WO2022188398A1 - 用于控制空调器的方法及装置、空调器 - Google Patents

用于控制空调器的方法及装置、空调器 Download PDF

Info

Publication number
WO2022188398A1
WO2022188398A1 PCT/CN2021/121626 CN2021121626W WO2022188398A1 WO 2022188398 A1 WO2022188398 A1 WO 2022188398A1 CN 2021121626 W CN2021121626 W CN 2021121626W WO 2022188398 A1 WO2022188398 A1 WO 2022188398A1
Authority
WO
WIPO (PCT)
Prior art keywords
air conditioner
controlling
refrigerant circulation
preset
refrigerant
Prior art date
Application number
PCT/CN2021/121626
Other languages
English (en)
French (fr)
Inventor
颜浩
魏向阳
杨林
申伟杰
Original Assignee
青岛海尔空调器有限总公司
青岛海尔空调电子有限公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔空调器有限总公司, 青岛海尔空调电子有限公司, 海尔智家股份有限公司 filed Critical 青岛海尔空调器有限总公司
Publication of WO2022188398A1 publication Critical patent/WO2022188398A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/32Responding to malfunctions or emergencies
    • F24F11/36Responding to malfunctions or emergencies to leakage of heat-exchange fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/61Control or safety arrangements characterised by user interfaces or communication using timers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present application relates to the technical field of intelligent air conditioners, for example, to a method and device for controlling an air conditioner, and an air conditioner.
  • the air conditioner has a closed circulation system in which refrigerant flows.
  • the circulation system may cause refrigerant leakage for some reason.
  • the exhaust temperature of the compressor in addition to the poor cooling/heating effect of the air conditioner and the low energy efficiency of the air conditioner, the exhaust temperature of the compressor also increases. Moreover, the discharge temperature of the compressor tends to increase gradually over time.
  • some solutions can judge whether the refrigerant of the air conditioner leaks, and directly stop the air conditioner after judging that the refrigerant leaks.
  • the air conditioner misjudges the refrigerant leakage, which causes the air conditioner to stop for no reason and affects the user experience.
  • Embodiments of the present disclosure provide a method and device for controlling an air conditioner, and an air conditioner, so as to solve the technical problem that the air conditioner misjudges the refrigerant leakage, causing the air conditioner to shut down for no reason and affecting the user experience.
  • the method includes:
  • the apparatus includes a processor and a memory storing program instructions, wherein the processor is configured to, when executing the program instructions, execute the method for controlling an air conditioner as provided in the preceding embodiments. method of the device.
  • the air conditioner includes an apparatus for controlling the air conditioner as provided in the previous embodiments.
  • the method and device for controlling an air conditioner, and the air conditioner provided by the embodiments of the present disclosure can achieve the following technical effects: repeatedly executing the acquisition of the refrigerant circulation state of the air conditioner by a preset number of times, and when the refrigerant circulation state is abnormal, The compressor is controlled to stop and the indoor fan continues to run for a first preset period of time. If the air conditioner still has abnormal refrigerant circulation, it is determined that the air conditioner has refrigerant leakage. In this way, on the one hand, damage to the compressor can be avoided due to overheating. On the other hand, by repeating the process for a preset number of times, the misjudgment rate of refrigerant leakage can be reduced, and it can be more accurately determined whether the air conditioner has refrigerant leakage.
  • FIG. 1 is a schematic diagram of a method for controlling an air conditioner provided by an embodiment of the present disclosure
  • FIG. 2 is a schematic diagram of another method for controlling an air conditioner provided by an embodiment of the present disclosure
  • FIG. 3 is a schematic diagram of a method for controlling an air conditioner provided by an embodiment of the present disclosure
  • FIG. 4 is a schematic diagram of another method for controlling an air conditioner provided by an embodiment of the present disclosure.
  • FIG. 5 is a schematic diagram of an apparatus for controlling an air conditioner provided by an embodiment of the present disclosure.
  • A/B means: A or B.
  • a and/or B means: A or B, or, A and B three relationships.
  • an embodiment of the present disclosure provides a method for controlling an air conditioner, including:
  • the embodiments of the present disclosure can provide a method for obtaining the refrigerant circulation state multiple times and controlling the operation of the related components of the air conditioner, so as to avoid misjudgment of the refrigerant leakage of the air conditioner.
  • the air conditioner can be controlled to operate in the air conditioning mode and the refrigerant circulation state of the air conditioner can be obtained.
  • the compressor of the air conditioner is controlled to stop and the indoor fan keeps running to reach the first Preset duration; after repeating the above operations for a preset number of times, if the air conditioner still has abnormal refrigerant circulation, it is determined that the air conditioner has refrigerant leakage.
  • the embodiment of the present disclosure uses a preset number of times to repeatedly execute the acquisition of the refrigerant circulation state of the air conditioner, and when the refrigerant circulation state is abnormal in the refrigerant cycle, the compressor is controlled to stop and the indoor fan continues to operate for a first preset period of time. If the air conditioner If there is still abnormal refrigerant circulation, it is determined that the air conditioner has refrigerant leakage. In this way, on the one hand, damage to the compressor can be avoided due to overheating. On the other hand, by repeating the process for a preset number of times, the misjudgment rate of refrigerant leakage can be reduced, and it can be more accurately determined whether the air conditioner has refrigerant leakage. In this way, unnecessary shutdown of the air conditioner can be avoided, and user experience can be avoided.
  • the refrigerant circulation is abnormal, for example, the refrigerant flow in the refrigerant pipeline is too large or too small.
  • the cause of the abnormal refrigerant circulation may be a blockage of a local pipeline, a leakage of the refrigerant pipeline, or other conditions. Some minor blockages can be dredged without the need to shut down the air conditioner, which is not a case of refrigerant leakage. If it is identified as refrigerant leakage and the air conditioner is controlled to shut down, it will not only affect the user experience, but also waste unnecessary manpower in the future. material to repair.
  • the compressor In the event of refrigerant leakage, the compressor will be overheated, and the compressor will be controlled to stop, which can avoid damage caused by the overheated operation of the compressor and protect the compressor.
  • Controlling the indoor fan to keep running for the first preset period of time can restore the internal temperature of the air conditioner to the indoor temperature, so as to ensure that the initial state of the refrigerant cycle remains the same each time the refrigerant cycle state is obtained, preventing the The operation makes the internal temperature and the initial state of the refrigerant cycle inconsistent, resulting in misjudgment and increasing the accuracy of each detection.
  • the refrigerant circulation state of the air conditioner can be determined by detecting the temperature of the inner coil. If the temperature of the inner coil changes too little within a certain period of time during temperature control after the air conditioner is powered on, it indicates that the refrigerant circulation is abnormal.
  • the indoor fan is controlled to keep running for the first preset time, so that the temperature of the inner coil can be restored to the indoor temperature, so as to ensure that each time the temperature of the inner coil is obtained, the initial temperature of the inner coil can be guaranteed.
  • the temperature is kept the same to prevent misjudgment caused by the inconsistent reduction of the initial temperature of the inner coil due to the change of the temperature of the inner coil caused by the operation of the air conditioner during the last inspection, and to increase the accuracy of each inspection.
  • obtaining the refrigerant circulation state of the air conditioner is performed when the air conditioner is operating in the air conditioning mode. For example, when the air conditioner is operating cooling/heating, the refrigerant is circulating, thus obtaining the refrigerant circulation state.
  • the first preset duration may be 8 minutes, 9 minutes, 10 minutes, or 12 minutes, or the like.
  • the first preset duration is 10 minutes, and when the refrigerant circulation state of the air conditioner is abnormal, the compressor of the air conditioner is controlled to stop and the indoor fan keeps running for 10 minutes.
  • a controller connected to the compressor and the indoor fan may be arranged to control the compressor to stop and the indoor fan to keep running for a first preset time period.
  • a timer circuit may be set in the air conditioner, the timer circuit is connected to the indoor fan, and the running time of the indoor fan is detected by the timer circuit, so that the controller can control the indoor fan to keep running for a first preset time.
  • the “above operation” refers to obtaining the refrigerant circulation state of the air conditioner; when the refrigerant circulation state of the air conditioner is abnormal, the compressor of the air conditioner is controlled to stop and the indoor fan keeps running for a first preset time.
  • This embodiment of the present disclosure repeats the above operations for a preset number of times, and if the air conditioner still has abnormal refrigerant circulation, it can be determined that the air conditioner has refrigerant leakage, which can fully confirm that the air conditioner does indeed have refrigerant leakage.
  • the abnormal refrigerant circulation may not be caused by the leakage of refrigerant. If it is only a minor blockage of the pipeline, after controlling the compressor to stop and restart, the blockage may have been flushed out, and the abnormal refrigerant circulation fault has been eliminated. Shutdown; if there is indeed a refrigerant leakage, then by repeating the preset times, it can be fully confirmed that the abnormality of the refrigerant circulation is caused by the refrigerant leakage, and the machine will shut down.
  • the preset number of times is 2 times. In this way, after repeatedly executing the acquisition of the refrigerant circulation state and controlling the corresponding components to operate twice, if the air conditioner still has a refrigerant circulation abnormality, it is determined that the air conditioner has refrigerant leakage.
  • the method further includes: controlling the outdoor unit of the air conditioner to give a warning. Notify users of abnormal refrigerant circulation through warnings.
  • the warning can be given by controlling the signal light of the outdoor unit of the air conditioner to flash.
  • the signal light controlling the outdoor unit of the air conditioner flashes 28 times.
  • the method further includes: controlling a display panel of the air conditioner to display an abnormal refrigerant circulation failure.
  • the display panel of the air conditioner informs the user that the refrigerant circulation of the air conditioner is abnormal.
  • the abnormal refrigerant circulation failure corresponds to the leakage of the refrigerant.
  • "abnormal refrigerant circulation failure" can be used to describe the failure.
  • obtaining the refrigerant circulation state of the air conditioner includes:
  • the refrigerant flow rate can reflect the refrigerant circulation state of the air conditioner.
  • the refrigerant circulation When the refrigerant circulation is normal, it corresponds to the normal range value of the refrigerant flow rate, and the normal range value is used as the preset flow rate range.
  • the detected refrigerant flow rate exceeds the preset flow rate range , indicating that the refrigerant flow is abnormal, and the air conditioner has abnormal refrigerant circulation. It is more appropriate to use the refrigerant flow to measure the refrigerant circulation state.
  • the refrigerant circulation state of the air conditioner may be acquired by arranging a flow sensor on the refrigerant pipeline of the air conditioner.
  • the preset flow range can be set according to the existing air conditioner refrigerant flow.
  • the preset flow range can be taken in combination with the normal range of the refrigerant flow of the air conditioner itself, and the boundary value of the preset flow range can be determined within the range to meet the above requirements.
  • controlling the air conditioner to operate the air conditioning mode includes controlling the indoor fan of the air conditioner to operate the air conditioning mode at a high wind speed, a medium wind speed, or a low wind speed. Control the indoor fan to run the air conditioning mode at high wind speed, medium wind speed or low wind speed to detect the refrigerant circulation state of the detector.
  • controlling the indoor fan of the air conditioner to operate an air conditioning mode at a high wind speed, a medium wind speed, or a low wind speed includes:
  • the indoor fan of the air conditioner is controlled to run at a high wind speed
  • the indoor fan of the air conditioner is controlled to operate at a medium wind speed or a low wind speed.
  • the air conditioner When running the air conditioning mode for the first time, the air conditioner can use high wind speed for air conditioning, in order to expect the internal state of the air conditioner to produce large fluctuations. If there is abnormal refrigerant circulation, the detection result is more obvious. For example, if the air conditioner performs air conditioning at a high wind speed, the temperature of the inner coil should drop rapidly, resulting in a large temperature difference with the outdoor temperature. If it is detected that the temperature change of the inner coil is too small, it can be more accurately determined that there is an abnormal refrigerant circulation.
  • the indoor fan of the air conditioner is controlled to operate at a medium or low wind speed, including:
  • the indoor fan that controls the air conditioner runs at a medium wind speed
  • the indoor fan that controls the air conditioner operates at a low wind speed.
  • the second indoor fan runs at a medium wind speed
  • the third indoor fan runs at a low wind speed.
  • the air conditioning mode is operated at low wind speed, and the internal state of the air conditioner fluctuates less. If it can still be determined that there is abnormal refrigerant circulation in this state, the determination of refrigerant leakage is more accurate.
  • the embodiments of the present disclosure can improve detection accuracy by performing detection under various air volumes, and prevent misjudgment.
  • different air conditioners may correspond to different wind speed gears.
  • the range of high wind speed, medium wind speed and low wind speed can be determined according to the value range of the air conditioner's own wind speed gear. Determine the specific values of high wind speed, medium wind speed and low wind speed within the range of high wind speed, medium wind speed and low wind speed, and make them meet the above requirements.
  • keeping the indoor fan running includes keeping the indoor fan running at a low wind speed or a medium wind speed.
  • the embodiment of the present disclosure can restore the internal temperature of the air conditioner to the indoor temperature by controlling the indoor fan to operate at a low wind speed or a medium wind speed, ensuring that the initial state of the refrigerant cycle is consistent each time the refrigerant cycle state is obtained, and increasing the accuracy of each detection. sex. Keeping the indoor fan running at a low or medium speed can avoid excessive energy consumption in this process.
  • the method further includes: controlling the compressor to stop, and the indoor fan keeps running for a second preset period of time and then stops.
  • the compressor is controlled to stop to prevent the compressor from being overheated and damaged, and the indoor fan is controlled to keep running for a second preset period of time and then stop, so that the interior of the air conditioner can be restored to the indoor temperature.
  • the second preset duration may be 30s, 35s, 40s, 45s, or the like.
  • the second preset duration is 30s.
  • the compressor is controlled to stop, and the indoor fan keeps running for a second preset period of time and then stops, and the display panel of the air conditioner is controlled to display abnormal refrigerant circulation failure.
  • the method for controlling an air conditioner includes:
  • the compressor is controlled to stop, and the indoor fan keeps running for a second preset time period and then stops.
  • the air conditioner has refrigerant leakage, and the compressor can be protected to prevent the compressor from being overheated and damaged.
  • the second preset duration is shorter than the first preset duration. Since it has been determined that refrigerant leakage has occurred, the indoor fan can be kept running for a second preset period of time and then stopped, which is less than the first preset period of time.
  • the method before acquiring the refrigerant circulation state of the air conditioner, the method further includes:
  • the program for obtaining the refrigerant circulation state of the air conditioner can be started, which can effectively monitor the refrigerant circulation state and detect refrigerant leakage in time. If the air conditioner is powered on for the first time, the possibility of refrigerant leakage is greater than that when it is not powered on for the first time. At this time, the refrigerant circulation status should be obtained to avoid the air conditioner running under the condition of refrigerant leakage and to avoid burning the compressor.
  • the air conditioner is shut down for more than the third preset time period, the possibility of refrigerant leakage is also high. At this time, the refrigerant circulation status should be obtained, and the refrigerant circulation should be monitored in time to avoid the air conditioner running in the case of refrigerant leakage. .
  • the third preset duration may be 1h, 1.5h, 2h, or the like.
  • the third preset duration is 1h.
  • the third preset duration is greater than the first preset duration. If the third preset time period is longer than the first preset time period, it indicates that the air conditioner has been shut down for a long time, and refrigerant leakage detection should be carried out. run under the circumstances.
  • obtaining the refrigerant circulation state of the air conditioner includes:
  • Embodiments of the present disclosure may provide a method for controlling an air conditioner, so as to obtain a refrigerant circulation state of the air conditioner.
  • the operating frequency of the compressor of the air conditioner and the variation range of the temperature of the inner coil can be obtained within a predetermined time; when the operating frequency of the compressor is greater than or equal to the preset frequency, and the variation range is less than or equal to the preset range, determine The air conditioner has abnormal refrigerant circulation.
  • the embodiment of the present disclosure ensures that the refrigerant circulation state of the air conditioner can be obtained relatively accurately through the temperature change range of the inner coil when the compressor is running normally.
  • the operating frequency of the compressor can reflect the operating state of the compressor. By obtaining the operating frequency of the compressor, it can be known whether the compressor is operating normally.
  • the variation range of the inner coil temperature can reflect the refrigerant circulation state. By obtaining the variation range of the inner coil temperature, it is possible to know whether the refrigerant circulation state is abnormal.
  • a vibration sensor connected to the compressor may be provided to detect the operating frequency of the compressor.
  • a temperature sensor may be provided in the inner coil to detect the temperature of the inner coil.
  • the preset amplitude is 1.5°C. If the variation of the inner coil temperature is less than or equal to 1.5°C, it is considered that the refrigerant circulation is abnormal.
  • the preset frequency is greater than or equal to 40 Hz, or greater than or equal to 50 Hz.
  • the operating frequency of the compressor When the operating frequency of the compressor is greater than or equal to the preset frequency, and the variation range is less than or equal to the preset range, it indicates that the air conditioner has abnormal refrigerant circulation. Because, when the operating frequency of the compressor is greater than or equal to the preset frequency, it indicates that the compressor is operating normally, but the variation range of the inner coil temperature is too small, indicating that the refrigerant circulation is abnormal.
  • the preset frequency when the outdoor temperature belongs to the first interval, the preset frequency is the first frequency; when the outdoor temperature belongs to the second interval, the preset frequency is the second frequency; the maximum value of the second interval is less than the minimum value of the first interval, and the second frequency is less than the first frequency.
  • an interval representing the size of the outdoor temperature may be pre-divided, for example, divided into two intervals, wherein the maximum value of the second interval is smaller than the minimum value of the first interval. If the outdoor temperature belongs to the first interval, it means that the outdoor temperature is high. If the outdoor temperature belongs to the second zone, it means that the outdoor temperature is moderate.
  • the preset frequency of the compressor is set as the first frequency and the second frequency.
  • the preset frequency is the first frequency
  • the preset frequency is the second frequency
  • the maximum value of the second zone is less than the minimum value of the first zone, the second frequency less than the first frequency.
  • the method for controlling an air conditioner includes:
  • Embodiments of the present disclosure also provide an apparatus for controlling an air conditioner, comprising a processor and a memory storing program instructions, the processor is configured to execute the method for controlling an air conditioner provided in any of the foregoing embodiments when executing the program instructions.
  • a method of controlling an air conditioner comprising a processor and a memory storing program instructions, the processor is configured to execute the method for controlling an air conditioner provided in any of the foregoing embodiments when executing the program instructions.
  • the apparatus of the embodiment of the present disclosure can control the air conditioner by executing the aforementioned method for controlling an air conditioner by a processor.
  • damage caused by overheating of the compressor can be avoided, and on the other hand, by repeating the process for a preset number of times, Reduce the misjudgment rate of refrigerant leakage, more accurately determine whether there is refrigerant leakage in the air conditioner, avoid unnecessary shutdown of the air conditioner, and avoid affecting the user experience.
  • an embodiment of the present disclosure provides an apparatus for controlling an air conditioner, including a processor (processor) 100 and a memory (memory) 101 .
  • the apparatus may further include a communication interface (Communication Interface) 102 and a bus 103 .
  • the processor 100 , the communication interface 102 , and the memory 101 can communicate with each other through the bus 103 .
  • Communication interface 102 may be used for information transfer.
  • the processor 100 may invoke the logic instructions in the memory 101 to execute the method for controlling an air conditioner of the above-described embodiments.
  • logic instructions in the memory 101 can be implemented in the form of software functional units and can be stored in a computer-readable storage medium when sold or used as an independent product.
  • the memory 101 can be used to store software programs and computer-executable programs, such as program instructions/modules corresponding to the methods in the embodiments of the present disclosure.
  • the processor 100 executes the program instructions/modules stored in the memory 101 to execute functional applications and data processing, that is, to implement the method for controlling the air conditioner in the above embodiments.
  • the memory 101 may include a storage program area and a storage data area, wherein the storage program area may store an operating system, an application program required for at least one function; the storage data area may store data created according to the use of the terminal device, and the like.
  • the memory 101 may include high-speed random access memory, and may also include non-volatile memory.
  • Embodiments of the present disclosure also provide an air conditioner, including the device for controlling the air conditioner provided in the foregoing embodiments.
  • the device in the air conditioner of the embodiment of the present disclosure By setting the device in the air conditioner of the embodiment of the present disclosure, under the control of the device, on the one hand, damage caused by overheating of the compressor can be avoided, and on the other hand, by repeating the process for a preset number of times, errors in the leakage of refrigerant can be reduced.
  • the judgment rate can more accurately judge whether the air conditioner has refrigerant leakage, avoid unnecessary shutdown of the air conditioner, and avoid affecting the user experience.
  • Embodiments of the present disclosure provide a computer-readable storage medium storing computer-executable instructions, where the computer-executable instructions are configured to execute the above method for controlling an air conditioner.
  • An embodiment of the present disclosure provides a computer program product, where the computer program product includes a computer program stored on a computer-readable storage medium, and the computer program includes program instructions that, when executed by a computer, cause all The computer executes the above-described method for controlling an air conditioner.
  • the above-mentioned computer-readable storage medium may be a transient computer-readable storage medium, and may also be a non-transitory computer-readable storage medium.
  • the technical solutions of the embodiments of the present disclosure may be embodied in the form of software products, and the computer software products are stored in a storage medium and include one or more instructions to enable a computer device (which may be a personal computer, a server, or a network equipment, etc.) to execute all or part of the steps of the methods described in the embodiments of the present disclosure.
  • the aforementioned storage medium can be a non-transitory storage medium, including: U disk, removable hard disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), magnetic disk or optical disk, etc.
  • the term “and/or” as used in this application is meant to include any and all possible combinations of one or more of the associated listings.
  • the term “comprise” and its variations “comprises” and/or including and/or the like refer to stated features, integers, steps, operations, elements, and/or The presence of a component does not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components and/or groupings of these.
  • an element qualified by the phrase “comprising a" does not preclude the presence of additional identical elements in the process, method, or device that includes the element.
  • each embodiment may focus on the differences from other embodiments, and the same and similar parts between the various embodiments may refer to each other.
  • the methods, products, etc. disclosed in the embodiments if they correspond to the method sections disclosed in the embodiments, reference may be made to the descriptions of the method sections for relevant parts.
  • the disclosed methods and products may be implemented in other ways.
  • the apparatus embodiments described above are only illustrative.
  • the division of the units may only be a logical function division.
  • there may be other division methods for example, multiple units or components may be combined Either it can be integrated into another system, or some features can be omitted, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical, mechanical or other forms.
  • each functional unit in the embodiment of the present disclosure may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • each block in the flowchart or block diagrams may represent a module, segment, or portion of code that contains one or more functions for implementing the specified logical function(s) executable instructions.
  • the functions noted in the blocks may occur out of the order noted in the figures. For example, two blocks in succession may, in fact, be executed substantially concurrently, or the blocks may sometimes be executed in the reverse order, depending upon the functionality involved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Human Computer Interaction (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

一种用于控制空调器的方法,包括:控制空调器运行空气调节模式并获取空调器的冷媒循环状态;在空调器的冷媒循环状态为冷媒循环异常的情况下,控制空调器的压缩机停机且室内风机保持运转达到第一预设时长;重复以上操作预设次数后,在空调器仍然存在冷媒循环异常的情况下,确定空调器发生冷媒泄漏。一方面能够避免压缩机过热造成损坏,另一方面通过重复执行该过程达到预设次数,能够降低对冷媒泄漏的误判率,较为准确地判断出空调器是否出现了冷媒泄漏。还公开一种用于控制空调器的装置及空调器。

Description

用于控制空调器的方法及装置、空调器
本申请基于申请号为202110271641.0、申请日为2021年3月12日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请涉及智能空调技术领域,例如涉及一种用于控制空调器的方法及装置、空调器。
背景技术
空调器具有密闭的循环系统,循环系统内流动着冷媒。循环系统可能在某种原因下导致冷媒泄露。当冷媒发生泄漏后,除了造成空调器制冷/制热效果差,空调器能效低下以外,压缩机的排气温度也升高。并且,随着时间推移,压缩机的排气温度有逐步升高的趋势。
目前,有些方案能够判断空调器的冷媒是否发生泄漏,并在判断冷媒发生泄漏后直接将空调器停机。
在实现本公开实施例的过程中,发现相关技术中至少存在如下问题:空调器对冷媒泄漏的情况存在误判,导致空调器无故停机,影响用户使用体验。
发明内容
为了对披露的实施例的一些方面有基本的理解,下面给出了简单的概括。所述概括不是泛泛评述,也不是要确定关键/重要组成元素或描绘这些实施例的保护范围,而是作为后面的详细说明的序言。
本公开实施例提供了一种用于控制空调器的方法及装置、空调器,以解决空调器对冷媒泄漏的情况存在误判,导致空调器无故停机,影响用户使用体验的技术问题。
在一些实施例中,所述方法包括:
控制所述空调器运行空气调节模式并获取所述空调器的冷媒循环状态;
在所述空调器的冷媒循环状态为冷媒循环异常的情况下,控制所述空调器的压缩机停机且室内风机保持运转达到第一预设时长;
重复以上操作预设次数后,在所述空调器仍然存在冷媒循环异常的情况下,确定所述空调器发生冷媒泄漏。
在一些实施例中,所述装置包括处理器和存储有程序指令的存储器,其特征在于,所述处理器被配置为在执行所述程序指令时,执行如前述实施例提供的用于控制空调器的方法。
在一些实施例中,空调器包括如前述实施例提供的用于控制空调器的装置。
本公开实施例提供的用于控制空调器的方法及装置、空调器,可以实现以下技术效果:采用预设次数重复执行空调器冷媒循环状态的获取,以及在冷媒循环状态为异常的情况下,控制压缩机停机以及内风机持续运转达第一预设时长,若空调器仍然存在冷媒循环异常的现象,则确定空调器发生冷媒泄漏。这样一方面能够避免压缩机过热造成损坏,另一方面通过重复执行该过程达到预设次数,能够降低对冷媒泄漏的误判率,较为准确地判断出空调器是否出现了冷媒泄漏。
以上的总体描述和下文中的描述仅是示例性和解释性的,不用于限制本申请。
附图说明
一个或多个实施例通过与之对应的附图进行示例性说明,这些示例性说明和附图并不构成对实施例的限定,附图中具有相同参考数字标号的元件示为类似的元件,附图不构成比例限制,并且其中:
图1是本公开实施例提供的一个用于控制空调器的方法的示意图;
图2是本公开实施例提供的另一个用于控制空调器的方法的示意图;
图3是本公开实施例提供的一个用于控制空调器的方法的示意图;
图4是本公开实施例提供的另一个用于控制空调器的方法的示意图;
图5是本公开实施例提供的一个用于控制空调器的装置的示意图。
具体实施方式
为了能够更加详尽地了解本公开实施例的特点与技术内容,下面结合附图对本公开实施例的实现进行详细阐述,所附附图仅供参考说明之用,并非用来限定本公开实施例。在以下的技术描述中,为方便解释起见,通过多个细节以提供对所披露实施例的充分理解。然而,在没有这些细节的情况下,一个或多个实施例仍然可以实施。在其它情况下,为简化附图,熟知的结构和装置可以简化展示。
本公开实施例的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本公开实施例的实施例。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含。
除非另有说明,术语“多个”表示两个或两个以上。
本公开实施例中,字符“/”表示前后对象是一种“或”的关系。例如,A/B表示:A或B。
术语“和/或”是一种描述对象的关联关系,表示可以存在三种关系。例如,A和/或B,表示:A或B,或,A和B这三种关系。
结合图1所示,本公开实施例提供一种用于控制空调器的方法,包括:
S10、控制空调器运行空气调节模式并获取空调器的冷媒循环状态;
S20、在空调器的冷媒循环状态为冷媒循环异常的情况下,控制空调器的压缩机停机且室内风机保持运转达到第一预设时长;
S30、重复以上操作预设次数后,在空调器仍然存在冷媒循环异常的情况下,确定空调器发生冷媒泄漏。
本公开实施例可以提供一种多次获取冷媒循环状态并控制空调器相关部件运行的方法,以避免对空调器冷媒泄漏造成误判。具体地,可以控制空调器运行空气调节模式并获取空调器的冷媒循环状态,在空调器的冷媒循环状态为冷媒循环异常的情况下,控制空调器的压缩机停机且室内风机保持运转达到第一预设时长;重复以上操作预设次数后,在空调器仍然存在冷媒循环异常的情况下,确定空调器发生冷媒泄漏。
本公开实施例采用预设次数重复执行空调器冷媒循环状态的获取,以及在冷媒循环状态为冷媒循环异常的情况下,控制压缩机停机以及内风机持续运转达第一预设时长,若空调器仍然存在冷媒循环异常的现象,则确定空调器发生冷媒泄漏。这样一方面能够避免压缩机过热造成损坏,另一方面通过重复执行该过程达到预设次数,能够降低对冷媒泄漏的误判率,较为准确地判断出空调器是否出现了冷媒泄漏。这样,能够避免空调器进行不必要的停机,避免影响用户体验。
冷媒循环异常,例如,冷媒管路中的冷媒存在流量过大或过小的现象。当检测出空调器存在冷媒循环异常的情况时,未必就是发生了冷媒泄漏,引起冷媒循环异常的原因可能是局部管路发生堵塞,也可能是冷媒管路发生泄漏,还有可能是其它情况。有些程度较轻的堵塞,无需空调器停机也可能实现疏通,则不属于冷媒泄漏的情况,如果将 其认定为冷媒泄漏而控制空调器停机,不仅影响用户体验,后续还会浪费不必要的人力物力来维修。
在发生冷媒泄漏的时候,会造成压缩机过热运行,控制压缩机停机,能够避免压缩机过热运行造成损坏,对压缩机进行保护。控制室内风机保持运转达到第一预设时长,能够使空调器内部温度恢复到室内温度,这样就可以保证每次获取冷媒循环状态时,冷媒循环的初始状态保持一致,防止因为上次检测时空调运转使内部温度,冷媒循环初始状态不一致降低造成误判,增加每次检测的准确性。
作为一种示例,可以通过检测内盘管温度确定空调器的冷媒循环状态。如果在空调上电后,进行温度控制时,内盘管温度在一定时间内变化幅度过小,则表明冷媒循环状态出现异常。在空调器出现冷媒循环异常时,控制室内风机保持运转达到第一预设时长,能够使内盘管温度恢复到室内温度,这样就可以保证每次获取内盘管温度时,内盘管的初始温度保持一致,防止因为上次检测时空调运转使内盘管温度改变,内盘管初始温度不一致降低造成误判,增加每次检测的准确性。
需要说明的是,获取空调器的冷媒循环状态时,是在空调器运行空气调节模式时进行,例如空调器运行制冷/制热时,冷媒在循环流动,这样来获取冷媒循环状态。
可选地,第一预设时长可以为8min、9min,10min或12min等。例如,第一预设时长为10min,在空调器的冷媒循环状态为冷媒循环异常的情况下,控制空调器的压缩机停机且室内风机保持运转达到10min。
作为一种示例,可以通过设置与压缩机和室内风机连接的控制器,控制压缩机停机且控制室内风机保持运转达到第一预设时长。
作为一种示例,可以在空调器内设置计时电路,使计时电路与室内风机连接,通过计时电路检测室内风机运转时间,以使控制器能够控制室内风机保持运转达到第一预设时长。
“以上操作”是指获取空调器的冷媒循环状态;在空调器的冷媒循环状态为冷媒循环异常的情况下,控制空调器的压缩机停机且室内风机保持运转达到第一预设时长。
重复以上操作预设次数后,是指重复执行“获取空调器的冷媒循环状态;在空调器的冷媒循环状态为冷媒循环异常的情况下,控制空调器的压缩机停机且室内风机保持运转达到第一预设时长”达到预设次数。例如,重复执行以上操作两次,即,在执行完“获取空调器的冷媒循环状态;在空调器的冷媒循环状态为冷媒循环异常的情况下,控制空调器的压缩机停机且室内风机保持运转达到第一预设时长”之后,再执行上述操作 两次,一共执行了上述操作三次。
本公开实施例重复以上操作预设次数,然后如果空调器仍然存在冷媒循环异常的情况,则可以认定空调器发生冷媒泄漏,这样能够充分确认空调器确实发生了冷媒泄漏。冷媒循环异常可能并非是冷媒泄漏引起,如果只是发生了程度较轻的管道堵塞,那么在控制压缩机停机和重新启动后,可能堵塞处已经被冲开,冷媒循环异常的故障得到解除,则不必停机;如果确实存在冷媒泄漏,那么通过重复预设次数,能够充分确认该冷媒循环异常是由冷媒泄漏引起,从而停机。
可选地,预设次数为2次。这样,在重复执行获取冷媒循环状态以及控制相应部件运作两次以后,如果空调器仍然存在冷媒循环异常,则确定空调器发生冷媒泄漏。
在一些实施例中,确定空调器冷媒循环异常之后,还包括:控制空调室外机进行警示。通过警示告知用户存在冷媒循环异常的现象。
作为一种示例,可以通过控制空调室外机的信号灯闪烁进行警示。例如,控制空调室外机的信号灯闪烁28次。
在一些实施例中,确定空调器发生冷媒泄漏之后,还包括:控制空调器的显示面板显示冷媒循环异常故障。通过空调器的显示面板告知用户空调器冷媒循环异常,此处冷媒循环异常故障对应冷媒泄漏的情况,为便于用户理解,可采用“冷媒循环异常故障”来描述该故障。
在一些实施例中,获取空调器的冷媒循环状态,包括:
检测空调器的冷媒流量;
在检测的冷媒流量超过预设流量范围的情况下,确定空调器存在冷媒循环异常现象。
冷媒流量能够反映空调器的冷媒循环状态,在冷媒循环正常的时候,对应冷媒流量的正常范围值,将该正常范围值作为预设流量范围,在检测的冷媒流量超过预设流量范围的情况下,表明冷媒流量不正常,空调器存在冷媒循环异常现象。采用冷媒流量衡量冷媒循环状态较为贴切。
作为一种示例,可以通过在空调器的冷媒管路上设置流量传感器来获取空调器的冷媒循环状态。预设流量范围可以按照现有的空调器冷媒流量进行设定。
需要说明的是,在实际应用过程中,预设流量范围可以结合空调器自身冷媒流量的正常范围进行的取值,在其范围内确定预设流量范围的边界值,并使其满足上述要求。
在一些实施例中,控制空调器运行空气调节模式包括:控制空调器的室内风机以 高风速、中风速或低风速运行空气调节模式。控制室内风机以高风速、中风速或低风速运行空气调节模式均能够检测器冷媒循环状态。
在一些实施例中,控制空调器的室内风机以高风速、中风速或低风速运行空气调节模式,包括:
在空调器首次运行空气调节模式的情况下,控制空调器的室内风机以高风速运行;
在空调器非首次运行空气调节模式的情况下,控制空调器的室内风机以中风速或低风速运行。
首次运行空气调节模式时,空调器可以采用高风速进行空气调节,以期望空调器内部状态能够产生较大的波动,如存在冷媒循环异常,则检测结果较为明显。例如,空调器以高风速进行空气调节,内盘管温度应快速下降,与室外温度产生较大的温差,若检测到内盘管温度变化过小,则可以较准确地确定存在冷媒循环异常。
在非首次运行空气调节模式时,为了进一步验证是否存在冷媒循环异常,采用与高风速不同的风速进行空气调节,例如以中风速或低风速进行调节,以检测是否还出现冷媒循环异常。
作为一种示例,在空调器非首次运行空气调节模式的情况下,控制空调器的室内风机以中风速或低风速运行,包括:
第二次运行空气调节模式时,控制空调器的室内风机以中风速运行;
第三次运行空气调节模式时,控制空调器的室内风机以低风速运行。
第二次室内风机以中风速运行,第三次室内风机以低风速运行,通过风速的区分,能够不断验证是否确实存在冷媒异常,从而最终确定存在冷媒泄漏的情况。第三次采用低风速运行空气调节模式,空调器内部状态波动较小,如果在该状态下,仍然能够确定存在冷媒循环异常,则对于冷媒泄漏的确定更加准确。本公开实施例通过进行多种风量下的检测可以提高检测准确性,防止造成误判。
需要说明的是,不同的空调器可能对应有不同的风速档位,在实际使用过程中,可以结合空调器自身风速档位的取值范围来确定高风速、中风速和低风速的范围,在高风速、中风速和低风速的范围内确定高风速、中风速和低风速的具体数值,并使其满足上述要求。
在一些实施例中,室内风机保持运转包括:室内风机保持低风速或中风速运转。
本公开实施例通过控制室内风机保持低风速或中风速运转,能够使空调器内部温度恢复到室内温度,保证每次获取冷媒循环状态时,冷媒循环的初始状态保持一致,增 加每次检测的准确性。室内风机保持低风速或中风速运转,能够避免该过程的能耗过大。
在一些实施例中,确定空调器发生冷媒泄漏之后,还包括:控制压缩机停机,且室内风机保持运转达到第二预设时长后停止。
本公开实施例在确定空调器发生冷媒泄漏之后,通过控制压缩机停机来防止压缩机过热损毁,通过控制室内风机保持运转达到第二预设时长后停止,使空调器内部恢复至室内温度。
作为一种示例,第二预设时长可以是30s、35s、40s、45s等。例如,第二预设时长为30s。
作为一种示例,控制压缩机停机,且室内风机保持运转达到第二预设时长后停止,且控制空调器显示面板显示冷媒循环异常故障。
结合图2所示,示例性地,用于控制空调器的方法,包括:
S10、控制空调器运行空气调节模式并获取空调器的冷媒循环状态;
S20、在空调器的冷媒循环状态为冷媒循环异常的情况下,控制空调器的压缩机停机且室内风机保持运转达到第一预设时长;
S30、重复以上操作预设次数后,在空调器仍然存在冷媒循环异常的情况下,确定空调器发生冷媒泄漏;
S40、控制压缩机停机,且室内风机保持运转达到第二预设时长后停止。
通过该示例,能够较为准确地确定空调器存在冷媒泄漏现象,并保护压缩机,防止压缩机过热损毁。
在一些实施例中,第二预设时长小于第一预设时长。由于已经确定发生冷媒泄漏,故使室内风机保持运转达到第二预设时长后停止即可,小于第一预设时长,不必运转时间过久,这样能够节省电能。
在一些实施例中,在获取空调器的冷媒循环状态之前,还包括:
获取空调器的上电信息或停机时长信息;
在空调器为首次上电或停机超过第三预设时长的情况下,启动获取空调器的冷媒循环状态的程序。
本公开实施例在空调器为首次上电或停机超过第三预设时长的情况下,启动获取空调器的冷媒循环状态的程序,能够有效监测冷媒循环状态,及时监测出冷媒泄漏的情况。如果空调器为首次上电,存在冷媒泄漏的可能性大于非首次上电,此时,应当对冷媒循环状态进行获取,避免空调器在冷媒泄漏的情况下运行,避免烧毁压缩机。
如果空调器停机超过第三预设时长,则发生冷媒泄漏的可能性也较大,此时,应当对冷媒循环状态进行获取,以及时监测冷媒循环情况,避免空调器在冷媒泄漏的情况下运行。
作为一种示例,第三预设时长可以是1h、1.5h、2h等。例如,第三预设时长为1h。
在一些实施例中,第三预设时长大于第一预设时长。在第三预设时长大于第一预设时长的情况下,表明空调器停机较久,应当进行冷媒泄漏的检测,若发生了冷媒泄漏的情况,能够准确确认,有效避免空调器在冷媒泄漏的情况下运行。
结合图3所示,在一些实施例中,获取空调器的冷媒循环状态,包括:
S11、获取预定时间内空调器的压缩机运行频率以及内盘管温度的变化幅度;
S12、在压缩机运行频率大于或等于预设频率,且变化幅度小于或等于预设幅度的情况下,确定空调器发生冷媒循环异常。
本公开实施例可以提供一种用于控制空调器的方法,以使获取空调器的冷媒循环状态。具体地,可以获取预定时间内空调器的压缩机运行频率以及内盘管温度的变化幅度;在压缩机运行频率大于或等于预设频率,且变化幅度小于或等于预设幅度的情况下,确定空调器发生冷媒循环异常。
本公开实施例确保压缩机运行正常的情况下,通过内盘管温度变化幅度,能够较为准确的获取空调器的冷媒循环状态。
压缩机的运行频率能够反映压缩机的运行状态,通过获取压缩机的运行频率,可以获知压缩机是否正常运行。内盘管温度的变化幅度能够反映冷媒循环状态,通过获取内盘管温度的变化幅度,可以获知冷媒循环状态是否异常。
作为一种示例,可以设置与压缩机连接的振动传感器来检测压缩机的运行频率。
作为一种示例,可以在内盘管设置温度传感器检测内盘管温度。
作为一种示例,预设幅度为1.5℃。内盘管温度的变化幅度如果小于或等于1.5℃,则认为冷媒循环异常。
作为一种示例,预设频率为大于或等于40Hz,或,大于或等于50Hz。
在压缩机运行频率大于或等于预设频率,且变化幅度小于或等于预设幅度的情况下,表明空调器存在冷媒循环异常的现象。因为,在压缩机的运行频率大于或等于预设频率的情况下,表明压缩机正常运行,但内盘管温度的变化幅度却过小,表明冷媒循环异常。
在一些实施例中,在室外温度属于第一区间的情况下,预设频率为第一频率;在 室外温度属于第二区间的情况下,预设频率为第二频率;第二区间的最大值小于第一区间的最小值,第二频率小于第一频率。
在实际处理过程中,可以预先划分表示室外温度大小的区间,例如,划分2个区间,其中,第二区间的最大值小于第一区间的最小值。如果室外温度属于第一区间,则表示室外温度较高。如果室外温度属于第二区间,则表示室外温度中等。
在室外温度较高的情况下,压缩机正常运行时的频率高于室外温度中等情况下的频率,因此,将压缩机的预设频率设为第一频率和第二频率,在室外温度属于第一区间的情况下,预设频率为第一频率;在室外温度属于第二区间的情况下,预设频率为第二频率;第二区间的最大值小于第一区间的最小值,第二频率小于第一频率。这样,能够对冷媒循环异常的判断更加准确。
结合图4所示,示例性地,用于控制空调器的方法,包括:
S11、获取预定时间内空调器的压缩机运行频率以及内盘管温度的变化幅度;
S12、在压缩机运行频率大于或等于预设频率,且变化幅度小于或等于预设幅度的情况下,确定空调器发生冷媒循环异常;
S20、在空调器的冷媒循环状态为冷媒循环异常的情况下,控制空调器的压缩机停机且室内风机保持运转达到第一预设时长;
S30、重复以上操作预设次数后,在空调器仍然存在冷媒循环异常的情况下,确定空调器发生冷媒泄漏。
本公开实施例还提供一种用于控制空调器的装置,包括处理器和存储有程序指令的存储器,处理器被配置为在执行程序指令时,执行如前述任一项实施例提供的用于控制空调器的方法。
本公开实施例的装置通过处理器执行前述用于控制空调器的方法,能够对空调器进行控制,一方面能够避免压缩机过热造成损坏,另一方面通过重复执行该过程达到预设次数,能够降低对冷媒泄漏的误判率,较为准确地判断出空调器是否出现了冷媒泄漏,避免空调器进行不必要的停机,避免影响用户体验。
结合图5所示,本公开实施例提供一种用于控制空调器的装置,包括处理器(processor)100和存储器(memory)101。可选地,该装置还可以包括通信接口(Communication Interface)102和总线103。其中,处理器100、通信接口102、存储器101可以通过总线103完成相互间的通信。通信接口102可以用于信息传输。处理器100可以调用存储器101中的逻辑指令,以执行上述实施例的用于控制空调器的方法。
此外,上述的存储器101中的逻辑指令可以通过软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。
存储器101作为一种计算机可读存储介质,可用于存储软件程序、计算机可执行程序,如本公开实施例中的方法对应的程序指令/模块。处理器100通过运行存储在存储器101中的程序指令/模块,从而执行功能应用以及数据处理,即实现上述实施例中用于控制空调器的方法。
存储器101可包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序;存储数据区可存储根据终端设备的使用所创建的数据等。此外,存储器101可以包括高速随机存取存储器,还可以包括非易失性存储器。
本公开实施例还提供一种空调器,包括如前述实施例提供的用于控制空调器的装置。
本公开实施例的空调器通过设置该装置,能够在该装置的控制下,一方面能够避免压缩机过热造成损坏,另一方面通过重复执行该过程达到预设次数,能够降低对冷媒泄漏的误判率,较为准确地判断出空调器是否出现了冷媒泄漏,避免空调器进行不必要的停机,避免影响用户体验。
本公开实施例提供了一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令设置为执行上述用于控制空调器的方法。
本公开实施例提供了一种计算机程序产品,所述计算机程序产品包括存储在计算机可读存储介质上的计算机程序,所述计算机程序包括程序指令,当所述程序指令被计算机执行时,使所述计算机执行上述用于控制空调器的方法。
上述的计算机可读存储介质可以是暂态计算机可读存储介质,也可以是非暂态计算机可读存储介质。
本公开实施例的技术方案可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括一个或多个指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本公开实施例所述方法的全部或部分步骤。而前述的存储介质可以是非暂态存储介质,包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等多种可以存储程序代码的介质,也可以是暂态存储介质。
以上描述和附图充分地示出了本公开的实施例,以使本领域的技术人员能够实践它们。其他实施例可以包括结构的、逻辑的、电气的、过程的以及其他的改变。实施例 仅代表可能的变化。除非明确要求,否则单独的部件和功能是可选的,并且操作的顺序可以变化。一些实施例的部分和特征可以被包括在或替换其他实施例的部分和特征。而且,本申请中使用的用词仅用于描述实施例并且不用于限制权利要求。如在实施例以及权利要求的描述中使用的,除非上下文清楚地表明,否则单数形式的“一个”(a)、“一个”(an)和“所述”(the)旨在同样包括复数形式。类似地,如在本申请中所使用的术语“和/或”是指包含一个或一个以上相关联的列出的任何以及所有可能的组合。另外,当用于本申请中时,术语“包括”(comprise)及其变型“包括”(comprises)和/或包括(comprising)等指陈述的特征、整体、步骤、操作、元素,和/或组件的存在,但不排除一个或一个以上其它特征、整体、步骤、操作、元素、组件和/或这些的分组的存在或添加。在没有更多限制的情况下,由语句“包括一个...”限定的要素,并不排除在包括所述要素的过程、方法或者设备中还存在另外的相同要素。本文中,每个实施例重点说明的可以是与其他实施例的不同之处,各个实施例之间相同相似部分可以互相参见。对于实施例公开的方法、产品等而言,如果其与实施例公开的方法部分相对应,那么相关之处可以参见方法部分的描述。
本领域技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,可以取决于技术方案的特定应用和设计约束条件。所述技术人员可以对每个特定的应用来使用不同方法以实现所描述的功能,但是这种实现不应认为超出本公开实施例的范围。所述技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
本文所披露的实施例中,所揭露的方法、产品(包括但不限于装置、设备等),可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,可以仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例。另外,在本公开实施例中 的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
附图中的流程图和框图显示了根据本公开实施例的系统、方法和计算机程序产品的可能实现的体系架构、功能和操作。在这点上,流程图或框图中的每个方框可以代表一个模块、程序段或代码的一部分,所述模块、程序段或代码的一部分包含一个或多个用于实现规定的逻辑功能的可执行指令。在有些作为替换的实现中,方框中所标注的功能也可以以不同于附图中所标注的顺序发生。例如,两个连续的方框实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这可以依所涉及的功能而定。在附图中的流程图和框图所对应的描述中,不同的方框所对应的操作或步骤也可以以不同于描述中所披露的顺序发生,有时不同的操作或步骤之间不存在特定的顺序。例如,两个连续的操作或步骤实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这可以依所涉及的功能而定。框图和/或流程图中的每个方框、以及框图和/或流程图中的方框的组合,可以用执行规定的功能或动作的专用的基于硬件的系统来实现,或者可以用专用硬件与计算机指令的组合来实现。

Claims (10)

  1. 一种用于控制空调器的方法,其特征在于,包括:
    控制所述空调器运行空气调节模式并获取所述空调器的冷媒循环状态;
    在所述空调器的冷媒循环状态为冷媒循环异常的情况下,控制所述空调器的压缩机停机且室内风机保持运转达到第一预设时长;
    重复以上操作预设次数后,在所述空调器仍然存在冷媒循环异常的情况下,确定所述空调器发生冷媒泄漏。
  2. 根据权利要求1所述的方法,其特征在于,所述控制所述空调器运行空气调节模式包括:
    控制所述空调器的室内风机以高风速、中风速或低风速运行空气调节模式。
  3. 根据权利要求2所述的方法,其特征在于,所述控制所述空调器的室内风机以高风速、中风速或低风速运行空气调节模式,包括:
    在所述空调器首次运行空气调节模式的情况下,控制所述空调器的室内风机以高风速运行;
    在所述空调器非首次运行空气调节模式的情况下,控制所述空调器的室内风机以中风速或低风速运行。
  4. 根据权利要求1所述的方法,其特征在于,所述确定所述空调器发生冷媒泄漏之后,还包括:
    控制所述压缩机停机,且所述室内风机保持运转达到第二预设时长后停止。
  5. 根据权利要求1至4任一项所述的方法,其特征在于,在获取所述空调器的冷媒循环状态之前,还包括:
    获取所述空调器的上电信息或停机时长信息;
    在所述空调器为首次上电或停机超过第三预设时长的情况下,启动获取所述空调器的冷媒循环状态的程序。
  6. 根据权利要求5所述的方法,其特征在于,所述第三预设时长大于所述第一预设时长。
  7. 根据权利要求1至4任一项所述的方法,其特征在于,所述获取所述空调器的冷媒循环状态,包括:
    获取预定时间内所述空调器的压缩机运行频率以及内盘管温度的变化幅度;
    在所述压缩机运行频率大于或等于预设频率,且所述变化幅度小于或等于预设 幅度的情况下,确定所述空调器发生冷媒循环异常。
  8. 根据权利要求7所述的方法,其特征在于,
    在室外温度属于第一区间的情况下,所述预设频率为第一频率;
    在室外温度属于第二区间的情况下,所述预设频率为第二频率;所述第二区间的最大值小于所述第一区间的最小值,所述第二频率小于所述第一频率。
  9. 一种用于控制空调器的装置,包括处理器和存储有程序指令的存储器,其特征在于,所述处理器被配置为在执行所述程序指令时,执行如权利要求1至8任一项所述的用于控制空调器的方法。
  10. 一种空调器,其特征在于,包括如权利要求9所述的用于控制空调器的装置。
PCT/CN2021/121626 2021-03-12 2021-09-29 用于控制空调器的方法及装置、空调器 WO2022188398A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110271641.0 2021-03-12
CN202110271641.0A CN113091204B (zh) 2021-03-12 2021-03-12 用于控制空调器的方法及装置、空调器

Publications (1)

Publication Number Publication Date
WO2022188398A1 true WO2022188398A1 (zh) 2022-09-15

Family

ID=76667111

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/121626 WO2022188398A1 (zh) 2021-03-12 2021-09-29 用于控制空调器的方法及装置、空调器

Country Status (2)

Country Link
CN (1) CN113091204B (zh)
WO (1) WO2022188398A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113091204B (zh) * 2021-03-12 2022-12-23 青岛海尔空调器有限总公司 用于控制空调器的方法及装置、空调器
CN114396706A (zh) * 2022-01-04 2022-04-26 宁波奥克斯电气股份有限公司 空调器
CN115031345B (zh) * 2022-04-18 2024-06-18 北京小米移动软件有限公司 空调器及其冷媒泄露的检测方法、装置、控制设备、介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5318847A (en) * 1976-08-06 1978-02-21 Saginomiya Seisakusho Inc Car cooler apparatus with detecting function of refrigerant leakage
KR100783433B1 (ko) * 2006-09-26 2007-12-07 현대자동차주식회사 에어컨의 냉매 누설 검출장치 및 그 제어방법
CN105485856A (zh) * 2015-12-31 2016-04-13 广东美的制冷设备有限公司 空调系统及空调系统制热状态下的异常检测方法
CN106918117A (zh) * 2017-03-02 2017-07-04 青岛海尔空调器有限总公司 空调冷媒泄露检测方法及装置
CN110793171A (zh) * 2019-11-13 2020-02-14 四川长虹空调有限公司 空调系统冷媒不足的判断方法和空调器
CN113091204A (zh) * 2021-03-12 2021-07-09 青岛海尔空调器有限总公司 用于控制空调器的方法及装置、空调器

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5042205B2 (ja) * 2008-12-16 2012-10-03 三菱電機株式会社 空気調和機
CN106524418B (zh) * 2016-11-10 2019-03-12 邯郸美的制冷设备有限公司 空调器冷媒泄露的检测方法、检测系统和空调器
CN110736183B (zh) * 2018-07-18 2021-04-27 奥克斯空调股份有限公司 一种空调冷媒泄露的检测方法及装置
CN110173814B (zh) * 2019-05-31 2021-07-20 广东美的制冷设备有限公司 空调器及空调器的冷媒泄露检测方法、装置
CN110410933A (zh) * 2019-06-24 2019-11-05 青岛海尔空调器有限总公司 空调器冷媒泄漏检测方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5318847A (en) * 1976-08-06 1978-02-21 Saginomiya Seisakusho Inc Car cooler apparatus with detecting function of refrigerant leakage
KR100783433B1 (ko) * 2006-09-26 2007-12-07 현대자동차주식회사 에어컨의 냉매 누설 검출장치 및 그 제어방법
CN105485856A (zh) * 2015-12-31 2016-04-13 广东美的制冷设备有限公司 空调系统及空调系统制热状态下的异常检测方法
CN106918117A (zh) * 2017-03-02 2017-07-04 青岛海尔空调器有限总公司 空调冷媒泄露检测方法及装置
CN110793171A (zh) * 2019-11-13 2020-02-14 四川长虹空调有限公司 空调系统冷媒不足的判断方法和空调器
CN113091204A (zh) * 2021-03-12 2021-07-09 青岛海尔空调器有限总公司 用于控制空调器的方法及装置、空调器

Also Published As

Publication number Publication date
CN113091204A (zh) 2021-07-09
CN113091204B (zh) 2022-12-23

Similar Documents

Publication Publication Date Title
WO2022188398A1 (zh) 用于控制空调器的方法及装置、空调器
CN107314519B (zh) 一种空调器冷媒泄漏的判定方法及装置
CN108050663B (zh) 压缩机自保护的控制方法及装置、空调以及存储介质
JP5405161B2 (ja) 空気調和装置およびエネルギー機器
WO2016107253A1 (zh) 一种检测冷媒泄漏的方法及空调
JP6061819B2 (ja) 空気調和機
CN105180362B (zh) 压缩机过载保护控制方法和装置及定频空调器
CN113551371B (zh) 空调器的高低压阀状态检测方法、装置、空调器与介质
CN111023472B (zh) 一种空调器的检测方法及装置
CN106403173B (zh) 一种空调器冷媒泄露的判定方法及装置
CN111023277B (zh) 一种空调控制方法、装置及空调器
JP2012122668A (ja) 空気調和機
CN103925677A (zh) 空调器的控制方法和装置
CN109028456A (zh) 一种制冷剂的泄漏检测方法和装置
CA3096112A1 (en) Detecting loss of charge in hvac systems
JP6183024B2 (ja) 空調機システム
CN105589376A (zh) 一种报警控制方法、装置及空调控制器
CN109307349A (zh) 一种制冷剂的泄漏检测方法和装置
CN102734896B (zh) 一种多联机空调系统运行环境监控方法和装置
US20200292192A1 (en) Blower properties used for user warning
CN109323362B (zh) 冷媒泄露故障的处理方法、处理系统和空调器
CN111290886A (zh) 设备自动恢复运行的方法及热水机
CN114353262B (zh) 用于空调压缩机液击故障的控制方法及装置、空调
JP2011145017A (ja) 空気調和装置
CN107179911A (zh) 一种重启管理引擎的方法和设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21929863

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21929863

Country of ref document: EP

Kind code of ref document: A1