition, it is not repeated here.
  • the processor is the processor in the terminal described in the foregoing embodiment.
  • the readable storage medium includes a computer-readable storage medium, such as a computer read-only memory (Read-Only Memory, ROM), a random access memory (Random Access Memory, RAM), a magnetic disk or an optical disk, and the like.
  • An embodiment of the present application further provides a chip, where the chip includes a processor and a communication interface, the communication interface is coupled to the processor, and the processor is used to run a network-side device program or instruction to implement the above-mentioned FIG. 3 or
  • the various processes of the method embodiment shown in FIG. 4 can achieve the same technical effect, and are not repeated here in order to avoid repetition.
  • the chip mentioned in the embodiments of the present application may also be referred to as a system-on-chip, a system-on-chip, a system-on-chip, or a system-on-a-chip, or the like.
  • the method of the above embodiment can be implemented by means of software plus a necessary general hardware platform, and of course can also be implemented by hardware, but in many cases the former is better implementation.
  • the technical solution of the present application can be embodied in the form of a software product in essence or in a part that contributes to the prior art, and the computer software product is stored in a storage medium (such as ROM/RAM, magnetic disk, CD-ROM), including several instructions to make a terminal (which may be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.) execute the methods described in the various embodiments of this application.
  • a storage medium such as ROM/RAM, magnetic disk, CD-ROM

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种指示工作模式的方法、装置及设备,该方法包括:接收网络侧设备发送的第一信息,所述第一信息指示RIS工作模式或中继工作模式。

Description

指示工作模式的方法、装置及设备
相关申请的交叉引用
本申请主张在2020年11月06日在中国提交的中国专利申请No.202011233776.X的优先权,其全部内容通过引用包含于此。
技术领域
本申请属于通信技术领域,具体涉及一种指示可重构智能表面(Reconfigurable Intelligent Surface,RIS)工作模式的方法、装置及设备。
背景技术
智能表面设备由大规模器件阵列和阵列控制模块构成。大规模器件阵列是在平面底板上规则的重复排列的大量器件单元。为达到可观的信号操控效果,通常需要几百或者几千个器件单元组成器件阵列。每个器件单元都具有可变的器件结构,例如,器件单元中包含一个正-本征-负(Positive Intrinsic-Negative,PIN)二极管,PIN二极管的开关状态决定了器件单元对外界无线信号的响应模式。智能表面的阵列控制模块可以控制每个器件单元的工作状态,从而动态或半静态的控制每个器件单元对无线信号的响应模式。大规模器件阵列的每个器件单元的无线响应信号互相叠加,在宏观上形成特定的波束传播特征。控制模块是智能表面设备的“大脑”,根据通信系统的需求确定智能表面的无线信号响应波束,使得原来静态的通信环境变得“智能”、“可控”。
RIS的工作模式对应RIS对入射信号的发射或者透射效果,可以通过RIS的所有单元对应的二极管的开关图案来控制发射或者透射效果。例如,每一种RIS的所有单元对应的二极管的开关图案对应一种RIS的工作模式。在相同的RIS工作模式,如果将入射波和反射波对换,RIS对入射信号的反射效果在某种程度上是对称或者等效的。例如在同一种工作模式下,基站发送信号到RIS,RIS反射该信号到终端,如果信号从UE发射,基站也可以收到经过RIS发射的信号。也就是说,RIS工作模式具有上下行对称性。但是RIS 工作模式的上下行对称性会影响到同一个终端的下行信号接收和上行信号发送。同理,中继工作模式也存在类似问题。
因此,如何指示RIS或中继的工作模式是亟待解决的问题。
发明内容
本申请实施例的目的是提供一种指示工作模式的方法、装置及设备,实现对RIS或中继的工作模式的指示。
为了解决上述技术问题,本申请是这样实现的:
第一方面,提供一种指示工作模式的方法,由第一设备执行,所述第一设备为终端,或者,所述第一设备为RIS节点或者中继节点,包括:
接收网络侧设备发送的第一信息,所述第一信息指示RIS工作模式或中继工作模式。
第二方面,提供一种指示工作模式的方法,由网络侧设备执行,包括:
发送第一信息,所述第一信息指示RIS工作模式或中继工作模式。
第三方面,提供一种指示工作模式的装置,包括:
第一接收模块,用于接收第一信息,所述第一信息指示RIS工作模式或中继工作模式。
第四方面,提供一种指示工作模式的装置,包括:
第一发送模块,用于发送第一信息,所述第一信息指示RIS工作模式或中继工作模式。
第五方面,提供一种第一设备,所述第一设备为终端,或者,所述第一设备为RIS节点或者中继节点,包括:处理器、存储器及存储在所述存储器上并可在所述处理器上运行的程序,所述程序被所述处理器执行时实现如第一方面所述的方法的步骤。
第六方面,提供一种网络侧设备,包括:处理器、存储器及存储在所述存储器上并可在所述处理器上运行的程序,所述程序被所述处理器执行时实现如第二方面所述的方法的步骤。
第七方面,提供一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如第一方面或第二方面所述的方法 的步骤。
第八方面,提供一种计算机程序产品,所述计算机程序产品被存储在非易失的存储介质中,所述计算机程序产品被至少一个处理器执行以实现如第一方面或第二方面所述的处理的方法的步骤。
第九方面,提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如第一方面或第二方面所述的处理的方法。
在本申请实施例中,通过网络侧指示RIS工作模式或中继工作模式,使得同一个终端的上行发送和下行接收通过相同的RIS工作模式或中继工作模式,解决了RIS工作模式或中继工作模式的上下行对称性对同一个终端的下行信号接收和上行信号发送的影响。
附图说明
图1a和图1b为RIS工作模式的上下行对称性的示意图;
图2是本申请实施例可应用的一种无线通信系统的框图;
图3是本申请实施例指示工作模式的方法的流程图之一;
图4是本申请实施例指示工作模式的方法的流程图之二;
图5是本申请实施例中指示RIS工作模式的示意图;
图6是本申请实施例中指示工作模式的装置示意图之一;
图7是本申请实施例中指示工作模式的装置示意图之二;
图8是本申请实施例中第一设备的示意图;
图9是本申请实施例中网络侧设备的示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类 似的对象,而不用于描述指定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施,且“第一”、“第二”所区别的对象通常为一类,并不限定对象的个数,例如第一对象可以是一个,也可以是多个。此外,说明书以及权利要求中“和”表示所连接对象的至少其中之一,字符“/”一般表示前后关联对象是一种“或”的关系。
值得指出的是,本申请实施例所描述的技术不限于长期演进型(Long Term Evolution,LTE)/LTE的演进(LTE-Advanced,LTE-A)系统,还可用于其他无线通信系统,诸如码分多址(Code Division Multiple Access,CDMA)、时分多址(Time Division Multiple Access,TDMA)、频分多址(Frequency Division Multiple Access,FDMA)、正交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA)、单载波频分多址(Single-carrier Frequency-Division Multiple Access,SC-FDMA)和其他系统。本申请实施例中的术语“系统”和“网络”常被可互换地使用,所描述的技术既可用于以上提及的系统和无线电技术,也可用于其他系统和无线电技术。然而,以下描述出于示例目的描述了新空口(New Radio,NR)系统,并且在以下大部分描述中使用NR术语,尽管这些技术也可应用于NR系统应用以外的应用,如第6代(6 th Generation,6G)通信系统。
为了便于理解本申请实施例,下面先介绍以下技术点:
一、智能表面/超材料表面:
智能表面是一种新兴的技术,有如下多个相关的术语,它们表示的都是类似的技术或者实体,这些术语包括:
大型智能表面(Large Intelligent Surface,LIS);
智能反射阵列(Smart Reflect Array,SRA);
可配置反射阵列(Reconfigurable Reflect Array,RRA);
智能反射表面(Intelligent Reflecting Surface,IRS);
可重构智能表面(Reconfigurable Intelligent Surface,RIS)。
智能表面技术在多个技术领域有所应用,根据应用场景不同有很多种不同的设计方案。按照器件单元的物理原理分类包含可调谐谐振器(Tunable  Resonator)可变电容型、导波(Guided Wave)波导型、元素旋转(Element Rotation)极化型等;按照无线信号输出形式,分为反射型智能表面和透射型智能表面;按照无线信号响应参数分类包括相位控制型智能表面,幅度控制型智能表面和幅度相位联合控制型智能表面;按照响应参数控制分类分为连续控制型和离散控制型;按照控制智能表面幅度和相位的频次或快慢分为静态,半静态/动态控制的智能表面,其中静态的智能表面目前就可以应用到已有系统中,例如,第四代移动通信技术(fourth generation,4G)/第五代移动通信技术(fifth-generation,5G)系统。考虑器件设计和制作的复杂度,学术界普遍选择使用单一无线信号响应参数的离散控制型器件单元进行研究。目前,学术界广泛讨论的智能反射表面(Intelligent Reflecting Surface,IRS)就是一种基于信号反射的相位控制智能表面,通过1比特(bit)的指示信息控制器件单元的反射信号的相位,实现0或π的相位翻转。
得益于不需要射频和基带处理电路,智能表面设备相比与传统无线通信收发设备有几点优势:
(1)智能表面设备有更低的成本和实现复杂度;
(2)智能表面设备具有更低的功耗;
(3)智能表面不会引入额外的接收端热噪声;
(4)智能表面设备厚度薄、重量小,可以实现灵活的部署。
RIS反射单元种类的有以下几种:
(1)可调谐谐振器:一个可变电容器被整合到谐振器中,通过改变频率捷变(frequency-agile)贴片谐振器频率,产生相移。
(2)导波控制法:在这种情况下,到达的空间波被天线耦合到导波上,随后导波相移,再重新发射,形成了一个天线移相器。
(3)圆极化波的旋转技术:利用电磁波的反射规律进行设计。
从是否可动态控制的角度划分,反射阵列/智能表面分为两大类:
(1)静态的反射阵列/智能表面:反射阵列的结构和功能可以是固定的,对于一个角度的入射波,超表面单元导致入射波的幅度、相位、极化方式等特性发生固定的改变,得到相应的反射波。
(2)动态的反射阵列/智能表面:反射阵列的结构和功能是可以控制的, 对于一个角度的入射波,可以通过可编程控制使得入射波的幅度、相位、极化方式等特性发生不同的改变,得到相应的反射波。对反射超表面实现可编程控制,须在反射单元中引入开关元件(如二极管等)。PIN二极管是目前控制可重构超表面的常见选择,PIN二极管具备较宽范围的射频阻抗,并且失真低,在微波射频领域具有广泛应用。反射单元中的开关元件使其具有多个不同的状态,并且通过控制开关元件的通断可实现不同状态的切换。开关元件在通、断两种情况下,对应反射单元的结构和性能均有较大变化。即,不同状态的反射单元对入射波的幅度、相位、极化等特性有不同的调控模式。
二、无源智能表面:
由于智能表面由大量的器件单元构成并且没有射频和基带处理能力,因此称此类智能表面为无源智能表面。
三、有源无源结合的智能表面(或有源智能表面):
由于智能表面由大量的器件单元构成并且没有射频和基带处理能力,所以基站无法分别获得基站到智能表面以及智能表面到终端的信道信息。基站或终端的接收信号由大量的智能表面器件单元的响应信号叠加形成,改变一个或者少量的器件单元的工作状态并不能使接收信号产生明显的变化。一种可能的测量方案是在智能表面中安装少量有源器件单元,使得智能表面能够进行信道测量和反馈;基站使用压缩感知或者深度学习算法从有限的信道信息中推算出合理的智能表面配置参数。基于智能表面的通信系统需要一个高效的信道测量机制,在保证智能表面低复杂度的前提下,尽量提升端到端的信号质量。这种安装了部分有源器件的智能表面具备接收信号甚至发送信号的能力,是一种有源无源结合的智能表面(或有源智能表面)。
四、RIS工作模式的上下行对称性:
RIS的工作模式对应RIS对入射信号的发射或者透射效果,可以通过RIS的所有单元对应的二极管的开关图案来控制发射或者透射效果。例如,每一种RIS的所有单元对应的二极管的开关图案对应一种RIS的工作模式。
一般来讲,一个时刻RIS只能在一种工作模式。
在同一种工作模式下,如图1a和图1b所示,基站发送信号到RIS,RIS反射该信号到终端,此时RIS工作在工作模式1。
同样在RIS工作模式1,如果信号从终端发射,基站也可以收到经过RIS发射的信号。
即,在相同的RIS工作模式,如果将入射波和反射波对换,RIS对入射信号的反射效果在某种程度上是对称或者等效的。
五、新空口(New Radio,NR)中的上下行子帧/符号比例:
第五代移动通信技术(fifth-generation,5G)以时隙(Slot)甚至是正交频分复用(Orthogonal Frequency Division Multiplex,OFDM)符号为单位来分配上下行资源比例。
通信系统中支持利用小区专用(Cell specific)和终端专用(UE specific)的无线资源控制(Radio Resource Control,RRC)信令来指示UE上下行子帧比例;
通信系统中支持通过下行控制信息(Downlink Control Information,DCI)信令来灵活的调整上下行资源比例,并预定义了55种标准化结构(预留最高支持254种结构)。
如表1所示:以14个符号为例,D代表该符号为下行符号,U代表该符号为上行符号,F代表该符号为灵活符号(即不确定是上行或者下行符号)。
表1
Figure PCTCN2021129117-appb-000001
参见图2,图中示出本申请实施例可应用的一种无线通信系统的框图。无线通信系统包括终端21、网络侧设备22和智能表面设备23。其中,终端21也可以称作终端设备或者用户终端(User Equipment,UE),终端21可以是手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)或称为笔记本电脑、个人数字助理(Personal Digital Assistant,PDA)、掌上电脑、上网本、超级移动个人计算机(Ultra-Mobile Personal Computer,UMPC)、移动上网装置(Mobile Internet Device,MID)、可穿戴式设备(Wearable Device)或车载设备(VUE)、行人终端(PUE)等终端侧设备,可穿戴式设备包括:手环、耳机、眼镜等。需要说明的是,在本申请实施例并不限定终端21的具体类型。
网络侧设备22可以是基站或核心网,其中,基站可被称为节点B、演进节点B、接入点、基收发机站(Base TransceiverStation,BTS)、无线电基站、 无线电收发机、基本服务集(BasicServiceSet,BSS)、扩展服务集(ExtendedServiceSet,ESS)、B节点、演进型B节点(eNB)、家用B节点、家用演进型B节点、无线局域网(Wireless Local Area Network,WLAN)接入点、无线保真(Wireless Fidelity,WiFi)节点、发送接收点(Transmitting Receiving Point,TRP)、无线接入网节点或所述领域中其他某个合适的术语,只要达到相同的技术效果,所述基站不限于指定技术词汇,需要说明的是,在本申请实施例中仅以NR系统中的基站为例,但是并不限定基站的具体类型。
下面结合附图,通过一些实施例及其应用场景对本申请实施例提供的一种指示工作模式的方法、装置、设备及可读存储介质进行详细地说明。
参见图3,本申请实施例提供一种指示工作模式的方法,由第一设备执行,所述第一设备为终端,或者,所述第一设备为RIS节点或者中继(relay)节点,例如层1relay,层2relay,层3relay,或者接入和回传一体化(Integrated Access and Backhaul,IAB)节点,包括:步骤301。
步骤301:接收网络侧设备发送的第一信息,所述第一信息指示RIS工作模式或中继工作模式。
可选地,第一信息也可以是无线资源控制(Radio Resource Control,RRC)信令;第一时间单元可以是特定周期内的每个时间单元,该时间单元可以是时隙(slot)或者符号(symbol)或者其他时间粒度。
在本申请实施例中,所述RIS工作模式或中继工作模式与以下至少一项关联:
(1)RIS或中继的反射信号或折射信号的波束指向;例如不同工作模式对应不同的反射信号的波束指向,或者,不同工作模式对应着不同的折射信号的波束指向;
(2)RIS或中继的反射信号或折射信号的波束赋型的模式;例如,RIS的波束赋型的模式通过调整RIS单元关联的二极管的开或断来获得,即不同的二极管的开或断的图样对应不同的RIS反射信号或折射信号的波束赋型的模式,从而对应不同的RIS的工作模式;
(3)RIS或中继的反射信号或折射信号的极化方式,该极化方式包括: 水平极化或垂直极化;例如,不同的工作模式对应着不同的极化方式;以及,
(4)RIS或中继的反射信号或折射信号的轨道角动量(Orbital Angular Momentum,OAM)方式;例如,不同的工作模式对应着不同的OAM模式。
在本申请实施例中,所述RIS工作模式中继工作模式与以下至少一项准共址(Quasi co-location,QCL):
(1)所述网络侧设备发送的同步信号块(Synchronization Signal and PBCH block,SSB);
(2)所述网络侧设备发送的信道状态信息参考信号(Channel State Information Reference Signal,CSI-RS);
(3)所述网络侧设备发送的跟踪参考信号(tracking reference signal,TRS);
(4)所述网络侧设备发送的解调参考信号(Demodulation Reference Signal,DMRS);以及,
(5)所述网络侧设备发送的定位参考信号(Positioning reference signals,PRS)。
在本申请实施例中,所述第一信息还指示所述RIS工作模式或中继工作模式对应的上行配置或下行配置。也就是,第一信息可以同时指示每个时间单元的RIS工作模式和上行/下行配置,比如,时分双工上行链路下行链路配置(tdd-UL-DL-Configuration)。所述上行配置或下行配置包括表1中的不同配置。
在本申请实施例中,所述第一信息是小区专用(Cell specific)信令,或者终端专用(UE specific)信令。
在本申请实施例中,所述RIS工作模式的类型包括:确定的工作模式和灵活的工作模式。
在本申请实施例中,所述方法还包括:
如果所述第一信息指示所述RIS工作模式或中继工作模式的类型为灵活的工作模式,接收第二信息,所述第二信息指示所述RIS工作模式或中继工作模式为确定的工作模式中的第一工作模式,也就是,第二信息可以进一步指示不确定的工作模式为哪种确定的工作模式。可选地,所述第二信息为层 1信令。
可选地,所述RIS工作模式或中继工作模式是一个周期或者多个周期内的至少部分时间单元上的RIS工作模式或中继工作模式。
RIS工作模式的上下行对称性会影响到同一个UE的下行信号接收和上行信号发送,因为必须保证RIS在同一个UE的下行信号接收和上行信号发送的时刻的工作模式是相同的。在本申请实施例中,
如果所述RIS工作模式或中继工作模式是一个周期内的至少部分时间单元上的RIS工作模式或中继工作模式,则所述一个周期内的具有相同RIS工作模式或中继工作模式的时间单元的数量大于1;如果所述RIS工作模式或中继工作模式是多个周期内的至少部分时间单元上的RIS工作模式或中继工作模式,则所述多个周期中的每个周期内的具有相同RIS工作模式或中继工作模式的时间单元的数量大于1。
在本申请实施例中,所述第一设备为RIS或者中继节点,所述方法还包括:根据所述第一信息,更新工作模式。
在本申请实施例中,所述第一设备为终端,所述方法还包括:根据所述第一信息指示的RIS工作模式或中继工作模式,执行对应的传输。
在本申请实施例中,所述根据所述第一信息指示的RIS工作模式或中继工作模式,执行对应的传输,包括以下中的一项:
根据所述第一信息指示的RIS工作模式或中继工作模式,执行两步随机接入过程或者四步随机接入过程;
根据所述第一信息指示的RIS工作模式或中继工作模式,执行上行数据或下行数据的传输;
根据所述第一信息指示的RIS工作模式或中继工作模式,执行混合自动重传请求(Hybrid automatic repeat request,HARQ)过程。
在本申请实施例中,所述根据所述第一信息指示的RIS工作模式或中继工作模式,执行四步随机接入过程,包括:
确定目标SSB的索引;在第一时刻发送MSG1,所述第一时刻的RIS工作模式或中继工作模式与目标SSB所在时间单元对应的RIS工作模式或中继工作模式相同,且第一时刻与目标SSB的索引关联的随机接入时机对应;在 所述终端发送消息1(MSG1)之后,在第二时刻监听消息2(MSG2);其中,所述第二时刻的RIS工作模式或中继工作模式与所述MSG1所在时刻对应的RIS工作模式或中继工作模式相同。
在本申请实施例中,所述方法还包括:在所述终端监听消息2之后,在第三时刻发送消息3(MSG3);其中,所述第三时刻的RIS工作模式或中继工作模式与所述消息2所在时刻对应的RIS工作模式或中继工作模式相同;
在所述终端发送MSG3之后,在第四时刻接收消息4(MSG4);其中,所述第四时刻的RIS工作模式或中继工作模式与所述MSG3所在时刻对应的RIS工作模式或中继工作模式相同。
在本申请实施例中,所述根据所述第一信息指示的RIS工作模式或中继工作模式,执行两步随机接入过程,包括:
确定目标SSB的索引;在第五时刻发送消息A(MSGA)的前导码,所述第五时刻的RIS工作模式或中继工作模式与目标SSB所在时对应的RIS工作模式或中继工作模式相同,且第五时刻与目标SSB的索引关联的随机接入时机对应;在第六时刻发送所述MSGA,所述第六时刻的RIS工作模式或中继工作模式与所述目标SSB所在时刻对应的RIS工作模式或中继工作模式相同;在发送所述MSGA之后,在第七时刻监听消息B(MSGB),所述第七时刻的RIS工作模式或中继工作模式与所述MSGA所在时刻对应的RIS工作模式或中继工作模式相同。
在本申请实施例中,所述根据所述第一信息指示的RIS工作模式,执行上行数据或下行数据的传输,包括:
接收第四信息;确定目标SSB索引;在第八时刻元接收下行数据或发送上行数据,其中,所述第八时刻属于所述第四信息指示的接收下行数据或发送上行数据的时间资源,且所述第八时刻的RIS工作模式或中继工作模式与目标SSB索引的时刻的RIS工作模式或中继工作模式相同。
在本申请实施例中,所述根据所述第一信息指示的RIS工作模式或中继工作模式,执行HARQ过程,包括:
在第九时刻发送第一信道对应的肯定确认(Acknowledgement,ACK)或否定确认(Negative Acknowledgement,NACK),所述第九时刻的RIS工作 模式或中继工作模式与传输所述第一信道的时刻的RIS工作模式或中继工作模式相同,所述第一信道为物理下行控制信道(Physical downlink control channel,PDCCH)/物理下行共享信道(Physical downlink shared channel,PDSCH)。
可选地,第九时刻是自主选择的,或者基于网络侧配置确定的。
在本申请实施例中,通过网络侧指示RIS工作模式或中继工作模式,使得同一个终端的上行发送和下行接收通过相同的RIS工作模式或中继工作模式,解决了RIS工作模式或中继工作模式的上下行对称性对同一个终端的下行信号接收和上行信号发送的影响。
参见图4,本申请实施例提供一种指示工作模式的方法,由网络侧设备执行,具体步骤包括:步骤401。
步骤401:发送第一信息,所述第一信息指示RIS工作模式或中继工作模式。
比如,向终端发送第一信息,或者,向RIS或者中继发送第一信息。
在本申请实施例,所述RIS工作模式或中继工作模式与以下至少一项关联:(1)RIS或中继的反射信号或折射信号的波束指向;(2)RIS或中继的反射信号或折射信号的波束赋型的模式;(3)RIS或中继的反射信号或折射信号的极化方式;以及,(4)RIS或中继的反射信号或折射信号的OAM方式。
在本申请实施例,所述RIS工作模式或中继工作模式与以下至少一项准共址:(1)网络侧设备发送的SSB,(2)网络侧设备发送的CSI-RS,(3)网络侧设备发送的TRS,(4)网络侧设备发送的DMRS,以及(5)网络侧设备发送的PRS。
在本申请实施例,所述第一信息还指示RIS工作模式或中继工作模式对应的上行配置或下行配置。
在本申请实施例,所述第一信息是小区专用信令,或者终端专用信令。
在本申请实施例,所述RIS工作模式或中继工作模式的类型包括:确定的工作模式和灵活的工作模式。
在本申请实施例,所述方法还包括:如果所述第一信息指示RIS工作模式或中继工作模式的类型为灵活的工作模式,发送第二信息,所述第二信息 指示RIS工作模式或中继工作模式为不确定的工作模式中的第一工作模式。可选地,所述第二信息为层1信令。
在本申请实施例,所述RIS工作模式或中继工作模式是一个周期或者多个周期内的至少部分时间单元上的RIS工作模式或中继工作模式。
在本申请实施例中,通过网络侧指示RIS工作模式或中继工作模式,使得同一个终端的上行发送和下行接收通过相同的RIS工作模式或中继工作模式,解决了RIS工作模式或中继工作模式的上下行对称性对同一个终端的下行信号接收和上行信号发送的影响。
下面结合4种方式介绍指示RIS工作模式的方式:
方式1:
通过基站SIB(cell specific)或者RRC信令(UE specific)指示RIS工作模式。每个时刻的RIS工作模式是确定的。其中,RRC信令(UE specific)可以取代SIB(cell specific)信令指示的不确定的工作模式,例如指示不确定的工作模式为工作模式1。
可选的,通过另外的信令指示tdd-UL-DL-Configuration。
如表2所示:可通过SIB或者RRC信令指示RIS工作模式。
表2
时隙或符号索引 0 1 2 3 4 5 6 7 8 9
RIS工作模式 0 1 2 1 2 0 1 2 0 0
比如,SIB或者RRC信令指示:索引0的时隙或符号的RIS工作模式为工作模式0,索引1的时隙或符号的RIS工作模式为工作模式1,索引2的时隙或符号的RIS工作模式为工作模式2,索引3的时隙或符号的RIS工作模式为工作模式1,索引4的时隙或符号的RIS工作模式为工作模式2,索引5的时隙或符号的RIS工作模式为工作模式0,索引6的时隙或符号的RIS工作模式为工作模式1,索引7的时隙或符号的RIS工作模式为工作模式2,索引8的时隙或符号的RIS工作模式为工作模式0,索引9的时隙或符号的RIS工作模式为工作模式0。
参见图6,SIB或者RRC信令指示终端1的RIS工作模式为工作模式0,指示终端2的RIS工作模式为工作模式1,指示终端3的RIS工作模式为工作模式2。
方式2:
通过基站SIB(cell specific)或者RRC信令(UE specific)指示RIS工作模式。部分时间单元的RIS工作模式是不确定的。其中,RRC信令(UE specific)可以取代SIB(cell specific)信令指示的不确定的工作模式,例如指示不确定的工作模式为工作模式1。
然后,通过层1信令指示不确定的工作模式为哪种工作模式。
可选的,通过另外的信令指示tdd-UL-DL-Configuration。
如表3所示:可通过SIB或者RRC信令指示的RIS工作模式(通过层1信令指示待定的/灵活的工作模式为哪种工作模式)。
表3
时隙或符号索引 0 1 2 3 4 5 6 7 8 9
RIS工作模式 0 1 2 F F 0 1 2 F F
其中,F代表不确定是RIS的哪种工作模式,或者是不确定的/待定的/灵活的工作模式。
比如,SIB或者RRC信令指示:索引0的时隙或符号的RIS工作模式为工作模式0,索引1的时隙或符号的RIS工作模式为工作模式1,索引2的时隙或符号的RIS工作模式为工作模式2,索引3的时隙或符号的RIS工作模式为不确定的工作模式,索引4的时隙或符号的RIS工作模式为不确定的工作模式,索引5的时隙或符号的RIS工作模式为工作模式0,索引6的时隙或符号的RIS工作模式为工作模式1,索引7的时隙或符号的RIS工作模式为工作模式2,索引8的时隙或符号的RIS工作模式为不确定的工作模式,索引9的时隙或符号的RIS工作模式为不确定的工作模式。
方式3:
通过基站SIB(cell specific)或者RRC信令(UE specific)同时指示RIS工作模式和tdd-UL-DL-Configuration。
其中,RRC信令(UE specific)可以取代SIB(cell specific)信令指示的不确定的工作模式,例如指示不确定的工作模式为工作模式1。
每个时间单元的RIS工作模式是确定的。
如表4所示:可通过SIB或者RRC信令指示的RIS工作模式(通过层1 信令指示待定的/灵活的工作模式为哪种工作模式)。
表4
时隙或符号索引 0 1 2 3 4 5 6 7 8 9
DL/UL D D S U U D S U F F
RIS工作模式 0 1 2 1 2 0 1 2 0 0
比如,SIB或者RRC信令指示:索引0的时隙或符号的RIS工作模式为工作模式0,该时隙或符号为下行时隙或符号,索引1的时隙或符号的RIS工作模式为工作模式1,该时隙或符号为下行时隙或符号,索引2的时隙或符号的RIS工作模式为工作模式2,该时隙或符号为特殊时隙或特殊符号,索引3的时隙或符号的RIS工作模式为不确定的工作模式,该时隙或符号为上行时隙或符号,索引4的时隙或符号的RIS工作模式为不确定的工作模式,该时隙或符号为上行时隙或符号,索引5的时隙或符号的RIS工作模式为工作模式0,该时隙或符号为下行时隙或符号,索引6的时隙或符号的RIS工作模式为工作模式1,该时隙或符号为S,索引7的时隙或符号的RIS工作模式为工作模式2,该时隙或符号为上行时隙或符号,索引8的时隙或符号的RIS工作模式为不确定的工作模式,该时隙或符号为灵活时隙或符号,索引9的时隙或符号的RIS工作模式为不确定的工作模式,该时隙或符号为灵活时隙或符号。方式3中的DL/UL可以是表1中的不同配置。
方式4:
通过基站SIB(cell specific)或者RRC信令(UE specific)同时指示RIS工作模式和tdd-UL-DL-Configuration。其中,RRC信令(UE specific)可以取代SIB(cell specific)信令指示的不确定的工作模式,例如,指示不确定的工作模式为工作模式1。
其中,部分时间单元的RIS工作模式是不确定的工作模式。
进一步地,通过层1信令指示不确定的RIS工作模式为哪种工作模式。
如表5所示,层1信令可同时指示不确定的RIS工作模式为哪种工作模式,以及不确定的上下行符号/时隙为哪种符号/时隙(上行或下行)。
表5:
Figure PCTCN2021129117-appb-000002
比如,SIB或者RRC信令指示:索引0的时隙或符号的RIS工作模式为工作模式0,该时隙或符号为下行时隙或符号,索引1的时隙或符号的RIS工作模式为工作模式1,该时隙或符号为下行时隙或符号,索引2的时隙或符号的RIS工作模式为工作模式2,该时隙或符号为特数时隙或特殊符号,索引3的时隙或符号的RIS工作模式为不确定的工作模式,该时隙或符号为上行时隙或符号,索引4的时隙或符号的RIS工作模式为不确定的工作模式,该时隙或符号为上行时隙或符号,索引5的时隙或符号的RIS工作模式为工作模式0,该时隙或符号为下行时隙或符号,索引6的时隙或符号的RIS工作模式为工作模式1,该时隙或符号为特数时隙或特殊符号,索引7的时隙或符号的RIS工作模式为工作模式2,该时隙或符号为上行时隙或符号,索引8的时隙或符号的RIS工作模式为不确定的工作模式,该时隙或符号为灵活时隙或符号,索引9的时隙或符号的RIS工作模式为不确定的工作模式,该时隙或符号为灵活时隙或符号。方式4中的DL/UL可以是表1中的不同配置。
下面结合实施例1-实施例4介绍指示RIS工作模式方法的4个应用场景。
实施例1:四步随机接入信道(Random Access Channel,RACH)
测量并确定目标SSB index(例如选择参考信号接收功率(Reference Signal Received Power,RSRP)满足一定门限的SSB为目标SSB index)之后,在该SSB关联的随机接入时机(RACH Occasion,RO)且满足RIS工作模式与SSB index对应的RIS工作模式相同的时间单元发送MSG1;或者,UE确定
UE发送MSG1之后,在第一时间窗内且满足RIS工作模式与MSG1对应的RIS工作模式相同的时间单元,监听MSG2;
UE监听到MSG2之后,在MSG2指示的时间单元发送MSG3;
可选地,该时间单元对应的RIS工作模式与MSG2对应的RIS工作模式相同。
UE发送MSG3之后,在第二时间窗内且满足RIS工作模式与MSG3对应的RIS工作模式相同的时间单元,接收MSG4;
其中,UE根据上述四种指示方式中的一种,确定每个时间单元对应的RIS工作模式。
实施例2:两步RACH
测量并确定目标SSB index(例如选择RSRP满足一定门限的SSB为目标SSB index)之后,在该SSB关联的RO且满足RIS工作模式与SSB index对应的RIS工作模式相同的时间单元发送MSGA的前导码(preamble);
UE在RIS工作模式与SSB index对应的RIS工作模式相同的时间单元发送MSGA的物理上行共享信道(Physical Uplink Shared Channel,PUSCH);
UE发送MSGA之后,在第三时间窗内且满足RIS工作模式与MSGA对应的RIS工作模式相同的时间单元,监听MSGB;
其中,UE根据上述四种指示方式的一种,确定每个时间单元对应的RIS工作模式。
实施例3:配置调度(configured scheduling)/免授权(grant free)相关的配置。
UE接收基站信令,例如RRC信令或者层1(L1)信令等;
该RRC信令或者L1信令指示UE在多个时刻接收下行数据/发送上行数据的时频资源,调制和编码方案(Modulation and coding scheme,MCS)等信息;
UE(周期性的)测量并确定目标SSB index(例如选择RSRP满足一定门限的SSB为目标SSB index);
UE根据RRC信令或者L1信令指示的接收下行数据/发送上行数据的时间资源(第一条件),以及与目标SSB index时刻对应的RIS的工作模式相同的时刻(第二条件),来接收下行数据/发送上行数据。
实施例4:PDSCH和对应的肯定确认(Acknowledgement,ACK)/否定 确认(Negative Acknowledgement,NACK)。
UE根据现有技术确定ACK/NACK发送时刻的基础上,还必须满足ACK/NACK发送时刻的RIS工作模式与关联的物理下行控制信道(Physical downlink control channel,PDCCH)/物理下行共享信道(Physical downlink shared channel,PDSCH)时刻的RIS工作模式相同;
具体可以是UE自主选择满足条件的ACK/NACK发送时刻,或者基站指示例如通过PDCCH指示满足条件的ACK/NACK发送时刻。
可以理解的是,上述实施例中的RIS也可以是某种中继(relay),例如层1relay,层2relay,层3relay,或者接入和回传一体化(Integrated Access and Backhaul,IAB)节点。
参见图6,本申请实施例提供一种指示工作模式的装置,该装置600包括:
第一接收模块601,用于接收网络侧设备发送的第一信息,所述第一信息指示RIS工作模式或中继工作模式。
在本申请实施例中,所述装置600还包括:
更新模块,用于根据所述第一信息,更新工作模式。
在本申请实施例中,所述装置600还包括:
执行模块,用于根据所述第一信息指示的RIS工作模式或中继工作模式,执行对应的传输。
在本申请实施例中,所述RIS工作模式或中继工作模式与以下至少一项关联:
(1)RIS或中继的反射信号或折射信号的波束指向;
(2)RIS或中继的反射信号或折射信号的波束赋型的模式;
(3)RIS或中继的反射信号或折射信号的极化方式;以及,
(4)RIS或中继的反射信号或折射信号的OAM方式。
在本申请实施例中,所述RIS工作模式或中继工作模式与以下至少一项准共址:所述网络侧设备发送的SSB,所述网络侧设备发送的CSI-RS,所述网络侧设备发送的TRS,所述网络侧设备发送的DMRS,以及所述网络侧设备发送的PRS。
在本申请实施例中,所述第一信息还指示所述RIS工作模式或中继工作模式对应的上行配置或下行配置。
在本申请实施例中,所述第一信息是小区专用信令,或者终端专用信令。
在本申请实施例中,所述RIS工作模式或中继工作模式的类型包括:确定的工作模式和灵活的工作模式。
在本申请实施例中,所述装置还包括:
第二接收模块,用于如果所述第一信息指示RIS工作模式或中继工作模式的类型为灵活的工作模式,接收第二信息,所述第二信息指示RIS工作模式或中继工作模式为确定的工作模式中的第一工作模式。
在本申请实施例中,所述第二信息为层1信令。
在本申请实施例中,RIS工作模式或中继工作模式是一个周期或者多个周期内的至少部分时间单元上的RIS工作模式或中继工作模式。
在本申请实施例中,如果所述RIS工作模式或中继工作模式是一个周期内的至少部分时间单元上的RIS工作模式或中继工作模式,则所述一个周期内的具有相同RIS工作模式或中继工作模式的时间单元的数量大于1;如果所述RIS工作模式或中继工作模式是多个周期内的至少部分时间单元上的RIS工作模式或中继工作模式,则所述多个周期中的每个周期内的具有相同RIS工作模式或中继工作模式的时间单元的数量大于1。
在本申请实施例中,执行模块进一步用于:根据所述第一信息指示的RIS工作模式或中继工作模式,执行两步随机接入过程或者四步随机接入过程;或者,根据所述第一信息指示的RIS工作模式或中继工作模式,执行上行数据或下行数据的传输;或者,根据所述第一信息指示的RIS工作模式或中继工作模式,执行混合自动重传请求HARQ过程。
在本申请实施例中,所述执行模块包括:
确定单元,用于确定目标SSB的索引;
第一发送单元,用于在第一时刻发送消息1,所述第一时刻的RIS工作模式或中继工作模式与目标SSB所在时刻对应的RIS工作模式或中继工作模式相同,且第一时刻与目标SSB的索引关联的随机接入时机对应;
第一监听单元,用于在所述终端发送消息1之后,在第二时刻监听消息 2;
其中,所述第二时刻的RIS工作模式或中继工作模式与所述消息1所在时刻对应的RIS工作模式或中继工作模式相同。
在本申请实施例中,所述执行模块还包括:
第二发送单元,用于在所述终端监听消息2之后,在第三时刻发送消息3;其中,所述第三时刻的RIS工作模式或中继工作模式与所述消息2所在时刻对应的RIS工作模式或中继工作模式相同;
第一接收单元,用于在所述终端发送MSG3之后,在第四时刻接收MSG4;
其中,所述第四时刻的RIS工作模式或中继工作模式与所述MSG3所在时刻对应的RIS工作模式或中继工作模式相同。
在本申请实施例中,所述执行模块包括:
第二确定单元,用于确定目标SSB的索引;
第三发送单元,用于在第五时刻发送MSGA的前导码,所述第五时刻的RIS工作模式或中继工作模式与目标SSB所在时刻对应的RIS工作模式或中继工作模式相同,且第五时刻与目标SSB的索引关联的随机接入时机对应;
第三发送单元,用于在第六时刻发送所述MSGA,所述第六时刻的RIS工作模式或中继工作模式与所述目标SSB所在时刻对应的RIS工作模式或中继工作模式相同;
第二监听单元,用于在发送所述MSGA之后,在第七时刻监听MSGB,所述第七时刻的RIS工作模式或中继工作模式与所述MSGA所在时刻对应的RIS工作模式或中继工作模式相同。
在本申请实施例中,所述执行模块包括:
第二接收单元,用于接收第四信息;
第三确定单元,用于确定目标SSB索引;
收发单元,用于在第八时刻接收下行数据或发送上行数据,其中,所述第八时刻属于所述第四信息指示的接收下行数据或发送上行数据的时间资源,且所述第八时刻的RIS工作模式或中继工作模式与目标SSB索引的时刻的RIS工作模式或中继工作模式相同。
在本申请实施例中,所述执行模块进一步用于:在第九时刻发送第一信 道对应的肯定确认或否定确认,所述第九时刻的RIS工作模式或中继工作模式与传输所述第一信道的时刻的RIS工作模式或中继工作模式相同;其中,所述第一信道为物理下行控制信道或者物理下行共享信道。
在本申请实施例中,所述第九时刻是自主选择的,或者基于网络侧配置确定的。
本申请实施例提供的装置能够实现图3所示的方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
参见图7,本申请实施例提供一种指示工作模式的装置,该装置700包括:
第一发送模块701,用于发送第一信息,所述第一信息指示RIS工作模式或中继工作模式。
在本申请实施例中,所述RIS工作模式或中继工作模式与以下至少一项关联与以下至少一项关联:
RIS或中继的反射信号或折射信号的波束指向;
RIS或中继的反射信号或折射信号的波束赋型的模式;
RIS或中继的反射信号或折射信号的极化方式;以及,
RIS或中继的反射信号或折射信号的OAM方式。
在本申请实施例中,所述RIS工作模式或中继工作模式与以下至少一项准共址:网络侧设备发送的SSB,网络侧设备发送的CSI-RS,网络侧设备发送的TRS,网络侧设备发送的DMRS,以及网络侧设备发送的PRS。
在本申请实施例中,所述第一信息还指示RIS工作模式或中继工作模式对应的上行配置或下行配置。
在本申请实施例中,所述第一信息是小区专用信令,或者终端专用信令。
在本申请实施例中,所述RIS工作模式或中继工作模式的类型包括:确定的工作模式和灵活的工作模式。
在本申请实施例中,所述装置还包括:
第二发送模块,用于如果所述第一信息指示RIS工作模式或中继工作模式的类型为不确定的工作模式,则发送第二信息,所述第二信息指示RIS工作模式或中继工作模式为确定的工作模式中的第一工作模式。
在本申请实施例中,所述第二信息为层1信令。
在本申请实施例中,所述RIS工作模式或中继工作模式是一个周期或者多个周期内的至少部分时间单元上的RIS工作模式或中继工作模式。
本申请实施例提供的装置能够实现图4所示的方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
图8为实现本申请实施例的一种第一设备的硬件结构示意图,所述第一设备为终端,或者,所述第一设备为可重构智能表面RIS或者中继。
该第一设备800包括但不限于:射频单元801、网络模块802、音频输出单元803、输入单元804、传感器805、显示单元806、用户输入单元807、接口单元808、存储器809、以及处理器810等部件。
本领域技术人员可以理解,第一设备800还可以包括给各个部件供电的电源(比如电池),电源可以通过电源管理系统与处理器810逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。图8中示出的第一设备结构并不构成对第一设备的限定,第一设备可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置,在此不再赘述。
应理解的是,本申请实施例中,输入单元804可以包括图形处理器(Graphics Processing Unit,GPU)8041和麦克风8042,图形处理器8041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。显示单元806可包括显示面板8061,可以采用液晶显示器、有机发光二极管等形式来配置显示面板8061。用户输入单元807包括触控面板8071以及其他输入设备8072。触控面板8071,也称为触摸屏。触控面板8071可包括触摸检测装置和触摸控制器两个部分。其他输入设备8072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
本申请实施例中,射频单元801将来自网络侧设备的下行数据接收后,给处理器810处理;另外,将上行的数据发送给网络侧设备。通常,射频单元801包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器、双工器等。
存储器809可用于存储软件程序或指令以及各种数据。存储器809可主 要包括存储程序或指令区和存储数据区,其中,存储程序或指令区可存储操作系统、至少一个功能所需的应用程序或指令(比如声音播放功能、图像播放功能等)等。此外,存储器809可以包括高速随机存取存储器,还可以包括非易失性存储器,其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。
处理器810可包括一个或多个处理单元;可选的,处理器810可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序或指令等,调制解调处理器主要处理无线通信,如基带处理器。可以理解的是,上述调制解调处理器也可以不集成到处理器810中。
本申请实施例提供的第一设备能够实现图3所示的方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供了一种网络侧设备。如图9所示,该网络侧设备900包括:天线901、射频装置902、基带装置903。天线901与射频装置902连接。在上行方向上,射频装置902通过天线901接收信息,将接收的信息发送给基带装置903进行处理。在下行方向上,基带装置903对要发送的信息进行处理,并发送给射频装置902,射频装置902对收到的信息进行处理后经过天线901发送出去。
上述频带处理装置可以位于基带装置903中,以上实施例中网络侧设备执行的方法可以在基带装置903中实现,该基带装置903包括处理器904和存储器905。
基带装置903例如可以包括至少一个基带板,该基带板上设置有多个芯片,如图9所示,其中一个芯片例如为处理器904,与存储器905连接,以调用存储器905中的程序,执行以上方法实施例中所示的网络设备操作。
该基带装置903还可以包括网络接口906,用于与射频装置902交互信息,该接口例如为通用公共无线接口(common public radio interface,简称CPRI)。
具体地,本申请实施例的网络侧设备还包括:存储在存储器905上并可在处理器904上运行的指令或程序,处理器904调用存储器905中的指令或程序执行图7所示各模块执行的方法,并达到相同的技术效果,为避免重复,故不在此赘述。
本申请实施例还提供一种计算机程序产品,所述计算机程序产品被存储在非易失的存储介质中,所述计算机程序产品被至少一个处理器执行以实现如图3或图4所述的处理的方法的步骤。
本申请实施例还提供一种可读存储介质,所述可读存储介质上存储有程序或指令,该程序或指令被处理器执行时实现上述图3或图4所示方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
其中,所述处理器为上述实施例中所述的终端中的处理器。所述可读存储介质,包括计算机可读存储介质,如计算机只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等。
本申请实施例另提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行网络侧设备程序或指令,实现上述图3或图4所示方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。此外,需要指出的是,本申请实施方式中的方法和装置的范围不限按示出或讨论的顺序来执行功能,还可包括根据所涉及的功能按基本同时的方式或按相反的顺序来执行功能,例如,可以按不同于所描述的次序来执行所描述的方法,并且还可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被 组合。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本申请各个实施例所述的方法。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (35)

  1. 一种指示工作模式的方法,由第一设备执行,所述第一设备为终端,或者,所述第一设备为可重构智能表面RIS节点或者中继节点,包括:
    接收网络侧设备发送的第一信息,所述第一信息指示RIS工作模式或中继工作模式。
  2. 根据权利要求1所述的方法,其中,所述第一设备为RIS或者中继节点,所述方法还包括:
    根据所述第一信息,更新工作模式。
  3. 根据权利要求1所述的方法,其中,所述第一设备为终端,所述方法还包括:
    根据所述第一信息指示的RIS工作模式或中继工作模式,执行对应的传输。
  4. 根据权利要求1所述的方法,其中,所述RIS工作模式或中继工作模式与以下至少一项关联:
    RIS或中继的反射信号或折射信号的波束指向;
    RIS或中继的反射信号或折射信号的波束赋型的模式;
    RIS或中继的反射信号或折射信号的极化方式;以及,
    RIS或中继的反射信号或折射信号的轨道角动量OAM模式。
  5. 根据权利要求1所述的方法,其中,所述RIS工作模式或中继工作模式与所述网络侧设备发送的以下至少一项准共址:
    所述网络侧设备发送的同步信号块SSB,信道状态信息参考信号CSI-RS,跟踪参考信号TRS,解调参考信号DMRS,以及定位参考信号PRS。
  6. 根据权利要求1所述的方法,其中,所述第一信息还用于指示所述RIS工作模式或中继工作模式对应的上行配置或下行配置。
  7. 根据权利要求1所述的方法,其中,所述第一信息是小区专用信令,或者终端专用信令。
  8. 根据权利要求1所述的方法,其中,所述RIS工作模式或中继工作模式的类型包括:确定的工作模式和灵活的工作模式。
  9. 根据权利要求8所述的方法,其中,所述方法还包括:
    如果所述第一信息指示所述RIS工作模式或中继工作模式的类型为灵活的工作模式,则接收第二信息,所述第二信息指示所述RIS工作模式或中继工作模式为确定的工作模式中的第一工作模式。
  10. 根据权利要求9所述的方法,其中,所述第二信息为层1信令。
  11. 根据权利要求1所述的方法,其中,所述RIS工作模式或中继工作模式是一个周期或者多个周期内的至少部分时间单元上的RIS工作模式或中继工作模式。
  12. 根据权利要求11所述的方法,其中,
    如果所述RIS工作模式或中继工作模式是一个周期内的至少部分时间单元上的RIS工作模式或中继工作模式,则所述一个周期内的具有相同RIS工作模式或中继工作模式的时间单元的数量大于1;
    如果所述RIS工作模式或中继工作模式是多个周期内的至少部分时间单元上的RIS工作模式或中继工作模式,则所述多个周期中的每个周期内的具有相同RIS工作模式或中继工作模式的时间单元的数量大于1。
  13. 根据权利要求3所述的方法,其中,所述根据所述第一信息指示的RIS工作模式或中继工作模式,执行对应的传输,包括以下中的一项:
    根据所述第一信息指示的RIS工作模式或中继工作模式,执行两步随机接入过程或者四步随机接入过程;
    根据所述第一信息指示的RIS工作模式或中继工作模式,执行上行数据或下行数据的传输;
    根据所述第一信息指示的RIS工作模式或中继工作模式,执行混合自动重传请求HARQ过程。
  14. 根据权利要求13所述的方法,其中,根据所述第一信息指示的RIS工作模式或中继工作模式,执行四步随机接入过程,包括:
    确定目标SSB的索引;
    在第一时刻发送消息1,所述第一时刻的RIS工作模式或中继工作模式与目标SSB所在时刻对应的RIS工作模式或中继工作模式相同,且第一时刻与目标SSB的索引关联的随机接入时机对应;
    在所述终端发送消息1之后,在第二时刻监听消息2;
    其中,所述第二时刻的RIS工作模式或中继工作模式与所述消息1所在时刻对应的RIS工作模式或中继工作模式相同。
  15. 根据权利要求14所述的方法,其中,所述方法还包括:
    在所述终端监听消息2之后,在第三时刻发送消息3;
    其中,所述第三时刻的RIS工作模式或中继工作模式与所述消息2所在时刻对应的RIS工作模式或中继工作模式相同;
    在所述终端发送消息3之后,在第四时刻接收消息4;
    其中,所述第四时刻的RIS工作模式或中继工作模式与所述消息3所在时刻对应的RIS工作模式或中继工作模式相同。
  16. 根据权利要求13所述的方法,其中,根据所述第一信息指示的RIS工作模式或中继工作模式,执行两步随机接入过程,包括:
    确定目标SSB的索引;
    在第五时刻发送消息A的前导码,所述第五时刻的RIS工作模式或中继工作模式与目标SSB所在时刻对应的RIS工作模式或中继工作模式相同,且第五时刻与目标SSB的索引关联的随机接入时机对应;
    在第六时刻发送所述消息A,所述第六时刻的RIS工作模式或中继工作模式与所述目标SSB所在时刻对应的RIS工作模式或中继工作模式相同;
    在发送所述消息A之后,在第七时刻监听消息B,所述第七时刻的RIS工作模式或中继工作模式与所述消息A所在时刻对应的RIS工作模式或中继工作模式相同。
  17. 根据权利要求13所述的方法,其中,所述根据所述第一信息指示的RIS工作模式或中继工作模式,执行上行数据或下行数据的传输,包括:
    接收第四信息;
    确定目标SSB索引;
    在第八时刻接收下行数据或发送上行数据,其中,所述第八时刻属于所述第四信息指示的接收下行数据或发送上行数据的时间资源,且所述第八时刻的RIS工作模式或中继工作模式与目标SSB索引的时刻的RIS工作模式或中继工作模式相同。
  18. 根据权利要求13所述的方法,其中,所述根据所述第一信息指示的RIS 工作模式或中继工作模式,执行HARQ过程,包括:
    在第九时刻发送第一信道对应的肯定确认或否定确认,所述第九时刻的RIS工作模式或中继工作模式与传输所述第一信道的时刻的RIS工作模式或中继工作模式相同;其中,所述第一信道为物理下行控制信道或者物理下行共享信道。
  19. 根据权利要求18所述的方法,其中,所述第九时刻是自主选择的,或者基于网络侧配置确定的。
  20. 一种指示工作模式的方法,由网络侧设备执行,包括:
    发送第一信息,所述第一信息指示RIS工作模式或中继工作模式。
  21. 根据权利要求20所述的方法,其中,所述RIS工作模式或中继工作模式与以下至少一项关联:
    RIS或中继的反射信号或折射信号的波束指向;
    RIS或中继的反射信号或折射信号的波束赋型的模式;
    RIS或中继的反射信号或折射信号的极化方式;以及,
    RIS或中继的反射信号或折射信号的操作维护管理方式。
  22. 根据权利要求20所述的方法,其中,所述RIS工作模式或中继工作模式与所述网络侧设备发送的以下至少一项准共址:SSB,CSI-RS,TRS,DMRS,以及PRS。
  23. 根据权利要求20所述的方法,其中,
    所述第一信息还指示所述RIS工作模式或中继工作模式对应的上行配置或下行配置。
  24. 根据权利要求20所述的方法,其中,所述第一信息是小区专用信令,或者终端专用信令。
  25. 根据权利要求20所述的方法,其中,所述RIS工作模式或中继工作模式的类型包括:确定的工作模式和不确定的工作模式。
  26. 根据权利要求18所述的方法,其中,所述方法还包括:
    如果所述第一信息指示所述RIS工作模式或中继工作模式的类型为不确定的工作模式,则发送第二信息,所述第二信息指示所述RIS工作模式或中继工作模式为确定的工作模式中的第一工作模式。
  27. 根据权利要求26所述的方法,其中,所述第二信息为层1信令。
  28. 根据权利要求20所述的方法,其中,所述RIS工作模式或中继工作模式是一个周期或者多个周期内的至少部分时间单元上的RIS工作模式或中继工作模式。
  29. 一种指示工作模式的装置,包括:
    第一接收模块,用于接收第一信息,所述第一信息指示RIS工作模式或中继工作模式。
  30. 一种指示工作模式的装置,包括:
    第一发送模块,用于发送第一信息,所述第一信息指示RIS工作模式或中继工作模式。
  31. 一种第一设备,所述第一设备为终端,或者,所述第一设备为RIS节点或者中继节点,包括:处理器、存储器及存储在所述存储器上并可在所述处理器上运行的程序,其中,所述程序被所述处理器执行时实现如权利要求1至19中任一项所述的方法的步骤。
  32. 一种网络侧设备,包括:处理器、存储器及存储在所述存储器上并可在所述处理器上运行的程序,其中,所述程序被所述处理器执行时实现如权利要求20至28中任一项所述的方法的步骤。
  33. 一种可读存储介质,所述可读存储介质上存储程序或指令,其中,所述程序或指令被处理器执行时实现如权利要求1至28中任一项所述的方法的步骤。
  34. 一种芯片,包括处理器和通信接口,其中,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如权利要求1至28中任一项所述的方法的步骤。
  35. 一种计算机程序产品,其中,所述计算机程序产品被存储在非易失的存储介质中,所述计算机程序产品被至少一个处理器执行以实现如权利要求1至28中任一项所述的方法的步骤。
PCT/CN2021/129117 2020-11-06 2021-11-05 指示工作模式的方法、装置及设备 WO2022095978A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21888670.3A EP4228097A4 (en) 2020-11-06 2021-11-05 METHOD, APPARATUS AND DEVICE FOR OPERATING MODE INDICATION
US18/139,935 US20240080067A1 (en) 2020-11-06 2023-04-26 Working mode indicating method and apparatus and device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011233776.XA CN114448586A (zh) 2020-11-06 2020-11-06 指示工作模式的方法、装置及设备
CN202011233776.X 2020-11-06

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/139,935 Continuation US20240080067A1 (en) 2020-11-06 2023-04-26 Working mode indicating method and apparatus and device

Publications (1)

Publication Number Publication Date
WO2022095978A1 true WO2022095978A1 (zh) 2022-05-12

Family

ID=81361937

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/129117 WO2022095978A1 (zh) 2020-11-06 2021-11-05 指示工作模式的方法、装置及设备

Country Status (4)

Country Link
US (1) US20240080067A1 (zh)
EP (1) EP4228097A4 (zh)
CN (1) CN114448586A (zh)
WO (1) WO2022095978A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023218357A1 (en) * 2022-05-13 2023-11-16 Lenovo (Singapore) Pte. Ltd. Orbital angular momentum data channels configuration
WO2023218353A1 (en) * 2022-05-13 2023-11-16 Lenovo (Singapore) Pte. Ltd. Reconfigurable intelligent surface configuration for orbital angular momentum

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11770175B2 (en) * 2021-02-26 2023-09-26 Qualcomm Incorporated Reconfigurable intelligent surface discovery procedures
WO2023225927A1 (en) * 2022-05-26 2023-11-30 Qualcomm Incorporated Reflective intelligent surface reference signals
WO2024011606A1 (en) * 2022-07-15 2024-01-18 Zte Corporation Slot format configuration for smart nodes
CN117856832A (zh) * 2022-09-30 2024-04-09 维沃移动通信有限公司 信息传输方法、装置和通信设备
KR20240066703A (ko) * 2022-11-08 2024-05-16 삼성전자주식회사 지능형 반사판을 이용하는 통신의 설정 방법 및 장치
CN116721608B (zh) * 2023-06-13 2024-03-08 云谷(固安)科技有限公司 反射面组件、显示面板和无线通信装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7061447B1 (en) * 2004-08-02 2006-06-13 The United States Of America As Represented By The Secretary Of The Air Force. Reconfigurable antennas using microelectromechanical (MEMs) shutters and methods to utilize such
CN110099423A (zh) * 2018-01-30 2019-08-06 电信科学技术研究院有限公司 一种中继工作模式的选择方法、装置及设备
CN111867014A (zh) * 2019-04-30 2020-10-30 大唐移动通信设备有限公司 调度指示方法、终端及网络侧设备

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11469814B2 (en) * 2019-02-28 2022-10-11 Qualcomm Incorporated Beam management of a layer-1 millimeter wave repeater using wideband signal
CN111787558A (zh) * 2020-07-29 2020-10-16 重庆大学 一种mimome系统及其安全速率优化方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7061447B1 (en) * 2004-08-02 2006-06-13 The United States Of America As Represented By The Secretary Of The Air Force. Reconfigurable antennas using microelectromechanical (MEMs) shutters and methods to utilize such
CN110099423A (zh) * 2018-01-30 2019-08-06 电信科学技术研究院有限公司 一种中继工作模式的选择方法、装置及设备
CN111867014A (zh) * 2019-04-30 2020-10-30 大唐移动通信设备有限公司 调度指示方法、终端及网络侧设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4228097A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023218357A1 (en) * 2022-05-13 2023-11-16 Lenovo (Singapore) Pte. Ltd. Orbital angular momentum data channels configuration
WO2023218353A1 (en) * 2022-05-13 2023-11-16 Lenovo (Singapore) Pte. Ltd. Reconfigurable intelligent surface configuration for orbital angular momentum

Also Published As

Publication number Publication date
CN114448586A (zh) 2022-05-06
EP4228097A1 (en) 2023-08-16
US20240080067A1 (en) 2024-03-07
EP4228097A4 (en) 2024-04-10

Similar Documents

Publication Publication Date Title
WO2022095978A1 (zh) 指示工作模式的方法、装置及设备
WO2022095979A1 (zh) 识别节点方法、装置、设备及可读存储介质
CN109474400A (zh) 一种通信方法、网络设备及终端设备
CN114172773B (zh) 调制方法及装置、通信设备和可读存储介质
KR20230156362A (ko) 무선 통신 시스템에서 채널 추정 및 이동성 향상을 위한 방법 및 장치
CN116940951A (zh) 通信系统中用于支持机器学习或人工智能技术的方法和装置
CN115211150A (zh) 用于无线通信系统中的侧链Tx资源池选择的方法和装置
TW202110233A (zh) 喚醒信號輔助的鏈路管理
WO2021198991A1 (en) Spatial parameter capability indication
US20240089744A1 (en) Communication control method, wireless terminal, base station, and ris device
US20240090050A1 (en) Communication control method, wireless terminal, and base station
KR20230155016A (ko) 이웃 셀 송신 구성 표시자(tci) 상태 스위치
US20230262573A1 (en) Configuring repeater-assisted communication
WO2022052937A1 (zh) 工作状态的切换方法及装置、终端及可读存储介质
US20240056237A1 (en) Configuring a channel state information report for full-duplex communication
CN111526567B (zh) 一种信号传输方法和装置
KR20230069107A (ko) 전 이중 통신을 지원하는 무선통신시스템에서 데이터를 송수신하는 방법 및 이를 위한 장치
WO2024031677A1 (en) Methods and apparatus for multiple default beams and multiple tci states with single dci-based multi-cell scheduling
WO2024031674A1 (en) Methods and apparatus for multiple default beams and multiple tci states with single dci-based multi-cell scheduling
US11510074B2 (en) Method of transmitting and receiving data in wireless communication system supporting full-duplex radio and apparatus therefor
WO2020156465A1 (zh) 一种信号传输方法和装置
US20240187080A1 (en) Communicating based on quasi-collocation properties
US20240040401A1 (en) Protocol for beam width and power control
WO2023135576A1 (en) Communicating based on an ssb burst configuration
KR20240036020A (ko) Iab 노드에 의한 mac ce 메시지 전송

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21888670

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021888670

Country of ref document: EP

Effective date: 20230510

NENP Non-entry into the national phase

Ref country code: DE