WO2022188274A1 - 一种覆岩采动离层动态发育监测装置及方法 - Google Patents

一种覆岩采动离层动态发育监测装置及方法 Download PDF

Info

Publication number
WO2022188274A1
WO2022188274A1 PCT/CN2021/095931 CN2021095931W WO2022188274A1 WO 2022188274 A1 WO2022188274 A1 WO 2022188274A1 CN 2021095931 W CN2021095931 W CN 2021095931W WO 2022188274 A1 WO2022188274 A1 WO 2022188274A1
Authority
WO
WIPO (PCT)
Prior art keywords
monitoring
magnetic ring
mining
hoop
assembly
Prior art date
Application number
PCT/CN2021/095931
Other languages
English (en)
French (fr)
Inventor
李文平
陈维池
王启庆
贺江辉
乔伟
李梁宁
杨玉茹
Original Assignee
中国矿业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202110253757.1A external-priority patent/CN112983549B/zh
Priority claimed from CN202110253756.7A external-priority patent/CN112945188B/zh
Application filed by 中国矿业大学 filed Critical 中国矿业大学
Priority to US17/411,061 priority Critical patent/US11879336B2/en
Publication of WO2022188274A1 publication Critical patent/WO2022188274A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21FSAFETY DEVICES, TRANSPORT, FILLING-UP, RESCUE, VENTILATION, OR DRAINING IN OR OF MINES OR TUNNELS
    • E21F17/00Methods or devices for use in mines or tunnels, not covered elsewhere
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21FSAFETY DEVICES, TRANSPORT, FILLING-UP, RESCUE, VENTILATION, OR DRAINING IN OR OF MINES OR TUNNELS
    • E21F17/00Methods or devices for use in mines or tunnels, not covered elsewhere
    • E21F17/18Special adaptations of signalling or alarm devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C5/00Measuring height; Measuring distances transverse to line of sight; Levelling between separated points; Surveyors' levels

Definitions

  • Patent 1 The title is "A method for monitoring the dynamic development of overburden mining and separation layers", and the application number is 202110253757.1;
  • Patent 2 The title is "A magnetic induction monitoring device for rock subsidence and its operation method", and the application number is 202110253756.7.
  • the invention belongs to the technical field of a coal mine separation layer settlement monitoring device, and in particular relates to a device and a method for monitoring the dynamic development of an overlying rock mining separation layer.
  • the closure of the abscission space of the overburden will cause the surface to sink, form settlement pits and accumulate water, change the surface soil environment, and threaten the surface ecology and building stability.
  • ground grouting is an effective method to prevent the abscission water inrush and land subsidence. Too early (the abscission is not fully developed) or too late (the abscission begins to close) grouting will lead to lower control efficiency. Therefore, monitoring the dynamic development of overlying strata is very important for the prevention and control of abscission water inrush and land subsidence.
  • the magnetic ring layered subsidence instrument is used for monitoring.
  • the magnetic ring layered subsidence instrument is composed of a settlement pipe, a settlement magnetic ring, and a magnetic induction probe.
  • the settlement magnetic ring is sleeved on the top and bottom of the settlement pipe into the monitoring hole, and the subsidence amount of the soil layer is judged according to the position of the settlement magnetic ring.
  • the existing subsidence magnetic rings cannot be directly applied to the monitoring of stratified settlement of rock layers for the following reasons: (1) The monitoring holes for stratified settlement of rock strata are deeply buried, the number of settlement pipes used is large, and the existing settlement pipe connection technology bears less load, When installing a deep hole, the settlement tube may be disconnected at the upper part, resulting in installation failure; (2) Before the anchoring claw of the settlement magnetic ring bounces off, the settlement magnetic ring will be displaced under the action of its own weight, resulting in an inaccurate installation position, and it cannot be recovered for a second time.
  • the present invention aims to provide a monitoring device and method for the dynamic development of overburden mining and separation layers, so as to solve the problem that the existing monitoring device cannot be re-adjusted after installation, and cannot achieve non-destructive recovery and secondary installation. It needs to be installed in place at one time, the installation accuracy is very high, the construction is difficult, and it cannot be reused, resulting in high costs; and the existing monitoring device cannot be stably fixed on the rock wall of the monitoring hole for a long time, and the change of the monitoring position is detrimental to the accuracy of the monitoring results one or more of the issues affected.
  • a device for monitoring the dynamic development of overburden mining and separation layers including:
  • the subsidence magnetic ring assembly includes an anchor hoop assembly, a magnetic induction iron ring and a magnetic ring sleeve sleeved outside the magnetic induction iron ring; the anchor hoop assembly is arranged on the outer circumference of the magnetic ring sleeve, and has a contracted state and an expanded state.
  • the anchor in the contracted state The hoop assembly can move in the monitoring hole, and the anchor hoop assembly in the unfolded state and the hole wall of the monitoring hole have at least two fixed points at different heights in the vertical direction;
  • the two ends of the installation guide tube are respectively connected with the drill pipe and the magnetic ring sleeve, and the anchor hoop assembly is in a retracted state and an expanded state through the drill pipe and the installation guide tube, so as to realize the installation and recovery of the settlement magnetic ring assembly.
  • the anchor hoop assembly includes a long-wall anchor claw and a hoop sheet; the first end of the long-wall anchor claw is connected to the outer circumference of the magnetic ring sleeve through a shaft, and the second end of the long-wall anchor claw is a claw end, in preparation for In the unfolded state, it is embedded in the hole wall of the monitoring hole; the lower end of the hoop is fixed on the magnetic ring sleeve, and the upper end has a bell mouth-shaped folded end, and the folded end is connected with the claw end of the long wall anchor claw through a connecting line.
  • the hoop pieces and the long-wall anchor claw are arranged in groups, and the number of the hoop pieces is at least 2, and the hoop pieces are evenly arranged on the outer circumference of the upper end of the magnetic ring sleeve.
  • the outer side of the hoop piece has a rotation space for the long wall anchor to rotate around the axis, and an elastic body is arranged in the rotation space.
  • the elastic body is an elastic rubber ring, and the elastic rubber ring is at least partially sleeved on the magnetic ring sleeve; or, the elastic body is a limit spring, the first end of the limit spring is connected to the long-wall anchor claw, and the limit spring The second end of the magnetic ring sleeve is connected to the upper outer circumference of the magnetic ring sleeve or the lower part of the hoop sheet.
  • the folded end of the hoop sheet body is provided with a non-slip structure.
  • the anti-skid structure is a rubber layer, and the rubber layer is provided with elastic protrusions.
  • the installation guide tube is provided with a recovery sleeve opening, the lower end of the recovery sleeve opening is an open structure, and the inner wall of the recovery sleeve opening forms a storage space for accommodating the anchor hoop assembly; Shrink into the storage space of the sleeve opening.
  • the inner wall of the recovery sleeve is a smooth concave curved surface, and the recovery sleeve is fixed on the outer peripheral wall of the installation conduit and is coaxially arranged with the installation conduit.
  • the installation conduit includes a first section and a second section, the diameter of the first section is smaller than the diameter of the second section, the first section is connected with the drill pipe, and the recovery sleeve is arranged on the outer peripheral wall of the first section; the second section There are threaded clamping teeth, the inner wall of the magnetic ring sleeve is provided with threaded clamping grooves, and the threaded clamping teeth are matched with the threaded clamping grooves.
  • recovery sleeve is made of alloy material.
  • the longitudinal section of the folded end face of the hoop sheet is in the " ⁇ " shape with the lower opening
  • the inner wall of the recovery sleeve is a smooth concave wavy curved surface
  • the smooth concave wavy curved surface and the " ⁇ " shaped hoop sheet with the lower opening.
  • the folded end face is suitable.
  • the folded end face of the hoop sheet has a first folded end face and a second folded end face, and the inner surface, the second folded end face and the first folded end face of the hoop sheet body are sequentially arranged in transition; the second folded end face is integrally arranged.
  • the upper part has a convex structure, and the anti-skid structure is arranged at the lower part of the first folded end face and occupies 1/2-3/5 of the area of the first folded end face.
  • a method for monitoring the dynamic development of overlying rock mining and separation layers using the above-mentioned device for monitoring the dynamic development of overlying rock mining and separation layers, and the monitoring method includes the following steps:
  • installing the monitoring device for dynamic development of overburden mining and separation layers includes the following steps:
  • the monitoring hole is not drilled through the development zone of the abscission layer, and a layered water outburst prevention protective layer is left between the bottom of the monitoring hole and the top interface of the water-conducting fracture zone.
  • the present invention can achieve at least one of the following beneficial effects:
  • the subsidence magnetic ring assembly adopts the upper hoop and lower embedded structure, and the anchor hoop assembly in the unfolded state and the hole wall of the monitoring hole have at least two holes in the vertical direction.
  • a fixed point at different heights, the long-wall anchor claw and the hoop can work at the same time and reinforce each other, so that the settlement magnetic ring is stably fixed at the designated depth in the monitoring hole, preventing it from moving in the monitoring hole during the monitoring process. , thereby increasing the accuracy of monitoring results.
  • the monitoring device for the dynamic development of the overburden mining and separation layer provided by the present invention, after the monitoring is completed, the monitoring device can be removed from the monitoring borehole by installing a guide tube, the recovery process is easy to operate, and the subsidence magnetic ring assembly can be reused. Significantly reduce costs and have significant economic benefits.
  • Fig. 1 is the structural representation that coal seam mining leads to the development of separation layer in the embodiment
  • Fig. 2 is the structural schematic diagram of the subsidence magnetic ring assembly of the first kind of overburden mining and separation layer dynamic development monitoring device in the embodiment;
  • Fig. 3 is the structural representation of the installation conduit of the first kind of overburden mining and separation layer dynamic development monitoring device in the embodiment
  • FIG. 4 is a schematic structural diagram of the subsidence magnetic ring assembly of the second type of overburden mining and separation layer dynamic development monitoring device in the embodiment
  • FIG. 5 is a schematic structural diagram of the installation conduit of the second type of overburden mining and separation layer dynamic development monitoring device in the embodiment
  • FIG. 6 is a schematic diagram of the lowered state of the monitoring device for dynamic development of overburden mining and separation layers in the embodiment
  • FIG. 7 is a schematic diagram of the state in which the monitoring device for dynamic development of overburden mining and separation layers is embedded in the hole wall in the embodiment;
  • FIG. 8 is a schematic diagram of the recovery state of the monitoring device for dynamic development of overburden mining and separation layers in the embodiment
  • FIG. 9 is a schematic diagram of the range of the vertical movement area of the overlying rock caused by coal seam mining in the embodiment.
  • the overlying strata of the coal seam will form a water-conducting fracture zone 5 and a separation zone development zone 4, as shown in Figure 1. Due to the differences in lithology of the overlying strata in the water-conducting fracture zone 5, the hardness of different lithological strata is also different. The strength difference of the combination of medium and coarse sandstone strata 3 (hard rock) and silt, fine sandstone, and mudstone strata 2 (soft rock) on the Form the abscission cavity 1 . On the one hand, under the action of negative pressure, a large amount of water resources in the overlying aquifer accumulates in the abscission cavity 1.
  • a specific embodiment of the present invention discloses a device for monitoring the dynamic development of overburden mining and separation layers.
  • the device for monitoring the dynamic development of overlying rock mining and separation layers includes a subsidence magnetic ring assembly 7 and an installation
  • the conduit 8, the subsidence magnetic ring assembly 7 is installed on the drill pipe 6 of the drilling rig through the installation conduit 8, and the drill pipe 6 is used to rotate, lift, drop and cooperate with the installation conduit 8 to shrink and expand the anchor hoop assembly 7-3, and then realize the subsidence magnetic
  • the installation and recovery of the ring assembly 7 overcomes the defect of the existing monitoring method that the settling magnetic ring cannot be recovered without damage after the monitoring is completed.
  • the subsidence magnetic ring assembly 7 includes a magnetic induction iron ring 7-1, a magnetic ring sleeve 7-2 and an anchor hoop assembly 7-3.
  • the magnetic ring sleeve 7-2 is sleeved outside the magnetic induction iron ring 7-1, and the anchor hoop assembly 7-3 Fixed on the outer circumference of the magnetic ring sleeve 7-2, the anchor hoop assembly 7-3 has a contracted state and an expanded state.
  • the anchor hoop assembly 7-3 has a restoring elastic force that changes from a contracted state to an expanded state; in the expanded state, the size of the anchor hoop assembly 7-3 is larger than the diameter of the monitoring hole, and the anchor hoop assembly 7-3 is connected to the monitoring hole.
  • the hole wall has at least two fixed points at different heights in the vertical direction, and the fixed points of each height are basically located on the same circumference, that is to say, the hole wall of the monitoring hole is close to the anchor hoop assembly 7-3
  • the magnetic induction coil 7-1 is a magnetic coil
  • the magnetic coil has a magnetic material or a magnetic coil
  • the magnetic ring sleeve 7-2 is a hollow annular structure
  • the magnetic induction coil 7-1 is located on the side of the magnetic ring sleeve 7-2.
  • the inner circumferential wall of the magnetic ring sleeve 7-2 has internal threads
  • the outer circumferential wall of the magnetic ring sleeve 7-2 is installed with the anchor hoop assembly 7-3.
  • the magnetic induction iron ring 7-1 includes a hollow annular casing, the magnetic material or the magnetic coil is arranged in the inner space of the casing, the casing and the magnetic ring sleeve 7-2 are both hollow iron rings, and the hollow iron ring will not affect the magnetic field. Signal.
  • the anchor hoop assembly 7-3 includes a long-wall anchor 7-3-1, a hoop piece 7-3-2 and an elastic body.
  • the long-wall anchor claw 7-3-1 includes a long-wall rod, the first end of the long-wall rod is a connecting end, and the connecting end is rotatably connected to the outer circumference of the lower end of the magnetic ring sleeve 7-2, and the long-wall anchor claw 7-3-1
  • the connecting end of the magnetic ring sleeve is connected to the lower circumference of the magnetic ring sleeve 7-2 through the pin shaft 7-3-7, and can rotate up and down in the vertical direction around the pin shaft 7-3-7;
  • the second end of the long wall rod is a claw
  • the claw end is the free end, which is used to embed the hole wall of the monitoring hole.
  • the number of long wall anchor claw 7-3-1 is at least 2, and the plurality of connecting ends are evenly distributed on the outer circumference of the lower end of the magnetic ring sleeve 7-2. .
  • the outer circumference of the upper end of the magnetic ring sleeve 7-2 is provided with a hoop piece 7-3-2 corresponding to the long wall anchor claw 7-3-1, that is, the long wall anchor claw 7-3-1 and the hoop piece 7-3 -2 are arranged in groups, the number of hoop pieces 7-3-2 is at least 2, which is the same as the number of long-wall anchor claws 7-3-1, and is evenly arranged on the outer circumference of the upper end of the magnetic ring sleeve 7-2,
  • the hoop piece 7-3-2 corresponds to the long wall anchor claw 7-3-1 one-to-one and is arranged in groups;
  • the hoop piece 7-3-2 includes a hoop piece body, and the lower end of the hoop piece body is fixed on the magnetic ring sleeve 7-2
  • the upper end of the hoop sheet body is folded outward in a bell mouth shape, and the hoop sheet 7-3-2 is made of elastic steel and has a certain elastic deformation ability.
  • the hoop sheet body is an arc-shaped sheet structure, for example, the number of hoop sheets 7-3-2 is four, and the lower end of the hoop sheet 7-3-2 is uniformly welded on the outer circumference of the magnetic ring sleeve
  • the lower part of each hoop body is located on the same cylindrical circumference as a whole, and can form a hollow cylindrical structure.
  • the circumference diameter of the hollow cylindrical structure is greater than or equal to the outer circumference diameter of the magnetic ring sleeve 7-2.
  • the long wall anchor claw 7-3-1 is connected to the lower circumference of the magnetic ring sleeve 7-2 through a shaft rotation, that is, the long wall anchor claw 7-3-1 and the hoop piece body of the hoop piece 7-3-2. There is a fan-shaped rotating space between them, and the elastic body 7-3-3 is arranged in the rotating space. During the change of the anchor hoop assembly 7-3 from the contracted state to the expanded state, the elastic body 7-3-3 can move to the long wall anchor claw 7- 3-1 Apply the elastic force that swings to the wall of the monitoring hole.
  • the anchor hoop assembly 7-3 is in a retracted state.
  • the elastic body 7-3-3 is squeezed and deformed, which has the effect of making the long-wall anchor claw.
  • the claw end of 7-3-1 is away from the restoring elastic force of the rotation of the hoop piece 7-3-2; when the subsidence magnetic ring assembly 7 reaches the designated position, use the drill pipe 6 to lift the subsidence magnetic ring assembly 7 to move up, and the elastic body Under the action of the restoring elastic force, the claw end of the long-wall anchor claw 7-3-1 rotates away from the hoop piece 7-3-2, and the claw end of the long-wall anchor claw 7-3-1 is embedded in the hole wall of the monitoring hole.
  • the folded end of the hoop piece 7-3-2 is connected with the claw end of the long wall anchor claw 7-3-1 through the connecting line 7-3-5.
  • the connecting line 7-3-5 can drive the folded end of the hoop piece 7-3-2 to turn outwards, so that the bell mouth of the hoop piece 7-3-2 is folded outwards, and the opening range is The bell mouth of the opened hoop sheet 7-3-2 is tightly pressed against the hole wall of the monitoring hole.
  • the The diameter of the support becomes larger, thereby increasing the pressing force of the hoop piece 7-3-2 on the wall of the monitoring hole to ensure the fastening effect, and at the same time, it can also promote the claw end of the long wall anchor claw 7-3-1.
  • the folded end of the hoop piece 7-3-2, the claw end of the long wall anchor claw 7-3-1 and the hole wall of the monitoring hole are simultaneously increased, and the stability effect is better.
  • the elastic body 7-3-3 is one or a combination of an elastic rubber ring and a limit spring.
  • the elastic body 7-3-3 is an elastic rubber ring
  • the elastic rubber ring is at least partially sleeved on the upper outer circumference of the magnetic ring sleeve 7-2, and can also cover the outer circumference of the hoop sheet body at the same time.
  • the inner diameter of the elastic rubber ring is less than or equal to the outer diameter of the magnetic ring sleeve 7-2.
  • the wall thickness of the elastic rubber ring gradually increases, that is to say, the outer diameter of the lower part of the elastic rubber ring is smaller than the outer diameter of the upper part, and the wall section of the elastic rubber ring is inverted.
  • this structure can not only ensure a large enough recovery elastic force, but also can shrink at a small angle when it is installed in the monitoring hole, so that the magnetic ring can be smoothly installed in place.
  • the elastic body 7-3-3 is a limit spring, and each group of long-wall anchor claw 7-3-1 and the hoop piece 7-3-2 are matched with at least one limit spring,
  • the first end of the limit spring is connected to the long wall rod of the long wall anchor claw 7-3-1, and the second end of the limit spring is connected to the upper outer circumference of the magnetic ring sleeve 7-2, or the The second end is connected to the lower part of the hoop body.
  • the diameter of the circumference of the claw end of the long wall anchor claw 7-3-1 is larger than the diameter of the monitoring hole.
  • the claw end of the long wall anchor claw 7-3-1 shrinks.
  • the limit spring is compressed, and the limit spring has a restoring elastic force that makes the claw end of the long wall anchor claw 7-3-1 rotate away from the hoop piece 7-3-2.
  • the elastic body 7-3-3 is a combined structure of a limit spring and an elastic rubber ring.
  • a limit spring and an elastic rubber ring are provided as a complete set, wherein the elastic rubber ring is at least partially sleeved on the upper outer circumference of the magnetic ring sleeve 7-2, and the first end of the limit spring is connected to the long wall anchor claw 7-3-1.
  • the second end of the limit spring is connected to the lower part of the hoop body, and a rubber ring installation space is formed between the long wall rod, the hoop body, the limit spring and the outer circumference of the magnetic ring sleeve 7-2.
  • the elastic rubber ring is located in the rubber ring installation space.
  • the elastic rubber ring and the limit spring can work at the same time, improve the elastic force of the claw end of the long wall anchor claw 7-3-1, and avoid the failure of a single elastic rubber ring or limit spring, resulting in long The claw end of the wall anchor 7-3-1 failed to unfold, thereby improving the working reliability of the device.
  • the hoop sheet 7-3-2 is made of elastic steel material, the folded end of the hoop sheet 7-3-2 is provided with a non-slip structure 7-3-4, and the overturned end of the hoop sheet 7-3-2 is provided After the folded end is unfolded, the anti-skid structure 7-3-4 is in frictional contact with the hole wall of the monitoring hole.
  • the anti-skid structure 7-3-4 is in frictional contact with the hole wall of the monitoring hole.
  • the anti-skid structure 7-3-4 is a rubber layer, and the rubber layer is arranged on the folded end of the hoop sheet 7-3-2, and the hoop sheet 7-3- 2. The friction between the folded end of the monitoring hole and the hole wall of the monitoring hole.
  • elastic protrusions are provided on the rubber layer, and the anti-skid performance is further improved by providing the elastic protrusions.
  • the number of long-wall anchor claws 7-3-1 is 3-6, which are evenly arranged around the settlement magnetic ring, preferably four long-wall anchor claws 7-3-1 are used.
  • the subsidence magnetic ring assembly 7 is installed on the drill pipe 6 through the installation guide tube 8 .
  • both ends of the installation conduit 8 are provided with threaded sections, the first end is threadedly connected to the drill rod 6 , and the second end is threadedly connected to the housing of the subsidence magnetic ring assembly 7 .
  • the threaded teeth 8-3 at the lower part of the installation conduit 8 are matched with the threaded grooves 7-3-6 on the settling magnetic ring assembly 7, and the forward and reverse rotation of the drill pipe 6 drives the threaded teeth 8-3 in the threaded grooves.
  • the screw-in and screw-out on 7-3-6 are required to rotate in the forward direction (clockwise), the threaded teeth 8-3 are screwed into the threaded groove 7-3-6, and the conduit 8 and the settling magnetic ring assembly 7 are installed at this time. Connection; reverse (clockwise) rotation, the threaded teeth 8-3 are unscrewed from the threaded grooves 7-3-6, at this time the installation guide 8 is separated from the settling magnetic ring assembly 7, and the installation guide 8 and the settling magnetic ring assembly 7 are realized.
  • the connection and separation of the settling magnetic ring assembly 7 can be achieved without damage.
  • the installation conduit 8 includes a first section and a second section, the diameter of the first section is smaller than the diameter of the second section, and the first section is connected with the drill pipe 6 used by the drilling rig by threaded connection, Since the threaded teeth 8-3 provided in the second section are not in close contact with the threaded grooves 7-3-6, when the drill pipe 6 rotates forward and reverse, the second section will not transmit force, so the thread of the first section will not transmit force. The connection will not come off.
  • One end of the first section is provided with a connecting thread 8-1, and the connecting thread 8-1 is matched with the thread of the drill rod 6; the other end of the first section is connected with the second section, and the second section is provided with a threaded tooth 8-3,
  • the inner wall of the magnetic ring sleeve 7-2 is provided with a threaded clamping groove 7-3-6, the threaded clamping teeth 8-3 are matched with the threaded clamping groove 7-3-6, and the settling magnetic ring assembly 7 is connected to the second part of the installation guide tube 8. Segment threaded connection.
  • the first section is provided with a recovery sleeve opening 8-2.
  • the longitudinal section of the recovery sleeve opening 8-2 is an inverted "Y"-shaped hollow structure with a large diameter at the lower end and a small diameter at the upper end.
  • the upper end of -2 is fixed on the outer peripheral wall of the first section
  • the lower end of the recovery sleeve 8-2 is an open structure
  • the inner wall of the recovery sleeve 8-2 is a smooth concave curved surface
  • the smooth concave curved surface forms the storage anchor hoop assembly 7- 3 storage space, as shown in Figure 2 to Figure 3.
  • the anti-skid structure 7-3-4 is arranged at the lower part of the folded end of the hoop sheet 7-3-2, and the arc surface where the highest point of the folded end of the hoop sheet 7-3-2 is located is a smooth upward convex surface, and this structure is set When the settling magnetic ring assembly 7 is recovered, the anti-skid structure 7-3-4 is not in contact with the inner wall of the recovery sleeve 8-2, thereby reducing the recovery resistance, so as to realize the smooth recovery of the device.
  • the longitudinal section of the folded end face of the hoop sheet 7-3-2 is roughly " ⁇ "-shaped, and the lower opening of the folded end face of the " ⁇ "-shaped structure is provided, and the sleeve is recovered.
  • the inner wall of 8-2 is a smooth concave wavy curved surface, the smooth concave wavy curved surface is matched with the folded end face of the roughly " ⁇ " shaped hoop sheet 7-3-2, and the smooth concave wavy curved surface forms a receiving anchor The storage space of the hoop assembly 7-3.
  • the folded end face of the hoop sheet 7-3-2 has a first folded end face and a second folded end face which are arranged in transition, and the inner surface, the second folded end face and the first folded end face of the hoop sheet body are sequentially Connection, wherein, the inner surface of the hoop sheet body refers to the side facing away from the wall of the monitoring hole, the second folded end face has a convex structure as a whole, and the convex second folded end face is located on the inner surface of the hoop sheet body and the first Between the folded end faces, at least a part of the first folded end face faces the wall of the monitoring hole, the anti-slip structure 7-3-4 is arranged on the first folded end face, and the anti-slip structure is located at the lower part of the first folded end face and occupies the first The area of 1/2-3/5 of the folded end face, the upper part of the first folded end face and the second folded end face are smooth curved surfaces.
  • the smooth second folded end face of the convex structure and The inner wall of the recovery sleeve 8-2 is in contact with the smooth surface, and the recovery sleeve 8-2 does not contact the anti-skid structure, which reduces the recovery resistance and realizes the smooth recovery of the device; one end of the connecting line 7-3-5 is connected to the second flip. On the folded end, the other end is connected to the long wall rod of the long wall anchor claw 7-3-1.
  • the connecting wire drives the folded end to open, it only needs a small distance to pull the anti-skid structure to contact the hole wall of the monitoring hole. , to improve the accuracy of the installation position and ensure the reliability of the device.
  • the drill rod 6 When the settling magnetic ring is recovered, the drill rod 6 is rotated forward when the drill rod 6 reaches the position of the magnetic ring, and the installation guide pipe 8 is driven to screw into the settling magnetic ring assembly 7, and the settling magnetic ring assembly 7 moves upward along the second section of the installation guide pipe 8.
  • the second folded end face of the upper bell mouth folded end of the hoop body first enters the storage space of the recovery sleeve 8-2, and contacts the smooth concave wavy curved surface of the recovery sleeve 8-2, and the first folded
  • the end surface is not in contact with the inner wall surface of the recovery sleeve 8-2, and with the continuous screwing of the drill pipe 6, the subsidence magnetic ring assembly 7 continues to move along the threaded teeth 8-3 of the second section, and the smooth concave wave shape is formed.
  • the second folded end face shrinks toward the center line of the settling magnetic ring assembly 7 in the recovery sleeve 8-2, and then drives the connecting line 7-3-5 to lift the long wall anchor claw 7-3- 1, so that the claw end of the long wall anchor claw 7-3-1 rotates toward the hoop piece 7-3-2, and is separated from the hole wall of the monitoring hole, so as to realize the recovery of the settling magnetic ring assembly 7.
  • the recovery sleeve 8-2 is made of alloy material, which has high hardness and wear resistance.
  • the recovery sleeve 8-2 is forged from a 5mm thick steel plate as a whole. .
  • the width of the threaded grooves 7-3-6 To be larger than the width of 8-3 of the threaded teeth, optionally, the width of the threaded groove 7-3-6 is 0.2 mm, and the width of the threaded teeth 8-3 is 0.1 mm, so that it does not transmit torque to the upper part.
  • This embodiment also discloses an installation and operation method for the monitoring device for dynamic development of overburden mining and separation layers, which specifically includes the following steps:
  • Step 1 Install the anchor hoop assembly 7-3 on the drill pipe 6 through the installation guide pipe 8, and the drill rod 6 is lowered, so that the anchor hoop assembly 7-3 is lowered to the orifice of the monitoring hole, and the anchor hoop assembly 7-3 is set In order to retract and extend into the monitoring hole, lower the anchor hoop assembly 7-3 in the retracted state to a preset depth in the monitoring hole.
  • the installation conduit 8 On the ground, connect the installation conduit 8 to the drill pipe 6 through the connecting thread 8-1, and manually screw the subsidence magnetic ring assembly 7 into the threaded slot 7-3-6 through the threaded tooth 8-3 to connect it to the installation conduit 8 lower part.
  • the drilling rig lowers the drill pipe 6, lowers the subsidence magnetic ring assembly 7 into the monitoring hole, and manually or uses the orifice of the monitoring hole to shrink the anchor hoop assembly 7-3, that is, the subsidence magnetic ring assembly 7 is in the process of lowering.
  • the long wall anchor claw 7-3-1 is close to the hole wall so that the elastic body 7-3-3 is in a compressed state, and the connecting line 7-3-5 is in a loose state at this time, as shown in FIG. 6 .
  • Step 2 After lowering the drill rod 6 and placing the retracted anchor hoop assembly 7-3 at the preset depth position, then lift the drill rod 6, and the drill rod 6 drives the installation guide 8 to move upward to expand the anchor hoop assembly 7-3, and the anchor rod After the hoop assembly 7-3 is unfolded, the longwall anchor 7-3-1 is stably embedded in the wall of the rock hole.
  • the drilling rig lifts the drill pipe 6 and drives the installation guide 8 to move the subsidence magnetic ring assembly 7 upward.
  • the long wall anchor claw 7-3-1 at the lower end of the subsidence magnetic ring assembly 7 and the hoop piece 7-3-2 at the upper end can play a role at the same time and reinforce each other. That is, the deeper the bottom long-wall anchor claw 7-3-1 is embedded in the hole wall, the greater the squeezing force exerted by the hoop 7-3-2 on the hole wall of the monitoring hole, and finally the settlement magnetic ring is stably fixed on the hole wall. superior.
  • Step 3 Reverse the drill pipe 6 to separate the installation conduit 8 from the subsidence magnetic ring assembly 7, repeat the above steps to install the subsidence magnetic ring assembly 7 at the next design depth, until the installation of the subsidence magnetic ring at all design depths is completed. .
  • the subsidence magnetic ring When the subsidence magnetic ring is fixed on the hole wall, the lifting of the drill pipe 6 is blocked. Observe the pressure gauge of the drilling rig. When the pressure gauge changes greatly, it means that the installation is successful. At this time, reverse the drill pipe 6 to make the threaded teeth 8-3 unscrew the thread.
  • the slot 7-3-6 realizes the separation of the installation guide 8 and the settling magnetic ring assembly 7. According to this method, the settling magnetic rings of the designed quantity (eg 60) can be installed sequentially from bottom to top.
  • the drilling rig lowers the drill pipe 6 and the installation guide pipe 8.
  • the forward rotation drill pipe 6 drives the installation guide pipe 8 to rotate, so that the threaded teeth 8-3 rotate. Enter the threaded slot 7-3-6.
  • This embodiment also provides a layered settlement monitoring system, including the monitoring device for dynamic development of overlying rock mining and separation layers and a settlement monitor of this embodiment.
  • the device for monitoring the dynamic development of overlying rock mining and separation layers provided in this embodiment has at least one of the following beneficial effects:
  • the innovatively designed subsidence magnetic ring assembly has a simple structure. It successfully applies the subsidence magnetic ring from soil layer monitoring to layered monitoring of rock layers.
  • the principle is simple, the operation is convenient and labor-saving, and it can perform simple and effective methods for the dynamic development process of the separation layer.
  • Accurate monitoring provides a strong basis for judging the development position and development space of the separation layer, which is of great significance to the safe mining of coal and ground grouting and anti-sinking.
  • the subsidence magnetic ring assembly adopts the upper hoop and lower embedded structure.
  • the long wall anchor claw and the hoop piece can play a role at the same time and reinforce each other, so that the subsidence magnetic ring is stably fixed on the hole wall of the monitoring hole, and the monitoring of the dynamic development of the separation layer is increased.
  • the installation guide tube can be used to remove from the borehole, the collection process is easy to operate, and the repeated use of the subsidence magnetic ring assembly can be realized, which can significantly reduce the cost and have significant economic benefits.
  • the inner wall of the recovery sleeve is a smooth concave wavy curved surface.
  • the smooth concave wavy curved surface matches the folded end face of the roughly " ⁇ " shaped hoop.
  • the smooth concave wavy curved surface forms a storage space.
  • the installation of the settling magnetic ring assembly with the installation pipe can avoid the defect that the magnetic ring is easily blocked by soil particles in the traditional use of the settlement pipe, and significantly improves the working stability of the monitoring device.
  • Another specific embodiment of the present invention discloses a method for monitoring the dynamic development of overlying rock mining and abscission, using the device for monitoring the dynamic development of overlying rock mining and abscission provided by the embodiment to monitor the dynamic development of the layer.
  • the beneficial effects of the monitoring method for monitoring the dynamic development of overlying rock mining and separation layers provided in this embodiment are basically the same as the beneficial effects of the monitoring device for the dynamic development of overlying rock mining and separation layers provided in Example 1. Here Not to repeat them one by one.
  • the monitoring method for dynamic development of overlying rock mining and separation layers includes the following steps:
  • the development depth H s of the separation layer can be calculated according to the following formula:
  • H s is the development depth of the separation layer, m;
  • H c is the burial depth of the coal seam roof, m;
  • H f is the development height of the water-conducting fracture zone, m;
  • M c is the cumulative mining thickness of the coal seam, m; C is the fracture-to-mining ratio;
  • the development height H f of the water-conducting fracture zone can be obtained by means of optical fiber, drilling fluid leakage or borehole TV testing.
  • the installation range of the subsidence magnetic ring is from the bottom interface of the Quaternary aeolian sand layer 4-1 in the abscission development area 4 to the top of the abscission water outburst prevention protective layer.
  • Interface that is to say, when the monitoring hole is constructed, the monitoring hole is not drilled through the separation zone development zone 4, and there is a certain thickness of stratum between the bottom of the monitoring hole and the top interface of the water-conducting fracture zone, and the stratum with the reserved thickness is the separation layer.
  • Layer water outburst prevention protection layer 4-3 the existence of abscission water outburst prevention protection layer 4-3 can effectively prevent abscission water from rushing into the coal mining face from the monitoring hole.
  • a subsidence magnetic ring assembly 7 is installed in the Quaternary aeolian sand layer 4-1 in the abscission development area 4, and the installation range 4-2 of the subsidence magnetic ring assembly is determined. Calculate the drilling depth H m of the monitoring hole according to the following formula:
  • H m is the drilling depth of the monitoring hole, m
  • M p is the thickness of the abscission water outburst prevention protective layer, m
  • the thickness of the abscission water anti-outburst protective layer is calculated according to the following formula:
  • P is the water pressure of the aquifer overlying the separation layer, MPa;
  • T s is the critical water inrush coefficient MPa/m; among them, the critical water inrush coefficient is set according to the "Detailed Rules for Water Prevention and Control in Coal Mine", that is, when there is no structural damage The value is 0.1MPa/m, and when there is structural damage, the value is 0.06MPa/m.
  • step S1 the information of the rock formation within the installation depth range of the subsidence magnetic ring assembly 7 is detected, and the installation position and quantity of the subsidence magnetic ring are determined.
  • the lithology, thickness, position of the rock interface, and the position of the layer interface are determined according to the methods of ground drilling core, drilling video imaging or drilling geophysical exploration methods in the subsidence magnetic ring installation range.
  • the subsidence magnetic ring is installed at the upper and lower positions of the interface and the stratum interface, so as to realize the design of the installation position and installation quantity of the subsidence magnetic ring.
  • coal seam mining will cause differences in the subsidence of rock formations at different distances within a certain range from the coal mining face, resulting in horizontal and vertical formation movements.
  • the overlying strata of the coal seam near the monitoring hole will firstly move horizontally, and then mainly move vertically. If the monitoring hole is formed after the hole is formed or the settlement monitoring device is installed, the overlying rock around the monitoring hole mainly moves horizontally. The settling tube is damaged.
  • the overlying strata of the coal seam mainly move vertically, and the horizontal movement is small, and the monitoring hole will not be staggered.
  • the coal mining face changes dynamically during the coal mining process, which is related to the coal mining footage, and the depth of the monitoring hole is large, so the completion of the monitoring hole construction also takes a certain time.
  • the advance of the coal mining face and the drilling of the monitoring hole can be carried out at the same time.
  • the drilling timing of the monitoring hole and the installation time of the subsidence magnetic ring are determined.
  • step S3 the earliest drilling time of the monitoring hole is at the distance L1 between the coal mining face and the monitoring hole.
  • the drilling start time of the monitoring hole is at the latest before the distance between the coal mining face and the monitoring hole is D;
  • D is the footage of the coal seam during drilling, m; H m is the drilling depth of the monitoring hole, m; v 1 is the average daily footage of coal seam mining, m; v 2 is the average daily drilling depth, m.
  • the anchor hoop assembly 7-3 is installed on the drill rod 6 through the installation conduit 8, and the subsidence magnetic ring assembly 7 in the retracted state is lowered to a preset depth position in the monitoring hole by the drill rod 6;
  • S is the settlement amount of the subsidence magnetic ring, m;
  • S 1 is the burial depth of the monitoring subsidence magnetic ring, m;
  • S 0 is the initial subsidence magnetic ring burial depth, m.
  • M s is the height of abscission development, m; Below S is the subsidence of the lower subsidence magnetic ring, m; Above S is the subsidence of the upper subsidence magnetic ring, m.
  • Coal seam mining leads to uneven settlement of the overlying strata to form abscission space, and the closure of the abscission space will cause disasters such as water inrush and ground subsidence in the coal mining face.
  • the dynamic development law of the separation layer of the coal-overlying strata, before the separation layer space is closed, that is, when the separation layer space is most developed, grouting and filling the inner space is the best time to prevent the separation layer water inrush and land subsidence, and it can effectively Prevent geological disasters in coal mines, such as water inrush from the separation layer and land subsidence caused by coal seam mining.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

本专利涉及一种覆岩采动离层动态发育监测装置及方法,所述监测装置包括沉降磁环组件和安装导管,沉降磁环组件包括锚箍组件、磁感应铁圈以及套设于磁感应铁圈外的磁环套;锚箍组件设于磁环套的外圆周,具有收缩状态和展开状态;收缩状态下的锚箍组件能够在监测孔内移动,展开状态下的锚箍组件与监测孔的孔壁在竖直方向上至少有两个位于不同高度的固定点;安装导管的两端分别与钻杆和磁环套连接,通过钻杆配合安装导管使锚箍组件处于收缩状态和展开状态,以实现沉降磁环组件的安装与回收。本发明的结构简单,操作方便,不仅能够长期稳固的固定在监测孔孔壁上,而且完成监测后能够从监测孔中移出,可以重复使用。

Description

一种覆岩采动离层动态发育监测装置及方法
相关申请的交叉引用
本申请要求于2021年03月09日提交的2件中国专利申请的优先权,2件中国专利为:
专利1:名称为“一种覆岩采动离层动态发育监测方法”、申请号为202110253757.1;
专利2:名称为“一种岩层沉降磁感应监测装置及其操作方法”、申请号为202110253756.7。
将上述2件专利申请的全部内容在此引入作为参考。
技术领域
本发明属于煤矿离层沉降监测装置技术领域,具体而言涉及一种覆岩采动离层动态发育监测装置及方法。
背景技术
不同的沉积时间和沉积环境会造成地层岩性和厚度的差异性。当煤层开采时,覆岩原岩应力的破坏导致各地层不一致的沉降变形,因此在岩层间形成离层空间。一方面,在负压作用下,覆岩含水层大量水资源向离层空腔积聚,当规模发育到一定程度就会发生瞬时性离层突水事故,威胁矿井工作面安全开采。另一方面,覆岩离层空间的闭合会使地表下沉,形成沉降坑并积水,改变地表土壤环境,威胁地表生态及建筑物稳定。当离层空间发育最大时,地面注浆是防治离层突水和地面沉降的一种有效方法,过早(离层发育不完全)或过晚(离层开始闭合)注浆都会导致较低防治效率。因此,覆岩离层动态发育监测对离层水突水防治及地面沉降治理非常重要。
在地铁、桥梁、基坑等施工项目的土层沉降监测中,采用磁环式分层沉降仪进行监测,磁环式分层沉降仪由沉降管、沉降磁环、磁感应探头构成,监测时,将沉降磁环套接在沉降管上下入监测孔,根据沉降磁环位置判断土层下沉量。然而,现有沉降磁环无法直接应用到岩层分层沉降监测中,理由如下:(1)岩层分层沉降监测孔埋深大,所用沉降管根数多,现有沉降管连接技术承重小,深孔安装时沉降管可能在上部断开导致安装失败;(2)沉降磁环的锚固爪弹开前,沉降磁环在自重作用下产生位移导致安装位置不准确,且无法回收后进行二次调整安装位置;(3)岩石硬度远大于土 体,现有沉降磁环的抓壁力弱,无法长期固定在监测孔岩壁上,导致监测深度发生变化,影响监测结果的准确性;(4)沉降管与沉降磁环间隙小,限制沉降磁环测量量程,若其被岩屑或土颗粒堵塞,沉降磁环无法自由移动,影响测量精度。
发明内容
鉴于上述的分析,本发明旨在提供一种覆岩采动离层动态发育监测装置及方法,用以解决现有监测装置安装后无法再次调整安装位置,无法实现无损回收并进行二次安装,需要一次安装到位,对安装精度要求非常高,施工难度大,不能重复利用导致成本高;而且现有监测装置无法长期稳定固定在监测孔岩壁上,监测位置变化对监测结果的准确性造成不利影响的问题中的一者或多者。
本发明的目的是这样实现的:
第一方面,提供一种覆岩采动离层动态发育监测装置,包括:
沉降磁环组件,包括锚箍组件、磁感应铁圈以及套设于磁感应铁圈外的磁环套;锚箍组件设于磁环套的外圆周,具有收缩状态和展开状态,收缩状态下的锚箍组件能够在监测孔内移动,展开状态下的锚箍组件与监测孔的孔壁在竖直方向上至少有两个位于不同高度的固定点;
安装导管,安装导管的两端分别与钻杆和磁环套连接,通过钻杆配合安装导管使锚箍组件处于收缩状态和展开状态,以实现沉降磁环组件的安装与回收。
进一步地,锚箍组件包括长壁锚爪和箍片;长壁锚爪的第一端通过一轴连接于磁环套的外圆周,长壁锚爪的第二端为爪端,以备在展开状态下嵌入监测孔孔壁;箍片的下端固定在磁环套上,上端具有呈喇叭口状的翻折端,翻折端通过连接线与长壁锚爪的爪端连接。
进一步地,箍片与长壁锚爪成组设置,箍片的数量至少为2个,且均匀设置在磁环套的上端外圆周上。
进一步地,箍片的外侧具有供长壁锚爪绕轴转动的转动空间,转动空间内设有弹性体。
进一步地,弹性体为弹性橡胶圈,弹性橡胶圈至少部分套设在磁环套上;或者,弹性体为限位弹簧,限位弹簧的第一端连接在长壁锚爪上,限位弹簧的第二端连接在磁环套的上部外圆周或者连接在箍片的下部。
进一步地,箍片本体的翻折端设有防滑结构。
进一步地,防滑结构为橡胶层,橡胶层上设有弹性凸起。
进一步地,安装导管上设有回收套口,回收套口的下端为开口结构,回收套口的内壁形成收纳锚箍组件的收纳空间;箍片的翻折端能够在钻杆的旋转操作下,收缩进入收套口的收纳空间。
进一步地,回收套口的内壁为光滑凹形曲面,回收套口固定设于安装导管的外周壁上,且与安装导管同轴设置。
进一步地,安装导管包括第一段和第二段,第一段的直径小于第二段的直径,第一段与钻杆连接,回收套口设于第一段的外周壁上;第二段设有螺纹卡齿,磁环套的内壁设有螺纹卡槽,螺纹卡齿与螺纹卡槽相适配。
进一步地,回收套口由合金材质制成。
进一步地,箍片的翻折端面的纵向截面呈下部开口的“β”形,回收套口的内壁为光滑凹形波浪状曲面,光滑凹形波浪状曲面与下部开口的“β”形箍片的翻折端面相适配。
进一步地,箍片的翻折端面具有第一翻折端面和第二翻折端面,箍片本体的内表面、第二翻折端面以及第一翻折端面依次过渡设置;第二翻折端面整体上呈凸形结构,防滑结构设置在第一翻折端面的下部,且占据第一翻折端面面积的1/2-3/5。
第二方面,提供一种覆岩采动离层动态发育监测方法,利用上述覆岩采动离层动态发育监测装置,该监测方法包括如下步骤:
S1、基于离层发育区的范围,确定沉降磁环组件安装深度;
S2、探查沉降磁环组件安装深度范围内的岩层信息,确定沉降磁环组件安装位置及数量;
S3、基于工作面采煤进尺、监测孔钻进速度信息,确定监测孔的开始钻进时间,并完成监测孔施工;
S4、将沉降磁环组件安装在监测孔内的预设深度位置,利用分层沉降监测系统对离层动态发育进行监测,获取岩层沉降量及离层发育高度。
进一步地,安装覆岩采动离层动态发育监测装置包括如下步骤:
S41、将锚箍组件通过安装导管安装在钻杆上,利用钻杆将收缩状态的沉降磁环组件在监测孔内下放至预设深度位置;
S42、降落钻杆将收缩状态的锚箍组件置于预设深度位置后,提升钻杆,带动安装导管向上运动使锚箍组件展开,长壁锚爪嵌入岩石孔壁;
S43、反转钻杆使安装导管与沉降磁环组件的分离,重复上述步骤进行下一设计深度处的沉降磁环组件的安装,直至完成所有设计深度处的沉降磁环组件的安装。
进一步地,监测孔未钻穿离层发育区,监测孔的孔底至导水裂缝带顶界面之间留有离层水防突保护层。
与现有技术相比,本发明至少可实现如下有益效果之一:
a)本发明提供的覆岩采动离层动态发育监测装置,沉降磁环组件采用上箍下嵌式结构,展开状态下的锚箍组件与监测孔的孔壁在竖直方向上至少有两个位于不同高度的固定点,长壁锚爪和箍片可同时发挥作用,互相增强,使得沉降磁环稳定地固定在监测孔内的指定深度位置,防止其监测过程中在监测孔内发生移动,从而增加监测结果的准确性。
b)本发明提供的覆岩采动离层动态发育监测装置,完成监测后,利用安装导管能够将监测装置从监测钻孔中移出,收取过程操作方便,实现沉降磁环组件的重复使用,能够显著降低成本,具有显著的经济效益。
附图说明
为了更清楚地说明本说明书实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本说明书实施例中记载的一些实施例,对于本领域普通技术人员来讲,还可以根据这些附图获得其他的附图。
图1为实施例中煤层开采导致离层发育的结构示意图;
图2为实施例中第一种覆岩采动离层动态发育监测装置的沉降磁环组件的结构示意图;
图3为实施例中第一种覆岩采动离层动态发育监测装置的安装导管的结构示意图;
图4为实施例中第二种覆岩采动离层动态发育监测装置的沉降磁环组件的结构示意图;
图5为实施例中第二种覆岩采动离层动态发育监测装置的安装导管的结构示意图;
图6为实施例中覆岩采动离层动态发育监测装置的下放状态示意图;
图7为实施例中覆岩采动离层动态发育监测装置嵌入孔壁的状态示意图;
图8为实施例中覆岩采动离层动态发育监测装置的回收状态示意图;
图9为实施例中煤层开采导致覆岩竖直运动区范围示意图。
附图标记:
1、离层空腔;2、粉、细砂岩、泥岩岩层;3、中、粗砂岩岩层;4、离层发育区;4-1、第四系风积沙层;4-2、沉降磁环安装范围;4-3、离层水防突保护层;5、导水裂缝区;6、钻杆;7、沉降磁环组件;7-1、磁感应铁圈;7-2、磁环套;7-3、锚箍组件;7-3-1、长壁锚爪;7-3-2、箍片;7-3-3、弹性体;7-3-4、防滑结构;7-3-5、连接线;7-3-6、螺纹卡槽;7-3-7、销轴;8、安装导管;8-1、连接螺纹;8-2、回收套口;8-3、螺纹卡齿。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
为便于对本申请实施例的理解,下面将结合附图以具体实施例做进一步的解释说明,实施例并不构成对本申请实施例的限定。
由于煤层开采导致覆岩原岩应力破坏,煤层上覆岩层会形成导水裂缝区5及离层发育区4,如图1所示。由于导水裂缝区5的上覆地层存在岩性差异,不同岩性地层的硬度也不同,一般而言,砂岩层的硬度大,粉、细砂岩、泥岩岩层的硬度小,由于导水裂缝区5上的中、粗砂岩岩层3(硬岩)与粉、细砂岩、泥岩岩层2(软岩)岩层组合的强度差异,煤层开采会在离层发育区4中的软、硬岩岩层分界面形成离层空腔1。一方面,在负压作用下,覆岩含水层大量水资源向离层空腔1积聚,当规模发育到一定程度就会发生瞬时性离层突水事故,威胁矿井工作面安全开采。另一方面,覆岩离层空腔1的闭合会使地表下沉,形成沉降坑并积水,改变地表土壤环境,威胁地表生态及建筑物稳定。
实施例1
本发明的一个具体实施例,公开了一种覆岩采动离层动态发育监测装置,如图2-图5所示,覆岩采动离层动态发育监测装置包括沉降磁环组件7和安装导管8,沉降磁环组件7通过安装导管8安装在钻机的钻杆6上,利用钻杆6旋转、提升、降落并配合安装导管8使锚箍组件7-3收缩和展开,进而实现沉降磁环组件7的安装与回收,克服了现有监测方法监测结束后无法对沉降磁环进行无损坏回收的缺陷。
沉降磁环组件7包括磁感应铁圈7-1、磁环套7-2和锚箍组件7-3,磁环套7-2套 设在磁感应铁圈7-1外,锚箍组件7-3固定设于磁环套7-2的外圆周,锚箍组件7-3具有收缩状态和展开状态,收缩状态下,锚箍组件7-3的整体尺寸小于等于监测孔的孔径,能够在监测孔内上下移动,且锚箍组件7-3具有由收缩状态变为展开状态的恢复弹力;展开状态下,锚箍组件7-3的尺寸大于监测孔的孔径,锚箍组件7-3与监测孔的孔壁在竖直方向上至少有两个位于不同高度的固定点,且每个高度的固定点基本上位于同一圆周上,也就是说,监测孔的孔壁对锚箍组件7-3在竖直方向上至少有两个位于不同高度的支撑点,且每个高度的固定点基本上位于同一圆周上,使得展开状态的锚箍组件7-3与监测孔的孔壁之间具有足够大的支撑作用力,以保证锚箍组件7-3的安装稳定性,防止沉降磁环移动。
本实施例中,磁感应铁圈7-1为磁力圈,磁力圈具有磁性材料或磁圈,磁环套7-2为空心环状结构,磁感应铁圈7-1位于磁环套7-2的内部空间,磁环套7-2的内圆周壁具有内螺纹,磁环套7-2的外圆周壁安装锚箍组件7-3。可选的,磁感应铁圈7-1包括空心环状的外壳,磁性材料或磁圈设置在外壳的内部空间,外壳和磁环套7-2均为空心铁圈,空心铁圈不会影响磁信号。
具体而言,如图2和图4所示,锚箍组件7-3包括长壁锚爪7-3-1、箍片7-3-2和弹性体。
长壁锚爪7-3-1包括长壁杆,长壁杆的第一端为连接端,连接端转动连接于磁环套7-2的下端外圆周,长壁锚爪7-3-1的连接端通过销轴7-3-7连接在磁环套7-2的下圆周上,能够绕销轴7-3-7在竖直方向进行上下转动;长壁杆的第二端为爪端,爪端为自由端,用于嵌入监测孔的孔壁,长壁锚爪7-3-1的数量至少为2个,多个连接端均匀分布在磁环套7-2的下端外圆周。
磁环套7-2的上端外圆周设有与长壁锚爪7-3-1相对应的箍片7-3-2,也即长壁锚爪7-3-1与箍片7-3-2成组设置,箍片7-3-2的数量至少为2个,与长壁锚爪7-3-1的数量相同,且均匀设置在磁环套7-2的上端外圆周上,箍片7-3-2与长壁锚爪7-3-1一一对应且成组设置;箍片7-3-2包括箍片本体,箍片本体的下端固定在磁环套7-2上,箍片本体的上端呈喇叭口状向外翻折,箍片7-3-2由弹性钢制成,具有一定弹性变形能力。
箍片本体为弧形片状结构,示例性的,箍片7-3-2的数量为四个,箍片7-3-2的下端均匀焊接在磁环套7-2的外圆周,四个箍片本体的下部整体上位于同一柱状圆周上,能够构成空心柱状结构,该空心柱状结构的圆周直径大于等于磁环套7-2的外圆周直 径。
长壁锚爪7-3-1通过一轴转动连接于磁环套7-2的下圆周上,也即长壁锚爪7-3-1与箍片7-3-2的箍片本体之间具有扇形转动空间,转动空间内设置弹性体7-3-3,锚箍组件7-3由收缩状态向展开状态下变化过程中,弹性体7-3-3能够向长壁锚爪7-3-1施加向监测孔孔壁摆动的弹力。安装过程中,当沉降磁环组件7沿监测孔的孔壁向下移动时,长壁锚爪7-3-1的爪端向箍片本体转动时,使锚箍组件7-3呈收缩状态,由于弹性体的存在,长壁锚爪7-3-1的爪端向箍片7-3-2转动靠近过程中,弹性体7-3-3被挤压变形,具有使长壁锚爪7-3-1的爪端远离箍片7-3-2转动的恢复弹力;当沉降磁环组件7到达指定位置后,利用钻杆6上提使沉降磁环组件7向上移动,在弹性体的恢复弹力作用下,长壁锚爪7-3-1的爪端远离箍片7-3-2转动,长壁锚爪7-3-1的爪端嵌入监测孔的孔壁。
箍片7-3-2的翻折端通过连接线7-3-5与长壁锚爪7-3-1的爪端连接,当长壁锚爪7-3-1的爪端远离箍片7-3-2转动时,连接线7-3-5能够带动箍片7-3-2的翻折端外翻,使得箍片7-3-2的喇叭口向外翻折,张开范围变大,张开后的箍片7-3-2喇叭口紧紧抵靠在监测孔的孔壁上,在连接线7-3-5的带动下,箍片7-3-2的喇叭口的支撑直径变大,从而增大了箍片7-3-2对监测孔孔壁的挤压力,以保证紧固效果,同时,还能够促使长壁锚爪7-3-1的爪端嵌入监测孔的孔壁,箍片7-3-2的翻折端、长壁锚爪7-3-1的爪端与监测孔的孔壁接触力得以同时增大,稳固效果更好。
本实施例中,弹性体7-3-3为弹性橡胶圈、限位弹簧中的一者或两者组合。
本实施例的一个可选实施方式,弹性体7-3-3为弹性橡胶圈,弹性橡胶圈至少部分套设在磁环套7-2的上部外圆周,也可以同时包覆箍片本体的下部,弹性橡胶圈的内径小于等于磁环套7-2的外径。进一步的,由磁环套7-2的下端向上端方向,弹性橡胶圈的壁厚度逐渐变大,也就是说,弹性橡胶圈的下部外径小于上部外径,弹性橡胶圈的壁截面为倒三角形,此结构设置,不仅能够保证足够大的恢复弹性力,而且能够在装入监测孔时小角度收缩,使得磁环顺利安装到位。
本实施例的一个可选实施方式,弹性体7-3-3为限位弹簧,每组长壁锚爪7-3-1和箍片7-3-2配套设置至少一根限位弹簧,限位弹簧的第一端连接在长壁锚爪7-3-1的长壁杆上,限位弹簧的第二端连接在磁环套7-2的上部外圆周,或者,限位弹簧的第二端连接在箍片本体的下部。自然状态下,长壁锚爪7-3-1的爪端所在圆周直径大于监测孔的孔径,沉降磁环在装入监测孔过程中,长壁锚爪7-3-1的爪端收缩,使限位弹 簧压缩,限位弹簧具有使长壁锚爪7-3-1的爪端远离箍片7-3-2转动的恢复弹力。
本实施例的一个可选实施方式,弹性体7-3-3为限位弹簧和弹性橡胶圈的组合结构,具体的,每组长壁锚爪7-3-1和箍片7-3-2配套设置限位弹簧和弹性橡胶圈,其中,弹性橡胶圈至少部分套设在磁环套7-2的上部外圆周,限位弹簧的第一端连接在长壁锚爪7-3-1的长壁杆上,限位弹簧的第二端连接在箍片本体的下部,长壁杆、箍片本体、限位弹簧以及磁环套7-2的外圆周之间形成橡胶圈安装空间,弹性橡胶圈位于橡胶圈安装空间内。此结构设置,弹性橡胶圈和限位弹簧能够同时起作用,提高长壁锚爪7-3-1的爪端展开的弹性力,而且能够避免单一弹性橡胶圈或限位弹簧出现故障,导致长壁锚爪7-3-1的爪端展开失败,从而提升了装置的工作可靠性。
本实施例中,箍片7-3-2由弹性钢制材质制成,箍片7-3-2的翻折端设置有防滑结构7-3-4,箍片7-3-2的翻折端展开后,防滑结构7-3-4与监测孔的孔壁摩擦接触,通过增大箍片7-3-2的翻折端与监测孔孔壁的摩擦力,有助于沉降磁环的精确定位,提升沉降磁环的稳定性。
本实施例的一个可选实施方式,防滑结构7-3-4为橡胶层,橡胶层设置于箍片7-3-2的翻折端,通过设置橡胶防滑层增大箍片7-3-2的翻折端与监测孔孔壁的摩擦力。
更进一步的,橡胶层上设有弹性凸起,通过设置弹性凸起进一步提高防滑性能。
本实施例的一个可选实施方式,长壁锚爪7-3-1的数量为3-6个,均匀布置在沉降磁环四周,优选采用4个长壁锚爪7-3-1。
本实施例中,沉降磁环组件7通过安装导管8安装在钻杆6上。具体而言,安装导管8的两端均设置螺纹段,第一端与钻杆6螺纹连接,第二端与沉降磁环组件7的外壳螺纹连接。安装导管8下部的螺纹卡齿8-3与沉降磁环组件7上的螺纹卡槽7-3-6相配套,钻杆6的正转与反转带动螺纹卡齿8-3在螺纹卡槽7-3-6上的旋进与旋出,规定正向(顺时针)旋转,螺纹卡齿8-3旋进螺纹卡槽7-3-6,此时安装导管8与沉降磁环组件7连接;反向(顺时针)旋转,螺纹卡齿8-3旋出螺纹卡槽7-3-6,此时安装导管8与沉降磁环组件7分离,实现安装导管8与沉降磁环组件7的连接与分离,进而实现沉降磁环组件7的无损坏回收。
具体而言,如图3和图5所示,安装导管8包括第一段和第二段,第一段的直径小于第二段的直径,第一段与钻机所用钻杆6采用螺纹连接,由于第二段设置的螺纹卡齿8-3与螺纹卡槽7-3-6之间不是紧密接触,所以钻杆6正反旋转时,第二段不会传递力,因此第一段的螺纹连接不会脱落。第一段的一端设置连接螺纹8-1,连接螺纹 8-1与钻杆6的螺纹相配套;第一段的另一端与第二段连接,第二段设有螺纹卡齿8-3,磁环套7-2的内壁设有螺纹卡槽7-3-6,螺纹卡齿8-3与螺纹卡槽7-3-6相适配,沉降磁环组件7与安装导管8的第二段螺纹连接。
为了实现沉降磁环回收,第一段上设有回收套口8-2,回收套口8-2的纵向截面为下端直径大、上端直径小的倒“Y”形空心结构,回收套口8-2的上端固定在第一段的外周壁,回收套口8-2的下端为开口结构,回收套口8-2的内壁为光滑凹形曲面,光滑凹形曲面形成收纳锚箍组件7-3的收纳空间,如图2至图3所示。
进一步的,防滑结构7-3-4设置于箍片7-3-2翻折端的下部,箍片7-3-2翻折端的最高点所在的圆弧面为光滑上凸曲面,此结构设置能够在回收沉降磁环组件7时,防滑结构7-3-4不与回收套口8-2的内壁接触,减小回收阻力,以实现装置的顺利回收。
进一步的,如图4和图5所示,箍片7-3-2的翻折端面的纵向截面大致呈“β”形,“β”形结构的翻折端面的下部开口设置,回收套口8-2的内壁为光滑凹形波浪状曲面,光滑凹形波浪状曲面与大致呈“β”形箍片7-3-2的翻折端面相适配,光滑凹形波浪状曲面形成收纳锚箍组件7-3的收纳空间。也就是说,箍片7-3-2的翻折端面具有过渡设置的第一翻折端面和第二翻折端面,箍片本体的内表面、第二翻折端面以及第一翻折端面依次连接,其中,箍片本体的内表面是指背向监测孔孔壁的一面,第二翻折端面整体上呈凸形结构,凸形第二翻折端面位于箍片本体的内表面和第一翻折端面之间,第一翻折端面的至少一部分朝向监测孔孔壁,防滑结构7-3-4设置在第一翻折端面上,防滑结构位于第一翻折端面的下部且占据第一翻折端面的1/2-3/5面积,第一翻折端面的上部、第二翻折端面为光滑曲面,当回收沉降磁环组件7时,凸形结构的光滑第二翻折端面与回收套口8-2的内壁光滑面接触,回收套口8-2不接触防滑结构,减小了回收阻力,以实现装置的顺利回收;连接线7-3-5的一端连接在第二翻折端上,另一端连接在长壁锚爪7-3-1的长壁杆上,当连接线带动翻折端打开时,只需要小距离拉动就能使防滑结构与监测孔的孔壁接触,提升安装位置精确性,保证装置的工作可靠性。
当进行沉降磁环回收时,下放钻杆6到达磁环位置时正转钻杆6,带动安装导管8旋进沉降磁环组件7,沉降磁环组件7沿着安装导管8的第二段向上移动,箍片本体的上端喇叭口翻折端的第二翻折端面先进入回收套口8-2的收纳空间内,与回收套口8-2的光滑凹形波浪状曲面接触,第一翻折端面不与回收套口8-2的内壁面接触,并随着钻杆6的不断旋拧,沉降磁环组件7继续沿第二段的螺纹卡齿8-3移动,在光滑凹形波浪状曲面的限制下,第二翻折端面在回收套口8-2里向沉降磁环组件7的中心线 收缩靠拢,进而带动连接线7-3-5向上提拉长壁锚爪7-3-1的爪端,使长壁锚爪7-3-1的爪端向箍片7-3-2转动,脱离监测孔的孔壁,实现沉降磁环组件7的回收。
为防止回收套口8-2变形,回收套口8-2由合金材质制成,具有高硬度和耐磨性,可选的,回收套口8-2整体用5mm厚的钢板锻造加工而成。
为使螺纹卡齿8-3能在安装过程中顺利旋进或旋出螺纹卡槽7-3-6,且防止安装导管8从钻杆6上脱落,螺纹卡槽7-3-6的宽度要大于螺纹卡齿的8-3宽度,可选地,螺纹卡槽7-3-6的宽度为0.2mm,螺纹卡齿8-3的宽度为0.1mm,使其不向上部传递扭力。
本实施例还公开了覆岩采动离层动态发育监测装置的安装操作方法,具体包括如下步骤:
步骤一:将锚箍组件7-3通过安装导管8安装在钻杆6上,钻杆6下降,使锚箍组件7-3下放至监测孔的孔口处,将锚箍组件7-3设置为收缩状态并伸入监测孔内,将收缩状态的锚箍组件7-3在监测孔内下放至预设深度位置。
在地面将安装导管8与钻杆6通过连接螺纹8-1连接,并将沉降磁环组件7通过螺纹卡齿8-3手动旋进螺纹卡槽7-3-6使其连接在安装导管8下部。钻机降落钻杆6,将沉降磁环组件7下放至监测孔中,手动或者利用监测孔的孔口将锚箍组件7-3呈收缩状态,也就是说,沉降磁环组件7在下放过程中,长壁锚爪7-3-1紧贴孔壁使弹性体7-3-3处于压缩状态,此时连接线7-3-5处于松垮状态,如图6所示。
步骤二:降落钻杆6将收缩状态的锚箍组件7-3置于预设深度位置后,再提升钻杆6,钻杆6带动安装导管8向上运动使锚箍组件7-3展开,锚箍组件7-3展开后,长壁锚爪7-3-1稳定嵌入岩石孔壁。
具体的,按照沉降磁环设计位置,将利用钻杆6将沉降磁环组件7下放到设计位置后,钻机提升钻杆6带动安装导管8使沉降磁环组件7向上运动,由于压缩的弹性体7-3-3使长壁锚爪7-3-1处于向外张开状态,且长壁锚爪7-3-1爪端磨尖,因此钻杆6提升过程中长壁锚爪7-3-1可稳定嵌入岩石孔壁;同时,长壁锚爪7-3-1围绕销轴7-3-7的向下转动带动了箍片7-3-2呈喇叭口状向四周翻折,随着箍片7-3-2张开范围的扩大,端部的防滑结构7-3-4与孔壁接触,在防滑结构7-3-4的摩擦作用下,箍片7-3-2会进一步翻折,最终使沉降磁环上端温度的固定在监测孔的孔壁上,如图7所示。
在钻杆6提升时,通过连接线7-3-5,沉降磁环组件7下端的长壁锚爪7-3-1和上端的箍片7-3-2可同时发挥作用,互相增强,即下端长壁锚爪7-3-1嵌入孔壁越深,箍片7-3-2的向监测孔孔壁施加挤压的作用力越大,最终使沉降磁环稳定的固定在孔壁 上。
步骤三:反转钻杆6使安装导管8与沉降磁环组件7分离,重复上述步骤进行下一设计深度处的沉降磁环组件7的安装,直至完成所有设计深度处的沉降磁环的安装。
当沉降磁环固定在孔壁后,钻杆6提升受阻,观察钻机压力表,当压力表变化较大时,说明安装成功,此时反转钻杆6使螺纹卡齿8-3旋出螺纹卡槽7-3-6实现安装导管8与沉降磁环组件7的分离。按照此方法可对设计数量(如60个)的沉降磁环从下到上依次安装。
当离层动态发育监测结束后,钻机降落钻杆6及安装导管8,当安装导管8到达沉降磁环组件7位置时,正转钻杆6带动安装导管8转动使螺纹卡齿8-3旋进螺纹卡槽7-3-6。如图8所示,在旋进过程中,由于回收套口8-2下端直径大、上端直径小的倒“Y”形结构设计,箍片7-3-2会进入回收套口8-2,且随着钻杆6的进一步转动,箍片7-3-2在回收套口8-2里向内翻折,进而带动连接线7-3-5向上提拉长壁锚爪7-3-1,使长壁锚爪7-3-1向上转动脱离孔壁,实现沉降磁环组件7的回收。按照此方法可从上至下依次对60个磁环进行无损坏回收。
本实施例还提供一种分层沉降监测系统,包括本实施例的覆岩采动离层动态发育监测装置和沉降监测仪。
与现有技术相比,本实施例提供的覆岩采动离层动态发育监测装置至少具有如下有益效果之一:
1、创新设计的沉降磁环组件,结构简单,成功地将沉降磁环由土层监测应用到岩石层的分层监测,原理简单,操作方便省力,能够对离层动态发育过程进行简单、有效、准确的监测,为判定离层的发育位置及发育空间大小提供有力依据,对煤炭的安全开采及地面注浆防沉具有重要意义。
2、沉降磁环组件采用上箍下嵌式结构,长壁锚爪和箍片可同时发挥作用,互相增强,使沉降磁环稳固的固定在监测孔的孔壁上,增加离层动态发育监测的准确性;而且完成监测后利用安装导管能够从钻孔中移出,收取过程操作方便,实现沉降磁环组件的重复使用,能够显著降低成本,具有显著的经济效益。
3、回收套口的内壁为光滑凹形波浪状曲面,光滑凹形波浪状曲面与大致呈“β”形箍片的翻折端面相适配,光滑凹形波浪状曲面形成收纳空间,当回收沉降磁环组件时,凸形结构的光滑第二翻折端面与回收套口的内壁光滑面接触,回收套口不接触防滑结构,减小了回收阻力,以实现装置的顺利回收。
4、采用安装导管安装沉降磁环组件,能够避免传统采用沉降管安装磁环容易被土颗粒堵塞的缺陷,显著提高了监测装置的工作稳定性。
实施例2
本发明又一具体实施例,公开了一种覆岩采动离层动态发育监测方法,利用实施例提供的覆岩采动离层动态发育监测装置对离层动态发育进行监测。
与现有技术相比,本实施例提供的监测覆岩采动离层动态发育监测方法的有益效果与实施例1提供的覆岩采动离层动态发育监测装置的有益效果基本相同,在此不一一赘述。
覆岩采动离层动态发育监测方法包括如下步骤:
S1、基于离层发育区4的范围,确定沉降磁环组件7安装深度。
由于煤层开采导致覆岩原岩应力破坏,煤层上覆岩层会形成导水裂缝区5及离层发育区4,离层发育区4的范围为第四系风积沙层4-1(也即第四系土层)的底界面到导水裂缝带顶界面,根据下式计算得到离层发育深度H s
H s=H c-H f
式中:H s为离层发育深度,m;H c为煤层顶板埋深,m;H f为导水裂缝带发育高度,m;
导水裂缝带发育高度H f的计算公式为:
H f=C×M c
式中:M c为煤层累计采厚,m;C为裂采比;
或者,导水裂缝带发育高度H f利用光纤、钻井液漏失或钻孔电视的测试方式获得。
为防止离层水从监测孔突涌进采煤工作面,沉降磁环安装范围为离层发育区4内的第四系风积沙层4-1的底界面到离层水防突保护层顶界面,也就是说,监测孔施工时,监测孔未钻穿离层发育区4,监测孔的孔底至导水裂缝带顶界面之间留有一定厚度的地层,预留厚度的地层为离层水防突保护层4-3,离层水防突保护层4-3的存在有效防止离层水从监测孔突涌进采煤工作面,在留设离层水防突保护层4-3后,在离层发育区4中的第四系风积沙层4-1安装沉降磁环组件7,确定沉降磁环组件安装范围4-2。根据下式计算监测孔钻孔深度H m
H m=H s-M p
式中:H m为监测孔钻孔深度,m;M p为离层水防突保护层厚度,m;
离层水防突保护层厚度根据以下公式计算得到:
Figure PCTCN2021095931-appb-000001
上式中:P为离层上覆含水层水压,MPa;T s为临界突水系数MPa/m;其中,临界突水系数根据《煤矿防治水细则》规定取值,即无构造破坏时取值0.1MPa/m,有构造破坏时取值0.06MPa/m。
S2、探查步骤S1中沉降磁环组件7安装深度范围内岩层信息,确定沉降磁环安装位置及数量。
根据地面钻孔取芯、钻孔电视成像或钻井地球物理勘探的方法确定沉降磁环安装范围内覆岩岩层的岩性、厚度、岩层分界面的位置、地层分界面位置等信息,在不同岩层分界面、地层分界面的上、下位置安装沉降磁环,从而实现沉降磁环安装位置及安装数量设计。
S3、基于工作面采煤进尺、监测孔钻进速度信息,确定监测孔的开始钻进时间,并完成监测孔施工。
考虑到煤层开采会使距采煤工作面一定范围内不同距离的岩层沉降存在差异,产生以水平为主和以竖直为主的地层运动。随着采煤工作面的不断推进和接近监测孔位置,监测孔附近煤层覆岩会先发生水平为主的地层运动,再发生以竖直为主的地层运动。若监测孔成孔后或沉降监测装置安装后,监测孔周围覆岩以水平运动为主,煤层开采导致的覆岩水平运动会使监测孔出现错断,因而造成监测装置无法安装或监测孔内的沉降管损坏。当监测孔成孔后,采煤工作面距监测孔小于一定距离时,煤层覆岩岩层以竖直运动为主,水平运动量小,监测孔不会发生错断。
如图9所示,当采煤工作面距监测孔距离L小于等于L 1时,监测孔成孔后不会发生错断,L 1计算公式如下:
Figure PCTCN2021095931-appb-000002
式中:L 1为破裂影响距,m;h为开采深度,m;α为破裂影响角,°。
由于采煤工作面不断向前推进,在采煤过程中采煤工作面是动态变化的,与采煤进尺有关,并且监测孔的深度大,监测孔的施工完成也需要一定时间,为了提升工作效率,采煤工作面向前推进与监测孔钻进施工可以同时进行,根据煤层开采平均每日进尺、平均每日钻探深度确定监测孔的开钻时机以及沉降磁环的安装时间。
也就是说,若监测孔钻进与采煤工作面向前推进同时进行,监测孔达到预定钻进深度时,需保证此时当前采煤工作面的采煤设备工作点距监测孔距离不超过L 1
考虑到监测孔钻孔施工需要一定时间,为彻底避免煤层开采覆岩水平运动对沉降管损坏,步骤S3中,监测孔的开始钻进时间最早在采煤工作面距监测孔的距离为L 1+D后,且为了不影响沉降监测,监测孔的开始钻进时间最晚在采煤工作面距监测孔的距离为D前;
其中,D的计算公式如下:
Figure PCTCN2021095931-appb-000003
式中:D为钻孔期间煤层进尺,m;H m为监测孔钻孔深度,m;v 1为煤层开采平均每日进尺,m;v 2为平均每日钻探深度,m。
S4、完成监测孔施工后,将沉降磁环组件7安装在监测钻孔内的将沉降磁环组件7安装在监测孔内的预设深度位置,利用分层沉降监测系统对离层动态发育进行监测,根据监测数据获取沉降量及离层发育高度。
S41、完成监测孔施工后,将沉降磁环组件7安装在监测孔内的预设深度位置,安装步骤包括:
S411、将锚箍组件7-3通过安装导管8安装在钻杆6上,利用钻杆6将收缩状态的沉降磁环组件7在监测孔内下放至预设深度位置;
S412、降落钻杆6将收缩状态的锚箍组件7-3置于预设深度位置后,提升钻杆6,带动安装导管8向上运动使锚箍组件7-3展开,长壁锚爪7-3-1嵌入岩石孔壁;
S413、反转钻杆6使安装导管8与沉降磁环组件7的分离,重复上述步骤进行下一设计深度处的沉降磁环组件7的安装,直至完成所有设计深度处的沉降磁环组件7的安装。
S42、完成沉降磁环组件7的预定深度位置安装后,开启沉降监测仪进行沉降监测,并根据监测数据计算沉降磁环沉降量及离层发育高度。具体包括如下步骤:
S421、以安装完成时所测各沉降磁环组件7初始埋深为计算初始点,根据同一沉降磁环组件7的监测数据计算沉降量。其中,沉降磁环沉降量计算公式如下:
S=S 1-S 0
式中:S为沉降磁环沉降量,m;S 1为监测沉降磁环埋深,m;S 0为初始沉降磁环埋深,m。
S422、根据相邻沉降磁环沉降量进一步计算离层发育高度。其中,离层发育高度M s计算公式如下:
M s=S -S
式中:M s为离层发育高度,m;S 为下沉降磁环沉降量,m;S 为上沉降磁环沉降量,m。
S5、根据计算的离层发育高度数据,绘制离层发育高度与时间关系图,判断离层动态发育过程,基于离层动态发育过程规律,选取合适注浆时机以防治离层水突水及煤层开采引起的地面沉降,进行煤矿地质灾害防治。
煤层开采导致上覆岩层不均匀沉降形成离层空间,离层空间的闭合会引起采煤工作面离层水突涌、地面沉降等灾害,基于监测数据绘制离层发育与时间关系图,把握采煤覆岩离层动态发育规律,在离层空间闭合前,即离层空间发育最大时,向其内部空间进行注浆填充,是防治离层水突水及地面沉降的最佳时间,能够有效防止离层水涌突及煤层开采引起地面沉降等煤矿地质灾害。
以上所述的具体实施方式,对本申请的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本申请的具体实施方式而已,并不用于限定本申请的保护范围,凡在本申请的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (20)

  1. 一种覆岩采动离层动态发育监测装置,其特征在于,包括:
    沉降磁环组件(7),包括锚箍组件(7-3)、磁感应铁圈(7-1)以及套设于磁感应铁圈(7-1)外的磁环套(7-2);所述锚箍组件(7-3)设于磁环套(7-2)的外圆周,具有收缩状态和展开状态,收缩状态下的锚箍组件(7-3)能够在监测孔内移动,展开状态下的锚箍组件(7-3)与监测孔的孔壁在竖直方向上至少有两个位于不同高度的固定点;
    安装导管(8),安装导管(8)的两端分别与钻杆(6)和磁环套(7-2)连接,通过钻杆(6)配合安装导管(8)使锚箍组件(7-3)处于收缩状态和展开状态,以实现沉降磁环组件(7)的安装与回收。
  2. 根据权利要求1所述的覆岩采动离层动态发育监测装置,其特征在于,所述锚箍组件(7-3)包括长壁锚爪(7-3-1)和箍片(7-3-2);
    所述长壁锚爪(7-3-1)的第一端通过一轴连接于磁环套(7-2)的外圆周,所述长壁锚爪(7-3-1)的第二端为爪端,以备在展开状态下嵌入监测孔孔壁;
    所述箍片(7-3-2)的下端固定在磁环套(7-2)上,上端具有呈喇叭口状的翻折端,翻折端通过连接线(7-3-5)与长壁锚爪(7-3-1)的爪端连接。
  3. 根据权利要求2所述的覆岩采动离层动态发育监测装置,其特征在于,所述箍片(7-3-2)与长壁锚爪(7-3-1)成组设置,所述箍片(7-3-2)的数量至少为2个,且均匀设置在磁环套(7-2)的上端外圆周上。
  4. 根据权利要求3所述的覆岩采动离层动态发育监测装置,其特征在于,所述箍片(7-3-2)的外侧具有供长壁锚爪(7-3-1)绕轴转动的转动空间,所述转动空间内设有弹性体(7-3-3)。
  5. 根据权利要求4所述的覆岩采动离层动态发育监测装置,其特征在于,所述弹性体(7-3-3)为弹性橡胶圈,所述弹性橡胶圈至少部分套设在磁环套(7-2)上;
    或者,所述弹性体(7-3-3)为限位弹簧,所述限位弹簧的第一端连接在长壁锚爪(7-3-1)上,所述限位弹簧的第二端连接在磁环套(7-2)的上部外圆周或者连接在箍片(7-3-2)的下部。
  6. 根据权利要求2所述的覆岩采动离层动态发育监测装置,其特征在于,所述箍片本体的翻折端设有防滑结构(7-3-4)。
  7. 根据权利要求6所述的覆岩采动离层动态发育监测装置,其特征在于,所述防 滑结构(7-3-4)为橡胶层,所述橡胶层上设有弹性凸起。
  8. 根据权利要求1至7任一项所述的覆岩采动离层动态发育监测装置,其特征在于,所述安装导管(8)上设有回收套口(8-2),所述回收套口(8-2)的下端为开口结构,所述回收套口(8-2)的内壁形成收纳锚箍组件(7-3)的收纳空间;
    所述箍片(7-3-2)的翻折端能够在钻杆(6)的旋转操作下,收缩进入所述收套口(8-2)的收纳空间。
  9. 根据权利要求8所述的覆岩采动离层动态发育监测装置,其特征在于,所述回收套口(8-2)的内壁为光滑凹形曲面,所述回收套口(8-2)固定设于所述安装导管(8)的外周壁上,且与所述安装导管(8)同轴设置。
  10. 根据权利要求9所述的覆岩采动离层动态发育监测装置,其特征在于,所述安装导管(8)包括第一段和第二段,所述第一段的直径小于所述第二段的直径,所述第一段与钻杆(6)连接,所述回收套口(8-2)设于所述第一段的外周壁上;
    所述第二段设有螺纹卡齿(8-3),所述磁环套(7-2)的内壁设有螺纹卡槽(7-3-6),所述螺纹卡齿(8-3)与所述螺纹卡槽(7-3-6)相适配。
  11. 根据权利要求10所述的覆岩采动离层动态发育监测装置,其特征在于,所述螺纹卡槽(7-3-6)的宽度为0.2mm,所述螺纹卡齿(8-3)的宽度为0.1mm。
  12. 根据权利要求9-11任一项所述的覆岩采动离层动态发育监测装置,其特征在于,所述回收套口(8-2)由合金材质制成。
  13. 根据权利要求12所述的覆岩采动离层动态发育监测装置,其特征在于,所述箍片(7-3-2)的翻折端面的纵向截面呈下部开口的“β”形,所述回收套口(8-2)的内壁为光滑凹形波浪状曲面,所述光滑凹形波浪状曲面与下部开口的“β”形箍片(7-3-2)的翻折端面相适配。
  14. 根据权利要求13所述的覆岩采动离层动态发育监测装置,其特征在于,所述箍片(7-3-2)的翻折端面具有第一翻折端面和第二翻折端面,所述箍片本体的内表面、所述第二翻折端面以及所述第一翻折端面依次过渡设置;
    所述第二翻折端面整体上呈凸形结构,所述防滑结构(7-3-4)设置在所述第一翻折端面的下部,且占据所述第一翻折端面面积的1/2-3/5。
  15. 一种覆岩采动离层动态发育监测方法,其特征在于,利用权利要求1-14任一项所述的覆岩采动离层动态发育监测装置对离层动态发育进行监测;
    所述监测方法包括如下步骤:
    S1、基于离层发育区(4)的范围,确定沉降磁环组件(7)安装深度;
    S2、探查沉降磁环组件(7)安装深度范围内的岩层信息,确定沉降磁环组件(7)安装位置及数量;
    S3、基于工作面采煤进尺、监测孔钻进速度信息,确定监测孔的开始钻进时间,并完成监测孔施工;
    S4、将沉降磁环组件(7)安装在监测孔内的预设深度位置,利用分层沉降监测系统对离层动态发育进行监测,获取岩层沉降量及离层发育高度。
  16. 根据权利要求15所述的覆岩采动离层动态发育监测方法,其特征在于,安装覆岩采动离层动态发育监测装置包括如下步骤:
    S41、将锚箍组件(7-3)通过安装导管(8)安装在钻杆(6)上,利用钻杆(6)将收缩状态的沉降磁环组件(7)在监测孔内下放至预设深度位置;
    S42、降落钻杆(6)将收缩状态的锚箍组件(7-3)置于预设深度位置后,提升钻杆(6),带动安装导管(8)向上运动使锚箍组件(7-3)展开,长壁锚爪(7-3-1)嵌入岩石孔壁;
    S43、反转钻杆(6)使安装导管(8)与沉降磁环组件(7)的分离,重复上述步骤进行下一设计深度处的沉降磁环组件(7)的安装,直至完成所有设计深度处的沉降磁环组件(7)的安装。
  17. 根据权利要求16所述的覆岩采动离层动态发育监测方法,其特征在于,所述离层发育区(4)的范围为第四系风积沙层4-1的底界面到导水裂缝带顶界面,根据下式计算得到离层发育深度H s
    H s=H c-H f
    式中:H c为煤层顶板埋深,m;H f为导水裂缝带发育高度,m,H f的计算公式为:H f=C×M c
    式中:M c为煤层累计采厚,m;C为裂采比。
  18. 根据权利要求17所述的覆岩采动离层动态发育监测方法,其特征在于,监测孔未钻穿离层发育区(4),监测孔的孔底至导水裂缝带顶界面之间留有离层水防突保护层(4-3)。
  19. 根据权利要求18所述的覆岩采动离层动态发育监测方法,其特征在于,所述离层水防突保护层(4-3)的厚度为M p,计算公式为:
    Figure PCTCN2021095931-appb-100001
    上式中:P为离层上覆含水层水压,MPa;T s为临界突水系数MPa/m
    根据下式计算监测孔钻孔深度H m
    H m=H s-M p
    式中:H m为监测孔钻孔深度,m;M p为离层水防突保护层厚度,m。
  20. 根据权利要求19所述的覆岩采动离层动态发育监测方法,其特征在于,步骤S3中,监测孔的开始钻进时间在采煤工作面距监测孔的距离为L 1+D后,且在采煤工作面距监测孔的距离为D前;
    其中,L 1的计算公式如下:
    Figure PCTCN2021095931-appb-100002
    D的计算公式如下:
    Figure PCTCN2021095931-appb-100003
    式中:L 1为破裂影响距,m;h为开采深度,m;α为破裂影响角,°;D为钻孔期间煤层进尺,m;H m为监测孔钻孔深度,m;v 1为煤层开采平均每日进尺,m;v 2为平均每日钻探深度,m。
PCT/CN2021/095931 2021-03-09 2021-05-26 一种覆岩采动离层动态发育监测装置及方法 WO2022188274A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/411,061 US11879336B2 (en) 2021-03-09 2021-08-25 Monitoring device and method for dynamic development of overburden mining separated bed

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202110253757.1A CN112983549B (zh) 2021-03-09 2021-03-09 一种覆岩采动离层动态发育监测方法
CN202110253757.1 2021-03-09
CN202110253756.7A CN112945188B (zh) 2021-03-09 2021-03-09 一种岩层沉降磁感应监测装置及其操作方法
CN202110253756.7 2021-03-09

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/411,061 Continuation US11879336B2 (en) 2021-03-09 2021-08-25 Monitoring device and method for dynamic development of overburden mining separated bed

Publications (1)

Publication Number Publication Date
WO2022188274A1 true WO2022188274A1 (zh) 2022-09-15

Family

ID=83227316

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/095931 WO2022188274A1 (zh) 2021-03-09 2021-05-26 一种覆岩采动离层动态发育监测装置及方法

Country Status (1)

Country Link
WO (1) WO2022188274A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101185808B1 (ko) * 2011-11-16 2012-10-02 토양건영 주식회사 자성 이온화 고결정 실리케이트 약액 제조 방법 및 이를 이용한 그라우팅 공법
CN208996032U (zh) * 2018-10-25 2019-06-18 上海强劲地基工程股份有限公司 一种锚筋可回收式伞式锚固件
CN110207653A (zh) * 2019-06-12 2019-09-06 长江勘测规划设计研究有限责任公司 土体分层沉降和水平位移复合测量装置、系统及方法
CN110469353A (zh) * 2019-08-14 2019-11-19 四川大学 一种可回收机械式预应力锚杆及其安装和回收方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101185808B1 (ko) * 2011-11-16 2012-10-02 토양건영 주식회사 자성 이온화 고결정 실리케이트 약액 제조 방법 및 이를 이용한 그라우팅 공법
CN208996032U (zh) * 2018-10-25 2019-06-18 上海强劲地基工程股份有限公司 一种锚筋可回收式伞式锚固件
CN110207653A (zh) * 2019-06-12 2019-09-06 长江勘测规划设计研究有限责任公司 土体分层沉降和水平位移复合测量装置、系统及方法
CN110469353A (zh) * 2019-08-14 2019-11-19 四川大学 一种可回收机械式预应力锚杆及其安装和回收方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
XIN LIN, WANG ZUOTANG;HUANG WENGANG;ZHAO KEXIAO;JU YUANJIANG;HE SHENG: "Measurement Analysis of Overlying Strata Movement and Surface Subsidence by UCG Strip Mining", CAIKUANG-YU-ANQUAN-GONGCHENG-XUEBAO = JOURNAL OF MINING & SAFETY ENGINEERING, CN, vol. 31, no. 3, 15 May 2014 (2014-05-15), CN , pages 447 - 455, XP055965265, ISSN: 1673-3363, DOI: 10.13545/j.issn1673-3363.2014.03.019 *

Similar Documents

Publication Publication Date Title
CN112983549B (zh) 一种覆岩采动离层动态发育监测方法
CN112945188B (zh) 一种岩层沉降磁感应监测装置及其操作方法
CN103850237B (zh) 一种刃刀切入式软土多点位移计锚头
WO2021026961A1 (zh) 一种自适应放气杆及浅层气有控放气回收系统及方法
CN102854525B (zh) 一种微震单向传感器碎裂岩体全方位深孔安装及回收装置
CA2890607C (en) Improved liner hanger system
CN103603342A (zh) 大直径组合套管超长灌注桩施工方法
CN108756809B (zh) 一种盾构隧道地质勘探钻孔的封孔方法
CN110593254A (zh) 一种在夹有溶洞的节理带地层中的钻孔灌注桩施工方法
CN113431490A (zh) 一种用于岩溶地区的大直径管桩施工设备及方法
CN113373925B (zh) 在砂岩地层中用旋挖钻机安装钢板桩的方法及装置
CN104947663A (zh) 一种抢险专用击入式伞型锚及应用方法
WO2022188274A1 (zh) 一种覆岩采动离层动态发育监测装置及方法
RU2732167C1 (ru) Способ ремонта обсадной колонны в незацементированной части (варианты)
CN108316866A (zh) 一种液压套管扶正器
CN105507929B (zh) 一种重复施加预应力的锚索支护的方法
CN212716407U (zh) 一种岩溶地区桩基钻孔装置
US11879336B2 (en) Monitoring device and method for dynamic development of overburden mining separated bed
CN103938621B (zh) 一种带螺母抱合同步机构的螺纹灌注桩成桩装置
CN217681708U (zh) 一种锚爪钻具卡点指示器
CN104612124A (zh) 一种叶片式多点位移计锚头
CN204804733U (zh) 梭形通井规工具
CN210195670U (zh) 一种适用于软土地基人工引孔的钻具
CN102002943A (zh) 嵌岩咬合灌注桩的施工方法
CN207144902U (zh) 一种用于井下套管重叠段环形空间的密封自封塞

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21929744

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21929744

Country of ref document: EP

Kind code of ref document: A1