WO2022188321A1 - 一种激光切割系统 - Google Patents

一种激光切割系统 Download PDF

Info

Publication number
WO2022188321A1
WO2022188321A1 PCT/CN2021/105224 CN2021105224W WO2022188321A1 WO 2022188321 A1 WO2022188321 A1 WO 2022188321A1 CN 2021105224 W CN2021105224 W CN 2021105224W WO 2022188321 A1 WO2022188321 A1 WO 2022188321A1
Authority
WO
WIPO (PCT)
Prior art keywords
prism
light
laser cutting
daowei
cutting system
Prior art date
Application number
PCT/CN2021/105224
Other languages
English (en)
French (fr)
Inventor
王雪辉
李曾卓
温彬
王建刚
Original Assignee
武汉华工激光工程有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉华工激光工程有限责任公司 filed Critical 武汉华工激光工程有限责任公司
Publication of WO2022188321A1 publication Critical patent/WO2022188321A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/38Removing material by boring or cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/073Shaping the laser spot

Definitions

  • the present application relates to the technical field of laser cutting, and in particular, to a laser cutting system.
  • the laser cutting system is mainly used for cutting samples. After the light spot formed by the light emitted by the laser cutting system is shaped, the light spot will show an asymmetric shape. In the process of processing, most applications require the light spot to follow the cutting track to rotate to make the light spot
  • the normal line of the distribution is parallel or perpendicular to the running direction of the cutting track, as shown in Figure 10. In the case where the light spot distribution is an isosceles triangle, the normal line of the light spot distribution is the symmetry axis of the isosceles triangle, as shown in Figure 10
  • the cutting track of the curve is drawn, and the normal of the light spot distribution is perpendicular to the tangent of the cutting track.
  • the traditional method is to rotate the sample to match the sample to move in the plane, so that the light spot can follow the sample, so as to realize the cutting.
  • this method is difficult to improve the processing speed, and The system is complex and the cost is high.
  • the embodiments of the present application can be implemented as follows: the embodiments of the present application provide a laser cutting system configured to use a spot formed by light to cut a sample, the laser cutting system comprising a light source emitting part, a light emitting part, an optical part, a rotating part and a A fixing member, the fixing member is configured to fix the sample, the light emitted by the light source emitting member and the light emitting member is incident on the rotating member after passing through the optical member, and the rotating member is configured to make the light emitted from the light emitting member and the light emitting member enter the rotating member.
  • the light spot formed by the light passing through the optical member rotates, so that the rotating light spot cuts the sample fixed on the fixing member.
  • the Dove prism includes a first Dove prism and a second Dove prism, and the second Dove prism is arranged on the downstream side of the first Dove prism, The light passes through the first Dowell prism and the second Dowell prism in sequence and then irradiates on the sample.
  • the driving member is connected with the first Daowei prism and the second Daowei prism, and drives the first Daowei prism and the second Daowei prism.
  • the prisms rotate synchronously.
  • the placement angle of the first Daowei prism is 90 degrees different from the placement angle of the second Daowei prism.
  • the side of the first Daowei prism close to the second Daowei prism is in contact with the side of the second Daowei prism close to the first Daowei prism.
  • the fixing member is further configured to drive the sample to move along the cutting path.
  • the Dove prism has a top surface and a bottom surface disposed opposite to each other, and the incident surface connects the top surface and the bottom surface, and is inclined toward the bottom surface.
  • FIG. 1 is a schematic structural diagram of a laser cutting system provided by an embodiment of the present application.
  • FIG. 2 is a schematic diagram of the optical path of parallel light entering the Dove prism when the Dove prism of the laser cutting system provided by the embodiment of the present application is placed at 0 degrees.
  • FIG. 3 is a schematic diagram illustrating the working principle of the Dove prism.
  • FIG. 4 is a schematic diagram of the optical path of parallel light entering the Dove prism when the Dove prism of the laser cutting system provided by the embodiment of the present application is placed at 90 degrees.
  • FIG. 5 is a light path diagram of a Dove prism placed at 0 degrees by incident light with asymmetric light spot distribution of the laser cutting system provided by the embodiment of the present application.
  • FIG 8 is a light path diagram of incident light with asymmetric light spot distribution of the laser cutting system provided by the embodiment of the present application passing through the first Daowei prism placed at 0 degrees and the second Daowei prism placed at 90 degrees.
  • FIG. 9 is a light path diagram of incident light with asymmetric light spot distribution of the laser cutting system provided by the embodiment of the present application passing through the first Daowei prism placed at 90 degrees and the second Daowei prism placed at 180 degrees.
  • FIG. 10 is a schematic diagram illustrating the relationship between the spot distribution and the laser cutting curve.
  • 100-laser cutting system 110-light emission part; 120-optical part; 130-rotating part; 132-driving part; 134-Dover prism; 1341-incidence surface; 1343-exit surface; Bottom surface; 136-first Daowei prism; 138-second Daowei prism; 140-fixing piece.
  • the laser cutting system 100 is mainly configured to cut the sample. After the light from the light source is shaped, the light spot presents a state of asymmetric distribution, and in the process of processing, most applications require the light spot to follow the cutting trajectory to rotate, so that the shaped light spot
  • the normal line of the distribution is parallel or perpendicular to the running direction of the cutting track, and the light spot distribution can be in various non-centrally symmetrical shapes such as triangles and trapezoids.
  • the traditional way is to rotate the sample to make the sample move in the plane so that the light spot can follow the sample, so as to realize the cutting.
  • this method is difficult to improve the processing speed.
  • the system is complex and the cost is high.
  • the laser cutting system 100 includes a light emitting part 110 , an optical part 120 , a rotating part 130 and a fixing part 140 , the fixing part 140 is set to fix the sample, and the light emitted by the light emitting part 110 is incident on the optical part 120 , and then Incident to the rotating member 130, the rotating member 130 is arranged to rotate the light spot formed by the light from the optical member 120, so that the normal line of the light spot distribution is parallel or perpendicular to the running direction of the cutting track, and the rotating light spot is used to cut and fix on the fixing member 140 on the sample.
  • the light from the light emitting member 110 is refracted or reflected by the optical member 120 and then incident on the rotating member 130 .
  • the rotating member 130 is set to rotate the light spot, that is, the light spot is rotated and irradiated to the fixed member 140 . on the sample to cut the sample.
  • the sample is cut by irradiating the rotating light spot so that the normal line of the light spot distribution is parallel or perpendicular to the running direction of the cutting track, so that the relative positional relationship between the light spot distribution and the cutting track is always maintained. Consistent, so that the light intensity received by the sample is consistent, and the processing speed of the sample can be improved.
  • it is only necessary to add the rotating member 130 to the entire existing laser cutting system 100 and the system is simple, thereby reducing the manufacturing cost of the laser cutting system 100 .
  • the sample since the light spot can be rotated by the rotating member 130, the sample only needs to follow the cutting trajectory in the plane to move, and the operation is simple and convenient.
  • the rotating member 130 includes a driving member 132 and a Dove prism 134.
  • the Dove prism 134 is arranged between the optical member 120 and the fixing member 140.
  • the driving member 132 is connected to the Dove prism 134 in a driving manner, and is arranged as a driving channel.
  • the Wei prism 134 is rotated to rotate the light spot.
  • the rotation of the light spot in this embodiment means that the light spot formed by the outgoing light emitted from the Dove prism 134 rotates relative to the light spot formed by the incident light incident on the Dove prism 134 .
  • FIG. 2 is a schematic diagram of the light path of the parallel light incident on the Dove prism 134 when the Dove prism 134 is placed at 0 degrees.
  • the 0-degree placement means that the oppositely disposed top surface 1345 and bottom surface 1347 of the Dove prism 134 described below are placed parallel to the horizontal direction.
  • the cross section of the Dove prism 134 is roughly trapezoidal, and has an incident surface 1341 and an exit surface 1343 with two trapezoidal waists arranged opposite to each other.
  • the light from the optical element 120 is incident into the interior of the Dove prism 134 from the incident surface 1341 as incident light; the exit surface 1343 is located on the side of the fixing element 140 .
  • the Dove prism 134 has a top surface 1345 and a bottom surface 1347 disposed opposite to each other, the top surface 1345 is the top side of the trapezoid, and the bottom surface 1347 is the bottom side of the trapezoid.
  • the incident surface 1341 is connected to the top surface 1345 and the bottom surface 1347 , and is inclined toward the bottom surface 1347 , and the bottom angle formed with the bottom surface 1347 is ⁇ 1 .
  • the exit surface 1343 connects the top surface 1345 and the bottom surface 1347, and is inclined toward the bottom surface 1347, and the bottom angle formed with the bottom surface 1347 is ⁇ 2.
  • FIG. 3 is a schematic diagram for explaining the working principle of the Dove prism. According to the different incident angles of the light entering the Dove prism 134, the exit angle of the light emitted from the Dove prism 134 is also different. For example, when parallel light enters the Dove prism 134, the schematic diagram of the optical path is shown in FIG.
  • the optical path through the Dove prism 134 will increase, so that the light spot formed by the outgoing light and the light spot formed by the incident light are reversed in the XY plane, as shown in Figures 1 and 2,
  • the Z direction is the light propagation direction
  • the Y direction is the direction perpendicular to the Z direction
  • the X direction is the direction perpendicular to the Y direction and the Z direction, and is perpendicular to the outward direction of the paper.
  • the direction of the arrow in FIG. 2 indicates the direction in which the light intensity distribution of the light spot gradually weakens, which is also referred to as the light spot direction.
  • the above parameters need to be Satisfy the following relationship:
  • FIG. 4 is a schematic diagram of the optical path of parallel light entering the Dove prism 134 when the Dove prism is placed at 134 degrees and 90 degrees.
  • the 90-degree placement means that the Dove prism 134 is placed from the 0-degree state shown in FIG. 2 with the optical axis as the rotation centerline.
  • Fig. 4 shows a state in which the Dove prism 134 is rotated 90 degrees to the outside of the paper from the state of being placed at 0 degrees as shown in Fig. 2 .
  • Explanation of the principle of the Dove prism 134 rotating the light spot Assuming that the light spot entering the optical component is a strip-shaped light intensity distribution, as shown in the principle of Figure 2, the strip-shaped light intensity distribution light spot passes through the track placed at 0 degrees.
  • the light spot direction is rotated by 180 degrees; in addition, as shown in Figure 4, the light spot with a long light intensity distribution passes through the Dowell prism 134 placed at 90 degrees, and the light spot direction is rotated by 0 degrees, which can also be considered as It is rotated 360 degrees; and so on, every time the Dove prism 134 rotates by 1 degree, the spot direction of the outgoing light is rotated 2 degrees compared to the spot direction of the incident light.
  • FIG. 5 is a light path diagram of a Dove prism 134 placed at 0 degrees through a light spot formed by incident light with asymmetric light spot distribution.
  • FIG. 6 is a light path diagram of the light spot formed by the incident light with asymmetric light spot distribution passing through the Dove prism 134 placed at 90 degrees.
  • FIG. 7 is the optical path diagram of the incident light with asymmetric light spot distribution passing through the Dove prism 134 placed at 180 degrees.
  • the 180-degree placement means that the Dove prism 134 is placed at 0 degrees as shown in FIG. 2 with the optical axis as the rotation center line.
  • Fig. 7 shows the state in which the Dove prism 134 is rotated 180 degrees from the state of being placed at 0 degrees as shown in Fig.
  • the optical path of the light passing through the Dove prism 134 is the dotted line in FIG. 2; when the Dove prism 134 is placed at 90 degrees, only the Y plane is seen, and the light passes through the The optical path of the Wei prism 134 is the portion of the dashed line in the 90 degree placement of the prism of FIG. 4 .
  • the Dove prism 134 rotates with its optical axis as the center, the light with a divergence angle in the Y direction will change its optical path in the Y plane.
  • the Dove prism 134 is placed at 0 degrees, its optical path is the largest.
  • the Dove prism 134 when the Dove prism 134 is placed at 90 degrees, its optical path is the smallest. Moreover, this light has no divergence angle in the X direction, so during the rotation process of the Dove prism 134, the optical path of the incident light in the X direction can remain unchanged.
  • the rotating member 130 may have a first Daowei prism 136 and a first Daowei prism 136 located downstream of the first Daowei prism 136 and opposite to the first Daowei prism 136 .
  • the optical axis of the Dove prism 136 is rotated by 90 degrees to the same second Dove prism 138.
  • the two Dove prisms rotate synchronously. In this way, the second Dove prism 138 can compensate the optical path in the Y direction, so that the optical path in the Y direction remains unchanged.
  • FIG. 8 is the optical path diagram of the asymmetric light passing through the first Viridian prism 136 placed at 0 degrees and the second Viridian prism 138 placed at 90 degrees;
  • FIG. 8 is the asymmetric light passing through 90 degrees.
  • the placement angle of the first Daowei prism 136 and the placement angle of the second Daowei prism 138 are different by 90 degrees or 180 degrees.
  • the rotation of the light spot can be realized by the above method; according to the actual use, the compensation prism can be matched or not matched. Coupled with the synchronization of the control system, the direction of the rotation of the light spot matches the direction of the rotation of the cutting track, and the high-speed rotation processing of the light spot can be realized.
  • the present application breaks through the traditional limitation of using the Dove prism 134 that the incident light must be parallel light. Through the cooperation of the two Dove prisms 136 and 138, the light spot of the divergent or converging light can also be rotated after passing through the system. And by controlling the angle of the incident light, the divergence angle, and the design of the Dove prism, the position, angle, and focal power of the beam can be changed, and the angle of the outgoing light can be arbitrarily rotated according to the processing requirements.
  • the driving members 132 are both connected to the first Daowei prism 136 and the second Daowei prism 138 .
  • the driving member 132 drives the first Daowei prism 136 and the second Daowei prism 138 to rotate synchronously, so that the first Daowei prism 136 and the second Daowei prism 138 can remain relatively stationary, even if the first Daowei prism 136 and the second Daowei prism 138 are relatively stationary.
  • the placement angles between the Dove prisms 138 can always maintain a difference of 90 degrees, which can ensure that the optical path of the light passing through the Dove prisms 134 remains unchanged.
  • the first Daowei prism 136 is in contact with the second Daowei prism 138 , that is, the side of the first Daowei prism 136 close to the second Daowei prism 138 and the side of the second Daowei prism 138 close to the first Daowei prism 136 touch.
  • the first Daowei prism 136 may not be in contact with the second Daowei prism 138, but the first Daowei prism 136 and the second Daowei prism 138 are spaced apart.
  • the distance between them is a length that can prevent the light emitted from the first Daowei prism 136 from being incident into the second Daowei prism 138, and is not particularly limited, as long as the light emitted from the first Daowei prism 136 can be incident. It only needs to enter the second Daowei prism 138 and exit from the exit surface of the second Daowei prism 138 .
  • the solution equivalent to this embodiment, which can achieve the effect of this embodiment, is all within the protection scope of this application.
  • the fixture 140 is also configured to move the sample along the cutting path.
  • the sample when the rotated light spot from the rotating member 130 is irradiated on the sample, the sample only needs to move in a plane according to a preset cutting path to form a finished product.
  • the light emitted by the light emitting element 110 is refracted or reflected by the optical element 120 and then incident on the rotating element 130 , and the rotating element 130 is used to rotate the light spot, so that the rotated light spot
  • the sample fixed on the fixture 140 is irradiated to cut the sample, etc.
  • the rotated light spot is irradiated on the sample, the light intensity received by the sample is uniform everywhere, which improves the processing speed of the sample.
  • it is only necessary to add the rotating member 130 to the existing laser cutting system 100 and the system is simple, thereby reducing the manufacturing cost of the laser cutting system 100 .

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Laser Beam Processing (AREA)

Abstract

一种激光切割系统(100)包括光线发射件(110)、光学件(120)、旋转件(130)及固定件(140),固定件(140)配置成固定样品,光线发射件(110)发出的光线经过光学件(120) 的折射或反射后入射至旋转件(130)上,旋转件(130)配置成使来自光线发射件(110)并经过光学件(120)后的光线所形成的光斑发生旋转,使旋转的光斑照射到固定于固定件(140)上的样品并对样品进行切割;旋转件(130)包括驱动件(132)及道威棱镜(134),进一步的,道威棱镜(134)包括第一道威棱镜(136)及第二道威棱镜(138)。该系统使得光斑被旋转件(130)旋转后照射到样品上时,样品各处接收到的光强一致,从而提高样品的加工速度。同时,只需在现有的激光切割系统中加入旋转件(130)即可,系统简单,降低了激光切割系统的制造成本。

Description

一种激光切割系统
相关申请的交叉引用
本申请要求于2021年03月10日提交中国专利局的申请号为202110262038.6、名称为“一种激光切割系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及激光切割技术领域,具体而言,涉及一种激光切割系统。
背景技术
激光切割系统主要用于切割样品,激光切割系统发出的光线形成的光斑经过整形后,光斑会呈现不对称形状,而在加工过程中,大部分的应用都需要光斑跟随切割轨迹进行旋转,使光斑分布的法线平行或者垂直于切割轨迹的运行方向,如图10所示,在光斑分布呈等腰三角形的情况下,光斑分布的法线为该等腰三角形的对称轴,在图10中示出曲线的切割轨迹,光斑分布的法线与切割轨迹的切线垂直。
为了能够使不对称形状的光斑均匀地切割样品,传统的方式为了光斑能够跟随样品,通过旋转样品的方式配合样品在平面内运动,从而实现切割,然而这种方式很难提高加工的速度,而且系统复杂,成本较高。
发明内容
本申请的目的在于提供一种激光切割系统,其能够使样品各处接收到的光斑强度一致,提高样品的加工速度。同时,只需在整个激光切割系统中加入一个旋转件即可,系统简单,从而降低了激光切割系统的制造成本。
本申请的实施例可以这样实现:本申请实施例提供了一种激光切割系统,设置成采用光线形成的光斑切割样品,所述激光切割系统包括光源发射件光线发射件、光学件、旋转件及固定件,所述固定件配置成固定样品,所述光源发射件光线发射件发出的光线经过所述光学件后入射至所述旋转件,所述旋转件配置成使来自所述光线发射件并经过所述光学件后的光线所形成的光斑发生旋转,使旋转的光斑切割固定在所述固定件上的样品。
可选地,在上述的激光切割系统中,所述旋转件包括驱动件及道威棱镜,所述道威棱镜设置在所述光学件及所述固定件之间,所述驱动件与所述道威棱镜传动连接, 配置成驱动所述道威棱镜旋转,以使光斑发生旋转。
可选地,在上述的激光切割系统中,所述道威棱镜包括第一道威棱镜及第二道威棱镜,所述第二道威棱镜设置于所述第一道威棱镜的下游侧,光线依次穿过所述第一道威棱镜及所述第二道威棱镜后照射到所述样品上。
可选地,在上述的激光切割系统中,所述驱动件与所述第一道威棱镜及所述第二道威棱镜传动连接,驱动所述第一道威棱镜及所述第二道威棱镜同步旋转。
可选地,在上述的激光切割系统中,所述第一道威棱镜的放置角度与所述第二道威棱镜的放置角度相差90度。
可选地,在上述的激光切割系统中,所述第一道威棱镜靠近所述第二道威棱镜的一侧与所述第二道威棱镜靠近所述第一道威棱镜的一侧接触。
可选地,在上述的激光切割系统中,所述固定件还配置成带动所述样品沿切割路径移动。
可选地,在上述的激光切割系统中,所述道威棱镜具有相对设置的入射面及出射面,所述入射面靠近所述光线发射件设置,所述出射面靠近所述固定件设置。
可选地,在上述的激光切割系统中,所述道威棱镜具有相对设置的顶面及底面,所述入射面连接所述顶面及所述底面,并朝向所述底面倾斜设置。
可选地,在上述的激光切割系统中,所述道威棱镜具有相对设置的顶面及底面,所述出射面连接所述顶面及所述底面,并朝向所述底面倾斜设置。
可选地,在上述的激光切割系统中,所述道威棱镜每以光轴为中心旋转1度,所述道威棱镜的出射光的光斑相比于入射光的光斑旋转2度。
可选地,在上述的激光切割系统中,来自所述光线发射件并经过所述光学件后的光线的光斑为非对称分布。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本申请的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1为本申请实施例提供的激光切割系统的结构示意图。
图2为本申请实施例提供的激光切割系统的道威棱镜0度放置时平行光进入道威棱镜的光路示意图。
图3为说明道威棱镜的工作原理的示意图。
图4为本申请实施例提供的激光切割系统的道威棱镜90度放置时平行光进入道威棱镜的光路示意图。
图5为本申请实施例提供的激光切割系统的光斑分布非对称的入射光经过0度放置的道威棱镜的光路图。
图6为本申请实施例提供的激光切割系统的光斑分布非对称的入射光经过90度放置的道威棱镜的光路图。
图7为本申请实施例提供的激光切割系统的光斑分布非对称的入射光经过180度放置的道威棱镜的光路图。
图8为本申请实施例提供的激光切割系统的光斑分布非对称的入射光经过0度放置的第一道威棱镜及90度放置的第二道威棱镜的光路图。
图9为本申请实施例提供的激光切割系统的光斑分布非对称的入射光经过90度放置的第一道威棱镜及180度放置的第二道威棱镜的光路图。
图10为说明光斑分布与激光切割曲线的关系的示意图。
标号说明:
100-激光切割系统;110-光线发射件;120-光学件;130-旋转件;132-驱动件;134-道威棱镜;1341-入射面;1343-出射面;1345-顶面;1347-底面;136-第一道威棱镜;138-第二道威棱镜;140-固定件。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。通常在此处附图中描述和示出的本申请实施例的组件可以以各种不同的配置来布置和设计。
因此,以下对在附图中提供的本申请的实施例的详细描述并非旨在限制要求保护的本申请的范围,而是仅仅表示本申请的选定实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步定义和解释。
在本申请的描述中,需要说明的是,若出现术语“上”、“下”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,或者是该发明产品使用时惯常摆放的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或 元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
此外,若出现术语“第一”、“第二”等仅用于区分描述,而不能理解为指示或暗示相对重要性。
需要说明的是,在不冲突的情况下,本申请的实施例中的特征可以相互结合。
请参阅图1,本实施例提供了一种激光切割系统100,本实施例提供的激光切割系统100能够使样品各处接收到的光强一致,提高样品的加工速度。
激光切割系统100主要设置成切割样品,来自光源的光线被整形后,光斑呈现不对称分布的状态,而在加工过程中,大部分的应用都需要光斑跟随切割轨迹进行旋转,使整形后的光斑分布的法线平行或者垂直于切割轨迹的运行方向,光斑分布可以为三角形、梯形等各种非中心对称的形状。
为了能够使不对称形状的光斑能够均匀地切割样品,传统的方式为了光斑能够跟随样品,以旋转样品的方式使样品在平面内运动,从而实现切割,然而这种方式很难提高加工的速度,而且系统复杂,成本较高。
在本实施例中,激光切割系统100包括光线发射件110、光学件120、旋转件130及固定件140,固定件140设置成固定样品,光线发射件110发出的光线入射至光学件120,进而入射至旋转件130,旋转件130设置成使来自光学件120的光线形成的光斑旋转,以使光斑分布的法线平行或者垂直于切割轨迹的运行方向,利用旋转的光斑切割固定在固定件140上的样品。
在本实施例中,来自光线发射件110的光线经过光学件120的折射或反射后入射到旋转件130,旋转件130设置成使光斑旋转,即,使光斑旋转并照射到固定在固定件140上的样品来对样品进行切割。通过使旋转的光斑以使光斑分布的法线平行或者垂直于切割轨迹的运行方向,照射到固定在固定件140上的样品来对样品进行切割,从而始终使光斑分布与切割轨迹的相对位置关系一致,使样品各处接收的光强一致,能够提高样品的加工速度。同时,只需在现有的整个激光切割系统100中加入旋转件130即可,系统简单,从而降低了激光切割系统100的制造成本。
在本实施例中,由于通过旋转件130能够使光斑旋转,因此样品只需在平面内跟随切割轨迹移动即可,操作简单、方便。
在本实施例中,旋转件130包括驱动件132及道威棱镜134,道威棱镜134设置在光学件120及固定件140之间,驱动件132与道威棱镜134传动连接,设置成驱动道威棱镜134旋转,以使光斑发生旋转。
本实施例中所说的光斑发生旋转是指从道威棱镜134射出的出射光所形成的光斑相对于入射至道威棱镜134的入射光所形成的光斑发生旋转。
图2为道威棱镜134以0度放置时平行光入射至道威棱镜134的光路示意图。0度放置指,下述的道威棱镜134的相对设置的顶面1345及底面1347与水平方向平行地放置。如图2和图3所示,道威棱镜134的横截面大致呈梯形,具有相对设置且为梯形的两个腰的入射面1341及出射面1343,入射面1341位于光线发射件110一侧,来自光学件120的光线作为入射光从入射面1341入射至道威棱镜134的内部;出射面1343位于固定件140一侧。
并且,道威棱镜134具有相对设置的顶面1345及底面1347,顶面1345为梯形的顶边,底面1347为梯形的底边。入射面1341连接顶面1345及底面1347,并朝向底面1347倾斜设置,与底面1347所成的底角为θ1。出射面1343连接顶面1345及底面1347,并朝向底面1347倾斜设置,与底面1347所成的底角为θ2,在统称底角θ1和底角为θ2时,仅称为底角θ。
下面,参照图2和图3,对道威棱镜使光线所形成的光斑旋转的原理进行说明。图3是用于说明道威棱镜的工作原理的示意图。根据光线入射至道威棱镜134的入射角的不同,从道威棱镜134出射的光线的出射角也不同,例如:平行光入射至道威棱镜134时,其光路示意图如图2所示,可以等效为一个可以旋转的平行平板,经过道威棱镜134的光程会增加,从而出射光所形成的光斑和入射光所形成的光斑在XY平面反转,如图1和图2所示,Z方向为光线传播方向,Y方向为与Z方向垂直的方向,且从底面1347朝向顶面1345方向,X方向是与Y方向和Z方向垂直的方向,为垂直纸面向外的方向。图2中的箭头方向表示光斑的光强分布逐渐减弱的方向,也称为光斑方向。
假设道威棱镜134的底角为θ,具体为,道威棱镜134的材料折射率为n,道威棱镜134入射面1341的宽和高为D,其底面1347长度为L,则上述参数需要满足以下关系:
Figure PCTCN2021105224-appb-000001
β=α-α’,其中α是入射角,α’是进入棱镜后的折射角;
Figure PCTCN2021105224-appb-000002
以保证光不从道威棱镜134的底面1347折射出去;
入射角和折射角满足sinα=n sinα′;
在使用道威棱镜134时,需要注意道威棱镜134的设计、检测,和入射光的检测,以确保光线的出射状态:
1)如果底角θ1和θ2不相等,且入射光为平行光,出射光的角度γ关系变为:sinγ=nsin(α′+θ1-θ2),γ≠α;
2)如果设计长度为L’,对于出射光的中心位置的偏移关系:Δh=(L’-L)tanβ。
图4为道威棱镜134度90度放置时平行光进入道威棱镜134的光路示意图,90度放置 指道威棱镜134从图2所示的0度放置的状态以光轴为旋转中心线向纸面外侧或纸面里侧旋转90度的状态,在图4中示出了道威棱镜134从图2所示的0度放置的状态向纸面外侧旋转90度的状态。对于道威棱镜134使光斑旋转的原理说明:假设进入该光学元器件的光斑为长条形的光强分布,如图2原理所示,长条形光强分布的光斑经过0度放置的道威棱镜134后,其光斑方向旋转了180度;另外,如图4所示长条形光强分布的光斑经过90度放置的道威棱镜134后,光斑方向旋转了0度,也可以认为是旋转了360度;以此类推,道威棱镜134每旋转1度,出射光的光斑方向相比于入射光光斑方向旋转2度。
另外,图5为光斑分布非对称的入射光所形成的光斑经过0度放置的道威棱镜134的光路图。图6为光斑分布非对称的入射光所形成的光斑经过90度放置的道威棱镜134的光路图。图7为光斑分布非对称的入射光经过180度放置的道威棱镜134的光路图,180度放置指道威棱镜134从图2所示的0度放置的状态以光轴为旋转中心线向纸面外侧或纸面里侧旋转180度的状态,在图7中示出了道威棱镜134从图2所示的0度放置的状态向纸面外侧旋转180度的状态。如图5~7所示,在原理上,道威棱镜对于入射光线在X方向和Y方向的光程并不一致。这对于平行光或者旋转中心对称分布的光斑是没有影响的;但是当入射光斑分布非对称时,尤其是入射光仅在X方向和Y方向发散角不一样时,就会出现X、Y方向光程不一样的问题。如图5所示,入射光在Y方向有一个发散角。当道威棱镜134以0度放置时,仅看Y平面,光线通过道威棱镜134的光程是图2中的虚线部分;当道威棱镜134以90度放置时,仅看Y平面,光通过道威棱镜134的光程是图4棱镜90度放置中的虚线部分。很明显,道威棱镜134以其光轴为中心旋转时,Y方向有发散角的光线,其在Y平面的光程会发生变化,在道威棱镜134以0度放置时,其光程最大,在道威棱镜134以90度放置时,其光程最小。而且此光线在X方向没有发散角,所以在道威棱镜134旋转过程中,其入射光线在X方向的光程可以保持不变。
因此,为了使光线通过旋转件130后,维持旋转过程中X、Y方向光程一致,旋转件130可以具有第一道威棱镜136和位于第一道威棱镜136的下游且相对于该第一道威棱镜136的光轴旋转90度的相同的第二道威棱镜138这两个道威棱镜,两个棱镜同步地旋转。这样,第二道威棱镜138可以把Y方向上的光程补偿回来,使Y方向上的光程保持不变。
请参阅图8及图9,其中图8为非对称光经过0度放置的第一道威棱镜136及90度放置的第二道威棱镜138的光路图;图8为非对称光经过90度放置的第一道威棱镜136及180度放置的第二道威棱镜138的光路图。
第一道威棱镜136的放置角度与第二道威棱镜138的放置角度相差90度或相差180度。通过上述方法可以实现光斑的旋转;根据实际使用的不同,可以配合或者不配合补偿棱镜。再加上控制系统的同步搭配,使得光斑旋转的方向和切割轨迹旋转的方向匹配,就可以实 现光斑高速旋转加工。并且本申请突破了传统使用道威棱镜134入射光必须为平行光的限制,通过两个道威棱镜136和138的相互配合使得发散或者汇聚的光的光斑经过系统后也可以旋转。并且可以通过控制入射光的角度、发散角、道威棱镜的设计改变光束出射的位置、角度、光焦度等,并且保证出射光角度可以随加工需求任意旋转。
驱动件132均与第一道威棱镜136及第二道威棱镜138连接。驱动件132驱动第一道威棱镜136及第二道威棱镜138同步转动,使第一道威棱镜136与第二道威棱镜138能够保持相对静止,即使第一道威棱镜136及第二道威棱镜138之间的放置角度能够始终保持90度的差,能够保证光线通过道威棱镜134的光程不变。
第一道威棱镜136与第二道威棱镜138接触,即,第一道威棱镜136靠近第二道威棱镜138的一侧与第二道威棱镜138靠近第一道威棱镜136的一侧接触。
第一道威棱镜136与第二道威棱镜138之间相互接触,使得第一道威棱镜136的射出光能够入射到第二道威棱镜138内保证光线能够从第二道威棱镜138的出射面射出。
需要说明的是,在本申请中,可选地,第一道威棱镜136可以不与第二道威棱镜138接触,而在第一道威棱镜136与第二道威棱镜138具有间隔,二者之间的间隔距离为能够避免从第一道威棱镜136射出的光线无法入射到第二道威棱镜138内的长度,不特别限定,只要能够使从第一道威棱镜136射出的光线入射到第二道威棱镜138内并从第二道威棱镜138的出射面射出即可,与本实施例等同的方案,能够达到本实施例的效果的,均在本申请的保护范围内。
固定件140还设置成带动样品沿切割路径移动。在本实施例中,当来自旋转件130的被旋转的光斑照射在样品上,样品只需在平面内按照预设的切割路径移动即可形成成品。
可以理解的是,固定件140带动样品移动,可以是带动样品在平面在滑动,通过滑槽和滑轨的方式实现。包括第一道威棱镜136及第二道威棱镜138,可以认为第一道威棱镜136与第二道威棱镜138的形状及结构与道威棱镜134的形状及结构相同。也就是说,第一道威棱镜136及第二道威棱镜138均为梯形,第一道威棱镜136具有入射面1341、出射面1343、顶面1345及底面1347。同样的,第二道威棱镜138具有入射面1341、出射面1343、顶面1345及底面1347,第二道威棱镜138的入射面1341与第一道威棱镜136的出射面1343接触。
综上所述,本实施例提供的激光切割系统100,光线发射件110发出的光线经过光学件120的折射或反射后入射至旋转件130,利用旋转件130使光斑旋转,使旋转后的光斑照射到固定于固定件140上的样品来对样品进行切割等,当旋转后的光斑照射到样品上时,样品各处接收到的光强一致,提高样品的加工速度。同时,只需在现有的激光切割系统100中加入旋转件130即可,系统简单,从而降低了激光切割系统100的制造成本。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。
工业实用性
本申请的实施例提供了一种激光切割系统,涉及激光切割技术领域。激光切割系统包括光线发射件、光学件、旋转件及固定件,固定件配置成固定样品,光源发射件光线发射件发出的光线经过光学件后入射至旋转件,旋转件配置成使来自光线发射件并经过光学件后的光线所形成的光斑发生旋转,使旋转的光斑切割固定在固定件上的样品。

Claims (12)

  1. 一种激光切割系统,设置成采用光线形成的光斑切割样品,所述激光切割系统包括光源发射件光线发射件、光学件、旋转件及固定件,所述固定件配置成固定样品,所述光源发射件光线发射件发出的光线经过所述光学件后入射至所述旋转件,所述旋转件配置成使来自所述光线发射件并经过所述光学件后的光线所形成的光斑发生旋转,使旋转的光斑切割固定在所述固定件上的样品。
  2. 根据权利要求1所述的激光切割系统,其中,所述旋转件包括驱动件及道威棱镜,所述道威棱镜设置在所述光学件及所述固定件之间,所述驱动件与所述道威棱镜传动连接,配置成驱动所述道威棱镜旋转,以使光斑发生旋转。
  3. 根据权利要求2所述的激光切割系统,其中,所述道威棱镜包括第一道威棱镜及第二道威棱镜,所述第二道威棱镜设置于所述第一道威棱镜的下游侧,光线依次穿过所述第一道威棱镜及所述第二道威棱镜后照射到所述样品上。
  4. 根据权利要求3所述的激光切割系统,其中,所述驱动件与所述第一道威棱镜及所述第二道威棱镜传动连接,驱动所述第一道威棱镜及所述第二道威棱镜同步旋转。
  5. 根据权利要求3所述的激光切割系统,其中,所述第一道威棱镜的放置角度与所述第二道威棱镜的放置角度相差90度。
  6. 根据权利要求3所述的激光切割系统,其中,所述第一道威棱镜靠近所述第二道威棱镜的一侧与所述第二道威棱镜靠近所述第一道威棱镜的一侧接触。
  7. 根据权利要求2所述的激光切割系统,其中,所述固定件还配置成带动所述样品沿切割路径移动。
  8. 根据权利要求2~7中任一项所述的激光切割系统,其中,所述道威棱镜具有相对设置的入射面及出射面,所述入射面靠近所述光线发射件设置,所述出射面靠近所述固定件设置。
  9. 根据权利要求8所述的激光切割系统,其中,所述道威棱镜具有相对设置的顶面及底面,所述入射面连接所述顶面及所述底面,并朝向所述底面倾斜设置。
  10. 根据权利要求8所述的激光切割系统,其中,所述道威棱镜具有相对设置的顶面及底面,所述出射面连接所述顶面及所述底面,并朝向所述底面倾斜设置。
  11. 根据权利要求2~10中任一项所述的激光切割系统,其中,
    所述道威棱镜每以光轴为中心旋转1度,所述道威棱镜的出射光的光斑相比于入射光的光斑旋转2度。
  12. 根据权利要求1~11中任一项所述的激光切割系统,其中,来自所述光线发射件并经过所述光学件后的光线的光斑为非对称分布。
PCT/CN2021/105224 2021-03-10 2021-07-08 一种激光切割系统 WO2022188321A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110262038.6A CN112846546B (zh) 2021-03-10 2021-03-10 一种激光切割系统
CN202110262038.6 2021-03-10

Publications (1)

Publication Number Publication Date
WO2022188321A1 true WO2022188321A1 (zh) 2022-09-15

Family

ID=75993892

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/105224 WO2022188321A1 (zh) 2021-03-10 2021-07-08 一种激光切割系统

Country Status (2)

Country Link
CN (1) CN112846546B (zh)
WO (1) WO2022188321A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112846546B (zh) * 2021-03-10 2022-04-26 武汉华工激光工程有限责任公司 一种激光切割系统

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2168263Y (zh) * 1993-04-02 1994-06-08 北京理工大学 分离式圆束偏器
US20090045176A1 (en) * 2005-06-28 2009-02-19 Welf Wawers Device for drilling and for removing material using a laser beam
CN102950385A (zh) * 2012-11-16 2013-03-06 中科中涵激光设备(福建)股份有限公司 一种激光束旋转加工微小圆锥形孔的系统及方法
US20130175243A1 (en) * 2012-01-11 2013-07-11 The Ex One Company, Llc Laser Drilling and Trepanning Device
EP2962802A1 (en) * 2014-07-04 2016-01-06 Ideko, S. Coop Laser inspection and machining head
CN107627038A (zh) * 2017-11-08 2018-01-26 钦成科技有限公司 加工非圆孔的激光系统
CN109803786A (zh) * 2016-09-30 2019-05-24 康宁股份有限公司 使用非轴对称束斑对透明工件进行激光加工的设备和方法
CN112008239A (zh) * 2020-07-22 2020-12-01 中国科学院西安光学精密机械研究所 一种螺旋扫描激光加工装置及加工方法
CN112247380A (zh) * 2020-10-26 2021-01-22 武汉先河激光技术有限公司 一种基于道威棱镜的旋切打孔装置
CN112846546A (zh) * 2021-03-10 2021-05-28 武汉华工激光工程有限责任公司 一种激光切割系统

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1156685C (zh) * 2001-12-26 2004-07-07 中国科学院上海光学精密机械研究所 光纤倏逝波生物传感器
CN103730825B (zh) * 2014-01-03 2016-05-11 中国航空工业集团公司北京航空制造工程研究所 一种免调节的可变腔长激光器
CN104162741B (zh) * 2014-07-31 2016-06-01 北京万恒镭特机电设备有限公司 激光加工装置及其方法
DE102018200036B3 (de) * 2018-01-03 2019-01-17 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Optische Anordnung zur direkten Laserinterferenzstrukturierung
CN212019780U (zh) * 2020-03-27 2020-11-27 深圳市韵腾激光科技有限公司 一种激光旋转钻孔装置
CN111458892A (zh) * 2020-05-18 2020-07-28 青岛鲲腾量子应用技术有限公司 一种非破坏涡旋光场分束装置

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2168263Y (zh) * 1993-04-02 1994-06-08 北京理工大学 分离式圆束偏器
US20090045176A1 (en) * 2005-06-28 2009-02-19 Welf Wawers Device for drilling and for removing material using a laser beam
US20130175243A1 (en) * 2012-01-11 2013-07-11 The Ex One Company, Llc Laser Drilling and Trepanning Device
CN102950385A (zh) * 2012-11-16 2013-03-06 中科中涵激光设备(福建)股份有限公司 一种激光束旋转加工微小圆锥形孔的系统及方法
EP2962802A1 (en) * 2014-07-04 2016-01-06 Ideko, S. Coop Laser inspection and machining head
CN109803786A (zh) * 2016-09-30 2019-05-24 康宁股份有限公司 使用非轴对称束斑对透明工件进行激光加工的设备和方法
CN107627038A (zh) * 2017-11-08 2018-01-26 钦成科技有限公司 加工非圆孔的激光系统
CN112008239A (zh) * 2020-07-22 2020-12-01 中国科学院西安光学精密机械研究所 一种螺旋扫描激光加工装置及加工方法
CN112247380A (zh) * 2020-10-26 2021-01-22 武汉先河激光技术有限公司 一种基于道威棱镜的旋切打孔装置
CN112846546A (zh) * 2021-03-10 2021-05-28 武汉华工激光工程有限责任公司 一种激光切割系统

Also Published As

Publication number Publication date
CN112846546A (zh) 2021-05-28
CN112846546B (zh) 2022-04-26

Similar Documents

Publication Publication Date Title
EP2297512B1 (en) Illumination device comprising a light guide
TWI539211B (zh) 導光板及使用導光板之背光模組
TWI615659B (zh) 光源模組及其稜鏡片
WO2022188321A1 (zh) 一种激光切割系统
US8979350B2 (en) Light guide plate and backlight module using same
TWM538172U (zh) 光源模組
JP2013187059A (ja) 導光板及び面光源装置
WO2017183661A1 (ja) 導光板及び面照明装置
JP2011146369A (ja) 光源装置
WO2016086594A1 (zh) 一种导光板及其制备方法、背光模组
JPH0768395A (ja) ガラスの切断方法およびその装置
TWI481910B (zh) 背光模組
JP6130164B2 (ja) 面光源装置および表示装置
WO2015005424A1 (ja) 光学素子及び該光学素子を含む照明装置
JP2012079681A (ja) 導光板及び面光源装置
WO2016082249A1 (zh) 导光板、背光模组及显示器
TWM350026U (en) Light guide plate
JP2008058873A (ja) 光学シート及びそれを用いた照明装置並びに平面表示装置
TWM564730U (zh) 光源模組與導光板
JP7015132B2 (ja) 光照射装置
US20150323732A1 (en) Light flux controlling member, light emitting device, surface light source device and display apparatus
JP2009181772A (ja) 照明装置及びこれを用いた液晶表示装置
JP2743223B2 (ja) 原稿走査装置
JPH05142537A (ja) 液晶用照明装置
US20210260695A1 (en) Lightguide device and laser processing device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21929791

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21929791

Country of ref document: EP

Kind code of ref document: A1