WO2022188293A1 - 一种带有集成镜头的视觉检测系统 - Google Patents

一种带有集成镜头的视觉检测系统 Download PDF

Info

Publication number
WO2022188293A1
WO2022188293A1 PCT/CN2021/101342 CN2021101342W WO2022188293A1 WO 2022188293 A1 WO2022188293 A1 WO 2022188293A1 CN 2021101342 W CN2021101342 W CN 2021101342W WO 2022188293 A1 WO2022188293 A1 WO 2022188293A1
Authority
WO
WIPO (PCT)
Prior art keywords
axis
lens
axis screw
view
view lens
Prior art date
Application number
PCT/CN2021/101342
Other languages
English (en)
French (fr)
Inventor
邓耀华
孔令驹
孙成
李伟杰
卢绮雯
刘夏丽
Original Assignee
广东工业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东工业大学 filed Critical 广东工业大学
Publication of WO2022188293A1 publication Critical patent/WO2022188293A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination

Definitions

  • the invention relates to the technical field of engine detection, in particular to a visual detection system with an integrated lens.
  • the coolant circulation channel in the engine is a narrow, long and curved concave groove.
  • defect detection of the concave groove used for the coolant circulation is an important part of ensuring the quality of the engine.
  • the visual inspection technology of the prior art adopts a top-down lens to obtain an image above the detection interface. Because the concave groove is narrow, long and curved, it is difficult for external visible light to reach the interior of the concave groove. affect the efficiency and quality of detection.
  • the CT detection method in the prior art utilizes X-ray scanning and does not require visible light imaging, but is expensive and inefficient, and is not suitable for online detection of large quantities of engines.
  • the purpose of the present invention is to provide a visual inspection system with an integrated lens, which can capture images of the side surface to be inspected and the bottom surface to be inspected at close range, and the obtained images are of high quality.
  • a visual inspection system with an integrated lens for obtaining defect images on the side to be inspected and the bottom surface of a concave groove inside an engine including a small camera, a multi-axial drive, and a device for placing the engine to be inspected the stage;
  • the small camera includes a lens fixing rod, a base, a fixing seat, a top-view lens and a side-view lens;
  • the fixed seat is suspended above the object platform, and the multi-axial driving device is drive-connected with the fixed seat, and the multi-axial driving device drives the fixed seat to move up and down, back and forth, or left and right;
  • the middle part of the base is provided with an installation hole; the lens fixing rod is inserted into the base through the installation hole from top to bottom; the base is rotatably installed in the middle part of the fixed seat;
  • the top-view lens is installed downward on the bottom end of the lens fixing rod; the side-view lens is installed on the outer side of the lens fixing rod;
  • the multi-axial driving device drives the fixing seat to drive the lens fixing rod to move down to the concave groove, and then drives the lens fixing rod to move forward, backward, left and right in the concave groove.
  • the side view is as follows: The lens faces the side to be inspected to capture images, and the top-view lens captures images towards the bottom to be inspected.
  • the side-view lens includes a lower side-view lens and an upper side-view lens; the upper side-view lens is installed above the lower side-view lens;
  • Both the lower side-view lens and the upper side-view lens are installed obliquely toward the bottom of the stage, and the center line of the lower side-view lens and the upper side-view lens and the center line of the top-view lens are clamped.
  • the angles are all less than 90°;
  • Ring-shaped LED light sources are installed on the edges of the top-view lens, the lower side-view lens and the upper side-view lens.
  • the bottom of the mounting hole is provided with a card slot, two sides of the card slot are provided with two circular-shaped protrusions, and the two circular-shaped protrusions are symmetrically distributed in the center of the card groove. bottom;
  • the small camera also includes a fixing ring, which is sleeved with the middle part of the lens fixing rod; the lens fixing rod is a cylinder, the upper end of the fixing ring is a circular body, and the lower end of the fixing ring is a circular body.
  • the edge of the ring extends outward to form a ring body corresponding to the two circular projections; the fixing ring is inserted into the card slot, and the outer side of the lower end of the fixing ring abuts against the card inner side of the groove.
  • the depth-of-field range of the top-view lens is not less than 30mm, and the depth-of-field ranges of the lower side-view lens and the upper side-view lens are both 3-30mm;
  • the field of view is 120-150°;
  • the pixel values of the top-view lens, the lower side-view lens and the upper side-view lens are all 1-3 million;
  • the lens fixing rod 2 is an alloy hard tube, and the diameter of the lens fixing rod 2 is 5-8 mm.
  • the multi-axial drive device includes a Z-axis drive device
  • the Z-axis drive device includes a Z-axis screw, a Z-axis screw carriage, a Z-axis motor and a fixing frame;
  • the fixed frame is suspended above the stage; the Z-axis screw carriage is installed on the front side of the fixed frame facing the stage; the Z-axis motor is installed on the Z-axis
  • the top of the shaft screw carriage; the Z-axis screw is installed in the Z-axis screw carriage, the Z-axis motor is connected to the top of the Z-axis screw, and the Z-axis screw is connected to the top of the Z-axis screw.
  • the bottom end is rotatably fixed on the bottom of the Z-axis screw carriage;
  • the fixing seat is slidably installed on the front side of the Z-axis screw carriage facing the stage, and the rear end of the fixing seat is abutted against the rod body of the Z-axis screw and is in a transmission fit;
  • the Z-axis motor drives the Z-axis screw rod to drive the fixing seat to slide up and down along the Z-axis screw rod, thereby driving the lens fixing rod to move up and down.
  • the multi-axial drive device further includes an R-axis drive device;
  • the R-axis driving device includes an R-axis motor, a rotating synchronous belt and a synchronous wheel;
  • the synchronizing wheel is installed on the upper part of the base, and the synchronizing wheel is located below the fixing seat;
  • the R-axis motor is installed in the middle of the fixed seat, and the R-axis motor is located between the base and the Z-axis screw carriage;
  • the output end of the R-axis motor goes down through the fixing seat and is matched with the rear end of the rotating synchronous belt; the front end of the rotating synchronous belt is sleeved on the synchronous wheel, and the rotating synchronous belt and the The synchronizing wheel drive is matched;
  • the R-axis motor drives the synchronous wheel to drive the rotating synchronous belt to move, thereby driving the fixing base and the lens fixing rod to rotate in the radial direction.
  • the multi-axial driving device further includes a Y-axis driving device and an X-axis driving device;
  • the X-axis driving device includes an X-axis screw, an X-axis screw carriage, an X-axis motor and an X-axis transmission belt;
  • the X-axis motor is installed on the right end of the X-axis screw carriage, the X-axis screw is installed in the X-axis screw carriage, the X-axis motor and the X-axis screw
  • the right end of the transmission connection is connected, and the left end of the X-axis screw rod is fixed to the left end of the X-axis screw sliding frame;
  • the Y-axis drive device includes a Y-axis screw, a Y-axis motor, a Y-axis transmission belt and two Y-axis screw carriages;
  • the two Y-axis screw carriages are respectively erected on the left and right sides of the stage.
  • the spacing between the Y-axis screw carriages is greater than the length in the left-right direction of the stage;
  • the left and right ends of the X-axis screw sliding frame are respectively slidably erected above the two Y-axis screw sliding frames; the fixing frame is slidably erected on the X-axis screw sliding frame facing the other side.
  • the front side of the stage; one end of the X-axis transmission belt is in driving fit with the rod body of the X-axis screw rod, and the other end of the X-axis transmission belt is fixedly connected to the fixing frame;
  • the X-axis motor drives the X-axis screw rod to drive the X-axis transmission belt and the fixing frame to slide left and right along the front side of the X-axis screw sliding frame, thereby driving the lens fixing rod to move between the two positions. Move left and right between the Y-axis screw carriages;
  • the Y-axis motor is installed at the rear end of the Y-axis screw carriage close to the left side of the stage; the Y-axis screw is installed in the Y-axis screw carriage on the left side, so The Y-axis motor is drive-connected with the rear end of the Y-axis screw, and the front end of the Y-axis screw is rotatably mounted on the front end of the Y-axis screw carriage on the left; One end is matched with the rod body of the Y-axis screw rod, and the other end of the Y-axis transmission belt is fixedly connected with the left end of the X-axis screw rod carriage;
  • the Y-axis motor drives the Y-axis screw through the Y-axis transmission belt to drive the X-axis screw carriage to slide back and forth above the two Y-axis screw carriages, thereby driving the lens fixing rod Move back and forth between the two Y-axis screw carriages.
  • the movement trajectory acquisition module includes a plane camera
  • the plane camera is installed above the object stage, and the plane camera is used to obtain an image of the plane where the upper surface of the concave groove is located;
  • the movement track acquisition module is electrically connected with the plane camera;
  • the pixel value of the flat camera is 21-30 million.
  • the movement trajectory acquisition module further includes a plane light source
  • the plane light source is installed above the stage, and the plane light source surrounds the plane camera.
  • the movement trajectory acquisition module further includes a height sensor
  • the movement track acquisition module is electrically connected with the height sensor
  • the height sensor is installed above the stage, close to the outer side of the plane camera.
  • the visual inspection system with an integrated lens of the present invention includes an integrated lens composed of a side-view lens and a top-view lens, and also includes a multi-axial driving device, and the multi-axial driving device can Drive the lens fixing rod installed with the integrated lens to move down into the concave groove to be inspected, and can drive the lens fixing rod to move forward, backward, left and right in the concave groove, and obtain the side to be inspected and the side to be inspected at a close distance. Therefore, the visual inspection system with integrated lens of the present invention has good inspection quality and work efficiency.
  • the present invention also includes a movement trajectory acquisition module, the movement trajectory acquisition module includes a plane camera, a plane light source and a height sensor, which can effectively obtain the contour image of the upper surface of the concave groove and the relative height information, so as to improve the multi-dimensional performance.
  • the axial drive device drives the accuracy of the moving paths of the top-view lens and the side-view lens, thereby improving the detection quality and work efficiency of the visual inspection system with an integrated lens, and can realize on-line detection of concave groove defects inside the engine.
  • the invention solves the technical problem that the poor imaging effect of the prior art visual detection system seriously affects the detection efficiency and quality.
  • FIG. 1 is a schematic structural diagram of the visual inspection system with an integrated lens according to an embodiment of the present invention
  • Fig. 2 is the described visual inspection system with integrated lens in Fig. 1 does not contain the structural representation of the movement track acquisition module part;
  • FIG. 3 is a schematic structural diagram of the Z-axis driving device and the R-axis driving device part of the vision detection system with integrated lens in FIG. 1;
  • FIG. 4 is a schematic structural diagram of the lens fixing rod part of the vision detection system with integrated lens in FIG. 1;
  • FIG. 5 is a schematic structural diagram of a part of a multi-axial drive device of the vision inspection system with an integrated lens in FIG. 1;
  • FIG. 6 is a schematic structural diagram of another viewing direction of the R-axis driving device part of the vision detection system with integrated lens in FIG. 3;
  • Fig. 7 is the sectional view of Fig. 6;
  • stage 1 lens fixing rod 2; multi-axial drive device 3; base 4; height sensor 5; plane camera 6; plane light source 7; top view lens 21; side view lens 22; Rod sliding frame 31; Y-axis screw sliding frame 32; Z-axis screw sliding frame 33; R-axis motor 34; fixing seat 35; fixing frame 36; card slot 41;
  • first and second are only used for descriptive purposes, and should not be construed as indicating or implying relative importance or implying the number of indicated technical features. Thus, a feature defined as “first” or “second” may expressly or implicitly include one or more of that feature. In the description of the present invention, unless otherwise specified, "plurality" means two or more.
  • a visual inspection system with an integrated lens for acquiring defect images on the side to be inspected and the bottom surface to be inspected of a concave groove inside an engine including a small camera, a multi-axial drive device 3 and a device for placing the inspection to be inspected Stage 1 of the engine;
  • the small camera includes a lens fixing rod 2, a base 4, a fixing seat 35, a top-view lens 21 and a side-view lens 22;
  • the fixed seat 35 is suspended above the stage 1 , the multi-axial drive device 3 is connected to the fixed seat 35 in a driving manner, and the multi-axial drive device 3 drives the fixed seat 35 to move up and down, back and forth or left and right ;
  • the middle part of the base 4 is provided with a mounting hole; the lens fixing rod 2 is inserted into the base 4 through the mounting hole from top to bottom; the base 4 is rotatably installed in the middle of the fixing seat 35;
  • the top-view lens 21 is downwardly installed on the bottom end of the lens fixing rod 2; the side-view lens 22 is installed on the outer side of the lens fixing rod 2;
  • the multi-axial driving device 3 drives the fixing seat 35 to drive the lens fixing rod 2 to move down to the concave groove, and then drives the lens fixing rod 2 to move forward, backward, left and right in the concave groove,
  • the side-view lens 22 captures images toward the side to be inspected, and the top-view lens 21 captures images toward the bottom surface to be inspected.
  • the visual inspection system with integrated lens includes an integrated lens composed of a side-view lens 22 and a top-view lens 21, and also includes a multi-axis drive device 3, the multi-axis
  • the driving device 3 can drive the lens fixing rod 2 installed with the integrated lens to move down into the concave groove to be detected, and drive the lens fixing rod 2 to move back and forth, left and right in the concave groove. Therefore, the visual inspection system with integrated lens of the present invention has higher detection quality and work efficiency of visual inspection.
  • the side-view lens 22 includes a lower side-view lens 221 and an upper side-view lens 222; the upper side-view lens 222 is installed above the lower side-view lens 221;
  • the lower side-view lens 221 and the upper side-view lens 222 are installed obliquely toward the bottom of the stage 1 .
  • the included angles between the center lines are all less than 90°;
  • Ring-shaped LED light sources are installed on the edges of the top-view lens 21 , the lower side-view lens 221 and the upper side-view lens 222 .
  • the side-viewing lens 22 includes a lower side-viewing lens 221 and an upper side-viewing lens 222, and both are installed obliquely toward the bottom of the stage 1, which can expand the image obtained on the side to be inspected. area of the image.
  • the annular LED light source provides illumination for the top view lens 21, the lower side view lens 221 and the upper side view lens 222, which can improve the imaging quality of the top view lens 21, the lower side view lens 221 and the upper side view lens 222, thereby improving the performance of the present invention.
  • the inspection quality of the vision inspection system with integrated lens is provided.
  • the bottom of the mounting hole is provided with a card slot 41
  • two sides of the card slot 41 are provided with two circular-shaped protrusions, and the two circular-shaped protrusions are symmetrically distributed on the card the bottom of the groove 41;
  • the small camera also includes a fixing ring 23, which is sleeved with the middle of the lens fixing rod 2; the lens fixing rod 2 is a cylinder, and the upper end of the fixing ring 23 is a circular ring, so The edge of the lower end of the fixing ring 23 extends outward to form a ring body corresponding to the two circular projections; the fixing ring 23 is inserted into the slot 41, and the The outer side of the lower end abuts against the inner side of the card slot 41 .
  • the fixing ring 23 is inserted into the slot 41 , and the outer surface of the lower end of the fixing ring 23 abuts against the inner surface of the slot 41 , which can raise the lens fixing rod. 2, thereby improving the imaging stability of the top-view lens 21, the lower side-view lens 221 and the upper side-view lens 222, thereby improving the detection quality of the visual inspection system with integrated lens of the present invention.
  • the depth of field of the top-view lens 21 is not less than 30 mm, and the depth of field of the lower side-view lens 221 and the upper side-view lens 222 are both 3-30 mm; the top-view lens 21, the lower side-view lens 221 and the The field of view of the upper side-view lens 222 is 120-150°; the pixel values of the top-view lens 21, the lower side-view lens 221 and the upper side-view lens 222 are all 1-3 million;
  • the lens fixing rod 2 is an alloy hard tube, and the diameter of the lens fixing rod 2 is 5-8 mm.
  • the top-view lens 21, the lower side-view lens 221 and the upper side-view lens 222 with a field of view of 120-150° have wider imaging areas; the pixel value of 1-3 million can effectively guarantee the top-view lens 21, the lower side-view lens 221
  • the images obtained with the upper side view lens 222 have higher definition.
  • the multi-axial drive device 3 includes a Z-axis drive device
  • the Z-axis driving device includes a Z-axis screw, a Z-axis screw sliding frame 33, a Z-axis motor 331 and a fixing frame 36;
  • the fixing frame 36 is suspended above the stage 1; the Z-axis screw carriage 33 is mounted on the front side of the fixing frame 36 facing the stage 1; the Z-axis motor 331 is installed on the top of the Z-axis screw carriage 33; the Z-axis screw is installed in the Z-axis screw carriage 33, and the Z-axis motor 331 drives the top of the Z-axis screw connected, the bottom end of the Z-axis screw rod is rotatably fixed to the bottom of the Z-axis screw rod carriage 33;
  • the fixing seat 35 is slidably installed on the front side of the Z-axis screw carriage 33 facing the stage 1 , and the rear end of the fixing seat 35 abuts against the rod body of the Z-axis screw and transmission coordination;
  • the Z-axis motor 331 drives the Z-axis screw rod to drive the fixing base 35 to slide up and down along the Z-axis screw rod, thereby driving the lens fixing rod 2 to move up and down.
  • the Z-axis screw drives the fixing seat 35 to slide up and down along the Z-axis screw, and drives the lens fixing rod 2 to move up and down.
  • the lens 221 and the upper side-viewing lens 222 are close to the side to be inspected and the bottom surface to be inspected to obtain images at a close distance.
  • the use of a screw rod can make the lens fixing rod 2 move up and down more stably, which can effectively ensure the visual inspection system with an integrated lens.
  • the moving image quality is improved, thereby improving the detection quality of the vision detection system with integrated lens of the present invention.
  • the multi-axial drive device 3 further includes an R-axis drive device
  • the R-axis driving device includes an R-axis motor 34, a rotating timing belt 341 and a timing wheel 342;
  • the synchronizing wheel 342 is installed on the upper part of the base 4, and the synchronizing wheel 342 is located below the fixing seat 35;
  • the R-axis motor 34 is installed in the middle of the fixing base 35, and the R-axis motor 34 is located between the base 4 and the Z-axis screw carriage 33;
  • the output end of the R-axis motor 34 passes downward through the fixing seat 35 and is matched with the rear end of the rotating synchronous belt 341; the front end of the rotating synchronous belt 341 is sleeved on the synchronous wheel 342, and the The rotating synchronous belt 341 cooperates with the synchronous wheel 342;
  • the R-axis motor 34 drives the synchronous wheel 342 to drive the rotating synchronous belt 341 to move, thereby driving the fixed seat 35 and the lens fixing rod 2 to rotate in the radial direction.
  • the fixing base 35 is driven to rotate synchronously by the synchronous wheel 342 and the rotating synchronous belt 341 , thereby driving the lens fixing rod 2 to rotate in the radial direction, which can control the lower side view lens 221 and the upper side view lens 221 .
  • the use of the synchronizing wheel 342 and the rotating synchronizing belt 341 can improve the rotation stability of the lens fixing rod 2 , thereby improving the detection quality of the visual inspection system with integrated lens of the present invention.
  • the multi-axial driving device 3 further includes a Y-axis driving device and an X-axis driving device;
  • the X-axis drive device includes an X-axis screw, an X-axis screw carriage 31, an X-axis motor 311 and an X-axis transmission belt 312;
  • the X-axis motor 311 is mounted on the right end of the X-axis screw carriage 31 , the X-axis screw is mounted in the X-axis screw carriage 31 , and the X-axis motor 311 is connected to the X-axis screw carriage 31 .
  • the right end of the X-axis screw rod is connected to the drive, and the left end of the X-axis screw rod is fixed to the left end of the X-axis screw rod sliding frame 31;
  • the Y-axis drive device includes a Y-axis screw, a Y-axis motor 321, a Y-axis transmission belt 322 and two Y-axis screw carriages 32;
  • the two Y-axis screw carriages 32 are respectively erected on the left and right sides of the stage 1 . length, the distance between the two Y-axis screw carriages 32 is greater than the length in the left-right direction of the stage 1;
  • the left and right ends of the X-axis screw sliding frame 31 are respectively slidably erected above the two Y-axis screw sliding frames 32; the fixing frame 36 is slidably erected on the X-axis screw sliding frame
  • the frame 31 faces the front side of the stage 1; one end of the X-axis transmission belt 312 is in driving fit with the rod body of the X-axis screw rod, and the other end of the X-axis transmission belt 312 is fixedly connected to the fixing frame 36 ;
  • the X-axis motor 311 drives the X-axis screw to drive the X-axis transmission belt 312 and the fixing frame 36 to slide left and right along the front side of the X-axis screw sliding frame 31, thereby driving the lens fixing rod 2 Move left and right between the two Y-axis screw carriages 32;
  • the Y-axis motor 321 is installed at the rear end of the Y-axis screw carriage 32 near the left side of the stage 1; the Y-axis screw is installed on the left side of the Y-axis screw carriage In 32, the Y-axis motor 321 is drive-connected with the rear end of the Y-axis screw rod, and the front end of the Y-axis screw rod is rotatably mounted on the front end of the Y-axis screw carriage 32 on the left side;
  • One end of the Y-axis transmission belt 322 is in driving cooperation with the rod body of the Y-axis screw rod, and the other end of the Y-axis transmission belt 322 is fixedly connected with the left end of the X-axis screw sliding frame 31;
  • the Y-axis motor 321 drives the Y-axis screw through the Y-axis transmission belt 322 to drive the X-axis screw carriage 31 to slide back and forth above the two Y-axis screw carriages 32, thereby driving all
  • the lens fixing rod 2 moves back and forth between the two Y-axis screw carriages 32 .
  • the lens fixing rod 2 can move left and right or back and forth between the two Y-axis screw carriages 32, so that the lens fixing rod 2 can reach any down groove in the engine to be detected above the stage 1 In the tank, the detection range and detection quality of the vision detection system with integrated lens can be effectively guaranteed.
  • the movement trajectory acquisition module includes a plane camera 6;
  • the plane camera 6 is installed above the object stage 1, and the plane camera 6 is used to obtain an image of the plane where the upper surface of the concave groove is located;
  • the movement track acquisition module is electrically connected with the plane camera 6;
  • the pixel value of the plane camera 6 is 21-30 million.
  • the plane camera 6 obtains an image of the plane where the upper surface of the concave groove to be detected is located, and then calculates and sets the path of the front, back, left and right movement of the lens fixing rod 2 based on the obtained image.
  • the pixel value of the plane camera 6 is 21 to 30 million, which can ensure the imaging clarity of the plane camera 6 .
  • the movement trajectory acquisition module further includes a plane light source 7;
  • the plane light source 7 is installed above the stage 1 , and the plane light source 7 surrounds the plane camera 6 .
  • the plane light source 7 provides suitable illumination for the plane camera 6 to improve the imaging quality of the plane camera 6 .
  • the movement trajectory acquisition module further includes a height sensor 5;
  • the movement track acquisition module is electrically connected to the height sensor 5;
  • the height sensor 5 is installed above the stage 1 , close to the outer side of the plane camera 6 .
  • the height sensor 5 is used to obtain the height information of the plane where the upper surface of the concave groove to be detected is located, so as to calculate and set the distance that the lens fixing rod 2 moves up and down.
  • the working principle of the visual inspection system with integrated lens is as follows:
  • the visual inspection system with integrated lens further includes an image acquisition card and an industrial computer, and the movement track acquisition module includes a plane camera 6 , a plane light source 7 and a height sensor 5 .
  • the plane camera 6 Before starting the formal work, the plane camera 6 needs to be calibrated for the purpose of setting the transformation relationship between the image coordinate system and the world coordinate system.
  • the height sensor 5 When the engine to be detected is placed on the stage 1 and enters, the height sensor 5 is triggered, the movement track acquisition module is activated, and the height sensor 5 projects a laser beam on the plane where the upper surface of the engine to be detected is located on the upper surface of the concave groove to acquire the concave groove.
  • the height coordinate of the plane where the upper surface of the groove is located is fed back to the industrial computer.
  • the height sensor 5 is closed after the work is completed, and the plane camera 6 shoots the plane where the upper surface of the concave groove is located, and stores the obtained image in the image acquisition card and transmits it to the industrial computer.
  • the industrial computer performs Canny algorithm processing on the obtained image to extract the upper surface shape contour of the concave groove, and then extracts the center line of the extracted contour image, and then converts the obtained image from the image of the image coordinate system to the world coordinate system. and obtain the centerline coordinates of the concave groove in the world coordinate system image, and then combine the height coordinates obtained by the height sensor 5 to obtain the centerline trajectory of the concave groove, which is used for setting The motion trajectory of the front, back, left and right movement of the lens fixing rod 2, and send the trajectory data to the motion control card, and then control the multi-axis drive device to drive the lens fixing rod 2 to move along the center line trajectory, and control the lens fixing rod through the R-axis motor
  • the rotation of the upper side-view lens 221 and the lower side-view lens 222 is controlled to always be in a direction perpendicular to the trajectory of the center line.
  • the lens fixing rod 2 moves a certain step length, a group of images of the side to be inspected and the bottom surface to be inspected are captured.
  • the specific step length can be adjusted according to the actual length of the concave groove.
  • the images of the side surface to be inspected and the bottom surface to be inspected are displayed in an array on the industrial computer, and the position, shape and size of the defects on the side surface and bottom surface of the concave groove are determined according to the output images of the side surface to be inspected and the bottom surface to be inspected.
  • the internal concave grooves of the engine are inspected online for defects.
  • the visual inspection system with integrated lens includes an integrated lens including a side-view lens 21 and a top-view lens 22 , and also includes a multi-axial drive device 3 , the multi-axial drive device 3 can drive the lens fixing rod 2 installed with the integrated lens to move down to the concave groove to be detected, and drive the lens fixing rod 2 to move forward, backward, left and right in the concave groove
  • the visual inspection system with integrated lens of the present invention has good visual inspection quality and work efficiency.
  • the present invention also includes a movement trajectory acquisition module, the movement trajectory acquisition module includes a plane camera 6, a plane light source 7 and a height sensor 5, which can effectively obtain the contour image of the upper surface of the concave groove and the relative height information, thereby The accuracy with which the multi-axial driving device 3 drives the top-view lens 21 and the side-view lens 22 to move can be improved, thereby improving the detection quality and work efficiency of the visual inspection system with integrated lenses.
  • the visual inspection system with integrated lens of the present invention uses the multi-axial drive device 3 to drive a small camera that integrates the integrated light source, the top-view lens 21 and the side-view lens 22.
  • the shape and height control the movement path of the small camera in the concave groove, and capture the images of the side to be inspected and the bottom surface to be inspected at a close distance according to a certain rhythm, and then realize the online defect of the concave groove inside the engine through the defect recognition algorithm. detection.

Abstract

一种带有集成镜头的视觉检测系统,包括小型相机、多轴向驱动装置(3)和载物台(1);小型相机包括镜头固定杆(2)、底座(4)、固定座(35)、俯视镜头(21)和侧视镜头(22);俯视镜头(21)安装于镜头固定杆(2)的底端端部;侧视镜头(22)安装于镜头固定杆(2)的外侧面;镜头固定杆(2)的中部卡插于底座(4),底座(4)可旋转地安装于固定座(35)的中部;多轴向驱动装置(3)驱动固定座(35),带动镜头固定杆(2)向下移动至下凹沟槽中,并带动镜头固定杆(2)在下凹沟槽内前后左右移动;侧视镜头(22)朝向待检侧面摄取图像;俯视镜头(21)朝向待检底面摄取图像。侧视镜头(22)和俯视镜头(21)可在下凹沟槽内移动,可近距离地摄取待检侧面和待检底面的清晰图像。

Description

一种带有集成镜头的视觉检测系统 技术领域
本发明涉及发动机检测技术领域,尤其涉及一种带有集成镜头的视觉检测系统。
背景技术
发动机内的冷却液循环通道为狭长弯曲的下凹沟槽,为了确保发动机的散热性能,对用于冷却液循环的下凹沟槽进行缺陷检测是保证发动机质量的重要一环。
现有技术的视觉检测技术采用俯视镜头的在检测界面上方获取成像,由于下凹沟槽狭长弯曲,外部可见光照射难于到达下凹沟槽内部,用肉眼观察或摄影成像的清晰度很差,严重影响检测的效率和质量。
现有技术的CT检测方法利用X射线扫描,不需要可见光成像,但是成本昂贵并且效率低,不适用于大批量的发动机在线检测。
发明内容
本发明的目的在于提出一种带有集成镜头的视觉检测系统,可近距离地拍摄获取待检侧面和待检底面的图像,获得的图像的质量高。
为达此目的,本发明采用以下技术方案:
一种带有集成镜头的视觉检测系统,用于获取发动机内部的下凹沟槽的待检侧面的和待检底面的缺陷成像,包括小型相机、多轴向驱动装置和用于放置待检测发动机的载物台;
所述小型相机包括镜头固定杆、底座、固定座、俯视镜头和侧视镜头;
所述固定座悬架于载物台的上方,所述多轴向驱动装置与固定座传动连接,所述多轴向驱动装置带动所述固定座上下、前后或左右移动;
所述底座的中部设有安装孔;所述镜头固定杆由上至下穿过安装孔卡插于所述底座;所述底座可旋转地安装于固定座的中部;
所述俯视镜头朝下地安装于所述镜头固定杆的底端;所述侧视镜头安装于所述镜头固定杆的外侧面;
作业时,所述多轴向驱动装置驱动所述固定座带动所述镜头固定杆向下移动至下凹沟槽后,带动所述镜头固定杆在下凹沟槽内前后左右移动,所述侧视镜头朝向待检侧面摄取图像,所述俯视镜头朝向待检底面摄取图像。
具体的,所述侧视镜头包括下侧视镜头和上侧视镜头;所述上侧视镜头安装于所述下侧视镜头的上方;
所述下侧视镜头和上侧视镜头均朝向所述载物台底部的方向倾斜安装,所述下侧视镜头和上侧视镜头的中心线与所述俯视镜头的中心线之间的夹角均小于90°;
所述俯视镜头、下侧视镜头和上侧视镜头的边沿均安装有环形LED光源。
具体的,所述安装孔的底部设有卡槽,所述卡槽的两侧设有两个圆缺形凸出,两个所述圆缺形凸出中心对称地分布于所述卡槽的底部;
所述小型相机还包括固定环,所述固定环套设与所述镜头固定杆的中部;所述镜头固定杆为圆柱体,所述固定环的上端为圆环体,所述固定环的下端的边缘向外延伸外露形成与两个所述圆缺形凸出相应匹配的环体;所述固定环卡插于所述卡槽内,所述固定环的下端的外侧面抵于所述卡槽的内侧面。
优选的,所述俯视镜头的景深范围为不小于30mm,所述下侧视镜头和上侧视镜头的景深范围均为3-30mm;所述俯视镜头、下侧视镜头和上侧视镜头的视场角均为120-150°;所述俯视镜头、下侧视镜头和上侧视镜头的像素值均为100-300万;
所述镜头固定杆2为合金硬管,所述镜头固定杆2的直径为5-8mm。
具体的,所述多轴向驱动装置包括Z轴驱动装置;
所述Z轴驱动装置包括Z轴丝杆、Z轴丝杆滑行架、Z轴电机和固定架;
所述固定架悬架于所述载物台的上方;所述Z轴丝杆滑行架安装于所述固定架的朝向所述载物台的前侧面;所述Z轴电机安装于所述Z轴丝杆滑行架的顶部;所述Z轴丝杆安装于所述Z轴丝杆滑行架内,所述Z轴电机与所述Z轴丝杆的顶端传动连接,所述Z轴丝杆的底端可旋转地固定于所述Z轴丝杆滑行架的底部;
所述固定座可滑行地安装于所述Z轴丝杆滑行架的朝向所述载物台的前侧面,所述固定座的后端与所述Z轴丝杆的杆体相抵并且传动配合;
所述Z轴电机驱动所述Z轴丝杆带动所述固定座沿所述Z轴丝杆上下滑行,从而带动所述镜头固定杆上下移动。
具体的,所述多轴向驱动装置还包括R轴驱动装置;
所述R轴驱动装置包括R轴电机、旋转同步带和同步轮;
所述同步轮安装于所述底座的上部,所述同步轮位于所述固定座的下方;
所述R轴电机安装于所述固定座的中部,所述R轴电机位于所述底座和所述Z轴丝杆滑行架之间;
所述R轴电机的输出端向下穿过所述固定座与所述旋转同步带的后端传动配合;所述旋转同步带的前端套设于所述同步轮,并且所述旋转同步带与所述同步轮传动配合;
所述R轴电机驱动所述同步轮带动所述旋转同步带运动,从而带动所述固定座和所述镜头固定杆沿径向方向旋转。
具体的,所述多轴向驱动装置还包括Y轴驱动装置和X轴驱动装置;
所述X轴驱动装置包括X轴丝杆、X轴丝杆滑行架、X轴电机和X轴传动带;
所述X轴电机安装于所述X轴丝杆滑行架的右端端部,所述X轴丝杆安装于所述X轴丝杆滑行架内,所述X轴电机与所述X轴丝杆的右端传动连接,所述X轴丝杆的左端固定于所述X轴丝杆滑行架的左端;
所述Y轴驱动装置包括Y轴丝杆、Y轴电机、Y轴传动带和两个Y轴丝杆滑行架;
两个所述Y轴丝杆滑行架分别架设于所述载物台的左右两侧,所述Y轴丝杆滑行架的前后方向的长度大于所述载物台的前后方向的长度,两个所述Y轴丝杆滑行架之间的间距大于所述载物台的左右方向的长度;
所述X轴丝杆滑行架的左右两端分别可滑行地架设于两个所述Y轴丝杆滑行架的上方;所述固定架可滑行地架设于所述X轴丝杆滑行架朝向所述载物台的前侧面;所述X轴传动带的一端与所述X轴丝杆的杆体传动配合,所述X轴传动带的另一端与所述固定架固定连接;
所述X轴电机驱动所述X轴丝杆带动所述X轴传动带和所述固定架沿着所述X轴丝杆滑行架的前侧面左右滑行,从而带动所述镜头固定杆在两个所述Y轴丝杆滑行架之间左右移动;
所述Y轴电机安装于靠近所述载物台左侧的所述Y轴丝杆滑行架的后端;所述Y轴丝杆安装于左侧的所述Y轴丝杆滑行架内,所述Y轴电机与所述Y轴丝杆的后端传动连接,所述Y轴丝杆的前端可旋转地安装于左侧的所述Y轴丝杆滑行架的前端;所述Y轴传动带的一端与所述Y轴丝杆的杆体传动配合,所述Y轴传动带的另一端与所述X轴丝杆滑行架的左端固定连接;
所述Y轴电机驱动所述Y轴丝杆通过所述Y轴传动带带动所述X轴丝杆滑行架在两个所述Y轴丝杆滑行架的上方前后滑行,从而带动所述镜头固定杆在 两个所述Y轴丝杆滑行架之间前后移动。
优选的,还包括移动轨迹获取模块,所述移动轨迹获取模块包括平面摄像机;
所述平面摄像机安装于所述载物台的上方,所述平面摄像机用于获取所述下凹沟槽的上表面所在平面的成像;
所述移动轨迹获取模块与平面摄像机电性连接;
所述平面摄像机的像素值为2100-3000万。
优选的,所述移动轨迹获取模块还包括平面光源;
所述平面光源安装于所述载物台的上方,所述平面光源环绕于所述平面摄像机的四周。
优选的,所述移动轨迹获取模块还包括高度传感器;
所述移动轨迹获取模块与所述高度传感器电性连接;
所述高度传感器安装于所述载物台的上方,靠近所述平面摄像机的外侧面。
本发明的有益效果为:本发明所述的带有集成镜头的视觉检测系统,含有包括侧视镜头和俯视镜头组成的集成镜头,还包括多轴向驱动装置,所述多轴向驱动装置可带动安装有集成镜头的所述镜头固定杆向下移动至待检测的下凹沟槽中,并可带动所述镜头固定杆在下凹沟槽内前后左右移动,近距离地获得待检侧面和待检底面的清晰图像,故此,本发明的所述带有集成镜头的视觉检测系统具有良好的检测质量和工作效率。
进一步的,本发明还包括移动轨迹获取模块,所述移动轨迹获取模块包括平面摄像机、平面光源和高度传感器,可有效获得下凹沟槽的上表面形状轮廓图像以及相对高度信息,从而可提高多轴向驱动装置带动俯视镜头和侧视镜头移动路径的精确度,进而提高所述带有集成镜头的视觉检测系统的检测质量和 工作效率,可实现发动机内部的下凹沟槽缺陷的在线检测。
本发明解决了现有技术的视觉检测系统成像效果差严重影响检测的效率和质量的技术问题。
附图说明
图1是本发明一个实施例的所述带有集成镜头的视觉检测系统的结构示意图;
图2为图1中的所述带有集成镜头的视觉检测系统不含移动轨迹获取模块部分的结构示意图;
图3为图1中的所述带有集成镜头的视觉检测系统的Z轴驱动装置和R轴驱动装置部分的结构示意图;
图4为图1中的所述带有集成镜头的视觉检测系统的镜头固定杆部分的结构示意图;
图5为图1中的所述带有集成镜头的视觉检测系统的多轴向驱动装置部分的结构示意图;
图6为图3中的所述带有集成镜头的视觉检测系统的R轴驱动装置部分的另一视向的结构示意图;
图7为图6的剖视图;
其中:载物台1;镜头固定杆2;多轴向驱动装置3;底座4;高度传感器5;平面摄像机6;平面光源7;俯视镜头21;侧视镜头22;固定环23;X轴丝杆滑行架31;Y轴丝杆滑行架32;Z轴丝杆滑行架33;R轴电机34;固定座35;固定架36;卡槽41;下侧视镜头221;上侧视镜头222;X轴电机311;X轴传动带312;Y轴电机321;Y轴传动带322;Z轴电机331、旋转同步带341和同步轮342。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本发明,而不能理解为对本发明的限制。
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本发明的描述中,除非另有说明,“多个”的含义是两个或两个以上。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。
下面结合1-7附图及具体实施方式进一步说明本发明的技术方案。
一种带有集成镜头的视觉检测系统,用于获取发动机内部的下凹沟槽的待检侧面的和待检底面的缺陷成像,包括小型相机、多轴向驱动装置3和用于放 置待检测发动机的载物台1;
所述小型相机包括镜头固定杆2、底座4、固定座35、俯视镜头21和侧视镜头22;
所述固定座35悬架于载物台1的上方,所述多轴向驱动装置3与固定座35传动连接,所述多轴向驱动装置3带动所述固定座35上下、前后或左右移动;
所述底座4的中部设有安装孔;所述镜头固定杆2由上至下穿过安装孔卡插于所述底座4;所述底座4可旋转地安装于固定座35的中部;
所述俯视镜头21朝下地安装于所述镜头固定杆2的底端;所述侧视镜头22安装于所述镜头固定杆2的外侧面;
作业时,所述多轴向驱动装置3驱动所述固定座35带动所述镜头固定杆2向下移动至下凹沟槽后,带动所述镜头固定杆2在下凹沟槽内前后左右移动,所述侧视镜头22朝向待检侧面摄取图像,所述俯视镜头21朝向待检底面摄取图像。
如图1-6所示,本发明所述的带有集成镜头的视觉检测系统,含有包括侧视镜头22和俯视镜头21组成的集成镜头,还包括多轴向驱动装置3,所述多轴向驱动装置3可带动安装有集成镜头的所述镜头固定杆2向下移动至待检测的下凹沟槽中,并带动所述镜头固定杆2在下凹沟槽内前后左右移动,可近距离的摄取待检侧面和待检底面的清晰图像,故此,本发明的所述带有集成镜头的视觉检测系统具有较高的视觉检测的检测质量和工作效率。
具体的,所述侧视镜头22包括下侧视镜头221和上侧视镜头222;所述上侧视镜头222安装于所述下侧视镜头221的上方;
所述下侧视镜头221和上侧视镜头222均朝向所述载物台1底部的方向倾斜安装,所述下侧视镜头221和上侧视镜头222的中心线与所述俯视镜头21的 中心线之间的夹角均小于90°;
所述俯视镜头21、下侧视镜头221和上侧视镜头222的边沿均安装有环形LED光源。
如图2-6所示,所述侧视镜头22包括下侧视镜头221和上侧视镜头222,并且均朝向所述载物台1底部的方向倾斜安装,可扩大在待检侧面获取的图像的区域范围。环形LED光源为俯视镜头21、下侧视镜头221和上侧视镜头222提供照明,可提高所述俯视镜头21、下侧视镜头221和上侧视镜头222的成像质量,从而提高本发明的所述带有集成镜头的视觉检测系统的检测质量。
具体的,所述安装孔的底部设有卡槽41,所述卡槽41的两侧设有两个圆缺形凸出,两个所述圆缺形凸出中心对称地分布于所述卡槽41的底部;
所述小型相机还包括固定环23,所述固定环23套设与所述镜头固定杆2的中部;所述镜头固定杆2为圆柱体,所述固定环23的上端为圆环体,所述固定环23的下端的边缘向外延伸外露形成与两个所述圆缺形凸出相应匹配的环体;所述固定环23卡插于所述卡槽41内,所述固定环23的下端的外侧面抵于所述卡槽41的内侧面。
如图6和7所示,所述固定环23的卡插于卡槽41内,所述固定环23的下端的外侧面抵于所述卡槽41的内侧面,可提高所述镜头固定杆2的安装稳定性,从而提高俯视镜头21、下侧视镜头221和上侧视镜头222的成像的稳定性,进而提高本发明的所述带有集成镜头的视觉检测系统的检测质量。
优选的,所述俯视镜头21的景深范围为不小于30mm,所述下侧视镜头221和上侧视镜头222的景深范围均为3-30mm;所述俯视镜头21、下侧视镜头221和上侧视镜头222的视场角均为120-150°;所述俯视镜头21、下侧视镜头221和上侧视镜头222的像素值均为100-300万;
所述镜头固定杆2为合金硬管,所述镜头固定杆2的直径为5-8mm。
视场角为120-150°的俯视镜头21、下侧视镜头221和上侧视镜头222具有更宽的成像面积;100-300万的像素值可有效保障俯视镜头21、下侧视镜头221和上侧视镜头222获得的图像具有较高的清晰度。
具体的,所述多轴向驱动装置3包括Z轴驱动装置;
所述Z轴驱动装置包括Z轴丝杆、Z轴丝杆滑行架33、Z轴电机331和固定架36;
所述固定架36悬架于所述载物台1的上方;所述Z轴丝杆滑行架33安装于所述固定架36的朝向所述载物台1的前侧面;所述Z轴电机331安装于所述Z轴丝杆滑行架33的顶部;所述Z轴丝杆安装于所述Z轴丝杆滑行架33内,所述Z轴电机331与所述Z轴丝杆的顶端传动连接,所述Z轴丝杆的底端可旋转地固定于所述Z轴丝杆滑行架33的底部;
所述固定座35可滑行地安装于所述Z轴丝杆滑行架33的朝向所述载物台1的前侧面,所述固定座35的后端与所述Z轴丝杆的杆体相抵并且传动配合;
所述Z轴电机331驱动所述Z轴丝杆带动所述固定座35沿所述Z轴丝杆上下滑行,从而带动所述镜头固定杆2上下移动。
如图2、3、5和6所示,通过Z轴丝杆带动固定座35沿着所述Z轴丝杆上下滑行,带动所述镜头固定杆2上下移动,通过俯视镜头21、下侧视镜头221和上侧视镜头222靠近待检侧面和待检底面近距离地获得成像,采用丝杆可以使得镜头固定杆2上下移动更为稳定,可有效保障所述带有集成镜头的视觉检测系统的移动中的图像质量,从而提高本发明的所述带有集成镜头的视觉检测系统的检测质量。
更具体的,所述多轴向驱动装置3还包括R轴驱动装置;
所述R轴驱动装置包括R轴电机34、旋转同步带341和同步轮342;
所述同步轮342安装于所述底座4的上部,所述同步轮342位于所述固定座35的下方;
所述R轴电机34安装于所述固定座35的中部,所述R轴电机34位于所述底座4和所述Z轴丝杆滑行架33之间;
所述R轴电机34的输出端向下穿过所述固定座35与所述旋转同步带341的后端传动配合;所述旋转同步带341的前端套设于所述同步轮342,并且所述旋转同步带341与所述同步轮342传动配合;
所述R轴电机34驱动所述同步轮342带动所述旋转同步带341运动,从而带动所述固定座35和所述镜头固定杆2沿径向方向旋转。
如图3和6所示,通过同步轮342和旋转同步带341带动所述固定座35同步旋转,从而带动所述镜头固定杆2沿径向方向旋转,可控制下侧视镜头221和上侧视镜头222与待检侧面所在平面的角度,可更高质量地获得各种弧度的曲面形状的待检侧面的图像;采用同步轮342和旋转同步带341可提高镜头固定杆2旋转的稳定性,进而提高本发明的所述带有集成镜头的视觉检测系统的检测质量。
具体的,所述多轴向驱动装置3还包括Y轴驱动装置和X轴驱动装置;
所述X轴驱动装置包括X轴丝杆、X轴丝杆滑行架31、X轴电机311和X轴传动带312;
所述X轴电机311安装于所述X轴丝杆滑行架31的右端端部,所述X轴丝杆安装于所述X轴丝杆滑行架31内,所述X轴电机311与所述X轴丝杆的右端传动连接,所述X轴丝杆的左端固定于所述X轴丝杆滑行架31的左端;
所述Y轴驱动装置包括Y轴丝杆、Y轴电机321、Y轴传动带322和两个Y 轴丝杆滑行架32;
两个所述Y轴丝杆滑行架32分别架设于所述载物台1的左右两侧,所述Y轴丝杆滑行架32的前后方向的长度大于所述载物台1的前后方向的长度,两个所述Y轴丝杆滑行架32之间的间距大于所述载物台1的左右方向的长度;
所述X轴丝杆滑行架31的左右两端分别可滑行地架设于两个所述Y轴丝杆滑行架32的上方;所述固定架36可滑行地架设于所述X轴丝杆滑行架31朝向所述载物台1的前侧面;所述X轴传动带312的一端与所述X轴丝杆的杆体传动配合,所述X轴传动带312的另一端与所述固定架36固定连接;
所述X轴电机311驱动所述X轴丝杆带动所述X轴传动带312和所述固定架36沿着所述X轴丝杆滑行架31的前侧面左右滑行,从而带动所述镜头固定杆2在两个所述Y轴丝杆滑行架32之间左右移动;
所述Y轴电机321安装于靠近所述载物台1左侧的所述Y轴丝杆滑行架32的后端;所述Y轴丝杆安装于左侧的所述Y轴丝杆滑行架32内,所述Y轴电机321与所述Y轴丝杆的后端传动连接,所述Y轴丝杆的前端可旋转地安装于左侧的所述Y轴丝杆滑行架32的前端;所述Y轴传动带322的一端与所述Y轴丝杆的杆体传动配合,所述Y轴传动带322的另一端与所述X轴丝杆滑行架31的左端固定连接;
所述Y轴电机321驱动所述Y轴丝杆通过所述Y轴传动带322带动所述X轴丝杆滑行架31在两个所述Y轴丝杆滑行架32的上方前后滑行,从而带动所述镜头固定杆2在两个所述Y轴丝杆滑行架32之间前后移动。
使得镜头固定杆2可以在两个所述Y轴丝杆滑行架32之间左右或前后移动,从而可使镜头固定杆2到达位于载物台1上方的待检测发动机内的任何一个下凹沟槽内,可有效保障所述带有集成镜头的视觉检测系统的检测范围和检测质 量。
优选的,还包括移动轨迹获取模块,所述移动轨迹获取模块包括平面摄像机6;
所述平面摄像机6安装于所述载物台1的上方,所述平面摄像机6用于获取所述下凹沟槽的上表面所在平面的成像;
所述移动轨迹获取模块与平面摄像机6电性连接;
所述平面摄像机6的像素值为2100-3000万。
通过所述平面摄像机6获得待检测的所述下凹沟槽的上表面所在平面的成像,继而通过获得的图像计算和设定所述镜头固定杆2的前后左右移动的路径。所述平面摄像机6的像素值为2100-3000万,可保障所述平面摄像机6的成像清晰度。
优选的,所述移动轨迹获取模块还包括平面光源7;
所述平面光源7安装于所述载物台1的上方,所述平面光源7环绕于所述平面摄像机6的四周。
所述平面光源7为所述平面摄像机6提供合适的照明,以提高所述平面摄像机6的成像质量。
优选的,所述移动轨迹获取模块还包括高度传感器5;
所述移动轨迹获取模块与所述高度传感器5电性连接;
所述高度传感器5安装于所述载物台1的上方,靠近所述平面摄像机6的外侧面。
所述高度传感器5用于获取待检测的所述下凹沟槽的上表面所在平面的高度信息,以用于计算和设定所述镜头固定杆2上下移动的距离。
所述带有集成镜头的视觉检测系统的工作原理如下:
所述的带有集成镜头的视觉检测系统还包括图像采集卡和工控机,所述移动轨迹获取模块包括平面摄像机6、平面光源7和高度传感器5。
开始正式工作之前,需要对平面摄像机6进行标定工作,目的是设定成像的图像坐标系与世界坐标系之间的转化关系。
当待检测发动机放置于载物台1进入时,高度传感器5被触发,移动轨迹获取模块启动,高度传感器5投射激光光束在发动机待检测的下凹沟槽的上表面所在平面,获取下凹沟槽的上表面所在平面的高度坐标并反馈给工控机。高度传感器5完成工作后关闭,平面摄像机6对下凹沟槽的上表面所在平面进行拍摄,将获得的图像存储于图像采集卡并输送给工控机。工控机对获得的图像进行Canny算法处理提取下凹沟槽的上表面形状轮廓,对提取到的轮廓图像再进行中心线的提取,再将得到的图像由图像坐标系的图像转化为世界坐标系的图像,同时获得世界坐标系图像中的下凹沟槽的中心线坐标,然后结合高度传感器5获取得高度坐标就可得到下凹沟槽的中心线轨迹,将该中心线轨迹用于设定镜头固定杆2的前后左右移动的运动轨迹,并将该轨迹数据发送至运动控制卡,然后控制多轴向驱动装置带动镜头固定杆2沿中心线轨迹移动,并通过R轴电机控制镜头固定杆的旋转,即控制上侧视镜头221和下侧视镜头222的中心线始终处于与中心线轨迹相垂直的方向。镜头固定杆2每移动一定的步长拍摄一组待检侧面和待检底面的图像,具体步长可根据下凹沟槽的实际长度调整设置,将拍摄的待检侧面和待检底面的图像存储于图像采集卡发并发送给工控机。待检侧面和待检底面的图像在工控机以阵列方式显示,根据输出的待检侧面和待检底面的图像确定下凹沟槽的侧面和底面的缺陷的位置、形状与尺寸等信息,完成发动机的内部下凹沟槽进行缺陷在线检测。
综上所述,如图1-7所示,本发明所述的带有集成镜头的视觉检测系统, 含有包括侧视镜头21和俯视镜头22组成的集成镜头,还包括多轴向驱动装置3,所述多轴向驱动装置3可带动安装有集成镜头的所述镜头固定杆2向下移动至待检测的下凹沟槽中,并带动所述镜头固定杆2在下凹沟槽内前后左右移动,可近距离的摄取待检侧面和待检底面的清晰图像,故此,本发明的所述带有集成镜头的视觉检测系统具有良好的视觉检测质量和工作效率。
进一步的,本发明还包括移动轨迹获取模块,所述移动轨迹获取模块包括平面摄像机6、平面光源7和高度传感器5,可有效获得下凹沟槽的上表面形状轮廓图像以及相对高度信息,从而可提高多轴向驱动装置3带动俯视镜头21和侧视镜头22移动的精确度,进而提高所述带有集成镜头的视觉检测系统的检测质量和工作效率。
本发明的所述带有集成镜头的视觉检测系统,利用多轴向驱动装置3带动集成光源、俯视镜头21和侧视镜头22为一体的小型相机,通过移动轨迹获取模块根据下凹沟槽的形状和高度控制小型相机在下凹沟槽中运动路径,并按照一定节拍近距离地拍摄获取待检侧面和待检底面的图像,再通过缺陷识别算法实现发动机内部的下凹沟槽的缺陷的在线检测。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示意性实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
尽管已经示出和描述了本发明的实施例,本领域的普通技术人员可以理解:在不脱离本发明的原理和宗旨的情况下可以对这些实施例进行多种变化、修改、 替换和变型,本发明的范围由权利要求及其等同物限定。
以上结合具体实施例描述了本发明的技术原理。这些描述只是为了解释本发明的原理,而不能以任何方式解释为对本发明保护范围的限制。基于此处的解释,本领域的技术人员不需要付出创造性的劳动即可联想到本发明的其它具体实施方式,这些方式都将落入本发明的保护范围之内。

Claims (10)

  1. 一种带有集成镜头的视觉检测系统,用于获取发动机内部的下凹沟槽的待检侧面的和待检底面的缺陷成像,其特征在于,包括小型相机、多轴向驱动装置和用于放置待检测发动机的载物台;
    所述小型相机包括镜头固定杆、底座、固定座、俯视镜头和侧视镜头;
    所述固定座悬架于载物台的上方,所述多轴向驱动装置与固定座传动连接,所述多轴向驱动装置带动所述固定座上下、前后或左右移动;
    所述底座的中部设有安装孔;所述镜头固定杆由上至下穿过安装孔卡插于所述底座;所述底座可旋转地安装于固定座的中部;
    所述俯视镜头朝下地安装于所述镜头固定杆的底端;所述侧视镜头安装于所述镜头固定杆的外侧面;
    作业时,所述多轴向驱动装置驱动所述固定座带动所述镜头固定杆向下移动至下凹沟槽后,带动所述镜头固定杆在下凹沟槽内前后左右移动,所述侧视镜头朝向待检侧面摄取图像,所述俯视镜头朝向待检底面摄取图像。
  2. 根据权利要求1所述的带有集成镜头的视觉检测系统,其特征在于,所述侧视镜头包括下侧视镜头和上侧视镜头;所述上侧视镜头安装于所述下侧视镜头的上方;
    所述下侧视镜头和上侧视镜头均朝向所述载物台底部的方向倾斜安装,所述下侧视镜头和上侧视镜头的中心线与所述俯视镜头的中心线之间的夹角均小于90°;
    所述俯视镜头、下侧视镜头和上侧视镜头的边沿均安装有环形LED光源。
  3. 根据权利要求2所述的带有集成镜头的视觉检测系统,其特征在于,所述安装孔的底部设有卡槽,所述卡槽的两侧设有两个圆缺形凸出,两个所述圆缺形凸出中心对称地分布于所述卡槽的底部;
    所述小型相机还包括固定环,所述固定环套设与所述镜头固定杆的中部;所述镜头固定杆为圆柱体,所述固定环的上端为圆环体,所述固定环的下端的边缘向外延伸外露形成与两个所述圆缺形凸出相应匹配的环体;所述固定环卡插于所述卡槽内,所述固定环的下端的外侧面抵于所述卡槽的内侧面。
  4. 根据权利要求2所述的带有集成镜头的视觉检测系统,其特征在于,所述俯视镜头的景深范围为不小于30mm,所述下侧视镜头和上侧视镜头的景深范围均为3-30mm;所述俯视镜头、下侧视镜头和上侧视镜头的视场角均为120-150°;所述俯视镜头、下侧视镜头和上侧视镜头的像素值均为100-300万;
    所述镜头固定杆2为合金硬管,所述镜头固定杆2的直径为5-8mm。
  5. 根据权利要求1所述的带有集成镜头的视觉检测系统,其特征在于,所述多轴向驱动装置包括Z轴驱动装置;
    所述Z轴驱动装置包括Z轴丝杆、Z轴丝杆滑行架、Z轴电机和固定架;
    所述固定架悬架于所述载物台的上方;所述Z轴丝杆滑行架安装于所述固定架的朝向所述载物台的前侧面;所述Z轴电机安装于所述Z轴丝杆滑行架的顶部;所述Z轴丝杆安装于所述Z轴丝杆滑行架内,所述Z轴电机与所述Z轴丝杆的顶端传动连接,所述Z轴丝杆的底端可旋转地固定于所述Z轴丝杆滑行架的底部;
    所述固定座可滑行地安装于所述Z轴丝杆滑行架的朝向所述载物台的前侧面,所述固定座的后端与所述Z轴丝杆的杆体相抵并且传动配合;
    所述Z轴电机驱动所述Z轴丝杆带动所述固定座沿所述Z轴丝杆上下滑行,从而带动所述镜头固定杆上下移动。
  6. 根据权利要求5所述的带有集成镜头的视觉检测系统,其特征在于,所述多轴向驱动装置还包括R轴驱动装置;
    所述R轴驱动装置包括R轴电机、旋转同步带和同步轮;
    所述同步轮安装于所述底座的上部,所述同步轮位于所述固定座的下方;
    所述R轴电机安装于所述固定座的中部,所述R轴电机位于所述底座和所述Z轴丝杆滑行架之间;
    所述R轴电机的输出端向下穿过所述固定座与所述旋转同步带的后端传动配合;所述旋转同步带的前端套设于所述同步轮,并且所述旋转同步带与所述同步轮传动配合;
    所述R轴电机驱动所述同步轮带动所述旋转同步带运动,从而带动所述固定座和所述镜头固定杆沿径向方向旋转。
  7. 根据权利要求6所述的带有集成镜头的视觉检测系统,其特征在于,所述多轴向驱动装置还包括Y轴驱动装置和X轴驱动装置;
    所述X轴驱动装置包括X轴丝杆、X轴丝杆滑行架、X轴电机和X轴传动带;
    所述X轴电机安装于所述X轴丝杆滑行架的右端端部,所述X轴丝杆安装于所述X轴丝杆滑行架内,所述X轴电机与所述X轴丝杆的右端传动连接,所述X轴丝杆的左端固定于所述X轴丝杆滑行架的左端;
    所述Y轴驱动装置包括Y轴丝杆、Y轴电机、Y轴传动带和两个Y轴丝杆滑行架;
    两个所述Y轴丝杆滑行架分别架设于所述载物台的左右两侧,所述Y轴丝杆滑行架的前后方向的长度大于所述载物台的前后方向的长度,两个所述Y轴丝杆滑行架之间的间距大于所述载物台的左右方向的长度;
    所述X轴丝杆滑行架的左右两端分别可滑行地架设于两个所述Y轴丝杆滑行架的上方;所述固定架可滑行地架设于所述X轴丝杆滑行架朝向所述载物台的前侧面;所述X轴传动带的一端与所述X轴丝杆的杆体传动配合,所述X轴 传动带的另一端与所述固定架固定连接;
    所述X轴电机驱动所述X轴丝杆带动所述X轴传动带和所述固定架沿着所述X轴丝杆滑行架的前侧面左右滑行,从而带动所述镜头固定杆在两个所述Y轴丝杆滑行架之间左右移动;
    所述Y轴电机安装于靠近所述载物台左侧的所述Y轴丝杆滑行架的后端;所述Y轴丝杆安装于左侧的所述Y轴丝杆滑行架内,所述Y轴电机与所述Y轴丝杆的后端传动连接,所述Y轴丝杆的前端可旋转地安装于左侧的所述Y轴丝杆滑行架的前端;所述Y轴传动带的一端与所述Y轴丝杆的杆体传动配合,所述Y轴传动带的另一端与所述X轴丝杆滑行架的左端固定连接;
    所述Y轴电机驱动所述Y轴丝杆通过所述Y轴传动带带动所述X轴丝杆滑行架在两个所述Y轴丝杆滑行架的上方前后滑行,从而带动所述镜头固定杆在两个所述Y轴丝杆滑行架之间前后移动。
  8. 根据权利要求1所述的带有集成镜头的视觉检测系统,其特征在于,还包括移动轨迹获取模块,所述移动轨迹获取模块包括平面摄像机;
    所述平面摄像机安装于所述载物台的上方,所述平面摄像机用于获取所述下凹沟槽的上表面所在平面的成像;
    所述移动轨迹获取模块与平面摄像机电性连接;
    所述平面摄像机的像素值为2100-3000万。
  9. 根据权利要求8所述的带有集成镜头的视觉检测系统,其特征在于,所述移动轨迹获取模块还包括平面光源;
    所述平面光源安装于所述载物台的上方,所述平面光源环绕于所述平面摄像机的四周。
  10. 根据权利要求8所述的带有集成镜头的视觉检测系统,其特征在于, 所述移动轨迹获取模块还包括高度传感器;
    所述移动轨迹获取模块与所述高度传感器电性连接;
    所述高度传感器安装于所述载物台的上方,靠近所述平面摄像机的外侧面。
PCT/CN2021/101342 2021-03-11 2021-06-21 一种带有集成镜头的视觉检测系统 WO2022188293A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110267135.4 2021-03-11
CN202110267135.4A CN112858175A (zh) 2021-03-11 2021-03-11 一种带有集成镜头的视觉检测系统

Publications (1)

Publication Number Publication Date
WO2022188293A1 true WO2022188293A1 (zh) 2022-09-15

Family

ID=75994176

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/101342 WO2022188293A1 (zh) 2021-03-11 2021-06-21 一种带有集成镜头的视觉检测系统

Country Status (2)

Country Link
CN (1) CN112858175A (zh)
WO (1) WO2022188293A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112858175A (zh) * 2021-03-11 2021-05-28 广东工业大学 一种带有集成镜头的视觉检测系统
CN113588690B (zh) * 2021-07-20 2023-10-03 中国电子科技集团公司第三十八研究所 一种用于大型构件的x射线无损检测装置
CN113852805A (zh) * 2021-09-10 2021-12-28 南京嘉龙盛电子科技有限公司 一种封框胶干宽自动检测机的成像设备及其成像方法
CN115561251A (zh) * 2022-12-08 2023-01-03 山东鲁珠精密轴承有限责任公司 一种基于图像识别的圆锥保持架检测方法、系统及介质

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040012672A1 (en) * 2002-07-16 2004-01-22 Murata Kikai Kabushiki Kaisha Tube probing device
WO2005038446A1 (ja) * 2003-10-16 2005-04-28 Hitachi, Ltd. 欠陥検査装置及びその方法並びに円筒物体の内面加工方法
CN108663375A (zh) * 2018-08-29 2018-10-16 浙江霖研精密科技有限公司 一种内圈360°外观缺陷检测装置
CN110596144A (zh) * 2019-10-23 2019-12-20 浙江华炜新材料有限公司 一种深孔内部缺陷检测设备
CN110749604A (zh) * 2019-11-29 2020-02-04 中国计量大学 一种基于机器视觉的金属桶内高反射表面缺陷检测装置
CN211505179U (zh) * 2019-12-31 2020-09-15 焦作大学 一种气缸套产品内孔绗磨网纹检测装置
CN112858175A (zh) * 2021-03-11 2021-05-28 广东工业大学 一种带有集成镜头的视觉检测系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040012672A1 (en) * 2002-07-16 2004-01-22 Murata Kikai Kabushiki Kaisha Tube probing device
WO2005038446A1 (ja) * 2003-10-16 2005-04-28 Hitachi, Ltd. 欠陥検査装置及びその方法並びに円筒物体の内面加工方法
CN108663375A (zh) * 2018-08-29 2018-10-16 浙江霖研精密科技有限公司 一种内圈360°外观缺陷检测装置
CN110596144A (zh) * 2019-10-23 2019-12-20 浙江华炜新材料有限公司 一种深孔内部缺陷检测设备
CN110749604A (zh) * 2019-11-29 2020-02-04 中国计量大学 一种基于机器视觉的金属桶内高反射表面缺陷检测装置
CN211505179U (zh) * 2019-12-31 2020-09-15 焦作大学 一种气缸套产品内孔绗磨网纹检测装置
CN112858175A (zh) * 2021-03-11 2021-05-28 广东工业大学 一种带有集成镜头的视觉检测系统

Also Published As

Publication number Publication date
CN112858175A (zh) 2021-05-28

Similar Documents

Publication Publication Date Title
WO2022188293A1 (zh) 一种带有集成镜头的视觉检测系统
CN106500627B (zh) 含有多个不同波长激光器的三维扫描方法及扫描仪
CN104506761B (zh) 一种360度全景立体摄像机
CN103438832B (zh) 基于线结构光的三维影像测量方法
CN110296667A (zh) 基于线结构光多角度投影的高反射表面三维测量方法
CN109238084A (zh) 一种微型圆孔测量的自动导引方法
CN106403900B (zh) 飞行物追踪定位系统及方法
CN106442327A (zh) 一种用于物体侧面图像信息检测的光学系统
CN111928930B (zh) 一种基于结构光成像的3d视觉检测系统
CN107084671B (zh) 一种基于三线结构光的凹球直径测量系统及测量方法
CN107202555B (zh) 一种连杆加工旋转盘夹具视觉检测装置和检测方法
CN204788253U (zh) 双相机视觉定位系统
CN105783880A (zh) 一种单目激光辅助舱段对接装置及方法
CN108458658A (zh) 一种基于光照反射模型的微细孔三维形貌测量装置及方法
CN109712139A (zh) 基于线性运动模组的单目视觉的尺寸测量方法
CN214408670U (zh) 一种带有集成镜头的视觉检测系统
CN115096213A (zh) 一种基于多棱锥反射镜的内螺纹双目检测设备及方法
CN108288285B (zh) 一种基于全向环的三维全景扫描系统及方法
CN211014059U (zh) 一种刀具刃口钝化检测用载物台
CN212059941U (zh) 一种钢轨缺陷的3d在线视觉检测装置
CN110657750B (zh) 一种用于刀具刃口钝化的检测系统和方法
CN210426454U (zh) 用于复合面产品的表面三维轮廓检测装置
CN111862170A (zh) 光学式运动捕捉系统及方法
CN110849285A (zh) 基于单目相机的焊点深度测量方法、系统及介质
CN112419418A (zh) 一种基于摄像头机械瞄准的定位方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21929763

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21929763

Country of ref document: EP

Kind code of ref document: A1