WO2022185704A1 - Transfer apparatus and transfer method - Google Patents

Transfer apparatus and transfer method Download PDF

Info

Publication number
WO2022185704A1
WO2022185704A1 PCT/JP2021/048986 JP2021048986W WO2022185704A1 WO 2022185704 A1 WO2022185704 A1 WO 2022185704A1 JP 2021048986 W JP2021048986 W JP 2021048986W WO 2022185704 A1 WO2022185704 A1 WO 2022185704A1
Authority
WO
WIPO (PCT)
Prior art keywords
transfer member
transfer
carrier
device section
electronic component
Prior art date
Application number
PCT/JP2021/048986
Other languages
French (fr)
Japanese (ja)
Inventor
良勝 柳川
直也 大倉
Original Assignee
株式会社ブイ・テクノロジー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ブイ・テクノロジー filed Critical 株式会社ブイ・テクノロジー
Priority to CN202180095118.5A priority Critical patent/CN117043969A/en
Publication of WO2022185704A1 publication Critical patent/WO2022185704A1/en

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/33Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements being semiconductor devices, e.g. diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/60Attaching or detaching leads or other conductive members, to be used for carrying current to or from the device in operation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages

Definitions

  • the present invention relates to transfer technology for electronic components such as micro LEDs (Light Emitting Diodes), and more particularly to a transfer apparatus and transfer method capable of improving the yield during transfer of electronic components.
  • micro LEDs Light Emitting Diodes
  • Patent Document 1 a mounting method has been proposed in which a semiconductor chip made of a micro LED is mounted on a circuit board using a transfer technology (see Patent Document 1, for example). According to Patent Document 1, a first transfer process, an adhesive force reduction process, a second transfer process, and a mounting process are sequentially performed.
  • the first transfer step first, a carrier substrate having a plurality of semiconductor chips and a first adhesive sheet are prepared. Then, in the first transfer step, the semiconductor chip is detached from the carrier substrate by irradiating the semiconductor chip with laser light, and the semiconductor chip is transferred to the first adhesive sheet.
  • the adhesive strength reduction step the adhesive strength of the first adhesive sheet is reduced by heating the semiconductor chip and the first adhesive sheet. Further, in the second transfer step, one surface of the semiconductor chip is irradiated with a laser beam through the first adhesive sheet, whereby the semiconductor chip is peeled off from the first adhesive sheet and transferred to the second adhesive sheet. be transcribed to Then, in the mounting step, the semiconductor chip transferred to the second adhesive sheet and the circuit board are thermally compressed to mount the semiconductor chip on the circuit board.
  • the adhesive strength reduction step in detail, a method of reducing the adhesive strength of the adhesive film by heating the adhesive film of the first adhesive sheet to a predetermined temperature is adopted.
  • Patent Document 1 when an adhesive film whose adhesive strength changes by irradiation with UV (Ultra Violet) light is used, a method of reducing adhesive strength by irradiating UV light toward the adhesive film is disclosed. It states that it can be done.
  • Patent Document 1 does not disclose specific details other than the above when an adhesive film whose adhesive strength changes by irradiation with UV light (ultraviolet rays) is used.
  • UV light ultraviolet rays
  • the present invention provides a transfer apparatus and a transfer method capable of improving the yield at the time of transfer of electronic parts in the case of adopting a transfer member whose adhesive strength is reduced by ultraviolet irradiation, in order to deal with such problems. intended to provide
  • a first invention provides a transfer device for transferring electronic components to a transfer member, which is a light transmissive transfer device having a plurality of electronic components formed on one surface according to a predetermined arrangement.
  • a first attaching device for attaching a first transfer member whose adhesive strength is reduced by ultraviolet irradiation to a substrate; a first transfer device portion for transferring the electronic parts onto one surface of a transfer member; and the first transfer member to which the electronic parts have been transferred is subjected to a treatment to prevent exposure to oxygen, and then exposed to ultraviolet rays.
  • a second pasting device unit for pasting a second transfer member having stronger adhesion than the transfer member, and the first transfer member and the second transfer member are pasted together to utilize the difference in adhesion.
  • a second transfer device section for separating the electronic component from the first transfer member and transferring the electronic component to the second transfer member; the first pasting device section; the first transfer device section; A control device section for controlling the ultraviolet irradiation device section, the second pasting device section, and the second transfer device section.
  • a second invention provides a transfer method for transferring electronic parts to a transfer member, comprising a light transmissive transfer member having a plurality of electronic parts formed on one surface according to a predetermined arrangement.
  • the first transfer member to which the electronic component has been transferred is irradiated with ultraviolet rays in a state in which the first transfer member is treated to prevent exposure to oxygen.
  • the transfer yield of the electronic parts can be improved without being adversely affected by the exposure to oxygen.
  • the first transfer member in the step of reducing the adhesion of the first transfer member, is irradiated with the ultraviolet rays after being treated to prevent exposure to oxygen. Since the adhesive strength of the first transfer member is reduced by reducing the adhesive strength of the first transfer member, it is not adversely affected by exposure to oxygen. By bonding the transfer member and the second transfer member together, the yield at the time of transfer of the electronic component can be improved.
  • FIG. 1 is a block diagram showing a schematic configuration of an embodiment of a transfer device according to the present invention
  • FIG. It is explanatory drawing which shows the structure of the light transmissive board
  • FIG. 2 is an explanatory diagram showing the structure of a light-transmissive substrate, where (a) is a partially enlarged plan view and (b) is a cross-sectional view taken along the line AA of (a). It is explanatory drawing which shows the structure of the 1st sticking apparatus part.
  • 4 is a schematic cross-sectional view showing the configuration of a first transfer member;
  • FIG. 4 is an explanatory diagram showing the configuration of an LLO section in the first transfer section;
  • FIG. 4 is an explanatory view showing the configuration of a wafer peeling section in the first transfer section; It is explanatory drawing which shows the structure of an ultraviolet irradiation device part. It is explanatory drawing which shows the structure of a 2nd sticking apparatus part.
  • FIG. 4 is a schematic cross-sectional view showing a second transfer member; It is explanatory drawing which shows the structure of a bonding part.
  • FIG. 4 is an explanatory diagram showing the configuration of a transfer member peeling section;
  • FIG. 2 is a block diagram showing a hardware configuration of a control device unit shown in FIG. 1;
  • FIG. 3 is an explanatory diagram showing control by a control device section of the transfer device shown in FIG. 1;
  • FIG. 4 is a flow chart showing the processing of one embodiment of the transfer method according to the present invention. It is explanatory drawing which shows the process of one embodiment of the transfer method by this invention by the change of the top view of a to-be-processed object. It is explanatory drawing which shows the process of one embodiment of the transfer method by this invention by the change of the end view of a workpiece. It is explanatory drawing which shows operation
  • FIG. 16 is a flowchart showing the details of the ultraviolet irradiation step shown in FIG. 15; FIG. It is explanatory drawing which shows operation
  • FIG. 16 is a flow chart showing a process when a red micro LED is used in the second transfer step shown in FIG. 15; FIG. FIG.
  • FIG. 4 is an explanatory view showing the configuration of a second carrier to which a red micro LED is transferred, (a) being a partially enlarged plan view, and (b) being a cross-sectional view taken along line CC of (a).
  • FIG. 16 is a flow chart showing a process when green micro LEDs are used in the second transfer step shown in FIG. 15;
  • FIG. 4 is an explanatory view showing the configuration of a second carrier to which a green micro LED is further transferred, (a) being a partially enlarged plan view, and (b) being a cross-sectional view taken along line CC of (a).
  • 16A and 16B are explanatory views showing a second transfer step shown in FIG. 15; FIG. FIG.
  • FIG. 16 is a flow chart showing a process when a blue micro LED is used in the second transfer step shown in FIG. 15;
  • FIG. FIG. 4 is an explanatory view showing the configuration of a second carrier to which a blue micro LED is further transferred, (a) being a partially enlarged plan view, and (b) being a cross-sectional view taken along line CC of (a).
  • FIG. 4 is a flow chart showing a first modification of the transfer method according to the invention;
  • FIG. FIG. 4 is an explanatory view showing the configuration of a second carrier to which UV-LEDs are transferred, (a) being a partially enlarged plan view, and (b) being a cross-sectional view taken along line DD of (a).
  • FIG. 1 is a block diagram showing a schematic configuration of an embodiment of a transfer device according to the present invention.
  • the transfer device of the present invention is a transfer device that transfers electronic components to a transfer member, and is used to manufacture substrates for transferring electronic components.
  • This substrate for transferring electronic components has electronic components formed on one side thereof, and is used to transfer and mount the electronic components on, for example, a circuit board.
  • the transfer device shown in FIG. and a control unit 6 .
  • the first sticking device section 1 applies a first adhesive whose adhesive strength is reduced by ultraviolet irradiation to a light-transmitting substrate S1 (see FIG. 2) having a plurality of electronic components formed in accordance with a predetermined arrangement on one surface.
  • a transfer member T1 (see FIG. 5) is attached.
  • Electronic components used in the transfer device according to the present invention may be electronic components formed on a wafer in a semiconductor process.
  • micro LED micro LED.
  • the first transfer member T1 is a UV peeling tape whose adhesive strength is reduced by ultraviolet irradiation.
  • the circuit board is used for manufacturing a micro LED display, for example, and is a circuit board for causing the micro LED to emit light.
  • FIG. 2 is a plan view of a light transmissive substrate S1 having electronic components formed on one surface (hereinafter referred to as "surface").
  • 3A and 3B are explanatory diagrams showing the configuration of the light-transmitting substrate S1, in which FIG. 3A is a partially enlarged plan view and FIG. 3B is a sectional view taken along line AA of FIG.
  • the light-transmissive substrate S1 (hereinafter referred to as “substrate S1”) is a substrate that transmits laser light used for laser lift-off, which will be described later, and is, for example, a sapphire substrate.
  • FIG. 3(a) is, in detail, an enlarged plan view of a region in which four red micro LEDs 11a are further arranged in the region surrounded by R1 shown in FIG.
  • red micro LEDs 11a are formed in a matrix on the surface of the substrate S1 according to a predetermined arrangement.
  • the predetermined arrangement is, for example, an arrangement corresponding to the pixel arrangement of the RGB micro LED display.
  • the micro LEDs 11a formed in a matrix on the surface of the substrate S1 will be referred to as an LED wafer S11.
  • the micro LEDs 11a are arranged in an arrangement pattern corresponding to full-color display, the arrangement pitch in the row direction is P1, and the arrangement pitch in the column direction is P1.
  • the pitch interval is P2.
  • the micro LED 11a includes a pair of electrode portions 111 and 112 and an LED body portion 110, as shown in FIG. 3(a).
  • the pair of electrode portions 111 and 112 is, for example, an electrode pad that enables electricity to flow from the circuit board to the micro LED 11a.
  • the electrode portion 111 is an n-side electrode pad (cathode electrode), and the electrode portion 112 is a p-side electrode pad. (anode electrode).
  • the red micro-LED 11a will be mainly described as a representative of the three-color micro-LEDs.
  • the micro LED 11a may be selected within a range of, for example, width (15 to 20 ⁇ m) ⁇ length (30 to 45 ⁇ m). Also, the thickness of the micro LED 11a may be selected within a range of, for example, about 5 to 20 ⁇ m.
  • FIG. 4 is an explanatory diagram showing the configuration of the first sticking device section 1.
  • the first sticking device section 1 shown in FIG. 4 includes a first transfer member (UV peeling tape) T1 conveyed by a so-called roll-to-roll method, and a micro LED 11a shown in FIG.
  • the first pasting device section 1 includes a stage mechanism 12, a suction stage 13, a pressure roller 14, a delivery mechanism 15, a tape cutter 16, a guide roller 17, a winding mechanism 18, a fixing ring 19, and a first transfer member. T1 is provided.
  • FIG. 5 is a schematic cross-sectional view showing the configuration of the first transfer member T1.
  • the first transfer member T1 has characteristics such that it is flexible and has a strong adhesive force before being irradiated with ultraviolet rays, and is hardened after being irradiated with ultraviolet rays to reduce the adhesive force.
  • the first transfer member T1 (hereinafter sometimes simply referred to as “transfer member T1”) is provided in the order of the base film T11 and the adhesive layer T12 from the bottom layer. Furthermore, a detachable protective film F1 that can be repeatedly attached is attached to the upper layer of the transfer member T1.
  • ELP UB-3103AC manufactured by Nitto Denko Corporation
  • the base film T11 and the protective film F1 are made of polyethylene terephthalate (PET). The thickness of this base film T11 is about 50 ⁇ m.
  • the adhesive layer T12 has components such as acrylic polymers and oligomers (polymers in which a relatively small number of monomers are bonded). The thickness of this adhesive layer T12 is about 50 ⁇ m.
  • the adhesive layer T12 also contains a photopolymerization initiator that initiates photopolymerization by irradiation with ultraviolet rays. In the adhesive layer T12, the components of the adhesive layer T12 are photopolymerized by irradiation with ultraviolet rays, the flexibility of the adhesive layer T12 is lost, and the adhesive force is lowered.
  • the photopolymerization initiators As photopolymerization initiators, photoradical polymerization initiators that generate radicals, photopolymerization initiators that generate acids, and photopolymerization initiators that generate bases are known. As the photopolymerization initiator, it is preferable to use a photoradical polymerization initiator having high sensitivity to ultraviolet rays. Since oxygen easily captures radicals, the effect of the present invention is high. Therefore, the first transfer member T1 is preferably a transfer member containing a photoradical polymerization initiator.
  • the protective film F1 is a laminate film (also referred to as a "separator") for protecting the adhesive layer T12, and is peeled off from the first transfer member T1 during use.
  • the thickness of this protective film F1 is about 40 ⁇ m.
  • a stage mechanism 12 moves up and down a suction stage 13, and the suction stage 13 suctions an LED wafer S11 placed inside a fixing ring 19. and support it.
  • the fixing ring 19 and the LED wafer S11 are shown in end views so that the inside of the ring of the fixing ring 19 can be seen on the drawing (the same applies hereinafter).
  • the pressure roller 14 moves in one axial direction while rotating to press the transfer member T1 onto the LED wafer S11 to adhere it.
  • the delivery mechanism 15 sequentially delivers an elongated transfer member T1 that can be wound into a roll. Specifically, the delivery mechanism 15 transports the transfer member T1 in a fixed direction continuously or intermittently, for example, by the roll-to-roll method described above. , 15c, a tension roller 15d, and a first take-up roller 15e.
  • the delivery mechanism 15 is provided with a plurality of support rollers (not shown) for preventing the transfer member T1 from being misaligned, meandering, or bent while being conveyed.
  • the first delivery roller 15a is provided on the front side of the transfer member T1 in the transport direction D, and rotates to deliver the wound transfer member T1.
  • the reason why the protective film F1 is attached on the adhesive layer T12 is to prevent contamination such as dust.
  • the peeling rollers 15b and 15c peel off the protective film F1 from the transfer member T1 conveyed along the conveying direction D.
  • the protective film F1 is mechanically separated from the transfer member T1 by the rotating action of the separation rollers 15b and 15c.
  • the first take-up roller 15e takes up the peeled protective film F1 via the first tension roller 15d.
  • the first tension roller 15d prevents loosening of the peeled protective film F1.
  • a mechanism (not shown) that causes the leading edge of the protective film F1 to be taken up by the first tension roller 15d and the first take-up roller 15e. ) is provided.
  • the tape cutter 16 cuts around the fixing ring 19 for supporting the transfer member T1 after the transfer member T1 is attached to the LED wafer S11. As a result, the transfer member T1 is finally cut out in a circular shape and attached to the LED wafer S11, so that the transfer member T1 itself is not interrupted.
  • the winding mechanism 18 winds the transfer member T1 that has passed the guide roller 17 into a roll.
  • the first pasting device section 1 continuously cuts the transfer member T1 conveyed by a so-called roll-to-roll method, and attaches the cut transfer member to the surface of the substrate S1 of the LED wafer S11. It is characterized by attaching T1.
  • the first transfer device section 2 transfers electronic components (for example, micro LEDs 11a) from the substrate S1 to one surface of the transfer member T1 by peeling the electronic components (eg, micro LED 11a) from the substrate S1 via laser lift-off.
  • the first transfer device section 2 includes an LLO (Laser Lift Off) section 21 and a wafer peeling section 22 .
  • FIG. 6 is an explanatory diagram showing the configuration of the LLO section 21 in the first transfer device section 2.
  • FIG. 7 is an explanatory diagram showing the configuration of the wafer peeling section 22 in the first transfer device section 2. As shown in FIG. 6
  • the LLO unit 21 shown in FIG. 6 is a device that performs laser lift-off, and includes a support unit 21a, a laser device 21b, a uniform optical system 21c, a slit 21d, a reduction optical system 21e, a lens 21f, alignment cameras 21g and 21h, and a stage 21i. Prepare.
  • the support portion 21a supports the laser device 21b and uniform optical system 21c.
  • the laser device 21b emits a pulsed laser beam L by laser oscillation, and includes a laser head and a laser power supply controller.
  • the laser device 21b is, for example, a laser whose pulse width is shortened to the picosecond level, and is a YAG (Yttrium Aluminum Garnet) laser with a wavelength in the deep ultraviolet region of 257 nm, 263 nm, or 266 nm (fourth harmonic). is used to emit laser light L.
  • the laser processing energy is 250 mJ/cm 2 for the red micro LED 11a, and 400 mJ/cm 2 for the green micro LED 11b and blue micro LED 11c.
  • the number of shots is one shot.
  • the uniform optical system 21c mainly makes the laser beam into a uniform intensity distribution.
  • the uniform optical system 21c is provided with a mirror M for changing the optical path in FIG.
  • the laser light L enters the slit 21d through the uniform optical system 21c.
  • the slit 21d is a projection mask that shapes the laser beam into a predetermined shape. Then, the laser light L that has passed through the light-transmitting region of the slit 21d is reduced and projected through the reduction optical system 21e and guided to the irradiation region on the back surface of the substrate S1.
  • the reduction optical system 21e reduces and projects the laser light L that has passed through the slit 21d onto an irradiation area on the back surface of the substrate S1 via a lens 21f.
  • Alignment cameras 21 g and 21 h are for adjusting the position of the LED wafer S 11 placed on the stage 21 .
  • Laser lift-off is a means of exfoliating each micro LED 11a from the substrate S1 by irradiating the micro LEDs 11a formed on the front surface of the substrate S1 with a laser beam L generated by pulse oscillation from the back surface of the substrate S1 in the LED wafer S11.
  • the micro LED 11a is peeled off from the substrate S1 in the interface region by, for example, ablation by focusing and irradiating the laser light L on the interface region (for example, the peeling layer) where the peeling is desired. be done.
  • peeling the micro LED 11a from the substrate S1 is synonymous with peeling the micro LED 11a from the substrate S1.
  • peeling includes not only a completely separated state but also a state of being easily peeled off.
  • FIG. 6 shows a state in which the first transfer member T1 is attached to the LED wafer S11 via the micro LEDs 11a.
  • the thickness of the micro LED 11a is on the order of microns, so that the first transfer member T1 is also attached to the substrate S1 of the LED wafer S11 in a general view.
  • the wafer peeling unit 22 shown in FIG. 7 is a device for removing the substrate S1 after the laser lift-off process, and includes a suction head 22a, a suction stage 22b, and a push-up stage 22c.
  • the wafer peeling unit 22 first contacts and sucks the LED wafer S11 attached to the transfer member T1 placed on the suction stage 22b with the suction head 22a.
  • the suction head 22a raises the LED wafer S11 while the thrust stage 22c slightly lifts the LED wafer S11 from below.
  • the micro LED 11a is peeled and separated from the substrate S1, and the micro LED 11a is transferred to the transfer member T1. Details will be described later with reference to FIG. 20 .
  • the laser lift-off process is characterized by adjusting the control parameters such as irradiation energy to perform peeling so that the micro LED 11a can be easily peeled off from the substrate S1. This is to facilitate collection of the used substrate S1 after the micro LEDs 11a have been transferred from the LED wafer S11 to the transfer member T1.
  • the used substrate S1 is collected in a collection box (not shown).
  • the transfer member T1 onto which the micro LEDs of each color are transferred is referred to as a first carrier C1 (see FIG. 8).
  • the transfer member T1 to which the red micro LED 11a is transferred is indicated as C1(R)
  • the transfer member T1 to which the green micro LED 11b is transferred is indicated as C1(G)
  • the transfer member T1 onto which the blue micro LEDs 11c are transferred may be referred to as C1(B).
  • the ultraviolet irradiation unit 3 irradiates the transfer member T1 (first carrier C1) onto which electronic components such as the micro LEDs 11a have been transferred with ultraviolet rays while the transfer member T1 (first carrier C1) is treated to prevent exposure to oxygen. , a device for reducing the adhesive force of the transfer member T1. More specifically, the ultraviolet irradiation device section 3 irradiates the transfer member T1 with ultraviolet rays in an inert gas atmosphere.
  • the atmosphere of an inert gas means, for example, a state in which oxygen gas is purged with an inert gas.
  • the inert gas is nitrogen (N 2 ) gas, for example.
  • Nitrogen gas is known as an inert gas because its atoms form triple bonds, which is very strong and has poor reactivity. Therefore, it is suitable for purging oxygen gas with nitrogen gas.
  • rare gas elements such as argon gas are also known as inert gases, and the gas is not limited to nitrogen gas, and rare gas elements such as argon gas may be used.
  • FIG. 8 is an explanatory diagram showing the configuration of the ultraviolet irradiation device.
  • the ultraviolet irradiation device section 3 includes a UV shielding chamber 30, a UV light source 31, a sealed box 32, an inlet valve 33, a flow meter 34, a gas supply pipe 35, an outlet valve 36, an oximeter 37, a gas discharge pipe 38 and a stage 39.
  • the UV shielding room 30 is a housing that shields ultraviolet rays.
  • the UV light source 31 is, for example, a mercury lamp that emits ultraviolet light with a central wavelength of 365 nm. However, a UV-LED that emits ultraviolet light with a central wavelength of 365 nm may also be used.
  • the closed box 32 is a chamber for purging oxygen gas in the air with nitrogen gas.
  • the sealed box 32 is provided with, for example, a window material 32a made of quartz glass that transmits ultraviolet rays, and a door 32b for carrying in the transfer member T1 (first carrier C1) onto which the micro LEDs 11a are transferred.
  • the inlet valve 33 controls the supply of nitrogen gas.
  • a flow meter 34 measures the diversion of nitrogen gas.
  • the gas supply pipe 35 is a pipe for supplying nitrogen gas from a nitrogen cylinder (not shown).
  • Outlet valve 36 controls the discharge of exhaust gas from closed box 32 .
  • the oxygen concentration meter 37 detects the concentration of oxygen gas inside the closed box 32 from the concentration of the discharged oxygen gas.
  • the gas exhaust pipe 38 is a pipe that guides exhaust gas from the closed box 32 to the outside.
  • the stage 39 is used to carry the first carrier C ⁇ b>1 into or out of the ultraviolet irradiation device section 3 .
  • the second sticking device section 4 is a device for sticking a second transfer member T2 having a stronger adhesive force than the first transfer member T1 whose adhesive force is reduced to the electronic component transfer substrate S2.
  • FIG. 9 is an explanatory diagram showing the configuration of the second sticking device section 4.
  • the second sticking device section 4 shown in FIG. 9 includes a sticking head 40 , a stage 41 and a pressure roller 42 .
  • the second transfer member T2 is previously attached to the bonding head 40 in the initial state when the operation is started.
  • the stage 41 is for mounting the substrate S2.
  • the substrate S2 is, for example, a glass substrate such as alkali-free glass.
  • heat bonding such as soldering or thermocompression is often used, so by using the same base material as the circuit board (mostly alkali-free glass), the difference in thermal expansion during heating is eliminated, and the micro LED and the circuit can be suppressed.
  • the pressure roller 42 presses the transfer member T2 after bonding the second transfer member T2 and the substrate S2 together to increase adhesion between the second transfer member T2 and the substrate S2.
  • FIG. 10 is a schematic cross-sectional view of the second transfer member T2.
  • the second transfer member T2 (hereinafter sometimes simply referred to as "transfer member T2") is, for example, an adhesive sheet.
  • the transfer member T2 includes a substrate T21 and adhesive layers T22 and T23 laminated on both sides of the substrate T21. Furthermore, in the transfer member T2, a protective film F2 is attached to the adhesive layer T22. A protective film F3 is attached to the adhesive layer T23.
  • a reusable highly heat-resistant adhesive sheet manufactured by Kyosha Co., Ltd.
  • the adhesive force of this transfer member T2 is, for example, 1 N/25 mm.
  • a sheet material such as a synthetic resin film can be used for the base material T21.
  • the synthetic resin film is preferably, for example, a polyimide film.
  • the adhesive layers T22 and T23 are made of a silicone-based adhesive resin.
  • the protective films F2 and F3 are laminated films for protecting the adhesive layer T12, and are peeled off from the adhesive layers T22 and T23 during use. Therefore, the second transfer member T2 functions as a single-sided adhesive type when one of the protective films F2 and F3 is removed, and functions as a double-sided adhesive type when both the protective films F2 and F3 are removed. function as a thing.
  • the film thickness of the substrate T21 is, for example, 50 ⁇ m
  • the film thickness of the adhesive layers T22 and T23 is, for example, 75 ⁇ m
  • the film thickness of the protective films F2 and F3 is approximately several ⁇ m.
  • the second transfer device section 5 adheres the first transfer member T1 and the second transfer member T2 together, and uses the difference in adhesive strength to transfer the electronic component (for example, the micro LED 11a) to the first transfer member. It is a device for transferring from the transfer member T1 to the second transfer member T2.
  • the second transfer device section 5 includes a bonding section 51 and a transfer member peeling section 52 .
  • the lamination unit 51 is a device for precisely aligning the transfer member T1 (first carrier C1) to which the micro LED 11a is adhered and the transfer member T2, and then laminating them together.
  • FIG. 11 is an explanatory diagram showing the configuration of the laminating section 51.
  • the bonding unit 51 includes a stage mechanism 51a, a suction stage 51b, a second camera 51c, a support stage 51d, an optical housing 51e, a suction head 51f, a first camera 51g, a reflecting mirror 51h, a zoom lens 51i, and an illumination light source 51j. and a third camera 51k.
  • a suction stage 51b for sucking the first carrier C1 and a second camera 51c for alignment are provided on the stage mechanism 51a.
  • a support stage 51d that can move in the XYZ directions is provided above the stage mechanism 51a.
  • the support stage 51d supports the optical housing 51e.
  • a suction head 51f for sucking the second carrier C2 and a first camera 51g for positioning are provided on the lower side of the optical housing 51e.
  • the second carrier C2 is obtained by attaching the transfer member T2 to one side of the substrate S2.
  • a reflection mirror 51h for observation is provided inside the optical housing 51e.
  • a zoom lens 51i, an illumination light source 51j, and a third camera 51k for fine adjustment of alignment are provided on one side of the optical housing 51e. Details of the operation will be described later.
  • FIG. 12 is an explanatory diagram showing the configuration of the transfer member peeling section 52.
  • the transfer member peeling unit 52 is a device for peeling and collecting the transfer member T1.
  • the transfer member peeling section 52 includes a stage mechanism 52a, a recovery stage 52b, and an adhesive roller 52c.
  • the stage mechanism 52a includes an adsorption stage 52d that adsorbs the carrier C2 from the substrate S2 side, and a support table 52e that supports the fixing ring 19 of the carrier C1.
  • the transfer member peeling section 52 uniaxially moves the adhesive roller 52c to wind up the transfer member T1 of the carrier C1 due to the difference in adhesive strength, and recover it to the recovery stage 52b.
  • the control device section 6 is a device for controlling the first sticking device section 1 , the first transfer device section 2 , the ultraviolet irradiation device section 3 , the second sticking device section 4 and the second transfer device section 5 .
  • FIG. 13 is a block diagram showing an example of the hardware configuration of the control device section 6 shown in FIG.
  • the control device section 6 shown in FIG. 13 is a computer for control, and includes a processor 6a, a storage 6b, a memory 6c, an input device 6d, a communication interface 6e, a display device 6f, and a bus 6g.
  • the processor 6a, storage 6b, memory 6c, input device 6d, communication interface 6e and display device 6f are interconnected via a bus 6g.
  • control device section 6 instructs the first sticking device section 1, the first transfer device section 2, the ultraviolet irradiation device section 3, the second sticking device section 4, and the second transfer device section 5 to operate, for example,
  • the control unit 6 and each of the device units 1 to 5 are connected by wireless or wired communication lines.
  • the control device section 6 comprehensively controls the execution order of the respective device sections 1-5.
  • the processor 6a executes control of the control device section 6.
  • the storage 6b is, for example, a storage device such as an HDD (Hard Disk Drive) or flash memory, and stores programs and various data.
  • the memory 6c is a storage device such as a RAM (Random Access Memory), and is loaded with, for example, programs to be executed by the processor 6a.
  • the input device 6d is, for example, a keyboard type or touch panel type input device.
  • the communication interface 6e has, for example, a communication interface for data communication.
  • the display device 6f is, for example, a liquid crystal monitor, and displays an operation menu screen and output results in accordance with instructions from the processor 6a.
  • control device section 6 realizes various functions through cooperation between hardware such as the processor 6a, storage 6b, and memory 6c, and programs.
  • This program includes a control program (transcription program) for realizing the transcription method according to the present invention.
  • the control device section 6 uses the first transfer member T1 to which the micro LEDs are transferred for each of the colors R, G, and B according to a predetermined order, for example, to achieve full-color display. It is possible to sequentially transfer the micro LEDs of each color to one second transfer member T2 so as to form a corresponding arrangement pattern. As a result, the yield at the time of transferring the micro LEDs of each color can be improved. Details will be described later.
  • the transfer method according to the present invention is realized by automating the operation of the transfer apparatus according to the present invention and the transfer and transfer of works between the respective apparatuses.
  • the work is an object to be processed such as the light transmissive substrate S1, the LED wafer S11, the first transfer member T1, the second transfer member T2, the first carrier C1 and the second carrier C2.
  • FIG. 14 is an explanatory diagram showing control by the control device section 6 of the transfer device shown in FIG.
  • the control device section 6 operates the first sticking device section 1 , the first transfer device section 2 , the ultraviolet irradiation device section 3 , the second sticking device section 4 , the second transfer device section 5 through the control means 7 . Controls the transfer and transfer of workpieces between devices in
  • the control means 7 is, for example, a control device having one or more robot arms capable of processing such as delivery of workpieces. and carry out processing.
  • the process of transferring and transporting the work is a well-known technology, so detailed description thereof will be omitted.
  • FIG. 15 is a flow chart showing one embodiment of the transfer method according to the present invention.
  • 16A and 16B are explanatory diagrams showing the steps of an embodiment of the transfer method according to the present invention by changing the plan view of the object to be processed.
  • 17A and 17B are explanatory diagrams showing the steps of an embodiment of the transfer method according to the present invention by changing the end view of the object to be processed.
  • FIGS. 16(a) and 17(a) are explanatory diagrams in attaching the first transfer member (step S1).
  • FIGS. 16B, 16C, 17B, and 17C are explanatory diagrams of the first transfer (step S2).
  • FIG. 16(d) and FIG. 17(d) are explanatory diagrams of ultraviolet irradiation (step S3).
  • FIGS. 16(e) and 17(e) are explanatory diagrams of the attachment of the second transfer member (step S5).
  • FIGS. 16F, 16G, 17F, and 17G are explanatory diagrams of the second transfer (step S6).
  • an embodiment of the transfer method according to the present invention will be described in detail with reference to FIGS. 16 and 17 as well as other drawings.
  • each unit 1 to 6 of the transfer device shown in FIG. 1 When each unit 1 to 6 of the transfer device shown in FIG. 1 is powered on, each unit shifts to its initial state.
  • the control device section 6 receives an instruction input for starting the operation of the transfer method according to the present invention via the input device 6d. Then, the control device section 6 controls the execution order of the respective sections 1 to 5 based on the control program for executing this transfer method, and first instructs the first pasting device section 1 to start operation.
  • the 1st sticking apparatus part 1 starts operation
  • the LED wafer S11 having the red micro LEDs 11a on its surface is placed on the suction stage 13 of the first attaching device section 1, and then step S1 is performed, and then steps S2 to S3 are performed.
  • the red micro LED 11a is transferred to create a transfer member T1 after being irradiated with ultraviolet rays.
  • the LED wafer S11 having the green micro-LEDs 11b on the surface and the LED wafer S11 having the blue micro-LEDs 11c on the surface are sequentially subjected to the same process.
  • FIG. 18 is an explanatory diagram showing the operation of the first sticking device section 1 in a side view.
  • the object to be processed is drawn as an end view, as described above, in order to make the explanation easier to understand.
  • FIG. 19 is an explanatory diagram showing the operation of the first sticking device section 1 in plan view.
  • the illustration of the constituent elements of the first sticking device section 1 is partially omitted for convenience of explanation.
  • the LED wafers S11 for each color, which are prepared in advance are stored in, for example, storage boxes (not shown).
  • a robot arm is used to carry the tray 10 (see FIG. 19A) onto the suction stage 13 of the first attaching device section 1. .
  • FIG. 18(a) illustrates a state in which the LED wafer S11 and the fixing ring 19 are brought into contact with the transfer member T1.
  • 19(a) shows the state immediately before the tray 10 is carried into the first sticking device section 1.
  • the first pasting device section 1 moves the pressure roller 14 in one axial direction while rotating it.
  • 18(b) and 19(b) show the state after the pressure roller 14 has been moved.
  • the transfer member T1 is attached to the LED wafer S11.
  • the first sticking device section 1 lowers the tape cutter 16 to cut the transfer member T1 around the fixing ring 19 .
  • FIG. 18(c) shows a state in which the tape cutter 16 cuts the transfer member T1.
  • FIG. 19(c) shows a state after the tape cutter 16 cuts the transfer member T1.
  • the circular solid black line indicates the cut portion of the transfer member T1.
  • the transfer member T1 itself is not interrupted.
  • FIG. 18(d) shows the end state of the processing of the first sticking device section 1.
  • FIG. 19(d) shows removal of the tray 10 on which the LED wafer S11 with the transfer member T1 attached is placed. Then, this tray 10 is conveyed to the LLO section 21 of the first transfer device section 2 via the robot arm of the control means 7 according to a command from the control device section 6 .
  • FIG. 16(a) shows a plan view of the LED wafer S11 to which the transfer member T1 is attached by attaching the first transfer member (step S1).
  • FIG. 17(a) shows an end view of the LED wafer S11 taken along line BB (hereinafter simply referred to as "end view" in FIG. 17).
  • the LLO section 21 performs laser lift-off.
  • the robot arm reverses the LED wafer S11 to which the transfer member T1 is attached and then places it on the stage 21i of the LLO section 21 shown in FIG. be.
  • the LLO unit 21 After aligning the LED wafer S11 with the alignment cameras 21g and 21h, the LLO unit 21 performs laser lift-off.
  • 16(b) and 17(b) show a plan view and an end view of the LED wafer S11 to which the transfer member T1 is adhered under the laser irradiation by laser lift-off. Then, the LED wafer S ⁇ b>11 attached to the transfer member T ⁇ b>1 is transported to the wafer peeling section 22 .
  • step S2 the LED wafer S11 attached to the transfer member T1 shown in FIG.
  • FIG. 20(a) shows the state before peeling of the LED wafer S11
  • (b) shows the state in which the LED wafer S11 is being peeled
  • (c) shows the state after the LED wafer S11 is peeled. is shown.
  • the wafer peeling unit 22 first lowers the suction head 22a to suck the back surface of the LED wafer S11 (see FIG. 20(a)).
  • the wafer peeling unit 22 tilts the push-up stage 22c in an oblique direction to lift one end of the LED wafer S11 from below while lifting the LED wafer S11 with the suction head 22a.
  • the purpose of pushing up the LED wafer S11 from below in this manner is to slightly lift one end of the LED wafer S11 from the transfer member T1. That is, first, the LED wafer S11 is peeled off from one end.
  • the wafer peeling unit 22 is characterized by lifting the LED wafer S11 obliquely instead of vertically for such peeling.
  • the wafer peeling section 22 can easily peel (separate) the substrate S1 by using the push-up stage 22c and transfer the micro LEDs 11a onto one surface of the transfer member T2 (see FIG. 20(c). ).
  • the first carrier C1 having the micro LED 11a and the fixing ring 19 transferred to one surface of the transfer member T2 is produced.
  • the first carrier C1 is conveyed to the ultraviolet irradiation device section 3 by the control means 7 according to the command from the control device section 6 .
  • step S3 the transfer member T1 is irradiated with ultraviolet rays in a state of being treated to prevent exposure to oxygen, thereby reducing the adhesion of the transfer member T1.
  • FIG. 21 is a detailed flowchart (subroutine) of the ultraviolet irradiation process shown in FIG.
  • FIG. 22 is an explanatory diagram showing the operation of the ultraviolet irradiation device section 3.
  • the first carrier C1 is installed. Specifically, in step S31, a process of installing the tray 10 on which the first carrier C1 is placed inside the sealed box 32 of the ultraviolet irradiation device section 3 is performed. In this case, the door 32b of the ultraviolet irradiation device section 3 is opened, and the first carrier C1 is loaded.
  • FIG. 22(a) shows how the first carrier C1 is loaded.
  • step S32 the carrier is housed in the sealed box and the door 32b is closed.
  • step S33 the inlet valve 33 is opened to allow nitrogen gas to flow in, and the outlet valve 36 is also opened to release the exhaust side.
  • step S34 the oxygen concentration is measured by the oxygen concentration meter 37 until the oxygen concentration becomes less than 0.5%.
  • step S35 ultraviolet irradiation is started under a nitrogen gas atmosphere.
  • FIG. 16(d) and FIG. 17(d) show a plan view and an end view of the first carrier C1 while the transfer member T1 is being irradiated with ultraviolet rays UV.
  • the transfer member T1 when the transfer member T1 is irradiated with ultraviolet rays UV in order to reduce the adhesive strength of the first transfer member T1, an ultraviolet curing reaction by photopolymerization occurs in the adhesive layer T12.
  • the photopolymerization initiator In the UV curing reaction, in the presence of a photopolymerization initiator, the photopolymerization initiator is first converted into radicals (chemical species having unpaired electrons) by UV irradiation. Subsequently, the radical reacts with a polymer or oligomer having a polymerizable group as a component of the pressure-sensitive adhesive layer T12 and is activated. Then, the adhesive layer T12 is cured by chain-bonding these polymers and oligomers. As a result, the adhesive strength of the first transfer member T1 is reduced.
  • the first transfer member T1 is irradiated with ultraviolet rays having a center wavelength of 365 nm.
  • Optimal ultraviolet irradiation conditions vary depending on the type of UV stripping tape and UV lamp used.
  • integrated amount of light mJ/cm 2
  • mW/cm 2 the luminance
  • irradiation time (sec) irradiation time
  • the optimum ultraviolet irradiation conditions are obtained from experiments, and the integrated light intensity is set to 700 (mJ/cm 2 ), for example.
  • a so-called 180-degree peel test is performed in advance in order to confirm the effect of ultraviolet irradiation.
  • the 180-degree peel test is based on the test method specified in Japanese Industrial Standards (JIS standard (JIS Z 0237)).
  • JIS standard JIS Z 0237
  • a tensile test stand MX-500N (manufactured by IMADA)
  • a force gauge ZTA-50N (manufactured by IMADA)
  • a first transfer member T1 (model number: UB3103AC) as a UV peeling tape
  • a glass substrate manufactured by Corning (model number: EagleXG) as an adherend
  • a test mode 180 degree peel test (4) tape width 25 mm, (5) peel speed 5 mm / sec, (6) peel section 30 mm, a force gauge attached to the tensile test stand, attached to the adherend
  • a 180-degree peel test was performed on the member T1.
  • the adhesive strength of the first transfer member T1 decreased from 15 (N/25 mm) to 0.1 (N/25 mm) due to the ultraviolet irradiation.
  • the oxygen in the air acts to deactivate the radicals in the adhesive layer T12 that cause the ultraviolet curing reaction. and photopolymerization is inhibited. If the photopolymerization is inhibited, the decrease in adhesive strength is suppressed, so in the second transfer (step S6) described later, for example, all the micro LEDs 11a are not transferred, and some of the micro LEDs 11a remain on the substrate 2. to happen. This leads to a low yield. In other words, it means that the transfer rate at which the micro LEDs 11a are transferred to the transfer member T2 is degraded.
  • nitrogen gas purging is performed as a treatment to prevent exposure to oxygen, which blocks oxygen from entering the pressure-sensitive adhesive layer T12, thereby preventing inhibition of photopolymerization.
  • step S36 ultraviolet irradiation is terminated, and the inlet valve 33 is closed to stop the inflow of nitrogen gas.
  • step S ⁇ b>37 the first carrier C ⁇ b>1 that has been irradiated with ultraviolet light is unloaded from the sealed box 32 . Then, the process shown in FIG. 21 is terminated, the process returns to the process of the flowchart shown in FIG. 15, and the process proceeds to step S4.
  • step S4 it is determined whether or not the micro LEDs have been individually transferred to the first transfer member T1 for each color.
  • the red micro LED 11a, the green micro LED 11b, and the blue micro LED 11c are individually transferred onto the transfer member T1, so three first carriers C1 (hereinafter simply referred to as "carriers C1") are prepared for each color. ) will be created.
  • the determination in step S4 is No. In this case, after the carrier C1(R) is transported to the bonding section 51 of the second transfer device section 5, steps S1 to S1 shown in FIG. The processing of S3 is repeated.
  • the carrier C1(R) may be temporarily stored in a storage cassette tray (not shown) without being transported to the bonding section 51.
  • step S4 By repeating the above steps S1 to S3, when the carrier C1 (G) composed of the transfer member T1 to which the green micro LED 11b has been transferred is created, the determination in step S4 becomes No again. In this case, the carrier C1(G) is temporarily stored in a storage cassette tray (not shown). Then, in order to transfer the next blue micro LED 11c to the transfer member T1, the processes of steps S1 to S3 shown in FIG. 15 are repeated.
  • step S4 the determination in step S4 is Yes. Then, the process proceeds to the attachment of the second transfer member (step S5).
  • step S5 In attaching the second transfer member (step S5), the second transfer member T2 having stronger adhesive force than the first transfer member T1 whose adhesive force is lowered is attached to the electronic component transfer substrate S2. Attaching process is performed.
  • FIG. 23 is an explanatory diagram showing the operation of the second sticking device section 4.
  • the second bonding device section 4 lowers the bonding head 40 to bond the transfer member T2 and the substrate S2 together (see FIG. 23(a)).
  • the adhesive force between the transfer member T2 and the substrate S2 is made larger than the adhesive force between the bonding head 40 and the transfer member T2.
  • FIGS. 16(e) and 17(e) show a plan view and an end view of the second carrier C2 produced in step S5.
  • a second carrier C ⁇ b>2 (hereinafter sometimes simply referred to as “carrier C ⁇ b>2 ”) is conveyed to the bonding section 51 of the second transfer device section 5 .
  • the second sticking device section 4 moves the stage 41 to return to the initial state shown in FIG.
  • step S6 the first transfer member T1 and the second transfer member T2 are adhered to each other, and the electronic components are transferred from the first transfer member T1 using the difference in adhesive force.
  • a process of transferring to the second transfer member T2 is performed. Incidentally, when the first transfer member T1 and the second transfer member T2 are bonded together, the first carrier C1 and the second carrier C2 are apparently bonded together.
  • FIG. 24A and 24B are explanatory diagrams showing the operation of the lamination unit 51.
  • FIG. 25A and 25B are explanatory diagrams showing the operation of the transfer member peeling section 52.
  • FIG. 26 is a flow chart (subroutine) showing the process when the red micro LED 11a is used in the second transfer step shown in FIG. is.
  • step S61 shown in FIG. 26 the bonding unit 51 bonds the carrier C1(R) and the carrier C2 together.
  • the lamination unit 51 first installs the carrier C1 (R) and the carrier C2, and then moves the stage mechanism 51a in the horizontal direction to move the first camera 51g. , the carrier C1(R) is observed and .theta. alignment is performed.
  • the bonding unit 51 designates the bonding position of the carrier C1(R) with the first alignment mark.
  • the bonding unit 51 moves the stage mechanism 51a in the horizontal direction to observe the carrier C2 with the second camera 51c and perform ⁇ alignment.
  • the bonding unit 51 designates the bonding position of the carrier C2 with the second alignment mark.
  • the bonding unit 51 causes the carrier C1 (R) and the carrier C2 to face each other based on their bonding positions by moving the stage mechanism 51a in the horizontal direction again, and then lowers the support stage 51d.
  • the carrier C1 (R) and the carrier C2 are stopped at a position close to each other.
  • the lamination unit 51 finely adjusts the positions of the second alignment mark of the carrier C2 and the micro LED 11a of the carrier C1(R) using the third camera 51k.
  • the bonding section 51 further lowers the support stage 51d to bring the carrier C1(R) and the carrier C2 into contact with each other, and then pressurize them.
  • FIG. 24(a) shows the state after the carrier C1(R) and the carrier C2 are pressurized.
  • FIG. 24(b) shows the state after the transfer member T1 and the transfer member T2 are bonded together. As a result, the transfer member T1 and the transfer member T2 are bonded together, and as a result, the bonding of the carrier C1 (R) and the carrier C2 is completed.
  • 16(f) and 17(f) are a plan view and an end view of the combined carrier C1(R) and carrier C2, showing a state in which the carrier C1(R) and the carrier C2 are bonded together. is shown.
  • the bonding unit 51 carries out the carrier C1 (R) and the carrier C2 via the robot arm. As shown in FIG. 12, the carrier C2 is placed on the suction stage 52d on the stage mechanism 52a, and the fixing ring 19 of the carrier C1(R) is supported by the support table 52e. be done.
  • step S62 shown in FIG. 26 the transfer member T1 is peeled off. Therefore, in FIG. 25, the transfer member peeling section 52 is moved uniaxially toward the collection stage 52b while rotating the adhesive roller 52c (see FIG. 25(a)). Since the adhesive roller 52c has a higher adhesive force than the transfer member T2, the adhesive roller 52c can sequentially wind up the transfer member T1 (see FIG. 25(b)). Thereby, in step S63, the second transfer device section 5 can complete the carrier C2(R).
  • the transfer member peeling section 52 causes the transfer member T1 to be attracted to the recovery stage 52b by rotating the adhesive roller 52c around which the transfer member T1 is wound on the recovery stage 52b, and removes the transfer member T1 from the adhesive roller 52c. Remove (see FIG. 25(c)). In this manner, the transfer member peeling unit 52 rotates the adhesive roller 52c and moves it in the uniaxial direction to sequentially wind the transfer member T1, thereby preventing the micro LEDs 11a from remaining on the transfer member T1. can.
  • FIGS. 16(g) and 17(g) show a plan view and an end view of the second carrier C2(R).
  • the carrier in which the transfer member T1 is separated and the red micro LED 11a is transferred to the transfer member T2 is referred to as a second carrier C2 (R).
  • the second carrier C2(G) is described as the second carrier C2(G)
  • the blue micro LED 11c it may be described as the second carrier C2(G).
  • FIG. 27 is an explanatory diagram showing the configuration of the second carrier C2 (R) to which the red micro LED 11a is transferred, (a) being a partially enlarged plan view, and (b) being CC of (a). It is a line sectional view.
  • step S63 when the carrier C2(R) is produced, the carrier C2(R) is transported to be used again for bonding, and is attracted to the suction head 51f of the bonding section 51.
  • step S7 it is determined in step S7 whether or not the micro LEDs have been individually transferred to the transfer member T2 for each color. Specifically, it is determined whether or not the red micro LED 11a, the green micro LED 11b, and the blue micro LED 11c are individually transferred to the transfer member T2. When the red micro LED 11a is transferred to the transfer member T2, the judgment is No, and the process returns to step S6. In step S6, the green micro LED 11b is transferred to the transfer member T2 in the same manner as the red micro LED 11a. .
  • FIG. 28 is a flowchart showing the process when using the green micro LED 11b in the second transfer step shown in FIG.
  • the bonding section 51 performs the same process as in step S61 on the carrier C1(G). In this case, the carrier C2(R) and the carrier C1(G) are stuck together.
  • step S65 the transfer member peeling section 52 performs the same process as in step S62 on the carrier C1(G). Subsequently, in step S66, a carrier C2 (R, G) is created by transferring the green micro LED 11b to the carrier C2 (R).
  • FIG. 29 is an explanatory diagram showing the configuration of the second carrier C2 (R, G) to which the green micro LED 11b is further transferred, (a) being a partially enlarged plan view, and (b) being a It is a CC line sectional view.
  • FIG. 30 is an explanatory diagram showing the second transfer process shown in FIG. FIG. 30(a) shows alignment between carrier C1 (G) and carrier C2 (R).
  • the transfer member T1 composed of the base film T11 and the adhesive layer T12 is irradiated with ultraviolet rays, so that the carrier C1 (G ), the adhesive layer T12 is cured and its adhesive force is lowered.
  • FIG. 30(b) shows a state in which carrier C1 (G) and carrier C2 (R) are bonded together. Even if the predetermined pressure P is applied in this state, the micro LEDs 11a on the carrier C2(R) do not deeply sink into the adhesive layer T12 on the carrier C1(G) side.
  • FIG. 30(c) shows the carrier C2 (R, G) after the transfer member T1 has been separated. Even if the transfer member T1 is peeled off, chips such as the micro LEDs 11a and 11b are not required to be peeled off. By adopting such a method, even if the carrier C1 and the carrier C2 are repeatedly stuck together, no chips are peeled off, and a high transfer rate can be achieved.
  • step S66 when the carrier C2 (R, G) is produced, the carrier C2 (R, G) is transported to be used again for bonding, and is attracted to the suction head 51f of the bonding section 51. be done.
  • step S7 it is determined whether or not the red micro LED 11a, the green micro LED 11b, and the blue micro LED 11c have been individually transferred to the transfer member T2. be judged.
  • the red micro-LED 11a and the green micro-LED 11b are transferred to the transfer member T2
  • the determination is No, and the process returns to step S6.
  • step S6 the blue micro-LED 11c is transferred in the same manner as the red micro-LED 11a. Transfer to member T2.
  • FIG. 31 is a flowchart showing the process when using the blue micro LED 11c in the second transfer step shown in FIG.
  • the bonding section 51 performs the same process as in step S61 on the carrier C1(B).
  • carrier C2 (R, G) and carrier C1 (B) are bonded together.
  • step S68 the transfer member peeling section 52 performs the same process as in step S62 on the carrier C1(B). Subsequently, in step S66, a carrier C2 (R, G, B) is created by transferring the green micro LED 11b to the carrier C2 (R, G).
  • FIG. 32 is an explanatory diagram showing the configuration of the second carrier (R, G, B) to which the blue micro LED 11c is further transferred, (a) being a partially enlarged plan view, (b) being (a) 1 is a cross-sectional view taken along line CC of FIG.
  • this carrier C2 R, G, B
  • the red micro LED 11a, the green micro LED 11b, and the blue micro LED 11c are mounted on the circuit board in the manufacturing process of the micro LED display.
  • step S6 it is determined whether or not the red micro LED 11a, the green micro LED 11b, and the blue micro LED 11c have been individually transferred to the transfer member T2. is determined. In this case, the determination is Yes, and the processing of the flow chart shown in FIG. 15 ends.
  • the first transfer member T1 on the side of the first carrier C1 employs a UV peeling tape, and is deoxidized in the step prior to bonding with the second carrier C2.
  • a UV peeling tape By performing the ultraviolet irradiation step, it is possible to achieve a high transfer rate to the second carrier C2.
  • FIG. 33 is a flowchart showing a first modification of the transfer method according to the invention. Note that the description of the same processing as in the above-described embodiment will be omitted or simplified.
  • the present invention is not limited to this.
  • step S11 first, in attaching the first transfer member (step S11), the transfer member T1 is attached to the LED wafer S11 as in the step S1 shown in FIG.
  • step S12 the red micro LEDs 11a are attached to the transfer member T1 in the same manner as in step S2 described above.
  • step S13 the transfer member T1 is irradiated with ultraviolet rays while being treated to prevent exposure to oxygen, thereby reducing the adhesion of the transfer member T1.
  • step S14 it is determined whether or not it is the first transfer of the transfer member T1. This is because one transfer member T2 is used for three transfer members T1 produced for each color. ). Therefore, when the red micro LED 11a is attached to the transfer member T1, the determination in step S14 is Yes, and the process proceeds to the next second transfer (step S16). Then, in step S17, it is determined whether or not all the micro LEDs have been transferred, and when only the red micro LEDs 11a have been transferred (step S17: No determination), the process returns to step S11 to transfer the green micro LEDs 11b. , steps S11 to S14 and S16 are executed.
  • step S17 it is determined whether or not all the micro LEDs have been transferred, and when only the red micro LED 11a and the green micro LED 11b have been transferred (step S17: No determination), the process returns to step S11 to transfer the blue micro LED. Steps S11 to S14 and S16 are performed for the micro LED 11b, and finally the second carrier C2 (R, G, B) is produced in the same manner as in the present embodiment.
  • the transfer member T1 onto which the electronic components such as the micro LEDs have been transferred is treated to prevent exposure to oxygen, and then the transfer member is exposed to ultraviolet rays. Since the adhesive strength of the transfer member T1 is reduced by irradiating T1, the exposure to oxygen does not adversely affect the adhesive strength of the transfer member T1. By bonding the member T2, the yield at the time of transfer of the electronic component such as the micro LED can be improved.
  • the present invention is not limited to this method. That is, as a light emitting method of the micro LED display, the present invention may be applied to a micro LED display in which ultraviolet light emitting diodes (UV-LED) are color-converted by fluorescent materials (RGB phosphors). In this case, the micro LEDs transferred to the second transfer member T2 may be ultraviolet light emitting diodes of only one color.
  • UV-LED ultraviolet light emitting diodes
  • RGB phosphors fluorescent materials
  • a micro LED 11d shown in FIG. 34 is an ultraviolet light emitting diode whose LED main body is made mainly of gallium nitride (GaN), for example.
  • GaN gallium nitride
  • an ultraviolet light emitting diode that emits light having a peak wavelength of 385 nm, for example, may be selected in consideration of the conversion efficiency of the RGB phosphors.
  • step S6 only one transfer member T1 to which the micro LEDs 11d are transferred may be used, so in the determination of step S4 in the flow chart shown in FIG. 15, the first determination is Yes. Then, in the second transfer (step S6), the micro LED 11d is transferred to the transfer member T2, thereby creating the second carrier C2 (UV-LED).
  • the transfer device and transfer method according to the present invention can be applied even when micro LEDs 11d emitting single-color ultraviolet light are employed.
  • the transfer member T1 is irradiated with ultraviolet rays using the ultraviolet irradiation device section 3 in the sealed box 32 under an inert gas atmosphere.
  • a local exhaust system may be employed in the ultraviolet irradiation device section 3 .
  • nitrogen gas may be locally blown only on the micro LEDs attached to the transfer member T1 to exhaust the air.
  • a semi-open type system may be employed in the ultraviolet irradiation device section 3 . In the semi-open type method, nitrogen gas may be flowed toward the micro LEDs attached to the transfer member T1 without using the closed box 32 .
  • the transfer member T1 may be irradiated with ultraviolet rays in a vacuum chamber having a preset degree of vacuum.
  • a plurality of the first pasting device section 1, the first transfer device section 2, and the ultraviolet irradiation device section 3 are prepared, and the transfer member T1 (the first A configuration may be adopted in which the time required to create the carrier C1) is shortened.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Led Device Packages (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Wire Bonding (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

The present invention is a transfer apparatus for transferring electronic components to a transfer member and comprises: a first sticking device part 1 for sticking, to a light transmissive substrate S1 having a plurality of electronic components formed thereon, a first transfer member T1 in which the adhesive force thereof decreases due to ultraviolet light irradiation; a first transfer device part 2 for transferring the electronic components to one surface of the first transfer member by performing peeling via laser lift-off; an ultraviolet light irradiation device part 3 for decreasing the adhesive force of the first transfer member by irradiating the first transfer member with ultraviolet light in a state in which a treatment was performed to prevent exposure to oxygen; a second sticking device part 4 for sticking, to a substrate S2, a second transfer member T2 having a stronger adhesive force than the first transfer member in which the adhesive force thereof was decreased; a second transfer device part 5 for bonding together the first transfer member and second transfer member, and utilizing the difference in the adhesive forces thereof to peel the electronic components from the first transfer member and transfer the same to the second transfer member; and a control device part for controlling each part 1-5. The yield rate of the electronic components during transfer is thereby improved.

Description

転写装置及び転写方法Transfer device and transfer method
 本発明は、マイクロLED(Light Emitting Diode)等の電子部品の転写技術に関し、特に、電子部品の転写時の歩留りを向上し得るようにした転写装置及び転写方法に係るものである。 The present invention relates to transfer technology for electronic components such as micro LEDs (Light Emitting Diodes), and more particularly to a transfer apparatus and transfer method capable of improving the yield during transfer of electronic components.
 従来、マイクロLEDからなる半導体チップを、転写技術を用いて回路基板に実装する実装方法が提案されている(例えば、特許文献1参照)。特許文献1によれば、第1の転写工程と、粘着力低減工程と、第2の転写工程と、実装工程と、を順次実行することを特徴としている。 Conventionally, a mounting method has been proposed in which a semiconductor chip made of a micro LED is mounted on a circuit board using a transfer technology (see Patent Document 1, for example). According to Patent Document 1, a first transfer process, an adhesive force reduction process, a second transfer process, and a mounting process are sequentially performed.
 具体的には、第1の転写工程では、先ず、複数の半導体チップを有するキャリア基板と、第1の粘着シートとを準備する。そして、第1の転写工程では、半導体チップにレーザ光を照射することにより、半導体チップをキャリア基板から剥離させ、該半導体チップを第1の粘着シートへ転写させる。 Specifically, in the first transfer step, first, a carrier substrate having a plurality of semiconductor chips and a first adhesive sheet are prepared. Then, in the first transfer step, the semiconductor chip is detached from the carrier substrate by irradiating the semiconductor chip with laser light, and the semiconductor chip is transferred to the first adhesive sheet.
 次に、粘着力低減工程では、半導体チップ及び第1の粘着シートを加熱することにより、第1の粘着シートの粘着力を低減させる。さらに、第2の転写工程では、第1の粘着シートを透過させて半導体チップの一方の面にレーザ光を照射することにより、半導体チップを第1の粘着シートから剥離して第2の粘着シートに転写させる。そして、実装工程では、第2の粘着シートに転写された半導体チップと回路基板とを熱圧着させることにより半導体チップを回路基板に実装する。 Next, in the adhesive strength reduction step, the adhesive strength of the first adhesive sheet is reduced by heating the semiconductor chip and the first adhesive sheet. Further, in the second transfer step, one surface of the semiconductor chip is irradiated with a laser beam through the first adhesive sheet, whereby the semiconductor chip is peeled off from the first adhesive sheet and transferred to the second adhesive sheet. be transcribed to Then, in the mounting step, the semiconductor chip transferred to the second adhesive sheet and the circuit board are thermally compressed to mount the semiconductor chip on the circuit board.
 ここで、上記粘着力低減工程では、詳細には、第1の粘着シートの粘着膜を所定温度に加熱することにより、粘着膜の粘着力を低減する方法を採用している。なお、特許文献1には、UV(Ultra Violet)光の照射によって粘着力が変化する粘着膜が使用されている場合、粘着膜に向かってUV光を照射することによって粘着力を低減させる方法を実施してもよいことが記載されている。 Here, in the adhesive strength reduction step, in detail, a method of reducing the adhesive strength of the adhesive film by heating the adhesive film of the first adhesive sheet to a predetermined temperature is adopted. In addition, in Patent Document 1, when an adhesive film whose adhesive strength changes by irradiation with UV (Ultra Violet) light is used, a method of reducing adhesive strength by irradiating UV light toward the adhesive film is disclosed. It states that it can be done.
特開2019―114660号公報Japanese Unexamined Patent Application Publication No. 2019-114660
 しかし、特許文献1には、UV光(紫外線)の照射によって粘着力が変化する粘着膜が使用された場合の具体的な内容については、上記以外に開示されていない。これに対し、紫外線照射により粘着力が低下する転写部材(例えばUV剥離用のテープ)を用いて、電子部品としてマイクロLEDの転写に関する実験を独自に実行したところ、マイクロLEDが正常に転写されないことが起こり得ることが分かった。 However, Patent Document 1 does not disclose specific details other than the above when an adhesive film whose adhesive strength changes by irradiation with UV light (ultraviolet rays) is used. On the other hand, when we independently conducted an experiment on the transfer of micro LEDs as an electronic component using a transfer material whose adhesive strength is reduced by ultraviolet irradiation (for example, a UV peeling tape), we found that the micro LEDs were not transferred normally. was found to occur.
 そこで、本発明は、このような問題に対処し、紫外線照射により粘着力が低下する転写部材を採用した場合について、電子部品の転写時の歩留りを向上し得るようにした転写装置及び転写方法を提供することを目的とする。 In view of this, the present invention provides a transfer apparatus and a transfer method capable of improving the yield at the time of transfer of electronic parts in the case of adopting a transfer member whose adhesive strength is reduced by ultraviolet irradiation, in order to deal with such problems. intended to provide
 上記目的を達成するために、第1の発明は、電子部品を転写部材に転写する転写装置であって、一方の面に予め定められた配列に従って複数の電子部品が形成されている光透過性基板に、紫外線照射により粘着力が低下する第1の転写部材を貼り付ける第1の貼付装置部と、上記光透過性基板から上記電子部品をレーザリフトオフを介して剥離することにより、上記第1の転写部材の一方の面に上記電子部品を転写する第1の転写装置部と、上記電子部品が転写された上記第1の転写部材に対して、酸素に対する暴露を防ぐ処理をした状態で紫外線を上記第1の転写部材に照射して、該第1の転写部材の粘着力を低下させる紫外線照射装置部と、上記電子部品の転写用の基板に、上記粘着力を低下させた第1の転写部材よりも粘着力が強い第2の転写部材を貼り付ける第2の貼付装置部と、上記第1の転写部材と上記第2の転写部材とを貼り合わせて、上記粘着力の差を利用して上記電子部品を上記第1の転写部材から剥離させて、上記第2の転写部材に転写する第2の転写装置部と、上記第1の貼付装置部、上記第1の転写装置部、上記紫外線照射装置部、上記第2の貼付装置部及び上記第2の転写装置部を制御する制御装置部と、を備える。 In order to achieve the above object, a first invention provides a transfer device for transferring electronic components to a transfer member, which is a light transmissive transfer device having a plurality of electronic components formed on one surface according to a predetermined arrangement. a first attaching device for attaching a first transfer member whose adhesive strength is reduced by ultraviolet irradiation to a substrate; a first transfer device portion for transferring the electronic parts onto one surface of a transfer member; and the first transfer member to which the electronic parts have been transferred is subjected to a treatment to prevent exposure to oxygen, and then exposed to ultraviolet rays. to the first transfer member to reduce the adhesive strength of the first transfer member; A second pasting device unit for pasting a second transfer member having stronger adhesion than the transfer member, and the first transfer member and the second transfer member are pasted together to utilize the difference in adhesion. a second transfer device section for separating the electronic component from the first transfer member and transferring the electronic component to the second transfer member; the first pasting device section; the first transfer device section; A control device section for controlling the ultraviolet irradiation device section, the second pasting device section, and the second transfer device section.
 上記目的を達成するために、第2の発明は、電子部品を転写部材に転写する転写方法であって、一方の面に予め定められた配列に従って複数の電子部品が形成されている光透過性基板に、紫外線照射により粘着力が低下する第1の転写部材を貼り付ける工程と、上記光透過性基板から電子部品をレーザリフトオフを介して剥離することにより、上記第1の転写部材の一方の面に上記電子部品を転写する工程と、上記電子部品が転写された上記第1の転写部材に対して、酸素に対する暴露を防ぐ処理した状態で紫外線を上記第1の転写部材に照射して、該第1の転写部材の粘着力を低下させる紫外線照射工程と、上記電子部品の転写用の基板に、上記粘着力を低下させた第1の転写部材よりも粘着力が強い第2の転写部材を貼り付ける工程と、上記第1の転写部材と上記第2の転写部材とを貼り合わせて、上記粘着力の差を利用して上記電子部品を上記第1の転写部材から剥離させて、上記第2の転写部材に転写する工程と、を含む。 In order to achieve the above object, a second invention provides a transfer method for transferring electronic parts to a transfer member, comprising a light transmissive transfer member having a plurality of electronic parts formed on one surface according to a predetermined arrangement. A step of attaching a first transfer member whose adhesive strength is reduced by ultraviolet irradiation to a substrate, and peeling off the electronic component from the light transmissive substrate via laser lift-off, thereby removing one side of the first transfer member. transferring the electronic component onto a surface; and irradiating the first transfer member onto which the electronic component has been transferred with ultraviolet rays in a state where the first transfer member is treated to prevent exposure to oxygen, a step of irradiating an ultraviolet ray to reduce the adhesive strength of the first transfer member; and a second transfer member having stronger adhesive strength than the first transfer member having the reduced adhesive strength to the substrate for transferring the electronic component. and sticking the first transfer member and the second transfer member together, using the difference in adhesive strength to separate the electronic component from the first transfer member, and and transferring to a second transfer member.
 第1の発明に係る転写装置によれば、上記電子部品が転写された上記第1の転写部材に対して、酸素に対する暴露を防ぐ処理をした状態で紫外線を上記第1の転写部材に照射して、該第1の転写部材の粘着力を低下させる構成を備えているので、酸素に対する暴露による悪影響を受けずに済み、上記電子部品の転写時の歩留りを向上させることができる。 According to the transfer device according to the first aspect of the invention, the first transfer member to which the electronic component has been transferred is irradiated with ultraviolet rays in a state in which the first transfer member is treated to prevent exposure to oxygen. In addition, since the adhesive strength of the first transfer member is lowered, the transfer yield of the electronic parts can be improved without being adversely affected by the exposure to oxygen.
 第2の発明に係る転写方法によれば、上記第1の転写部材の粘着力を低下させる工程において、酸素に対する暴露を防ぐ処理を施した後、上記紫外線を上記第1の転写部材に照射して、該第1の転写部材の粘着力を低下させているので、酸素に対する暴露による悪影響を受けずに済み、さらに、上記第1の転写部材の粘着力を低下させた後に、上記第1の転写部材と上記第2の転写部材とを貼り合わせていることにより、上記電子部品の転写時の歩留りを向上させることができる。 According to the transfer method according to the second aspect of the invention, in the step of reducing the adhesion of the first transfer member, the first transfer member is irradiated with the ultraviolet rays after being treated to prevent exposure to oxygen. Since the adhesive strength of the first transfer member is reduced by reducing the adhesive strength of the first transfer member, it is not adversely affected by exposure to oxygen. By bonding the transfer member and the second transfer member together, the yield at the time of transfer of the electronic component can be improved.
本発明による転写装置の一実施形態の概略構成を示すブロック図である。1 is a block diagram showing a schematic configuration of an embodiment of a transfer device according to the present invention; FIG. 電子部品が形成された光透過性基板の構成を示す説明図である。It is explanatory drawing which shows the structure of the light transmissive board|substrate with which the electronic component was formed. 光透過性基板の構成を示す説明図であり、(a)は一部拡大平面図、(b)は(a)のA-A線断面図である。FIG. 2 is an explanatory diagram showing the structure of a light-transmissive substrate, where (a) is a partially enlarged plan view and (b) is a cross-sectional view taken along the line AA of (a). 第1の貼付装置部の構成を示す説明図である。It is explanatory drawing which shows the structure of the 1st sticking apparatus part. 第1の転写部材の構成を示す概略断面図である。4 is a schematic cross-sectional view showing the configuration of a first transfer member; FIG. 第1の転写部におけるLLO部の構成を示す説明図である。4 is an explanatory diagram showing the configuration of an LLO section in the first transfer section; FIG. 第1の転写部におけるウェハ剥離部の構成を示す説明図である。FIG. 4 is an explanatory view showing the configuration of a wafer peeling section in the first transfer section; 紫外線照射装置部の構成を示す説明図である。It is explanatory drawing which shows the structure of an ultraviolet irradiation device part. 第2の貼付装置部の構成を示す説明図である。It is explanatory drawing which shows the structure of a 2nd sticking apparatus part. 第2の転写部材を示す概略断面図である。FIG. 4 is a schematic cross-sectional view showing a second transfer member; 貼合せ部の構成を示す説明図である。It is explanatory drawing which shows the structure of a bonding part. 転写部材剥離部の構成を示す説明図である。FIG. 4 is an explanatory diagram showing the configuration of a transfer member peeling section; 図1に示す制御装置部のハードウェア構成を示すブロック図である。FIG. 2 is a block diagram showing a hardware configuration of a control device unit shown in FIG. 1; FIG. 図1に示す転写装置の制御装置部による制御を示す説明図である。3 is an explanatory diagram showing control by a control device section of the transfer device shown in FIG. 1; FIG. 本発明による転写方法の一実施形態の処理を示す流れ図である。4 is a flow chart showing the processing of one embodiment of the transfer method according to the present invention; 本発明による転写方法の一実施形態の工程を加工対象物の平面図の変化で示す説明図である。It is explanatory drawing which shows the process of one embodiment of the transfer method by this invention by the change of the top view of a to-be-processed object. 本発明による転写方法の一実施形態の工程を加工対象物の端面図の変化で示す説明図である。It is explanatory drawing which shows the process of one embodiment of the transfer method by this invention by the change of the end view of a workpiece. 第1の貼付装置部の動作を側面視で示す説明図である。It is explanatory drawing which shows operation|movement of a 1st sticking apparatus part by a side view. 第1の貼付装置部の動作を平面視で示す説明図である。It is explanatory drawing which shows operation|movement of a 1st sticking apparatus part by planar view. ウェハ剥離部の動作を示す説明図である。It is explanatory drawing which shows operation|movement of a wafer peeling part. 図15に示す紫外線照射工程の詳細を示す流れ図である。FIG. 16 is a flowchart showing the details of the ultraviolet irradiation step shown in FIG. 15; FIG. 紫外線照射装置部の動作を示す説明図である。It is explanatory drawing which shows operation|movement of an ultraviolet irradiation device part. 第2の貼付装置部の動作を示す説明図である。It is explanatory drawing which shows operation|movement of a 2nd sticking apparatus part. 貼合せ部の動作を示す説明図である。It is explanatory drawing which shows operation|movement of a bonding part. 剥離部の動作を示す説明図である。It is explanatory drawing which shows operation|movement of a peeling part. 図15に示す第2の転写の工程において、赤色のマイクロLEDを用いた場合の処理を示す流れ図である。FIG. 16 is a flow chart showing a process when a red micro LED is used in the second transfer step shown in FIG. 15; FIG. 赤色のマイクロLEDが転写された第2のキャリアの構成を示す説明図であり、(a)は一部拡大平面図、(b)は(a)のC-C線断面図である。FIG. 4 is an explanatory view showing the configuration of a second carrier to which a red micro LED is transferred, (a) being a partially enlarged plan view, and (b) being a cross-sectional view taken along line CC of (a). 図15に示す第2の転写の工程において、緑色のマイクロLEDを用いた場合の処理を示す流れ図である。FIG. 16 is a flow chart showing a process when green micro LEDs are used in the second transfer step shown in FIG. 15; FIG. 緑色のマイクロLEDがさらに転写された第2のキャリアの構成を示す説明図であり、(a)は一部拡大平面図、(b)は(a)のC-C線断面図である。FIG. 4 is an explanatory view showing the configuration of a second carrier to which a green micro LED is further transferred, (a) being a partially enlarged plan view, and (b) being a cross-sectional view taken along line CC of (a). 図15に示す第2の転写の工程を示す説明図である。16A and 16B are explanatory views showing a second transfer step shown in FIG. 15; FIG. 図15に示す第2の転写の工程において、青色のマイクロLEDを用いた場合の処理を示す流れ図である。FIG. 16 is a flow chart showing a process when a blue micro LED is used in the second transfer step shown in FIG. 15; FIG. 青色のマイクロLEDがさらに転写された第2のキャリアの構成を示す説明図であり、(a)は一部拡大平面図、(b)は(a)のC-C線断面図である。FIG. 4 is an explanatory view showing the configuration of a second carrier to which a blue micro LED is further transferred, (a) being a partially enlarged plan view, and (b) being a cross-sectional view taken along line CC of (a). 本発明による転写方法の第1の変形例を示す流れ図である。FIG. 4 is a flow chart showing a first modification of the transfer method according to the invention; FIG. UV-LEDが転写された第2のキャリアの構成を示す説明図であり、(a)は一部拡大平面図、(b)は(a)のD-D線断面図である。FIG. 4 is an explanatory view showing the configuration of a second carrier to which UV-LEDs are transferred, (a) being a partially enlarged plan view, and (b) being a cross-sectional view taken along line DD of (a).
 以下、本発明の実施形態を添付図面に基づいて詳細に説明する。図1は、本発明による転写装置の一実施形態の概略構成を示すブロック図である。本発明の転写装置は、電子部品を転写部材に転写する転写装置であって、電子部品の転写用の基板を製造するものである。この電子部品の転写用の基板は、片面に電子部品が形成されており、電子部品を例えば回路基板に転写して実装するために使用されるものである。図1に示す転写装置は、第1の貼付装置部1と、第1の転写装置部2と、紫外線照射装置部3と、第2の貼付装置部4と、第2の転写装置部5と、制御装置部6とを備える。 Hereinafter, embodiments of the present invention will be described in detail based on the accompanying drawings. FIG. 1 is a block diagram showing a schematic configuration of an embodiment of a transfer device according to the present invention. The transfer device of the present invention is a transfer device that transfers electronic components to a transfer member, and is used to manufacture substrates for transferring electronic components. This substrate for transferring electronic components has electronic components formed on one side thereof, and is used to transfer and mount the electronic components on, for example, a circuit board. The transfer device shown in FIG. , and a control unit 6 .
 第1の貼付装置部1は、一方の面に予め定められた配列に従って複数の電子部品が形成されている光透過性基板S1(図2参照)に、紫外線照射により粘着力が低下する第1の転写部材T1(図5参照)を貼り付けるものである。本発明による転写装置で用いる電子部品としては、半導体プロセスでウェハ上に形成される電子部品であればよく、例えば、マイクロLEDディスプレイに使用される赤色(R)、緑色(G)、青色(B)のマイクロLEDである。第1の転写部材T1は、紫外線照射により粘着力が低下するUV剥離用テープである。また、上記回路基板は、例えば、マイクロLEDディスプレイの製造に用いられるものであって、マイクロLEDを発光させるための回路基板である。 The first sticking device section 1 applies a first adhesive whose adhesive strength is reduced by ultraviolet irradiation to a light-transmitting substrate S1 (see FIG. 2) having a plurality of electronic components formed in accordance with a predetermined arrangement on one surface. A transfer member T1 (see FIG. 5) is attached. Electronic components used in the transfer device according to the present invention may be electronic components formed on a wafer in a semiconductor process. ) micro LED. The first transfer member T1 is a UV peeling tape whose adhesive strength is reduced by ultraviolet irradiation. Further, the circuit board is used for manufacturing a micro LED display, for example, and is a circuit board for causing the micro LED to emit light.
 図2は、電子部品が一方の面(以下、「表面」という)に形成されている光透過性基板S1の平面図である。図3は、光透過性基板S1の構成を示す説明図であり、(a)は一部拡大平面図、(b)は(a)のA-A線断面図である。光透過性基板S1(以下、「基板S1」という)は、後述するレーザリフトオフに使用するレーザ光を透過させる基板であって、例えば、サファイア基板である。 FIG. 2 is a plan view of a light transmissive substrate S1 having electronic components formed on one surface (hereinafter referred to as "surface"). 3A and 3B are explanatory diagrams showing the configuration of the light-transmitting substrate S1, in which FIG. 3A is a partially enlarged plan view and FIG. 3B is a sectional view taken along line AA of FIG. The light-transmissive substrate S1 (hereinafter referred to as “substrate S1”) is a substrate that transmits laser light used for laser lift-off, which will be described later, and is, for example, a sapphire substrate.
 図3(a)は、詳細には、図2に示すR1で囲まれた領域において、さらに4個の赤色のマイクロLED11aが配列されている領域を切り出した場合の拡大平面図である。基板S1上には、一例として、赤色のマイクロLED11aが予め定められた配列に従って、基板S1の表面に行列状に形成されている。ここで、予め定められた配列とは、例えば、RGBのマイクロLEDディスプレイの画素配列に対応させた配列である。マイクロLED11aが基板S1の表面に行列状に形成されているものを、説明の便宜上、LEDウェハS11という。なお、図3(a)において、一例として、各々のマイクロLED11aについて、フルカラー表示に対応した配列パターンになるように配列されており、行方向の配列ピッチの間隔はP1であり、列方向の配列ピッチの間隔はP2である。 FIG. 3(a) is, in detail, an enlarged plan view of a region in which four red micro LEDs 11a are further arranged in the region surrounded by R1 shown in FIG. On the substrate S1, for example, red micro LEDs 11a are formed in a matrix on the surface of the substrate S1 according to a predetermined arrangement. Here, the predetermined arrangement is, for example, an arrangement corresponding to the pixel arrangement of the RGB micro LED display. For convenience of explanation, the micro LEDs 11a formed in a matrix on the surface of the substrate S1 will be referred to as an LED wafer S11. In FIG. 3A, as an example, the micro LEDs 11a are arranged in an arrangement pattern corresponding to full-color display, the arrangement pitch in the row direction is P1, and the arrangement pitch in the column direction is P1. The pitch interval is P2.
 また、マイクロLED11aは、図3(a)に示すとおり、一対の電極部111、112と、LED本体部110とを備える。一対の電極部111、112は、例えば、上記回路基板からマイクロLED11aへ通電を可能とする電極パッドであって、電極部111がn側電極パッド(カソード電極)、電極部112がp側電極パッド(アノード電極)である。 Further, the micro LED 11a includes a pair of electrode portions 111 and 112 and an LED body portion 110, as shown in FIG. 3(a). The pair of electrode portions 111 and 112 is, for example, an electrode pad that enables electricity to flow from the circuit board to the micro LED 11a. The electrode portion 111 is an n-side electrode pad (cathode electrode), and the electrode portion 112 is a p-side electrode pad. (anode electrode).
 図3において、赤色のマイクロLED11aが基板S1の表面に形成されている場合について説明したが、後述するように、緑色のマイクロLED11b(図29参照)や青色のマイクロLED11c(図32参照)も使用する。以下の装置構成の説明では、3色のマイクロLEDのうち、主に、赤色のマイクロLED11aを代表して説明する。図3において、マイクロLED11aは、例えば、外形サイズが横(15~20μm)×縦(30~45μm)程度の範囲内で選択されたものであればよい。また、マイクロLED11aの厚みは、例えば5~20μm程度の範囲内で選択されたものであればよい。 In FIG. 3, the case where the red micro LED 11a is formed on the surface of the substrate S1 has been described, but as will be described later, a green micro LED 11b (see FIG. 29) and a blue micro LED 11c (see FIG. 32) are also used. do. In the following description of the device configuration, the red micro-LED 11a will be mainly described as a representative of the three-color micro-LEDs. In FIG. 3, the micro LED 11a may be selected within a range of, for example, width (15 to 20 μm)×length (30 to 45 μm). Also, the thickness of the micro LED 11a may be selected within a range of, for example, about 5 to 20 μm.
 図4は、第1の貼付装置部1の構成を示す説明図である。図4に示す第1の貼付装置部1は、詳細には、いわゆるロール・トゥ・ロール方式で搬送される第1の転写部材(UV剥離用テープ)T1を図3に示すマイクロLED11aが表面に形成されている基板S1(LEDウェハS11)に貼り付ける装置である。第1の貼付装置部1は、ステージ機構12、吸着ステージ13、加圧ローラ14、送出機構15、テープカッター16、ガイドローラ17、巻取り機構18、固定用のリング19及び第1の転写部材T1を備える。 FIG. 4 is an explanatory diagram showing the configuration of the first sticking device section 1. As shown in FIG. Specifically, the first sticking device section 1 shown in FIG. 4 includes a first transfer member (UV peeling tape) T1 conveyed by a so-called roll-to-roll method, and a micro LED 11a shown in FIG. This is an apparatus for attaching to the formed substrate S1 (LED wafer S11). The first pasting device section 1 includes a stage mechanism 12, a suction stage 13, a pressure roller 14, a delivery mechanism 15, a tape cutter 16, a guide roller 17, a winding mechanism 18, a fixing ring 19, and a first transfer member. T1 is provided.
 図5は、第1の転写部材T1の構成を示す概略断面図である。第1の転写部材T1は、紫外線照射前においては柔軟で粘着力が強く、紫外線照射後においては、硬化して粘着力が低下する特性を有するものである。第1の転写部材T1(以下、単に「転写部材T1」ということがある)は、下層から基材フィルムT11、粘着剤層T12の順番に設けられている。さらに、転写部材T1の上層には繰り返し貼り付けが可能な着脱式の保護フィルムF1が貼り付けられている。転写部材T1及び保護フィルムF1としては、例えば、ELP UB-3103AC(日東電工株式会社製)が用いられている。基材フィルムT11及び保護フィルムF1は、ポリエチレンテレフタレート(PET)で構成されている。この基材フィルムT11の厚みは約50μmである。 FIG. 5 is a schematic cross-sectional view showing the configuration of the first transfer member T1. The first transfer member T1 has characteristics such that it is flexible and has a strong adhesive force before being irradiated with ultraviolet rays, and is hardened after being irradiated with ultraviolet rays to reduce the adhesive force. The first transfer member T1 (hereinafter sometimes simply referred to as “transfer member T1”) is provided in the order of the base film T11 and the adhesive layer T12 from the bottom layer. Furthermore, a detachable protective film F1 that can be repeatedly attached is attached to the upper layer of the transfer member T1. As the transfer member T1 and protective film F1, for example, ELP UB-3103AC (manufactured by Nitto Denko Corporation) is used. The base film T11 and the protective film F1 are made of polyethylene terephthalate (PET). The thickness of this base film T11 is about 50 μm.
 粘着剤層T12は、アクリル系のポリマー、オリゴマー(比較的少数のモノマーが結合した重合体)等の成分を有するものである。この粘着剤層T12の厚みは約50μmである。なお、粘着剤層T12には、紫外線照射により光重合を開始させる光重合開始剤も含まれている。粘着剤層T12は、紫外線照射により粘着剤層T12の成分が光重合を引き起こし、粘着剤層T12の柔軟性が失われ、粘着力が低下することになる。 The adhesive layer T12 has components such as acrylic polymers and oligomers (polymers in which a relatively small number of monomers are bonded). The thickness of this adhesive layer T12 is about 50 μm. The adhesive layer T12 also contains a photopolymerization initiator that initiates photopolymerization by irradiation with ultraviolet rays. In the adhesive layer T12, the components of the adhesive layer T12 are photopolymerized by irradiation with ultraviolet rays, the flexibility of the adhesive layer T12 is lost, and the adhesive force is lowered.
 なお、光重合開始剤には、ラジカルを発生する光ラジカル重合開始剤や、酸を発生する光重合開始剤や、塩基を発生する光重合開始剤が知られている。光重合開始剤としては、紫外線に対する感度が高い光ラジカル重合開始剤を用いることが好ましい。酸素はラジカルを捕獲しやすいので、本発明の効果が高い。したがって、第1の転写部材T1は、光ラジカル重合開始剤を含む転写部材であることが好ましい。 As photopolymerization initiators, photoradical polymerization initiators that generate radicals, photopolymerization initiators that generate acids, and photopolymerization initiators that generate bases are known. As the photopolymerization initiator, it is preferable to use a photoradical polymerization initiator having high sensitivity to ultraviolet rays. Since oxygen easily captures radicals, the effect of the present invention is high. Therefore, the first transfer member T1 is preferably a transfer member containing a photoradical polymerization initiator.
 保護フィルムF1は、粘着剤層T12の保護用のラミネートフィルム(「セパレータ」ともいう)であって、使用時に第1の転写部材T1から剥離されるものである。この保護フィルムF1の厚みは約40μmである。 The protective film F1 is a laminate film (also referred to as a "separator") for protecting the adhesive layer T12, and is peeled off from the first transfer member T1 during use. The thickness of this protective film F1 is about 40 μm.
 図4に示す第1の貼付装置部1において、ステージ機構12は、吸着ステージ13を昇降させるものであり、吸着ステージ13は、固定用リング19の内側に載置されているLEDウェハS11を吸着して支持するものである。なお、説明の便宜上、固定用リング19の円環の内側が図面上で見えるようにするため、固定用リング19及びLEDウェハS11については端面図で描いている(以下、同様)。加圧ローラ14は、回転しながら一軸方向に移動することにより、転写部材T1をLEDウェハS11に加圧して貼り付けるものである。 In the first sticking device section 1 shown in FIG. 4, a stage mechanism 12 moves up and down a suction stage 13, and the suction stage 13 suctions an LED wafer S11 placed inside a fixing ring 19. and support it. For convenience of explanation, the fixing ring 19 and the LED wafer S11 are shown in end views so that the inside of the ring of the fixing ring 19 can be seen on the drawing (the same applies hereinafter). The pressure roller 14 moves in one axial direction while rotating to press the transfer member T1 onto the LED wafer S11 to adhere it.
 送出機構15は、ロール状に巻き取り可能な細長状の転写部材T1を順次送出するものである。具体的には、送出機構15は、転写部材T1を例えば、上記のロール・トゥ・ロール方式で一定方向に連続的又は断続的に搬送するものであって、第1送出ローラ15a、剥離ローラ15b、15c、テンションローラ15d、第1巻取りローラ15eを備える。なお、送出機構15には、搬送中の転写部材T1が位置ずれ、蛇行、撓み等の不具合が発生しないようにするための支持ローラ(図示省略)が複数設けられている。 The delivery mechanism 15 sequentially delivers an elongated transfer member T1 that can be wound into a roll. Specifically, the delivery mechanism 15 transports the transfer member T1 in a fixed direction continuously or intermittently, for example, by the roll-to-roll method described above. , 15c, a tension roller 15d, and a first take-up roller 15e. The delivery mechanism 15 is provided with a plurality of support rollers (not shown) for preventing the transfer member T1 from being misaligned, meandering, or bent while being conveyed.
 第1送出ローラ15aは、転写部材T1の搬送方向Dの手前側に設けられ、回転することにより、巻き取られている転写部材T1を送り出すものである。なお、転写部材T1において、粘着剤層T12上に保護フィルムF1が貼り付けられているのは、埃等の付着物の混入を防ぐためである。 The first delivery roller 15a is provided on the front side of the transfer member T1 in the transport direction D, and rotates to deliver the wound transfer member T1. In the transfer member T1, the reason why the protective film F1 is attached on the adhesive layer T12 is to prevent contamination such as dust.
 剥離ローラ15b、15cは、搬送方向Dに沿って搬送されて来る転写部材T1から保護フィルムF1を剥離するものである。この際、保護フィルムF1は、剥離ローラ15b、15cの回転作用により機械的に転写部材T1から剥離される。第1巻取りローラ15eは、第1テンションローラ15dを介して、剥離された保護フィルムF1を巻き取るものである。第1テンションローラ15dは、剥離された保護フィルムF1が緩まないようにするものである。なお、保護フィルムF1の先端が剥離ローラ15b、15cに巻き取られた場合、その保護フィルムF1の先端が第1テンションローラ15d及び第1巻取りローラ15eに巻き取られるようにする機構(図示省略)が設けられている。 The peeling rollers 15b and 15c peel off the protective film F1 from the transfer member T1 conveyed along the conveying direction D. At this time, the protective film F1 is mechanically separated from the transfer member T1 by the rotating action of the separation rollers 15b and 15c. The first take-up roller 15e takes up the peeled protective film F1 via the first tension roller 15d. The first tension roller 15d prevents loosening of the peeled protective film F1. In addition, when the leading edge of the protective film F1 is taken up by the peeling rollers 15b and 15c, a mechanism (not shown) that causes the leading edge of the protective film F1 to be taken up by the first tension roller 15d and the first take-up roller 15e. ) is provided.
 テープカッター16は、転写部材T1がLEDウェハS11に貼り付けられた後、転写部材T1を支持するための固定用リング19の周囲を切り込むものである。これにより、転写部材T1は、最終的に円周状に切り取られて、LEDウェハS11に貼り付けられるため、転写部材T1自体が途切れずに済む。巻取り機構18は、ガイドローラ17を通過した転写部材T1をロール状に巻き取るものである。 The tape cutter 16 cuts around the fixing ring 19 for supporting the transfer member T1 after the transfer member T1 is attached to the LED wafer S11. As a result, the transfer member T1 is finally cut out in a circular shape and attached to the LED wafer S11, so that the transfer member T1 itself is not interrupted. The winding mechanism 18 winds the transfer member T1 that has passed the guide roller 17 into a roll.
 以上より、第1の貼付装置部1は、いわゆるロール・トゥ・ロール方式で搬送される転写部材T1を途切れないようにカットして、LEDウェハS11における基板S1の表面に、そのカットした転写部材T1貼り付けることを特徴としている。 As described above, the first pasting device section 1 continuously cuts the transfer member T1 conveyed by a so-called roll-to-roll method, and attaches the cut transfer member to the surface of the substrate S1 of the LED wafer S11. It is characterized by attaching T1.
 次に、第1の転写装置部2について説明する。第1の転写装置部2は、上記基板S1から電子部品(例えば、マイクロLED11a)を、レーザリフトオフを介して剥離することにより、転写部材T1の一方の面に電子部品を転写するものである。第1の転写装置部2は、LLO(Laser Lift Off)部21及びウェハ剥離部22を備える。 Next, the first transfer device section 2 will be described. The first transfer device section 2 transfers electronic components (for example, micro LEDs 11a) from the substrate S1 to one surface of the transfer member T1 by peeling the electronic components (eg, micro LED 11a) from the substrate S1 via laser lift-off. The first transfer device section 2 includes an LLO (Laser Lift Off) section 21 and a wafer peeling section 22 .
 図6は、第1の転写装置部2におけるLLO部21の構成を示す説明図である。図7は、第1の転写装置部2におけるウェハ剥離部22の構成を示す説明図である。 FIG. 6 is an explanatory diagram showing the configuration of the LLO section 21 in the first transfer device section 2. As shown in FIG. FIG. 7 is an explanatory diagram showing the configuration of the wafer peeling section 22 in the first transfer device section 2. As shown in FIG.
 図6に示すLLO部21は、レーザリフトオフを行なう装置であって、支持部21a、レーザ装置21b、均一光学系21c、スリット21d、縮小光学系21e、レンズ21f、アライメントカメラ21g、21h及びステージ21iを備える。 The LLO unit 21 shown in FIG. 6 is a device that performs laser lift-off, and includes a support unit 21a, a laser device 21b, a uniform optical system 21c, a slit 21d, a reduction optical system 21e, a lens 21f, alignment cameras 21g and 21h, and a stage 21i. Prepare.
 支持部21aは、レーザ装置21b及び均一光学系21cを支持するものである。レーザ装置21bは、レーザ発振によるパルスのレーザ光Lを射出するものであって、レーザヘッドと、レーザ電源制御部とを備える。レーザ装置21bは、例えば、パルス幅をピコ秒レベルまで短パルス化したレーザであって、深紫外領域の波長である257nm、263nm、又は266nm(第4高調波)のYAG(Yttrium Aluminum Garnet)レーザを用いてレーザ光Lを射出する。ここで、レーザの加工エネルギーは、赤色のマイクロLED11aの場合には、250mJ/cmであり、緑色のマイクロLED11b、青色のマイクロLED11cの場合には、400mJ/cmとしている。ショット数は1ショットとしている。均一光学系21cは、主に、レーザビームを均一な強度分布にするものである。均一光学系21cには、図6において光路を変更するミラーMが設けられている。 The support portion 21a supports the laser device 21b and uniform optical system 21c. The laser device 21b emits a pulsed laser beam L by laser oscillation, and includes a laser head and a laser power supply controller. The laser device 21b is, for example, a laser whose pulse width is shortened to the picosecond level, and is a YAG (Yttrium Aluminum Garnet) laser with a wavelength in the deep ultraviolet region of 257 nm, 263 nm, or 266 nm (fourth harmonic). is used to emit laser light L. Here, the laser processing energy is 250 mJ/cm 2 for the red micro LED 11a, and 400 mJ/cm 2 for the green micro LED 11b and blue micro LED 11c. The number of shots is one shot. The uniform optical system 21c mainly makes the laser beam into a uniform intensity distribution. The uniform optical system 21c is provided with a mirror M for changing the optical path in FIG.
 レーザ光Lは、均一光学系21cを介して、スリット21dに入射する。スリット21dは、レーザビームを予め定めた形状にする投影マスクである。そして、スリット21dの透光領域を通過したレーザ光Lは、縮小光学系21eを介して、縮小投影されて基板S1の裏面の照射領域に導かれる。縮小光学系21eは、スリット21dを透過したレーザ光Lを、レンズ21fを介して基板S1の裏面の照射領域に縮小投影するものである。アライメントカメラ21g、21hは、ステージ21に載置されているLEDウェハS11の位置を調整ためのものである。 The laser light L enters the slit 21d through the uniform optical system 21c. The slit 21d is a projection mask that shapes the laser beam into a predetermined shape. Then, the laser light L that has passed through the light-transmitting region of the slit 21d is reduced and projected through the reduction optical system 21e and guided to the irradiation region on the back surface of the substrate S1. The reduction optical system 21e reduces and projects the laser light L that has passed through the slit 21d onto an irradiation area on the back surface of the substrate S1 via a lens 21f. Alignment cameras 21 g and 21 h are for adjusting the position of the LED wafer S 11 placed on the stage 21 .
 レーザリフトオフは、LEDウェハS11において、基板S1の表面に形成されたマイクロLED11aに対して、基板S1の裏面からパルス発振によるレーザ光Lを照射し、各々のマイクロLED11aを基板S1から剥離させる手段である。具体的には、レーザリフトオフでは、剥離させたい箇所の界面領域(例えば剥離層)にレーザ光Lをフォーカスして照射することによって、例えばアブレーションに伴って、界面領域でマイクロLED11aが基板S1から剥離される。なお、マイクロLED11aを基板S1から剥離させることは、見方によって、基板S1からマイクロLED11aを剥離させることと同義である。上記レーザリフトオフにおいて、剥離とは、完全に分離した状態だけでなく、剥がれやすい状態にすることが含まれる。 Laser lift-off is a means of exfoliating each micro LED 11a from the substrate S1 by irradiating the micro LEDs 11a formed on the front surface of the substrate S1 with a laser beam L generated by pulse oscillation from the back surface of the substrate S1 in the LED wafer S11. be. Specifically, in the laser lift-off, the micro LED 11a is peeled off from the substrate S1 in the interface region by, for example, ablation by focusing and irradiating the laser light L on the interface region (for example, the peeling layer) where the peeling is desired. be done. It should be noted that peeling the micro LED 11a from the substrate S1 is synonymous with peeling the micro LED 11a from the substrate S1. In the laser lift-off described above, peeling includes not only a completely separated state but also a state of being easily peeled off.
 ここで、図6では、説明の便宜上、第1の転写部材T1がマイクロLED11aを介してLEDウェハS11に貼り付いている状態を図示している。実際には、マイクロLED11aの厚みは上述したとおり、ミクロンオーダであるので、第1の転写部材T1は、全体視で、LEDウェハS11における基板S1にも貼り付いていることになる。 Here, for convenience of explanation, FIG. 6 shows a state in which the first transfer member T1 is attached to the LED wafer S11 via the micro LEDs 11a. Actually, as described above, the thickness of the micro LED 11a is on the order of microns, so that the first transfer member T1 is also attached to the substrate S1 of the LED wafer S11 in a general view.
 図7に示すウェハ剥離部22は、レーザリフトオフの処理後に、基板S1を取り除く装置であって、吸着ヘッド22a、吸着ステージ22b、突き上げステージ22cを備える。ウェハ剥離部22は、先ず、吸着ステージ22b上に載置されている転写部材T1に貼り付けられているLEDウェハS11を吸着ヘッド22aに接触させて吸着する。次に、ウェハ剥離部22では、突き上げステージ22cがLEDウェハS11を下から少し持ち上げながら、吸着ヘッド22aがそのLEDウェハS11を上昇させる。すると、基板S1からマイクロLED11aを剥離されて分離し、マイクロLED11aが転写部材T1に転写される。なお、詳細については、図20を用いて後述する。 The wafer peeling unit 22 shown in FIG. 7 is a device for removing the substrate S1 after the laser lift-off process, and includes a suction head 22a, a suction stage 22b, and a push-up stage 22c. The wafer peeling unit 22 first contacts and sucks the LED wafer S11 attached to the transfer member T1 placed on the suction stage 22b with the suction head 22a. Next, in the wafer peeling unit 22, the suction head 22a raises the LED wafer S11 while the thrust stage 22c slightly lifts the LED wafer S11 from below. Then, the micro LED 11a is peeled and separated from the substrate S1, and the micro LED 11a is transferred to the transfer member T1. Details will be described later with reference to FIG. 20 .
 したがって、本実施形態において、上記レーザリフトオフの処理は、照射エネルギー等の制御パラメータを調節して、マイクロLED11aを基板S1から剥がれやすくする剥離を行なうことを特徴としている。これは、LEDウェハS11からマイクロLED11aが転写部材T1に転写された後の使用済みの基板S1を回収しやすくするためである。ウェハ剥離部22では、使用済みの基板S1を回収ボックス(図示省略)に回収する。なお、各色のマイクロLEDが転写された転写部材T1を、説明の便宜上、第1のキャリアC1(図8参照)という。また、明細書中では、説明の便宜上、赤色のマイクロLED11aが転写された転写部材T1をC1(R)と記載し、緑色のマイクロLED11bが転写された転写部材T1をC1(G)と記載し、青色のマイクロLED11cが転写された転写部材T1をC1(B)と記載することがある。 Therefore, in the present embodiment, the laser lift-off process is characterized by adjusting the control parameters such as irradiation energy to perform peeling so that the micro LED 11a can be easily peeled off from the substrate S1. This is to facilitate collection of the used substrate S1 after the micro LEDs 11a have been transferred from the LED wafer S11 to the transfer member T1. In the wafer peeling unit 22, the used substrate S1 is collected in a collection box (not shown). For convenience of explanation, the transfer member T1 onto which the micro LEDs of each color are transferred is referred to as a first carrier C1 (see FIG. 8). Further, in the specification, for convenience of explanation, the transfer member T1 to which the red micro LED 11a is transferred is indicated as C1(R), and the transfer member T1 to which the green micro LED 11b is transferred is indicated as C1(G). , the transfer member T1 onto which the blue micro LEDs 11c are transferred may be referred to as C1(B).
 次に、紫外線照射装置部3について説明する。紫外線照射装置部3は、マイクロLED11a等の電子部品が転写された転写部材T1(第1のキャリアC1)に対して、酸素に対する暴露を防ぐ処理をした状態で紫外線を転写部材T1に照射して、該転写部材T1の粘着力を低下させる装置である。より、詳細には、紫外線照射装置部3は、転写部材T1に対して、不活性ガスの雰囲気下で、紫外線を転写部材T1に照射するものである。不活性ガスの雰囲気下とは、例えば、酸素ガスを不活性ガスでパージした状態を意味する。ここで、不活性ガスは、例えば窒素(N)ガスである。窒素ガスは、原子同士が三重結合を形成しており、非常に強固で反応性に乏しく、不活性ガスとして知られている。したがって、酸素ガスを窒素ガスでパージするのには、好適である。但し、アルゴンガス等の希ガス類元素も不活性ガスとして知られており、窒素ガスに限られず、アルゴンガス等の希ガス類元素を使用してもよい。 Next, the ultraviolet irradiation device section 3 will be described. The ultraviolet irradiation unit 3 irradiates the transfer member T1 (first carrier C1) onto which electronic components such as the micro LEDs 11a have been transferred with ultraviolet rays while the transfer member T1 (first carrier C1) is treated to prevent exposure to oxygen. , a device for reducing the adhesive force of the transfer member T1. More specifically, the ultraviolet irradiation device section 3 irradiates the transfer member T1 with ultraviolet rays in an inert gas atmosphere. The atmosphere of an inert gas means, for example, a state in which oxygen gas is purged with an inert gas. Here, the inert gas is nitrogen (N 2 ) gas, for example. Nitrogen gas is known as an inert gas because its atoms form triple bonds, which is very strong and has poor reactivity. Therefore, it is suitable for purging oxygen gas with nitrogen gas. However, rare gas elements such as argon gas are also known as inert gases, and the gas is not limited to nitrogen gas, and rare gas elements such as argon gas may be used.
 図8は、紫外線照射装置部の構成を示す説明図である。紫外線照射装置部3は、UV遮蔽室30、UV光源31、密閉ボックス32、入口バルブ33、流量計34、ガス供給管35、出口バルブ36、酸素濃度計37、ガス排出管38及びステージ39を備える。UV遮蔽室30は、紫外線を遮蔽する筐体である。UV光源31は、例えば、中心波長が365nmの紫外線を発光する水銀ランプである。但し、中心波長が365nmの紫外線を発光するUV-LEDでも良い。 FIG. 8 is an explanatory diagram showing the configuration of the ultraviolet irradiation device. The ultraviolet irradiation device section 3 includes a UV shielding chamber 30, a UV light source 31, a sealed box 32, an inlet valve 33, a flow meter 34, a gas supply pipe 35, an outlet valve 36, an oximeter 37, a gas discharge pipe 38 and a stage 39. Prepare. The UV shielding room 30 is a housing that shields ultraviolet rays. The UV light source 31 is, for example, a mercury lamp that emits ultraviolet light with a central wavelength of 365 nm. However, a UV-LED that emits ultraviolet light with a central wavelength of 365 nm may also be used.
 密閉ボックス32は、窒素ガスで空気中の酸素ガスをパージするためのチャンバーである。密閉ボックス32は、例えば、紫外線を透過させる石英ガラスの窓材32aと、マイクロLED11aが転写された転写部材T1(第1のキャリアC1)を搬入させるため扉32bが設けられている。入口バルブ33は、窒素ガスの供給を制御するものである。流量計34は、窒素ガスの流用を計測するものである。ガス供給管35は、窒素ボンベ(図示省略)から窒素ガスを供給する管である。出口バルブ36は、密閉ボックス32から排出ガスの排出を制御するものである。酸素濃度計37は、排出される酸素ガス濃度から、密閉ボックス32内の酸素ガスの濃度を検知するものである。ガス排出管38は、排出ガスを密閉ボックス32から外部に導く管である。ステージ39は、第1のキャリアC1を、紫外線照射装置部3に搬入又は搬出するために使用するものである。 The closed box 32 is a chamber for purging oxygen gas in the air with nitrogen gas. The sealed box 32 is provided with, for example, a window material 32a made of quartz glass that transmits ultraviolet rays, and a door 32b for carrying in the transfer member T1 (first carrier C1) onto which the micro LEDs 11a are transferred. The inlet valve 33 controls the supply of nitrogen gas. A flow meter 34 measures the diversion of nitrogen gas. The gas supply pipe 35 is a pipe for supplying nitrogen gas from a nitrogen cylinder (not shown). Outlet valve 36 controls the discharge of exhaust gas from closed box 32 . The oxygen concentration meter 37 detects the concentration of oxygen gas inside the closed box 32 from the concentration of the discharged oxygen gas. The gas exhaust pipe 38 is a pipe that guides exhaust gas from the closed box 32 to the outside. The stage 39 is used to carry the first carrier C<b>1 into or out of the ultraviolet irradiation device section 3 .
 次に、第2の貼付装置部4について説明する。第2の貼付装置部4は、電子部品の転写用の基板S2に、粘着力を低下させた第1の転写部材T1よりも粘着力が強い第2の転写部材T2を貼り付ける装置である。 Next, the second sticking device section 4 will be described. The second sticking device section 4 is a device for sticking a second transfer member T2 having a stronger adhesive force than the first transfer member T1 whose adhesive force is reduced to the electronic component transfer substrate S2.
 図9は、第2の貼付装置部4の構成を示す説明図である。図9に示す第2の貼付装置部4は、貼り合わせヘッド40、ステージ41、加圧ローラ42を備える。貼り合わせヘッド40には、動作開始の初期状態において、第2の転写部材T2が予め貼り付けられている。ステージ41は、基板S2を載置するものである。基板S2は、例えば、無アルカリガラス等のガラス基板である。基板S2を採用することにより、図32に示すキャリアC2(R,G,B)から回路基板への実装をする場合には、以下の利点を有する。すなわち、この実装では、半田、熱圧着等の加熱接合を行なう場合が多いため、回路基板(無アルカリガラスが多い)と同じ基材を用いることで、加熱時の熱膨張差を無くし、マイクロLEDと回路とのピッチズレを抑制することができる。加圧ローラ42は、第2の転写部材T2と基板S2とを貼り合わせた後に、転写部材T2を加圧して、第2の転写部材T2と基板S2との粘着を高めるものである。 FIG. 9 is an explanatory diagram showing the configuration of the second sticking device section 4. As shown in FIG. The second sticking device section 4 shown in FIG. 9 includes a sticking head 40 , a stage 41 and a pressure roller 42 . The second transfer member T2 is previously attached to the bonding head 40 in the initial state when the operation is started. The stage 41 is for mounting the substrate S2. The substrate S2 is, for example, a glass substrate such as alkali-free glass. By adopting the board S2, the following advantages are obtained when mounting from the carrier C2 (R, G, B) shown in FIG. 32 to the circuit board. In other words, in this mounting, heat bonding such as soldering or thermocompression is often used, so by using the same base material as the circuit board (mostly alkali-free glass), the difference in thermal expansion during heating is eliminated, and the micro LED and the circuit can be suppressed. The pressure roller 42 presses the transfer member T2 after bonding the second transfer member T2 and the substrate S2 together to increase adhesion between the second transfer member T2 and the substrate S2.
 図10は、第2の転写部材T2の概略断面図である。第2の転写部材T2(以下、単に「転写部材T2」ということがある)は、例えば粘着シートである。転写部材T2は、基材T21と、その基材T21の両面に各々積層された粘着剤層T22、T23とを備える。さらに、転写部材T2において、粘着剤層T22には、保護フィルムF2が貼り付けられている。また、粘着剤層T23には、保護フィルムF3が貼り付けられている。この転写部材T2と保護フィルムF2、F3としては、一例として、繰り返し使用可能な高耐熱粘着シート(京写株式会社製)を採用している。この転写部材T2の粘着力は、例えば1N/25mmである。 FIG. 10 is a schematic cross-sectional view of the second transfer member T2. The second transfer member T2 (hereinafter sometimes simply referred to as "transfer member T2") is, for example, an adhesive sheet. The transfer member T2 includes a substrate T21 and adhesive layers T22 and T23 laminated on both sides of the substrate T21. Furthermore, in the transfer member T2, a protective film F2 is attached to the adhesive layer T22. A protective film F3 is attached to the adhesive layer T23. For the transfer member T2 and the protective films F2 and F3, for example, a reusable highly heat-resistant adhesive sheet (manufactured by Kyosha Co., Ltd.) is used. The adhesive force of this transfer member T2 is, for example, 1 N/25 mm.
 基材T21は、合成樹脂フィルム等のシート材料を用いることができる。合成樹脂フィルムとしては、耐熱性の観点から例えばポリイミドフィルムであることが好ましい。粘着剤層T22、T23は、シリコーン系粘着樹脂で構成されている。保護フィルムF2、F3は、粘着剤層T12の保護用のラミネートフィルムであって、使用時に粘着剤層T22、T23から剥離されるものである。そのため、第2の転写部材T2は、保護フィルムF2、F3の何れか一方を剥がした場合には、片面粘着タイプのものとして機能し、保護フィルムF2、F3の両方を剥がすと、両面粘着タイプのものとして機能する。基材T21の膜厚は、例えば50μmであり、粘着剤層T22、T23の膜厚は、例えば75μmであり、保護フィルムF2、F3の膜厚は、数μm程度である。 A sheet material such as a synthetic resin film can be used for the base material T21. From the viewpoint of heat resistance, the synthetic resin film is preferably, for example, a polyimide film. The adhesive layers T22 and T23 are made of a silicone-based adhesive resin. The protective films F2 and F3 are laminated films for protecting the adhesive layer T12, and are peeled off from the adhesive layers T22 and T23 during use. Therefore, the second transfer member T2 functions as a single-sided adhesive type when one of the protective films F2 and F3 is removed, and functions as a double-sided adhesive type when both the protective films F2 and F3 are removed. function as a thing. The film thickness of the substrate T21 is, for example, 50 μm, the film thickness of the adhesive layers T22 and T23 is, for example, 75 μm, and the film thickness of the protective films F2 and F3 is approximately several μm.
 次に、第2の転写装置部5について説明する。第2の転写装置部5は、上記第1の転写部材T1と上記第2の転写部材T2とを貼り合わせて、粘着力の差を利用して電子部品(例えば、マイクロLED11a)を第1の転写部材T1から第2の転写部材T2に転写する装置である。第2の転写装置部5は、貼合せ部51及び転写部材剥離部52を備える。 Next, the second transfer device section 5 will be described. The second transfer device section 5 adheres the first transfer member T1 and the second transfer member T2 together, and uses the difference in adhesive strength to transfer the electronic component (for example, the micro LED 11a) to the first transfer member. It is a device for transferring from the transfer member T1 to the second transfer member T2. The second transfer device section 5 includes a bonding section 51 and a transfer member peeling section 52 .
 貼合せ部51は、マイクロLED11aが貼り付けられた転写部材T1(第1のキャリアC1)と転写部材T2とを精密に位置合わせをした後に貼り合わせる装置である。 The lamination unit 51 is a device for precisely aligning the transfer member T1 (first carrier C1) to which the micro LED 11a is adhered and the transfer member T2, and then laminating them together.
 図11は、貼合せ部51の構成を示す説明図である。貼合せ部51は、ステージ機構51a、吸着ステージ51b、第2のカメラ51c、支持ステージ51d、光学筐体51e、吸着ヘッド51f、第1のカメラ51g、反射ミラー51h、ズームレンズ51i、照明光源51j及び第3のカメラ51kを備える。 FIG. 11 is an explanatory diagram showing the configuration of the laminating section 51. FIG. The bonding unit 51 includes a stage mechanism 51a, a suction stage 51b, a second camera 51c, a support stage 51d, an optical housing 51e, a suction head 51f, a first camera 51g, a reflecting mirror 51h, a zoom lens 51i, and an illumination light source 51j. and a third camera 51k.
 ステージ機構51aの上には、第1のキャリアC1を吸着する吸着ステージ51bと、位置合わせ用の第2のカメラ51cが設けられている。また、ステージ機構51aの上方には、XYZ方向に移動が可能な支持ステージ51dが設けられている。支持ステージ51dは、光学筐体51eを支持する。光学筐体51eの下側には第2のキャリアC2を吸着する吸着ヘッド51f及びが位置合わせ用の第1のカメラ51gが設けられている。ここで、第2のキャリアC2は、基板S2の片面に転写部材T2が貼り付けられたものである。光学筐体51eの内部には、観察用の反射ミラー51hが設けられている。また、光学筐体51eの一方の側方には、ズームレンズ51i、照明光源51j、位置合わせの微調整用の第3のカメラ51kが設けられている。動作の詳細については、後述する。 A suction stage 51b for sucking the first carrier C1 and a second camera 51c for alignment are provided on the stage mechanism 51a. A support stage 51d that can move in the XYZ directions is provided above the stage mechanism 51a. The support stage 51d supports the optical housing 51e. A suction head 51f for sucking the second carrier C2 and a first camera 51g for positioning are provided on the lower side of the optical housing 51e. Here, the second carrier C2 is obtained by attaching the transfer member T2 to one side of the substrate S2. A reflection mirror 51h for observation is provided inside the optical housing 51e. A zoom lens 51i, an illumination light source 51j, and a third camera 51k for fine adjustment of alignment are provided on one side of the optical housing 51e. Details of the operation will be described later.
 図12は、転写部材剥離部52の構成を示す説明図である。転写部材剥離部52は、転写部材T1を剥離して回収する装置である。転写部材剥離部52は、ステージ機構52a、回収ステージ52b及び粘着ローラ52cを備える。 FIG. 12 is an explanatory diagram showing the configuration of the transfer member peeling section 52. As shown in FIG. The transfer member peeling unit 52 is a device for peeling and collecting the transfer member T1. The transfer member peeling section 52 includes a stage mechanism 52a, a recovery stage 52b, and an adhesive roller 52c.
 ステージ機構52aは、キャリアC2の基板S2側から吸着する吸着ステージ52dと、キャリアC1の固定用リング19を支持する支持台52eとを備える。転写部材剥離部52は、粘着ローラ52cを一軸方向に移動させることにより、キャリアC1の転写部材T1を粘着力の差で巻き取り、回収ステージ52bに回収するものである。 The stage mechanism 52a includes an adsorption stage 52d that adsorbs the carrier C2 from the substrate S2 side, and a support table 52e that supports the fixing ring 19 of the carrier C1. The transfer member peeling section 52 uniaxially moves the adhesive roller 52c to wind up the transfer member T1 of the carrier C1 due to the difference in adhesive strength, and recover it to the recovery stage 52b.
 次に、制御装置部6について説明する。制御装置部6は、第1の貼付装置部1、第1の転写装置部2、紫外線照射装置部3、第2の貼付装置部4及び第2の転写装置部5を制御する装置である。 Next, the control device section 6 will be explained. The control device section 6 is a device for controlling the first sticking device section 1 , the first transfer device section 2 , the ultraviolet irradiation device section 3 , the second sticking device section 4 and the second transfer device section 5 .
 図13は、図1に示す制御装置部6のハードウェア構成の一例を示すブロック図である。図13に示す制御装置部6は、制御用のコンピュータであって、プロセッサ6a、ストレージ6b、メモリ6c、入力装置6d、通信インターフェース6e、表示装置6f及びバス6gを備える。プロセッサ6a、ストレージ6b、メモリ6c、入力装置6d、通信インターフェース6e及び表示装置6fは、バス6gを介して、互いに接続されている。なお、制御装置部6は、第1の貼付装置部1、第1の転写装置部2、紫外線照射装置部3、第2の貼付装置部4及び第2の転写装置部5に例えば動作内容の指示を示す制御信号を送信するため、制御装置部6と各々の装置部1~5とは、無線又は有線の通信回線により接続されている。また、制御装置部6は、各々の装置部1~5の実行順序を統括的に制御する。 FIG. 13 is a block diagram showing an example of the hardware configuration of the control device section 6 shown in FIG. The control device section 6 shown in FIG. 13 is a computer for control, and includes a processor 6a, a storage 6b, a memory 6c, an input device 6d, a communication interface 6e, a display device 6f, and a bus 6g. The processor 6a, storage 6b, memory 6c, input device 6d, communication interface 6e and display device 6f are interconnected via a bus 6g. Note that the control device section 6 instructs the first sticking device section 1, the first transfer device section 2, the ultraviolet irradiation device section 3, the second sticking device section 4, and the second transfer device section 5 to operate, for example, In order to transmit control signals indicating instructions, the control unit 6 and each of the device units 1 to 5 are connected by wireless or wired communication lines. In addition, the control device section 6 comprehensively controls the execution order of the respective device sections 1-5.
 プロセッサ6aは、制御装置部6の制御を実行するものである。また、ストレージ6bは、例えば、HDD(Hard Disk Drive)やフラッシュメモリ等の記憶装置であり、プログラムや各種データが格納される。 The processor 6a executes control of the control device section 6. The storage 6b is, for example, a storage device such as an HDD (Hard Disk Drive) or flash memory, and stores programs and various data.
 メモリ6cは、RAM(Random Access Memory)等の記憶装置であり、例えば、プロセッサ6aで実行されるプログラムがロードされる。入力装置6dは、例えば、キーボード方式又はタッチパネル方式の入力デバイスである。通信インターフェース6eは、例えば、データ通信を行なうための通信インターフェースを具備する。表示装置6fは、例えば、液晶モニタであって、プロセッサ6aの指示に応じて、操作用のメニュー画面や出力結果を表示する。 The memory 6c is a storage device such as a RAM (Random Access Memory), and is loaded with, for example, programs to be executed by the processor 6a. The input device 6d is, for example, a keyboard type or touch panel type input device. The communication interface 6e has, for example, a communication interface for data communication. The display device 6f is, for example, a liquid crystal monitor, and displays an operation menu screen and output results in accordance with instructions from the processor 6a.
 また、制御装置部6は、プロセッサ6a、ストレージ6b及びメモリ6c等のハードウェアと、プログラムとが協働することにより、各種機能を実現する。このプログラムには、本発明による転写方法を実現するための制御プログラム(転写プログラム)が含まれる。 In addition, the control device section 6 realizes various functions through cooperation between hardware such as the processor 6a, storage 6b, and memory 6c, and programs. This program includes a control program (transcription program) for realizing the transcription method according to the present invention.
 上記転写方法によれば、制御装置部6は、例えば、予め定められた順序に従って、R、G、Bの各色毎にマイクロLEDが転写された第1の転写部材T1を用いて、フルカラー表示に対応した配列パターンになるように、各色のマイクロLEDを1つの第2の転写部材T2に順番に転写させることが可能となる。これにより、各色のマイクロLEDの転写時の歩留りを向上させることができる。詳細については、後述する。 According to the above-described transfer method, the control device section 6 uses the first transfer member T1 to which the micro LEDs are transferred for each of the colors R, G, and B according to a predetermined order, for example, to achieve full-color display. It is possible to sequentially transfer the micro LEDs of each color to one second transfer member T2 so as to form a corresponding arrangement pattern. As a result, the yield at the time of transferring the micro LEDs of each color can be improved. Details will be described later.
 次に、このように構成された転写装置を使用して実行される、本発明による転写方法について説明する。ここで、本実施形態では、本発明による転写装置の動作と、各装置間のワークの受け渡しや搬送等とを自動化して、本発明による転写方法を実現する。ここで、ワークとは、光透過性基板S1、LEDウェハS11、第1の転写部材T1、第2の転写部材T2、第1のキャリアC1、第2のキャリアC2等の加工対象物である。 Next, the transfer method according to the present invention, which is executed using the transfer device configured in this way, will be described. Here, in this embodiment, the transfer method according to the present invention is realized by automating the operation of the transfer apparatus according to the present invention and the transfer and transfer of works between the respective apparatuses. Here, the work is an object to be processed such as the light transmissive substrate S1, the LED wafer S11, the first transfer member T1, the second transfer member T2, the first carrier C1 and the second carrier C2.
 図14は、図1に示す転写装置の制御装置部6による制御を示す説明図である。制御装置部6は、制御手段7を介して、第1の貼付装置部1、第1の転写装置部2、紫外線照射装置部3、第2の貼付装置部4、第2の転写装置部5における装置間のワークの受け渡しや搬送の処理を制御する。 FIG. 14 is an explanatory diagram showing control by the control device section 6 of the transfer device shown in FIG. The control device section 6 operates the first sticking device section 1 , the first transfer device section 2 , the ultraviolet irradiation device section 3 , the second sticking device section 4 , the second transfer device section 5 through the control means 7 . Controls the transfer and transfer of workpieces between devices in
 制御手段7は、例えばワークの受け渡し等の処理を可能とするロボットアームを1つ以上有する制御装置であって、制御ライン8を移動することにより、上記各部1~5の装置間のワークの受け渡しや搬送の処理を実行する。なお、制御手段7において、ワークの受け渡しや搬送の処理は、公知技術であるので、その詳細説明は省略する。 The control means 7 is, for example, a control device having one or more robot arms capable of processing such as delivery of workpieces. and carry out processing. In addition, in the control means 7, the process of transferring and transporting the work is a well-known technology, so detailed description thereof will be omitted.
 図15は、本発明による転写方法の一実施形態を示す流れ図である。図16は、本発明による転写方法の一実施形態の工程を加工対象物の平面図の変化で示す説明図である。図17は、本発明による転写方法の一実施形態の工程を加工対象物の端面図の変化で示す説明図である。 FIG. 15 is a flow chart showing one embodiment of the transfer method according to the present invention. 16A and 16B are explanatory diagrams showing the steps of an embodiment of the transfer method according to the present invention by changing the plan view of the object to be processed. 17A and 17B are explanatory diagrams showing the steps of an embodiment of the transfer method according to the present invention by changing the end view of the object to be processed.
 加工対象物の平面図及び端面図の変化に関し、詳細には、図16(a)、図17(a)は、第1の転写部材の貼り付け(工程S1)における説明図である。図16(b)、(c)、図17(b)、(c)は、第1の転写(工程S2)における説明図である。図16(d)、図17(d)は、紫外線照射(工程S3)における説明図である。図16(e)、図17(e)は、第2の転写部材の貼り付け(工程S5)における説明図である。図16(f)、(g)、図17(f)、(g)は、第2の転写(工程S6)における説明図である。以下、本発明による転写方法の一実施形態について、図16、図17を適宜参照しながら、他の図面とも併せて詳細に説明をする。 Regarding the changes in the plan view and the end view of the object to be processed, in detail, FIGS. 16(a) and 17(a) are explanatory diagrams in attaching the first transfer member (step S1). FIGS. 16B, 16C, 17B, and 17C are explanatory diagrams of the first transfer (step S2). FIG. 16(d) and FIG. 17(d) are explanatory diagrams of ultraviolet irradiation (step S3). FIGS. 16(e) and 17(e) are explanatory diagrams of the attachment of the second transfer member (step S5). FIGS. 16F, 16G, 17F, and 17G are explanatory diagrams of the second transfer (step S6). Hereinafter, an embodiment of the transfer method according to the present invention will be described in detail with reference to FIGS. 16 and 17 as well as other drawings.
 先ず、図1に示す転写装置の各部1~6の電源がオンされると、各部が初期状態に移行する。制御装置部6は、入力装置6dを介して本発明による転写方法の動作開始を示す指示入力を受け付ける。すると、制御装置部6は、この転写方法を実行するための制御プログラムに基づいて、各部1~5の実行順序を制御し、先ず、第1の貼付装置部1に動作の開始を指示する。第1の貼付装置部1は、動作を開始する。 First, when each unit 1 to 6 of the transfer device shown in FIG. 1 is powered on, each unit shifts to its initial state. The control device section 6 receives an instruction input for starting the operation of the transfer method according to the present invention via the input device 6d. Then, the control device section 6 controls the execution order of the respective sections 1 to 5 based on the control program for executing this transfer method, and first instructs the first pasting device section 1 to start operation. The 1st sticking apparatus part 1 starts operation|movement.
 なお、本実施形態では、先ず、赤色のマイクロLED11aを表面に有するLEDウェハS11を第1の貼付装置部1の吸着ステージ13に載置した後、工程S1を実行し、さらに工程S2~S3を実行することにより、赤色のマイクロLED11aが転写され、紫外線照射された後の転写部材T1を作成する。さらに、本実施形態では、緑色のマイクロLED11bを表面に有するLEDウェハS11、青色のマイクロLED11cを表面に有するLEDウェハS11についても同様の処理を順番に行なうようにしている。 In this embodiment, first, the LED wafer S11 having the red micro LEDs 11a on its surface is placed on the suction stage 13 of the first attaching device section 1, and then step S1 is performed, and then steps S2 to S3 are performed. By executing this, the red micro LED 11a is transferred to create a transfer member T1 after being irradiated with ultraviolet rays. Furthermore, in this embodiment, the LED wafer S11 having the green micro-LEDs 11b on the surface and the LED wafer S11 having the blue micro-LEDs 11c on the surface are sequentially subjected to the same process.
 図18は、第1の貼付装置部1の動作を側面視で示す説明図である。但し、加工対象物については、説明をわかりやすくするため、上記のとおり、端面図で描いている。図19は、第1の貼付装置部1の動作を平面視で示す説明図である。図19においては、説明の便宜上、第1の貼付装置部1の構成要素の図示を一部省略している。なお、予め作成された各色毎のLEDウェハS11は、例えば、収納ボックス(図示省略)に各々収納されている。第1の転写部材の貼り付け(工程S1)では、例えばロボットアームを用いて、トレイ10(図19(a)参照)を第1の貼付装置部1の吸着ステージ13上に搬入する処理を行なう。トレイ10には、1回目の工程S1を実行した場合には、赤色のマイクロLED11aを表面に有するLEDウェハS11と、そのLEDウェハS11の周囲を、空間を隔てて囲む固定用リング19とが載置されている。第1の貼付装置部1では、先ず、この搬入されたLEDウェハS11を位置決めすると、ステージ機構12は、吸着ステージ13を上昇させて、LEDウェハS11及び固定用リング19を転写部材T1と当接させる。図18(a)は、LEDウェハS11及び固定用リング19を転写部材T1と当接させた状態を例示している。図19(a)は、トレイ10が第1の貼付装置部1に搬入される直前の状態を示している。 FIG. 18 is an explanatory diagram showing the operation of the first sticking device section 1 in a side view. However, the object to be processed is drawn as an end view, as described above, in order to make the explanation easier to understand. FIG. 19 is an explanatory diagram showing the operation of the first sticking device section 1 in plan view. In FIG. 19, the illustration of the constituent elements of the first sticking device section 1 is partially omitted for convenience of explanation. Note that the LED wafers S11 for each color, which are prepared in advance, are stored in, for example, storage boxes (not shown). In attaching the first transfer member (step S1), for example, a robot arm is used to carry the tray 10 (see FIG. 19A) onto the suction stage 13 of the first attaching device section 1. . On the tray 10, when the first step S1 is performed, an LED wafer S11 having a red micro LED 11a on its surface and a fixing ring 19 surrounding the LED wafer S11 with a space therebetween are mounted. are placed. In the first pasting device section 1, first, when the loaded LED wafer S11 is positioned, the stage mechanism 12 raises the suction stage 13 to bring the LED wafer S11 and the fixing ring 19 into contact with the transfer member T1. Let FIG. 18(a) illustrates a state in which the LED wafer S11 and the fixing ring 19 are brought into contact with the transfer member T1. 19(a) shows the state immediately before the tray 10 is carried into the first sticking device section 1. FIG.
 次に、第1の貼付装置部1は、加圧ローラ14を回転させながら一軸方向に移動させる。図18(b)、図19(b)は、加圧ローラ14の移動後の状態を示している。これにより、転写部材T1がLEDウェハS11に貼り付けられる。続いて、第1の貼付装置部1は、テープカッター16を下降させて、固定用リング19の周囲の転写部材T1を切り込む。図18(c)は、テープカッター16が転写部材T1を切り込む状態を示している。図19(c)は、テープカッター16が、転写部材T1を切り込んだ後の状態を示している。図19(c)において、円周状の黒の実線が転写部材T1をカットした箇所を示している。これにより、転写部材T1自体が途切れずに済む。 Next, the first pasting device section 1 moves the pressure roller 14 in one axial direction while rotating it. 18(b) and 19(b) show the state after the pressure roller 14 has been moved. Thereby, the transfer member T1 is attached to the LED wafer S11. Subsequently, the first sticking device section 1 lowers the tape cutter 16 to cut the transfer member T1 around the fixing ring 19 . FIG. 18(c) shows a state in which the tape cutter 16 cuts the transfer member T1. FIG. 19(c) shows a state after the tape cutter 16 cuts the transfer member T1. In FIG. 19(c), the circular solid black line indicates the cut portion of the transfer member T1. As a result, the transfer member T1 itself is not interrupted.
 続いて、第1の貼付装置部1は、テープカッター16を元の位置に戻し、吸着ステージ13を下降させる。図18(d)は、第1の貼付装置部1の処理の終了状態を示している。図19(d)は、転写部材T1が貼り付けられたLEDウェハS11を載置したトレイ10の取り出しを示している。そして、このトレイ10は、制御装置部6の命令により、制御手段7のロボットアームを介して第1の転写装置部2のLLO部21に搬送される。上記図16(a)は、第1の転写部材の貼り付け(工程S1)により、転写部材T1が貼り付けられたLEDウェハS11の平面図を示している。また、上記図17(a)は、そのLEDウェハS11のB-B線端面図(図17において、以下、単に「端面図」という)を示している。 Subsequently, the first pasting device section 1 returns the tape cutter 16 to its original position, and lowers the suction stage 13 . FIG. 18(d) shows the end state of the processing of the first sticking device section 1. FIG. FIG. 19(d) shows removal of the tray 10 on which the LED wafer S11 with the transfer member T1 attached is placed. Then, this tray 10 is conveyed to the LLO section 21 of the first transfer device section 2 via the robot arm of the control means 7 according to a command from the control device section 6 . FIG. 16(a) shows a plan view of the LED wafer S11 to which the transfer member T1 is attached by attaching the first transfer member (step S1). Further, FIG. 17(a) shows an end view of the LED wafer S11 taken along line BB (hereinafter simply referred to as "end view" in FIG. 17).
 次に、第1の転写(工程S2)では、LLO部21がレーザリフトオフを行なう。この場合、LEDウェハS11の裏面からレーザ光を照射するため、ロボットアームにより、転写部材T1が貼り付けられたLEDウェハS11が反転された後に図6に示すLLO部21のステージ21iに載置される。LLO部21は、アライメントカメラ21g、21hにより、LEDウェハS11の位置合わせをした後、レーザリフトオフを行なう。上記図16(b)、図17(b)は、レーザリフトオフによるレーザ照射を行なっている状態下での転写部材T1が貼り付けられたLEDウェハS11の平面図及び端面図を示している。そして、転写部材T1に貼り付けられているLEDウェハS11は、ウェハ剥離部22に搬送される。 Next, in the first transfer (step S2), the LLO section 21 performs laser lift-off. In this case, since the LED wafer S11 is irradiated with laser light from the rear surface thereof, the robot arm reverses the LED wafer S11 to which the transfer member T1 is attached and then places it on the stage 21i of the LLO section 21 shown in FIG. be. After aligning the LED wafer S11 with the alignment cameras 21g and 21h, the LLO unit 21 performs laser lift-off. 16(b) and 17(b) show a plan view and an end view of the LED wafer S11 to which the transfer member T1 is adhered under the laser irradiation by laser lift-off. Then, the LED wafer S<b>11 attached to the transfer member T<b>1 is transported to the wafer peeling section 22 .
 次に、第1の転写(工程S2)では、図7に示す転写部材T1に貼り付けられているLEDウェハS11をウェハ剥離部22の吸着ステージ22bに載置する。 Next, in the first transfer (step S2), the LED wafer S11 attached to the transfer member T1 shown in FIG.
 図20は、ウェハ剥離部22の動作を示す説明図である。図20(a)は、LEDウェハS11の剥離前の状態を示し、(b)は、LEDウェハS11の剥離を実行している状態を示し、(c)は、LEDウェハS11の剥離後の状態を示している。第1の転写(工程S2)において、ウェハ剥離部22は、先ず、吸着ヘッド22aを下降させてLEDウェハS11の裏面を吸着する(図20(a)参照)。 20A and 20B are explanatory diagrams showing the operation of the wafer peeling section 22. FIG. 20(a) shows the state before peeling of the LED wafer S11, (b) shows the state in which the LED wafer S11 is being peeled, and (c) shows the state after the LED wafer S11 is peeled. is shown. In the first transfer (step S2), the wafer peeling unit 22 first lowers the suction head 22a to suck the back surface of the LED wafer S11 (see FIG. 20(a)).
 続いて、ウェハ剥離部22は、突き上げステージ22cを斜め方向に傾かせることにより、LEDウェハS11の一端を下から持ち上げながら吸着ヘッド22aでそのLEDウェハS11を上昇させる。このようにして、LEDウェハS11を下から突き上げるのは、LEDウェハS11の一端を転写部材T1から少しだけ浮かせることを目的としている。すなわち、先ず、LEDウェハS11の一端から剥がすためである。 Subsequently, the wafer peeling unit 22 tilts the push-up stage 22c in an oblique direction to lift one end of the LED wafer S11 from below while lifting the LED wafer S11 with the suction head 22a. The purpose of pushing up the LED wafer S11 from below in this manner is to slightly lift one end of the LED wafer S11 from the transfer member T1. That is, first, the LED wafer S11 is peeled off from one end.
 このLEDウェハS11の一端の剥がれをきっかけにして、LEDウェハS11を上部に持ち上げて剥離するのは、できるだけ剥がす力が少なくなるようにするためである。このようにすると、LEDウェハS11の一端の剥がれを起点として、LEDウェハS11は転写部材T1から徐々に剥がれていくことになる。そのため、ウェハ剥離部22は、このような剥がし方をするために、LEDウェハS11を垂直ではなく斜めに持ち上げることを特徴としている。 The reason why the peeling off of one end of the LED wafer S11 is used as a trigger to lift the LED wafer S11 upward for peeling is to reduce the peeling force as much as possible. In this way, the LED wafer S11 is gradually peeled off from the transfer member T1, starting from the peeling of one end of the LED wafer S11. Therefore, the wafer peeling unit 22 is characterized by lifting the LED wafer S11 obliquely instead of vertically for such peeling.
 つまり、ウェハ剥離部22は、突き上げステージ22cを用いることにより、容易に基板S1を剥離(分離)させ、転写部材T2の一方の面にマイクロLED11aを転写させることができる(図20(c)参照)。これにより、転写部材T2の一方の面にマイクロLED11a及び固定用のリング19が転写されている第1のキャリアC1が作成される。そして、この第1のキャリアC1は、制御装置部6の命令により、制御手段7により、紫外線照射装置部3に搬送される。 That is, the wafer peeling section 22 can easily peel (separate) the substrate S1 by using the push-up stage 22c and transfer the micro LEDs 11a onto one surface of the transfer member T2 (see FIG. 20(c). ). As a result, the first carrier C1 having the micro LED 11a and the fixing ring 19 transferred to one surface of the transfer member T2 is produced. Then, the first carrier C1 is conveyed to the ultraviolet irradiation device section 3 by the control means 7 according to the command from the control device section 6 .
 次に、紫外線照射(工程S3)では、酸素に対する暴露を防ぐ処理した状態で紫外線を転写部材T1に照射して、該転写部材T1の粘着力を低下させる処理を行なう。 Next, in the ultraviolet irradiation (step S3), the transfer member T1 is irradiated with ultraviolet rays in a state of being treated to prevent exposure to oxygen, thereby reducing the adhesion of the transfer member T1.
 図21は、図15に示す紫外線照射工程の詳細な流れ図(サブルーチン)である。図22は、紫外線照射装置部3の動作を示す説明図である。工程S31では、第1のキャリアC1の設置を行なう。具体的には、工程S31では、第1のキャリアC1を載置したトレイ10を紫外線照射装置部3の密閉ボックス32の内部に設置する処理を行なう。この場合、紫外線照射装置部3の扉32bが開き、第1のキャリアC1が搬入される。図22(a)は、第1のキャリアC1が搬入される様子を示している。 FIG. 21 is a detailed flowchart (subroutine) of the ultraviolet irradiation process shown in FIG. FIG. 22 is an explanatory diagram showing the operation of the ultraviolet irradiation device section 3. As shown in FIG. In step S31, the first carrier C1 is installed. Specifically, in step S31, a process of installing the tray 10 on which the first carrier C1 is placed inside the sealed box 32 of the ultraviolet irradiation device section 3 is performed. In this case, the door 32b of the ultraviolet irradiation device section 3 is opened, and the first carrier C1 is loaded. FIG. 22(a) shows how the first carrier C1 is loaded.
 工程S32では、密閉ボックス内へキャリアを収納して、扉32bを閉じる。工程S33では、入口バルブ33を開けて窒素ガスを流入させ、出口バルブ36も開けて排気側も解放する。工程S34では、酸素濃度が0.5%未満になるまで、酸素濃度計37で酸素濃度を測定する。酸素濃度が0.5%未満になると、工程S35では、窒素ガスの雰囲気下で紫外線照射を開始する。図16(d)、図17(d)は、紫外線UVを転写部材T1に照射している状態での第1のキャリアC1の平面図及び端面図を示している。 In step S32, the carrier is housed in the sealed box and the door 32b is closed. In step S33, the inlet valve 33 is opened to allow nitrogen gas to flow in, and the outlet valve 36 is also opened to release the exhaust side. In step S34, the oxygen concentration is measured by the oxygen concentration meter 37 until the oxygen concentration becomes less than 0.5%. When the oxygen concentration becomes less than 0.5%, in step S35, ultraviolet irradiation is started under a nitrogen gas atmosphere. FIG. 16(d) and FIG. 17(d) show a plan view and an end view of the first carrier C1 while the transfer member T1 is being irradiated with ultraviolet rays UV.
 紫外線照射装置部3では、第1の転写部材T1の粘着力を低下させるために、紫外線UVを転写部材T1に照射すると、粘着剤層T12において光重合による紫外線硬化反応が起きる。紫外線硬化反応では、光重合開始剤の存在下、先ず、光重合開始剤が紫外線照射によりラジカル(不対電子を持つ化学種)になる。続いて、そのラジカルは、粘着剤層T12の成分として重合性基を有するポリマー、オリゴマーに反応し活性化される。そして、これらのポリマー、オリゴマー同士が連鎖的に結合することにより、その粘着剤層T12が硬化することになる。これにより、第1の転写部材T1の粘着力は低下する。 In the ultraviolet irradiation device section 3, when the transfer member T1 is irradiated with ultraviolet rays UV in order to reduce the adhesive strength of the first transfer member T1, an ultraviolet curing reaction by photopolymerization occurs in the adhesive layer T12. In the UV curing reaction, in the presence of a photopolymerization initiator, the photopolymerization initiator is first converted into radicals (chemical species having unpaired electrons) by UV irradiation. Subsequently, the radical reacts with a polymer or oligomer having a polymerizable group as a component of the pressure-sensitive adhesive layer T12 and is activated. Then, the adhesive layer T12 is cured by chain-bonding these polymers and oligomers. As a result, the adhesive strength of the first transfer member T1 is reduced.
 工程S35では、例えば、中心波長が365nmの紫外線を第1の転写部材T1に照射する。最適な紫外線の照射条件は、使用するUV剥離用のテープやUVランプの種類等によって異なる。UV照射量は、積算光量として求められる値であって、積算光量(mJ/cm)=照度(mW/cm)×照射時間(sec)によって算出される。ここで、単位の換算として、1(mW・h/cm)=3600(mJ/cm)の関係を有している。本実施形態では、実験から最適な紫外線の照射条件を求め、例えば、積算光量を700(mJ/cm)としている。 In step S35, for example, the first transfer member T1 is irradiated with ultraviolet rays having a center wavelength of 365 nm. Optimal ultraviolet irradiation conditions vary depending on the type of UV stripping tape and UV lamp used. The UV irradiation amount is a value obtained as an integrated amount of light, and is calculated by the following formula: integrated amount of light (mJ/cm 2 )=illuminance (mW/cm 2 )×irradiation time (sec). Here, in terms of unit conversion, there is a relationship of 1 (mW·h/cm 2 )=3600 (mJ/cm 2 ). In the present embodiment, the optimum ultraviolet irradiation conditions are obtained from experiments, and the integrated light intensity is set to 700 (mJ/cm 2 ), for example.
 本実施形態では、紫外線照射の効果を確かめるため、予め、いわゆる180度剥離試験を行なっている。180度剥離試験に関しては、日本工業規格に定められた試験方法(JIS規格(JIS Z 0237))に基づいている。そして、この試験方法では、引張試験スタンド(MX-500N(IMADA製))と、フォースゲージ(ZTA-50N(IMADA製))とを使用した。そして、試験条件として、(1)UV剥離用テープとして第1の転写部材T1(型番:UB3103AC)、(2)被着体としてコーニング社製ガラス基板(型番:EagleXG)、(3)試験形態として180度剥離試験、(4)テープ幅25mm、(5)剥離速度5mm/sec、(6)剥離区間30mmの条件で、引張試験スタンドにフォースゲージを取り付け、被着体に貼った第1の転写部材T1の180度剥離試験を行なった。その結果、第1の転写部材T1の粘着力は、紫外線照射により、15(N/25mm)から0.1(N/25mm)まで低下した。 In this embodiment, a so-called 180-degree peel test is performed in advance in order to confirm the effect of ultraviolet irradiation. The 180-degree peel test is based on the test method specified in Japanese Industrial Standards (JIS standard (JIS Z 0237)). In this test method, a tensile test stand (MX-500N (manufactured by IMADA)) and a force gauge (ZTA-50N (manufactured by IMADA)) were used. Then, as test conditions, (1) a first transfer member T1 (model number: UB3103AC) as a UV peeling tape, (2) a glass substrate manufactured by Corning (model number: EagleXG) as an adherend, and (3) as a test mode 180 degree peel test, (4) tape width 25 mm, (5) peel speed 5 mm / sec, (6) peel section 30 mm, a force gauge attached to the tensile test stand, attached to the adherend First transfer A 180-degree peel test was performed on the member T1. As a result, the adhesive strength of the first transfer member T1 decreased from 15 (N/25 mm) to 0.1 (N/25 mm) due to the ultraviolet irradiation.
 ここで、第1の転写部材T1の窒素ガスによるパージを行なわずに紫外線UVを照射した場合、空気中の酸素が、紫外線硬化反応を引き起こしている粘着剤層T12内のラジカルを失活させる作用を及ぼすため、光重合が阻害されることになる。光重合が阻害されると粘着力の低下が抑制されるので、後述する第2の転写(工程S6)で、例えば、全てのマイクロLED11aが転写されず、一部のマイクロLED11aが基板2に残存することが起こる。これが、歩留りが低くなることに繋がる。つまり、マイクロLED11aが転写部材T2に転写される転写率が悪くなることを意味する。本実施形態では、酸素に対する暴露を防ぐ処理として、窒素ガスパージにより、粘着剤層T12への酸素の侵入を遮断するので、光重合が阻害されることを防いでいる。 Here, when the ultraviolet UV is irradiated without purging the first transfer member T1 with nitrogen gas, the oxygen in the air acts to deactivate the radicals in the adhesive layer T12 that cause the ultraviolet curing reaction. and photopolymerization is inhibited. If the photopolymerization is inhibited, the decrease in adhesive strength is suppressed, so in the second transfer (step S6) described later, for example, all the micro LEDs 11a are not transferred, and some of the micro LEDs 11a remain on the substrate 2. to happen. This leads to a low yield. In other words, it means that the transfer rate at which the micro LEDs 11a are transferred to the transfer member T2 is degraded. In the present embodiment, nitrogen gas purging is performed as a treatment to prevent exposure to oxygen, which blocks oxygen from entering the pressure-sensitive adhesive layer T12, thereby preventing inhibition of photopolymerization.
 したがって、本実施形態では、転写率が100%若しくはそれに近い転写率を達成することが可能になる。これにより、マイクロLEDディスプレイの製造工程において、回路基板へのマイクロLEDの実装不良を抑制し、転写率が100%の場合には修復する工程を未然に防ぐことが可能となる。 Therefore, in this embodiment, it is possible to achieve a transfer rate of 100% or a transfer rate close to it. As a result, in the manufacturing process of the micro LED display, it is possible to suppress defective mounting of the micro LED on the circuit board, and to prevent the process of repairing in the case where the transfer rate is 100%.
 次に、工程S36では、紫外線照射を終了し、入口バルブ33を閉じて窒素ガスの流入を停止する。工程S37では、密閉ボックス32から紫外線照射後の第1のキャリアC1を搬出する。そして、図21に示す処理を終了し、図15に示す流れ図の処理に戻り、工程S4に移行する。 Next, in step S36, ultraviolet irradiation is terminated, and the inlet valve 33 is closed to stop the inflow of nitrogen gas. In step S<b>37 , the first carrier C<b>1 that has been irradiated with ultraviolet light is unloaded from the sealed box 32 . Then, the process shown in FIG. 21 is terminated, the process returns to the process of the flowchart shown in FIG. 15, and the process proceeds to step S4.
 工程S4では、各色毎にマイクロLEDを個別に第1の転写部材T1に転写したか否かを判定する。本実施形態では、赤色のマイクロLED11a、緑色のマイクロLED11b、青色のマイクロLED11cを個別に転写部材T1に転写するので、各色別に3枚の第1のキャリアC1(以下、単に「キャリアC1」ということがある)が作成されることになる。赤色のマイクロLED11aが転写された転写部材T1からなるキャリアC1(R)が作成された場合、工程S4の判定は、No判定になる。この場合、キャリアC1(R)が第2の転写装置部5の貼合せ部51に搬送された後、次に、緑色のマイクロLED11bを転写部材T1に転写するため、図15に示す工程S1~S3の処理が繰り返される。なお、本実施形態では、キャリアC1(R)を貼合せ部51に搬送せずに、収納用のカセットトレイ(図示省略)に、一時的に収納するようにしてもよい。 In step S4, it is determined whether or not the micro LEDs have been individually transferred to the first transfer member T1 for each color. In this embodiment, the red micro LED 11a, the green micro LED 11b, and the blue micro LED 11c are individually transferred onto the transfer member T1, so three first carriers C1 (hereinafter simply referred to as "carriers C1") are prepared for each color. ) will be created. When the carrier C1(R) made of the transfer member T1 to which the red micro LED 11a is transferred is produced, the determination in step S4 is No. In this case, after the carrier C1(R) is transported to the bonding section 51 of the second transfer device section 5, steps S1 to S1 shown in FIG. The processing of S3 is repeated. In the present embodiment, the carrier C1(R) may be temporarily stored in a storage cassette tray (not shown) without being transported to the bonding section 51. FIG.
 上記工程S1~S3が繰り返されることにより、緑色のマイクロLED11bが転写された転写部材T1からなるキャリアC1(G)が作成された場合、工程S4の判定は、再度No判定になる。この場合、キャリアC1(G)は、収納用のカセットトレイ(図示省略)に、一時的に収納される。そして、次の青色のマイクロLED11cを転写部材T1に転写するため、図15に示す工程S1~S3の処理が繰り返される。 By repeating the above steps S1 to S3, when the carrier C1 (G) composed of the transfer member T1 to which the green micro LED 11b has been transferred is created, the determination in step S4 becomes No again. In this case, the carrier C1(G) is temporarily stored in a storage cassette tray (not shown). Then, in order to transfer the next blue micro LED 11c to the transfer member T1, the processes of steps S1 to S3 shown in FIG. 15 are repeated.
 上記工程S1~S3が繰り返されることにより、青色のマイクロLED11cが転写された転写部材T1からなるキャリアC1(B)が作成された場合、工程S4の判定は、Yes判定になる。すると、第2の転写部材の貼り付け(工程S5)に移行する。 By repeating the above steps S1 to S3, when the carrier C1 (B) composed of the transfer member T1 to which the blue micro LED 11c is transferred is created, the determination in step S4 is Yes. Then, the process proceeds to the attachment of the second transfer member (step S5).
 第2の転写部材の貼り付け(工程S5)では、電子部品の転写用の基板S2に、粘着力を低下させた第1の転写部材T1よりも粘着力が強い第2の転写部材T2を貼り付ける処理を行なう。 In attaching the second transfer member (step S5), the second transfer member T2 having stronger adhesive force than the first transfer member T1 whose adhesive force is lowered is attached to the electronic component transfer substrate S2. Attaching process is performed.
 図23は、第2の貼付装置部4の動作を示す説明図である。第2の貼付装置部4は、貼り合わせヘッド40を下降させて、転写部材T2と基板S2とを貼り合わせる(図23(a)参照)。ここで、本実施形態において、貼り合わせヘッド40と転写部材T2との間の粘着力よりも、転写部材T2と基板S2との間の粘着力の方が大きくなるようにしている。 FIG. 23 is an explanatory diagram showing the operation of the second sticking device section 4. FIG. The second bonding device section 4 lowers the bonding head 40 to bond the transfer member T2 and the substrate S2 together (see FIG. 23(a)). Here, in this embodiment, the adhesive force between the transfer member T2 and the substrate S2 is made larger than the adhesive force between the bonding head 40 and the transfer member T2.
 続いて、第2の貼付装置部4は、貼り合わせヘッド40を上昇させると、転写部材T2が剥がれて基板S2に粘着することになる。この状態で、第2の貼付装置部4は、ステージ41を加圧ローラ42側に向けて一軸方向に移動させて、その加圧ローラ42が転写部材T2を加圧しながら回転する処理を行なう(図23(b)参照)。そして、加圧ローラ42による転写部材T2への加圧が終了すると、加圧しない場合と比較して、転写部材T2が基板S2により強固に貼り付けられる(図23(c)参照)。転写部材T2が片面に貼り付けられた基板S2を、第2のキャリアC2とする。図16(e)、図17(e)は、工程S5で作成された第2のキャリアC2の平面図及び端面図を示している。第2のキャリアC2(以下、単に「キャリアC2」ということがある)は、第2の転写装置部5の貼合せ部51に搬送される。一方、第2の貼付装置部4は、ステージ41を移動させて図6に示す初期状態に戻る。 Subsequently, when the second bonding device section 4 raises the bonding head 40, the transfer member T2 is peeled off and adheres to the substrate S2. In this state, the second pasting device section 4 uniaxially moves the stage 41 toward the pressure roller 42 side, and the pressure roller 42 rotates while pressing the transfer member T2 ( See FIG. 23(b)). When the pressing roller 42 finishes pressing the transfer member T2, the transfer member T2 is adhered more firmly to the substrate S2 than when no pressure is applied (see FIG. 23(c)). The substrate S2 with the transfer member T2 attached to one side thereof is referred to as a second carrier C2. FIGS. 16(e) and 17(e) show a plan view and an end view of the second carrier C2 produced in step S5. A second carrier C<b>2 (hereinafter sometimes simply referred to as “carrier C<b>2 ”) is conveyed to the bonding section 51 of the second transfer device section 5 . On the other hand, the second sticking device section 4 moves the stage 41 to return to the initial state shown in FIG.
 次に、第2の転写(工程S6)では、第1の転写部材T1と第2の転写部材T2とを貼り合わせて、粘着力の差を利用して電子部品を第1の転写部材T1から第2の転写部材T2に転写する処理を行なう。なお、第1の転写部材T1と第2の転写部材T2とを貼り合わせると、外見上、第1のキャリアC1と第2のキャリアC2とが貼り合わされることになる。 Next, in the second transfer (step S6), the first transfer member T1 and the second transfer member T2 are adhered to each other, and the electronic components are transferred from the first transfer member T1 using the difference in adhesive force. A process of transferring to the second transfer member T2 is performed. Incidentally, when the first transfer member T1 and the second transfer member T2 are bonded together, the first carrier C1 and the second carrier C2 are apparently bonded together.
 図24は、貼合せ部51の動作を示す説明図である。図25は、転写部材剥離部52の動作を示す説明図である。図26は、図15に示す第2の転写の工程において、赤色のマイクロLED11aを用いた場合の処理を示す流れ図(サブルーチン)である。である。 24A and 24B are explanatory diagrams showing the operation of the lamination unit 51. FIG. 25A and 25B are explanatory diagrams showing the operation of the transfer member peeling section 52. FIG. FIG. 26 is a flow chart (subroutine) showing the process when the red micro LED 11a is used in the second transfer step shown in FIG. is.
 図26に示す工程S61において、貼合せ部51は、キャリアC1(R)とキャリアC2との貼り合わせを行なう。具体的には、貼合せ部51は、図11に示す状態において、先ず、キャリアC1(R)及びキャリアC2を設置した後、ステージ機構51aを水平方向に移動させることにより、第1のカメラ51gでキャリアC1(R)を観察してθアライメントを行なう。これにより、貼合せ部51は、キャリアC1(R)の貼り合わせ位置を第1のアライメントマークで指定する。続いて、貼合せ部51は、ステージ機構51aを水平方向に移動させることにより、第2のカメラ51cでキャリアC2を観察してθアライメントを行なう。これにより、貼合せ部51は、キャリアC2の貼り合わせ位置を第2のアライメントマークで指定する。 In step S61 shown in FIG. 26, the bonding unit 51 bonds the carrier C1(R) and the carrier C2 together. Specifically, in the state shown in FIG. 11, the lamination unit 51 first installs the carrier C1 (R) and the carrier C2, and then moves the stage mechanism 51a in the horizontal direction to move the first camera 51g. , the carrier C1(R) is observed and .theta. alignment is performed. Thereby, the bonding unit 51 designates the bonding position of the carrier C1(R) with the first alignment mark. Subsequently, the bonding unit 51 moves the stage mechanism 51a in the horizontal direction to observe the carrier C2 with the second camera 51c and perform θ alignment. Thereby, the bonding unit 51 designates the bonding position of the carrier C2 with the second alignment mark.
 貼合せ部51は、ステージ機構51aを再度水平方向に移動させることにより、互いの貼り合わせ位置に基づいて、キャリアC1(R)とキャリアC2とを対向させた後、支持ステージ51dを下降させ、キャリアC1(R)とキャリアC2とが近接する位置で停止させる。さらに、貼合せ部51は、第3のカメラ51kを用いて、キャリアC2の第2のアライメントマークとキャリアC1(R)のマイクロLED11aの位置を微調整する。その後、貼合せ部51は、支持ステージ51dをさらに下降させて、キャリアC1(R)とキャリアC2とを接触させた後に加圧する。図24(a)は、キャリアC1(R)とキャリアC2とを加圧した後の状態を示している。そして、貼合せ部51は、吸着ヘッド51fを解放して、支持ステージ51dを上昇させる。図24(b)は、転写部材T1と転写部材T2とが貼り合わせられた後の状態を示している。これにより、転写部材T1と転写部材T2とが貼り合わせられることにより、結果的にキャリアC1(R)とキャリアC2との貼り合わせが完了する。 The bonding unit 51 causes the carrier C1 (R) and the carrier C2 to face each other based on their bonding positions by moving the stage mechanism 51a in the horizontal direction again, and then lowers the support stage 51d. The carrier C1 (R) and the carrier C2 are stopped at a position close to each other. Further, the lamination unit 51 finely adjusts the positions of the second alignment mark of the carrier C2 and the micro LED 11a of the carrier C1(R) using the third camera 51k. After that, the bonding section 51 further lowers the support stage 51d to bring the carrier C1(R) and the carrier C2 into contact with each other, and then pressurize them. FIG. 24(a) shows the state after the carrier C1(R) and the carrier C2 are pressurized. Then, the bonding section 51 releases the suction head 51f and raises the support stage 51d. FIG. 24(b) shows the state after the transfer member T1 and the transfer member T2 are bonded together. As a result, the transfer member T1 and the transfer member T2 are bonded together, and as a result, the bonding of the carrier C1 (R) and the carrier C2 is completed.
 また、図16(f)、図17(f)は、キャリアC1(R)とキャリアC2とが貼り合わせられた状態であって、合体したキャリアC1(R)とキャリアC2の平面図及び端面図を示している。 16(f) and 17(f) are a plan view and an end view of the combined carrier C1(R) and carrier C2, showing a state in which the carrier C1(R) and the carrier C2 are bonded together. is shown.
 貼合せ部51は、ロボットアームを介してキャリアC1(R)及びキャリアC2を搬出する。キャリアC1(R)とキャリアC2とは、図12に示すように、キャリアC2がステージ機構52a上の吸着ステージ52dに載置され、キャリアC1(R)の固定用リング19が支持台52eに支持される。 The bonding unit 51 carries out the carrier C1 (R) and the carrier C2 via the robot arm. As shown in FIG. 12, the carrier C2 is placed on the suction stage 52d on the stage mechanism 52a, and the fixing ring 19 of the carrier C1(R) is supported by the support table 52e. be done.
 次に、図26に示す工程S62において、転写部材T1を剥離させる。そのため、図25において、転写部材剥離部52は、粘着ローラ52cを回転させながら回収ステージ52bに向けて一軸方向に移動させる(図25(a)参照)。粘着ローラ52cの方が転写部材T2よりも粘着力が大きいので、粘着ローラ52cは、転写部材T1を順次巻き取ることができる(図25(b)参照)。これにより、工程S63において、第2の転写装置部5は、キャリアC2(R)を完成させることができる。 Next, in step S62 shown in FIG. 26, the transfer member T1 is peeled off. Therefore, in FIG. 25, the transfer member peeling section 52 is moved uniaxially toward the collection stage 52b while rotating the adhesive roller 52c (see FIG. 25(a)). Since the adhesive roller 52c has a higher adhesive force than the transfer member T2, the adhesive roller 52c can sequentially wind up the transfer member T1 (see FIG. 25(b)). Thereby, in step S63, the second transfer device section 5 can complete the carrier C2(R).
 その後、転写部材剥離部52は、転写部材T1を巻き取った粘着ローラ52cを回収ステージ52b上で回転させることにより、回収ステージ52bで転写部材T1を吸着させて、粘着ローラ52cから転写部材T1を取り外す(図25(c)参照)。このようにして、転写部材剥離部52は、粘着ローラ52cを回転させながら一軸方向に移動させて、転写部材T1を順次巻き取ることにより、マイクロLED11aが転写部材T1に残存することを防ぐことができる。 Thereafter, the transfer member peeling section 52 causes the transfer member T1 to be attracted to the recovery stage 52b by rotating the adhesive roller 52c around which the transfer member T1 is wound on the recovery stage 52b, and removes the transfer member T1 from the adhesive roller 52c. Remove (see FIG. 25(c)). In this manner, the transfer member peeling unit 52 rotates the adhesive roller 52c and moves it in the uniaxial direction to sequentially wind the transfer member T1, thereby preventing the micro LEDs 11a from remaining on the transfer member T1. can.
 図16(g)、図17(g)は、第2のキャリアC2(R)の平面図及び端面図を示している。なお、明細書中、説明の便宜上、転写部材T1が剥離され、赤色のマイクロLED11aが転写部材T2に転写されたものを第2のキャリアC2(R)と記載し、緑色のマイクロLED11bの場合には、第2のキャリアC2(G)と記載し、青色のマイクロLED11cの場合には、第2のキャリアC2(G)と記載することがある。 FIGS. 16(g) and 17(g) show a plan view and an end view of the second carrier C2(R). In the specification, for convenience of explanation, the carrier in which the transfer member T1 is separated and the red micro LED 11a is transferred to the transfer member T2 is referred to as a second carrier C2 (R). is described as the second carrier C2(G), and in the case of the blue micro LED 11c, it may be described as the second carrier C2(G).
 図27は、赤色のマイクロLED11aが転写された第2のキャリアC2(R)の構成を示す説明図であり、(a)は一部拡大平面図、(b)は(a)のC-C線断面図である。工程S63において、キャリアC2(R)が作成されると、そのキャリアC2(R)は、再度貼り合わせに使用するため搬送され、貼合せ部51の吸着ヘッド51fに吸着される。 FIG. 27 is an explanatory diagram showing the configuration of the second carrier C2 (R) to which the red micro LED 11a is transferred, (a) being a partially enlarged plan view, and (b) being CC of (a). It is a line sectional view. In step S63, when the carrier C2(R) is produced, the carrier C2(R) is transported to be used again for bonding, and is attracted to the suction head 51f of the bonding section 51. FIG.
 次に、図26に示す処理が終了すると、図15に示す流れ図に戻り、工程S7において、各色毎にマイクロLEDを個別に転写部材T2に転写したか否かが判定される。具体的には、赤色のマイクロLED11a、緑色のマイクロLED11b、青色のマイクロLED11cが個別に転写部材T2に転写されたか否かが判定される。赤色のマイクロLED11aが転写部材T2に転写された場合には、No判定となり、再び工程S6に戻り、工程S6では、赤色のマイクロLED11aと同様にして、緑色のマイクロLED11bを転写部材T2に転写する。 Next, when the process shown in FIG. 26 is completed, returning to the flow chart shown in FIG. 15, it is determined in step S7 whether or not the micro LEDs have been individually transferred to the transfer member T2 for each color. Specifically, it is determined whether or not the red micro LED 11a, the green micro LED 11b, and the blue micro LED 11c are individually transferred to the transfer member T2. When the red micro LED 11a is transferred to the transfer member T2, the judgment is No, and the process returns to step S6. In step S6, the green micro LED 11b is transferred to the transfer member T2 in the same manner as the red micro LED 11a. .
 図28は、図15に示す第2の転写の工程において、緑色のマイクロLED11bを用いた場合の処理を示す流れ図である。工程S64において、貼合せ部51は、キャリアC1(G)に対して、工程S61と同様の処理を行なう。この場合、キャリアC2(R)とキャリアC1(G)とを貼り合わせることになる。 FIG. 28 is a flowchart showing the process when using the green micro LED 11b in the second transfer step shown in FIG. In step S64, the bonding section 51 performs the same process as in step S61 on the carrier C1(G). In this case, the carrier C2(R) and the carrier C1(G) are stuck together.
 工程S65において、転写部材剥離部52は、キャリアC1(G)に対して、工程S62と同様の処理を行なう。続いて、工程S66において、キャリアC2(R)に緑色のマイクロLED11bが転写されたキャリアC2(R,G)が作成される。 In step S65, the transfer member peeling section 52 performs the same process as in step S62 on the carrier C1(G). Subsequently, in step S66, a carrier C2 (R, G) is created by transferring the green micro LED 11b to the carrier C2 (R).
 図29は、緑色のマイクロLED11bがさらに転写された第2のキャリアC2(R,G)の構成を示す説明図であり、(a)は一部拡大平面図、(b)は(a)のC-C線断面図である。 FIG. 29 is an explanatory diagram showing the configuration of the second carrier C2 (R, G) to which the green micro LED 11b is further transferred, (a) being a partially enlarged plan view, and (b) being a It is a CC line sectional view.
 図30は、図15に示す第2の転写の工程を示す説明図である。図30(a)は、キャリアC1(G)と、キャリアC2(R)との位置合わせを示している。キャリアC1(G)と、キャリアC2(R)とを貼り合わせる前に、基材フィルムT11及び粘着剤層T12で構成される転写部材T1に対して紫外線照射をしているため、キャリアC1(G)における粘着剤層T12は硬化して粘着力が低下している。 FIG. 30 is an explanatory diagram showing the second transfer process shown in FIG. FIG. 30(a) shows alignment between carrier C1 (G) and carrier C2 (R). Before the carrier C1 (G) and the carrier C2 (R) are bonded together, the transfer member T1 composed of the base film T11 and the adhesive layer T12 is irradiated with ultraviolet rays, so that the carrier C1 (G ), the adhesive layer T12 is cured and its adhesive force is lowered.
 図30(b)は、キャリアC1(G)と、キャリアC2(R)とを貼り合わせた状態を示している。この状態で予め定めた圧力Pで加圧しても、キャリアC2(R)上のマイクロLED11aは、キャリアC1(G)側の粘着剤層T12へ深くめり込まずに済む。図30(c)は、転写部材T1の剥離後のキャリアC2(R,G)を示している。転写部材T1を剥離しても、剥がされるマイクロLED11a、11b等のチップは無くて済む。このような方法を採用することにより、キャリアC1とキャリアC2との貼り合わせを繰り返しても剥がされるチップがなく、高い転写率を実現できる。したがって、本実施形態では、1枚のキャリアC2に対して、複数枚のキャリアC1を順番に貼り合わせて、チップを転写部材T2に転写する処理を実施するたびに、既にキャリアC2へ転写されたチップの一部が剥がされて未転写となるような事態を回避し得る。 FIG. 30(b) shows a state in which carrier C1 (G) and carrier C2 (R) are bonded together. Even if the predetermined pressure P is applied in this state, the micro LEDs 11a on the carrier C2(R) do not deeply sink into the adhesive layer T12 on the carrier C1(G) side. FIG. 30(c) shows the carrier C2 (R, G) after the transfer member T1 has been separated. Even if the transfer member T1 is peeled off, chips such as the micro LEDs 11a and 11b are not required to be peeled off. By adopting such a method, even if the carrier C1 and the carrier C2 are repeatedly stuck together, no chips are peeled off, and a high transfer rate can be achieved. Therefore, in the present embodiment, each time a plurality of carriers C1 are sequentially attached to one carrier C2 and the chips are transferred to the transfer member T2, the chips that have already been transferred to the carrier C2 are transferred to the transfer member T2. It is possible to avoid a situation in which a part of the chip is peeled off and left untransferred.
 次に、工程S66において、キャリアC2(R,G)が作成されると、そのキャリアC2(R,G)は、再度貼り合わせに使用するため搬送され、貼合せ部51の吸着ヘッド51fに吸着される。そして、図28に示す処理が終了すると、図15に示す流れ図に戻り、工程S7において、赤色のマイクロLED11a、緑色のマイクロLED11b、青色のマイクロLED11cが個別に転写部材T2に転写されたか否かが判定される。赤色のマイクロLED11a、緑色のマイクロLED11bが転写部材T2に転写された場合には、No判定となり、再び工程S6に戻り、工程S6では、赤色のマイクロLED11aと同様にして、青色のマイクロLED11cを転写部材T2に転写する。 Next, in step S66, when the carrier C2 (R, G) is produced, the carrier C2 (R, G) is transported to be used again for bonding, and is attracted to the suction head 51f of the bonding section 51. be done. When the process shown in FIG. 28 is completed, the process returns to the flowchart shown in FIG. 15. In step S7, it is determined whether or not the red micro LED 11a, the green micro LED 11b, and the blue micro LED 11c have been individually transferred to the transfer member T2. be judged. When the red micro-LED 11a and the green micro-LED 11b are transferred to the transfer member T2, the determination is No, and the process returns to step S6. In step S6, the blue micro-LED 11c is transferred in the same manner as the red micro-LED 11a. Transfer to member T2.
 図31は、図15に示す第2の転写の工程において、青色のマイクロLED11cを用いた場合の処理を示す流れ図である。工程S67において、貼合せ部51は、キャリアC1(B)に対して、工程S61と同様の処理を行なう。この場合、キャリアC2(R,G)とキャリアC1(B)とを貼り合わせることになる。 FIG. 31 is a flowchart showing the process when using the blue micro LED 11c in the second transfer step shown in FIG. In step S67, the bonding section 51 performs the same process as in step S61 on the carrier C1(B). In this case, carrier C2 (R, G) and carrier C1 (B) are bonded together.
 工程S68において、転写部材剥離部52は、キャリアC1(B)に対して、工程S62と同様の処理を行なう。続いて、工程S66において、キャリアC2(R,G)に緑色のマイクロLED11bが転写されたキャリアC2(R,G,B)が作成される。 In step S68, the transfer member peeling section 52 performs the same process as in step S62 on the carrier C1(B). Subsequently, in step S66, a carrier C2 (R, G, B) is created by transferring the green micro LED 11b to the carrier C2 (R, G).
 図32は、青色のマイクロLED11cがさらに転写された第2のキャリア(R,G,B)の構成を示す説明図であり、(a)は一部拡大平面図、(b)は(a)のC-C線断面図である。このキャリアC2(R,G,B)を使用して、マイクロLEDディスプレイの製造工程において、回路基板に、赤色のマイクロLED11a、緑色のマイクロLED11b、青色のマイクロLED11cが実装されることになる。 FIG. 32 is an explanatory diagram showing the configuration of the second carrier (R, G, B) to which the blue micro LED 11c is further transferred, (a) being a partially enlarged plan view, (b) being (a) 1 is a cross-sectional view taken along line CC of FIG. Using this carrier C2 (R, G, B), the red micro LED 11a, the green micro LED 11b, and the blue micro LED 11c are mounted on the circuit board in the manufacturing process of the micro LED display.
 次に、図31に示す処理が終了すると、図15に示す流れ図に戻り、工程S6において、赤色のマイクロLED11a、緑色のマイクロLED11b、青色のマイクロLED11cが個別に転写部材T2に転写されたか否かが判定される。この場合、Yes判定となり、図15に示す流れ図の処理は終了する。 Next, when the processing shown in FIG. 31 is completed, returning to the flow chart shown in FIG. 15, in step S6, it is determined whether or not the red micro LED 11a, the green micro LED 11b, and the blue micro LED 11c have been individually transferred to the transfer member T2. is determined. In this case, the determination is Yes, and the processing of the flow chart shown in FIG. 15 ends.
 以上より、本発明によれば、第1のキャリアC1側の第1の転写部材T1にUV剥離用のテープを採用し、第2のキャリアC2との貼り合わせの前工程で脱酸素状態での紫外線照射工程を実施することで、第2のキャリアC2への高い転写率を実現することが可能となる。 As described above, according to the present invention, the first transfer member T1 on the side of the first carrier C1 employs a UV peeling tape, and is deoxidized in the step prior to bonding with the second carrier C2. By performing the ultraviolet irradiation step, it is possible to achieve a high transfer rate to the second carrier C2.
[第1の変形例]
 次に、本発明による転写方法の第1の変形例について説明する。図33は、本発明による転写方法の第1の変形例を示す流れ図である。なお、上述した実施形態と同様の処理については、説明を省略又は簡略化する。図15に示す流れ図においては、第1のキャリアC1(R)、第1のキャリアC1(G)、第1のキャリアC1(B)を予め作成した後、第2の転写部材T2に順番に転写していく方法を採用したが、本発明はこれに限られない。
[First modification]
Next, a first modification of the transfer method according to the present invention will be described. FIG. 33 is a flowchart showing a first modification of the transfer method according to the invention. Note that the description of the same processing as in the above-described embodiment will be omitted or simplified. In the flowchart shown in FIG. 15, after the first carrier C1(R), the first carrier C1(G), and the first carrier C1(B) are prepared in advance, they are sequentially transferred to the second transfer member T2. However, the present invention is not limited to this.
 図33において、先ず、第1の転写部材の貼り付け(工程S11)では、図15に示す工程S1と同様、転写部材T1がLEDウェハS11に貼り付けられる。 In FIG. 33, first, in attaching the first transfer member (step S11), the transfer member T1 is attached to the LED wafer S11 as in the step S1 shown in FIG.
 第1の転写(工程S12)では、上述した工程S2と同様、赤色のマイクロLED11aが転写部材T1に貼り付けられる。 In the first transfer (step S12), the red micro LEDs 11a are attached to the transfer member T1 in the same manner as in step S2 described above.
 紫外線照射(工程S13)では、上述した工程S3と同様、酸素に対する暴露を防ぐ処理した状態で紫外線を転写部材T1に照射して、該転写部材T1の粘着力を低下させる処理を行なう。 In the ultraviolet irradiation (step S13), as in the above-described step S3, the transfer member T1 is irradiated with ultraviolet rays while being treated to prevent exposure to oxygen, thereby reducing the adhesion of the transfer member T1.
 続いて、工程S14において、1回目の転写部材T1の転写か否かが判定される。これは、色別に作成される3枚の転写部材T1に対して1枚の転写部材T2を用いるため、1回目の転写部材T1の転写のみ、次の第2の転写部材の貼り付け(工程S15)に移行すればよいからである。したがって、赤色のマイクロLED11aが転写部材T1に貼り付けられた場合、工程S14では、Yes判定となり、次の第2の転写(工程S16)に移行する。そして、工程S17において、全てのマイクロLEDが転写されたか否かが判定され、赤色のマイクロLED11aのみが転写された場合には(工程S17:No判定)、工程S11に戻り、緑色のマイクロLED11bについて、工程S11~S14、S16が実行される。 Subsequently, in step S14, it is determined whether or not it is the first transfer of the transfer member T1. This is because one transfer member T2 is used for three transfer members T1 produced for each color. ). Therefore, when the red micro LED 11a is attached to the transfer member T1, the determination in step S14 is Yes, and the process proceeds to the next second transfer (step S16). Then, in step S17, it is determined whether or not all the micro LEDs have been transferred, and when only the red micro LEDs 11a have been transferred (step S17: No determination), the process returns to step S11 to transfer the green micro LEDs 11b. , steps S11 to S14 and S16 are executed.
 工程S17において、全てのマイクロLEDが転写されたか否かが判定され、赤色のマイクロLED11a、緑色のマイクロLED11bのみが転写された場合には(工程S17:No判定)、工程S11に戻り、青色のマイクロLED11bについて、工程S11~S14、S16が実行され、最終的に、本実施形態と同様にして、第2のキャリアC2(R,G,B)が作成されることになる。 In step S17, it is determined whether or not all the micro LEDs have been transferred, and when only the red micro LED 11a and the green micro LED 11b have been transferred (step S17: No determination), the process returns to step S11 to transfer the blue micro LED. Steps S11 to S14 and S16 are performed for the micro LED 11b, and finally the second carrier C2 (R, G, B) is produced in the same manner as in the present embodiment.
 以上より、本発明による転写方法の第1の変形例においても、上記マイクロLED等の電子部品が転写された転写部材T1に対して、酸素に対する暴露を防ぐ処理を施した後、紫外線を転写部材T1に照射して、該転写部材T1の粘着力を低下させているので、酸素に対する暴露による悪影響を受けずに済み、さらに、転写部材T1の粘着力を低下させた後に、転写部材T1と転写部材T2とを貼り合わせていることにより、上記マイクロLED等の電子部品の転写時の歩留りを向上させることができる。 As described above, also in the first modification of the transfer method according to the present invention, the transfer member T1 onto which the electronic components such as the micro LEDs have been transferred is treated to prevent exposure to oxygen, and then the transfer member is exposed to ultraviolet rays. Since the adhesive strength of the transfer member T1 is reduced by irradiating T1, the exposure to oxygen does not adversely affect the adhesive strength of the transfer member T1. By bonding the member T2, the yield at the time of transfer of the electronic component such as the micro LED can be improved.
[第2の変形例]
 次に、本発明による転写方法の第2の変形例について説明する。上述した実施形態においては、RGBのマイクロLEDディスプレイの発光方式に対応させるために、赤色のマイクロLED11a、緑色のマイクロLED11b、青色のマイクロLED11bの3色のマイクロLEDを採用した。本発明はこの方式に限られない。すなわち、マイクロLEDディスプレイの発光方式として、紫外光発光ダイオード(UV-LED)を蛍光材料(RGB蛍光体)で色変換するマイクロLEDディスプレイに適用してもよい。この場合は、第2の転写部材T2に転写されるマイクロLEDは、一色のみの紫外光発光ダイオードでよい。
[Second modification]
Next, a second modification of the transfer method according to the present invention will be described. In the above-described embodiment, three-color micro-LEDs of red micro-LED 11a, green micro-LED 11b, and blue micro-LED 11b are used in order to correspond to the light emission method of the RGB micro-LED display. The present invention is not limited to this method. That is, as a light emitting method of the micro LED display, the present invention may be applied to a micro LED display in which ultraviolet light emitting diodes (UV-LED) are color-converted by fluorescent materials (RGB phosphors). In this case, the micro LEDs transferred to the second transfer member T2 may be ultraviolet light emitting diodes of only one color.
 図34は、紫外光発光のマイクロLEDが転写された第2のキャリアの構成を示す説明図であり、(a)は一部拡大平面図、(b)は(a)のD-D線断面図である。図34に示すマイクロLED11dは、LED本体部が例えば窒化ガリウム(GaN)を主材料として製造された紫外光発光ダイオードである。このマイクロLED11dは、RGB蛍光体の変換効率等を考慮して、例えばピーク波長が385nmに対応する光を発光する紫外光発光ダイオードを選択してもよい。 34A and 34B are explanatory diagrams showing the configuration of the second carrier to which the micro LED emitting ultraviolet light is transferred, where (a) is a partially enlarged plan view and (b) is a cross section taken along line DD of (a). It is a diagram. A micro LED 11d shown in FIG. 34 is an ultraviolet light emitting diode whose LED main body is made mainly of gallium nitride (GaN), for example. For the micro LED 11d, an ultraviolet light emitting diode that emits light having a peak wavelength of 385 nm, for example, may be selected in consideration of the conversion efficiency of the RGB phosphors.
 第2の変形例では、マイクロLED11dが転写された転写部材T1を1枚のみ使用すればよいので、図15に示す流れ図の工程S4の判定では、1回目でYes判定になる。そして、第2の転写(工程S6)で、マイクロLED11dが転写部材T2に転写されることにより、第2のキャリアC2(UV-LED)が作成されることになる。 In the second modification, only one transfer member T1 to which the micro LEDs 11d are transferred may be used, so in the determination of step S4 in the flow chart shown in FIG. 15, the first determination is Yes. Then, in the second transfer (step S6), the micro LED 11d is transferred to the transfer member T2, thereby creating the second carrier C2 (UV-LED).
 以上より、本発明による転写装置及び転写方法は、1色の紫外光発光のマイクロLED11dを採用した場合にも適用することができる。 As described above, the transfer device and transfer method according to the present invention can be applied even when micro LEDs 11d emitting single-color ultraviolet light are employed.
 次に、上記実施形態の補足事項について説明する。上記実施形態では、紫外線照射装置部3を使用して、転写部材T1に対して、密閉ボックス32内で不活性ガスの雰囲気下で、紫外線を転写部材T1に照射したが、本発明はこれに限られない。本発明では、例えば、紫外線照射装置部3において、局所排気方式を採用してもよい。局所排気方式では、転写部材T1に貼り付けられているマイクロLEDのみに局所的に窒素ガスを吹き付けて排気するようにしてもよい。また、本発明では、例えば、紫外線照射装置部3において、半開放型方式を採用してもよい。半開放型方式では、密閉ボックス32を使用せずに、転写部材T1に貼り付けられているマイクロLEDに向けて窒素ガスを流していくようにしてもよい。 Next, supplementary matters for the above embodiment will be described. In the above-described embodiment, the transfer member T1 is irradiated with ultraviolet rays using the ultraviolet irradiation device section 3 in the sealed box 32 under an inert gas atmosphere. Not limited. In the present invention, for example, a local exhaust system may be employed in the ultraviolet irradiation device section 3 . In the local exhaust system, nitrogen gas may be locally blown only on the micro LEDs attached to the transfer member T1 to exhaust the air. Further, in the present invention, for example, a semi-open type system may be employed in the ultraviolet irradiation device section 3 . In the semi-open type method, nitrogen gas may be flowed toward the micro LEDs attached to the transfer member T1 without using the closed box 32 .
 また、本発明では、酸素に対する暴露を防ぐ処理として、予め設定した真空度の真空チャンバー内で、紫外線を転写部材T1に照射するようにしてもよい。 Further, in the present invention, as a process for preventing exposure to oxygen, the transfer member T1 may be irradiated with ultraviolet rays in a vacuum chamber having a preset degree of vacuum.
 上記実施形態では、第1の貼付装置部1と、第1の転写装置部2と、紫外線照射装置部3とを複数台用意し、各色毎にマイクロLEDが転写された転写部材T1(第1のキャリアC1)の作成時間を、速くする構成にしてもよい。 In the above embodiment, a plurality of the first pasting device section 1, the first transfer device section 2, and the ultraviolet irradiation device section 3 are prepared, and the transfer member T1 (the first A configuration may be adopted in which the time required to create the carrier C1) is shortened.
 上述した実施形態は、本発明が理解及び実施できる程度に示したものであり、本発明はこれに限定されるものではない。本発明は、特許請求の範囲に示された技術的思想の範囲を逸脱しない限り種々に変更及び修正をすることができる。 The above-described embodiments are shown to the extent that the present invention can be understood and implemented, and the present invention is not limited thereto. The present invention can be variously changed and modified without departing from the scope of the technical idea indicated in the claims.
 1…第1の貼付装置部
 2…第1の転写装置部
 3…紫外線照射装置部
 4…第2の貼付装置部
 5…第2の転写装置部
 6…制御装置部
 S1…光透過性基板
 S2…電子部品の転写用の基板
 T1…第1の転写部材
 T2…第2の転写部材
 11a,11b,11c,11d…マイクロLED(電子部品)
DESCRIPTION OF SYMBOLS 1... 1st sticking apparatus part 2... 1st transfer apparatus part 3... Ultraviolet irradiation apparatus part 4... 2nd sticking apparatus part 5... 2nd transfer apparatus part 6... Control device part S1... Light transmissive substrate S2 ... substrate for transferring electronic components T1 ... first transfer member T2 ... second transfer member 11a, 11b, 11c, 11d ... micro LED (electronic component)

Claims (5)

  1.  電子部品を転写部材に転写する転写装置であって、
     一方の面に予め定められた配列に従って複数の電子部品が形成されている光透過性基板に、紫外線照射により粘着力が低下する第1の転写部材を貼り付ける第1の貼付装置部と、
     前記光透過性基板から前記電子部品をレーザリフトオフを介して剥離することにより、前記第1の転写部材の一方の面に前記電子部品を転写する第1の転写装置部と、
     前記電子部品が転写された前記第1の転写部材に対して、酸素に対する暴露を防ぐ処理をした状態で紫外線を前記第1の転写部材に照射して、該第1の転写部材の粘着力を低下させる紫外線照射装置部と、
     前記電子部品の転写用の基板に、前記粘着力を低下させた第1の転写部材よりも粘着力が強い第2の転写部材を貼り付ける第2の貼付装置部と、
     前記第1の転写部材と前記第2の転写部材とを貼り合わせて、前記粘着力の差を利用して前記電子部品を前記第1の転写部材から剥離させて、前記第2の転写部材に転写する第2の転写装置部と、
     前記第1の貼付装置部、前記第1の転写装置部、前記紫外線照射装置部、前記第2の貼付装置部及び前記第2の転写装置部を制御する制御装置部と、
    を備えることを特徴とする転写装置。
    A transfer device for transferring an electronic component to a transfer member,
    a first pasting device for pasting a first transfer member whose adhesive strength is reduced by UV irradiation onto a light transmissive substrate having a plurality of electronic components formed on one surface thereof according to a predetermined arrangement;
    a first transfer device section that transfers the electronic component to one surface of the first transfer member by peeling the electronic component from the light transmissive substrate via laser lift-off;
    The first transfer member to which the electronic component has been transferred is irradiated with ultraviolet rays in a state of being treated to prevent exposure to oxygen, thereby increasing the adhesion of the first transfer member. An ultraviolet irradiation device that lowers the
    a second pasting device unit for pasting a second transfer member having a stronger adhesive force than the first transfer member having a reduced adhesive force to the substrate for transferring the electronic component;
    The first transfer member and the second transfer member are pasted together, and the electronic component is separated from the first transfer member by using the difference in adhesive force, and is attached to the second transfer member. a second transfer device section for transferring;
    a control device section that controls the first sticking device section, the first transfer device section, the ultraviolet irradiation device section, the second sticking device section, and the second transfer device section;
    A transfer device comprising:
  2.  前記紫外線照射装置部は、前記第1の転写部材に対して、不活性ガスの雰囲気下で、前記紫外線を前記第1の転写部材に照射することを特徴とする請求項1に記載の転写装置。 2. The transfer device according to claim 1, wherein the ultraviolet irradiation device section irradiates the first transfer member with the ultraviolet rays in an inert gas atmosphere. .
  3.  前記不活性ガスが、窒素ガスであることを特徴とする請求項2に記載の転写装置。 The transfer device according to claim 2, wherein the inert gas is nitrogen gas.
  4.  前記電子部品は、赤色(R)、緑色(G)、青色(B)のマイクロLEDであり、
     前記制御装置部は、予め定められた順序に従って、R、G、Bの各色毎にマイクロLEDが転写された第1の転写部材を用いて、フルカラー表示に対応した配列パターンになるように、各色の前記マイクロLEDを1つの前記第2の転写部材に順番に転写させるものである、
    ことを特徴とする請求項1に記載の転写装置。
    the electronic components are red (R), green (G), and blue (B) micro LEDs;
    The control unit uses a first transfer member to which micro LEDs are transferred for each color of R, G, and B, according to a predetermined order, so as to form an array pattern corresponding to full-color display. wherein the micro LEDs are sequentially transferred to one of the second transfer members,
    2. The transfer device according to claim 1, wherein:
  5.  電子部品を転写部材に転写する転写方法であって、
     一方の面に予め定められた配列に従って複数の電子部品が形成されている光透過性基板に、紫外線照射により粘着力が低下する第1の転写部材を貼り付ける工程と、
     前記光透過性基板から電子部品をレーザリフトオフを介して剥離することにより、前記第1の転写部材の一方の面に前記電子部品を転写する工程と、
     前記電子部品が転写された前記第1の転写部材に対して、酸素に対する暴露を防ぐ処理した状態で紫外線を前記第1の転写部材に照射して、該第1の転写部材の粘着力を低下させる紫外線照射工程と、
     前記電子部品の転写用の基板に、前記粘着力を低下させた第1の転写部材よりも粘着力が強い第2の転写部材を貼り付ける工程と、
     前記第1の転写部材と前記第2の転写部材とを貼り合わせて、前記粘着力の差を利用して前記電子部品を前記第1の転写部材から剥離させて、前記第2の転写部材に転写する工程と、
    を含むことを特徴とする転写方法。
    A transfer method for transferring an electronic component to a transfer member,
    a step of attaching a first transfer member whose adhesive strength is reduced by ultraviolet irradiation to a light transmissive substrate having a plurality of electronic components formed on one surface according to a predetermined arrangement;
    transferring the electronic component to one surface of the first transfer member by peeling the electronic component from the light-transmissive substrate via laser lift-off;
    The first transfer member to which the electronic component has been transferred is irradiated with ultraviolet rays while being treated to prevent exposure to oxygen, thereby reducing the adhesion of the first transfer member. An ultraviolet irradiation step to cause
    a step of attaching a second transfer member having a stronger adhesive force than the first transfer member having a reduced adhesive force to the substrate for transferring the electronic component;
    The first transfer member and the second transfer member are pasted together, and the electronic component is separated from the first transfer member by using the difference in adhesive force, and is attached to the second transfer member. a step of transferring;
    A transfer method comprising:
PCT/JP2021/048986 2021-03-05 2021-12-28 Transfer apparatus and transfer method WO2022185704A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202180095118.5A CN117043969A (en) 2021-03-05 2021-12-28 Transfer device and transfer method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-035716 2021-03-05
JP2021035716A JP2022135730A (en) 2021-03-05 2021-03-05 Transfer device and transfer method

Publications (1)

Publication Number Publication Date
WO2022185704A1 true WO2022185704A1 (en) 2022-09-09

Family

ID=83153989

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/048986 WO2022185704A1 (en) 2021-03-05 2021-12-28 Transfer apparatus and transfer method

Country Status (4)

Country Link
JP (1) JP2022135730A (en)
CN (1) CN117043969A (en)
TW (1) TW202249141A (en)
WO (1) WO2022185704A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013254189A (en) * 2012-05-09 2013-12-19 Dexerials Corp Manufacturing method of image display device
JP2017098354A (en) * 2015-11-20 2017-06-01 日東電工株式会社 Method for manufacturing sealed semiconductor element and method for manufacturing semiconductor device
JP2020043209A (en) * 2018-09-10 2020-03-19 国立大学法人東北大学 Method of manufacturing micro LED array, method of manufacturing micro LED display, and micro LED array, and micro LED display
JP2021015168A (en) * 2019-07-11 2021-02-12 東山フイルム株式会社 Hard coat film and flexible display using the same
JP2021019037A (en) * 2019-07-18 2021-02-15 株式会社ブイ・テクノロジー Electronic component mounting structure, electronic component mounting method, and led display panel
KR102222355B1 (en) * 2020-07-31 2021-03-03 (주)라이타이저 Middle platform device for testing of led chips and transferring of led chips in display pannel

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013254189A (en) * 2012-05-09 2013-12-19 Dexerials Corp Manufacturing method of image display device
JP2017098354A (en) * 2015-11-20 2017-06-01 日東電工株式会社 Method for manufacturing sealed semiconductor element and method for manufacturing semiconductor device
JP2020043209A (en) * 2018-09-10 2020-03-19 国立大学法人東北大学 Method of manufacturing micro LED array, method of manufacturing micro LED display, and micro LED array, and micro LED display
JP2021015168A (en) * 2019-07-11 2021-02-12 東山フイルム株式会社 Hard coat film and flexible display using the same
JP2021019037A (en) * 2019-07-18 2021-02-15 株式会社ブイ・テクノロジー Electronic component mounting structure, electronic component mounting method, and led display panel
KR102222355B1 (en) * 2020-07-31 2021-03-03 (주)라이타이저 Middle platform device for testing of led chips and transferring of led chips in display pannel

Also Published As

Publication number Publication date
TW202249141A (en) 2022-12-16
JP2022135730A (en) 2022-09-15
CN117043969A (en) 2023-11-10

Similar Documents

Publication Publication Date Title
JP4851415B2 (en) Ultraviolet irradiation method and apparatus using the same
US6589809B1 (en) Method for attaching semiconductor components to a substrate using local UV curing of dicing tape
WO2012056803A1 (en) Stacked body and method for detaching stacked body
JP2011077138A (en) Method and apparatus for separating protective tape
JP6818351B2 (en) Wafer processing equipment
JP2022054148A (en) Electronic component mounting method and manufacturing method for micro-led display
JP2010153692A (en) Workpiece dividing method and tape expanding device
TW201923882A (en) Processing method using laser lift-off and planarizing jig
JP2009158879A5 (en)
JP6626413B2 (en) Support separating method and substrate processing method
JP2004349435A (en) Device for sticking dicing-die bond tape to substrate
JP2007194433A (en) Pickup device and pickup method
JP2003347524A (en) Transferring method of element, arraying method of element, and manufacturing method of image display
JP6524554B2 (en) Method of manufacturing element chip
WO2022185704A1 (en) Transfer apparatus and transfer method
JP6573231B2 (en) Plasma processing method
JP2000091281A (en) Wafer surface protective tape peel-off apparatus
KR102176615B1 (en) Apparatus and Method for Transferring Disply Element
JP2002270560A (en) Method for working wafer
JP2004186482A (en) Method and apparatus for pasting heat adhesive film
JP2021163802A (en) Chip transfer method and chip transfer device
JP2014204034A (en) Sealing sheet adhesive method and sealing sheet adhesive apparatus
JP5847410B2 (en) Die bonder and semiconductor manufacturing method
JP2005209829A (en) Method and apparatus of fixing semiconductor wafer, and structure to fix semiconductor wafer
JP2020194918A (en) Method for manufacturing element chip

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21929260

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180095118.5

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21929260

Country of ref document: EP

Kind code of ref document: A1