WO2022188381A1 - 毫米波雷达的动态校准方法、装置和手持终端 - Google Patents

毫米波雷达的动态校准方法、装置和手持终端 Download PDF

Info

Publication number
WO2022188381A1
WO2022188381A1 PCT/CN2021/117788 CN2021117788W WO2022188381A1 WO 2022188381 A1 WO2022188381 A1 WO 2022188381A1 CN 2021117788 W CN2021117788 W CN 2021117788W WO 2022188381 A1 WO2022188381 A1 WO 2022188381A1
Authority
WO
WIPO (PCT)
Prior art keywords
data frame
frame
calibration
data
calibrated
Prior art date
Application number
PCT/CN2021/117788
Other languages
English (en)
French (fr)
Inventor
王辉宇
Original Assignee
深圳市万普拉斯科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市万普拉斯科技有限公司 filed Critical 深圳市万普拉斯科技有限公司
Publication of WO2022188381A1 publication Critical patent/WO2022188381A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/40Means for monitoring or calibrating

Definitions

  • the present application relates to the technical field of millimeter-wave radar, and in particular, to a dynamic calibration method, device and handheld terminal of a millimeter-wave radar.
  • the existing millimeter-wave radar mainly detects moving targets through the Moving Target Indicator (MTI) technology, and the MTI technology can only be used for moving target detection.
  • MTI Moving Target Indicator
  • the radar will do the corresponding clearance environment test before leaving the factory, and obtain the initial calibration data frame of the fixed background signal for static calibration.
  • This method of static calibration is only effective when the radar is used for a period of time.
  • the millimeter-wave radar will be affected by the external environment such as temperature and voltage, which will cause the radar signal to slowly deviate, resulting in the failure of calibration.
  • the present application provides a dynamic calibration method, device and handheld terminal for a millimeter-wave radar.
  • An embodiment of the present application provides a dynamic calibration method for a millimeter-wave radar, which is applied to a handheld terminal, and the method includes:
  • the original radar signal data frame obtained at the moment to be calibrated and used for detecting and tracking the target is calibrated by using the calibration data frame.
  • the dynamic calibration method of the millimeter wave radar further includes:
  • the calibration data frame corresponding to the to-be-calibrated moment is updated to the calibration data frame corresponding to the next to-be-calibrated moment.
  • the acquiring multi-frame radar signal data in a corresponding period before the time to be calibrated includes:
  • the acquisition of the headroom data frame in the corresponding time period includes:
  • each frame of radar signal data is composed of measurement data of multiple sampling points with the same number and the same phase, and the acquisition of the headroom data frame in the corresponding time period includes:
  • the headroom data frame If there is a continuous data frame set with a number of frames exceeding a preset number, and each frame of radar signal data in the continuous data frame set satisfies that the difference between the sampling points at the same phase is less than the amplitude change threshold, it is determined that the The set of consecutive data frames is the headroom data frame.
  • each frame of radar signal data is composed of measurement data of multiple sampling points with the same number and the same phase, and the acquisition of the clearance data frame in the corresponding time period includes:
  • the change trend of the distance in the distance array shows a gradual decreasing trend and finally decreases to zero, then it is determined that the entry is entered at the moment when the distance is reduced to zero.
  • the continuous multi-frame radar signal data after entering the clearance environment is regarded as the clearance data frame.
  • each frame of headroom data frame is composed of measurement data of a plurality of sampling points with the same number and the same phase.
  • Calibration data frame including:
  • the measurement data of the sampling points with the same phase of each frame of data in the headroom data frame are summed and then averaged to obtain the average value of the sampling points of different phases;
  • a calibration data frame corresponding to the to-be-calibrated moment is formed by using the obtained average value of the sampling points of all phases.
  • Embodiments of the present application also provide a dynamic calibration device for a millimeter-wave radar, which is applied to a handheld terminal, and the device includes:
  • an acquisition module configured to acquire multi-frame radar signal data in the corresponding period before the time to be calibrated
  • a calculation module configured to determine a calibration data frame corresponding to the to-be-calibrated moment according to the clearance data frame existing in the corresponding time period, where the clearance data frame is a radar signal data frame collected when there is no tracking target within the detection range;
  • the calibration module is configured to use the calibration data frame to calibrate the original radar signal data frame obtained at the time to be calibrated and used for detecting and tracking the target.
  • the embodiments of the present application also provide a handheld terminal, the handheld terminal includes a millimeter-wave radar, a processor, and a memory, the millimeter-wave radar is used for transmitting and receiving millimeter-wave signals, the memory stores a computer program, and the When the computer program is executed on the processor, the above-mentioned dynamic calibration method of the millimeter-wave radar is implemented.
  • Embodiments of the present application further provide a readable storage medium, which stores a computer program, and when the computer program is executed on a processor, implements the above-mentioned dynamic calibration method for a millimeter-wave radar.
  • the technical solutions of the embodiments of the present application continuously cache and record the collected data, so as to use the clearance data that exists in a relatively short period of time before the time to be calibrated to calculate the calibration data frame corresponding to the time to be calibrated, so as to calculate the calibration data frame corresponding to the time to be calibrated.
  • the original radar signal is calibrated at subsequent times when the target object is detected. Dynamic calibration through clearance detection can reduce the impact of external environmental changes on the measurement results of the millimeter-wave radar, thereby improving the measurement accuracy.
  • FIG. 1 is a schematic flowchart of a dynamic calibration method for a millimeter-wave radar according to an embodiment of the present application.
  • FIG. 2 is a schematic diagram of the application of the dynamic calibration method of the millimeter wave radar according to the embodiment of the present application.
  • FIG. 3 is a schematic flowchart of a first method of acquiring the clearance data frame of the dynamic calibration method of the millimeter wave radar according to the embodiment of the present application.
  • FIG. 4 is a schematic flowchart of a second acquisition manner of the clearance data frame of the dynamic calibration method of the millimeter wave radar according to the embodiment of the present application.
  • FIG. 5 is a schematic flowchart of a third acquisition manner of the clearance data frame of the dynamic calibration method of the millimeter wave radar according to the embodiment of the present application.
  • FIG. 6 is a schematic diagram of an application of a millimeter-wave radar of a handheld terminal.
  • FIG. 7 is a schematic structural diagram of a dynamic calibration apparatus for a millimeter wave radar according to an embodiment of the present application.
  • this embodiment proposes a dynamic calibration method for millimeter-wave radar, which can be applied to the measurement and calibration of millimeter-wave radar in handheld terminals such as mobile phones and tablets, thereby improving the measurement accuracy of millimeter-wave radar.
  • the dynamic calibration method will be described below with reference to specific steps.
  • Step S110 acquiring multi-frame radar signal data in a corresponding time period before the time to be calibrated.
  • the handheld terminal in the process of using the millimeter wave radar, can store the collected radar signal data in a first-in first-out (First Input First Output, FIFO) buffer so that it can be used when needed.
  • the buffered radar signal data is read to calculate the calibration data frame corresponding to the time to be calibrated.
  • the handheld terminal when the handheld terminal receives the calibration instruction input by the user, for example, when it is detected that the user starts the calibration operation in the operation interface, the handheld terminal determines that the current moment is the moment to be calibrated, and then executes the above data Get steps.
  • the user presets or the handheld terminal presets the timing duration of dynamic calibration that is, the millimeter-wave radar is set to be automatically calibrated at regular intervals, the distance between the handheld terminal and the last calibration time When the time interval reaches the timing duration of the dynamic calibration, the above-mentioned data acquisition step can be triggered to perform calibration.
  • the above-mentioned corresponding period is usually a period of time that is relatively close to the time to be calibrated, for example, may be several seconds or tens of seconds before the time to be calibrated.
  • the calibration data frame corresponding to the current calibration moment is calculated by acquiring the signal data in the latest period of time, so that the difference between the measured background signal and the background signal in the environment where the target object to be detected is located is small, so as to obtain a more accurate target object to be detected. Reflected measurement signal.
  • Step S120 Determine a calibration data frame corresponding to the to-be-calibrated moment according to the clearance data frame existing in the corresponding time period, where the clearance data frame is a radar signal data frame collected when there is no tracking target within the detection range.
  • the millimeter-wave radar is statically calibrated by canceling the fixed background signal.
  • the handheld terminal is usually set with an initial data frame that has been specially calibrated in a clear environment when it leaves the factory.
  • the initial reference data frame is used as the first reference data frame.
  • the calibration data frame is used to perform static calibration on the measured original data frame, so as to determine whether the target object to be detected exists from the calibrated data frame.
  • the clearance environment refers to the background environment that does not contain the tracking target object within the detection range.
  • this embodiment will continuously and dynamically calibrate the millimeter-wave radar, and determine the clearance data frame by performing clearance detection based on the original data frame relative to the time to be calibrated, and then calculate the calibration data frame.
  • the clearance data frame refers to the radar signal data frame collected when there is no tracking target object within the signal detection range of the millimeter-wave radar.
  • the radar signal data after acquiring the radar signal data for a period of time before the time to be calibrated, it can be determined whether there is a clearance environment in this period of time. If there is a clearance environment, the data collected at the corresponding time of the clearance environment is used as clearance data. frame.
  • the above-mentioned headroom data frame can be acquired in many different ways.
  • it can be detected by the multi-frame radar signal data whether there is no obvious change in the signal during this period, and if there is no obvious change, it can be determined that there is a headroom data frame in this period.
  • the above-mentioned acquisition of the clearance data frame in the corresponding time period includes:
  • Sub-step S121 Calculate the frequency spectrum of each frame of radar signal in the corresponding time period.
  • the spectrum reflects the change of signal power or energy with frequency. Taking energy as an example, the total number of frames of radar signals in the corresponding period is N.
  • the abscissa can represent its frequency components, such as f i1 , f i2 , ..., f im and so on. Accordingly, the ordinate of the spectrum can represent the local energy amplitude corresponding to each frequency.
  • Sub-step S122 if there is a continuous data frame set with a number of frames exceeding a preset number, and the peak difference value of the same frequency in any two adjacent frames in the continuous data frame set is less than the peak value change threshold, then determine the continuous data frame set. is the headroom data frame.
  • the peaks corresponding to the same frequency in every two adjacent frames of signals are compared, and for these N frames of radar signals, for example, the frequencies in the first and second frames are the peaks of the local energy corresponding to f2.
  • the absolute value of the peak difference value is compared with the peak value change threshold.
  • the peak difference value of the same frequency is calculated for two adjacent frame signals, and multiple peak value difference values ⁇ p will be obtained. If these peak value difference values are all less than the peak value change threshold, it is judged that there is no obvious difference between the current and previous two frames of radar signals. Variety. It can be understood that the above-mentioned peak value change threshold can be set correspondingly according to the energy peak value changes of the two frames of radar signals before and after the actual clearance environment.
  • these continuous radar signal data frames constitute the above-mentioned continuous data frame set, indicating that the signal during this continuous period of time. No significant changes. Therefore, it can be determined that the handheld terminal is in a clear environment during this continuous period of time.
  • the energy of the peak difference ⁇ p of all frequencies can be summed to obtain an energy sum P, and then the energy sum P and the preset energy sum threshold P max Do a size comparison.
  • the energy sum threshold can be set correspondingly according to the corresponding energy and variation range of the two frames of radar signals before and after in the clearance environment.
  • the signal change is small compared with the initial calibration data frame measured in advance in the clear environment, it can be determined that there is a clear data frame in the corresponding period, and the like.
  • the above-mentioned acquisition of the clearance data frame in the corresponding time period includes:
  • Sub-step S211 compare the difference values of sampling points of the same phase between the measurement data of each frame of radar signal in the corresponding period and the measurement data of the initial reference data frame pre-measured in the clear environment.
  • each frame of radar signal data is composed of measurement data of multiple sampling points (also called scatter points) with the same number of samples and the same phase.
  • each frame of radar signal data is stored in the form of an array, and each of the arrays is stored in the form of an array.
  • the elements are used to store the measurement results of the sampling points corresponding to the phases.
  • the above-mentioned measurement result may be the measured distance or the like.
  • the above-mentioned initial reference data frame is obtained by pre-measurement of the millimeter-wave radar in the clearance environment, and usually adopts the initial data configured at the factory, but is not limited thereto.
  • each frame of radar signal can be compared with the measurement data of the initial reference data frame at the sampling point of the same phase.
  • the amplitude change threshold can be set according to actual requirements.
  • Sub-step S212 if there is a continuous data frame set with the number of frames exceeding a preset number, and each frame of radar signal data in the continuous data frame set satisfies that the difference between the sampling points in the same phase is less than the amplitude change threshold, then it is determined that The set of consecutive data frames is a headroom data frame.
  • a difference value are all smaller than the amplitude change threshold. Therefore, if the difference between the consecutive multi-frame signals and the calculated difference from the initial reference data frame is smaller than the amplitude change threshold, it means that the signal collected by the millimeter-wave radar has no obvious signal change during this continuous period of time. Therefore, it can be determined that these continuous data frames that satisfy the above conditions are the headroom data frames.
  • the acquired multi-frame radar signal data may also be the data of the target object tracking using the millimeter-wave radar last time
  • the period of time is detected through the multi-frame radar signal data. If there is no obvious change in the signal inside, and it is judged that the target object being tracked has a process in which the distance gradually increases until it disappears within the detection range, it can be judged that the data collected since the moment when the target disappears is the clearance data frame.
  • each frame of radar signal data consists of measurement data of multiple sampling points with the same number and the same phase.
  • the acquisition of the headroom data frame existing in the above-mentioned corresponding time period includes:
  • Sub-step S311 Calculate the distances corresponding to the sampling points of the same phase in each adjacent two frames of radar signals in the corresponding period according to the measurement data, and obtain the distance arrays corresponding to the sampling points of each phase at successive moments.
  • Sub-step S312 if there are multiple sampling points whose number of arrays exceeds the preset number, the change trend of the distance in the distance array shows a gradually decreasing trend and finally reduces to zero, then it is determined that the time when the distance is reduced to zero is used as the entry.
  • the continuous multi-frame radar signal data after entering the clearance environment is regarded as the clearance data frame.
  • the distance difference of the same phase in the N-1 distance arrays shows a gradual decreasing trend and finally decreases to zero.
  • the second element and the The third element and so on perform distance change trend judgment in sequence, so as to judge whether the target being tracked leaves the detection range. Therefore, after judging that the target gradually moves away from the detection range, it is judged that it will enter the clearance environment time.
  • the millimeter-wave radar is usually enabled in a specified application scenario, and this use usually ends within a few seconds or more after the target object gradually disappears. Since there is a period of clearance time from the next use, the moment after the monitored target object exits the detection range is taken as the moment of entering the clearance environment, thereby obtaining the clearance data frame.
  • the above-mentioned preset quantity may have different values in different embodiments due to different description objects.
  • the above-mentioned specific manners are only examples.
  • the determination of the clearance environment is not limited to the above-mentioned methods, and other methods derived or transformed based on the above-mentioned ideas should also belong to the protection scope of the present application.
  • the calibration data frames corresponding to the moment to be calibrated are calculated by using these clearance data frames.
  • the subsequent calibration data frame calculation operation is not performed, or a pre-stored initial reference data frame may also be used as the calibration data frame corresponding to the to-be-calibrated moment.
  • calculating the calibration data frame based on the headroom data frame includes: summing the measurement data of the sampling points with the same phase of each frame of data in the headroom data frame, and then taking an average value to obtain the average value of the sampling points of different phases. The average value; then, a calibration data frame corresponding to the to-be-calibrated moment is formed by using the obtained average value of the sampling points of all phases.
  • each frame of headroom data frame is composed of the measurement data of multiple sampling points with the same number and the same phase. Therefore, elements at the same position in each frame of headroom data frame can be added and then averaged. For example, if obtaining To k frame headroom data frame, if the jth frame is Among them, the value of j is 1, 2, ..., k. Then the first bit elements of each frame are added and averaged, that is, The average value of the sampling points of the first phase can be obtained. The calculation process of the average value of the sampling points of other phases is similar. Furthermore, the above-mentioned calibration data frame is formed by combining the average values of the sampling points of each phase.
  • Step S130 using the calibration data frame to calibrate the original radar signal data frame obtained at the time to be calibrated and used for detecting and tracking the target.
  • the calibration data frame can be used to perform static calibration on the acquired original radar signal data frame, that is, by matching the original radar signal data frame with the calibration data frame.
  • the measured data of the sampling points of the phase are differenced to obtain the target reflection signal that cancels the fixed background signal. Furthermore, according to the obtained target reflection signal, it is possible to detect whether the target object exists or not.
  • the motion sensor can also be used to monitor whether the position of the handheld terminal changes greatly.
  • the corresponding background environment may also change. Big change.
  • the update operation of the calibration data frame can be triggered in time according to changes in the environment.
  • the dynamic calibration method further includes:
  • a new calibration data frame can be obtained according to the above steps S110-S120, as the next waiting The calibration data frame corresponding to the calibration moment. Finally, the new calibration data frame is used to replace the calibration data frame corresponding to the last calculated time to be calibrated, that is, the calibration data frame is updated once.
  • the dynamic calibration method of the millimeter-wave radar in this embodiment continuously caches and records the collected data, so as to calculate the calibration data frame corresponding to the to-be-calibrated time by using the clearance data existing in a relatively short period of time before the to-be-calibrated time, Then, the original radar signal is calibrated when the target object is detected at the current or subsequent time. Dynamic calibration through clearance detection can reduce the impact of external environmental changes on the measurement results of the millimeter-wave radar, thereby improving the measurement accuracy.
  • this embodiment provides a dynamic calibration device for a millimeter-wave radar, which is applied to a handheld terminal, such as a mobile phone, a tablet, and the like.
  • a handheld terminal such as a mobile phone, a tablet, and the like.
  • the dynamic calibration device 100 of the millimeter wave radar includes:
  • the acquiring module 110 is configured to acquire multi-frame radar signal data in a corresponding period before the time to be calibrated.
  • the calculation module 120 is configured to determine the calibration data frame corresponding to the to-be-calibrated moment according to the clearance data frame existing in the corresponding time period, and the clearance data frame is the radar signal data frame collected when there is no tracking target within the detection range.
  • the calibration module 130 is configured to use the calibration data frame to calibrate the original radar signal data frame obtained at the moment to be calibrated and used for detecting and tracking the target.
  • the above calculation module 120 includes a clearance calculation sub-module 121 and a calibration calculation sub-module 122 .
  • the headroom calculation sub-module 121 is configured to calculate the frequency spectrum of each frame of radar signals within the corresponding period. If there is a continuous data frame set with a number of frames exceeding a preset number, the continuous data frame set in the continuous data frame set The peak difference value of the same frequency in any two adjacent frames of , is less than the peak value change threshold, or, the energy sum corresponding to the peak difference value of all frequencies in any adjacent two frames in the continuous data frame set is less than the energy sum threshold value, Then it is determined that the set of continuous data frames is a headroom data frame.
  • the clearance calculation sub-module 121 is configured to sample the measurement data of each frame of radar signals in the corresponding period and the measurement data of the initial reference data frame pre-measured in the clearance environment with the same phase respectively. point difference comparison; if there is a continuous data frame set with the number of frames exceeding the preset number, each frame of radar signal data in the continuous data frame set satisfies that the difference value at the sampling point of the same phase is less than the amplitude change If the threshold is set, it is determined that the set of consecutive data frames is a headroom data frame.
  • the clearance calculation sub-module 121 is configured to calculate the distance corresponding to the sampling point of the same phase in every two adjacent frames of radar signals in the corresponding period according to the measurement data, and obtain the distance of each phase.
  • the calibration calculation sub-module 122 is configured to sum the measurement data of the sampling points with the same phase of each frame of data in the headroom data frame determined by the headroom calculation sub-module, and then take the average value to obtain samples of different phases.
  • the average value of the points; the calibration data frame corresponding to the time to be calibrated is formed by using the obtained average value of the sampling points of all phases.
  • the present application also provides a handheld terminal, such as a mobile phone, a tablet, etc.
  • the handheld terminal includes a millimeter-wave radar, a processor and a memory, wherein the millimeter-wave radar detects a target object by transmitting and receiving millimeter-wave signals
  • the memory stores a computer program
  • the processor runs the computer program, so that the handheld terminal can perform the above-mentioned dynamic calibration method of the millimeter-wave radar or the above-mentioned millimeter wave radar.
  • the function of each module in the dynamic calibration device of the wave radar is not limited to, a mobile phone, a tablet, etc.
  • the handheld terminal includes a millimeter-wave radar, a processor and a memory, wherein the millimeter-wave radar detects a target object by transmitting and receiving millimeter-wave signals
  • the memory stores a computer program
  • the processor runs the computer program, so that the handheld terminal can perform the above-mentioned dynamic calibration method of the millimeter-wave radar or
  • the present application also provides a readable storage medium for storing the computer program used in the above handheld terminal device.
  • each block in the flowchart or block diagrams may represent a module, segment, or portion of code that contains one or more functions for implementing the specified logical function(s) executable instructions. It should also be noted that, in alternative implementations, the functions noted in the block may occur out of the order noted in the figures.
  • each block of the block diagrams and/or flow diagrams, and combinations of blocks in the block diagrams and/or flow diagrams can be implemented using dedicated hardware-based systems that perform the specified functions or actions. be implemented, or may be implemented in a combination of special purpose hardware and computer instructions.
  • each functional module or unit in each embodiment of the present application may be integrated together to form an independent part, or each module may exist independently, or two or more modules may be integrated to form an independent part.
  • the functions are implemented in the form of software function modules and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application can be embodied in the form of a software product in essence, or the part that contributes to the prior art or the part of the technical solution.
  • the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a smart phone, a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: U disk, mobile hard disk, Read-Only Memory (ROM, Read-Only Memory), Random Access Memory (RAM, Random Access Memory), magnetic disk or optical disk and other media that can store program codes .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

一种毫米波雷达的动态校准方法,包括:获取待校准时刻之前的相应时段内的多帧雷达信号数据(S110);根据相应时段内存在的净空数据帧确定待校准时刻对应的校准数据帧,净空数据帧为探测范围内无跟踪目标时采集的雷达信号数据帧(S120);利用校准数据帧对待校准时刻获取的用于检测跟踪目标的原始雷达信号数据帧进行校准(S130)。一种毫米波雷达的动态校准装置(100)、手持终端和可读存储介质,毫米波雷达的动态校准方法以及装置、手持终端和可读存储介质通过净空检测来进行动态校准,可降低外部环境变化对毫米波雷达的测量结果的影响,从而提高测量准确性。

Description

毫米波雷达的动态校准方法、装置和手持终端
相关申请的交叉引用
本申请基于申请号为202110257225.5、申请日为2021年03月09日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请涉及毫米波雷达技术领域,尤其涉及一种毫米波雷达的动态校准方法、装置和手持终端。
背景技术
现有的毫米波雷达主要是通过移动目标指示(Moving Target Indicator,MTI)技术来检测移动的目标,而MTI技术仅能够用于动目标检测。通常地,雷达在出厂前会做相应的净空环境测试,得到固定背景信号的初始校准数据帧以进行静态校准。这种静态校准的方式仅在使用雷达一段时间内是有效的。然而,随着使用的时间越久,毫米波雷达会出现受到温度、电压等外部环境的影响而使得雷达信号缓慢产生偏差,导致校准失效。
发明内容
有鉴于此,本申请为了克服现有技术中的不足,提供一种毫米波雷达的动态校准方法、装置和手持终端。
本申请的实施例提供一种毫米波雷达的动态校准方法,应用于手持终端,所述方法包括:
获取待校准时刻之前的相应时段内的多帧雷达信号数据;
根据所述相应时段内存在的净空数据帧确定所述待校准时刻对应的校准数据帧,所述净空数据帧为探测范围内无跟踪目标时采集的雷达信号数据帧;
利用所述校准数据帧对所述待校准时刻获取的用于检测跟踪目标的原始雷达信号数据帧进行校准。
在一种实施例中,该毫米波雷达的动态校准方法还包括:
通过所述手持终端的运动传感器检测所述手持终端是否发生位置移动;
在检测到所述手持终端发生位置移动且移动的距离超过距离阈值时,获取下一待校准时刻对应的校准数据帧;
将所述待校准时刻对应的校准数据帧更新为所述下一待校准时刻对应的校准数据帧。
在一种实施例中,所述获取待校准时刻之前的相应时段内的多帧雷达信号数据,包括:
在接收到用户输入的校准指令的情况下,获取待校准时刻之前的相应时段内的多帧雷达信号数据;和/或,
在所述手持终端距离上一次校准时间的时间间隔达到动态校准定时时长的情况下,获取待校准时刻之前的相应时段内的多帧雷达信号数据。
在一种实施例中,所述相应时段内的所述净空数据帧的获取,包括:
计算所述相应时段内的每帧雷达信号的频谱,若存在帧数量超过预设数量的连续数据帧集合,所述连续数据帧集合中的任意相邻两帧中相同频率的峰值差值均小于峰值变化阈值,或者,所述连续数据帧集合中的任意相邻两帧中所有频率的峰值差值对应的能量总和小于能量总和阈值,则判定所述连续数据帧集合为净空数据帧。
在一种实施例中,每帧雷达信号数据均由数量相同且相位相同的多个 采样点的测量数据构成,所述相应时段内的所述净空数据帧的获取,包括:
将所述相应时段内的每帧雷达信号的测量数据分别与处于净空环境下预先测量的初始参考数据帧的测量数据进行相同相位的采样点的差值比较;
若存在帧数量超过预设数量的连续数据帧集合,所述连续数据帧集合中的各帧雷达信号数据均满足在相同相位的采样点的所述差值小于幅值变化阈值,则判定所述连续数据帧集合为净空数据帧。
在一种实施例中,每帧雷达信号数据均由数量相同且相位相同的多个采样点的测量数据构成,所述相应时段内的所述净空数据帧的获取,包括:
根据所述测量数据计算所述相应时段内的每相邻两帧雷达信号中的相同相位的采样点对应的距离,得到每个相位的采样点在连续时刻下对应的距离数组;
若存在数组数量超过预设数量的多个采样点的所述距离数组中距离变化趋势均呈逐步减小趋势且最终减小到零,则判定在所述距离均减小到零的时刻为进入净空环境的时刻,将进入净空环境后的连续多帧雷达信号数据作为净空数据帧。
在一种实施例中,各帧净空数据帧均由数量相同且相位相同的多个采样点的测量数据构成,所述根据所述相应时段内存在的净空数据帧确定所述待校准时刻对应的校准数据帧,包括:
将所述净空数据帧中每帧数据的具有相同相位的采样点的测量数据进行求和后再取平均值,得到不同相位的采样点的平均值;
利用得到的所有相位的采样点的所述平均值构成所述待校准时刻对应的校准数据帧。
本申请的实施例还提供一种毫米波雷达的动态校准装置,应用于手持终端,所述装置包括:
获取模块,配置为获取待校准时刻之前的相应时段内的多帧雷达信号数据;
计算模块,配置为根据所述相应时段内存在的净空数据帧确定所述待校准时刻对应的校准数据帧,所述净空数据帧为探测范围内无跟踪目标时采集的雷达信号数据帧;
校准模块,配置为利用所述校准数据帧对所述待校准时刻获取的用于检测跟踪目标的原始雷达信号数据帧进行校准。
本申请的实施例还提供一种手持终端,所述手持终端包括毫米波雷达、处理器和存储器,所述毫米波雷达用于发射和接收毫米波信号,所述存储器存储有计算机程序,所述计算机程序在所述处理器上执行时,实施上述的毫米波雷达的动态校准方法。
本申请的实施例还提供一种可读存储介质,其存储有计算机程序,所述计算机程序在处理器上执行时,实施根上述的毫米波雷达的动态校准方法。
本申请的实施例具有如下有益效果:
本申请实施例的技术方案通过对采集到的数据进行持续缓存记录,以便利用待校准时刻之前的一段较近的时间内存在的净空数据来计算待校准时刻对应的校准数据帧,进而对当前或后续时刻在检测目标物体时对原始雷达信号进行校准。通过净空检测来进行动态校准,可降低外部环境变化对毫米波雷达的测量结果的影响,从而提高测量准确性等。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图所示仅为本申请的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1所示为本申请实施例的毫米波雷达的动态校准方法的流程示意图。
图2所示为本申请实施例的毫米波雷达的动态校准方法的应用示意图。
图3所示为本申请实施例的毫米波雷达的动态校准方法的净空数据帧的第一种获取方式的流程示意图。
图4所示为本申请实施例的毫米波雷达的动态校准方法的净空数据帧的第二种获取方式的流程示意图。
图5所示为本申请实施例的毫米波雷达的动态校准方法的净空数据帧的第三种获取方式的流程示意图。
图6所示为手持终端的毫米波雷达的一种应用示意图。
图7所示为本申请实施例的毫米波雷达的动态校准装置的结构示意图。
具体实施方式
下面将结合本申请实施例中附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。
通常在此处附图中描述和示出的本申请实施例的组件可以以各种不同的配置来布置和设计。因此,以下对在附图中提供的本申请的实施例的详细描述并非旨在限制要求保护的本申请的范围,而是仅仅表示本申请的选定实施例。基于本申请的实施例,本领域技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本申请保护的范围。
实施例1
请参照图1和图2,本实施例提出一种毫米波雷达的动态校准方法,可应用于如手机、平板等手持终端中的毫米波雷达的测量校准,从而提高毫米波雷达的测量准确性。下面结合具体步骤对该动态校准方法进行说明。
步骤S110,获取待校准时刻之前的相应时段内的多帧雷达信号数据。
示范性地,如图2所示,在使用毫米波雷达的过程,手持终端可将采 集到的雷达信号数据储存到先进先出(First Input First Output,FIFO)缓冲区中,以便在需要时可读取到这些缓存的雷达信号数据来计算待校准时刻对应的校准数据帧。
在一种实施方式中,当手持终端接收到用户输入的校准指令时,例如,检测到用户在操作界面中启动校准操作时,则手持终端判断当前时刻即为待校准时刻,于是执行上述的数据获取步骤。
在另一种实施方式中,若用户预先设置或手持终端预先设置了动态校准的定时时长,即设置每隔一段时间对该毫米波雷达进行一次自动校准,则在手持终端距离上一次校准时间的时间间隔达到该动态校准的定时时长的情况下,可触发上述的数据获取步骤以进行校准。
可以理解,上述列举的两种情况仅为对毫米波雷达动态校准操作的触发条件的两种示例,并不仅限于此。在实际运用中,用户或终端厂商可根据实际需求来设置相应的触发条件。
其中,上述的相应时段通常为距离该待校准时刻较近的一段时间,例如,可取待校准时刻之前的数秒或几十秒内等。通过获取最近一段时间内的信号数据来计算当前校准时刻对应的校准数据帧,使得测量得到的背景信号与待检测目标物体所在环境中的背景信号差别较小,从而得到更准确的待检测目标物体反射的测量信号。
步骤S120,根据所述相应时段内存在的净空数据帧确定所述待校准时刻对应的校准数据帧,所述净空数据帧为探测范围内无跟踪目标时采集的雷达信号数据帧。
通常地,毫米波雷达通过抵消固定背景信号的方式进行静态校准,如图2所示,手持终端在出厂时通常设置有一净空环境下通过专门校准的初始数据帧,该初始参考数据帧作为首个校准数据帧用于对测量的原始数据帧进行静态校准,以便从校准后数据帧中判断待检测目标物体是否存在。 其中,净空环境是指在探测范围内不含跟踪目标物体的背景环境。
考虑到外界环境变化的影响,本实施例将对毫米波雷达进行持续动态校准,通过基于与待校准时刻比较相关的原始数据帧进行净空检测以确定净空数据帧,进而计算得到校准数据帧。其中,净空数据帧是指在毫米波雷达的信号探测范围内无跟踪目标物体时采集的雷达信号数据帧。
示范性地,在获取到待校准时刻之前的一段时间内的雷达信号数据后,可判断这一段时间内是否存在净空环境,若存在净空环境,则净空环境对应时刻采集到的数据即作为净空数据帧。
其中,上述的净空数据帧可通过多种不同的方式来获取。例如,在第一种实施方式中,可通过该多帧雷达信号数据检测这段时间内的信号是否无明显变化,若无明显变化,则可判定该段时间内存在净空数据帧。示范性地,如图3所示,上述的相应时段内的净空数据帧的获取,包括:
子步骤S121,计算所述相应时段内的每帧雷达信号的频谱。
例如,对获取到的时域雷达信号帧进行傅里叶变换,得到各帧雷达信号的频谱。其中,该频谱反映了信号功率或能量随频率的变化关系。以能量为例,该相应时段内雷达信号的总帧数为N,对于第i帧雷达信号的频谱,横坐标可表示其频率成分,如f i1,f i2,…,f im等。相应地,该频谱的纵坐标可表示每个频率对应的局部能量幅值。
子步骤S122,若存在帧数量超过预设数量的连续数据帧集合,该连续数据帧集合中的任意相邻两帧中相同频率的峰值差值均小于峰值变化阈值,则判定该连续数据帧集合为净空数据帧。
示范性地,将每相邻两帧信号中的同一频率对应的峰值进行作差,对于这N帧雷达信号,例如,将第1帧和第2帧中的频率为f2对应的局部能量的峰值进行作差,得到一个峰值差值。进而,将该峰值差值的绝对值与峰值变化阈值进行比较。通常地,相邻两帧信号进行相同频率的峰值差值 计算,将得到多个峰值差值Δp,若这些峰值差值均小于该峰值变化阈值,则判断当前前后两帧雷达信号之间无明显变化。可以理解,上述的峰值变化阈值可根据实际净空环境下前后两帧雷达信号的能量峰值变化情况来相应设置。
于是,当存在一定数量的连续多帧雷达信号均满足上述的峰值差值均小于该峰值变化阈值,则这些连续雷达信号数据帧构成上述的连续数据帧集合,则表明这段连续的时间内信号无明显变化。因此,可判定这段连续的时间内手持终端处于净空环境。
作为一种可替代的方案,对于上述子步骤S121得到的各帧信号频谱,若存在帧数量超过预设数量的连续数据帧集合,所述连续数据帧集合中的任意相邻两帧中所有频率的峰值差值对应的能量总和小于能量总和阈值,则判定该连续数据帧集合为净空数据帧。
例如,在得到每个频率对应的峰值差值Δp时,可将所有频率的峰值差值Δp进行能量求和,得到一能量总和P,进而将该能量总和P与预设的能量总和阈值P max进行大小比较。可以理解,该能量总和阈值可根据净空环境下前后两帧雷达信号对应的能量和变化范围来相应设置。
在第二种实施方式中,还可通过与在净空环境下预先测量的初始校准数据帧相比,若信号变化较小,则判定该相应时段内存在净空数据帧等。
示范性地,如图4所示,上述的相应时段内的净空数据帧的获取,包括:
子步骤S211,将所述相应时段内的每帧雷达信号的测量数据分别与处于净空环境下预先测量的初始参考数据帧的测量数据进行相同相位的采样点的差值比较。
其中,每帧雷达信号数据均由采样数量相同且相位相同的多个采样点(也称散点)的测量数据构成,通常地,每帧雷达信号数据以数组形式存 储,该数组中的每个元素用于存储对应相位的采样点的测量结果,例如,第i帧雷达信号数据记为数组s i=[s i1,s i2,…,s ia],其中,a为采样点的数量。其中,上述的测量结果可为测量的距离等。可以理解,上述的初始参考数据帧通过对毫米波雷达在净空环境下预先测量得到,通常采用出厂时配置的初始数据,但并不限于此。
示范性地,可将每帧雷达信号分别与初始参考数据帧在相同相位的采样点的测量数据进行差值比较,例如,第1帧雷达信号数据为s 1=[s 11,s 12,…,s 1a],初始参考数据帧为s ref=[s 1,s 2,…,s a],于是,通过将数组中对应位置的元素进行作差,可得到每个相位下的差值,即a个差值。其中,该幅值变化阈值可根据实际需求来设置。
子步骤S212,若存在帧数量超过预设数量的连续数据帧集合,所述连续数据帧集合中的各帧雷达信号数据均满足在相同相位的采样点的差值小于幅值变化阈值,则判定所述连续数据帧集合为净空数据帧。
进而,判断这a个差值是否均小于幅值变化阈值。于是,若连续多帧信号均满足与初始参考数据帧计算得到的差值均小于该幅值变化阈值,则表明在这段连续时间内,毫米波雷达采集的信号无明显信号变化。因此,可以判定满足上述条件的这些连续数据帧即为净空数据帧。
此外,在第三种实施方式中,考虑到获取到的这些多帧雷达信号数据还可能是上一次使用毫米波雷达进行目标物体跟踪的数据,故通过该多帧雷达信号数据检测到这段时间内的信号无明显变化,且判断出正在追踪的目标物体存在一个距离逐渐变远直至消失在探测范围内的过程,则可判定自在目标消失的时刻起采集的数据则为净空数据帧。
其中,每帧雷达信号数据均由数量相同且相位相同的多个采样点的测量数据构成。示范性地,如图5所示,上述的相应时段内存在的净空数据帧的获取,包括:
子步骤S311,根据所述测量数据计算所述相应时段内的每相邻两帧雷达信号中的相同相位的采样点对应的距离,得到每个相位的采样点在连续时刻下对应的距离数组。
例如,第i帧雷达信号的数据为s i=[s i1,s i2,…,s ia],s i中的每个元素所存储的值即为对应相位的采样点测量得到的距离,通过将前后两帧的数组中对应位置的元素进行作差,例如,第1帧和第2帧中的第1个元素的差值为(s 11-s 21),则可得到一个由a个相位的采样点对应的距离差值所构成的距离数组Δs1,其中,Δs1中的每个元素表示前后两帧信号中在同一相位下的采样点的距离差值。可以理解,每相邻两帧信号都存在一个上述的距离数组。对于获取到的N帧雷达信号,则可得到N-1个距离数组。
子步骤S312,若存在数组数量超过预设数量的多个采样点的距离数组中距离变化趋势均呈逐步减小趋势且最终减小到零,则判定在距离均减小至零的时刻作为进入净空环境的时刻,将进入净空环境后的连续多帧雷达信号数据作为净空数据帧。
进而,判断这N-1个距离数组中的同一相位的距离差值是否呈逐步减小趋势且最终减小到零,例如,对每个距离数组中的第1位元素、第2位元素以及第3位元素等依次进行距离变化趋势判断,从而判定正在跟踪的目标是否退出探测范围,于是,在判断出目标逐渐远离探测范围后,则判定将进入净空环境时刻。
可以理解,在实际运用中,毫米波雷达通常会在指定应用场景下启用,在目标物体逐渐消失后的连续数秒或更多时间内,通常为本次使用结束。由于距离下一次使用存在一段净空时间,因此,将监测到目标物体退出探测范围后的时刻作为进入净空环境的时刻,从而得到净空数据帧。
应当明白的是,上述的预设数量在不同的实施方式由于描述对象的不同,可有不同的取值。上述几种具体的方式仅为示例。对于净空环境的判 定,并不仅限于上述几种方式,对于基于上述几种思路衍生或变换得到的其他方式,也应当属于本申请的保护范围。
于是,在判断出存在净空数据帧后,则利用这些净空数据帧来计算该待校准时刻对应的校准数据帧。可选地,若不存在净空数据帧,则不执行后续的校准数据帧计算操作,或者也可利用预先存储的初始参考数据帧作为该待校准时刻对应的校准数据帧等。
示范性地,基于净空数据帧来计算校准数据帧,包括:将净空数据帧中每帧数据的具有相同相位的采样点的测量数据进行求和后再取平均值,得到不同相位的采样点的平均值;然后,利用得到的所有相位的采样点的平均值构成该待校准时刻对应的校准数据帧。
其中,各帧净空数据帧均由数量相同且相位相同的多个采样点的测量数据构成,于是,可将每帧净空数据帧中相同位置的元素进行相加再取平均值,例如,若获取到k帧净空数据帧,若第j帧为
Figure PCTCN2021117788-appb-000001
其中,j的取值为1,2,…,k。于是将各帧的第1位元素相加再取平均,即
Figure PCTCN2021117788-appb-000002
可以得到第1相位的采样点的平均值。其他相位的采样点的平均值计算过程类似。进而,将每个相位的采样点的平均值一起构成上述的校准数据帧。
步骤S130,利用所述校准数据帧对所述待校准时刻获取的用于检测跟踪目标的原始雷达信号数据帧进行校准。
示范性地,得到待校准时刻的校准数据帧后,当利用该毫米波雷达进行目标物体检测时,例如,如图6所示,在用户手势识别场景下,对用户的手是否存在进行检测;又或者在用户心跳识别场景下,对用户身体进行检测等,则可利用该校准数据帧对获取的原始雷达信号数据帧进行静态校准,即通过将原始雷达信号数据帧与该校准数据帧进行对应相位的采样点 的测量数据进行作差,即可得到抵消固定背景信号的目标反射信号。进而,根据得到的目标反射信号可对目标物体是否存在进行检测等。
进一步可选地,考虑到手持终端可能会发生位置变化,还可通过运动传感器来监测手持终端的位置是否发生较大变化,通常地,在不同环境下,其对应的背景环境也可能会发生较大变化。为了保证在新的环境下能够得到较准确的测量结果,可根据环境变化而及时触发校准数据帧的更新操作。
在一种实施例中,该动态校准方法还包括:
通过手持终端的运动传感器检测手持终端是否发生位置移动;在检测到手持终端发生位置移动且移动的距离超过距离阈值时,可按照上述步骤S110-S120获取新的校准数据帧,以作为下一待校准时刻对应的校准数据帧。最后,利用该新的校准数据帧来替换上一次计算的待校准时刻对应的校准数据帧,即对校准数据帧进行一次更新。
本实施例的毫米波雷达的动态校准方法通过对采集到的数据进行持续缓存记录,以便利用待校准时刻之前的一段较近的时间内存在的净空数据来计算待校准时刻对应的校准数据帧,进而对当前或后续时刻在检测目标物体时对原始雷达信号进行校准。通过净空检测来进行动态校准,可降低外部环境变化对毫米波雷达的测量结果的影响,从而提高测量准确性等。
实施例2
请参照图7,基于上述实施例1的方法,本实施例提出一种毫米波雷达的动态校准装置,应用于手持终端,如手机、平板等。示范性地,该毫米波雷达的动态校准装置100包括:
获取模块110,配置为获取待校准时刻之前的相应时段内的多帧雷达信号数据。
计算模块120,配置为根据所述相应时段内存在的净空数据帧确定所述待校准时刻对应的校准数据帧,所述净空数据帧为探测范围内无跟踪目标 时采集的雷达信号数据帧。
校准模块130,配置为利用所述校准数据帧对所述待校准时刻获取的用于检测跟踪目标的原始雷达信号数据帧进行校准。
进一步地,上述的计算模块120包括净空计算子模块121和校准计算子模块122。
在第一种实施方式中,净空计算子模块121配置为计算所述相应时段内的每帧雷达信号的频谱,若存在帧数量超过预设数量的连续数据帧集合,所述连续数据帧集合中的任意相邻两帧中相同频率的峰值差值均小于峰值变化阈值,或者,所述连续数据帧集合中的任意相邻两帧中所有频率的峰值差值对应的能量总和小于能量总和阈值,则判定所述连续数据帧集合为净空数据帧。
在第二种实施方式中,净空计算子模块121配置为将所述相应时段内的每帧雷达信号的测量数据分别与处于净空环境下预先测量的初始参考数据帧的测量数据进行相同相位的采样点的差值比较;若存在帧数量超过预设数量的连续数据帧集合,所述连续数据帧集合中的各帧雷达信号数据均满足在相同相位的采样点的所述差值小于幅值变化阈值,则判定所述连续数据帧集合为净空数据帧。
在第三种实施方式中,净空计算子模块121配置为根据所述测量数据计算所述相应时段内的每相邻两帧雷达信号中的相同相位的采样点对应的距离,得到每个相位的采样点在连续时刻下对应的距离数组;若存在数组数量超过预设数量的多个采样点的所述距离数组中距离变化趋势均呈逐步减小趋势且最终减小到零,则判定在所述距离均减小到零的时刻为进入净空环境的时刻,将进入净空环境后的连续多帧雷达信号数据作为净空数据帧。
而校准计算子模块122配置为将由所述净空计算子模块确定的所述净 空数据帧中每帧数据的具有相同相位的采样点的测量数据进行求和后再取平均值,得到不同相位的采样点的平均值;利用得到的所有相位的采样点的所述平均值构成待校准时刻对应的校准数据帧。
可以理解,上述实施例1的可选项同样适用于本实施例的方法,故在此不再重复描述。
本申请还提供了一种手持终端,如手机、平板等,示范性地,该手持终端包括毫米波雷达、处理器和存储器,其中,毫米波雷达通过发射和接收毫米波信号以进行目标物体检测,例如可运用于用户手势识别、人脸识别等各种场景;存储器存储有计算机程序,处理器通过运行所述计算机程序,从而使该手持终端执行上述的毫米波雷达的动态校准方法或者上述毫米波雷达的动态校准装置中的各个模块的功能。
本申请还提供了一种可读存储介质,用于储存上述手持终端设备中使用的所述计算机程序。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置和方法,也可以通过其它的方式实现。以上所描述的装置实施例仅仅是示意性的,例如,附图中的流程图和结构图显示了根据本申请的多个实施例的装置、方法和计算机程序产品的可能实现的体系架构、功能和操作。在这点上,流程图或框图中的每个方框可以代表一个模块、程序段或代码的一部分,所述模块、程序段或代码的一部分包含一个或多个用于实现规定的逻辑功能的可执行指令。也应当注意,在作为替换的实现方式中,方框中所标注的功能也可以以不同于附图中所标注的顺序发生。例如,两个连续的方框实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这依所涉及的功能而定。也要注意的是,结构图和/或流程图中的每个方框、以及结构图和/或流程图中的方框的组合,可以用执行规定的功能或动作的专用的基于硬件的系统来实现,或者可以用专用硬件与计算机指令的组合来实 现。
另外,在本申请各个实施例中的各功能模块或单元可以集成在一起形成一个独立的部分,也可以是各个模块单独存在,也可以两个或更多个模块集成形成一个独立的部分。
所述功能如果以软件功能模块的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是智能手机、个人计算机、服务器、或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。

Claims (20)

  1. 一种毫米波雷达的动态校准方法,应用于手持终端,所述方法包括:
    获取待校准时刻之前的相应时段内的多帧雷达信号数据;
    根据所述相应时段内存在的净空数据帧确定所述待校准时刻对应的校准数据帧,所述净空数据帧为探测范围内无跟踪目标时采集的雷达信号数据帧;
    利用所述校准数据帧对所述待校准时刻获取的用于检测跟踪目标的原始雷达信号数据帧进行校准。
  2. 根据权利要求1所述的方法,其中,还包括:
    通过所述手持终端的运动传感器检测所述手持终端是否发生位置移动;
    在检测到所述手持终端发生位置移动且移动的距离超过距离阈值时,获取下一待校准时刻对应的校准数据帧;
    将所述待校准时刻对应的校准数据帧更新为所述下一待校准时刻对应的校准数据帧。
  3. 根据权利要求1或2所述的方法,其中,所述获取待校准时刻之前的相应时段内的多帧雷达信号数据,包括:
    在接收到用户输入的校准指令的情况下,获取待校准时刻之前的相应时段内的多帧雷达信号数据;和/或,
    在所述手持终端距离上一次校准时间的时间间隔达到动态校准定时时长的情况下,获取待校准时刻之前的相应时段内的多帧雷达信号数据。
  4. 根据权利要求1所述的方法,其中,所述相应时段内的所述净空数据帧的获取,包括:
    计算所述相应时段内的每帧雷达信号的频谱,若存在帧数量超过预设数量的连续数据帧集合,所述连续数据帧集合中的任意相邻两帧中相 同频率的峰值差值均小于峰值变化阈值,或者,所述连续数据帧集合中的任意相邻两帧中所有频率的峰值差值对应的能量总和小于能量总和阈值,则判定所述连续数据帧集合为净空数据帧。
  5. 根据权利要求1所述的方法,其中,每帧雷达信号数据均由数量相同且相位相同的多个采样点的测量数据构成,所述相应时段内的所述净空数据帧的获取,包括:
    将所述相应时段内的每帧雷达信号的测量数据分别与处于净空环境下预先测量的初始参考数据帧的测量数据进行相同相位的采样点的差值比较;
    若存在帧数量超过预设数量的连续数据帧集合,所述连续数据帧集合中的各帧雷达信号数据均满足在相同相位的采样点的所述差值小于幅值变化阈值,则判定所述连续数据帧集合为净空数据帧。
  6. 根据权利要求1所述的方法,其中,每帧雷达信号数据均由数量相同且相位相同的多个采样点的测量数据构成,所述相应时段内的所述净空数据帧的获取,包括:
    根据所述测量数据计算所述相应时段内的每相邻两帧雷达信号中的相同相位的采样点对应的距离,得到每个相位的采样点在连续时刻下对应的距离数组;
    若存在数组数量超过预设数量的多个采样点的所述距离数组中距离变化趋势均呈逐步减小趋势且最终减小到零,则判定在所述距离均减小到零的时刻为进入净空环境的时刻,将进入净空环境后的连续多帧雷达信号数据作为净空数据帧。
  7. 根据权利要求4至6中任一项所述的方法,其中,各帧净空数据帧均由数量相同且相位相同的多个采样点的测量数据构成,所述根据所述相应时段内存在的净空数据帧确定所述待校准时刻对应的校准数据帧, 包括:
    将所述净空数据帧中每帧数据的具有相同相位的采样点的测量数据进行求和后再取平均值,得到不同相位的采样点的平均值;
    利用得到的所有相位的采样点的所述平均值构成所述待校准时刻对应的校准数据帧。
  8. 根据权利要求1、2、4至6中任一项所述的方法,其中,还包括:
    在不存在净空数据帧的情况下,利用预先存储的初始参考数据帧作为所述待校准时刻对应的校准数据帧。
  9. 根据权利要求1、2、4至6中任一项所述的方法,其中,所述利用所述校准数据帧对所述待校准时刻获取的用于检测跟踪目标的原始雷达信号数据帧进行校准,包括:
    将所述原始雷达信号数据帧与所述校准数据帧进行对应相位的采样点的测量数据进行作差,得到抵消固定背景信号的目标反射信号;
    所述方法还包括:根据所述目标反射信号对目标物体是否存在进行检测。
  10. 一种毫米波雷达的动态校准装置,应用于手持终端,所述装置包括:
    获取模块,配置为获取待校准时刻之前的相应时段内的多帧雷达信号数据;
    计算模块,配置为根据所述相应时段内存在的净空数据帧确定所述待校准时刻对应的校准数据帧,所述净空数据帧为探测范围内无跟踪目标时采集的雷达信号数据帧;
    校准模块,配置为利用所述校准数据帧对所述待校准时刻获取的用于检测跟踪目标的原始雷达信号数据帧进行校准。
  11. 根据权利要求10所述的装置,其中,所述装置还包括:运动传感 器;
    所述运动传感器,配置为检测所述手持终端是否发生位置移动;
    所述获取模块,还配置为在检测到所述手持终端发生位置移动且移动的距离超过距离阈值时,获取下一待校准时刻对应的校准数据帧;将所述待校准时刻对应的校准数据帧更新为所述下一待校准时刻对应的校准数据帧。
  12. 根据权利要求10或11所述的装置,其中,所述获取模块,具体配置为:
    在接收到用户输入的校准指令的情况下,获取待校准时刻之前的相应时段内的多帧雷达信号数据;和/或,
    在所述手持终端距离上一次校准时间的时间间隔达到动态校准定时时长的情况下,获取待校准时刻之前的相应时段内的多帧雷达信号数据。
  13. 根据权利要求10所述的装置,其中,所述获取模块,具体配置为:
    计算所述相应时段内的每帧雷达信号的频谱,若存在帧数量超过预设数量的连续数据帧集合,所述连续数据帧集合中的任意相邻两帧中相同频率的峰值差值均小于峰值变化阈值,或者,所述连续数据帧集合中的任意相邻两帧中所有频率的峰值差值对应的能量总和小于能量总和阈值,则判定所述连续数据帧集合为净空数据帧。
  14. 根据权利要求10所述的装置,其中,每帧雷达信号数据均由数量相同且相位相同的多个采样点的测量数据构成,所述获取模块,具体配置为:
    将所述相应时段内的每帧雷达信号的测量数据分别与处于净空环境下预先测量的初始参考数据帧的测量数据进行相同相位的采样点的差值比较;
    若存在帧数量超过预设数量的连续数据帧集合,所述连续数据帧集 合中的各帧雷达信号数据均满足在相同相位的采样点的所述差值小于幅值变化阈值,则判定所述连续数据帧集合为净空数据帧。
  15. 根据权利要求10所述的装置,其中,每帧雷达信号数据均由数量相同且相位相同的多个采样点的测量数据构成,所述获取模块,具体配置为:
    根据所述测量数据计算所述相应时段内的每相邻两帧雷达信号中的相同相位的采样点对应的距离,得到每个相位的采样点在连续时刻下对应的距离数组;
    若存在数组数量超过预设数量的多个采样点的所述距离数组中距离变化趋势均呈逐步减小趋势且最终减小到零,则判定在所述距离均减小到零的时刻为进入净空环境的时刻,将进入净空环境后的连续多帧雷达信号数据作为净空数据帧。
  16. 根据权利要求13至15中任一项所述的装置,其中,各帧净空数据帧均由数量相同且相位相同的多个采样点的测量数据构成,计算模块,配置为
    将所述净空数据帧中每帧数据的具有相同相位的采样点的测量数据进行求和后再取平均值,得到不同相位的采样点的平均值;
    利用得到的所有相位的采样点的所述平均值构成所述待校准时刻对应的校准数据帧。
  17. 根据权利要求10、11、13至15中任一项所述的装置,其中,所述计算模块,还配置为在不存在净空数据帧的情况下,利用预先存储的初始参考数据帧作为所述待校准时刻对应的校准数据帧。
  18. 根据权利要求10、11、13至15中任一项所述的装置,其中,所述校准模块,具体配置为将所述原始雷达信号数据帧与所述校准数据帧进行对应相位的采样点的测量数据进行作差,得到抵消固定背景信号的 目标反射信号;
    所述计算模块,还配置为根据所述目标反射信号对目标物体是否存在进行检测。
  19. 一种手持终端,所述手持终端包括毫米波雷达、处理器和存储器,所述毫米波雷达用于发射和接收毫米波信号,所述存储器存储有计算机程序,所述计算机程序在所述处理器上执行时,实施权利要求1-9中任一项所述的毫米波雷达的动态校准方法。
  20. 一种可读存储介质,其存储有计算机程序,所述计算机程序在处理器上执行时,实施根据权利要求1-9中任一项所述的毫米波雷达的动态校准方法。
PCT/CN2021/117788 2021-03-09 2021-09-10 毫米波雷达的动态校准方法、装置和手持终端 WO2022188381A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110257225.5A CN115047413A (zh) 2021-03-09 2021-03-09 毫米波雷达的动态校准方法、装置和手持终端
CN202110257225.5 2021-03-09

Publications (1)

Publication Number Publication Date
WO2022188381A1 true WO2022188381A1 (zh) 2022-09-15

Family

ID=83156189

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/117788 WO2022188381A1 (zh) 2021-03-09 2021-09-10 毫米波雷达的动态校准方法、装置和手持终端

Country Status (2)

Country Link
CN (1) CN115047413A (zh)
WO (1) WO2022188381A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117031471A (zh) * 2023-10-08 2023-11-10 中国科学技术大学 用于近场三维的手持式合成孔径雷达成像方法和系统

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06289139A (ja) * 1993-03-31 1994-10-18 Fujitsu Ten Ltd 運転支援装置
TW200638059A (en) * 2004-12-22 2006-11-01 Raytheon Co System and technique for calibrating radar arrays
CN106526556A (zh) * 2016-12-01 2017-03-22 无锡孚嘉航海科技有限公司 一种用于雷达数据修正的快速标校方法
CN108535706A (zh) * 2017-03-06 2018-09-14 通用汽车环球科技运作有限责任公司 雷达i-q失配测量和校准
CN108663664A (zh) * 2017-03-28 2018-10-16 通用汽车环球科技运作有限责任公司 用于自动多雷达校准的工具
CN108828542A (zh) * 2018-08-03 2018-11-16 中国航空工业集团公司雷华电子技术研究所 一种机载气象雷达噪声周期动态校准方法
CN111624566A (zh) * 2020-07-30 2020-09-04 北汽福田汽车股份有限公司 雷达安装角度校准方法及装置
CN111856415A (zh) * 2020-06-19 2020-10-30 中国电子科技集团公司第二十七研究所 一种雷达数据处理设备超前校准方法、装置和存储介质

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06289139A (ja) * 1993-03-31 1994-10-18 Fujitsu Ten Ltd 運転支援装置
TW200638059A (en) * 2004-12-22 2006-11-01 Raytheon Co System and technique for calibrating radar arrays
CN106526556A (zh) * 2016-12-01 2017-03-22 无锡孚嘉航海科技有限公司 一种用于雷达数据修正的快速标校方法
CN108535706A (zh) * 2017-03-06 2018-09-14 通用汽车环球科技运作有限责任公司 雷达i-q失配测量和校准
CN108663664A (zh) * 2017-03-28 2018-10-16 通用汽车环球科技运作有限责任公司 用于自动多雷达校准的工具
CN108828542A (zh) * 2018-08-03 2018-11-16 中国航空工业集团公司雷华电子技术研究所 一种机载气象雷达噪声周期动态校准方法
CN111856415A (zh) * 2020-06-19 2020-10-30 中国电子科技集团公司第二十七研究所 一种雷达数据处理设备超前校准方法、装置和存储介质
CN111624566A (zh) * 2020-07-30 2020-09-04 北汽福田汽车股份有限公司 雷达安装角度校准方法及装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117031471A (zh) * 2023-10-08 2023-11-10 中国科学技术大学 用于近场三维的手持式合成孔径雷达成像方法和系统
CN117031471B (zh) * 2023-10-08 2024-02-23 中国科学技术大学 用于近场三维的手持式合成孔径雷达成像方法和系统

Also Published As

Publication number Publication date
CN115047413A (zh) 2022-09-13

Similar Documents

Publication Publication Date Title
US20180275259A1 (en) Method and apparatus for echo detection
CN111366919B (zh) 基于毫米波雷达的目标检测方法和装置、电子设备、存储介质
WO2021134449A1 (zh) 一种强杂波下fmcw阵列雷达运动多目标弱信号检测方法、装置、计算机设备及存储介质
CN109564270B (zh) 定位信息确定方法及装置
CN112684428B (zh) 一种基于信号代理的多目标恒虚警率检测方法
US7864100B2 (en) Self-referencing radar pulse detector
WO2022188381A1 (zh) 毫米波雷达的动态校准方法、装置和手持终端
CN113050071B (zh) 激光雷达数据处理方法、装置、设备及存储介质
CN113504523B (zh) 基于目标特性的自适应恒虚警方法、设备及其存储介质
WO2022188382A1 (zh) 毫米波雷达的目标检测方法、装置和手持终端
KR101813790B1 (ko) 특징 기반 다중 센서 정보 융합 장치 및 방법
CN112485783A (zh) 目标探测方法、装置、计算机设备和存储介质
KR101017590B1 (ko) 거리 기만 재밍 측정 방법 및 장치
CN114642432A (zh) 一种注意力评估方法、装置、设备及存储介质
KR102011959B1 (ko) 펄스 압축 과정에서 간섭신호를 탐지하는 레이더 수신신호 처리 방법 및 그를 위한 장치
CN113050070B (zh) 激光雷达数据处理方法、装置、设备及存储介质
CN114167361B (zh) 一种捷变频雷达数据流控制设计方法
US11175774B2 (en) Method for determining a time of contact on a capacitive sensor element
US20220120896A1 (en) Proximity sensor based on ratio change detection
CN117686993A (zh) 基于毫米波雷达的智能马桶人体检测方法和装置
Li et al. An Improved Multiple Threshold Decision Method Based on Long-Term Integration
CN113960555B (zh) 目标太赫兹时域回波处理方法、装置、设备及存储介质
EP4325240A1 (en) Apparatus, electronic device and method for target motion detection
CN116540222A (zh) 基于粒子继承与回溯的检测前跟踪方法及其装置
Wei et al. Design of Improved Reference Window for 2D CFAR and Implementation on Zynq

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21929846

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 17/01/2024)