WO2022188536A1 - 天线振子以及阵列天线 - Google Patents

天线振子以及阵列天线 Download PDF

Info

Publication number
WO2022188536A1
WO2022188536A1 PCT/CN2022/070576 CN2022070576W WO2022188536A1 WO 2022188536 A1 WO2022188536 A1 WO 2022188536A1 CN 2022070576 W CN2022070576 W CN 2022070576W WO 2022188536 A1 WO2022188536 A1 WO 2022188536A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
support structure
antenna element
feeder
antenna
Prior art date
Application number
PCT/CN2022/070576
Other languages
English (en)
French (fr)
Inventor
郑珂珂
王喜瑜
张万春
鲍峰婷
谢永超
王睿
沈楠
李名定
毛胤电
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2022188536A1 publication Critical patent/WO2022188536A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/52Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/52Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure
    • H01Q1/521Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure reducing the coupling between adjacent antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/0006Particular feeding systems
    • H01Q21/0075Stripline fed arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays

Definitions

  • the present application relates to the field of communication technologies, and in particular, to an antenna element and an array antenna.
  • the array antenna with Massive MIMO is the key to the improvement of 5G communication rate and capacity.
  • the array antenna includes a plurality of antenna elements, each antenna element includes a printed circuit board (PCB), and a feeder, a radiating element layer on the printed circuit board (PCB), and a support structure for supporting the feeder and the radiating element layer,
  • PCB printed circuit board
  • independent feed lines, radiating element layers, and supporting structures for supporting the feed lines and radiating element layers are fixed on a printed circuit board (PCB) through welding and other processes to complete the fabrication of the antenna element.
  • the feeder, the radiating element layer and the supporting structure for supporting the feeder and the radiating element layer in the antenna element are independent structures, resulting in the overall structure of the antenna element being bulky and heavy, so that the existing antenna element and the The problem of low integration of the array antenna.
  • the embodiments of the present application propose an antenna element and an array antenna, aiming at realizing a highly integrated antenna element and an array antenna.
  • an embodiment of the present application provides an antenna vibrator, where the antenna vibrator includes an integrally formed dielectric substrate and an integrally formed conductive layer.
  • the dielectric substrate includes a dielectric flat plate and at least one supporting structure; the supporting structure is located on the first surface of the dielectric flat plate; the conductive layer includes a feeding line, a feeding network layer and a radiating element layer, and the radiating element layer is located on the first surface of the dielectric flat plate;
  • the first surface of the support structure, the feed line is located on the second surface of the support structure opposite to the first surface, and the feed network layer is located on the first surface of the dielectric plate or on the second surface of the support structure.
  • a second surface opposite to one surface is connected to the feed line, the feed line couples the electrical signal of the feed network layer to the radiating element layer.
  • an embodiment of the present application further provides an array antenna, which includes at least one antenna element described in any of the recited technical solutions.
  • the array antenna further includes a reflection plate, and the reflection plate is located on the second surface side of the dielectric flat plate in the antenna element.
  • FIG. 1 is a schematic structural diagram of an antenna vibrator provided in an embodiment of the present application.
  • FIG. 2 is a schematic structural diagram of another antenna vibrator provided by an embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of another antenna vibrator provided by an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of another antenna vibrator provided by an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of another antenna vibrator provided by an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of another antenna vibrator provided by an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of an array antenna provided by an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of another array antenna provided by an embodiment of the present application.
  • the existing antenna elements and array antennas have the technical problem of low integration.
  • the feeder, the radiating element layer, and the supporting structure used to support the feeder and the radiating element layer are independent structures in structure and process, and the prior art will be independent of each other through welding and other processes
  • the feeder, the radiating element layer and the supporting structure for supporting the feeder and the radiating element layer are fixed on the printed circuit board (PCB) to complete the manufacture of the antenna element.
  • PCB printed circuit board
  • the embodiments of the present application provide the following technical solutions, aiming to realize an antenna element and an array antenna with high integration.
  • FIG. 1 is a schematic structural diagram of an antenna vibrator provided by an embodiment of the present application.
  • FIG. 1 a is a top view of the antenna element 100 on the first surface 111 a of the dielectric plate 111 .
  • FIG. 1 b is a top view of the antenna element 100 on the second surface 111 b of the dielectric plate 111 .
  • FIG. 2 is a schematic structural diagram of another antenna vibrator provided by an embodiment of the present application.
  • 2 a is a top view of the antenna element 100 on the first surface 111 a of the dielectric plate 111 .
  • FIG. 2 b is a top view of the antenna element 100 on the second surface 111 b of the dielectric plate 111 .
  • the antenna element 100 includes: an integrally formed dielectric substrate 110 and an integrally formed conductive layer 120 ; the dielectric substrate 110 includes a dielectric flat plate 111 and at least one supporting structure 112 ; the supporting structure 112 is located on the first surface of the dielectric flat plate 111 ,
  • the conductive layer 120 includes a feeding line 121, a feeding network layer 122 and a radiating element layer 123.
  • the radiating element layer 123 is located on the first surface of the support structure 112, and the feeding line 121 is located on the second surface of the supporting structure 112 opposite to the first surface.
  • the electrical network layer 122 is located on the first surface 111 a or the second surface 111 b opposite to the first surface 111 a of the dielectric plate 111 .
  • FIG. 3 is a schematic structural diagram of another antenna vibrator provided by an embodiment of the present application.
  • 3 a is a top view of the antenna element 100 on the first surface 111 a of the dielectric plate 111 .
  • FIG. 3 a is a top view of the antenna element 100 on the first surface 111 a of the dielectric plate 111 .
  • 3 b is a top view of the antenna element 100 on the second surface 111 b of the dielectric plate 111 .
  • the feeding network layer 122 is located on the second surface 111b of the dielectric plate 111 , and the feeding line 121 , the feeding network layer 122 and the radiating element layer 123 do not need to be connected by a welding process.
  • the feeding network layer 122 is located on the first surface 111 a of the dielectric plate 111 .
  • the support structure 112 further includes a connecting portion 112d, the connecting portion 112d is located outside the annular wall 112a, and the connecting end of the feeding line 121 and the connecting end of the feeding network layer 122 are located opposite to the connecting portion 112d
  • the connection part 112d and the second surface 111b of the dielectric plate 111 are separated by a preset distance;
  • the two surfaces 111b are spaced apart by a preset distance to avoid damage by external force on the second surface 111b side of the dielectric plate 111, and to avoid electrical connection between the reflector of the antenna element 100 and the conductive lines on the connecting portion 112d.
  • the support structure 112 is spaced between the feeder 121 and the radiating element layer 123 , so the feeder 121 and the radiating element layer 123 are in a coupled feeding method.
  • the feeder 121 does not need to be exposed, thereby avoiding interference from external environmental factors in the feeding process between the feeder 121 and the radiating element layer 123 .
  • the feeding and radiation process of the antenna element 100 in FIG. 1 is as follows: the feeding network layer 122 is used to receive the feeding signal and then transmit the feeding signal to the feeding line 121 , and the feeding line 121 and the radiating element layer 123 There is a feeder support structure 112c therebetween, the feeder 121 couples the feed signal to the radiation unit layer 123, and the radiation unit layer 123 emits electromagnetic wave signals corresponding to the feed signal.
  • the radiation element layer 123 receives the electromagnetic wave signal and is coupled to the feed line 121 , and the feed line 121 sends the feed signal to the feed network layer 122 .
  • the feeding network layer 122 may include a power amplifying function circuit and/or a function circuit for adjusting phase, amplitude and frequency, which helps to adjust the power and operating bandwidth of the electromagnetic wave signal transmitted by the antenna element 100 .
  • the dielectric substrate 110 may be integrally formed by injection molding, and the material of the dielectric substrate 110 may be plastic or resin.
  • the embodiments of the present application are not limited to the above-mentioned formation method and specific material of the dielectric substrate 110 .
  • the material of the conductive layer 120 can be selected from a metal with good electrical conductivity.
  • the preparation method of the conductive layer 120 may be formed by a process such as laser engraving, electroplating, or laser electromagnetic metallization (LMC).
  • the antenna element 100 includes an integrally formed dielectric substrate 110 and an integrally formed conductive layer 120, and completes the feeding process between the radiating element layer 123 and the feeding line 121, and the radiating element layer 123 receives or
  • the antenna vibrator 100 does not need to include a printed circuit board (PCB), and is formed on the printed circuit by welding and other processes using feed lines, radiation units, and support structures for supporting feed lines and radiation units that are independent of structure and process.
  • PCB printed circuit board
  • the volume and weight of the antenna vibrator 100 are reduced, thereby improving the integration of the antenna vibrator, and realizing the lightweight of the antenna vibrator.
  • the feeder 121, the feeder network layer 122 and the radiating element layer 123 do not need to be connected through a welding process.
  • the fabrication process of the antenna vibrator 100 is simplified, and the fabrication cost of the antenna vibrator 100 is reduced.
  • a support structure 112 is spaced between the feeder 121 and the radiating element layer 123.
  • the support structure 112 is further provided with a feeding via 1120 , and the feeding via 1120 is respectively connected to the feeding line 121 and the radiating element layer 123 .
  • the electrical signal of the feeding network layer 122 is directly transmitted to the radiating element layer 123 .
  • the feed line 121 and the radiating element layer 123 are connected through the feeding via 1120 inside the support structure 112 , the feeding line 121 and the radiating element layer 123 are electrically connected through the feeding via 1120 , and the feeding line 121 and the radiating element layer 123 are electrically connected.
  • the feeding method of the feeding network layer 122 is direct feeding.
  • the feeding via 1120 is arranged inside the support structure 112 to avoid feeding.
  • FIG. 4 is a schematic structural diagram of another antenna vibrator provided by an embodiment of the present application.
  • 4 a is a top view of the antenna element 100 on the first surface 111 a of the dielectric plate 111 .
  • FIG. 4 b is a top view of the antenna element 100 on the second surface 111 b of the dielectric plate 111 .
  • FIG. 4 further refines the structure of the antenna element 100 in which the feeding network layer 122 is located on the second surface 111 b of the dielectric plate 111 .
  • the support structure 112 includes an annular wall 112a, a hollow area 112b and at least two feeder support structures 112c, the hollow area 112b is located in the annular wall 112a, and the feeder support structure 112c Located in the hollow area 112b and connected to the annular wall 112a, the feeder support structure 112c is symmetrically arranged about a preset symmetry axis L1, wherein the preset symmetry axis L1 is the centerline of the annular wall 112a parallel to the plane of the dielectric plate 111; the conductive layer 120 It includes a feeder 121, a feeder network layer 122, and a radiation unit layer 123; the radiation unit layer 123 is located on the surface of the support structure 112 away from the dielectric plate 111, covering part or all of the surface of the annular wall 112a; the feeder 121 is located on the feeder support
  • the structure 112c is adjacent to the surface on the second surface
  • the feeder support structure 112c is provided with a feeder via 1120, and the feeder 121 directly transmits the electrical signals of the feeder network layer 122.
  • the feeder via 1120 is located inside the feeder support structure 112c, the cross-sectional views of the feeder support structure 112c in FIGS. 3 and 4 are not shown in this embodiment, and the feeder via 1120 is not shown.
  • the feeding vias 1120 can be referred to as shown in FIG. 2 .
  • the feeder via 1120 is not provided inside the feeder support structure 112c, and the feeder 121 and the radiating element layer 123 adopt coupling feed.
  • a feeder via 1120 is provided inside the feeder support structure 112c, and a direct feeder is used between the feeder 121 and the radiating element layer 123 .
  • the radiation unit layer 123 is not shown in figure 4b.
  • the feeding network layer 122 is located on the second surface 111b of the dielectric plate 111 , and the feeding line 121 , the feeding network layer 122 and the radiating element layer 123 do not need to be connected by a welding process.
  • the feeder support structure 112c is symmetrically arranged with respect to the preset symmetry axis L1, so that the antenna element 10 can have two vertical polarization directions of ⁇ 45°, so as to realize a bipolar antenna element with improved performance.
  • the cross-polarization ratio of the antenna element 100 is obtained.
  • the feeder support structures 112c may also be provided in the polarization direction of the feeder support structures 112c, and the feeder support structures 112c located in the same polarization direction may be connected by jumpers.
  • the feeding network layer 122 may include functional circuits for power amplification and/or phase, amplitude and frequency adjustment, which help to adjust the power and operating bandwidth of the electromagnetic wave signal emitted by the antenna element 100 .
  • the support structure 112 including the annular wall 112a, the hollow area 112b and the at least two feeder support structures 112c is integrally formed by injection molding, the specific shape of the injection mold can be adjusted, and the second The surface 111b is partially recessed to form the support structure 112 .
  • the embodiments of the present application also provide the following technical solutions:
  • the cross-sectional shape of the feeder support structure 112c includes at least one of a dry shape, an L shape, and a Y shape.
  • this embodiment only shows the feeder support structure 112c with a dry-shaped cross-sectional shape, but in the antenna vibrator 100 in this embodiment of the present application, the cross-sectional shape of the feeder support structure 112c may also include an L-shape or Y-shape, or other shapes for increasing the working bandwidth of the antenna element 100 .
  • the embodiments of the present application also provide the following technical solutions:
  • the conductive layer 120 further includes a feed pin 124, and the feed pin 124 and the feed network layer 122 are located on the same surface of the dielectric plate 111; the feed network layer 122 and the feed pin 124 connect.
  • the conductive layer 120 including the feeding line 121, the feeding network layer 122, the radiating element layer 123 and the feeding pin 124 is integrally formed without including a printed circuit board (PCB).
  • the support structure of the feeder and the radiating unit is formed on the printed circuit board (PCB) by welding and other processes to complete the manufacture of the antenna vibrator, reducing the volume and weight of the antenna vibrator 100, thereby improving the integration of the antenna vibrator 100 and simplifying the
  • the fabrication process of the antenna vibrator 100 is improved, and the fabrication cost of the antenna vibrator 100 is reduced.
  • the feeding network layer 122 and the feeding needle 124 are located on the first surface 111 a of the dielectric plate 111 .
  • the feeding network layer 122 and the feeding line 121 are located on different planes, and are connected through conductive vias 122a. In the antenna element shown in FIG. 4 , the feeding network layer 122 and the feeding needle 124 are located on the second surface 111 b of the dielectric plate 111 .
  • the feeding and radiation process of the antenna element 100 is as follows: the feeding needle 124 is used for receiving the feeding signal and then transmitting the feeding signal to the feeding network layer 122, and then the feeding network layer 122 transmits the feeding signal to the feeding network layer 122.
  • the feeder 121, the feeder support structure 112c is spaced between the feeder 121 and the radiating element layer 123, the feeder 121 couples the feed signal to the radiating element layer 123, or directly transmits it to the radiating element layer 123 through the feeding via 1120 , the radiation unit layer 123 emits the electromagnetic wave signal corresponding to the feed signal.
  • the radiation element layer 123 receives the electromagnetic wave signal and couples it to the feeder 121 , or directly transmits it to the feeder 121 through the feeder via 1120 , and the feeder 121 sends the feeder signal to the feeder network layer 122 , and the feeder network layer 122 transmitted to the feed needle 124 .
  • the embodiments of the present application also provide the following technical solutions:
  • the feeder support structure 112c is spaced a predetermined distance from the second surface 111b of the dielectric plate 111 ; the support structure 112 further includes a transition ramp structure 112e, which is located at the feeder level 112e. Between the wire support structure 112c and the annular wall 112a, for connecting the feeder support structure 112c and the annular wall 112a, the feeder 121 extends from the surface of the feeder support structure 112c to the surface of the transition ramp structure 112e.
  • the feeder support structure 112c and the second surface 111b of the dielectric plate 111 are separated by a preset distance, which can be determined according to the distance between the feeder support structure 112c and the medium.
  • the second surface 111b of the flat plate 111 is spaced by a preset distance to adjust the coupling distance between the feeding network layer 122 and the feeding line 121, thereby adjusting the coupling efficiency between the feeding signal of the antenna element 100 and the electromagnetic wave signal, or, the feeding line
  • the feeder support structure 112c and the second surface 111b of the dielectric plate 111 are separated by a preset distance, which can be determined according to the second
  • the surface 111b is spaced by a preset distance, and the size of the feeding via hole 1120 is adjusted, thereby adjusting the transmission distance of the electrical signal between the feeding line 121 and the radiating element layer 123 .
  • the provision of the transition slope structure 112e helps to form the feeder 121 with a uniform thickness, so as to ensure the distance between the feeder 121 and the feeder network layer 122 A stable feed signal is transmitted, thereby improving the stability of the antenna element 100 for receiving and transmitting electromagnetic wave signals.
  • the embodiments of the present application also provide the following technical solutions:
  • FIG. 5 is a schematic structural diagram of another antenna vibrator provided by an embodiment of the present application.
  • 5 a is a top view of the antenna element 100 on the first surface 111 a of the dielectric plate 111 .
  • FIG. 5 b is a top view of the antenna element 100 on the second surface 111 b of the dielectric plate 111 .
  • Fig. 5c is a schematic diagram of part of the structure in Fig. 5a.
  • Fig. 5d is a schematic diagram of part of the structure in Fig. 5b.
  • FIG. 5 shows the structure of the antenna element 100 in which the feeding network layer 122 is located on the first surface 111 a of the dielectric plate 111 .
  • the solution in this embodiment is also applicable to the structure of the antenna element 100 in which the feeding network layer 122 is located on the second surface 111 b of the dielectric plate 111 .
  • the edge of the radiation unit layer 123 is provided with N edge matching branches 1230, and the edge matching branches 1230 are convex toward the direction away from the center of the radiation unit layer 123, and N is greater than or equal to 2.
  • the annular wall 112a is provided with N edge-matching branch support structures 1120a for supporting the edge-matching branch 1230 .
  • the edge shape of the radiating element layer 123 is changed, which can increase the number of resonant frequency points of the antenna element 100, thereby improving the working band of the antenna element 100.
  • the effect of the cross-polarization ratio of the antenna element 100 can be improved.
  • the edge matching branches 1230 include an even number of first edge matching branches 1231 , and the first edge matching branches 1231 are convex in a direction away from the center of the radiation unit layer 123 , and the first edge matching branches 1231 are convex.
  • An edge-matching branch 1231 is symmetrically disposed about the preset symmetry axis L1 ; the edge-matching branch support structure 1120 a includes an even number of first edge-matching branch support structures 1121 for supporting the first edge-matching branch 1231 .
  • the first edge-matching branch support structure 1121 is used to support the first edge-matching branch 1231.
  • the edge shape of the radiation unit layer 123 is changed, and the antenna is increased.
  • the resonant frequency point of the vibrator 100 increases the working bandwidth of the antenna vibrator 100 .
  • the first edge matching branch 1231 shown in this embodiment is a rectangle, but the shape of the first edge matching branch 1231 in the present application is not limited to this, and can be adjusted according to actual conditions.
  • the embodiments of the present application also provide the following technical solutions:
  • the edge matching stubs 1230 further include two second edge matching stubs 1232 , and the second edge matching stubs 1232 protrude in a direction away from the center L1 of the radiation unit layer 123 , And the line where the second edge-matching branch 1232 is located is parallel to the preset symmetry axis L1;
  • the edge-matching branch support structure 1120a further includes two second edge-matching branch support structures 1122, and the second edge-matching branch 1232 is supported from the second edge-matching branch
  • the surface of the structure 1122 extends to a part or all of the side of the second edge-matching branch support structure 1122 , and the second edge-matching branch support structure 1122 is used to support the side of the second edge-matching branch 1232 in an alignment with the first surface 111 a of the media plate 111 . acute or obtuse angle.
  • the second edge matching stub support structure 1122 is used to support the second edge matching stub 1232 , and the line where the second edge matching stub 1232 is located is parallel to the preset symmetry axis L1 , which can improve the cross-polarization ratio of the antenna element 100 Effect.
  • the second edge-matching branch 1232 extends from the surface of the second edge-matching branch support structure 1122 to part or all of the side surface of the second edge-matching branch support structure 1122 , and the second edge-matching branch 1232 can be adjusted according to the actual situation.
  • the surfaces of the two edge-matching branch support structures 1122 extend to the area of the sides of the second edge-matching branch support structures 1122 .
  • the second edge-matching branch support structure 1122 is used to support a structure in which the side of the second edge-matching branch 1232 is at an acute or obtuse angle than the first surface 111a of the dielectric plate 111, which facilitates the formation of the second edge-matching branch 1232 with uniform thickness.
  • the second edge matching branch 1232 shown in this embodiment is a rectangle, but the shape of the second edge matching branch 1232 in the present application is not limited to this, and can be adjusted according to actual conditions.
  • the embodiments of the present application also provide the following technical solutions:
  • FIG. 6 is a schematic structural diagram of another antenna vibrator provided by an embodiment of the present application.
  • FIG. 6 a is a top view of the antenna element 100 on the first surface 111 a of the dielectric plate 111 .
  • FIG. 6 b is a top view of the antenna element 100 on the second surface 111 b of the dielectric plate 111 .
  • FIG. 6c is a schematic diagram of part of the structure in FIG. 6a.
  • Fig. 6d is a schematic diagram of part of the structure in Fig. 6b.
  • FIG. 6 shows the structure of the antenna element 100 in which the feeding network layer 122 is located on the second surface 111 b of the dielectric plate 111 .
  • the solution in this embodiment is also applicable to the structure of the antenna element 100 in which the feeding network layer 122 is located on the first surface 111 a of the dielectric plate 111 .
  • the radiation unit layer 123 is provided with patterned slits.
  • the radiation unit layer 123 is provided with patterned slits, which can change the current path on the surface of the radiation unit layer 123 without increasing the area of the radiation unit layer 123 , thereby realizing the miniaturization of the antenna element 100 and improving the performance of the antenna element 100 .
  • the degree of integration also changes the resonant frequency point and operating bandwidth of the antenna.
  • the patterned slits may be obtained by partially etching the radiation unit layer 123 by laser etching.
  • the radiation unit layer 123 is provided with cross slits 1233 .
  • the radiation element layer 123 provided with the crisscross slot 1233 can increase the current path on the surface of the radiation element layer 123 without increasing the area of the radiation element layer 123 , thereby realizing the miniaturization of the antenna element 100 and improving the antenna element 100 .
  • the resonant frequency of the antenna is increased, thereby increasing the working bandwidth of the antenna element 100.
  • the first cross direction of the crisscross slot 1233 is parallel to the preset symmetry axis L1
  • the second cross direction of the crisscross slot 1233 is perpendicular to the first cross direction, which can improve the cross polarization ratio of the antenna element 100. Effect.
  • At least one in-line slot 1234 is provided on the edge of the radiation unit layer 123 .
  • the radiating element layer 123 provided with at least one in-line slot 1234 can increase the current path on the surface of the radiating element layer 123 without increasing the area of the radiating element layer 123 , thereby realizing the miniaturization of the antenna element 100 and improving the
  • the integration degree of the antenna element 100 also increases the resonant frequency of the antenna, thereby increasing the working bandwidth of the antenna element 100 .
  • the lengths of the in-line slits 1234 may be the same or different, and the in-line slits 1234 with the same length are symmetrically arranged with respect to the preset symmetry axis L1.
  • the patterned slits provided in the radiation unit layer 123 are composed of rectangular slits.
  • the crisscross slits 1233 are composed of a plurality of rectangular slits.
  • each in-line slit 1234 Consists of a rectangular slit.
  • the patterned slits in the embodiments of the present application may also be composed of slits of other shapes.
  • the shape of the radiation unit layer 123 in the embodiment of the present application can also be specifically set according to the actual situation, and is not limited to the shape shown in this embodiment.
  • the embodiments of the present application also provide the following technical solutions:
  • the first surface 111a of the medium plate 111 is further provided with at least two first-direction support ribs 113 arranged at intervals, and the area between the first-direction support ribs 113 is used for
  • the support structure 112 is placed, and the extension direction of the support ribs 113 in the first direction is the same as the extension direction of the dielectric substrate 110;
  • the conductive layer 120 further includes a first isolation layer (not shown), and the first isolation layer is located in the first direction of the support ribs. 113 surface.
  • the isolation layer when the first isolation layer is located on the surface of the supporting ribs 113 in the first direction, the interference of external electromagnetic signals on the feeding process between the feeding line 121 and the radiating element layer 123 in the antenna element 100 can be avoided, and the antenna element 100 can be increased.
  • the isolation degree helps to optimize the radiation index of the antenna element 100 .
  • the first surface 111 a of the medium flat plate 111 is further provided with at least one second-direction support rib 114 , and the first-direction support rib 113 and the second-direction support rib 114 are crossed.
  • the second direction support ribs 113 are used to separate the area between the first direction support ribs 113 into at least one isolation area, and the support structure 112 is located in the isolation area;
  • the conductive layer 120 further includes a second isolation layer (not shown). ), the second isolation layer is located on the surface of the support ribs 114 in the second direction.
  • the first isolation layer is located on the surface of the support rib 113 in the first direction
  • the second isolation layer is located on the surface of the support rib 114 in the second direction
  • the support structure 112 is located on the support rib 113 in the first direction and the support rib in the second direction.
  • the feeder 121 and the radiating element layer 123 in different isolation areas can be further avoided.
  • the interference of the feeding process between the radiating element layers 123 further increases the isolation of the antenna element 100 and helps to optimize the radiation index of the antenna element 100 .
  • the first-direction supporting ribs 113 and the second-direction supporting ribs 114 are vertically arranged.
  • the supporting ribs 113 in the first direction and the supporting ribs 114 in the second direction are vertically arranged, which can improve the utilization rate of the dielectric substrate 110 , form a neatly arranged supporting structure 112 , and improve the multiple radiation element layers 123 in the antenna element 100 .
  • the uniformity of the arrangement further increases the isolation of the antenna element 100 , thereby helping to optimize the radiation index of the antenna element 100 .
  • the first direction support ribs 113 extend to the second surface 111 b of the medium plate 111 .
  • the support ribs 113 in the first direction extend to the second surface 111 b of the dielectric plate 111 to increase the isolation of the antenna element 100 on the second surface 111 b of the dielectric plate 111 , thereby preventing external electromagnetic signals from affecting the feed lines in the antenna element 100
  • the interference of the feeding process between 121 and the radiating element layer 123 increases the isolation of the antenna element 100 and helps to optimize the radiation index of the antenna element 100 .
  • FIG. 7 is a schematic structural diagram of an array antenna provided by an embodiment of the present application. 1 to 6 , and referring to FIG. 7 , the array antenna includes at least one antenna element 100 described in the above technical solutions; and also includes an integrally formed reflector 200 , the reflector 200 is located in the antenna element 100 on the dielectric plate 111 The second surface 111b side is spaced apart from the conductive layer 120 on the second surface 111b side of the dielectric plate 111 in the antenna element 100 .
  • FIG. 7 shows an array antenna composed of 16 antenna elements 100 located in the reflector 200 and arranged in an array of two rows and eight columns.
  • the embodiments of the present application are not limited to the number and arrangement of the antenna elements 100 .
  • the array antenna provided in this embodiment includes at least one antenna element 100 in the above technical solution.
  • the antenna element 100 includes an integrally formed dielectric substrate 110 and an integrally formed conductive layer 120 , which completes the feeding between the radiating element layer 123 and the feeding line 121 .
  • the electrical process, and the process of receiving or transmitting electromagnetic waves by the radiating element layer 123, the antenna element 100 does not need to include a printed circuit board (PCB), and adopts feed lines, radiating elements, and supporting feed lines and radiating elements that are independent of structure and process.
  • PCB printed circuit board
  • the supporting structure is formed on the printed circuit board (PCB) by welding and other processes to complete the production of the antenna vibrator, reducing the volume and weight of the antenna vibrator 100, thereby improving the integration of the antenna vibrator and realizing the lightweight of the antenna vibrator.
  • the feeder 121 , the feeder network layer 122 and the radiating unit layer 123 do not need to be connected through a welding process.
  • the preparation process of the antenna oscillator 100 is simplified, and the antenna oscillator 100 is reduced. preparation cost.
  • a support structure 112 is spaced between the feeder 121 and the radiating element layer 123.
  • the feeder 121 When coupling feeding is used between the feeder 121 and the radiating element layer 123, compared with the direct feeding method, the technical solution provided by this embodiment, the feeder 121 It does not need to be exposed to the outside, thereby avoiding the interference of external environmental factors in the feeding process between the feeding line 121 and the radiating element layer 123 .
  • direct feeding when direct feeding is used between the feeding line 121 and the radiating element layer 123, the feeding line 121 and the radiating element layer 123 are connected through the feeding via 1120 inside the support structure 112, and the feeding line 121 and the radiating element layer 123 are fed through The vias 1120 realize electrical connection.
  • the feeder vias 1120 are arranged inside the support structure 112, which can prevent the feeder vias 1120 from being damaged by external forces.
  • the feeding network layer 122 in the antenna element 100 is located on the second surface 111b of the dielectric plate 111, the feeding network layer 122 forms an air microstrip line structure, and the air microstrip line The structure reduces the dielectric loss and can improve the gain of the array antenna.
  • the reflector 200 in this embodiment can be formed by a process such as profile pultrusion, die casting, or sheet metal, and at least one of the antenna elements 100 described in the above technical solutions can be fixed to the integrated reflector 200 by heat fusion or rivets. Therefore, the fabrication process of the array antenna is simplified.
  • the array antenna may be a 5G array antenna.
  • FIG. 8 is a schematic structural diagram of another array antenna provided by an embodiment of the present application.
  • the reflector 200 is provided with a plurality of spacers 201 , and the projection of the antenna element 100 on the reflector 200 is located in the area enclosed by the projection of the spacers 201 on the reflector 200 .
  • the plurality of isolation bars 201 provided on the reflector 200 can further increase the isolation of the antenna element 100 and help to optimize the radiation index of the antenna element 100 .
  • the division between functional modules/units mentioned in the above description does not necessarily correspond to the division of physical components; for example, one physical component may have multiple functions, or one function or step may be composed of several physical components Components execute cooperatively.
  • Some or all physical components may be implemented as software executed by a processor, such as a central processing unit, digital signal processor or microprocessor, or as hardware, or as an integrated circuit, such as an application specific integrated circuit .
  • Such software may be distributed on computer-readable media, which may include computer storage media (or non-transitory media) and communication media (or transitory media).
  • Computer storage media includes both volatile and nonvolatile implemented in any method or technology for storage of information, such as computer readable instructions, data structures, program modules or other data flexible, removable and non-removable media.
  • Computer storage media include, but are not limited to, RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, digital versatile disk (DVD) or other optical disk storage, magnetic cartridges, magnetic tape, magnetic disk storage or other magnetic storage devices, or may Any other medium used to store desired information and which can be accessed by a computer.
  • communication media typically embodies computer readable instructions, data structures, program modules, or other data in a modulated data signal such as a carrier wave or other transport mechanism, and can include any information delivery media, as is well known to those of ordinary skill in the art .

Abstract

一种天线振子以及阵列天线。天线振子(100)包括:一体成型的介质基板(110)以及一体成型的导电层(120);所述介质基板包括介质平板(111)和至少一个支撑结构(112);所述支撑结构(112)位于所述介质平板(111)的第一表面(111a);所述导电层(120)包括馈电线(121)、馈电网络层(122)和辐射单元层(123),所述辐射单元层(123)位于所述支撑结构(112)的第一表面,所述馈电线(121)位于所述支撑结构(112)与所述第一表面(111a)相对的第二表面(111b),所述馈电网络层(122)位于所述介质平板(111)的第一表面(111a)或者与所述第一表面(111a)相对的第二表面(111b),且与所述馈电线(121)连接,所述馈电线(121)将所述馈电网络层(122)的电信号耦合至所述辐射单元层(123)。

Description

天线振子以及阵列天线
相关申请的交叉引用
本申请基于申请号为202110262173.0、申请日为2021年03月10日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请涉及通信技术领域,尤其涉及一种天线振子以及阵列天线。
背景技术
随着无线通信技术的发展,具有大规模多入多出(Massive MIMO)的阵列天线是5G通信速率和容量提升的关键。
阵列天线包括多个天线振子,每个天线振子包括印刷电路板(PCB),以及位于印刷电路板(PCB)上的馈电线、辐射单元层以及用于支撑馈电线和辐射单元层的支撑结构,现有技术将通过焊接等工艺将相互独立的馈电线、辐射单元层以及用于支撑馈电线和辐射单元层的支撑结构固定在印刷电路板(PCB)上,以完成天线振子的制作。该天线振子中馈电线、辐射单元层以及用于支撑馈电线和辐射单元层的支撑结构是相互独立的结构,导致天线振子的整体结构体积大,重量大,以至于造成现有的天线振子以及阵列天线集成性低的问题。
发明内容
本申请实施例提出了一种天线振子以及阵列天线,旨在实现集成性高的天线振子以及阵列天线。
一方面,本申请实施例提供了天线振子,所述天线振子包括一体成型的介质基板以及一体成型的导电层。
所述介质基板包括介质平板和至少一个支撑结构;所述支撑结构位于所述介质平板的第一表面;所述导电层包括馈电线、馈电网络层和辐射单元层,所述辐射单元层位于所述支撑结构的第一表面,所述馈电线位于所述支撑结构与所述第一表面相对的第二表面,所述馈电网络层位于所述介质平板的第一表面或者与所述第一表面相对的第二表面,且与所述馈电线连接,所述馈电线将所述馈电网络层的电信号耦合至所述辐射单元层。
另一方面,本申请实施例还提供了一种阵列天线,其包括至少一个申述技术方案中任意所述的天线振子。
该阵列天线还包括反射板,所述反射板位于所述天线振子中介质平板的第二表面侧。
附图说明
图1是本申请实施例提供的一种天线振子的结构示意图;
图2是本申请实施例提供的另一种天线振子的结构示意图;
图3是本申请实施例提供的又一种天线振子的结构示意图;
图4是本申请实施例提供的又一种天线振子的结构示意图;
图5是本申请实施例提供的又一种天线振子的结构示意图;
图6是本申请实施例提供的又一种天线振子的结构示意图;
图7是本申请实施例提供的一种阵列天线的结构示意图;以及
图8是本申请实施例提供的另一种阵列天线的结构示意图。
具体实施方式
应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
在后续的描述中,使用用于表示元件的诸如“模块”、“部件”或“单元”的后缀仅为了有利于本申请的说明,其本身没有特有的意义。因此,“模块”、“部件”或“单元”可以混合地使用。
正如上述背景技术中所述,现有的天线振子以及阵列天线存在集成性低的技术问题。究其原因,现有技术中馈电线、辐射单元层以及用于支撑馈电线和辐射单元层的支撑结构是结构和工艺上均是相互独立的结构,现有技术将通过焊接等工艺将相互独立的馈电线、辐射单元层以及用于支撑馈电线和辐射单元层的支撑结构固定在印刷电路板(PCB)上,以完成天线振子的制作该天线振子体积大,重量大,以至于造成现有的天线振子以及阵列天线集成性低的问题。
针对上述技术问题,本申请实施例提供了如下技术方案,旨在实现一种集成性高的天线振子以及阵列天线。
图1是本申请实施例提供的一种天线振子的结构示意图。参见图1,其中图1a为天线振子100在介质平板111第一表面111a的俯视图。图1b为天线振子100在介质平板111第二表面111b的俯视图。图2是本申请实施例提供的另一种天线振子的结构示意图。其中图2a为天线振子100在介质平板111第一表面111a的俯视图。图2b为天线振子100在介质平板111第二表面111b的俯视图。图2c为图2b中支撑结构112的放大图。图2d为图2c中A1-A2方向的剖面图。参见图1,该天线振子100包括:一体成型的介质基板110以及一体成型的导电层120;介质基板110包括介质平板111和至少一个支撑结构112;支撑结构112位于介质平板111的第一表面,导电层120包括馈电线121、馈电网络层122和辐射单元层123,辐射单元层123位于支撑结构112的第一表面,馈电线121位于支撑结构112与第一表面相对的第二表面,馈电网络层122位于介质平板111的第一表面111a或者与第一表面111a相对 的第二表面111b表面,馈电线121将馈电网络层122的电信号耦合至辐射单元层123。
需要说明的是,支撑结构112的第一表面位于介质平板111的第二表面111b侧,支撑结构112的第二表面位于介质平板111的第一表面111a侧。图1b中没有将辐射单元层123图示出来。且图1和图2示出的天线振子中,馈电网络层122位于介质平板111的第二表面111b。图3是本申请实施例提供的另一种天线振子的结构示意图。其中图3a为天线振子100在介质平板111第一表面111a的俯视图。图3b为天线振子100在介质平板111第二表面111b的俯视图。图1和图2示出的天线振子中,馈电网络层122位于所述介质平板111的第二表面111b,馈电线121、馈电网络层122和辐射单元层123无需通过焊接工艺实现连接。图3示出的天线振子100中,馈电网络层122位于所述介质平板111的第一表面111a。在图3示出的天线振子100中,支撑结构112还包括连接部112d,连接部112d位于环形墙壁112a的外侧,馈电线121的连接端和馈电网络层122的连接端位于连接部112d相对的两个表面上,且通过导电过孔122a连接,连接部112d和介质平板111的第二表面111b间隔预设距离,可以将馈电线121的连接端放置在连接部112d和介质平板111的第二表面111b间隔预设距离对应的空间内,避免受到介质平板111的第二表面111b侧外力的损坏,同时避免天线振子100的反射板和连接部112d上的导电线路电连接。
具体的,参见图1,馈电线121与辐射单元层123之间间隔有支撑结构112,因此馈电线121与辐射单元层123之间是耦合馈电方式,相比直接馈电方式,本实施例提供的技术方案,馈电线121无需裸露在外,进而避免馈电线121和辐射单元层123之间的馈电过程受到外界环境因素的干扰。
在本实施中,图1中的天线振子100的馈电及辐射过程如下:馈电网络层122用于接收馈电信号之后将馈电信号传输给馈电线121,馈电线121与辐射单元层123之间间隔有馈电线支撑结构112c,馈电线121将馈电信号耦合至辐射单元层123,辐射单元层123将馈电信号对应的电磁波信号发射出去。或者,辐射单元层123接收电磁波信号,并耦合至馈电线121,馈电线121将馈电信号发送给馈电网络层122。
具体的,馈电网络层122可以包括用于功率放大功能电路和/或相位、振幅以及频率调节的功能电路,有助于调节天线振子100发射电磁波信号的功率以及工作带宽。
示例性的,介质基板110可以采用注塑的方式一体成型,介质基板110的材质可以是塑料或者树脂。但是本申请实施例不限于上述介质基板110的形成方法以及具体材质。
示例性的,导电层120的材质可以选择导电性能良好的金属。导电层120的制备方法可以选择镭雕、电化镀或者激光电磁金属化(LMC)等工艺形成。
本实施例提供的技术方案,天线振子100包括一体成型的介质基板110以及一体成型的 导电层120,完成通过辐射单元层123和馈电线121之间的馈电过程,以及辐射单元层123接收或者发射电磁波过程,该天线振子100无需包括印刷电路板(PCB),以及采用将结构和工艺相互独立的馈电线、辐射单元以及用于支撑馈电线和辐射单元的支撑结构通过焊接等工艺形成在印刷电路板(PCB)上,以完成天线振子的制作,降低了天线振子100的体积和重量,进而提高了天线振子的集成度,实现了天线振子的轻量化,其中馈电线121、馈电网络层122和辐射单元层123无需通过焊接工艺实现连接,在提高天线振子100整体结构可靠性的基础上,简化了天线振子100的制备工艺,降低了天线振子100的制备成本。馈电线121与辐射单元层123之间间隔有支撑结构112,馈电线121与辐射单元层123之间采用耦合馈电时,相比直接馈电方式,本实施例提供的技术方案,馈电线121无需裸露在外,进而避免馈电线121和辐射单元层123之间的馈电过程受到外界环境因素的干扰。
可选的,在上述技术方案的基础上,参见图2,支撑结构112内部还设置有馈电过孔1120,馈电过孔1120分别与馈电线121和辐射单元层123连接,馈电线121将馈电网络层122的电信号直接传递至辐射单元层123。
具体的,参见图2,馈电线121与辐射单元层123通过支撑结构112内部的馈电过孔1120连接,馈电线121与辐射单元层123通过馈电过孔1120实现电连接,馈电线121和馈电网络层122的馈电方式为直接馈电,相比馈电线121和辐射单元层123连接的线路裸露在外的技术方案,将馈电过孔1120设置在支撑结构112内部,可以避免馈电过孔1120受到外力损坏的同时,无需设置焊盘或者其它导电连接层,降低了天线振子100的尺寸,提高集成度,简化了制备工艺,降低了成本。
下面进一步细化支撑结构112的具体结构。图4是本申请实施例提供的又一种天线振子的结构示意图。其中图4a为天线振子100在介质平板111第一表面111a的俯视图。图4b为天线振子100在介质平板111第二表面111b的俯视图。需要说明的是,图4和图1以及图2相比,对馈电网络层122位于介质平板111的第二表面111b的天线振子100结构进行了进一步细化。
在上述技术方案的基础上,参见图3和图4,支撑结构112包括环形墙壁112a、中空区域112b和至少两个馈电线支撑结构112c,中空区域112b位于环形墙壁112a内,馈电线支撑结构112c位于中空区域112b内且与环形墙壁112a连接,馈电线支撑结构112c关于预设对称轴L1对称设置,其中,预设对称轴L1为环形墙壁112a与介质平板111所在平面平行的中线;导电层120包括馈电线121、馈电网络层122和辐射单元层123;辐射单元层123位于支撑结构112远离介质平板111一侧的表面,覆盖部分或全部环形墙壁112a的表面;馈电线121位于馈电线支撑结构112c邻近介质平板111的第二表面111b侧的表面;馈电网络层122 位于介质平板111的第一表面111a或者第二表面111b,且与馈电线121连接。
可选的,馈电线121和馈电网络层122的馈电方式为直接馈电时,馈电线支撑结构112c内部设置有馈电过孔1120,馈电线121将馈电网络层122的电信号直接传递至辐射单元层123时。需要说明的是,馈电过孔1120位于馈电线支撑结构112c内部,本实施例中没有对图3和图4的馈电线支撑结构112c剖面图进行图示,没有示出馈电过孔1120。馈电过孔1120可参见图2所示。具体的,馈电线支撑结构112c内部未设置馈电过孔1120,馈电线121与辐射单元层123之间采用耦合馈电。馈电线支撑结构112c内部设置馈电过孔1120,馈电线121与辐射单元层123之间采用直接馈电。
需要说明的是,图4b中没有将辐射单元层123图示出来。图4示出的天线振子中,馈电网络层122位于所述介质平板111的第二表面111b,馈电线121、馈电网络层122和辐射单元层123无需通过焊接工艺实现连接。
参见图3和图4,馈电线支撑结构112c关于预设对称轴L1对称设置,可以实现天线振子10具有±45°两个垂直方向的极化方向,以实现一种双极性天线振子,提高了天线振子100的交叉极化比。需要说明的是,还可以在馈电线支撑结构112c的极化方向上,设置馈电线支撑结构112c,位于同一极化方向上的馈电线支撑结构112c可以通过跳线来实现连接。
具体的,可以通过调整馈电线支撑结构112c的形状和面积,来调节天线振子100的谐振频率点的数量和以及天线振子100的工作带宽。馈电网络层122可以包括用于功率放大功能电路和/或相位、振幅以及频率调节的功能电路,有助于调节天线振子100发射电磁波信号的功率以及工作带宽。
需要说明的是,包括环形墙壁112a、中空区域112b和至少两个馈电线支撑结构112c的支撑结构112在采用注塑的方式一体成型时,可以调整注塑模具的具体形状,将介质平板111的第二表面111b局部凹陷,来形成支撑结构112。
为了增加天线振子100的工作带宽,本申请实施例还提供了如下技术方案:
在上述技术方案的基础上,馈电线支撑结构112c的截面形状包括干字型、L型以及Y型中的至少一种。
示例性的,本实施例中仅仅示出了截面形状为干字型的馈电线支撑结构112c,但是本申请实施例的天线振子100中,馈电线支撑结构112c的截面形状还可以包括L型或者Y型,或者其它用于增加天线振子100的工作带宽的形状。
为了进一步提高天线振子100的集成度,本申请实施例还提供了如下技术方案:
在上述技术方案的基础上,参见图3和图4,导电层120还包括馈针124,馈针124和馈电网络层122位于介质平板111的同一表面;馈电网络层122与馈针124连接。
具体的,包括馈电线121、馈电网络层122、辐射单元层123和馈针124的导电层120一体成型,无需包括印刷电路板(PCB),以及采用将馈电线、辐射单元以及用于支撑馈电线和辐射单元的支撑结构通过焊接等工艺形成在印刷电路板(PCB)上,以完成天线振子的制作,降低了天线振子100的体积和重量,进而提高了天线振子100的集成度,简化了天线振子100的制备工艺,降低了天线振子100的制备成本。图3示出的天线振子中,馈电网络层122和馈针124位于所述介质平板111的第一表面111a。馈电网络层122和馈电线121位于不同平面,通过导电过孔122a实现连接。图4示出的天线振子中,馈电网络层122和馈针124位于所述介质平板111的第二表面111b。
在本实施中,天线振子100的馈电及辐射过程如下:馈针124用于接收馈电信号之后将馈电信号传输给馈电网络层122,然后馈电网络层122将馈电信号传输给馈电线121,馈电线121与辐射单元层123之间间隔有馈电线支撑结构112c,馈电线121将馈电信号耦合至辐射单元层123,或者通过馈电过孔1120直接传输给辐射单元层123,辐射单元层123将馈电信号对应的电磁波信号发射出去。或者,辐射单元层123接收电磁波信号耦合至馈电线121,或者通过馈电过孔1120直接传输给馈电线121,馈电线121将馈电信号,发送给馈电网络层122,馈电网络层122传输给馈针124。
为了调整馈电网络层122和馈电线121的耦合距离或者馈电过孔1120尺寸,本申请实施例还提供了如下技术方案:
在上述技术方案的基础上,参见图3和图4,馈电线支撑结构112c与介质平板111的第二表面111b间隔预设距离;支撑结构112还包括过渡斜坡结构112e,过渡斜坡结构112e位于馈电线支撑结构112c和环形墙壁112a之间,用于连接馈电线支撑结构112c和环形墙壁112a,馈电线121从馈电线支撑结构112c的表面延伸至过渡斜坡结构112e的表面。
具体的,馈电线121和馈电网络层122的馈电方式为耦合馈电时,馈电线支撑结构112c与介质平板111的第二表面111b间隔预设距离,可以根据馈电线支撑结构112c与介质平板111的第二表面111b间隔预设距离的大小,调节馈电网络层122和馈电线121的耦合距离,进而调整天线振子100的馈电信号和电磁波信号之间的耦合效率,或者,馈电线121和馈电网络层122的馈电方式为直接馈电时,馈电线支撑结构112c与介质平板111的第二表面111b间隔预设距离,可以根据馈电线支撑结构112c与介质平板111的第二表面111b间隔预设距离的大小,调整馈电过孔1120的尺寸,进而调节馈电线121和辐射单元层123之间电信号的传输距离。由于馈电线支撑结构112c与介质平板111的第二表面111b间隔预设距离,过渡斜坡结构112e的设置有助于形成厚度均匀的馈电线121,以保证馈电线121和馈电网络层122之间传输稳定的馈电信号,进而提高天线振子100的接收和发送电磁波信号的稳定性。
为了进一步改善天线振子100的辐射特性,本申请实施例还提供了如下技术方案:
图5是本申请实施例提供的又一种天线振子的结构示意图。其中图5a为天线振子100在介质平板111第一表面111a的俯视图。图5b为天线振子100在介质平板111第二表面111b的俯视图。图5c为图5a中部分结构的示意图。图5d为图5b中部分结构的示意图。需要说明的是,图5示出的为馈电网络层122位于介质平板111的第一表面111a的天线振子100的结构。但是本实施例方案同样适用于馈电网络层122位于介质平板111的第二表面111b的天线振子100的结构。
可选的,在上述技术方案的基础上,辐射单元层123的边缘设置有N个边缘匹配枝节1230,边缘匹配枝节1230朝向远离辐射单元层123中心的方向凸起,N为大于或等于2的偶数;环形墙壁112a设置有N个边缘匹配枝节支撑结构1120a,边缘匹配枝节支撑结构1120a用于支撑边缘匹配枝节1230。
具体的,相比没有设置边缘匹配枝节1230的辐射单元层123,辐射单元层123的边缘形状发生改变,可以增加天线振子100的谐振频点的个数,从而提高了天线振子100的工作带,并且还可以提高天线振子100的交叉极化比的效果。
可选的,在上述技术方案的基础上,参见图5,边缘匹配枝节1230包括偶数个第一边缘匹配枝节1231,第一边缘匹配枝节1231朝向远离辐射单元层123中心的方向凸起,且第一边缘匹配枝节1231关于预设对称轴L1对称设置;边缘匹配枝节支撑结构1120a包括偶数个第一边缘匹配枝节支撑结构1121,第一边缘匹配枝节支撑结构1121用于支撑第一边缘匹配枝节1231。
具体的,第一边缘匹配枝节支撑结构1121用于支撑第一边缘匹配枝节1231,相比没有设置第一边缘匹配枝节1231的辐射单元层123,辐射单元层123的边缘形状发生改变,增加了天线振子100的谐振频点,从而提高了天线振子100的工作带宽。
示例性的,本实施例中示出的第一边缘匹配枝节1231为矩形,但是本申请对于第一边缘匹配枝节1231的形状不限于此,可以根据实际情况进行调整。
为了进一步提高天线振子100的交叉极化比,本申请实施例还提供了如下技术方案:
在上述技术方案的基础上,可选的,参见图5,边缘匹配枝节1230还包括两个第二边缘匹配枝节1232,第二边缘匹配枝节1232朝向远离辐射单元层123中心L1的方向凸起,且第二边缘匹配枝节1232所在的直线平行于预设对称轴L1;边缘匹配枝节支撑结构1120a还包括两个第二边缘匹配枝节支撑结构1122,第二边缘匹配枝节1232从第二边缘匹配枝节支撑结构1122的表面延伸至第二边缘匹配枝节支撑结构1122的部分或者全部侧面,且第二边缘匹配枝节支撑结构1122用于支撑第二边缘匹配枝节1232的侧面与介质平板111的第一表面 111a呈锐角或钝角。
具体的,第二边缘匹配枝节支撑结构1122用于支撑第二边缘匹配枝节1232,第二边缘匹配枝节1232所在的直线平行于预设对称轴L1,可以起到提高天线振子100的交叉极化比的效果。其中第二边缘匹配枝节1232从第二边缘匹配枝节支撑结构1122的表面延伸至第二边缘匹配枝节支撑结构1122的部分或者全部侧面,可以根据实际情况,来调整其中第二边缘匹配枝节1232从第二边缘匹配枝节支撑结构1122的表面延伸至第二边缘匹配枝节支撑结构1122侧面的面积。第二边缘匹配枝节支撑结构1122用于支撑第二边缘匹配枝节1232的侧面与介质平板111的第一表面111a呈锐角或钝角相比直角的结构,便于形成厚度均匀的第二边缘匹配枝节1232。
示例性的,本实施例中示出的第二边缘匹配枝节1232为矩形,但是本申请对于第二边缘匹配枝节1232的形状不限于此,可以根据实际情况进行调整。
为了实现天线振子100的小型化,从而进一步提高天线振子100的集成度,本申请实施例还提供了如下技术方案:
图6是本申请实施例提供的又一种天线振子的结构示意图。其中图6a为天线振子100在介质平板111第一表面111a的俯视图。图6b为天线振子100在介质平板111第二表面111b的俯视图。图6c为图6a中部分结构的示意图。图6d为图6b中部分结构的示意图。需要说明的是,图6示出的为馈电网络层122位于介质平板111的第二表面111b的天线振子100的结构。但是本实施例方案同样适用于馈电网络层122位于介质平板111的第一表面111a的天线振子100的结构。
在上述技术方案的基础上,参见图5和图6,辐射单元层123设置有图案化缝隙。
具体的,辐射单元层123设置有图案化缝隙该可以在不增加辐射单元层123面积的情况下改变辐射单元层123表面的电流路径,实现了天线振子100的小型化,提高了天线振子100的集成度,同时还以改变天线的谐振频率点以及工作带宽。示例性的,图案化缝隙可以通过激光刻蚀将辐射单元层123局部刻蚀得到。
在上述技术方案的基础上,参见图5,辐射单元层123设置有十字交叉缝隙1233。
具体的,设置有十字交叉缝隙1233的辐射单元层123可以在不增加辐射单元层123面积的情况下增加辐射单元层123表面的电流路径,实现了天线振子100的小型化,提高了天线振子100的集成度,同时还以增加天线的谐振频率点,进而增加天线振子100的工作带宽。可选的,十字交叉缝隙1233的第一交叉方向与预设对称轴L1平行,十字交叉缝隙1233的第二交叉方向与第一交叉方向垂直设置,可以起到提高天线振子100的交叉极化比的效果。
在上述技术方案的基础上,参见图6,辐射单元层123的边缘设置有至少一个一字型缝 隙1234。
具体的,设置有至少一个一字型缝隙1234的辐射单元层123可以在不增加辐射单元层123面积的情况下增加辐射单元层123表面的电流路径,实现了天线振子100的小型化,提高了天线振子100的集成度,同时还以增加天线的谐振频率点,进而增加天线振子100的工作带宽。
需要说明的是,一字型缝隙1234的长度可以相同,也可以不同,长度相同的一字型缝隙1234关于预设对称轴L1对称设置。
示例性的,本申请实施例中,辐射单元层123设置的图案化缝隙由矩形缝隙组成,图5中,十字交叉缝隙1233由多个矩形缝隙组成,图6中,每个一字型缝隙1234由一个矩形缝隙组成。但是本申请实施例的图案化缝隙还可以由其它形状的缝隙组成。且本申请实施例中辐射单元层123的形状也可以根据实际情况具体设置,并不局限于本实施例中示出的形状。
为了提高天线振子100的隔离度,本申请实施例还提供了如下技术方案:
在上述技术方案的基础上,参见图5,介质平板111的第一表面111a还设置有至少两个间隔设置的第一方向支撑筋条113,第一方向支撑筋条113之间的区域用于放置支撑结构112,第一方向支撑筋条113的延伸方向与介质基板110的延伸方向相同;导电层120还包括第一隔离层(未示出),第一隔离层位于第一方向支撑筋条113的表面。
具体的,当第一隔离层位于第一方向支撑筋条113的表面,可以避免外界电磁信号对于天线振子100内馈电线121和辐射单元层123之间馈电过程的干扰,增加天线振子100的隔离度,有助于优化天线振子100的辐射指标。
在上述技术方案的基础上,参见图6,介质平板111的第一表面111a还设置有至少一个第二方向支撑筋条114,第一方向支撑筋条113和第二方向支撑筋条114交叉设置,第二方向支撑筋条113用于将第一方向支撑筋条113之间的区域分隔成至少一个隔离区域,支撑结构112位于隔离区域内;导电层120还包括第二隔离层(未示出),第二隔离层位于第二方向支撑筋条114的表面。
具体的,第一隔离层位于第一方向支撑筋条113的表面,第二隔离层位于第二方向支撑筋条114的表面,支撑结构112位于第一方向支撑筋条113和第二方向支撑筋条114交叉分隔开的隔离区域内,可以避免外界电磁信号对于天线振子100内馈电线121和辐射单元层123之间馈电过程的干扰的基础上,进一步避免不同隔离区域内馈电线121和辐射单元层123之间馈电过程的干扰,进一步增加天线振子100的隔离度,有助于优化天线振子100的辐射指标。
在上述技术方案的基础上,参见图6,第一方向支撑筋条113和第二方向支撑筋条114 垂直设置。
具体的,第一方向支撑筋条113和第二方向支撑筋条114垂直设置,可以提高介质基板110的利用率,形成排布整齐的支撑结构112,提高天线振子100内多个辐射单元层123的排布整齐度,进一步增加天线振子100的隔离度,进而有助于优化天线振子100的辐射指标。
在上述技术方案的基础上,第一方向支撑筋条113延伸至介质平板111的第二表面111b。具体的,第一方向支撑筋条113延伸至介质平板111的第二表面111b,以增加介质平板111的第二表面111b天线振子100的隔离度,进而避免外界电磁信号对于天线振子100内馈电线121和辐射单元层123之间馈电过程的干扰,增加天线振子100的隔离度,有助于优化天线振子100的辐射指标。
本申请实施例还提供了一种阵列天线。图7是本申请实施例提供的一种阵列天线的结构示意图。结合图1-图6,并参见图7,该阵列天线包括至少一个上述技术方案中所述的天线振子100;还包括一体成型的反射板200,反射板200位于天线振子100中介质平板111的第二表面111b侧,且与天线振子100中介质平板111的第二表面111b侧的导电层120间隔设置。
示例性的,图7示出了位于反射本200以及呈两行八列的阵列排列的16个天线振子100组成的阵列天线。本申请实施例对于天线振子100的数量以及排列方式不限于此。
本实施例提供的阵列天线包括上述技术方案中至少一个天线振子100,天线振子100包括一体成型的介质基板110以及一体成型的导电层120,完成通过辐射单元层123和馈电线121之间的馈电过程,以及辐射单元层123接收或者发射电磁波过程,该天线振子100无需包括印刷电路板(PCB),以及采用将结构和工艺相互独立的馈电线、辐射单元以及用于支撑馈电线和辐射单元的支撑结构通过焊接等工艺形成在印刷电路板(PCB)上,以完成天线振子的制作,降低了天线振子100的体积和重量,进而提高了天线振子的集成度,实现了天线振子的轻量化,其中馈电线121、馈电网络层122和辐射单元层123无需通过焊接工艺实现连接,在提高天线振子100整体结构可靠性的基础上,简化了天线振子100的制备工艺,降低了天线振子100的制备成本。馈电线121与辐射单元层123之间间隔有支撑结构112,馈电线121与辐射单元层123之间采用耦合馈电时,相比直接馈电方式,本实施例提供的技术方案,馈电线121无需裸露在外,进而避免馈电线121和辐射单元层123之间的馈电过程受到外界环境因素的干扰。或者,馈电线121与辐射单元层123之间采用直接馈电时,馈电线121与辐射单元层123通过支撑结构112内部的馈电过孔1120连接,馈电线121与辐射单元层123通过馈电过孔1120实现电连接,相比馈电线121和辐射单元层123连接的线路裸露在外的技术方案,将馈电过孔1120设置在支撑结构112内部,可以避免馈电过孔1120受到外力 损坏的同时,无需设置焊盘或者其它导电连接层,降低了天线振子100的尺寸,提高集成度,简化了制备工艺,降低了成本。需要说明的是,图7示出的阵列天线中,天线振子100中馈电网络层122位于介质平板111的第二表面111b时,馈电网络层122形成空气微带线结构,空气微带线结构减小了介质损耗,可提高阵列天线的增益。本实施例中的反射板200可以通过型材拉挤、压铸或者钣金等加工工艺形成,至少一个上述技术方案中所述的天线振子100可以通过热熔或铆钉形式固定在一体成型的反射板200上,简化了阵列天线的制备工艺。示例性的,阵列天线可以是5G阵列天线。
图8是本申请实施例提供的另种阵列天线的结构示意图。在上述技术方案的基础上,参见图8,反射板200设置有多个隔离条201,天线振子100在反射板200的投影位于隔离条201在反射板200的投影围成的区域内。
具体的,反射板200设置的多个隔离条201,可以进一步增加天线振子100的隔离度,有助于优化天线振子100的辐射指标。
本领域普通技术人员可以理解,上文中所公开方法中的全部或某些步骤、系统、设备中的功能模块/单元可以被实施为软件、固件、硬件及其适当的组合。
在硬件实施方式中,在以上描述中提及的功能模块/单元之间的划分不一定对应于物理组件的划分;例如,一个物理组件可以具有多个功能,或者一个功能或步骤可以由若干物理组件合作执行。某些物理组件或所有物理组件可以被实施为由处理器,如中央处理器、数字信号处理器或微处理器执行的软件,或者被实施为硬件,或者被实施为集成电路,如专用集成电路。这样的软件可以分布在计算机可读介质上,计算机可读介质可以包括计算机存储介质(或非暂时性介质)和通信介质(或暂时性介质)。如本领域普通技术人员公知的,术语计算机存储介质包括在用于存储信息(诸如计算机可读指令、数据结构、程序模块或其他数据)的任何方法或技术中实施的易失性和非易失性、可移除和不可移除介质。计算机存储介质包括但不限于RAM、ROM、EEPROM、闪存或其他存储器技术、CD-ROM、数字多功能盘(DVD)或其他光盘存储、磁盒、磁带、磁盘存储或其他磁存储装置、或者可以用于存储期望的信息并且可以被计算机访问的任何其他的介质。此外,本领域普通技术人员公知的是,通信介质通常包含计算机可读指令、数据结构、程序模块或者诸如载波或其他传输机制之类的调制数据信号中的其他数据,并且可包括任何信息递送介质。
以上参照附图说明了本申请的优选实施例,并非因此局限本申请的权利范围。本领域技术人员不脱离本申请的范围和实质内所作的任何修改、等同替换和改进,均应在本申请的权利范围之内。

Claims (16)

  1. 一种天线振子,包括一体成型的介质基板以及一体成型的导电层,其中,
    所述介质基板包括介质平板和至少一个支撑结构;所述支撑结构位于所述介质平板的第一表面;所述导电层包括馈电线、馈电网络层和辐射单元层,所述辐射单元层位于所述支撑结构的第一表面,所述馈电线位于所述支撑结构与所述第一表面相对的第二表面,所述馈电网络层位于所述介质平板的第一表面或者与所述第一表面相对的第二表面,且与所述馈电线连接,所述馈电线将所述馈电网络层的电信号耦合至所述辐射单元层。
  2. 根据权利要求1所述的天线振子,其中,所述支撑结构内部还设置有馈电过孔,所述馈电过孔分别与所述馈电线和所述辐射单元层连接,所述馈电线将所述馈电网络层的电信号直接传递至所述辐射单元层。
  3. 根据权利要求1或2所述的天线振子,其中,所述支撑结构包括环形墙壁、中空区域和至少两个馈电线支撑结构,所述中空区域位于所述环形墙壁内,所述馈电线支撑结构位于所述中空区域内且与所述环形墙壁连接,所述馈电线支撑结构关于预设对称轴对称设置,其中,所述预设对称轴为所述环形墙壁的中线,所述中线与所述介质平板所在平面平行;以及
    所述辐射单元层位于所述支撑结构远离所述介质平板一侧的表面,覆盖部分或全部所述环形墙壁的表面;所述馈电线位于所述馈电线支撑结构邻近所述介质平板的第二表面侧的表面。
  4. 根据权利要求3所述的天线振子,其中,所述馈电线支撑结构的截面形状包括干字型、L型以及Y型中的至少一种。
  5. 根据权利要求3所述的天线振子,其中,所述馈电线支撑结构与所述介质平板的第二表面间隔预设距离;以及
    所述支撑结构还包括过渡斜坡结构,所述过渡斜坡结构位于所述馈电线支撑结构和所述环形墙壁之间,用于连接所述馈电线支撑结构和所述环形墙壁,所述馈电线从所述馈电线支撑结构的表面延伸至所述过渡斜坡结构的表面。
  6. 根据权利要求3所述的天线振子,其中,所述辐射单元层的边缘设置有N个边缘匹配枝节,所述边缘匹配枝节朝向远离所述辐射单元层中心的方向凸起,所述N为大于或等于2的偶数;以及
    所述环形墙壁设置有N个边缘匹配枝节支撑结构,所述边缘匹配枝节支撑结构用于支撑所述边缘匹配枝节。
  7. 根据权利要求3所述的天线振子,其中,所述辐射单元层设置有图案化缝隙。
  8. 根据权利要求7所述的天线振子,其中,所述辐射单元层设置有十字交叉缝隙。
  9. 根据权利要求7所述的天线振子,其中,所述辐射单元层的边缘设置有至少一个一字型缝隙。
  10. 根据权利要求1或2所述的天线振子,其中,所述导电层还包括馈针,所述馈针和所述馈电网络层位于所述介质平板的同一表面;所述馈电网络层与所述馈针连接。
  11. 根据权利要求1或2所述的天线振子,其中,所述介质平板的第一表面还设置有至少两个间隔设置的第一方向支撑筋条,所述第一方向支撑筋条之间的区域用于放置所述支撑结构,所述第一方向支撑筋条的延伸方向与所述介质基板的延伸方向相同;以及
    所述导电层还包括第一隔离层,所述第一隔离层位于所述第一方向支撑筋条的表面。
  12. 根据权利要求11所述的天线振子,其中,所述介质平板的第一表面还设置有至少一个第二方向支撑筋条,所述第一方向支撑筋条和所述第二方向支撑筋条交叉设置,所述第二方向支撑筋条用于将所述第一方向支撑筋条之间的区域分隔成至少一个隔离区域,所述支撑结构位于所述隔离区域内;以及
    所述导电层还包括第二隔离层,所述第二隔离层位于所述第二方向支撑筋条的表面。
  13. 根据权利要求12所述的天线振子,其中,所述第一方向支撑筋条和所述第二方向支撑筋条垂直设置。
  14. 根据权利要求11所述的天线振子,其中,所述第一方向支撑筋条延伸至所述介质平板的第二表面。
  15. 一种阵列天线,包括至少一个权利要求1-14任一所述的天线振子,以及一体化成型的反射板,其中,所述反射板位于所述天线振子中介质平板的第二表面侧,且与所述介质平板的第二表面侧的导电层间隔设置。
  16. 根据权利要求15所述的阵列天线,其中,所述反射板设置有多个隔离条,所述天线振子在所述反射板的投影位于所述隔离条在所述反射板的投影围成的区域内。
PCT/CN2022/070576 2021-03-10 2022-01-06 天线振子以及阵列天线 WO2022188536A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110262173.0 2021-03-10
CN202110262173.0A CN114447590A (zh) 2021-03-10 2021-03-10 天线振子以及阵列天线

Publications (1)

Publication Number Publication Date
WO2022188536A1 true WO2022188536A1 (zh) 2022-09-15

Family

ID=81362204

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/070576 WO2022188536A1 (zh) 2021-03-10 2022-01-06 天线振子以及阵列天线

Country Status (2)

Country Link
CN (1) CN114447590A (zh)
WO (1) WO2022188536A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190089069A1 (en) * 2017-09-21 2019-03-21 Peraso Technologies Inc. Broadband phased array antenna system with hybrid radiating elements
CN110190382A (zh) * 2019-06-11 2019-08-30 武汉虹信通信技术有限责任公司 低剖面辐射单元及基站天线
CN210468111U (zh) * 2019-10-14 2020-05-05 京信通信技术(广州)有限公司 天线振子及阵列天线
CN111463561A (zh) * 2019-12-26 2020-07-28 瑞声科技(新加坡)有限公司 阵列天线和基站
CN211126057U (zh) * 2020-02-28 2020-07-28 盐城东山通信技术有限公司 一种天线振子组件
CN112072301A (zh) * 2020-08-10 2020-12-11 超讯通信股份有限公司 双极化低剖面宽带5g基站天线
CN112467368A (zh) * 2020-11-10 2021-03-09 武汉虹信科技发展有限责任公司 振子功分模块及Massive MIMO天线

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114447598A (zh) * 2020-11-06 2022-05-06 中兴通讯股份有限公司 辐射单元、天线阵列、天线装置及基站

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190089069A1 (en) * 2017-09-21 2019-03-21 Peraso Technologies Inc. Broadband phased array antenna system with hybrid radiating elements
CN110190382A (zh) * 2019-06-11 2019-08-30 武汉虹信通信技术有限责任公司 低剖面辐射单元及基站天线
CN210468111U (zh) * 2019-10-14 2020-05-05 京信通信技术(广州)有限公司 天线振子及阵列天线
CN111463561A (zh) * 2019-12-26 2020-07-28 瑞声科技(新加坡)有限公司 阵列天线和基站
CN211126057U (zh) * 2020-02-28 2020-07-28 盐城东山通信技术有限公司 一种天线振子组件
CN112072301A (zh) * 2020-08-10 2020-12-11 超讯通信股份有限公司 双极化低剖面宽带5g基站天线
CN112467368A (zh) * 2020-11-10 2021-03-09 武汉虹信科技发展有限责任公司 振子功分模块及Massive MIMO天线

Also Published As

Publication number Publication date
CN114447590A (zh) 2022-05-06

Similar Documents

Publication Publication Date Title
US11735807B2 (en) Antenna module and electronic device
US10431892B2 (en) Antenna-in-package structures with broadside and end-fire radiations
US6480167B2 (en) Flat panel array antenna
KR100542829B1 (ko) 송/수신용 고이득 광대역 마이크로스트립 패치 안테나 및이를 배열한 배열 안테나
KR101744886B1 (ko) 마이크로 스트립 패치 안테나
US20210021048A1 (en) Single and dual polarized dual-resonant cavity backed slot antenna (d-cbsa) elements
KR200467798Y1 (ko) 기판 집적형 도파관 급전 대척 선형 테이퍼 슬롯 안테나 및 그 배열 안테나
KR20140007934A (ko) 슬롯 커플 방식 방사체 및 이를 포함하는 안테나
CN112803151B (zh) 磁电偶极子天线
WO2022042231A1 (zh) 天线单元、天线阵列及电子设备
CN115051142B (zh) 一种多频基站天线单元及通信设备
CN111052508A (zh) 垂直端射天线
JP2017092644A (ja) パッチアンテナ
CN113659325B (zh) 集成基片间隙波导阵列天线
CN112701450B (zh) 一种多模宽带双极化基站天线
WO2022188536A1 (zh) 天线振子以及阵列天线
CN109728416B (zh) 一种辐射单元和多频基站天线
CN213520315U (zh) 一种c波段宽频二元阵天线
JP2002290144A (ja) 平面アレーアンテナ
CN110600869A (zh) 一种微带天线及移动终端
JPH02214303A (ja) 平面アンテナ
JPH06125214A (ja) 平面アンテナ
JP7303859B2 (ja) 広帯域直線偏波アンテナ構造
CN220233463U (zh) 相控阵天线及通信设备
CN214313520U (zh) 天线、振子及辐射结构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22766063

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE