WO2022188098A1 - 一种电源拓扑、电机驱动控制器及车辆 - Google Patents

一种电源拓扑、电机驱动控制器及车辆 Download PDF

Info

Publication number
WO2022188098A1
WO2022188098A1 PCT/CN2021/080233 CN2021080233W WO2022188098A1 WO 2022188098 A1 WO2022188098 A1 WO 2022188098A1 CN 2021080233 W CN2021080233 W CN 2021080233W WO 2022188098 A1 WO2022188098 A1 WO 2022188098A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
power
motor drive
flyback
drive controller
Prior art date
Application number
PCT/CN2021/080233
Other languages
English (en)
French (fr)
Inventor
陶洪
Original Assignee
华为数字能源技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为数字能源技术有限公司 filed Critical 华为数字能源技术有限公司
Priority to PCT/CN2021/080233 priority Critical patent/WO2022188098A1/zh
Priority to CN202180004090.XA priority patent/CN114128119B/zh
Priority to CN202310977376.7A priority patent/CN117175931A/zh
Priority to EP21929576.3A priority patent/EP4287498A4/en
Publication of WO2022188098A1 publication Critical patent/WO2022188098A1/zh
Priority to US18/457,581 priority patent/US20230402926A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/008Plural converter units for generating at two or more independent and non-parallel outputs, e.g. systems with plural point of load switching regulators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/007Physical arrangements or structures of drive train converters specially adapted for the propulsion motors of electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/51Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells characterised by AC-motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/007Plural converter units in cascade
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33507Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33538Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only of the forward type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0095Hybrid converter topologies, e.g. NPC mixed with flying capacitor, thyristor converter mixed with MMC or charge pump mixed with buck
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present application relates to the field of motor technology, and in particular, to a power topology, a motor drive controller and a vehicle.
  • the motor drive controller is the core component of the electric vehicle power system. When the electric vehicle is running normally, the motor drive controller is used to convert the DC power output by the power battery into AC power to drive the motor output torque to drive the vehicle; when the electric vehicle is coasting or braking, the motor runs in the power generation mode, and the motor will The kinetic energy is converted into electrical energy, and the motor drive controller is used to convert the alternating current output from the motor into direct current to charge the power battery.
  • the power topology of the three-phase motor drive controller may be as shown in FIG. 1 .
  • the direct current (DC)/DC converter is used for DC/DC conversion of the DC power output by the low-voltage battery, so as to convert the DC power on the low-voltage side into the DC power on the high-voltage side to supply power to the motor drive controller.
  • the power supply topology includes two DC/DC converters, one DC/DC converter is used to supply power to the switch tube in the upper bridge arm of the drive circuit in the motor drive controller, and the other DC/DC converter is used for The switch tube in the lower bridge arm of the drive circuit in the motor drive controller supplies power.
  • both the upper bridge arm and the lower bridge arm need to be powered by a converter that performs high and low voltage conversion.
  • some functional modules such as pulse generating units, chopper units, etc.
  • the transformer size is large, which is not conducive to the utilization of the vehicle space.
  • the motor drive controller is a six-phase motor drive controller
  • two DC/DC converters need to be added to expand the power topology of the six-phase motor drive controller. It is difficult and takes up a lot of space.
  • the embodiments of the present application provide a power supply topology, a motor drive controller, and a vehicle, which are used to supply power to the motor drive controller, reduce the size of the transformer, and save the space of the entire vehicle.
  • an embodiment of the present application provides a power supply topology, where the power supply topology is used to supply power to a motor drive controller.
  • the power supply topology includes a first flyback power supply and a first forward power supply.
  • the first flyback power supply is coupled to the first battery module, and is used to convert the first DC power output by the first battery module into a second DC power, and the second DC power is used for the lower arm of the drive circuit in the motor drive controller Power supply;
  • the first forward power supply is coupled with the first flyback power supply, and is used for converting the second direct current into a third direct current, and the third direct current is used for powering the upper bridge arm of the driving circuit.
  • the power topology for powering the motor drive controller includes a two-stage power architecture.
  • the lower arm of the drive circuit is powered by the first-level power supply (ie, the first flyback power supply), and the upper bridge arm of the drive circuit is powered by the second-level power supply (ie, the first forward power supply).
  • the first flyback power supply needs to meet the basic insulation requirements in the safety regulations, and the first forward excitation power supply can meet the functional insulation requirements in the safety regulations.
  • the insulation level of the first forward excitation power supply requirements have been reduced.
  • the size of the transformer in the first forward power supply is small.
  • the power supply topology provided in the first aspect adopts a two-stage power supply architecture, and only one The flyback power supply and a forward power supply can supply power to the motor drive controller, so the volume of the transformer can be saved, the size of the single board can be reduced, and the space of the whole vehicle can be saved.
  • the power supply topology provided by the first aspect may further include a power management unit, and the voltage management unit is coupled to the first flyback power supply or the first battery module, and is used to supply power to the control circuit in the motor drive controller , the control circuit is used to control the drive circuit.
  • control circuit in the motor drive controller can be powered by the first battery module.
  • the power supply topology provided by the first aspect may further include a second flyback power supply coupled to the second battery module for converting the fourth direct current output from the second battery module into The fifth direct current is used for supplying power to the lower bridge arm of the driving circuit.
  • the first battery module may be a battery, and the second battery module may be a power battery; or, the first battery module may be a power battery, and the second battery module may be a battery.
  • the power supply backup of the lower arm of the driving circuit can be realized through the first flyback power supply and the second flyback power supply.
  • the output end of the first flyback power supply can be coupled with the lower bridge arm of the drive circuit through the first switch tube
  • the output end of the second flyback power supply can be coupled with the lower bridge arm of the drive circuit through the second switch tube; A switch tube and the second switch tube are not turned on at the same time.
  • the first switch tube may be a diode or a metal oxide semiconductor field effect transistor (MOSFET), and the second switch tube may be a diode or a MOSFET.
  • MOSFET metal oxide semiconductor field effect transistor
  • the power supply backup of the lower arm of the driving circuit is realized by controlling the turn-on and turn-off of the first switch tube and the second switch tube.
  • the power management unit may also be coupled with a second flyback power supply or a second battery module; wherein, in the case where the first battery module is a power battery and the second battery module is a battery, the power management unit The third switch tube is coupled to the first flyback power supply, the power management unit is coupled to the second battery module through the fourth switch tube, and the third switch tube and the fourth switch tube are not turned on at the same time; or, when the first battery module is When the battery and the second battery module are power batteries, the power management unit is coupled with the first battery module through the fifth switch tube, the power management unit is coupled with the second flyback power supply through the sixth switch tube, and the fifth switch tube is coupled with the first battery module. The six switches are not turned on at the same time.
  • the power supply backup of the control circuit can be realized by controlling the turn-on and turn-off of the third switch tube and the fourth switch tube, or by controlling the turn-on and turn-off of the fifth switch tube and the sixth switch tube.
  • the motor drive controller may be a three-phase motor drive controller or a multi-phase motor drive controller.
  • the power supply topology provided by the first aspect may further include: a second forward excitation power supply, the second forward excitation power supply is coupled with the first flyback power supply, and is used for converting the second direct current into sixth direct current, The sixth direct current is used for powering the upper bridge arm of the driving circuit.
  • the first forward excitation power supply and the second forward excitation power supply can jointly supply power to the upper arm of the drive circuit.
  • the motor drive controller is a six-phase motor drive controller
  • the three-phase upper arm of the drive circuit can be powered by the first forward power supply
  • the other three-phase upper arm of the drive circuit can be powered by the second forward power supply .
  • an embodiment of the present application further provides a motor drive controller, where the motor drive controller includes a drive circuit, a control circuit, and a power supply topology provided by the first aspect and any of its possible designs.
  • the power supply topology is used for Powers the drive circuit and control circuit.
  • an embodiment of the present application further provides a vehicle.
  • the vehicle includes a power battery, a motor, and the motor drive controller provided in the second aspect; the motor drive controller is used to convert the DC power output from the power battery into AC power, and the AC power is used to drive the motor, or the motor drive controller is used to convert the DC power output from the power battery into AC power.
  • the alternating current output by the motor is converted into direct current, which is used to charge the power battery.
  • FIG. 1 is a schematic diagram of a power supply topology for supplying power to a motor drive controller provided by the prior art
  • FIG. 2 is a schematic structural diagram of a first power supply topology provided by an embodiment of the present application
  • FIG. 3 is a schematic structural diagram of a second power supply topology provided by an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of a third power supply topology provided by an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of a fourth power supply topology provided by an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of a first motor drive controller provided by an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of a second type of motor drive controller provided by an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of a third motor drive controller provided by an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of a fourth motor drive controller provided by an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of a vehicle according to an embodiment of the application.
  • the embodiment of the present application provides a power supply topology, and the power supply topology is used for supplying power to a motor drive controller.
  • This power topology can be integrated in the motor drive controller chip or as a stand-alone module.
  • the power topology 200 includes a first flyback power supply 201 and a first forward power supply 202 .
  • the first flyback power supply 201 is coupled to the first battery module, and is used to convert the first DC power output by the first battery module into a second DC power, and the second DC power is used for the lower bridge of the drive circuit in the motor drive controller Arm power supply;
  • the first forward power supply 202 is coupled with the first flyback power supply 201 for converting the second DC power into a third DC power, and the third DC power is used for powering the upper bridge arm of the drive circuit.
  • Both the flyback power supply and the forward power supply can be regarded as DC/DC converters.
  • the flyback high-frequency transformer is used in the flyback power supply to isolate the output loop from the input loop.
  • the isolation of the low-voltage side circuit and the high-voltage side circuit can be realized by the isolation of the flyback power supply.
  • the forward power supply does not have the isolation function of the input loop and the output loop, but the transient characteristics and load characteristics of the output voltage are better.
  • the flyback power supply can be used to isolate the high-voltage side and the low-voltage side, so there are higher safety regulations (referred to as "safety regulations") requirements for the flyback power supply.
  • safety regulations referred to as "safety regulations"
  • some functional modules such as wave generators, etc.
  • the transformer size of the flyback power supply is relatively large.
  • the safety requirements are lower and the size of the transformer is smaller.
  • the motor drive controller may be a three-phase motor drive controller, and may also be a multi-phase (for example, six-phase, nine-phase) motor drive controller.
  • the motor drive controller includes a control circuit, a drive circuit and a power conversion unit.
  • control circuit can be regarded as a processor, such as a central processing unit (CPU), which is used to issue control instructions; the control instructions issued by the control circuit are used to control the drive circuit to drive the power conversion unit to realize the motor function of the drive controller.
  • CPU central processing unit
  • the drive circuit is a bridge drive circuit, such as a three-phase full-bridge drive circuit, a three-phase half-bridge drive circuit, a six-phase bridge drive circuit, etc.
  • the bridge drive circuit includes an upper bridge arm and a lower bridge arm, and the drive circuit
  • the power conversion unit is used to realize the function of the motor drive controller under the drive of the drive circuit.
  • the power conversion unit is used to perform DC/alternating current (AC) conversion on the direct current output by the power battery, and the alternating current output by the power conversion unit is used to drive the motor to drive the vehicle; for another example, the power conversion unit is used to The alternating current output by the motor is converted into AC/DC, and the direct current output by the power conversion unit is used to charge the power battery.
  • AC DC/alternating current
  • the control circuit belongs to the low-voltage side
  • the input end of the drive circuit belongs to the low-voltage side
  • the output end belongs to the high-voltage side
  • the power conversion unit belongs to the high-voltage side. Therefore, the isolation of the high-voltage side from the low-voltage side is also considered when powering the motor drive controller.
  • the control circuit needs to be powered on the low-voltage side
  • the drive circuit needs to be powered on the high-voltage side.
  • the first DC power can be converted into the second DC power on the high-voltage side by the first flyback power supply 201, so as to supply power to the lower arm of the driving circuit. Since the second DC power is located on the high-voltage side, when converting the second DC power into the third DC power to supply power to the upper arm of the drive circuit, the isolation between the high-voltage side and the low-voltage side does not need to be considered, and the second DC power can be realized by the first forward power supply. Conversion to a third direct current.
  • the power supply topology 200 for powering the motor drive controller includes a two-stage power supply architecture.
  • the lower arm of the drive circuit is powered by the first-level power supply (ie, the first flyback power supply 201 ), and the upper arm of the drive circuit is powered by the second-level power supply (ie, the first forward power supply 202 ).
  • the first flyback power supply 201 needs to meet the basic insulation requirements in the safety regulations, and the first forward excitation power supply 202 only needs to meet the functional insulation requirements in the safety regulations.
  • the first forward excitation power supply 202 is in phase with the first flyback power supply 201 In comparison, the requirements for insulation grades are reduced.
  • the power supply topology 200 adopted by the embodiment of the present application adopts a two-stage power supply structure, only The motor drive controller can be powered by a flyback power supply and a forward power supply, so the volume of the transformer can be saved, the size of the single board can be reduced, and the space of the whole vehicle can be saved.
  • the above-mentioned two-level power supply architecture can reduce the constraints imposed by the safety regulations on the circuit and improve the reliability of the system.
  • the coupling paths of the high-voltage side and the low-voltage side are reduced. It is beneficial to improve the electromagnetic compatibility (EMC) of the system.
  • a power management unit may also be included in power topology 200 .
  • the power management unit is coupled with the first flyback power supply 201 or the first battery module (in FIG. 3 , the power management unit is coupled with the first flyback power supply 201 as an example for illustration), and the power management unit is used for
  • the control circuit in the motor drive controller is powered, and the control circuit is used to control the drive circuit to drive the power conversion unit to realize the function of the motor drive controller.
  • two battery modules can be configured in electric vehicles, one is a low-voltage battery and the other is a high-voltage power battery.
  • the low-voltage battery can be a lead-acid battery
  • the high-voltage power battery can be a lithium battery.
  • the first battery module may be a battery or a power battery. Since the control circuit supplies power on the low-voltage side, and the power management unit is also located on the low-voltage side, when the first battery module is a low-voltage battery, the power management unit can be directly coupled with the first battery module, so that the low-voltage output by the first battery module The direct current powers the control circuit; in the case where the first battery module is a high-voltage power battery, the power management unit is not directly connected to the first battery module, but is coupled to the first flyback power supply 201, and the first flyback power supply 201 converts the power The output of the battery is converted to the low-voltage side, and then output to the power management module.
  • the reasons why the first-level power supply (ie, the first flyback power supply 201) adopts a flyback power supply are: 1. If the first battery module is a low-voltage battery, it is necessary to use a flyback power supply Convert the low-voltage DC output from the low-voltage battery to the high-voltage side to supply power to the lower arm of the drive circuit; 2.
  • the output of the first-level power supply is also used for the power management module on the low-voltage side Therefore, it is necessary to convert the high-voltage DC power output by the high-voltage power battery to the low-voltage side through the flyback power supply, so as to supply power for the power management module.
  • a second flyback power supply may also be included in the power supply topology 200 .
  • the second flyback power supply is coupled to the second battery module, and is used to convert the fourth DC power output by the second battery module into a fifth DC power, and the fifth DC power is used to supply power to the lower bridge arm of the drive circuit, In order to realize the backup of the power supply of the lower bridge arm.
  • the output end of the first flyback power supply 201 can be coupled to the lower arm of the driving circuit through the first switch tube, and the output end of the second flyback power supply can be coupled to the lower arm of the driving circuit through the second switch tube ;
  • the first switch tube and the second switch tube are not turned on at the same time.
  • the switch tube may be a diode, or may be a metal-oxide-semiconductor field-effect transistor (MOSFET), a gallium nitride (gallium nitride, GaN) transistor, an insulated gate A bipolar transistor (insulated gate bipolar transist, IGBT) or a bipolar junction transistor (bipolar junction transistor, BJT), etc.
  • MOSFET metal-oxide-semiconductor field-effect transistor
  • a gallium nitride gallium nitride, GaN
  • IGBT insulated gate bipolar transist
  • BJT bipolar junction transistor
  • the first switch tube and the second switch tube are not turned on at the same time, that is to say, when supplying power to the lower arm of the drive circuit, the first battery module and the first flyback power supply 201 can be used to supply power, or the second battery can be used to supply power.
  • the module and the second flyback power supply are powered, so as to realize the backup of the power supply of the lower bridge arm: when the first switch tube is turned on, the first direct current output by the first battery module is converted into the second direct current by the first flyback power supply 201 , supply power to the lower bridge arm of the drive circuit; when the second switch tube is turned on, the fourth DC power output by the second battery module is converted into a fifth DC power by the second flyback power supply to supply power to the lower bridge arm of the drive circuit . Therefore, in the case of failure of a certain battery module or flyback power supply, the power supply of the lower bridge arm can still be realized.
  • two battery modules can be configured in electric vehicles, one is a low-voltage battery and the other is a high-voltage power battery. Then, in the power topology 200 shown in FIG. 4 , if the first battery module is a battery, the second battery module is a power battery; if the first battery module is a power battery, the second battery module is a battery.
  • the aforementioned power management unit may also be coupled with the second flyback power supply or the second battery module, so as to realize the backup of the power supply of the control circuit.
  • the power management unit may be coupled to the first flyback power supply 201 through a third switch tube for receiving the first The low-voltage direct current of a battery module converted by the first flyback power supply 201; at the same time, the power management unit can also be coupled to the second battery module through a fourth switch tube for receiving the low-voltage direct current output from the second battery module.
  • the third switch tube and the fourth switch tube are not turned on at the same time, so as to realize the backup of the power supply of the control circuit: when the third switch tube is turned on, the first battery module is the power management unit through the first flyback power supply 201 supply power, and then supply power to the control circuit; when the fourth switch tube is turned on, the second battery module supplies power to the power management unit, and then supplies power to the control circuit.
  • the power management unit may be coupled to the first battery module through a fifth switch tube for receiving the first battery The low-voltage direct current output from the battery module; at the same time, the power management unit can also be coupled with the second flyback power supply through the sixth switch tube for receiving the low-voltage direct current converted by the second flyback power supply from the second battery module.
  • the fifth switch tube and the sixth switch tube are not turned on at the same time, so as to realize the backup of the power supply of the control circuit: when the fifth switch tube is turned on, the first battery module supplies power to the power management unit, and then supplies power to the control circuit ; When the sixth switch tube is turned on, the second battery module supplies power to the power management unit through the second flyback power supply, and then supplies power to the control circuit.
  • the motor drive controller may be a three-phase motor drive controller or a multi-phase motor drive controller. Specifically, if the motor drive controller is a three-phase motor drive controller, the drive circuit includes a three-phase upper arm and a three-phase lower arm; if the motor drive controller is a six-phase motor drive controller, the drive circuit includes six Phase upper bridge arm and six-phase lower bridge arm; if the motor drive controller is a nine-phase motor drive controller, the drive circuit includes a nine-phase upper bridge arm and a nine-phase lower bridge arm... .
  • the motor drive controller is a three-phase motor drive controller
  • the three-phase lower arm of the drive circuit can be powered by the first flyback power supply 201
  • the three-phase upper arm of the drive circuit can be powered by the first forward power supply 202 .
  • the motor drive controller is a six-phase motor drive controller
  • the six-phase lower arm of the drive circuit can be powered by the first flyback power supply 201
  • the six-phase upper arm of the drive circuit can be powered by the first flyback power supply 201 .
  • Forward power supply 202 supplies power.
  • the power topology 200 may further include a second forward power supply, and the second forward power supply is coupled to the first flyback power supply 201 for converting the second direct current into a second forward power supply.
  • Six direct currents, the sixth direct current is used to supply power to the upper bridge arm of the driving circuit.
  • the lower arms of the driving circuit can share the ground, it is only necessary to expand the number of the second-stage forward power supplies to meet the driving requirements of the upper bridge.
  • the six-phase lower arm of the driving circuit can be powered by the first flyback power supply 201
  • the three-phase upper arm of the driving circuit can be powered by the first forward power supply 202
  • the other three-phase upper arm of the driving circuit can be powered by The second forward power supply is powered.
  • the power topology 200 may further include a third forward power supply.
  • the nine-phase lower arms of the drive circuit share the same ground, and can be powered by the first flyback power supply 201; the three-phase upper arms of the drive circuit can be powered by the first forward power supply 202, and the three-phase upper arms of the drive circuit can be powered by Powered by the second forward power supply, the other three-phase upper bridge arms of the drive circuit can be powered by the third forward power supply.
  • a second forward power supply can be added to the power supply topology 200, thereby extending the power supply topology 200 to adapt to the multiphase motor drive controller scene.
  • the added forward power supply does not require isolation between the output circuit and the input circuit, so the size of the transformer is small, thereby reducing the size of the board, reducing the cost of the board, and saving the space of the whole vehicle.
  • the power supply topology 200 includes a two-level power supply architecture.
  • the lower arm of the drive circuit is powered by the first-level power supply (ie, the first flyback power supply 201 ), and the upper arm of the drive circuit is powered by the second-level power supply (ie, the first forward power supply 202 ). Since the first forward power supply 202 does not need to consider the isolation of the high voltage side and the low voltage side, the size of the transformer in the first forward power supply 202 is small.
  • the power topology 200 only one flyback power supply and one forward power supply can be used to drive the motor.
  • the controller power supply can save the volume of the transformer, reduce the size of the single board, and save the space of the whole vehicle.
  • the power topology 200 provided by the embodiments of the present application through three specific examples. It should be noted that, in the following three examples, the power topology 200 is integrated in the motor drive controller as an example for illustration, and the case where the power topology 200 is used as an independent module will not be described in detail.
  • the motor drive controller includes three DC/DC circuits (10/11/14), two drive circuits (upper arm drive circuit 8/lower arm drive circuit 9) , a control circuit (3), a power management unit (5), a power conversion unit (15), and four power ORING circuits (ORING diodes or MOSFET tubes 6/7/12/13).
  • the three DC/DC circuits are: high-voltage flyback isolation power supply 10: DC/DC conversion is performed on the DC power output by the high-voltage power battery (not shown in FIG. 6 ), so as to provide the control circuit 3 on the low-voltage side and the high-voltage side
  • Low-voltage flyback isolation power supply 11 DC/DC conversion is performed on the direct current (for example, 5V or 12V) output by the low-voltage battery, so as to provide the low-voltage side drive circuit 9 and the forward power supply for the lower bridge arm.
  • the control circuit 3 has two power supplies, namely the low-voltage battery 2 and the high-voltage flyback isolated power supply 10 (the power supply is selected through the ORING circuit 6/7), so as to realize power supply backup;
  • the power supply of the upper bridge arm drive circuit 8 is a forward power supply 14.
  • the motor drive controller includes three DC/DC circuits (10/11/14), two drive circuits (upper arm drive circuit 8/lower arm drive circuit 9) , a control circuit (3), a power management unit (5), a power conversion unit (15), and four power ORING circuits (ORING diodes or MOSFET tubes 6/7/12/13).
  • the three DC/DC circuits are: high-voltage flyback isolation power supply 10: DC/DC conversion is performed on the direct current output by the high-voltage power battery, so as to supply power to the low-voltage side control circuit 3 and the high-voltage side lower arm drive circuit 9 ; Low-voltage flyback isolation power supply 11: DC/DC conversion is performed on the direct current (for example, 5V or 12V) output by the low-voltage battery, so as to supply power to the lower bridge arm drive circuit 9 and the forward power supply 14 on the high-voltage side; the forward power supply 14: The DC power output by the flyback isolation power supply 10 is DC/DC converted, so as to supply power to the upper bridge arm drive circuit 8 .
  • the control circuit 3 has two power supplies, namely the low-voltage battery 2 and the high-voltage flyback isolated power supply 10 (the power supply is selected through the ORING circuit 6/7), so as to realize power supply backup;
  • the power supply of the upper bridge arm drive circuit 8 is a forward power supply 14.
  • the motor drive controller includes two DC/DC circuits (11/14), two drive circuits (upper arm drive circuit 8/lower arm drive circuit 9), one A control circuit (3), a power management unit (5), a power conversion unit (15), and two power ORING circuits (ORING diodes or MOSFET tubes 6/13).
  • the two DC/DC circuits are: low-voltage flyback isolation power supply 11: DC/DC conversion is performed on the direct current (for example, 5V or 12V) output by the low-voltage battery, so as to provide the lower arm drive circuit 9 on the high-voltage side and the positive
  • the excitation power supply 14 supplies power;
  • the forward excitation power supply 14 performs DC/DC conversion on the direct current output by the low-voltage flyback isolation power supply 11 , so as to supply power to the upper bridge arm drive circuit 8 .
  • Example 3 the power supply of the control circuit 3 is the low-voltage battery 2 and the low-voltage flyback isolated power supply 11 , the power supply of the lower arm drive circuit 9 is the low-voltage flyback isolated power supply 11 , and the power supply of the upper arm drive circuit 8 is Forward power supply 14 .
  • ORING circuit 6/13 functions to prevent reverse breakdown.
  • the embodiments of the present application also provide a motor drive controller.
  • the motor drive controller 900 includes a drive circuit 901 , a control circuit 902 and the aforementioned power supply topology 200 , and the power supply topology 200 is used to supply power to the drive circuit 901 and the control circuit 902 .
  • the embodiments of the present application also provide a vehicle.
  • the vehicle 1000 includes a power battery 1001, a motor 1002, and a motor drive controller 900; the motor drive controller 900 is used to convert the DC power output by the power battery 1001 into AC power, and the AC power is used to drive the motor 1002, or the motor The drive controller 900 is used to convert the alternating current output from the motor 1002 into direct current, and the direct current is used to charge the power battery 1001 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Dc-Dc Converters (AREA)
  • Inverter Devices (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

一种电源拓扑、电机驱动控制器及车辆,电源拓扑包括第一反激电源(201)和第一正激电源(202)。其中,第一反激电源(201)与第一电池模块耦合,用于将第一电池模块输出的第一直流电转换为第二直流电,第二直流电用于为电机驱动控制器中的驱动电路的下桥臂供电;第一正激电源(202)与第一反激电源(201)耦合,用于将第二直流电转换为第三直流电,第三直流电用于为驱动电路的上桥臂供电。该电源拓扑用以为电机驱动控制器供电,减小了变压器尺寸,节省整车空间。

Description

一种电源拓扑、电机驱动控制器及车辆 技术领域
本申请涉及电机技术领域,尤其涉及一种电源拓扑、电机驱动控制器及车辆。
背景技术
电机驱动控制器是电动汽车动力系统的核心部件。在电动汽车正常行驶时,电机驱动控制器用于将动力电池输出的直流电转换成交流电,来驱动电机输出扭矩,以驱动车辆行驶;在电动汽车滑行或制动时,电机运行于发电模式,电机将动能转换成电能,电机驱动控制器用于将电机输出的交流电转换为直流电,从而为动力电池充电。
现有技术中,三相电机驱动控制器的电源拓扑可以如图1所示。直流(direct current,DC)/DC变换器用于将低压蓄电池输出的直流电进行DC/DC变换,从而将低压侧的直流电转换成高压侧的直流电,为电机驱动控制器供电。具体地,该电源拓扑中包括两个DC/DC变换器,一个DC/DC变换器用于为电机驱动控制器中驱动电路的上桥臂中的开关管供电,另一个DC/DC变换器用于为电机驱动控制器中驱动电路的下桥臂中的开关管供电。
在上述电源方案中,上桥臂和下桥臂均需要通过进行高低压转换的变换器供电。为了满足高低压转换变压器的安全规定要求,变压器中需设置一些功能模块(比如脉冲发生单元、斩波单元等),使得变压器的体积通常较大。因此采用图1所示的电源方案,变压器尺寸大,不利于整车空间的利用。
此外,采用图1所示的方案,若电机驱动控制器为六相电机驱动控制器,则还需要增设两个DC/DC变换器才可扩展为六相电机驱动控制器的电源拓扑,模块扩展难度较大,占用空间也较大。
发明内容
本申请实施例提供了一种电源拓扑、电机驱动控制器及车辆,用以为电机驱动控制器供电,减小变压器的尺寸,节省整车空间。
第一方面,本申请实施例提供一种电源拓扑,该电源拓扑用于为电机驱动控制器供电。具体地,该电源拓扑包括第一反激电源和第一正激电源。其中,第一反激电源与第一电池模块耦合,用于将第一电池模块输出的第一直流电转换为第二直流电,第二直流电用于为电机驱动控制器中的驱动电路的下桥臂供电;第一正激电源与第一反激电源耦合,用于将第二直流电转换为第三直流电,第三直流电用于为驱动电路的上桥臂供电。
采用上述方案,为电机驱动控制器供电的电源拓扑包括两级电源架构。驱动电路的下桥臂通过第一级电源(即第一反激电源)供电,驱动电路的上桥臂通过第二级电源(即第一正激电源)供电。其中,第一反激电源需要满足安规中基本绝缘的要求,而第一正激电源满足安规中功能绝缘的要求即可,第一正激电源与第一反激电源相比,绝缘等级的要求降低了。此外,由于第一正激电源无需考虑高压侧和低压侧的隔离,因而第一正激电源中的变压器尺寸较小。与现有技术中驱动电路的上桥臂和下桥臂均通过进行高低压转换的DC/DC变换器进行供电的方案相比,第一方面提供的电源拓扑采用两级电源架构,仅通过一个反激电源和一个正激电源即可为电机驱动控制器供电,因而可以节省变压器的体积, 减小单板尺寸,节省整车空间。
在一种可能的设计中,第一方面提供的电源拓扑还可以包括电源管理单元,电压管理单元与第一反激电源或第一电池模块耦合,用于为电机驱动控制器中的控制电路供电,控制电路用于控制驱动电路。
采用上述方案,可以通过第一电池模块为电机驱动控制器中的控制电路供电。
在一种可能的设计中,第一方面提供的电源拓扑还可以包括第二反激电源,第二反激电源与第二电池模块耦合,用于将第二电池模块输出的第四直流电转换为第五直流电,第五直流电用于为驱动电路的下桥臂供电。
其中,第一电池模块可以为蓄电池,第二电池模块可以为动力电池;或者,第一电池模块可以为动力电池,第二电池模块可以为蓄电池。
采用上述方案,可以通过第一反激电源和第二反激电源实现驱动电路的下桥臂供电备份。
进一步地,第一反激电源的输出端可以通过第一开关管与驱动电路的下桥臂耦合,第二反激电源的输出端可以通过第二开关管与驱动电路的下桥臂耦合;第一开关管与第二开关管不同时导通。
具体地,第一开关管可以为二极管或金属氧化物半导体场效应晶体管MOSFET,第二开关管可以为二级管或MOSFET。
采用上述方案,通过控制第一开关管和第二开关管的导通和关断,实现驱动电路的下桥臂供电备份。
在一种可能的设计中,电源管理单元还可以与第二反激电源或第二电池模块耦合;其中,在第一电池模块为动力电池、第二电池模块为蓄电池的情况下,电源管理单元通过第三开关管与第一反激电源耦合,电源管理单元通过第四开关管与第二电池模块耦合,第三开关管与第四开关管不同时导通;或者,在第一电池模块为蓄电池、第二电池模块为动力电池的情况下,电源管理单元通过第五开关管与第一电池模块耦合,电源管理单元通过第六开关管与第二反激电源耦合,第五开关管与第六开关管不同时导通。
采用上述方案,可以通过控制第三开关管和第四开关管的导通和关断,或者通过控制第五开关管和第六开关管的导通和关断,实现控制电路的供电备份。
在一种可能的设计中,电机驱动控制器可以为三相电机驱动控制器或多相电机驱动控制器。
在一种可能的设计中,第一方面提供的电源拓扑还可以包括:第二正激电源,第二正激电源与第一反激电源耦合,用于将第二直流电转换为第六直流电,第六直流电用于为驱动电路的上桥臂供电。
采用上述方案,可以在电机驱动控制器为多相电机驱动控制器的情况下,通过第一正激电源和第二正激电源共同为驱动电路的上桥臂供电。具体地,若电机驱动控制器为六相电机驱动控制器,驱动电路的三相上桥臂可以通过第一正激电源供电,驱动电路的另三相上桥臂可以通过第二正激电源供电。
第二方面,本申请实施例还提供一种电机驱动控制器,该电机驱动控制器包括驱动电路、控制电路以及上述第一方面及其任一可能设计所提供的电源拓扑,该电源拓扑用于为驱动电路和控制电路供电。
第三方面,本申请实施例还提供一种车辆。该车辆包括动力电池、电机以及上述第二 方面所提供的电机驱动控制器;电机驱动控制器用于将动力电池输出的直流电转换成交流电,该交流电用于驱动电机,或者,电机驱动控制器用于将电机输出的交流电转换为直流电,该直流电用于为动力电池充电。
另外,应理解,第二方面~第三方面及其任一种可能设计方式所带来的技术效果可参见第一方面中不同设计方式所带来的技术效果,此处不再赘述。
附图说明
图1为现有技术提供的一种为电机驱动控制器供电的电源拓扑的示意图;
图2为本申请实施例提供的第一种电源拓扑的结构示意图;
图3为本申请实施例提供的第二种电源拓扑的结构示意图;
图4为本申请实施例提供的第三种电源拓扑的结构示意图;
图5为本申请实施例提供的第四种电源拓扑的结构示意图;
图6为本申请实施例提供的第一种电机驱动控制器的结构示意图;
图7为本申请实施例提供的第二种电机驱动控制器的结构示意图;
图8为本申请实施例提供的第三种电机驱动控制器的结构示意图;
图9为本申请实施例提供的第四种电机驱动控制器的结构示意图;
图10为本申请实施例提供的一种车辆的结构示意图。
具体实施方式
下面将结合附图对本申请实施例作进一步地详细描述。
需要说明的是,本申请实施例中,多个是指两个或两个以上。另外,在本申请的描述中,“第一”、“第二”等词汇,仅用于区分描述的目的,而不能理解为指示或暗示相对重要性,也不能理解为指示或暗示顺序。本申请实施例中所提到的“耦合”,是指电学连接,具体可以包括直接连接或者间接连接两种方式。
本申请实施例提供一种电源拓扑,该电源拓扑用于为电机驱动控制器供电。该电源拓扑可以集成在电机驱动控制器芯片中,也可以作为独立的模块。
具体地,如图2所示,电源拓扑200包括第一反激电源201和第一正激电源202。其中,第一反激电源201与第一电池模块耦合,用于将第一电池模块输出的第一直流电转换为第二直流电,第二直流电用于为电机驱动控制器中的驱动电路的下桥臂供电;第一正激电源202与第一反激电源201耦合,用于将第二直流电转换为第三直流电,第三直流电用于为驱动电路的上桥臂供电。
反激电源和正激电源均可以视为DC/DC变换器。不同之处在于,反激电源中使用反激高频变压器实现输出回路与输入回路的隔离。在输入回路为低压、输出回路为高压,或者输入回路为高压、输出回路为低压的情况下,通过反激电源的隔离,可以实现低压侧电路与高压侧电路的隔离。正激电源不具备输入回路和输出回路的隔离功能,但输出电压的瞬态特性和负载特性较好。
实际应用中,反激电源可用于实现高压侧与低压侧的隔离,因而对反激电源有较高的安全规定(简称“安规”)要求。为满足安规要求,反激电源中需要配置一些功能模块(例如发波控制器等),因而反激电源的变压器尺寸较大。而对于正激电源,由于没有高低压 隔离的功能需求,因而安规要求较低,变压器尺寸较小。
本申请实施例中,电机驱动控制器可以是三相电机驱动控制器,也可以是多相(例如六相、九相)电机驱动控制器。具体地,电机驱动控制器包括控制电路、驱动电路和功率变换单元。
其中,控制电路可以视为处理器,例如可以是中央处理器(central processing unit,CPU),用于发出控制指令;控制电路发出的控制指令用于控制驱动电路,以驱动功率变换单元,实现电机驱动控制器的功能。
其中,驱动电路为桥式驱动电路,例如可以是三相全桥驱动电路、三相半桥驱动电路,六相桥式驱动电路等,桥式驱动电路包括上桥臂和下桥臂,驱动电路的具体结构可以参见现有技术中的描述,此处不再赘述。
其中,功率变换单元用于在驱动电路的驱动下实现电机驱动控制器的功能。比如,功率变换单元用于对动力电池输出的直流电进行DC/交流(alternating current,AC)变换,功率变换单元输出的交流电用于驱动电机,以驱动车辆行驶;再比如,功率变换单元用于对电机输出的交流电进行AC/DC变换,功率变换单元输出的直流电用于为动力电池充电。功率变换单元的具体结构也可以参见现有技术中的描述,此处不再赘述。
在电机驱动控制器中,控制电路属于低压侧,驱动电路的输入端属于低压侧,输出端属于高压侧,功率变换单元属于高压侧。因此,在为电机驱动控制器供电时,还要考虑高压侧与低压侧的隔离。具体地,控制电路需要在低压侧供电,驱动电路需要在高压侧供电。
本申请实施例中,通过第一反激电源201可以将第一直流电转换为高压侧的第二直流电,从而为驱动电路的下桥臂供电。由于第二直流电位于高压侧,因而将第二直流电转换为第三直流电为驱动电路的上桥臂供电时,无需考虑高压侧与低压侧的隔离,通过第一正激电源即可实现第二直流电到第三直流电的转换。
在本申请实施例中,为电机驱动控制器供电的电源拓扑200包括两级电源架构。驱动电路的下桥臂通过第一级电源(即第一反激电源201)供电,驱动电路的上桥臂通过第二级电源(即第一正激电源202)供电。其中,第一反激电源201需要满足安规中基本绝缘的要求,而第一正激电源202满足安规中功能绝缘的要求即可,第一正激电源202与第一反激电源201相比,绝缘等级的要求降低了。此外,由于第一正激电源202无需考虑高压侧和低压侧的隔离,因而第一正激电源202中的变压器尺寸较小。与现有技术中驱动电路的上桥臂和下桥臂均通过进行高低压转换的DC/DC变换器进行供电的方案相比,本申请实施例提供的电源拓扑200采用两级电源架构,仅通过一个反激电源和一个正激电源即可为电机驱动控制器供电,因而可以节省变压器的体积,减小单板尺寸,节省整车空间。
此外,由于正激电源的安规要求比反激电源的安规要求低,因而采用上述二级电源架构可以减小安规对电路的约束,提高系统的可靠性。同时,由于仅有驱动电路的下桥臂通过反激电源供电,与现有技术中上桥臂和下桥臂均通过反激电源供电的方案相比,高压侧和低压侧的耦合路径减少,有利于提高系统的电磁兼容性(electromagnetic compatibility,EMC)。
电源拓扑200中还可以包括电源管理单元。如图3所示,电源管理单元与第一反激电源201或第一电池模块耦合(图3中以电源管理单元与第一反激电源201耦合为例进行示意),该电源管理单元用于为电机驱动控制器中的控制电路供电,控制电路用于控制驱动电路,以驱动功率变换单元实现电机驱动控制器的功能。
实际应用中,电动汽车中可以配置两种电池模块,一种是低压蓄电池,一种是高压动力电池。通常,低压蓄电池可以为铅酸电池,高压动力电池可以为锂电池。
本申请实施例中,第一电池模块可以为蓄电池,也可以为动力电池。由于控制电路在低压侧供电,电源管理单元也位于低压侧,因而在第一电池模块为低压蓄电池的情况下,电源管理单元可以直接与第一电池模块耦合,从而通过第一电池模块输出的低压直流电为控制电路供电;在第一电池模块为高压动力电池的情况下,电源管理单元不直接与第一电池模块,而是与第一反激电源201耦合,通过第一反激电源201将动力电池的输出转换至低压侧,再输出至电源管理模块。
通过以上介绍不难理解,在电源拓扑200中,第一级电源(即第一反激电源201)采用反激电源的原因有:1、如果第一电池模块为低压蓄电池,需要通过反激电源将低压蓄电池输出的低压直流电转换至高压侧,从而为驱动电路的下桥臂供电;2、如果第一电池模块为高压动力电池,第一级电源的输出还用于为低压侧的电源管理模块供电,因而需要通过反激电源将高压动力电池输出的高压直流电转换至低压侧,从而为电源管理模块供电。
此外,电源拓扑200中还可以包括第二反激电源。如图4所示,第二反激电源与第二电池模块耦合,用于将第二电池模块输出的第四直流电转换为第五直流电,第五直流电用于为驱动电路的下桥臂供电,以实现下桥臂供电的备份。
具体地,前述第一反激电源201的输出端可以通过第一开关管与驱动电路的下桥臂耦合,第二反激电源的输出端可以通过第二开关管与驱动电路的下桥臂耦合;第一开关管与第二开关管不同时导通。
本申请实施例中,开关管可以是二极管,也可以是金属-氧化物半导体场效应晶体管(metal-oxide-semiconductor field-effect transistor,MOSFET)、氮化镓(gallium nitride,GaN)晶体管、绝缘栅双极型晶体管(insulated gate bipolar transist,IGBT)或双极结型晶体管(bipolar junction transistor,BJT)等,本申请实施例对开关管的具体类型不做限定。
第一开关管和第二开关管不同时导通,也就是说,在为驱动电路的下桥臂供电时,可以通过第一电池模块与第一反激电源201供电,也可以通过第二电池模块和第二反激电源供电,从而实现下桥臂供电的备份:在第一开关管导通的情况下,第一电池模块输出的第一直流电经第一反激电源201转换为第二直流电,为驱动电路的下桥臂供电;在第二开关管导通的情况下,第二电池模块输出的第四直流电经第二反激电源转换为第五直流电,为驱动电路的下桥臂供电。因此,在某一电池模块或反激电源出现故障的情况下,仍可以实现下桥臂的供电。
如前所述,电动汽车中可以配置两种电池模块,一种是低压蓄电池,一种是高压动力电池。那么,在图4所示的电源拓扑200中,若第一电池模块为蓄电池,则第二电池模块为动力电池;若第一电池模块为动力电池,则第二电池模块为蓄电池。
进一步地,在电源拓扑200中包括第二反激电源的情况下,前述电源管理单元还可以与第二反激电源或第二电池模块耦合,以实现控制电路供电的备份。
具体地,在一种实现方式中,若第一电池模块为动力电池、第二电池模块为蓄电池,那么,电源管理单元可以通过第三开关管与第一反激电源201耦合,用于接收第一电池模块经第一反激电源201变换后的低压直流电;同时,电源管理单元还可以通过第四开关管与第二电池模块耦合,用于接收第二电池模块输出的低压直流电。其中,第三开关管与第四开关管不同时导通,从而实现控制电路供电的备份:在第三开关管导通的情况下,第一 电池模块通过第一反激电源201为电源管理单元供电,进而为控制电路供电;在第四开关管导通的情况下,第二电池模块为电源管理单元供电,进而为控制电路供电。
具体地,在另一种实现方式中,若第一电池模块为蓄电池、第二电池模块为动力电池,那么,电源管理单元可以通过第五开关管与第一电池模块耦合,用于接收第一电池模块输出的低压直流电;同时,电源管理单元还可以通过第六开关管与第二反激电源耦合,用于接收第二电池模块经第二反激电源变换后的低压直流电。其中,第五开关管与第六开关管不同时导通,从而实现控制电路供电的备份:在第五开关管导通的情况下,第一电池模块为电源管理单元供电,进而为控制电路供电;在第六开关管导通的情况下,第二电池模块通过第二反激电源为电源管理单元供电,进而为控制电路供电。
本申请实施例中,电机驱动控制器可以为三相电机驱动控制器,也可以为多相电机驱动控制器。具体地,若电机驱动控制器为三相电机驱动控制器,则驱动电路包括三相上桥臂和三相下桥臂;若电机驱动控制器为六相电机驱动控制器,则驱动电路包括六相上桥臂和六相下桥臂;若电机驱动控制器为九相电机驱动控制器,则驱动电路包括九相上桥臂和九相下桥臂……。
若电机驱动控制器为三相电机驱动控制器,驱动电路的三相下桥臂可以通过第一反激电源201供电,驱动电路的三相上桥臂可以通过第一正激电源202供电。
若电机驱动控制器为六相电机驱动控制器,在一种实现方式中,驱动电路的六相下桥臂可以通过第一反激电源201供电,驱动电路的六相上桥臂可以通过第一正激电源202供电。在另一种实现方式中,如图5所示,电源拓扑200中还可以包括第二正激电源,第二正激电源与第一反激电源201耦合,用于将第二直流电转换为第六直流电,第六直流电用于为驱动电路的上桥臂供电。由于驱动电路的下桥臂可共地,因而仅需扩展第二级正激电源的数量满足上桥驱动需求即可。具体地,驱动电路的六相下桥臂可以通过第一反激电源201供电,驱动电路的三相上桥臂可以通过第一正激电源202供电,驱动电路的另三相上桥臂可以通过第二正激电源供电。
当然,进一步地,若电机驱动控制器为九相电机驱动控制器,则电源拓扑200中还可以包括第三正激电源。驱动电路的九相下桥臂共地,可以通过第一反激电源201供电;驱动电路其中的三相上桥臂可以通过第一正激电源202供电,驱动电路其中的三相上桥臂可以通过第二正激电源供电,驱动电路另外三相上桥臂可以通过第三正激电源供电。
采用上述方案,在电机驱动控制器为多相电机驱动控制器的情况下,可以在电源拓扑200中加入第二正激电源,从而对电源拓扑200进行扩展,以适配多相电机驱动控制器的场景。
在图1所示的现有技术方案中,若要适配多相电机驱动控制器,需要再增加两个DC/DC变换器,分别为三相上桥臂和三相下桥臂供电,对电源拓扑的改动较大。此外,增加的DC/DC变换器也需要满足输入侧和输出侧的隔离,变压器的尺寸较大。
而在本申请实施例中,仅需增加一个正激电源即可适配多相电机驱动控制器,对电源拓扑的改动较小。此外,增加的正激电源对输出电路和输入电路之间的隔离没有要求,因而变压器尺寸较小,从而减小单板尺寸、降低单板成本,节省整车空间。
综上,本申请实施例提供的电源拓扑200包括两级电源架构。驱动电路的下桥臂通过第一级电源(即第一反激电源201)供电,驱动电路的上桥臂通过第二级电源(即第一正激电源202)供电。由于第一正激电源202无需考虑高压侧和低压侧的隔离,因而第一正 激电源202中的变压器尺寸较小。与现有技术中驱动电路的上桥臂和下桥臂均通过进行高低压转换的变压器进行供电的方案相比,电源拓扑200中仅通过一个反激电源和一个正激电源即可为电机驱动控制器供电,可以节省变压器的体积,减小单板尺寸,节省整车空间。
为了便于理解,下面通过三个具体示例对本申请实施例提供的电源拓扑200进行介绍。需要说明的是,在下面三个示例中,均以电源拓扑200集成在电机驱动控制器中为例进行示意,对于电源拓扑200作为独立模块的情形不再具体说明。
示例一
在示例一中,如图6所示,电机驱动控制器中包括三个DC/DC电路(10/11/14)、两个驱动电路(上桥臂驱动电路8/下桥臂驱动电路9)、一个控制电路(3)、一个电源管理单元(5)、功率变换单元(15)、四个电源ORING电路(ORING二极管或者MOSFET管6/7/12/13)。
其中,三个DC/DC电路分别是:高压反激隔离电源10:将高压动力电池(图6中未示出)输出的直流电进行DC/DC变换,从而给低压侧的控制电路3和高压侧的下桥臂驱动电路9供电;低压反激隔离电源11:将低压蓄电池输出的直流电(例如可以是5V或12V)进行DC/DC变换,从而给高压侧的下桥臂驱动电路9和正激电源14供电;正激电源14:将低压反激隔离电源11输出的直流电进行DC/DC变换,从而给上桥臂驱动电路8供电。
在示例一中,控制电路3的供电源有两个,即低压蓄电池2和高压反激隔离电源10(通过ORING电路6/7选择供电源),从而实现供电备份;下桥臂驱动电路9的供电源有两个,即高压反激隔离电源10和低压反激隔离电源11(通过ORING电路12/13选择供电源),从而实现供电备份;上桥臂驱动电路8的供电源为正激电源14。
示例二
在示例二中,如图7所示,电机驱动控制器中包括三个DC/DC电路(10/11/14)、两个驱动电路(上桥臂驱动电路8/下桥臂驱动电路9)、一个控制电路(3)、一个电源管理单元(5)、功率变换单元(15)、四个电源ORING电路(ORING二极管或者MOSFET管6/7/12/13)。
其中,三个DC/DC电路分别是:高压反激隔离电源10:将高压动力电池输出的直流电进行DC/DC变换,从而给低压侧的控制电路3和高压侧的下桥臂驱动电路9供电;低压反激隔离电源11:将低压蓄电池输出的直流电(例如可以是5V或12V)进行DC/DC变换,从而给高压侧的下桥臂驱动电路9和正激电源14供电;正激电源14:将反激隔离电源10输出的直流电进行DC/DC变换,从而给上桥臂驱动电路8供电。
在示例二中,控制电路3的供电源有两个,即低压蓄电池2和高压反激隔离电源10(通过ORING电路6/7选择供电源),从而实现供电备份;下桥臂驱动电路9的供电源有两个,即高压反激隔离电源10和低压反激隔离电源11(通过ORING电路12/13选择供电源),从而实现供电备份;上桥臂驱动电路8的供电源为正激电源14。
示例三
在示例三中,如图8所示,电机驱动控制器中包括两个DC/DC电路(11/14)、两个驱动电路(上桥臂驱动电路8/下桥臂驱动电路9)、一个控制电路(3)、一个电源管理单元(5)、功率变换单元(15)、两个电源ORING电路(ORING二极管或者MOSFET管6/13)。
其中,两个DC/DC电路分别是:低压反激隔离电源11:将低压蓄电池输出的直流电 (例如可以是5V或12V)进行DC/DC变换,从而给高压侧的下桥臂驱动电路9和正激电源14供电;正激电源14:将低压反激隔离电源11输出的直流电进行DC/DC变换,从而给上桥臂驱动电路8供电。
在示例三中,控制电路3的供电源为低压蓄电池2和低压反激隔离电源11,下桥臂驱动电路9的供电源为低压反激隔离电源11,上桥臂驱动电路8的供电源为正激电源14。在示例三中,ORING电路6/13起到防止反向击穿的作用。
此外,本申请实施例还提供一种电机驱动控制器。如图9所示,该电机驱动控制器900包括驱动电路901、控制电路902以及前述电源拓扑200,电源拓扑200用于为驱动电路901和控制电路902供电。
需要说明的是,电机驱动控制器900未详尽描述的实现方式及其技术效果可以参见前述电源拓扑200中的相关描述,此处不再赘述。
此外,本申请实施例还提供一种车辆。参见图10,该车辆1000包括动力电池1001、电机1002以及电机驱动控制器900;电机驱动控制器900用于将动力电池1001输出的直流电转换成交流电,该交流电用于驱动电机1002,或者,电机驱动控制器900用于将电机1002输出的交流电转换为直流电,该直流电用于为动力电池1001充电。
显然,本领域的技术人员可以对本申请实施例进行各种改动和变型而不脱离本申请实施例的范围。这样,倘若本申请实施例的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (11)

  1. 一种电源拓扑,其特征在于,所述电源拓扑用于为电机驱动控制器供电,所述电源拓扑包括:
    第一反激电源,与第一电池模块耦合,用于将所述第一电池模块输出的第一直流电转换为第二直流电,所述第二直流电用于为所述电机驱动控制器中的驱动电路的下桥臂供电;
    第一正激电源,与所述第一反激电源耦合,用于将所述第二直流电转换为第三直流电,所述第三直流电用于为所述驱动电路的上桥臂供电。
  2. 如权利要求1所述的电源拓扑,其特征在于,还包括:
    电源管理单元,与所述第一反激电源或所述第一电池模块耦合,用于为所述电机驱动控制器中的控制电路供电,所述控制电路用于控制所述驱动电路。
  3. 如权利要求1或2所述的电源拓扑,其特征在于,还包括:
    第二反激电源,与第二电池模块耦合,用于将所述第二电池模块输出的第四直流电转换为第五直流电,所述第五直流电用于为所述驱动电路的下桥臂供电。
  4. 如权利要求3所述的电源拓扑,其特征在于,所述第一反激电源的输出端通过第一开关管与所述驱动电路的下桥臂耦合,所述第二反激电源的输出端通过第二开关管与所述驱动电路的下桥臂耦合;所述第一开关管与所述第二开关管不同时导通。
  5. 如权利要求3或4所述的电源拓扑,其特征在于,所述电源管理单元与所述第二反激电源或第二电池模块耦合;
    其中,所述电源管理单元通过第三开关管与所述第一反激电源耦合,所述电源管理单元通过第四开关管与所述第二电池模块耦合,所述第三开关管与所述第四开关管不同时导通;或者,所述电源管理单元通过第五开关管与所述第一电池模块耦合,所述电源管理单元通过第六开关管与所述第二反激电源耦合,所述第五开关管与所述第六开关管不同时导通。
  6. 如权利要求4或5所述的电源拓扑,其特征在于,所述第一开关管为二极管或金属氧化物半导体场效应晶体管MOSFET,所述第二开关管为二级管或MOSFET。
  7. 如权利要求3~6任一项所述的电源拓扑,其特征在于,所述第一电池模块为蓄电池,所述第二电池模块为动力电池;或者,所述第一电池模块为动力电池,所述第二电池模块为蓄电池。
  8. 如权利要求1~7任一项所述的电源拓扑,其特征在于,电机驱动控制器为三相电机驱动控制器或多相电机驱动控制器。
  9. 如权利要求1~8任一项所述的电源拓扑,其特征在于,还包括:
    第二正激电源,与所述第一反激电源耦合,用于将所述第二直流电转换为第六直流电,所述第六直流电用于为所述驱动电路的上桥臂供电。
  10. 一种电机驱动控制器,其特征在于,包括驱动电路、控制电路以及如权利要求1~9任一项所述的电源拓扑,所述电源拓扑用于为所述驱动电路和所述控制电路供电。
  11. 一种车辆,其特征在于,包括动力电池、电机以及如权利要求10所述的电机驱动控制器;所述电机驱动控制器用于将所述动力电池输出的直流电转换成交流电,所述交流电用于驱动所述电机,或者,所述电机驱动控制器用于将所述电机输出的交流电转换为直流电,所述直流电用于为所述动力电池充电。
PCT/CN2021/080233 2021-03-11 2021-03-11 一种电源拓扑、电机驱动控制器及车辆 WO2022188098A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/CN2021/080233 WO2022188098A1 (zh) 2021-03-11 2021-03-11 一种电源拓扑、电机驱动控制器及车辆
CN202180004090.XA CN114128119B (zh) 2021-03-11 2021-03-11 一种电源拓扑、电机驱动控制器及车辆
CN202310977376.7A CN117175931A (zh) 2021-03-11 2021-03-11 一种电源拓扑、电机驱动控制器及车辆
EP21929576.3A EP4287498A4 (en) 2021-03-11 2021-03-11 POWER SUPPLY TOPOLOGY, MOTOR DRIVE CONTROL DEVICE AND VEHICLE
US18/457,581 US20230402926A1 (en) 2021-03-11 2023-08-29 Power supply topology, motor drive controller, and vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/080233 WO2022188098A1 (zh) 2021-03-11 2021-03-11 一种电源拓扑、电机驱动控制器及车辆

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/457,581 Continuation US20230402926A1 (en) 2021-03-11 2023-08-29 Power supply topology, motor drive controller, and vehicle

Publications (1)

Publication Number Publication Date
WO2022188098A1 true WO2022188098A1 (zh) 2022-09-15

Family

ID=80364092

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/080233 WO2022188098A1 (zh) 2021-03-11 2021-03-11 一种电源拓扑、电机驱动控制器及车辆

Country Status (4)

Country Link
US (1) US20230402926A1 (zh)
EP (1) EP4287498A4 (zh)
CN (2) CN114128119B (zh)
WO (1) WO2022188098A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202696465U (zh) * 2012-07-12 2013-01-23 苏州汇川技术有限公司 多电平变换器的功率器件驱动电源及高压变频器
JP2017085895A (ja) * 2017-02-20 2017-05-18 三菱電機株式会社 電力変換装置の駆動回路
CN207853783U (zh) * 2017-11-30 2018-09-11 苏州汇川联合动力系统有限公司 电机控制器功率开关模块驱动电源
CN208401757U (zh) * 2018-07-12 2019-01-18 上海英恒电子有限公司 一种驱动电路

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003299367A (ja) * 2002-04-05 2003-10-17 Hitachi Ltd インバータ装置
JP5901383B2 (ja) * 2012-03-27 2016-04-06 本田技研工業株式会社 車載充電システム
CN207251512U (zh) * 2017-05-17 2018-04-17 苏州汇川联合动力系统有限公司 逆变模块驱动电源及电机驱动器
CN109193852A (zh) * 2018-10-12 2019-01-11 苏州唯控汽车科技有限公司 电动汽车模块化逆变器高压转低压变换充电电路

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202696465U (zh) * 2012-07-12 2013-01-23 苏州汇川技术有限公司 多电平变换器的功率器件驱动电源及高压变频器
JP2017085895A (ja) * 2017-02-20 2017-05-18 三菱電機株式会社 電力変換装置の駆動回路
CN207853783U (zh) * 2017-11-30 2018-09-11 苏州汇川联合动力系统有限公司 电机控制器功率开关模块驱动电源
CN208401757U (zh) * 2018-07-12 2019-01-18 上海英恒电子有限公司 一种驱动电路

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4287498A4 *

Also Published As

Publication number Publication date
CN114128119B (zh) 2023-08-22
EP4287498A1 (en) 2023-12-06
CN117175931A (zh) 2023-12-05
EP4287498A4 (en) 2024-04-03
CN114128119A (zh) 2022-03-01
US20230402926A1 (en) 2023-12-14

Similar Documents

Publication Publication Date Title
CA3036905C (en) Electric vehicle power-hub and operating modes thereof
Xuewei et al. Novel bidirectional snubberless naturally commutated soft-switching current-fed full-bridge isolated DC/DC converter for fuel cell vehicles
Harrye et al. Comprehensive steady state analysis of bidirectional dual active bridge DC/DC converter using triple phase shift control
WO2021169143A1 (zh) 一种兼容交流充电桩与直流充电桩的车载充电机
He et al. Recent advances of power electronics applications in more electric aircrafts
US20120069604A1 (en) Compact power converter with high efficiency in operation
CN111602329B (zh) 变流器部件和这种变流器部件的半导体模块
JP2002247862A (ja) 電力変換装置
US11267351B2 (en) Power conversion device
Casarin et al. 10kV SiC MOSFETs versus 6.5 kV Si-IGBTs for medium frequency transformer application in railway traction
CN207853783U (zh) 电机控制器功率开关模块驱动电源
US11509239B2 (en) Conversion device having reduced size and cost
US11990830B2 (en) Power conversion system and virtual DC voltage generator circuit
Hou et al. Low-voltage electrical systems for nonpropulsion loads
WO2022188098A1 (zh) 一种电源拓扑、电机驱动控制器及车辆
CN111669061A (zh) 反拖系统和风力发电机组
KR100911541B1 (ko) 연료전지 차량용 양방향 3상 pwm dc-dc 컨버터
US11515806B2 (en) Conversion device having reduced common-mode current
CN204517697U (zh) 三相双向逆变式变换器
KR20110063186A (ko) 양방향 전력제어 방식의 배터리 충전장치
Reddy A ZVS-PWM THREE-PHASE CURRENT-FED PUSH–PULL DC–DC CONVERTER WITH FUEL CELL INPUT
US11876446B2 (en) Power converter
Mishra et al. Bidirectional AC/DC Converter using GaN HEMT based Non-Isolated DAB for Battery Emulation
US20230387807A1 (en) Charging circuit and charging apparatus
CN220139410U (zh) 交直流功率变换器及交直流变换系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21929576

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021929576

Country of ref document: EP

Effective date: 20230831

NENP Non-entry into the national phase

Ref country code: DE