WO2022183878A1 - 频段调度方法、通信节点及计算机可读存储介质 - Google Patents

频段调度方法、通信节点及计算机可读存储介质 Download PDF

Info

Publication number
WO2022183878A1
WO2022183878A1 PCT/CN2022/074761 CN2022074761W WO2022183878A1 WO 2022183878 A1 WO2022183878 A1 WO 2022183878A1 CN 2022074761 W CN2022074761 W CN 2022074761W WO 2022183878 A1 WO2022183878 A1 WO 2022183878A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency band
detection
measurement information
terminal device
configuration information
Prior art date
Application number
PCT/CN2022/074761
Other languages
English (en)
French (fr)
Inventor
宋志康
周将运
王美英
刘路
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to US18/548,712 priority Critical patent/US20240147513A1/en
Priority to EP22762346.9A priority patent/EP4304236A1/en
Publication of WO2022183878A1 publication Critical patent/WO2022183878A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/541Allocation or scheduling criteria for wireless resources based on quality criteria using the level of interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/18Negotiating wireless communication parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/382Monitoring; Testing of propagation channels for resource allocation, admission control or handover
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/06Optimizing the usage of the radio link, e.g. header compression, information sizing, discarding information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA

Definitions

  • the present application relates to the field of communication technologies, for example, to a frequency band scheduling method, a communication node, and a computer-readable storage medium.
  • the embodiments of the present application provide a frequency band scheduling method, a communication node, and a computer-readable storage medium, which can determine the strength of frequency band interference between different systems in real time, so as to dynamically adjust the available frequency band of a terminal device to obtain better transmission performance.
  • An embodiment of the present application proposes a frequency band scheduling method, which is applied to a network side device, including:
  • the reference frequency band is a frequency band in which the first system and the second system do not interfere with each other
  • the detection frequency band is a frequency band in which the first system and the second system interfere with each other
  • the frequency band configuration information includes the configuration information of the reference frequency band and the configuration information of all detection frequency bands;
  • the frequency band measurement information includes measurement information of the reference frequency band and measurement information of all detection frequency bands;
  • the available frequency band of the terminal device is determined.
  • the embodiment of the present application also proposes a frequency band scheduling method, which is applied to terminal equipment, including:
  • the frequency band configuration information includes the configuration information of the reference frequency band and the configuration information of all detection frequency bands
  • the reference frequency band is the frequency band where the first system does not interfere with the second system
  • the detection frequency band is the first frequency band The frequency band in which the system and the second system interfere with each other
  • the frequency band configuration information obtain and send frequency band measurement information to the network side device, wherein the frequency band measurement information includes the measurement information of the reference frequency band and the measurement information of all detection frequency bands;
  • An embodiment of the present application further provides a communication node, including: a processor; and the processor is configured to implement the method of any of the foregoing embodiments when executing a computer program.
  • the present application provides a computer-readable storage medium storing a computer program, and when the computer program is executed by a processor, the method of any of the foregoing embodiments is implemented.
  • a network side device uses a terminal device to obtain frequency band measurement information of a frequency band that may have interference, and judges the strength of the frequency band interference in real time. In this way, the network side device can dynamically adjust the available frequency band of the terminal device to obtain better transmission performance.
  • FIG. 1 is a schematic diagram of a frequency band shared by NR and LTE in the related art
  • FIG. 2 is a schematic diagram of an interfering cell in the related art
  • FIG. 3 is a schematic flowchart of a frequency band scheduling method provided by an embodiment
  • FIG. 5 is a schematic flowchart of another frequency band scheduling method provided by an embodiment
  • FIG. 6 is a schematic structural diagram of a network side device provided by an embodiment
  • FIG. 7 is a schematic structural diagram of a terminal device provided by an embodiment
  • FIG. 8 is a schematic structural diagram of a base station according to an embodiment
  • FIG. 9 is a schematic structural diagram of a UE according to an embodiment.
  • FIG. 1 shows a schematic diagram of a frequency band shared by NR and LTE in the related art.
  • the NR 2.6G frequency band shares the 40M frequency band with LTE, such as the D1 frequency band and the D2 frequency band marked in the shaded part in Figure 1.
  • LTE is not fully frequency shifted, NR may be interfered by LTE services and/or reference signals, such as Cell Reference Signal (CRS) interference, Physical Downlink Shared Channel (PDSCH) interference, etc. .
  • CRS Cell Reference Signal
  • PDSCH Physical Downlink Shared Channel
  • the interference detection and its avoidance technology usually adopts the following three schemes:
  • Option 1 When there is a frequency band overlap between NR and LTE, NR directly does not use the overlapping frequency band. For example, NR shares the 40M frequency band with LTE in the 100M frequency band, so the final available frequency band for NR is only 60M.
  • the disadvantage of this scheme is that when the interference is relatively small, the spectrum utilization rate is low due to the decrease of the available frequency band;
  • Option 2 When there is a frequency band overlap between NR and LTE, NR does not evade and still uses the overlapping frequency band.
  • the disadvantage of this scheme is that when the overlapping frequency band is greatly interfered, the NR uses the interfered frequency band, and the actual spectrum utilization rate will be very low;
  • Solution 3 Make NR and LTE interact (also known as spectrum sharing), that is, when NR and LTE co-site, NR can decide whether NR uses the shared frequency band according to the LTE load, so as to avoid the co-site LTE. interference.
  • the disadvantage of this solution is that NR can only avoid the interference of the co-sited LTE.
  • the adjacent site also has LTE, since the NR cannot obtain the LTE related information of the adjacent site, it cannot avoid the interference of the non-co-sited LTE cell.
  • Figure 2 shows a schematic diagram of an interfering cell in the related art. As shown in Figure 2, both cell 1 and cell 2 cover NR and LTE. Cell 1 cannot obtain the LTE information of cell 2. The LTE of cell 2 is actually the same as cell 1. interfere with the signal.
  • the embodiment of the present application provides a mobile communication network (including but not limited to the fifth generation mobile communication technology (5th Generation, 5G)), and the network architecture of the network may include terminal equipment and network side equipment (also It can be called network equipment or access network equipment).
  • the terminal device is wirelessly connected to the network-side device, and the terminal device may be fixed or movable.
  • a frequency band scheduling method, a communication node, and a computer-readable storage medium that can run on the above-mentioned network architecture are provided, which can judge the strength of frequency band interference between different systems in real time, so as to dynamically adjust the frequency of terminal equipment. available frequency bands for better transmission performance.
  • the network side equipment is the access equipment that the terminal equipment wirelessly accesses into the mobile communication system, which can be a base station (base station), an evolved base station (evolved NodeB, eNodeB), an integrated access and backhaul (Integrated Access and Backhaul) , IAB) node, relay node (RN), transmission reception point (TRP), access point (Access Point, AP), next generation NodeB in 5G mobile communication system, gNB), the base station in the future mobile communication system or the access node in the WiFi system, etc.; it can also be a module or unit that completes some functions of the base station, for example, it can be a centralized unit (CU), or a distributed type unit (distributed unit, DU), or IAB-mobile terminal (Mobile-Termination, MT), IAB-DU.
  • the embodiments of the present application do not limit the specific technology and specific device form adopted by the network side device.
  • a terminal device may also be referred to as a terminal, user equipment (UE), a mobile station, a mobile terminal, and the like.
  • the terminal equipment can be mobile phone, tablet computer, computer with wireless transceiver function, virtual reality terminal equipment, augmented reality terminal equipment, wireless terminal in industrial control, wireless terminal in unmanned driving, wireless terminal in remote surgery, smart grid Wireless terminals in smart cities, wireless terminals in transportation security, wireless terminals in smart cities, wireless terminals in smart homes, IAB-MT, etc.
  • the embodiments of the present application do not limit the specific technology and specific device form adopted by the terminal device.
  • the first system and the second system mentioned in the embodiments of this application are communication systems that are different from each other.
  • the first system is NR
  • the second system is LTE.
  • the following multiple embodiments of the present application may be executed independently, and the multiple embodiments may also be executed in combination with each other, which are not specifically limited in the embodiments of the present application.
  • FIG. 3 shows a schematic flowchart of a frequency band scheduling method provided by an embodiment. As shown in FIG. 3 , the method provided by this embodiment is applicable to network side devices (such as base stations, etc.), and the method includes the following steps.
  • the network side device acquires a reference frequency band and at least one detection frequency band, wherein the reference frequency band is a frequency band where the first system and the second system do not interfere with each other, and the detection frequency band is a frequency band where the first system and the second system interfere with each other.
  • the network side device involved in the embodiment of the present application is the network side device of the first system.
  • the method for obtaining the reference frequency band and at least one detection frequency band in step S110 may include the following two steps:
  • Step a1 The network side device divides the frequency band of the first system into a non-interference frequency band and an interference frequency band.
  • Step a2 The network side device uses the non-interference frequency band as the reference frequency band, and divides the interference frequency band into at least one detection frequency band according to the granularity of the second system.
  • FIG. 4 shows a schematic diagram of frequency band division provided by an embodiment.
  • the frequency band of the first system is divided into the non-interference frequency band BW 0
  • the interference frequency band is divided into n detection frequency bands according to the granularity of the second system (ie detection frequency band BW 1, detection frequency band BW 2, ... , detection frequency band BW n).
  • detection frequency band BW 1, detection frequency band BW 2, ... , detection frequency band BW n the number of detection frequency bands may be one or multiple.
  • the granularity refers to the minimum value of the system memory expansion increment. The higher the granularity level, the smaller the granularity level; conversely, the lower the granularity level, the larger the granularity level. Dividing the interference frequency band according to the granularity of the second system can ensure that the detection frequency band is consistent with the granularity of the second system.
  • the network side device sends frequency band configuration information to the terminal device, where the frequency band configuration information includes configuration information of the reference frequency band and configuration information of all detection frequency bands.
  • the configuration information is a channel state indication-reference signal (Channel state information-reference signal, CSI-RS) configuration.
  • CSI-RS Channel state information-reference signal
  • the network side device receives frequency band measurement information sent by the terminal device according to the frequency band configuration information, where the frequency band measurement information includes measurement information of the reference frequency band and measurement information of all detected frequency bands.
  • the measurement information is channel state information (Channel state information, CSI) information.
  • the method for receiving the frequency band measurement information sent by the terminal device according to the frequency band configuration information in step S130 may include step b1; for the detection frequency band, since the configuration of the detection frequency band is aperiodic Therefore, the method for receiving the frequency band measurement information sent by the terminal device according to the frequency band configuration information in step S130 may include steps b2 and b3:
  • Step b1 the network side device periodically receives the measurement information of the reference frequency band sent by the terminal device.
  • the network side device does not need to instruct, and the terminal device will periodically measure the reference frequency band and send the measurement information of the reference frequency band to the network side device.
  • the network side equipment only needs to periodically receive the measurement information of the reference frequency band sent by the terminal equipment.
  • Step b2 the network side device sends a frequency band detection indication to the terminal device at the time of interference detection.
  • Step b3 The network side device receives the measurement information of all detection frequency bands sent by the terminal device.
  • the network-side device For the detection frequency band whose configuration is aperiodic, the network-side device first needs to determine whether the interference detection time has been reached; when the interference detection time is reached, the network-side device sends a frequency band detection instruction to the terminal device, so that the terminal device can detect all The detection frequency band is measured, and at the reporting time point, the measurement information of all detection frequency bands is sent to the network side device.
  • the network side device determines the available frequency band of the terminal device according to the frequency band measurement information.
  • the method for determining the available frequency band of the terminal device according to the frequency band measurement information in step S140 may include the following two steps:
  • Step c1 The network-side device acquires j detection frequency bands that satisfy a preset condition from i detection frequency bands according to frequency band measurement information, where i ⁇ 1, 0 ⁇ j ⁇ i, and i and j are integers.
  • the network side device determines whether the difference between the measurement information of the xth detection frequency band and the measurement information of the reference frequency band is greater than a preset threshold; if it is greater than the preset threshold, it means that the xth detection frequency band does not satisfy the The preset condition; if it is not greater than the preset threshold, it means that the x-th detection frequency band satisfies the preset condition, where x is an integer and increments from 1 to i in units of 1.
  • Step c2 the network side device uses the j detection frequency bands and the reference frequency band as the available frequency bands of the terminal device.
  • the frequency band of the first system is divided into reference frequency band BW 0, detection frequency band BW 1, detection frequency band BW 2 and detection frequency band BW 3, the measurement information of reference frequency band BW 0 is 10, and the measurement information of detection frequency band BW 1
  • the value of 10 the value of the measurement information of the detection frequency band BW 2 is 5
  • the value of the measurement information of the detection frequency band BW 3 is 1, and the value of the preset threshold is 3.
  • the network side device calculates that the difference between the measurement information of the detection frequency band BW 1 and the measurement information of the reference frequency band BW 0 is 0, which is less than the preset threshold 3, then the detection frequency band BW 1 meets the preset conditions, and the detection frequency band BW 1 is available.
  • the network side device calculates that the difference between the measurement information of the detection frequency band BW 2 and the measurement information of the reference frequency band BW 0 is 5, which is greater than the preset threshold 3, then the detection frequency band BW 2 does not meet the preset conditions, and the detection frequency band BW 2 Not available; finally, the network side device calculates that the difference between the measurement information of the detection frequency band BW 3 and the measurement information of the reference frequency band BW 0 is 9, which is greater than the preset threshold 3, then the detection frequency band BW 3 does not meet the preset conditions, and the detection frequency band BW 3 is not available.
  • the available frequency bands of the final terminal equipment are the reference frequency band BW 0 and the detection frequency band BW 1.
  • the network-side device sends the available frequency band of the terminal device to the terminal device, so that the terminal device uses the available frequency band for data transmission.
  • the network side device can also judge whether the communication quality of the terminal device at the last moment (that is, the state before obtaining the available frequency band) is better than the current one.
  • the communication quality at the moment if the communication quality of the terminal device at the previous moment is better than the communication quality at the current moment, the reference frequency band is used as the available frequency band of the terminal device, or the frequency band used by the terminal device is rolled back to the previous moment; if the terminal device If the communication quality at the previous moment is not better than the communication quality at the current moment, the status quo remains unchanged.
  • more robust transmission performance can be obtained, and misjudgment of network side equipment caused by mismeasurement of terminal equipment is avoided.
  • the communication quality of the terminal device may be obtained by at least one of interference measurement (eg, measurement of CSI information, etc.), transmission speed measurement, and frequency band utilization measurement.
  • interference measurement eg, measurement of CSI information, etc.
  • transmission speed measurement e.g., measurement of CSI information, etc.
  • frequency band utilization measurement e.g., frequency band utilization measurement
  • An embodiment of the present application provides a frequency band scheduling method, which is applied to a network side device, including: acquiring a reference frequency band and at least one detection frequency band, wherein the reference frequency band is a frequency band in which the first system and the second system do not interfere with each other, and the detection frequency band is the first frequency band.
  • the network side equipment uses the terminal equipment to obtain the frequency band measurement information of the frequency band that may have interference, and judges the strength of the interference in the frequency band in real time. In this way, the network side device can dynamically adjust the available frequency band of the terminal device to obtain better transmission performance.
  • FIG. 5 shows a schematic flowchart of another frequency band scheduling method provided by an embodiment. As shown in FIG. 5 , the method provided by this embodiment is applicable to terminal equipment (such as UE, etc.), and the method includes the following steps.
  • terminal equipment such as UE, etc.
  • the terminal device receives the frequency band configuration information sent by the network side device, wherein the frequency band configuration information includes the configuration information of the reference frequency band and the configuration information of all detection frequency bands, and the reference frequency band is the frequency band in which the first system and the second system do not interfere with each other, and the detection The frequency band is the frequency band in which the first system and the second system interfere with each other.
  • the frequency band configuration information is a CSI-RS configuration.
  • the terminal device acquires and sends frequency band measurement information to the network side device according to the frequency band configuration information, where the frequency band measurement information includes measurement information of the reference frequency band and measurement information of all detected frequency bands.
  • the measurement information is channel state information (Channel state information, CSI) information.
  • the method for acquiring and sending the frequency band measurement information to the network side device in step S220 may include step d1; for the detection frequency band, since the configuration of the detection frequency band is aperiodic, Therefore, the method for obtaining and sending frequency band measurement information to the network side device in step S220 may include steps d2 and d3:
  • Step d1 the terminal device periodically measures the reference frequency band, and sends the measurement information of the reference frequency band to the network side device.
  • the network side device does not need to instruct, and the terminal device will periodically measure the reference frequency band and send the measurement information of the reference frequency band to the network side device.
  • Step d2 at the moment of interference detection, the terminal device receives the frequency band detection instruction sent by the network side device.
  • Step d3 the terminal device measures all the detection frequency bands according to the frequency band detection instruction, and sends the measurement information of all the detection frequency bands to the network side device.
  • the network-side device For the detection frequency band whose configuration is aperiodic, the network-side device first needs to determine whether the interference detection time has been reached; when the interference detection time is reached, the network-side device sends a frequency band detection instruction to the terminal device, so that the terminal device can detect all The detection frequency band is measured, and at the reporting time point, the measurement information of all detection frequency bands is sent to the network side device.
  • the terminal device receives the available frequency band sent by the network side device.
  • the terminal device can use the available frequency band for data transmission.
  • An embodiment of the present application provides a frequency band scheduling method, which is applied to a terminal device and includes: receiving frequency band configuration information sent by a network side device, where the frequency band configuration information includes configuration information of a reference frequency band and configuration information of all detection frequency bands, and the reference frequency band is The frequency band in which the first system does not interfere with the second system, and the detection frequency band is the frequency band in which the first system and the second system interfere with each other; according to the frequency band configuration information, frequency band measurement information is obtained and sent to the network side device, where the frequency band measurement information includes Measurement information of the reference frequency band and measurement information of all detection frequency bands; receive the available frequency bands sent by the network side equipment.
  • the network side equipment uses the terminal equipment to obtain the frequency band measurement information of the frequency band that may have interference, and judges the strength of the interference in the frequency band in real time. In this way, the network side device can dynamically adjust the available frequency band of the terminal device to obtain better transmission performance.
  • FIG. 6 shows a schematic structural diagram of a network side device provided by an embodiment.
  • the network side device includes: an allocation module 10 , a communication module 11 and a decision module 12 .
  • the allocation module 10 is configured to obtain a reference frequency band and at least one detection frequency band, wherein the reference frequency band is a frequency band in which the first system does not interfere with the second system, and the detection frequency band is a frequency band in which the first system and the second system interfere with each other;
  • the communication module 11 is configured to send frequency band configuration information to the terminal device, wherein the frequency band configuration information includes the configuration information of the reference frequency band and the configuration information of all detection frequency bands; and receive the frequency band measurement information sent by the terminal device according to the frequency band configuration information, wherein the frequency band The measurement information includes the measurement information of the reference frequency band and the measurement information of all detection frequency bands;
  • the decision module 12 is configured to determine the available frequency band of the terminal device according to the frequency band measurement information.
  • the network-side device provided in this embodiment implements the frequency band scheduling method in the foregoing embodiment.
  • the implementation principle and technical effect of the network-side device provided in this embodiment are similar to those in the foregoing embodiment, and are not repeated here.
  • the allocation module 10 is configured to divide the frequency band of the first system into a non-interference frequency band and an interference frequency band; use the non-interference frequency band as a reference frequency band, and divide the interference frequency band into at least an interference frequency band according to the granularity of the second system. a detection band.
  • the communication module 11 is configured to periodically receive the measurement information of the reference frequency band sent by the terminal device; and, at the moment of interference detection, send a frequency band detection instruction to the terminal device; receive all detected frequency bands sent by the terminal device. measurement information.
  • the decision-making module 12 when the number of detection frequency bands is equal to i, the decision-making module 12 is set to obtain j detection frequency bands that meet the preset conditions from i detection frequency bands according to frequency band measurement information, where i ⁇ 1,0 ⁇ j ⁇ i, i and j are integers; the j detection frequency bands and reference frequency bands are used as the available frequency bands of the terminal equipment.
  • the decision-making module 12 is configured to judge whether the difference between the measurement information of the xth detection frequency band and the measurement information of the reference frequency band is greater than a preset threshold; if it is greater than the preset threshold, it means that the The x th detection frequency band does not meet the preset condition; if it is not greater than the preset threshold, it means that the x th detection frequency band satisfies the preset condition, x is an integer, and takes 1 as the unit from 1 to 1. Increment to i.
  • the decision-making module 12 is further configured to set the communication quality of the terminal device to be better than the communication quality of the current moment if the communication quality of the terminal device is better than the current moment.
  • the frequency band serves as the available frequency band for the terminal equipment.
  • the frequency band configuration information is channel state indication-reference signal CSI-RS configuration; and the frequency band measurement information is channel state indication CSI information.
  • FIG. 7 shows a schematic structural diagram of a terminal device provided by an embodiment.
  • the terminal device includes: a communication module 20 and a measurement module 21 .
  • the communication module 20 is configured to receive frequency band configuration information sent by the network side device, wherein the frequency band configuration information includes configuration information of a reference frequency band and configuration information of all detection frequency bands, and the reference frequency band is a frequency band in which the first system and the second system do not interfere with each other , the detection frequency band is the frequency band where the first system and the second system interfere with each other;
  • the measurement module 21 is configured to obtain frequency band measurement information according to the frequency band configuration information, wherein the frequency band measurement information includes the measurement information of the reference frequency band and the measurement information of all detection frequency bands;
  • the communication module 20 is further configured to send frequency band measurement information to the network side device; and receive the available frequency band sent by the network side device.
  • the terminal device provided in this embodiment implements the frequency band scheduling method in the foregoing embodiment, and the implementation principle and technical effect of the terminal device provided in this embodiment are similar to those in the foregoing embodiment, and details are not repeated here.
  • the measurement module 21 is configured to periodically measure the reference frequency band; and, according to the frequency band detection instruction, measure all the detected frequency bands.
  • the frequency band configuration information is channel state indication-reference signal CSI-RS configuration; and the frequency band measurement information is channel state indication CSI information.
  • An embodiment of the present application also provides a communication node, including: a processor, where the processor is configured to implement the method provided by any embodiment of the present application when the computer program is executed.
  • the device may be a network-side device provided by any embodiment of the present application, or may be a terminal device provided by any embodiment of the present application, which is not specifically limited in this application.
  • a communication node is a base station and a UE.
  • FIG. 8 shows a schematic structural diagram of a base station provided by an embodiment.
  • the base station includes a processor 60, a memory 61 and a communication interface 62; the number of processors 60 in the base station may be one or more 8, a processor 60 is taken as an example; the processor 60, the memory 61, and the communication interface 62 in the base station may be connected by a bus or other means, and the connection by a bus is taken as an example in FIG. 8.
  • a bus represents one or more of several types of bus structures, including a memory bus or memory controller, a peripheral bus, a graphics acceleration port, a processor, or a local bus using any of a variety of bus structures.
  • the memory 61 may be configured to store software programs, computer-executable programs, and modules, such as program instructions/modules corresponding to the methods in the embodiments of the present application.
  • the processor 60 executes at least one functional application and data processing of the base station by running the software programs, instructions and modules stored in the memory 61, ie, implements the above method.
  • the memory 61 may include a storage program area and a storage data area, wherein the storage program area may store an operating system, an application program required for at least one function; the storage data area may store data created according to the use of the terminal, and the like. Additionally, memory 61 may include high-speed random access memory, and may also include non-volatile memory, such as at least one magnetic disk storage device, flash memory device, or other non-volatile solid-state storage device. In some examples, memory 61 may include memory located remotely from processor 60, which may be connected to the base station through a network. Examples of such networks include, but are not limited to, the Internet, intranets, networks, mobile communication networks, and combinations thereof.
  • the communication interface 62 may be configured for the reception and transmission of data.
  • FIG. 9 shows a schematic structural diagram of a UE provided by an embodiment.
  • the UE may be implemented in various forms.
  • the UE in this application may include, but is not limited to, such as mobile phones, smart phones, notebook computers, and digital broadcast receivers. , Personal Digital Assistant (PDA), Tablet Computer (Portable Device, PAD), Portable Media Player (PMP), Navigation Device, Vehicle Terminal Equipment, Vehicle Display Terminal, Vehicle Electronic Rearview Mirror, etc. mobile terminal equipment such as digital television (television, TV), desktop computer and so on.
  • PDA Personal Digital Assistant
  • Tablet Computer Portable Media Player
  • PMP Portable Media Player
  • Navigation Device Vehicle Terminal Equipment
  • Vehicle Display Terminal Vehicle Electronic Rearview Mirror
  • mobile terminal equipment such as digital television (television, TV), desktop computer and so on.
  • the UE 50 may include a wireless communication unit 51, an audio/video (Audio/Video, A/V) input unit 52, a user input unit 53, a sensing unit 54, an output unit 55, a memory 56, an interface unit 57, a processor 58 and a power supply unit 59 and so on.
  • Figure 9 illustrates a UE including various components, but it should be understood that implementation of all of the illustrated components is not a requirement. More or fewer components may alternatively be implemented.
  • the wireless communication unit 51 allows radio communication between the UE 50 and a base station or a network.
  • the A/V input unit 52 is arranged to receive audio or video signals.
  • the user input unit 53 may generate key input data to control various operations of the UE 50 according to commands input by the user.
  • the sensing unit 54 detects the current state of the UE 50, the position of the UE 50, the presence or absence of a user's touch input to the UE 50, the orientation of the UE 50, the acceleration or deceleration movement and direction of the UE 50, and the like, and generates a signal for controlling the UE 50. 50 commands or signals for the operation.
  • the interface unit 57 serves as an interface through which at least one external device can be connected to the UE 50.
  • the output unit 55 is configured to provide output signals in a visual, audio and/or tactile manner.
  • the memory 56 may store software programs and the like for processing and control operations performed by the processor 58, or may temporarily store data that has been output or is to be output.
  • Memory 56 may include at least one type of storage medium.
  • the UE 50 may cooperate with a network storage device that performs the storage function of the memory 56 through a network connection.
  • the processor 58 generally controls the overall operation of the UE 50.
  • the power supply unit 59 receives external or internal power under the control of the processor 58 and provides the appropriate power required to operate the various elements and components.
  • the processor 58 executes at least one functional application and data processing by running the program stored in the memory 56, for example, to implement the methods provided by the embodiments of the present application.
  • Embodiments of the present application further provide a computer-readable storage medium, where a computer program is stored on the computer-readable storage medium, and when the computer program is executed by a processor, implements the method provided by any embodiment of the present application.
  • the computer storage medium of the embodiments of the present application may adopt any combination of one or more computer-readable media.
  • the computer-readable medium may be a computer-readable signal medium or a computer-readable storage medium.
  • the computer-readable storage medium may be, for example, but not limited to, an electrical, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus or device, or any combination of the above.
  • Computer-readable storage media include (non-exhaustive list): electrical connections with one or more wires, portable computer disks, hard disks, random access memory (RAM), read-only memory (Read-Only Memory) , ROM), erasable programmable read-only memory (electrically erasable, programmable Read-Only Memory, EPROM), flash memory, optical fiber, portable compact disk read-only memory (Compact Disc Read-Only Memory, CD-ROM), optical memory devices, magnetic memory devices, or any suitable combination of the foregoing.
  • a computer-readable storage medium can be any tangible medium that contains or stores a program that can be used by or in conjunction with an instruction execution system, apparatus, or device.
  • a computer-readable signal medium may include a propagated data signal carrying computer-readable program code in baseband or as part of a carrier wave. Such propagated data signals may take a variety of forms, including but not limited to electromagnetic signals, optical signals, or any suitable combination of the foregoing.
  • a computer-readable signal medium can also be any computer-readable medium other than a computer-readable storage medium that can transmit, propagate, or transport the program for use by or in connection with the instruction execution system, apparatus, or device .
  • Program code embodied on a computer-readable medium may be transmitted using any suitable medium, including but not limited to wireless, wire, optical fiber cable, radio frequency (RF), etc., or any suitable combination of the foregoing.
  • suitable medium including but not limited to wireless, wire, optical fiber cable, radio frequency (RF), etc., or any suitable combination of the foregoing.
  • Computer program code for performing operations of the present disclosure may be written in one or more programming languages, including object-oriented programming languages (such as Java, Smalltalk, C++, Ruby, Go), but also conventional procedural programming languages (such as the "C" language or similar programming languages).
  • the program code may execute entirely on the user's computer, partly on the user's computer, as a stand-alone software package, partly on the user's computer and partly on a remote computer, or entirely on the remote computer or server.
  • the remote computer may be connected to the user's computer through any kind of network, including a Local Area Network (LAN) or Wide Area Network (WAN), or it may be connected to an external computer such as use an internet service provider to connect via the internet).
  • LAN Local Area Network
  • WAN Wide Area Network
  • user terminal encompasses any suitable type of wireless user equipment, such as a mobile telephone, portable data processing device, portable web browser or vehicle mounted mobile station.
  • the various embodiments of the present application may be implemented in hardware or special purpose circuits, software, logic, or any combination thereof.
  • some aspects may be implemented in hardware, while other aspects may be implemented in firmware or software that may be executed by a controller, microprocessor or other computing device, although the application is not limited thereto.
  • Embodiments of the present application may be implemented by the execution of computer program instructions by a data processor of a mobile device, eg in a processor entity, or by hardware, or by a combination of software and hardware.
  • Computer program instructions may be assembly instructions, instruction set architecture (Instruction Set Architecture, ISA) instructions, machine instructions, machine-related instructions, microcode, firmware instructions, state setting data, or written in any combination of one or more programming languages source or object code.
  • Instruction Set Architecture Instruction Set Architecture
  • the block diagrams of any logic flow in the figures of the present application may represent program steps, or may represent interconnected logic circuits, modules and functions, or may represent a combination of program steps and logic circuits, modules and functions.
  • Computer programs can be stored on memory.
  • the memory may be of any type suitable for the local technical environment and may be implemented using any suitable data storage technology, such as but not limited to read only memory (ROM), random access memory (RAM), optical memory devices and systems (Digital Versatile Discs). DVD or CD disc) etc.
  • Computer-readable media may include non-transitory storage media.
  • the data processor may be of any type suitable for the local technical environment, such as, but not limited to, a general purpose computer, a special purpose computer, a microprocessor, a Digital Signal Processing (DSP), an Application Specific Integrated Circuit (ASIC) ), programmable logic devices (Field-Programmable Gate Array, FGPA) and processors based on multi-core processor architecture.
  • DSP Digital Signal Processing
  • ASIC Application Specific Integrated Circuit
  • FGPA programmable logic devices
  • processors based on multi-core processor architecture.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种频段调度方法、通信节点及计算机可读存储介质。该方法包括:获取基准频段和至少一个检测频段,其中,基准频段为第一系统不与第二系统相互干扰的频段,检测频段为第一系统与第二系统相互干扰的频段;向终端设备发送频段配置信息,其中,频段配置信息包括基准频段的配置信息和所有检测频段的配置信息;接收终端设备根据频段配置信息发送的频段测量信息,其中,频段测量信息包括基准频段的测量信息和所有检测频段的测量信息;根据频段测量信息,确定终端设备的可用频段。

Description

频段调度方法、通信节点及计算机可读存储介质 技术领域
本申请涉及通信技术领域,例如涉及一种频段调度方法、通信节点及计算机可读存储介质。
背景技术
随着无线通信技术的飞速发展,无线频段日益拥挤。为了保证正常的通讯质量,当异系统(如新一代移动通信系统(New Radio,NR)和长期演进系统(Long Term Evolution,LTE))之间存在频段重叠时,干扰检测及其规避技术必不可少。然而,相关技术中的干扰检测及其规避技术比较局限,而且频谱利用率低,从而影响传输性能。
发明内容
本申请实施例提出一种频段调度方法、通信节点及计算机可读存储介质,能够实时判断异系统之间频段干扰的强弱,从而动态调整终端设备的可用频段,以获得更好的传输性能。
本申请实施例提出了一种频段调度方法,应用于网络侧设备,包括:
获取基准频段和至少一个检测频段,其中,基准频段为第一系统不与第二系统相互干扰的频段,检测频段为第一系统与第二系统相互干扰的频段;
向终端设备发送频段配置信息,其中,频段配置信息包括基准频段的配置信息和所有检测频段的配置信息;
接收终端设备根据频段配置信息发送的频段测量信息,其中,频段测量信息包括基准频段的测量信息和所有检测频段的测量信息;
根据频段测量信息,确定终端设备的可用频段。
本申请实施例还提出了一种频段调度方法,应用于终端设备,包括:
接收网络侧设备发送的频段配置信息,其中,频段配置信息包括基准频段的配置信息和所有检测频段的配置信息,基准频段为第一系统不与第二系统相互干扰的频段,检测频段为第一系统与第二系统相互干扰的频段;
根据频段配置信息,获取并向网络侧设备发送频段测量信息,其中,频段测量信息包括基准频段的测量信息和所有检测频段的测量信息;
接收网络侧设备发送的可用频段。
本申请实施例还提出了一种通信节点,包括:处理器;处理器用于在执行计算机程序时实现上述任一实施例的方法。
本申请提供了一种计算机可读存储介质,存储有计算机程序,计算机程序被处理器执行 时实现上述任一实施例的方法。
本申请提供的一种频段调度方法、通信节点及计算机可读存储介质,网络侧设备利用终端设备获取可能存在干扰的频段的频段测量信息,实时判断该频段干扰的强弱。这样一来,网络侧设备可以动态调整终端设备的可用频段,以获得更好的传输性能。
关于本申请的以上实施例和其他方面以及其实现方式,在附图说明、具体实施方式和权利要求中提供更多说明。
附图说明
图1是相关技术中NR和LTE共享频段的示意图;
图2是相关技术中干扰小区的示意图;
图3是一实施例提供的一种频段调度方法的流程示意图;
图4是一实施例提供的一种频段划分示意图;
图5是一实施例提供的另一种频段调度方法的流程示意图;
图6是一实施例提供的一种网络侧设备的结构示意图;
图7是一实施例提供的一种终端设备的结构示意图;
图8是一实施例提供的一种基站的结构示意图;
图9是一实施例提供的一种UE的结构示意图。
具体实施方式
应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
在后续的描述中,使用用于表示元件的诸如“模块”、“部件”或“单元”的后缀仅为了有利于本申请的说明,其本身没有特有的意义。因此,“模块”、“部件”或“单元”可以混合地使用。
随着无线通信技术的飞速发展,无线频段日益拥挤。为了保证正常的通讯质量,当异系统(如NR和LTE)之间存在频段重叠时,异系统同频段干扰检测及其规避技术必不可少。例如,图1示出了相关技术中NR和LTE共享频段的示意图。目前NR 2.6G频段与LTE共享40M频段,如图1中阴影部分所标注的D1频段和D2频段。当LTE未完全移频时,NR有可能受到LTE的业务干扰和/或参考信号干扰,如小区参考信号(Cell Reference Signal,CRS)干扰、物理下行共享信道(Physical Downlink Shared Channel,PDSCH)干扰等。
目前干扰检测及其规避技术通常采用如下三种方案:
方案一、当NR和LTE之间存在频段重叠时,NR直接不使用重叠频段,例如,NR在100M频段与LTE共享了40M频段,那么NR最终可用的频段只有60M。该方案的缺点在于当干扰比较小时,由于可用频段的下降,频谱利用率低;
方案二、当NR和LTE之间存在频段重叠时,NR不进行规避,仍然使用重叠频段。该方案的缺点在于当重叠频段受干扰比较大时,NR使用受干扰的频段,实际频谱利用率也会很低;
方案三、令NR和LTE进行交互(也称为频谱共享),即NR与LTE共站的时候,NR可 以根据LTE的负荷来决定NR是否使用共享的频段,从而规避共站的LTE对其的干扰。该方案的缺点在于NR只能规避共站的LTE的干扰,当临站也有LTE时,由于NR无法获取临站的LTE相关信息,是无法规避非共站LTE小区的干扰的。图2示出了相关技术中干扰小区的示意图,如图2所示,小区1和小区2均覆盖了NR和LTE,小区1无法获取小区2的LTE信息,小区2的LTE对于小区1实际是干扰信号。
综上,相关技术中的干扰检测及其规避技术均比较局限,不能实时地判断干扰,而且频谱利用率低,从而影响传输性能。为了避免上述情况,本申请实施例提供了一种移动通信网络(包括但不限于第五代移动通信技术(5th Generation,5G)),该网络的网络架构可以包括终端设备和网络侧设备(也可以称为网络设备或者接入网设备)。终端设备通过无线的方式与网络侧设备连接,终端设备可以是固定位置的,也可以是可移动的。在本申请实施例中,提供一种可运行于上述网络架构上的频段调度方法、通信节点及计算机可读存储介质,能够实时判断异系统之间频段干扰的强弱,从而动态调整终端设备的可用频段,以获得更好的传输性能。
网络侧设备是终端设备通过无线方式接入到该移动通信系统中的接入设备,可以是基站(base station)、演进型基站(evolved NodeB,eNodeB)、集成接入回传(Integrated Access and Backhaul,IAB)节点、中继节点(relay node,RN)、发送接收点(transmission reception point,TRP)、接入点(Access Point,AP)、5G移动通信系统中的下一代基站(next generation NodeB,gNB)、未来移动通信系统中的基站或WiFi系统中的接入节点等;也可以是完成基站部分功能的模块或单元,例如,可以是集中式单元(central unit,CU),也可以是分布式单元(distributed unit,DU),或者IAB-移动终端(Mobile-Termination,MT)、IAB-DU。本申请的实施例对网络侧设备所采用的具体技术和具体设备形态不做限定。
终端设备也可以称为终端、用户设备(user equipment,UE)、移动台、移动终端等。终端设备可以是手机、平板电脑、带无线收发功能的电脑、虚拟现实终端设备、增强现实终端设备、工业控制中的无线终端、无人驾驶中的无线终端、远程手术中的无线终端、智能电网中的无线终端、运输安全中的无线终端、智慧城市中的无线终端、智慧家庭中的无线终端、IAB-MT等等。本申请的实施例对终端设备所采用的具体技术和具体设备形态不做限定。
下面,结合网络侧设备和终端设备描述本申请实施例提供的方案。在本申请的描述中,术语“系统”和“网络”在本申请中常被可互换使用。“第一”、“第二”、“第三”等词汇,仅用于区分描述的目的,而不能理解为指示或暗示相对重要性,也不能理解为指示或暗示顺序。本申请实施例中提到的第一系统和第二系统为互不相同的通信系统,例如,第一系统为NR,第二系统为LTE。本申请下述多个实施例可以单独执行,多个实施例之间也可以相互结合执行,本申请实施例对此不作具体限制。
图3示出了一实施例提供的一种频段调度方法的流程示意图,如图3所示,本实施例提供的方法适用于网络侧设备(如基站等),该方法包括如下步骤。
S110、网络侧设备获取基准频段和至少一个检测频段,其中,基准频段为第一系统不与第二系统相互干扰的频段,检测频段为第一系统与第二系统相互干扰的频段。
例如,本申请实施例中涉及的网络侧设备为第一系统的网络侧设备。步骤S110中获取基准频段和至少一个检测频段的方法可以包括如下两个步骤:
步骤a1、网络侧设备将第一系统的频段划分为无干扰频段和有干扰频段。
步骤a2、网络侧设备将无干扰频段作为基准频段,并将有干扰频段按照第二系统的粒度划分为至少一个检测频段。
示例性的,图4示出了一实施例提供的一种频段划分示意图。如图4所示,第一系统的频段被划分成了无干扰频段BW 0,有干扰频段按照第二系统的粒度划分为n个检测频段(即检测频段BW 1、检测频段BW 2、……、检测频段BW n)。需要说明的是,检测频段的数量可以为一个,也可以为多个。
其中,粒度是指系统内存扩展增量的最小值。粒度细化程度越高,粒度级就越小;相反,粒度细化程度越低,粒度级就越大。将有干扰频段按照第二系统的粒度划分可以保证检测频段和第二系统的粒度一致。
S120、网络侧设备向终端设备发送频段配置信息,其中,频段配置信息包括基准频段的配置信息和所有检测频段的配置信息。
在一实施例中,配置信息为信道状态指示-参考信号(Channel state information-reference signal,CSI-RS)配置。
S130、网络侧设备接收终端设备根据频段配置信息发送的频段测量信息,其中,频段测量信息包括基准频段的测量信息和所有检测频段的测量信息。
在一实施例中,测量信息为信道状态指示(Channel state information,CSI)信息。
对于基准频段,由于基准频段的配置是周期性的,因此,步骤S130中接收终端设备根据频段配置信息发送的频段测量信息的方法可以包括步骤b1;对于检测频段,由于检测频段的配置是非周期性的,因此,步骤S130中接收终端设备根据频段配置信息发送的频段测量信息的方法可以包括步骤b2和b3:
步骤b1、网络侧设备周期性地接收终端设备发送的基准频段的测量信息。
对于配置是周期性的基准频段,网络侧设备无需指示,终端设备会定时对基准频段进行测量,并向网络侧设备发送基准频段的测量信息。网络侧设备只需周期性地接收终端设备发送的基准频段的测量信息即可。
步骤b2、网络侧设备在干扰检测时刻,向终端设备发送频段检测指示。
步骤b3、网络侧设备接收终端设备发送的所有检测频段的测量信息。
对于配置是非周期性的检测频段,网络侧设备首先需要判断是否达到干扰检测时刻;当到达干扰检测时刻时,网络侧设备向终端设备发送频段检测指示,以使得终端设备根据频段检测指示,对所有检测频段进行测量,并在上报时刻点,向网络侧设备发送所有检测频段的测量信息。
S140、网络侧设备根据频段测量信息,确定终端设备的可用频段。
例如,步骤S140中根据频段测量信息,确定终端设备的可用频段的方法可以包括如下两个步骤:
步骤c1、网络侧设备根据频段测量信息,从i个检测频段中获取满足预设条件的j个检测频段,其中,i≥1,0≤j≤i,i和j为整数。
网络侧设备判断第x个检测频段的测量信息与所述基准频段的测量信息的差值是否大于预设阈值;若大于所述预设阈值,则表示所述第x个检测频段不满足所述预设条件;若不大 于所述预设阈值,则表示所述第x个检测频段满足所述预设条件,x为整数,且以1为单位从1逐次递增到i。
即网络侧设备令x=1,判断第x个检测频段的测量信息与基准频段的测量信息的差值是否大于预设阈值;若大于预设阈值,则表示第x个检测频段不满足预设条件;若不大于预设阈值,则表示第x个检测频段满足预设条件;令x=x+1,并返回执行判断第x个检测频段的测量信息与基准频段的测量信息的差值是否大于预设阈值的步骤,直至x=i为止。
步骤c2、网络侧设备将j个检测频段和基准频段作为终端设备的可用频段。
假设第一系统的频段被划分成了基准频段BW 0、检测频段BW 1、检测频段BW 2和检测频段BW 3,基准频段BW 0的测量信息的取值为10,检测频段BW 1的测量信息的取值为10,检测频段BW 2的测量信息的取值为5,检测频段BW 3的测量信息的取值为1,预设阈值的取值为3。那么首先,网络侧设备计算得到检测频段BW 1的测量信息与基准频段BW 0的测量信息的差值为0,小于预设阈值3,则检测频段BW 1满足预设条件,检测频段BW 1可用;其次,网络侧设备计算得到检测频段BW 2的测量信息与基准频段BW 0的测量信息的差值为5,大于预设阈值3,则检测频段BW 2不满足预设条件,检测频段BW 2不可用;最后,网络侧设备计算得到检测频段BW 3的测量信息与基准频段BW 0的测量信息的差值为9,大于预设阈值3,则检测频段BW 3不满足预设条件,检测频段BW 3不可用。最终终端设备的可用频段为基准频段BW 0和检测频段BW 1。
网络侧设备将终端设备的可用频段发送至终端设备,以使得终端设备使用可用频段进行数据传输。
当然可以理解的是,网络侧设备在将j个检测频段和基准频段作为终端设备的可用频段后,还可以判断终端设备上一时刻的通信质量(即获取可用频段前的状态)是否优于当前时刻的通信质量;若终端设备上一时刻的通信质量优于当前时刻的通信质量,则将基准频段作为终端设备的可用频段,或者将终端设备的使用频段回退到上一时刻;若终端设备上一时刻的通信质量不优于当前时刻的通信质量,则保持现状不变。从而获取更鲁棒的传输性能,避免终端设备误测量导致的网络侧设备误判断。
例如,终端设备的通信质量可以通过干扰测量(如测量CSI信息等)、传输速度测量、频带利用率测量中的至少一种方式得到。
本申请实施例提供一种频段调度方法,应用于网络侧设备,包括:获取基准频段和至少一个检测频段,其中,基准频段为第一系统不与第二系统相互干扰的频段,检测频段为第一系统与第二系统相互干扰的频段;向终端设备发送频段配置信息,其中,频段配置信息包括基准频段的配置信息和所有检测频段的配置信息;接收终端设备根据频段配置信息发送的频段测量信息,其中,频段测量信息包括基准频段的测量信息和所有检测频段的测量信息;根据频段测量信息,确定终端设备的可用频段。网络侧设备利用终端设备获取可能存在干扰的频段的频段测量信息,实时判断该频段干扰的强弱。这样一来,网络侧设备可以动态调整终端设备的可用频段,以获得更好的传输性能。
图5示出了一实施例提供的另一种频段调度方法的流程示意图,如图5所示,本实施例提供的方法适用于终端设备(如UE等),该方法包括如下步骤。
S210、终端设备接收网络侧设备发送的频段配置信息,其中,频段配置信息包括基准频 段的配置信息和所有检测频段的配置信息,基准频段为第一系统不与第二系统相互干扰的频段,检测频段为第一系统与第二系统相互干扰的频段。
在一实施例中,频段配置信息为CSI-RS配置。
S220、终端设备根据频段配置信息,获取并向网络侧设备发送频段测量信息,其中,频段测量信息包括基准频段的测量信息和所有检测频段的测量信息。
在一实施例中,测量信息为信道状态指示(Channel state information,CSI)信息。
对于基准频段,由于基准频段的配置是周期性的,因此,步骤S220中获取并向网络侧设备发送频段测量信息的方法可以包括步骤d1;对于检测频段,由于检测频段的配置是非周期性的,因此,步骤S220中获取并向网络侧设备发送频段测量信息的方法可以包括步骤d2和d3:
步骤d1、终端设备周期性地对基准频段进行测量,并向网络侧设备发送基准频段的测量信息。
对于配置是周期性的基准频段,网络侧设备无需指示,终端设备会定时对基准频段进行测量,并向网络侧设备发送基准频段的测量信息。
步骤d2、在干扰检测时刻,终端设备接收网络侧设备发送的频段检测指示。
步骤d3、终端设备根据频段检测指示,对所有检测频段进行测量,并向网络侧设备发送所有检测频段的测量信息。
对于配置是非周期性的检测频段,网络侧设备首先需要判断是否达到干扰检测时刻;当到达干扰检测时刻时,网络侧设备向终端设备发送频段检测指示,以使得终端设备根据频段检测指示,对所有检测频段进行测量,并在上报时刻点,向网络侧设备发送所有检测频段的测量信息。
S230、终端设备接收网络侧设备发送的可用频段。
从而终端设备可以使用可用频段进行数据传输。
本申请实施例提供一种频段调度方法,应用于终端设备,包括:接收网络侧设备发送的频段配置信息,其中,频段配置信息包括基准频段的配置信息和所有检测频段的配置信息,基准频段为第一系统不与第二系统相互干扰的频段,检测频段为第一系统与第二系统相互干扰的频段;根据频段配置信息,获取并向网络侧设备发送频段测量信息,其中,频段测量信息包括基准频段的测量信息和所有检测频段的测量信息;接收网络侧设备发送的可用频段。网络侧设备利用终端设备获取可能存在干扰的频段的频段测量信息,实时判断该频段干扰的强弱。这样一来,网络侧设备可以动态调整终端设备的可用频段,以获得更好的传输性能。
图6示出了一实施例提供的一种网络侧设备的结构示意图,如图6所示,网络侧设备包括:分配模块10,通信模块11和决策模块12。
分配模块10,设置为获取基准频段和至少一个检测频段,其中,基准频段为第一系统不与第二系统相互干扰的频段,检测频段为第一系统与第二系统相互干扰的频段;
通信模块11,设置为向终端设备发送频段配置信息,其中,频段配置信息包括基准频段的配置信息和所有检测频段的配置信息;以及接收终端设备根据频段配置信息发送的频段测量信息,其中,频段测量信息包括基准频段的测量信息和所有检测频段的测量信息;
决策模块12,设置为根据频段测量信息,确定终端设备的可用频段。
本实施例提供的网络侧设备为实现上述实施例的频段调度方法,本实施例提供的网络侧设备实现原理和技术效果与上述实施例类似,此处不再赘述。
在一实施例中,分配模块10,设置为将第一系统的频段划分为无干扰频段和有干扰频段;将无干扰频段作为基准频段,并将有干扰频段按照第二系统的粒度划分为至少一个检测频段。
在一实施例中,通信模块11,设置为周期性地接收终端设备发送的基准频段的测量信息;以及,在干扰检测时刻,向终端设备发送频段检测指示;接收终端设备发送的所有检测频段的测量信息。
在一实施例中,当检测频段的数量等于i时,决策模块12,设置为根据频段测量信息,从i个检测频段中获取满足预设条件的j个检测频段,其中,i≥1,0≤j≤i,i和j为整数;将j个检测频段和基准频段作为终端设备的可用频段。
在一实施例中,决策模块12,设置为判断第x个检测频段的测量信息与所述基准频段的测量信息的差值是否大于预设阈值;若大于所述预设阈值,则表示所述第x个检测频段不满足所述预设条件;若不大于所述预设阈值,则表示所述第x个检测频段满足所述预设条件,x为整数,且以1为单位从1逐次递增到i。
在一实施例中,在将j个检测频段和基准频段作为终端设备的可用频段后,决策模块12,还设置为若终端设备上一时刻的通信质量优于当前时刻的通信质量,则将基准频段作为终端设备的可用频段。
在一实施例中,频段配置信息为信道状态指示-参考信号CSI-RS配置;频段测量信息为信道状态指示CSI信息。
图7示出了一实施例提供的一种终端设备的结构示意图,如图7所示,终端设备包括:通信模块20和测量模块21。
通信模块20,设置为接收网络侧设备发送的频段配置信息,其中,频段配置信息包括基准频段的配置信息和所有检测频段的配置信息,基准频段为第一系统不与第二系统相互干扰的频段,检测频段为第一系统与第二系统相互干扰的频段;
测量模块21,设置为根据频段配置信息,获取频段测量信息,其中,频段测量信息包括基准频段的测量信息和所有检测频段的测量信息;
通信模块20,还设置为向网络侧设备发送频段测量信息;以及接收网络侧设备发送的可用频段。
本实施例提供的终端设备为实现上述实施例的频段调度方法,本实施例提供的终端设备实现原理和技术效果与上述实施例类似,此处不再赘述。
在一实施例中,测量模块21,设置为周期性地对基准频段进行测量;以及,根据频段检测指示,对所有检测频段进行测量。
在一实施例中,频段配置信息为信道状态指示-参考信号CSI-RS配置;频段测量信息为信道状态指示CSI信息。
本申请实施例还提供了一种通信节点,包括:处理器,处理器设置为在执行计算机程序时实现如本申请任意实施例所提供的方法。例如,该设备可以为本申请任意实施例所提供的网络侧设备,也可以为本申请任意实施例所提供的终端设备,本申请对此不作具体限制。
示例性的,下述实施例提供一种通信节点为基站和UE的结构示意图。
图8示出了一实施例提供的一种基站的结构示意图,如图8所示,该基站包括处理器60、存储器61和通信接口62;基站中处理器60的数量可以是一个或多个,图8中以一个处理器60为例;基站中的处理器60、存储器61、通信接口62可以通过总线或其他方式连接,图8中以通过总线连接为例。总线表示几类总线结构中的一种或多种,包括存储器总线或者存储器控制器,外围总线,图形加速端口,处理器或者使用多种总线结构中的任意总线结构的局域总线。
存储器61作为一种计算机可读存储介质,可设置为存储软件程序、计算机可执行程序以及模块,如本申请实施例中的方法对应的程序指令/模块。处理器60通过运行存储在存储器61中的软件程序、指令以及模块,从而执行基站的至少一种功能应用以及数据处理,即实现上述的方法。
存储器61可包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序;存储数据区可存储根据终端的使用所创建的数据等。此外,存储器61可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。在一些实例中,存储器61可包括相对于处理器60远程设置的存储器,这些远程存储器可以通过网络连接至基站。上述网络的实例包括但不限于互联网、企业内部网、网络、移动通信网及其组合。
通信接口62可设置为数据的接收与发送。
图9示出了一实施例提供的一种UE的结构示意图,UE可以以多种形式来实施,本申请中的UE可以包括但不限于诸如移动电话、智能电话、笔记本电脑、数字广播接收器、个人数字助理(Personal Digital Assistant,PDA)、平板电脑(Portable Device,PAD)、便携式多媒体播放器(Portable Media Player,PMP)、导航装置、车载终端设备、车载显示终端、车载电子后视镜等等的移动终端设备以及诸如数字电视(television,TV)、台式计算机等等的固定终端设备。
如图9所示,UE 50可以包括无线通信单元51、音频/视频(Audio/Video,A/V)输入单元52、用户输入单元53、感测单元54、输出单元55、存储器56、接口单元57、处理器58和电源单元59等等。图9示出了包括多种组件的UE,但是应理解的是,并不要求实施所有示出的组件。可以替代地实施更多或更少的组件。
本实施例中,无线通信单元51允许UE 50与基站或网络之间的无线电通信。A/V输入单元52设置为接收音频或视频信号。用户输入单元53可以根据用户输入的命令生成键输入数据以控制UE 50的多种操作。感测单元54检测UE 50的当前状态、UE 50的位置、用户对于UE 50的触摸输入的有无、UE 50的取向、UE 50的加速或减速移动和方向等等,并且生成用于控制UE 50的操作的命令或信号。接口单元57用作至少一个外部装置与UE 50连接可以通过的接口。输出单元55被构造为以视觉、音频和/或触觉方式提供输出信号。存储器56可以存储由处理器58执行的处理和控制操作的软件程序等等,或者可以暂时地存储己经输出或将要输出的数据。存储器56可以包括至少一种类型的存储介质。而且,UE 50可以与通过网络连接执行存储器56的存储功能的网络存储装置协作。处理器58通常控制UE 50的总体操作。电源单元59在处理器58的控制下接收外部电力或内部电力并且提供操作多种元件和组件所需的适当的电力。
处理器58通过运行存储在存储器56中的程序,从而执行至少一种功能应用以及数据处理,例如实现本申请实施例所提供的方法。
本申请实施例还提供了一种计算机可读存储介质,计算机可读存储介质上存储有计算机程序,该计算机程序被处理器执行时实现如本申请任意实施例所提供的方法。
本申请实施例的计算机存储介质,可以采用一个或多个计算机可读的介质的任意组合。计算机可读介质可以是计算机可读信号介质或者计算机可读存储介质。计算机可读存储介质例如可以是但不限于:电、磁、光、电磁、红外线、或半导体的系统、装置或器件,或者任意以上的组合。计算机可读存储介质包括(非穷举的列表):具有一个或多个导线的电连接、便携式计算机磁盘、硬盘、随机存取存储器(Random Access Memory,RAM)、只读存储器(Read-Only Memory,ROM)、可擦式可编程只读存储器(electrically erasable,programmable Read-Only Memory,EPROM)、闪存、光纤、便携式紧凑磁盘只读存储器(Compact Disc Read-Only Memory,CD-ROM)、光存储器件、磁存储器件、或者上述的任意合适的组合。在本申请中,计算机可读存储介质可以是任何包含或存储程序的有形介质,该程序可以被指令执行系统、装置或者器件使用或者与其结合使用。
计算机可读的信号介质可以包括在基带中或者作为载波一部分传播的数据信号,数据信号中承载了计算机可读的程序代码。这种传播的数据信号可以采用多种形式,包括但不限于电磁信号、光信号或上述的任意合适的组合。计算机可读的信号介质还可以是计算机可读存储介质以外的任何计算机可读介质,该计算机可读介质可以发送、传播或者传输用于由指令执行系统、装置或者器件使用或者与其结合使用的程序。
计算机可读介质上包含的程序代码可以用任何适当的介质传输,包括但不限于无线、电线、光缆、射频(Radio Frequency,RF)等等,或者上述的任意合适的组合。
可以以一种或多种程序设计语言或多种程序设计语言组合来编写用于执行本公开操作的计算机程序代码,程序设计语言包括面向对象的程序设计语言(诸如Java、Smalltalk、C++、Ruby、Go),还包括常规的过程式程序设计语言(诸如“C”语言或类似的程序设计语言)。程序代码可以完全地在用户计算机上执行、部分地在用户计算机上执行、作为一个独立的软件包执行、部分在用户计算机上部分在远程计算机上执行、或者完全在远程计算机或服务器上执行。在涉及远程计算机的情形中,远程计算机可以通过任意种类的网络(包括网络(Local Area Network,LAN)或广域网(Wide Area Network,WAN))连接到用户计算机,或者,可以连接到外部计算机(例如利用因特网服务提供商来通过因特网连接)。
本领域内的技术人员应明白,术语用户终端涵盖任何适合类型的无线用户设备,例如移动电话、便携数据处理装置、便携网络浏览器或车载移动台。
一般来说,本申请的多种实施例可以在硬件或专用电路、软件、逻辑或其任何组合中实现。例如,一些方面可以被实现在硬件中,而其它方面可以被实现在可以被控制器、微处理器或其它计算装置执行的固件或软件中,尽管本申请不限于此。
本申请的实施例可以通过移动装置的数据处理器执行计算机程序指令来实现,例如在处理器实体中,或者通过硬件,或者通过软件和硬件的组合。计算机程序指令可以是汇编指令、指令集架构(Instruction Set Architecture,ISA)指令、机器指令、机器相关指令、微代码、 固件指令、状态设置数据、或者以一种或多种编程语言的任意组合编写的源代码或目标代码。
本申请附图中的任何逻辑流程的框图可以表示程序步骤,或者可以表示相互连接的逻辑电路、模块和功能,或者可以表示程序步骤与逻辑电路、模块和功能的组合。计算机程序可以存储在存储器上。存储器可以具有任何适合于本地技术环境的类型并且可以使用任何适合的数据存储技术实现,例如但不限于只读存储器(ROM)、随机访问存储器(RAM)、光存储器装置和系统(数码多功能光碟DVD或CD光盘)等。计算机可读介质可以包括非瞬时性存储介质。数据处理器可以是任何适合于本地技术环境的类型,例如但不限于通用计算机、专用计算机、微处理器、数字信号处理器(Digital Signal Processing,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、可编程逻辑器件(Field-Programmable Gate Array,FGPA)以及基于多核处理器架构的处理器。

Claims (12)

  1. 一种频段调度方法,应用于网络侧设备,包括:
    获取基准频段和至少一个检测频段,其中,所述基准频段为第一系统不与第二系统相互干扰的频段,所述检测频段为所述第一系统与所述第二系统相互干扰的频段;
    向终端设备发送频段配置信息,其中,所述频段配置信息包括所述基准频段的配置信息和所有检测频段的配置信息;
    接收所述终端设备根据所述频段配置信息发送的频段测量信息,其中,所述频段测量信息包括所述基准频段的测量信息和所有检测频段的测量信息;
    根据所述频段测量信息,确定所述终端设备的可用频段。
  2. 根据权利要求1所述的频段调度方法,其中,所述获取基准频段和至少一个检测频段,包括:
    将第一系统的频段划分为无干扰频段和有干扰频段;
    将所述无干扰频段作为所述基准频段,并将所述有干扰频段按照所述第二系统的粒度划分为所述至少一个检测频段。
  3. 根据权利要求1所述的频段调度方法,其中,所述接收所述终端设备根据所述频段配置信息发送的频段测量信息,包括:
    周期性地接收所述终端设备发送的所述基准频段的测量信息;
    以及,
    在干扰检测时刻,向所述终端设备发送频段检测指示;
    接收所述终端设备发送的所有检测频段的测量信息。
  4. 根据权利要求1所述的频段调度方法,其中,响应于确定所述检测频段的数量等于i,所述根据所述频段测量信息,确定所述终端设备的可用频段,包括:
    根据所述频段测量信息,从i个检测频段中获取满足预设条件的j个检测频段,其中,i≥1,0≤j≤i,i和j为整数;
    将所述j个检测频段和所述基准频段作为所述终端设备的可用频段。
  5. 根据权利要求4所述的频段调度方法,其中,所述从i个检测频段中获取满足预设条件的j个检测频段,包括:
    判断第x个检测频段的测量信息与所述基准频段的测量信息的差值是否大于预设阈值;
    基于所述第x个检测频段的测量信息与所述基准频段的测量信息的差值大于所述预设阈值的判断结果,表示所述第x个检测频段不满足所述预设条件;基于所述第x个检测频段的测量信息与所述基准频段的测量信息的差值小于或等于所述预设阈值的判断结果,表示所述第x个检测频段满足所述预设条件,其中,x为整数,且以1为单位从1逐次递增到i。
  6. 根据权利要求4或5所述的频段调度方法,响应于确定j≥1,在所述将所述j个检测频段和所述基准频段作为所述终端设备的可用频段后,还包括:
    响应于确定所述终端设备上一时刻的通信质量优于当前时刻的通信质量,将所述基准频段作为所述终端设备的可用频段。
  7. 根据权利要求1所述的频段调度方法,其中,所述频段配置信息为信道状态指示-参考信号CSI-RS配置;所述频段测量信息为信道状态指示CSI信息。
  8. 一种频段调度方法,应用于终端设备,包括:
    接收网络侧设备发送的频段配置信息,其中,所述频段配置信息包括所述基准频段的配置信息和所有检测频段的配置信息,基准频段为第一系统不与第二系统相互干扰的频段,检测频段为所述第一系统与所述第二系统相互干扰的频段;
    根据所述频段配置信息,获取并向所述网络侧设备发送频段测量信息,其中,所述频段测量信息包括所述基准频段的测量信息和所有检测频段的测量信息;
    接收所述网络侧设备发送的可用频段。
  9. 根据权利要求8所述的频段调度方法,其中,所述获取并向所述网络侧设备发送频段测量信息,包括:
    周期性地对所述基准频段进行测量,并向所述网络侧设备发送所述基准频段的测量信息;
    以及,
    在干扰检测时刻,接收所述网络侧设备发送的频段检测指示;
    根据所述频段检测指示,对所有检测频段进行测量,并向所述网络侧设备发送所有检测频段的测量信息。
  10. 根据权利要求8所述的频段调度方法,其中,所述频段配置信息为信道状态指示-参考信号CSI-RS配置;所述频段测量信息为信道状态指示CSI信息。
  11. 一种通信节点,包括:处理器;
    所述处理器设置为在执行计算机程序时实现如权利要求1-7中任一所述的频段调度方法;或者,
    所述处理器设置为在执行计算机程序时实现如权利要求8-10中任一所述的频段调度方法。
  12. 一种计算机可读存储介质,存储有计算机程序,所述计算机程序被处理器执行时实现如权利要求1-7中任一所述的频段调度方法,或者实现如权利要求8-10中任一所述的频段调度方法。
PCT/CN2022/074761 2021-03-03 2022-01-28 频段调度方法、通信节点及计算机可读存储介质 WO2022183878A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US18/548,712 US20240147513A1 (en) 2021-03-03 2022-01-28 Frequency band scheduling method, communication node, and computer-readable storage medium
EP22762346.9A EP4304236A1 (en) 2021-03-03 2022-01-28 Frequency band scheduling method, communication node, and computer-readable storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110236699.1A CN115038124A (zh) 2021-03-03 2021-03-03 一种频段调度方法、通信节点及计算机可读存储介质
CN202110236699.1 2021-03-03

Publications (1)

Publication Number Publication Date
WO2022183878A1 true WO2022183878A1 (zh) 2022-09-09

Family

ID=83118359

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/074761 WO2022183878A1 (zh) 2021-03-03 2022-01-28 频段调度方法、通信节点及计算机可读存储介质

Country Status (4)

Country Link
US (1) US20240147513A1 (zh)
EP (1) EP4304236A1 (zh)
CN (1) CN115038124A (zh)
WO (1) WO2022183878A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117176292A (zh) * 2023-11-02 2023-12-05 物空科技(四川)集团有限公司 无线信号定位检测方法、装置、设备及存储介质

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115694547B (zh) * 2022-10-11 2023-06-20 时迈智慧科技有限公司 无线电通讯的智能抗干扰方法、装置、设备及介质
CN116133157B (zh) * 2022-12-29 2024-05-17 中国电信股份有限公司卫星通信分公司 终端连接无线资源的方法、装置、存储介质以及电子设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104796939A (zh) * 2014-01-17 2015-07-22 普天信息技术有限公司 基站频谱感知方法和装置与终端频谱感知方法和装置
CN105075318A (zh) * 2013-07-02 2015-11-18 华为技术有限公司 一种重用频谱方案中异系统干扰规避的方法和装置
CN105636113A (zh) * 2014-11-04 2016-06-01 普天信息技术有限公司 一种频点传输质量的探测方法
CN106209277A (zh) * 2014-11-07 2016-12-07 北京三星通信技术研究有限公司 一种信道状态信息测量的方法和用户设备
WO2021000776A1 (zh) * 2019-07-04 2021-01-07 维沃移动通信有限公司 干扰处理方法、终端及网络侧设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105075318A (zh) * 2013-07-02 2015-11-18 华为技术有限公司 一种重用频谱方案中异系统干扰规避的方法和装置
CN104796939A (zh) * 2014-01-17 2015-07-22 普天信息技术有限公司 基站频谱感知方法和装置与终端频谱感知方法和装置
CN105636113A (zh) * 2014-11-04 2016-06-01 普天信息技术有限公司 一种频点传输质量的探测方法
CN106209277A (zh) * 2014-11-07 2016-12-07 北京三星通信技术研究有限公司 一种信道状态信息测量的方法和用户设备
WO2021000776A1 (zh) * 2019-07-04 2021-01-07 维沃移动通信有限公司 干扰处理方法、终端及网络侧设备

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117176292A (zh) * 2023-11-02 2023-12-05 物空科技(四川)集团有限公司 无线信号定位检测方法、装置、设备及存储介质
CN117176292B (zh) * 2023-11-02 2024-01-05 物空科技(四川)集团有限公司 无线信号定位检测方法、装置、设备及存储介质

Also Published As

Publication number Publication date
CN115038124A (zh) 2022-09-09
US20240147513A1 (en) 2024-05-02
EP4304236A1 (en) 2024-01-10

Similar Documents

Publication Publication Date Title
WO2022183878A1 (zh) 频段调度方法、通信节点及计算机可读存储介质
US11388644B2 (en) Apparatus and method for load balancing in wireless communication system
US9049666B2 (en) Method and apparatus for providing machine-to-machine communication in a wireless network
US8675580B2 (en) Method and apparatus for facilitating packet scheduling for a hybrid communication network
US20220060989A1 (en) Terminal energy-saving control method, apparatus and device
JP6300054B2 (ja) ユーザ機器および電力割当方法
EP3965341A1 (en) Rate matching method, device and storage medium
CN103517284A (zh) 对干扰信号进行干扰处理的方法和装置
US20240090030A1 (en) Channel occupancy time determination method, first communication node and storage medium
CN103763777A (zh) 一种异构网络的控制方法及基站
US20220225242A1 (en) Power adjustment method and apparatus
CN111050387B (zh) 基于能效估计的基站休眠方法、装置、电子设备及介质
JP2016508297A (ja) チャネル・アウェアなジョブ・スケジューリング
EP3494728A1 (en) Determining handover parameters
CN114071747A (zh) 信息确定方法、信息发送方法及终端
US20230062005A1 (en) Method and device for transmitting control information
CN111565409B (zh) 一种噪声功率计算方法及装置
WO2023246696A1 (zh) 资源集合确定方法、通信设备及存储介质
EP4346288A1 (en) Method for determining service access point, and information sending method, communication node and storage medium
CN112738828B (zh) 一种节能控制方法及装置
CN114521025B (zh) 无线自组网的时隙分配方法、装置及电子设备
CN115865239B (zh) 基于载波聚合的信息上报方法、装置、介质及电子设备
WO2022242702A1 (zh) 误块率调整方法、通信节点及存储介质
US20240063953A1 (en) Logical channel prioritization in unlicensed spectrum
WO2024065187A1 (zh) 通信方法、通信装置、介质及程序产品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22762346

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18548712

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2022762346

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022762346

Country of ref document: EP

Effective date: 20231004