WO2022188714A1 - 天线、无线信号处理设备及无人机 - Google Patents

天线、无线信号处理设备及无人机 Download PDF

Info

Publication number
WO2022188714A1
WO2022188714A1 PCT/CN2022/079353 CN2022079353W WO2022188714A1 WO 2022188714 A1 WO2022188714 A1 WO 2022188714A1 CN 2022079353 W CN2022079353 W CN 2022079353W WO 2022188714 A1 WO2022188714 A1 WO 2022188714A1
Authority
WO
WIPO (PCT)
Prior art keywords
vibrator
antenna
oscillator
feeder
antenna according
Prior art date
Application number
PCT/CN2022/079353
Other languages
English (en)
French (fr)
Inventor
宋建平
王建磊
Original Assignee
深圳市道通智能航空技术股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市道通智能航空技术股份有限公司 filed Critical 深圳市道通智能航空技术股份有限公司
Priority to EP22766239.2A priority Critical patent/EP4307472A1/en
Publication of WO2022188714A1 publication Critical patent/WO2022188714A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/28Adaptation for use in or on aircraft, missiles, satellites, or balloons
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/28Adaptation for use in or on aircraft, missiles, satellites, or balloons
    • H01Q1/285Aircraft wire antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • H01Q5/314Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors
    • H01Q5/335Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors at the feed, e.g. for impedance matching

Definitions

  • the present invention relates to the technical field of antenna structures, in particular to an antenna, a wireless signal processing device and an unmanned aerial vehicle.
  • Antenna is a key component used to realize the transmission and reception of electromagnetic wave wireless signals. Its performance has a major impact on devices such as drones that require long-range wireless data transmission. With the continuous development of society, more and more frequency bands are used in wireless transmission, and the demand for multi-band antennas is increasing.
  • the embodiments of the present invention aim to provide an antenna, a wireless signal processing device and an unmanned aerial vehicle, which can solve the defect of the complex structure of the existing multi-frequency antenna.
  • an antenna The antenna includes:
  • a first radiating part disposed on the first surface of the substrate, the first radiating part comprising: a first vibrator and a second vibrator facing oppositely;
  • both the first vibrator and the second vibrator have a first vibrator shape;
  • the first vibrator shape includes a vibrating body provided with bending parts at two ends and a predetermined extension by the bending parts.
  • a pair of vibrating arms formed by the length.
  • the first vibrator, the second vibrator and the third vibrator are all distributed axially.
  • the effective length ratio of the vibrator arm of the first vibrator and the second vibrator is within a preset first numerical range; the first numerical range is based on 5, and is formed by floating up and down a preset numerical value. range of values.
  • the second vibrator is a front vibrator with an opening facing opposite to the extension direction of the feeder
  • the first vibrator is a rear vibrator with an opening facing the same direction as the feeder extends.
  • the second radiating part further includes: a microstrip line; the third vibrator has the shape of a first vibrator, and the microstrip line is a straight conductor arranged on the symmetry axis of the third vibrator , forming a second oscillator shape with the third oscillator.
  • the length ratio of the microstrip line to the third oscillator is within a preset second numerical range; the second numerical range is based on 4, and the numerical range formed by floating the preset numerical value up and down .
  • the total length of the vibrating body and the vibrating arm of the first vibrator is between 1/8 and 3/4 of the low-frequency resonance wavelength; the total length of the vibrating body and the vibrating arm of the third vibrator is the mid-frequency resonance wavelength. 1/8 to 3/4 of .
  • the antenna further includes: a third radiating portion symmetrically distributed on the first surface and the second surface; the second surface is the opposite side of the first surface; the third radiating portion includes: the fourth oscillator, the fifth oscillator, the sixth oscillator and the seventh oscillator;
  • the fourth vibrator and the fifth vibrator facing oppositely are symmetrically arranged on the first surface; the sixth vibrator and the seventh vibrator facing oppositely are symmetrically arranged on the second surface.
  • the fourth vibrator, the fifth vibrator, the sixth vibrator and the seventh vibrator all have a first vibrator shape;
  • the first vibrator shape includes a vibrating body provided with bending parts at two ends and a vibrating body formed by The bent portion extends a pair of vibrating arms formed by a predetermined length.
  • the antenna further includes: a pair of air-removing grooves opened on the substrate; a pair of the air-removing grooves are symmetrically arranged and located between the vibrating arms of the fourth vibrator.
  • the total length of the vibrating body and the vibrating arm of the fourth vibrator is between 1/8 and 3/4 of the high frequency resonance wavelength.
  • the fifth vibrator and the seventh vibrator are front vibrators with openings facing opposite to the extension direction of the feeder, and the fourth vibrator and the sixth vibrator are rear vibrators with openings facing the same direction as the feeder extends.
  • the feeder line includes a first feeder line arranged on the first surface and a second feeder line arranged on the second surface; three grounding points are provided on the second feeder line.
  • the first feeder and the second feeder are coaxial; the front vibrator is connected to the inner conductor of the coaxial wire, and the rear vibrator is connected to the outer conductor of the coaxial wire, 1 feed point and 3 ground points are formed.
  • the frequency band corresponding to the first radiation part is 978MHz
  • the frequency band corresponding to the second radiation part is 1.09GHz
  • the frequency band corresponding to the third radiation part is 5.8GHz.
  • the embodiments of the present invention further provide the following technical solution: a wireless signal processing device.
  • the wireless signal processing device includes: the above-mentioned antenna, used for sending or receiving wireless signals; a receiving path, used for analyzing the wireless signal received by the antenna to obtain the information content contained in the wireless signal; a transmitting path, It is used to load the information content into the radio frequency carrier signal to form a wireless signal and send it through the antenna.
  • the unmanned aerial vehicle comprises: a fuselage with a tripod and a propeller; a motor installed at the connection between the fuselage and the tripod and used to provide flying power for the unmanned aerial vehicle; as above
  • the antenna is mounted on the tripod.
  • the antenna of the embodiment of the present invention adopts reasonable wiring and structural design, can be implemented on a substrate with a small volume, and satisfies the use requirement of a multi-band antenna. Moreover, the radiating parts corresponding to the mid-frequency band and the low-frequency band are coupled with each other, which can effectively enhance the mid-low frequency signal.
  • FIG. 1 is a schematic diagram of a first surface of an antenna according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of a second surface of an antenna provided by an embodiment of the present invention.
  • FIG. 3 is a schematic structural diagram of a first vibrator according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of mid-low frequency S-parameters of an antenna provided by an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of a high-frequency S-parameter of an antenna provided by an embodiment of the present invention.
  • FIG. 6 is a directional diagram of an antenna in a low frequency band provided by an embodiment of the present invention.
  • FIG. 7 is a directional diagram of an antenna in an intermediate frequency band provided by an embodiment of the present invention.
  • FIG. 8 is a directional diagram of an antenna provided in an embodiment of the present invention in a high frequency band
  • FIG. 9 is a schematic diagram of a wireless signal processing device provided by an embodiment of the present invention.
  • FIG. 10 is a schematic diagram of an application scenario of an antenna provided in an embodiment of the present invention in a drone.
  • FIG. 1 is a schematic diagram of a front structure of an antenna provided by an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of a reverse side structure of an antenna provided by an embodiment of the present invention.
  • first surface A the front surface of the antenna
  • second surface B the rear surface thereof
  • the “first” and “second” are only used to distinguish the front and back surfaces of the substrate 10, and are not used to define the surface.
  • the antenna mainly includes a substrate 10 serving as the basis of the antenna structure, a radiating portion (21, 22) arranged on the first surface A and the second surface B of the substrate and composed of vibrators with a specific structure and shape. , 23) and the feed lines (31, 32) connected with the vibrator to form the feed point and the ground point.
  • the substrate 10 can be made of any type of material (eg, plastic, foam), and has a non-conductive structure with a specific shape (eg, a long rectangle). It has a relatively flat shape, forming flat first and second surfaces.
  • a specific shape eg, a long rectangle
  • the “radiating part” refers to a resonance unit used to receive or transmit wireless signals in a specific frequency band, and is the core of the entire antenna system. It can usually be composed of one or more same or different vibrators with a specific shape or structure. These vibrators may be conductors with specific lengths fixed on the surface of the substrate 10 in any suitable form (eg, patch type). It realizes the reception or transmission of wireless signals belonging to a specific frequency band through the principle of electromagnetic induction.
  • the antenna may be provided with three radiating parts in total, a first radiating part 21 , a second radiating part 22 and a third radiating part 23 .
  • Each radiating part corresponds to wireless signals of different frequency bands.
  • the first radiating part 21 may correspond to low frequency signals
  • the second radiating part 22 may correspond to intermediate frequency signals
  • the third radiating part 23 may correspond to high frequency signals (eg, 5G full frequency band).
  • the first radiation part 21 includes a first oscillator 211 and a second oscillator 212
  • the second radiation part 22 includes a third oscillator 221 .
  • the openings between the first vibrator 211 and the second vibrator 212 are oriented in opposite directions, and are respectively referred to as “rear vibrator” and “front vibrator” in this embodiment.
  • the opening of the first vibrator 211 is oriented in the same direction as the extension direction of the feeder 31
  • the opening of the second vibrator 212 is oriented opposite to the extension direction of the feeder 31 .
  • the second vibrator 212 is located farther from the antenna root (ie, the extension direction of the feeder) than the first vibrator 211 , and belongs to the front area of the antenna.
  • the first vibrator 211 may be referred to as a "rear vibrator”
  • the second vibrator 212 may be referred to as a "front vibrator”.
  • the third vibrator 221 and the second vibrator 212 are arranged close to each other, and have positions close to each other. "Close to each other" means that the interval between the second vibrator 212 and the third vibrator 221 on the substrate is smaller than a certain threshold or the interval between the two is within a smaller numerical range. The interval between the two can be set and adjusted according to actual needs.
  • the third vibrator 221 and the second vibrator 211 also have close frequencies and effective lengths of the vibrator arms. "Close to” is similar to the above-mentioned "close to each other", and also means that the difference between the two is smaller than a certain threshold or within a smaller numerical range.
  • the second oscillator 212 and the third oscillator 221 are located close to each other, and have close frequencies and effective lengths of the oscillator arms, so that the second oscillator 212 and the third oscillator 221 are coupled to each other.
  • the antenna structure provided by the embodiment of the present invention can effectively enhance the coverage of the intermediate frequency and low frequency signals through the mutual coupling of the second oscillator and the third oscillator, and meet the requirements of the intermediate frequency signal and the low frequency signal, especially the intermediate frequency signal and the low frequency signal.
  • the frequency bands of the two signals are relatively close.
  • the first vibrator 211 , the second vibrator 212 and the third vibrator 221 may be axisymmetrically distributed structures.
  • the "axisymmetric distribution" refers to symmetrical distribution along the central axis of the substrate 10 .
  • the first vibrator 211 , the second vibrator 212 and the third vibrator 221 all have left-right symmetrical shapes to ensure signal coverage for a specific frequency band.
  • both the first vibrator 211 and the second vibrator 212 may adopt the structural form of "the shape of the first vibrator".
  • the following takes the first vibrator shown in FIG. 3 as an example for detailed description:
  • the “first vibrator shape” can be roughly considered to be composed of a vibrating body 211 a and a pair of vibrating arms 211 b.
  • the two ends of the vibrating body 211a are bent portions 211c having a certain bending angle (eg, 90° or a larger or smaller angle).
  • the vibrating arm 211b is formed by the bending portion 211c extending a predetermined length along a straight line or in other forms (eg, a serpentine shape), thereby forming a vibrator shape similar to a "U" shape.
  • the predetermined length is determined according to the signal requirements of the radiation part or the antenna, and can be set by a technician according to the actual situation.
  • the second radiation portion 22 may further include a microstrip line 222 .
  • the microstrip line 222 is combined with the third vibrator 221 to form a shape structure that is different from the shape of the first vibrator, and is referred to as a "second vibrator shape" in this specification, so as to meet the requirements of intermediate frequency signals.
  • the third vibrator 221 may adopt a similar vibrator shape (ie, the first vibrator shape) to the second vibrator 212 , and the two are close to each other and have the same opening orientation.
  • the microstrip line 222 is in the shape of a straight line, and is arranged on the symmetry axis of the third vibrator 221 (ie, on the central axis of the substrate 10 ), thereby forming a different shape from the “first vibrator shape” together with the third vibrator 221 . , similar to the "mountain" shape of the second oscillator shape.
  • the third radiating parts 23 corresponding to the high-frequency signals may be symmetrically distributed on the first surface A and the second surface B of the substrate. That is, the first surface A and the second surface B of the third radiating portion 23 have exactly the same oscillator structure.
  • the third radiating part 23 can be roughly divided into four parts: the fourth vibrator 231 , the fifth vibrator 232 , the sixth vibrator 233 and the seventh vibrator 234 .
  • the fourth vibrator 231 and the fifth vibrator 232 are both arranged on the first surface A, and they are in a mirror-symmetrical relationship and have opposite opening orientations.
  • the sixth vibrator 233 and the seventh vibrator 234 are arranged on the second surface B, which are also mirror-symmetrical and have opposite opening orientations.
  • the fourth vibrator 231 , the fifth vibrator 232 , the sixth vibrator 233 , and the seventh vibrator 234 may also adopt the same axisymmetric distribution structure as the first vibrator 211 , the second vibrator 212 , and the third vibrator 221 .
  • the fourth vibrator 231 is closer to the root of the base body than the fifth vibrator 232
  • the sixth vibrator 233 is closer to the root of the base body than the seventh vibrator 234 (that is, the extension of the fourth vibrator 231 and the sixth vibrator 233 and the feeder) the same direction). Therefore, the fifth vibrator 232 and the seventh vibrator 234 may be referred to as "front vibrators”, and the fourth vibrator 231 and the sixth vibrator 233 may be referred to as "rear vibrators”.
  • the above fourth vibrator 231 , fifth vibrator 232 , sixth vibrator 233 and seventh vibrator 234 can all adopt the "first vibrator shape" described in the above embodiments, that is, similar to the word "U” type oscillator shape to meet the needs of high-frequency signals.
  • the substrate 10 may also be provided with a hollow groove 40 .
  • the recesses 40 may be formed in pairs in the region where the third radiating portion 23 is located, such as symmetrically disposed between the two vibrating arms of the sixth vibrator 233 (or the two vibrating arms of the fourth vibrator 231 ) of the third radiating portion.
  • the capacitance structure formed between the two vibrating arms 233b of the sixth vibrator 233 can be improved by the additional opening of the avoidance slot 40, and the above-mentioned mutual coupling can also be reduced.
  • the oscillator interferes with the high frequency signal.
  • Feeder lines (31, 32) are signal transmission paths connecting the "radiating part” and other signal processing systems. It usually has good shielding and signal transmission performance, so as to avoid the wireless signal received or transmitted by the "radiating part” from being adversely interfered during the transmission process.
  • any suitable type of wire such as coaxial wire, can be used.
  • the antenna provided in this embodiment may be provided with a first feeder 31 and a second feeder 32 on the first surface A and the second surface B of the substrate 10 respectively, so as to provide a suitable number of grounding points and feed points.
  • the second feeder 32 shown in FIG. 2 is grounded three times, and three different grounding points 32a, 32b and 32c are provided.
  • a coaxial cable can be used as a feeder
  • the first vibrator 211 of the first radiating portion 21 can be used as a front vibrator and can be electrically connected to the inner conductor of the coaxial wire
  • the second vibrator 212 can be used as a rear vibrator, which is connected to the inner conductor of the coaxial wire.
  • the outer conductor of the coaxial line is electrically connected to form one feed point and three ground points, which well ensures the directionality of the resonance.
  • the fourth vibrator 231 and the sixth vibrator 233 of the third radiating part 23 are used as front vibrators and are connected to the inner conductor of the coaxial cable, and the fifth vibrator 232 and the seventh vibrator 234 are connected to the outer conductor of the coaxial cable. , and also form a feed point and three ground points to ensure the directionality of the resonance.
  • the antennas shown in FIG. 1 and FIG. 2 are only used for exemplary illustration, and those skilled in the art can add, adjust, replace or reduce one or more functional components according to actual needs, while Not limited to those shown in Figures 1 and 2.
  • the technical features involved in the embodiments of the antenna shown in FIG. 1 and FIG. 2 can be combined with each other as long as they do not conflict with each other, and can be independently applied in different embodiments as long as they do not depend on each other.
  • the length of the vibrator or the effective length of the vibrator arm is an important dimension parameter in the antenna, and is closely related to the frequency band of the wireless signal reception or transmission.
  • the ratio of the effective length of the vibrator arm between the first vibrator 211 and the second vibrator 212 corresponding to the low frequency signal can be controlled within a preset first value range.
  • the preset first numerical range refers to a numerical range formed by floating a preset numerical value up and down with 5 as a reference. That is, the ratio of the effective lengths of the vibrator arms of the first vibrator 211 and the second vibrator 212 can be controlled to be about 5.
  • the specific preset value is set or determined by the technical personnel according to actual conditions such as experience, experimental results or debugging results, and any suitable form (such as percentage) can also be used to represent the preset value. For example, it is based on 5, plus or minus 1% (that is, the default value is 0.05).
  • the length ratio between the third oscillator 221 and the microstrip line 222 can be controlled within the preset second value range.
  • the second numerical range is a numerical range formed by floating a preset numerical value up and down based on 4. That is, the length ratio between the third vibrator 221 and the microstrip line 222 needs to be controlled to be about 4.
  • the preset value floating up and down in the second value range and the preset value in the first value range may be different values, and there is no interdependence between the first value range and the second value range.
  • the size and length of the first vibrator 211 in the "U"-shaped vibrator shape (eg, the sum of the lengths of the vibrating arm and the vibrating body) needs to be controlled between 1/8 to 3/4 of the low-frequency resonance wavelength.
  • the size and length of the fourth vibrator 231 that also adopts the "U"-shaped vibrator shape needs to be controlled between 1/8 to 3/4 of the high frequency resonance wavelength.
  • the size and length of the third vibrator 221 in the shape of a "mountain"-shaped vibrator needs to be controlled between 1/8 to 3/4 of the resonance wavelength of the intermediate frequency.
  • the embodiment of the present invention provides a specific example of a tri-band antenna that can operate in three frequency bands of 978 MHz, 1.09 GHz and 5.8 GHz.
  • the three-band antenna includes: a substrate 10 , a first vibrator 211 , a second vibrator 212 , a third vibrator 221 , a microstrip line 222 , a fourth vibrator 231 , a fifth vibrator 232 , The sixth vibrator 233 , the seventh vibrator 234 , the first feed line 31 , the second feed line 32 , the feed point 33 , the three ground points ( 32 a , 32 b , 32 c ) and the hollow slot 40 .
  • the first vibrator 211 and the second vibrator 212 are both in the shape of a "U"-shaped vibrator, and the total length of the first vibrator 211 is 1/8 to 3/4 of the low frequency (978MHz) resonance wavelength.
  • the first vibrator 211 is used as a rear vibrator
  • the second vibrator 212 is used as a front vibrator, forming the first radiation part 21 .
  • the length of the front vibrator is about one-fifth of the length of the rear vibrator
  • the front vibrator is connected to the inner conductor of the coaxial line (the first feeder 31 )
  • the rear vibrator is connected to the outer conductor of the coaxial wire (the first feeder 31 ), thereby It communicates with the first feeder 31 and the second feeder 32 to form one feed point and three ground points.
  • the third oscillator 221 and the microstrip line 222 form a "mountain"-shaped oscillator.
  • the size and length of the third vibrator 221 is controlled to be 1/8 to 3/4 of the resonance wavelength of the intermediate frequency (1.09 GHz), and it is connected to the outer conductor of the coaxial line (the second feed line 32).
  • the third vibrator 221 and the second vibrator 212 have close frequencies and effective lengths of the vibrator arms, and the two are coupled to each other to enhance the coverage of low-frequency signals.
  • the fourth vibrator 231 , the fifth vibrator 232 , the sixth vibrator 233 , and the seventh vibrator 234 all adopt the shape of a “U”-shaped vibrator to form the third radiating portion 23 . Pairs of relief grooves 40 are symmetrically formed between the two arms of the sixth vibrator 233 .
  • the fourth vibrator 231 and the fifth vibrator 232 are mirror-symmetrical, and are arranged on the first surface A of the substrate 10 , the fourth vibrator 231 is the rear vibrator, and the fifth vibrator 232 is the front vibrator.
  • the size and length of the fourth vibrator is controlled to be 1/8 to 3/4 of the resonance wavelength of the high frequency (5.8 GHz).
  • the sixth vibrator 233 and the seventh vibrator 234 are mirror-symmetrical and arranged on the second surface B of the substrate 10 , the sixth vibrator 233 is the rear vibrator, and the seventh vibrator 234 is the front vibrator.
  • the second feeder 32 is grounded three times and has three ground points (32a, 32b, 32c).
  • the front vibrator is connected to the inner conductor of the coaxial line
  • the rear vibrator is connected to the outer conductor of the coaxial line, and thus communicates with the second feed line 32 to form one feed point and three ground points.
  • FIG. 4 is a schematic diagram of S-parameters of an antenna in a mid-low frequency band provided by an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of S-parameters of an antenna in a high frequency band according to an embodiment of the present invention.
  • the antenna provided in the above-mentioned embodiment can work in 920MHz-1.12MHz (middle and low frequency band) and 5.6GHz-6.0GHz (high frequency band). Therefore, three frequency bands of 978MHz, 1.09GHz and 5.8GHz can be covered.
  • FIG. 6 to FIG. 8 are respectively antenna pattern diagrams of an antenna provided in an embodiment of the present invention in a low frequency band, an intermediate frequency band, and a high frequency band.
  • the antenna provided by the embodiment of the present invention has good directivity in three frequency bands, low frequency band, mid frequency band, and high frequency band, has good omnidirectionality, and has no defects in specific directions.
  • the embodiment of the present invention further provides a wireless signal processing device.
  • This embodiment does not limit the specific implementation of the wireless signal processing device, which may be any type or type of electronic device used to send and receive wireless signals, such as a remote control, a smart terminal, a wearable device, or a mobile vehicle. signal transceiver.
  • FIG. 9 is a schematic structural diagram of a wireless signal processing device according to an embodiment of the present invention.
  • the wireless signal processing device includes an antenna 100 , a transmission path 200 and a reception path 300 .
  • the antenna 100 is connected to the receiving path 200 or the transmitting path 300 through a feeder, so as to realize mutual signal transmission.
  • the antenna 100 may specifically be the antenna described in one or more of the above embodiments, which is determined by the specific implementation of the wireless signal processing device.
  • the antenna 100 may be an omnidirectional antenna covering three frequency bands.
  • the transmission path 200 is a functional module for loading the information content to be sent into the carrier signal to form a wireless signal.
  • it can be of any type, formed by a combination of one or more electronic components, and an electronic system that can generate wireless signals, such as a radio frequency chip.
  • the receiving path 300 is an electronic system for analyzing the wireless signal received by the antenna to obtain the information content contained in the wireless signal, such as a specific type of decoding chip. It has the opposite information flow direction to the transmitting channel 200, and is a functional module for completing information acquisition.
  • one of the transmit path 200 and the receive path 300 may be omitted based on the specific implementation of the wireless signal processing device. For example, when the wireless signal processing device is a remote controller, the receiving path 300 can be omitted, and only the transmitting path 200 needs to be provided.
  • FIG. 10 is a schematic structural diagram of an antenna provided by an embodiment of the present invention applied to an unmanned aerial vehicle.
  • the drone may include: a fuselage 400, motors (510, 520) and an antenna.
  • the fuselage 400 as the main structure of the UAV, can be made of any suitable material and has a structure and size that meet the needs of use (as shown in FIG. 10 for the fixed-wing UAV).
  • the fuselage 400 may be provided with various functional components such as a landing gear 410 , a propeller 420 , and a camera 430 .
  • a corresponding pan/tilt 440 can be added for the camera 430 .
  • Motors (510, 520) are installed on the fuselage 400, and are used to provide flying power for the drone.
  • the motor may be provided with one or more motors, which are arranged at corresponding positions of the fuselage 400 (eg, the fuselage motor 510 and the wingtip motor 520 ) to perform different functions (eg, drive the propeller 420 to rotate, control the fuselage attitude, etc.) ).
  • the antenna can be installed and accommodated in the landing gear 410 (for example, in the nose landing gear shown in FIG. 10 , labeled 410 ), as part of the wireless signal transceiver device, used to receive remote control operation instructions from the remote control or to the remote control. Or other intelligent terminals feed back relevant data information (such as captured images, operating state parameters of the drone itself).

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Details Of Aerials (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

本发明实施例涉及天线技术领域,尤其涉及一种天线、无线信号处理设备及无人机。该天线包括:具有平坦的第一表面的基板;设置在所述基板的第一表面的第一辐射部,所述第一辐射部包括:第一振子和第二振子,所述第二振子位于所述第一振子之后;设置在所述基板的第一表面的第二辐射部,所述第二辐射部包括:第三振子;所述第三振子与所述第二振子靠近设置,具有接近的频率和振子臂有效长度,以使所述第三振子与所述第二振子相互耦合。该天线采用合理的布线和结构设计,可以在体积较小的基材上实现,满足多频段天线的使用需求。而且,对应中频段和低频段的辐射部之间相互耦合,可有效增强中低频率信号。

Description

天线、无线信号处理设备及无人机
本申请要求于2021年03月12日提交中国专利局、申请号为2021102723378、申请名称为“天线、无线信号处理设备及无人机”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
【技术领域】
本发明涉及天线结构技术领域,尤其涉及一种天线、无线信号处理设备及无人机。
【背景技术】
天线是用于实现电磁波无线信号收发的关键部件。其性能对于无人机等需要远程无线数据传输的设备具有重大影响。随着社会的不断发展,无线传输中使用到的频段也越来越多,对于多频段天线的需求越来越大。
在多个天线频段的频率较为接近的情况下,往往需要使用复杂的结构设计的天线才能满足使用的需要。但是,这些具有复杂结构设计的天线难以应用到无人机、遥控器等对于尺寸、结构敏感的小型产品中。
【发明内容】
本发明实施例旨在提供一种天线、无线信号处理设备及无人机,能够解决现有多频天线结构复杂的缺陷。
为解决上述技术问题,本发明实施例提供以下技术方案:一种天线。该天线包括:
基板,所述基板具有平坦的第一表面;
设置在所述基板的第一表面的第一辐射部,所述第一辐射部包括:朝向相反的第一振子和第二振子;
设置在所述基板的第一表面的第二辐射部,所述第二辐射部包括:第三 振子;所述第三振子与所述第二振子靠近设置,具有接近的频率和振子臂有效长度,以使所述第三振子与所述第二振子相互耦合;
与所述第一振子、第二振子、第三振子连接,形成接地点和馈点的馈线。
可选地,所述第一振子和所述第二振子均具有第一振子形状;所述第一振子形状包括在两个末端设置有弯折部的振体以及由所述弯折部延伸预定长度形成的一对振臂。
可选地,所述第一振子、第二振子及第三振子均呈轴对称分布。
可选地,所述第一振子与所述第二振子的振子臂有效长度比例在预设的第一数值范围内;所述第一数值范围是以5为基准,上下浮动预设数值形成的数值范围。
可选地,所述第二振子为开口朝向与馈线延伸方向相反的前振子,所述第一振子为开口朝向与所述馈线延伸方向相同的后振子。
可选地,所述第二辐射部还包括:微带线;所述第三振子具有第一振子形状,所述微带线为直线导体,布置在所述第三振子的对称轴线上,与所述第三振子组成第二振子形状。
可选地,所述微带线与所述第三振子的长度比例在预设的第二数值范围内;所述第二数值范围是以4为基准,上下浮动预设数值形成的数值范围。
可选地,所述第一振子的振体和振臂的总长度在低频谐振波长的1/8至3/4之间;所述第三振子的振体和振臂的总长度在中频谐振波长的1/8至3/4之间。
可选地,所述天线还包括:对称分布在所述第一表面和第二表面的第三辐射部;所述第二表面为所述第一表面的反面;所述第三辐射部包括:第四振子、第五振子、第六振子以及第七振子;
其中,朝向相反的所述第四振子和第五振子对称设置在所述第一表面;朝向相反的所述第六振子和所述第七振子对称设置在所述第二表面。
可选地,所述第四振子、第五振子、第六振子以及第七振子均为具有第一振子形状;所述第一振子形状包括在两个末端设置有弯折部的振体以及由所述弯折部延伸预定长度形成的一对振臂。
可选地,所述天线还包括:开设在所述基板上的一对避空槽;一对所述 避空槽对称设置,位于所述第四振子的振臂之间。
可选地,所述第四振子的振体和振臂的总长度在高频谐振波长的1/8至3/4之间。
可选地,所述第五振子和第七振子为开口朝向与所述馈线延伸方向相反的前振子,所述第四振子和第六振子为开口朝向与所述馈线延伸方向相同的后振子。
可选地,所述馈线包括布置在所述第一表面的第一馈线和布置在所述第二表面的第二馈线;所述第二馈线上设置有3个接地点。
可选地,所述第一馈线和所述第二馈线为同轴线;所述前振子与所述同轴线的内导体连接,所述后振子与所述同轴线的外导体连接,形成1个馈电点和3个接地点。
可选地,所述第一辐射部对应的频段为978MHz,所述第二辐射部对应的频段为1.09GHz,所述第三辐射部对应的频段为5.8GHz。
为解决上述技术问题,本发明实施例还提供以下技术方案:一种无线信号处理设备。该无线信号处理设备包括:如上所述的天线,用于发送或接收无线信号;接收通路,用于对所述天线接收到无线信号进行解析,以获取无线信号中包含的信息内容;发射通路,用于将信息内容加载到射频载波信号中,形成无线信号并通过所述天线发送。
为解决上述技术问题,本发明实施例还提供以下技术方案:一种无人机。该无人机包括:机身,所述机身上具有脚架、螺旋桨;电机,安装于所述机身与所述脚架的连接处,用于为所述无人机提供飞行动力;如上所述的天线,安装于所述脚架上。
本发明实施例的天线采用合理的布线和结构设计,可以在体积较小的基材上实现,满足多频段天线的使用需求。而且,对应中频段和低频段的辐射部之间相互耦合,可有效增强中低频率信号。
【附图说明】
一个或多个实施例通过与之对应的附图中的图片进行示例性说明,这些示例性说明并不构成对实施例的限定,附图中具有相同参考数字标号的元件 表示为类似的元件,除非有特别申明,附图中的图不构成比例限制。
图1为本发明实施例提供的天线的第一表面的示意图;
图2为本发明实施例提供的天线的第二表面的示意图;
图3为本发明实施例提供的第一振子的结构示意图;
图4为本发明实施例提供的天线的中低频S参数示意图;
图5为本发明实施例提供的天线的高频S参数示意图;
图6为本发明实施例提供的天线在低频段的方向图;
图7为本发明实施例提供的天线在中频段的方向图;
图8为本发明实施例提供的天线在高频段的方向图;
图9为本发明实施例提供的无线信号处理设备的示意图;
图10为本发明实施例提供的天线在无人机应用场景的示意图。
【具体实施方式】
为了便于理解本发明,下面结合附图和具体实施例,对本发明进行更详细的说明。需要说明的是,当元件被表述“固定于”另一个元件,它可以直接在另一个元件上、或者其间可以存在一个或多个居中的元件。当一个元件被表述“连接”另一个元件,它可以是直接连接到另一个元件、或者其间可以存在一个或多个居中的元件。本说明书所使用的术语“上”、“下”、“内”、“外”、“底部”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”“第三”等仅用于描述目的,而不能理解为指示或暗示相对重要性。
除非另有定义,本说明书所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本说明书中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是用于限制本发明。本说明书所使用的术语“和/或”包括一个或多个相关的所列项目的任意的和所有的组合。
此外,下面所描述的本发明不同实施例中所涉及的技术特征只要彼此之间未构成冲突就可以相互结合。
图1为本发明实施例提供的天线的正面结构示意图。图2为本发明实施例提供的天线的反面结构示意图。在本实施例中,为陈述方便,将天线的正面称为“第一表面A”,同时将其背面称为“第二表面B”。该“第一”和“第二”仅用于区分基板10的正面和反面,不用于对表面的限定。
如图1和图2所示,该天线主要包括作为天线结构基础的基板10、布置在基板的第一表面A和第二表面B上,具有特定结构形状的振子组成的辐射部(21,22,23)以及与振子连接,形成馈点和接地点的馈线(31,32)。
其中,基板10可以是采用任何类型的材质(如塑料、泡沫)制备形成,具有特定形状(如长矩形)的非导电结构。其具有相对扁平的形状,形成平坦的第一表面和第二表面。
“辐射部”是指用于接收或者发射特定频段的无线信号的谐振单元,是整个天线系统的核心。其通常可以由一个或者多个相同或者不同的,具有特定形状或者结构的振子组成。这些振子可以是采用任何合适的形式(如贴片式)固定在基板10表面,具有特定长度的导体。其通过电磁感应原理实现对属于特定频段的无线信号的接收或者发射。在本实施例中,该天线可以设置有第一辐射部21、第二辐射部22以及第三辐射部23一共三个辐射部。
每个辐射部对应于不同频段的无线信号。其中,第一辐射部21可以对应低频信号,第二辐射部22对应中频信号,而第三辐射部23可以对应高频信号(如5G全频段)。
在一些实施例中,如图1所示,第一辐射部21包括第一振子211和第二振子212,而第二辐射部22包括第三振子221。
其中,第一振子211与第二振子212之间的开口朝向相反,在本实施例中分别被称为“后振子”和“前振子”。
具体的,第一振子211的开口朝向与馈线31的延伸方向相同,而第二振子212的开口朝向与馈线31的延伸方向相反。如图1所示,第二振子212相对于第一振子211而言,处于更远离天线根部(即馈线的延伸方向)的位置,属于天线的前部区域。由此,第一振子211可以被称为“后振子”,第二振子212可以被称为“前振子”。
第三振子221则与第二振子212之间靠近设置,具有相互靠近的位置。“相互靠近”是指第二振子212与第三振子221之间在基板上的间隔小于一定阈 值或者两者的间隔处于一个较小的数值范围内。两者之间的间隔具体可以根据实际情况的需要进行设置和调整。
该第三振子221和第二振子211之间还具有接近的频率和振子臂有效长度。“接近”与上述的“相互靠近”相类似,同样也是表示两者之间的差小于一定的阈值或者处于较小的数值范围内。
在本实施例中,使第二振子212和第三振子221之间的位置相互靠近、具有接近的频率和振子臂有效长度的目标在于令第二振子与第三振子相互耦合。
由此,本领域技术人员可以根据实际情况的需要,对第二振子212和第三振子221之间的位置靠近程度、频率接近程度以及振子臂有效长度中的一项或者多项进行调整,以使得第二振子212与第三振子221相互耦合。所有为实现第二振子212和第三振子221相互耦合而对本申请作出的调整、改变或者替换均属于本申请的保护范围。
本发明实施例提供的天线结构,通过第二振子和第三振子的相互耦合,可以有效的增强对于中频和低频信号的覆盖,满足中频信号和低频信号的需求,尤其是在中频信号和低频信号两者的频段较为接近的情况下。
在一些实施例中,如图1所示,上述第一振子211,、第二振子212以及第三振子221可以是呈轴对称分布的结构。该“轴对称分布”是指沿基板10的中轴线对称分布。换言之,第一振子211、第二振子212以及第三振子221均具有左右对称的形状,用以确保对特定频段的信号覆盖。
具体的,第一振子211和第二振子212均可以采用“第一振子形状”的结构形式。为充分说明该“第一振子形状”,以下以图3所示的第一振子为例进行详细说明:
如图3所示,该“第一振子形状”可以大致认为由振体211a和一对振臂211b所组成。其中,该振体211a的两个末端为具有一定弯折角度(如90°或者更大更小的角度)的弯折部211c。振臂211b由弯折部211c沿直线或者以其他形式(如蛇形)延伸预定的长度形成,由此形成类似于“U”字型的振子形状。
该预定的长度是根据辐射部或者天线的信号需求所决定的,可以由技术人员根据实际情况而进行设置。
在另一些实施例中,第二辐射部22还可以包括微带线222。该微带线222与第三振子221组合,形成与上述第一振子形状不相同的,在本说明书中被称为“第二振子形状”的形状结构,以满足中频信号的需求。
如图1所示,该第三振子221可以采用与第二振子212类似的振子形状(即第一振子形状),两者相互靠近并且具有相同的开口朝向。而微带线222呈直线形状,布置在第三振子221的对称轴线上(即基板10的中轴线上),由此与第三振子221共同形成了与“第一振子形状”不同的,类似“山”字型的第二振子形状。
在又一些实施例中,与高频信号对应的第三辐射部23可以对称分布在基板的第一表面A和第二表面B上。亦即,第三辐射部23在第一表面A和第二表面B具有完全相同的振子结构形式。
如图1和图2所示,第三辐射部23大致可以被划分为第四振子231、第五振子232、第六振子233以及第七振子234四个部分。
其中,第四振子231和第五振子232均布置在第一表面A,两者之间呈镜像对称关系,具有相反的开口朝向。同样地,第六振子233以及第七振子234则布置在第二表面B,也呈镜像对称关系,具有相反的开口朝向。
具体的,第四振子231、第五振子232、第六振子233以及第七振子234也可以采用与第一振子211、第二振子212以及第三振子221相同的轴对称分布的结构。
在位置上,第四振子231相对于第五振子232更靠近基体的根部,第六振子233相对于第七振子234更靠近基体的根部(即第四振子231和第六振子233与馈线的延伸方向相同)。由此,可以把第五振子232和第七振子234称为“前振子”,第四振子231和第六振子233称为“后振子”。
在一些实施例中,以上的第四振子231、第五振子232、第六振子233以及第七振子234均可以采用以上实施例所描述的“第一振子形状”,即类似于“U”字型振子形状,以满足高频信号的使用需求。
在较佳的实施例中,该基板10上还可以开设有避空槽40。该避空槽40可以成对开设在第三辐射部23所在的区域,如对称设置在第三辐射部的第六振子233的两个振臂(或第四振子231的两个振臂)之间。
如图2所示,通过额外开设的避空槽40,可以改善第六振子233两个振 臂233b之间形成的电容结构,也可以减少上述相互耦合,针对中低频信号的第二振子和第三振子对高频信号的干扰。
馈线(31,32)是连接“辐射部”与其他信号处理系统的信号传输通路。其通常具有良好的屏蔽和信号传输性能,用以避免“辐射部”接收或者发射的无线信号在传输过程中受到不利的干扰。其具体可以使用任何合适类型的线材,例如同轴线。
如图1和图2所示,本实施例提供的天线可以分别在基板10的第一表面A和第二表面B设置有第一馈线31和第二馈线32,用以提供合适数量的接地点和馈点。例如,图2所示的第二馈线32三次接地,设置有三个不同的接地点32a,32b以及32c。
在一些实施例中,可以使用同轴线作为馈线,第一辐射部21的第一振子211作为前振子,可以与同轴线的内导体电性连接,第二振子212作为后振子,则与同轴线的外导体电性连接,形成1个馈点和3个接地点,很好的保证了谐振的方向性。
相类似地,第三辐射部23的第四振子231和第六振子233作为前振子,连接至同轴线的内导体,第五振子232和第七振子234则与同轴线的外导体连接,同样形成一个馈点和3个接地点,用以保证谐振的方向性。
应当说明的是,图1和图2所示的天线仅用于示例性说明,本领域技术人员可以根据实际情况的需要,添加、调整、替换或者减省其中的一个或者多个功能部件,而不限于图1和图2所示。图1和图2所示的天线的实施例中所涉及的技术特征只要彼此之间未构成冲突就可以相互结合,并且只要彼此之间未构成依赖就可以独立在不同的实施例中应用。
本领域技术人员可以理解,振子的长度,或者振子臂的有效长度是天线中重要的尺寸参数,与无线信号接收或者发送的频段密切相关。
在一些实施例中,对应于低频信号的第一振子211与第二振子212之间的振子臂有效长度比例可以控制在预设的第一数值范围内。
该预设的第一数值范围是指以5为基准,上下浮动预设数值形成的数值范围。亦即,第一振子211和第二振子212的振子臂有效长度之比可以控制在5左右。
具体的预设数值则由技术人员根据经验、实验结果或者调试结果等实际 情况设置或者确定,也可以采用任何合适的形式(如按百分比)来表示该预设数值。例如,以5为基础,上下浮动1%(即预设数值为0.05)。
相应地,在采用上述“山”字型振子形状(即第二振子形状),与中频信号对应的第二辐射部22中,第三振子221与微带线222之间的长度比例可以控制在预设的第二数值范围内。
该第二数值范围是以4为基准,上下浮动预设数值形成的数值范围。亦即,第三振子221与微带线222之间的长度之比需要控制在4左右。当然,第二数值范围上下浮动的预设数值与第一数值范围的预设数值可以是不同的数值,第一数值范围与第二数值范围之间无相互依赖的关系。
在另一些实施例中,基于不同辐射部所对应的信号频段的不同,也需要控制振子的尺寸长度以确保满足天线的使用需求。
具体而言,采用“U”字型振子形状的第一振子211的尺寸长度(如振臂和振体的长度之和)需要控制低频谐振波长的1/8至3/4之间。同样采用“U”字型振子形状的第四振子231的尺寸长度则需要控制在高频谐振波长的1/8至3/4之间。而采用“山”字型振子形状的第三振子221的尺寸长度需要控制在中频谐振波长的1/8至3/4之间。
本发明实施例提供了可以工作在978MHz、1.09GHz以及5.8GHz三个频段的三频天线的具体实例。
如图1和图2所示,该三频天线包括:基材10、第一振子211、第二振子212、第三振子221、微带线222、第四振子231、第五振子232、第六振子233、第七振子234、第一馈线31、第二馈线32,馈点33,三个接地点(32a,32b,32c)以及避空槽40。
其中,第一振子211和第二振子212均采用“U”字型振子形状,第一振子211的总长度为低频(978MHz)谐振波长的1/8至3/4。
第一振子211作为后振子,第二振子212作为前振子,组成第一辐射部21。前振子的长度为后振子的五分之一左右,前振子与同轴线(第一馈线31)的内导体相连,后振子与同轴线(第一馈线31)的外导体相连,由此与第一馈线31和第二馈线32连通,形成一个馈点和三个接地点。
第三振子221和微带线222组成的“山”字型振子形状。第三振子221的尺寸长度控制在中频(1.09GHz)谐振波长的1/8至3/4,其与同轴线(第 二馈线32)的外导体连接。另外,第三振子221与第二振子212具有接近的频率和振子臂有效长度,两者相互耦合,以增强中低频率信号的覆盖。
第四振子231、第五振子232、第六振子233以及第七振子234均采用“U”字型振子形状,组成第三辐射部23。成对的避空槽40对称开设在第六振子233的两个臂部之间。
其中,第四振子231和第五振子232镜像对称,布置在基材10的第一表面A,第四振子231为后振子,第五振子232为前振子。第四振子的尺寸长度控制在高频(5.8GHz)谐振波长的1/8至3/4。第六振子233和第七振子234镜像对称,布置在基材10的第二表面B,第六振子233为后振子,第七振子234为前振子。
第二馈线32三次接地,具有三个接地点(32a,32b,32c)。前振子与同轴线的内导体相连,后振子与同轴线的外导体相连,由此与第二馈线32连通,形成一个馈点和三个接地点。
图4为本发明实施例提供的天线在中低频段的S参数示意图。图5为本发明实施例提供的天线在高频段的S参数示意图。
如图4和图5所示,上述实施例提供的天线可以工作在920MHz~1.12MHz(中低频段)和5.6GHz~6.0GHz(高频段)。因此,可以实现对978MHz、1.09GHz以及5.8GHz三个频段的覆盖。
图6至图8分别为本发明实施例提供的天线在低频段、中频段以及高频段的天线方向图。如图6至8所示,本发明实施例提供的天线在低频段、中频段以及高频段三个频段上都具有良好的方向性,全向性好,没有特定方向上的缺陷。
基于以上实施例提供的天线,本发明实施例还进一步提供了一种无线信号处理设备。本实施例并不对该无线信号处理设备的具体实现进行限定,其可以是任何类型或者种类的,用以进行无线信号收发的电子设备,例如遥控器、智能终端、可穿戴设备或者移动载具的信号收发器。
图9为本发明实施例提供的无线信号处理设备的结构示意图。如图9所示,该无线信号处理设备包括:天线100、发射通路200以及接收通路300。天线100通过馈线连接至接收通路200或发射通路300,以实现相互间的信号传输。
其中,天线100具体可以是以上一个或者多个实施例所述的天线,由无线信号处理设备的具体实现所决定。例如,天线100可以是覆盖三个频段的全向天线。
发射通路200是用于将待发送的信息内容加载到载波信号,形成无线信号的功能模块。其具体可以是任何类型的,由一个或者多个电子元件组合形成,可以生成无线信号的电子系统,如射频芯片。
接收通路300是用于对所述天线接收到无线信号进行解析,以获取无线信号中包含的信息内容的电子系统,如特定型号的解码芯片。其与发射通路200具有相反的信息流动方向,是用以完成信息获取的功能模块。
在一些实施例中,基于无线信号处理设备的具体实现的不同,发射通路200和接收通路300中的其中一个可以减省。例如,在无线信号处理设备为遥控器时,可以减省接收通路300,只需要具备发射通路200即可。
本发明实施例还进一步提供了以上实施例提供的天线的应用场景。图10为本发明实施例提供的的天线应用于无人机的结构示意图。
随着无人机技术的发展,总是期望能够尽可能地减小无人机的机身体积,以使得无人机可以适用于执行更多场景下的飞行任务。但在无人机机身体积缩小的情况下,对于天线的尺寸和结构提出了更高的要求,期望能够在有限的体积和尽可能简单的结构中实现。
由此,应用本发明实施例提供的天线,可以很好的满足具有较小机身的无人机关于天线体积和结构的需求。如图10所示,该无人机可以包括:机身400,电机(510,520)以及天线。
其中,机身400作为无人机的主体结构,可以采用任何合适的材料制成并具有符合使用需要的结构及尺寸(如图10所示的固定翼无人机)。机身400上可以设置有起落架410、螺旋桨420、摄像机430等多种不同的功能部件。当然,本领域技术人员还可以根据实际情况的需要,增加或者减省其中的一个或者多个功能部件,例如可以为摄像机430增设对应的云台440。
电机(510,520)安装于机身400,用于为无人机提供飞行动力。该电机可以设置有一个或者多个,布置于机身400相应的位置(如机身电机510,翼尖电机520)分别用于不同执行不同的功能(例如驱动螺旋桨420旋转、控制机身姿态等)。
天线可以安装收容于起落架410内(例如图10所示的,标号为410的前起落架内),作为无线信号收发设备的其中一部分,用以接收来自遥控器的遥控操作指令或者向遥控器或者其他的智能终端反馈相关的数据信息(如拍摄的图像、无人机自身的运行状态参数)。
当然,基于以上实施例提供的无人机应用场景,本领域技术人员还可以将以上实施例提供的天线应用于其他类似的无人驾驶的移动载具而不限于图10所示的无人机。
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;在本发明的思路下,以上实施例或者不同实施例中的技术特征之间也可以进行组合,步骤可以以任意顺序实现,并存在如上所述的本发明的不同方面的许多其它变化,为了简明,它们没有在细节中提供;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (18)

  1. 一种天线,其特征在于,包括:
    基板,所述基板具有平坦的第一表面;
    设置在所述基板的第一表面的第一辐射部,所述第一辐射部包括:朝向相反的第一振子和第二振子;
    设置在所述基板的第一表面的第二辐射部,所述第二辐射部包括:第三振子;所述第三振子与所述第二振子靠近设置,具有接近的频率和振子臂有效长度,以使所述第三振子与所述第二振子相互耦合;
    与所述第一振子、第二振子及第三振子分别连接,形成接地点和馈点的馈线。
  2. 根据权利要求1所述的天线,其特征在于,所述第一振子、第二振子及第三振子均呈轴对称分布。
  3. 根据权利要求1所述的天线,其特征在于,所述第一振子和所述第二振子均具有第一振子形状;
    所述第一振子形状包括在两个末端设置有弯折部的振体以及由所述弯折部延伸预定长度形成的一对振臂。
  4. 根据权利要求1所述的天线,其特征在于,所述第一振子与所述第二振子的振子臂有效长度比例在预设的第一数值范围内;
    所述第一数值范围是以5为基准,上下浮动预设数值形成的数值范围。
  5. 根据权利要求1所述的天线,其特征在于,所述第二振子为开口朝向与馈线延伸方向相反的前振子,所述第一振子为开口朝向与所述馈线延伸方向相同的后振子。
  6. 根据权利要求2所述的天线,其特征在于,所述第二辐射部还包括:微带线;
    所述第三振子具有第一振子形状,所述微带线为直线导体,布置在所述第三振子的对称轴线上,与所述第三振子组成第二振子形状。
  7. 根据权利要求6所述的天线,其特征在于,所述微带线与所述第三振子的长度比例在预设的第二数值范围内;所述第二数值范围是以4为基准,上下浮动预设数值形成的数值范围。
  8. 根据权利要求6所述的天线,其特征在于,所述第一振子的振体和振臂的总长度在低频谐振波长的1/8至3/4之间;所述第三振子的振体和振臂的总长度在中频谐振波长的1/8至3/4之间。
  9. 根据权利要求1所述的天线,其特征在于,所述天线还包括:对称分布在所述第一表面和第二表面的第三辐射部;所述第二表面为所述第一表面的反面;
    所述第三辐射部包括:第四振子、第五振子、第六振子以及第七振子;
    其中,朝向相反的所述第四振子和第五振子对称设置在所述第一表面;朝向相反的所述第六振子和所述第七振子对称设置在所述第二表面。
  10. 根据权利要求9所述的天线结构,其特征在于,所述第四振子、第五振子、第六振子以及第七振子均为具有第一振子形状;
    所述第一振子形状包括在两个末端设置有弯折部的振体以及由所述弯折部延伸预定长度形成的一对振臂。
  11. 根据权利要求10所述的天线结构,其特征在于,所述天线还包括:开设在所述基板上的一对避空槽;
    一对所述避空槽对称设置,位于所述第四振子的振臂之间。
  12. 根据权利要求10所述的天线结构,其特征在于,所述第四振子的振体和振臂的总长度在高频谐振波长的1/8至3/4之间。
  13. 根据权利要求10所述的天线结构,其特征在于,所述第五振子和第七振子为开口朝向与所述馈线延伸方向相反的前振子,所述第四振子和第六振子为开口朝向与所述馈线延伸方向相同的后振子。
  14. 根据权利要求5或10所述的天线,其特征在于,所述馈线包括布置在所述第一表面的第一馈线和布置在所述第二表面的第二馈线;
    所述第二馈线上设置有3个接地点。
  15. 根据权利要求14所述的天线,其特征在于,所述第一馈线和所述第二馈线为同轴线;所述前振子与所述同轴线的内导体连接,所述后振子与所述同轴线的外导体连接,形成1个馈电点和3个接地点。
  16. 根据权利要求9所述的天线,其特征在于,所述第一辐射部对应的频段为978MHz,所述第二辐射部对应的频段为1.09GHz,所述第三辐射部对应的频段为5.8GHz。
  17. 一种无线信号处理设备,其特征在于,包括:
    如权利要求1-16任一项所述的天线,用于发送或接收无线信号;
    发射通路,用于将信息内容加载到射频载波信号中,形成无线信号并通过所述天线发送。
  18. 一种无人机,其特征在于,包括:
    机身,所述机身上具有起落架;
    电机,安装于所述机身上,用于为所述无人机提供飞行动力;
    如权利要求1-16任一项所述的天线,安装于所述起落架上。
PCT/CN2022/079353 2021-03-12 2022-03-04 天线、无线信号处理设备及无人机 WO2022188714A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP22766239.2A EP4307472A1 (en) 2021-03-12 2022-03-04 Antenna, wireless signal processing device and unmanned aerial vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110272337.8 2021-03-12
CN202110272337.8A CN112886198A (zh) 2021-03-12 2021-03-12 天线、无线信号处理设备及无人机

Publications (1)

Publication Number Publication Date
WO2022188714A1 true WO2022188714A1 (zh) 2022-09-15

Family

ID=76042441

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/079353 WO2022188714A1 (zh) 2021-03-12 2022-03-04 天线、无线信号处理设备及无人机

Country Status (4)

Country Link
US (1) US20240079765A1 (zh)
EP (1) EP4307472A1 (zh)
CN (1) CN112886198A (zh)
WO (1) WO2022188714A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112886198A (zh) * 2021-03-12 2021-06-01 深圳市道通智能航空技术股份有限公司 天线、无线信号处理设备及无人机

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150171518A1 (en) * 2013-12-17 2015-06-18 Amazon Technologies, Inc. Multi-band antenna
CN105977635A (zh) * 2016-05-10 2016-09-28 福建省汇创新高电子科技有限公司 应用于新一代分布式无线通信系统的小型化定向mimo天线
CN211150777U (zh) * 2019-12-25 2020-07-31 深圳市美科星通信技术有限公司 双频天线及通讯装置
CN211578967U (zh) * 2020-03-11 2020-09-25 深圳市美科星通信技术有限公司 双频pcb天线及通讯装置
CN112886198A (zh) * 2021-03-12 2021-06-01 深圳市道通智能航空技术股份有限公司 天线、无线信号处理设备及无人机

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150171518A1 (en) * 2013-12-17 2015-06-18 Amazon Technologies, Inc. Multi-band antenna
CN105977635A (zh) * 2016-05-10 2016-09-28 福建省汇创新高电子科技有限公司 应用于新一代分布式无线通信系统的小型化定向mimo天线
CN211150777U (zh) * 2019-12-25 2020-07-31 深圳市美科星通信技术有限公司 双频天线及通讯装置
CN211578967U (zh) * 2020-03-11 2020-09-25 深圳市美科星通信技术有限公司 双频pcb天线及通讯装置
CN112886198A (zh) * 2021-03-12 2021-06-01 深圳市道通智能航空技术股份有限公司 天线、无线信号处理设备及无人机

Also Published As

Publication number Publication date
US20240079765A1 (en) 2024-03-07
CN112886198A (zh) 2021-06-01
EP4307472A1 (en) 2024-01-17

Similar Documents

Publication Publication Date Title
US10903556B2 (en) Up-down zigzag additive spiral antenna
WO2021078260A1 (zh) 双频天线和飞行器
US20140292601A1 (en) Planar antenna apparatus and method
WO2019228309A1 (zh) 天线、无人飞行器的遥控器及无人飞行器
CN103187615B (zh) 天线及其制造方法、印刷电路板、通信终端
CN110970709A (zh) 天线结构及具有该天线结构的无线通信装置
US20240079765A1 (en) Antenna, wireless signal processing device, and unmanned aerial vehicle
CN109216873B (zh) 无人飞行器的机架、无人飞行器及天线切换方法
KR101714921B1 (ko) 메타물질을 이용한 다중 대역 흡수체
US20240030605A1 (en) Antenna, wireless signal processing device, and unmanned aerial vehicle
WO2023001037A1 (zh) 天线、无线信号处理设备及无人机
WO2022199361A1 (zh) 天线、其调试方法、外置式天线结构及无人机
WO2022199362A1 (zh) 天线、无线信号处理设备及无人机
WO2023016317A1 (zh) 一种天线及无人飞行器
CN210926320U (zh) 一种应用于Sub-6GHz频段的滤波偶极子天线
CN210111029U (zh) 一种双频天线及飞行器
CN108183315A (zh) 应用于l/c频段的机载双频天线
US10680340B2 (en) Cone-based multi-layer wide band antenna
WO2020134029A1 (zh) 一种天线及无人飞行器
CN215220987U (zh) 天线、无线信号处理设备及无人机
CN215220986U (zh) 天线、无线信号处理设备及无人机
US20210114710A1 (en) Unmanned aerial vehicle and antenna thereof
US11442130B2 (en) Rotationally phased directional antenna
CN207199821U (zh) 一种移动终端的天线及具有该天线的移动终端
US10381733B2 (en) Multi-band patch antenna module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22766239

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022766239

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022766239

Country of ref document: EP

Effective date: 20231012