WO2022242702A1 - 误块率调整方法、通信节点及存储介质 - Google Patents

误块率调整方法、通信节点及存储介质 Download PDF

Info

Publication number
WO2022242702A1
WO2022242702A1 PCT/CN2022/093752 CN2022093752W WO2022242702A1 WO 2022242702 A1 WO2022242702 A1 WO 2022242702A1 CN 2022093752 W CN2022093752 W CN 2022093752W WO 2022242702 A1 WO2022242702 A1 WO 2022242702A1
Authority
WO
WIPO (PCT)
Prior art keywords
edge
neighboring cell
bler
utilization rate
interfering
Prior art date
Application number
PCT/CN2022/093752
Other languages
English (en)
French (fr)
Inventor
雷超琴
刘巧艳
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to EP22804022.6A priority Critical patent/EP4344101A1/en
Priority to BR112023024056A priority patent/BR112023024056A2/pt
Publication of WO2022242702A1 publication Critical patent/WO2022242702A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/345Interference values
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/08Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters
    • H04L43/0823Errors, e.g. transmission errors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/16Threshold monitoring
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/18Negotiating wireless communication parameters

Definitions

  • the present application relates to the technical field of communication, for example, to a method for adjusting a block error rate, a communication node and a storage medium.
  • the embodiment of the present application proposes a block error rate adjustment method, a communication node and a storage medium, and adaptively adjusts the block error rate (BLock Error Rate, BLER), thereby increasing the throughput of edge UEs and improving user experience.
  • BLER Block Error Rate
  • the embodiment of the present application proposes a block error rate adjustment method, including:
  • the block error rate BLER of the edge user equipment UE is a preset value, obtain the resource block RB utilization rate of each interference neighbor cell in at least one interference neighbor cell of the edge UE;
  • N interfering neighboring cells whose interference to the edge UE meets the preset conditions, N is a positive integer;
  • the embodiment of the present application also provides a communication node, including: a processor; the processor is configured to implement the method in any one of the foregoing embodiments when executing a computer program.
  • the present application provides a computer-readable storage medium storing a computer program.
  • the computer program is executed by a processor, the method in any one of the foregoing embodiments is implemented.
  • FIG. 1 is a schematic flowchart of a method for adjusting a block error rate provided by an embodiment
  • Fig. 2 is a schematic flowchart of another block error rate adjustment method provided by an embodiment
  • Fig. 3 is a schematic structural diagram of a block error rate adjustment device provided by an embodiment
  • Fig. 4 is a schematic structural diagram of a base station provided by an embodiment.
  • the embodiment of the present application provides a mobile communication network (including but not limited to the fifth-generation mobile communication network (5th-Generation, 5G)), the network architecture of which may include terminal equipment and network side equipment (also referred to as network equipment or access network equipment).
  • the terminal equipment is connected to the network side equipment in a wireless manner, and the terminal equipment may be fixed or mobile.
  • a block error rate adjustment method, a communication node, and a storage medium that can run on the above-mentioned network architecture are provided, and the BLER of the edge UE is adaptively adjusted by using the load of the interfering neighboring cell of the edge UE, so that the Improve the throughput of edge UEs under medium and low loads and improve user experience.
  • the network side device is the access device for the terminal device to access the mobile communication system through wireless means, which can be a base station (base station), an evolved base station (evolved NodeB, eNodeB), an integrated access backhaul (Integrated Access and Backhaul) , IAB) node, relay node (relay node, RN), transmission and reception point (transmission reception point, TRP), access point (Access Point, AP), next generation base station (next generation NodeB, gNB), a base station in a future mobile communication system or an access node in a Wireless Fidelity (WiFi) system, etc.; it can also be a module or unit that completes some functions of a base station, for example, it can be a centralized unit (central unit , CU), can also be distributed unit (distributed unit, DU), or integrated access backhaul-mobile terminal (Integrated Access and Backhaul-Mobile-Termination, IAB-MT), IAB-DU.
  • base station base station
  • a terminal device may also be called a terminal, a user equipment (user equipment, UE), a mobile station, a mobile terminal, and the like.
  • Terminal devices can be mobile phones, tablet computers, computers with wireless transceiver functions, virtual reality terminal devices, augmented reality terminal devices, wireless terminals in industrial control, wireless terminals in unmanned driving, wireless terminals in remote surgery, smart grids Wireless terminals in transportation security, wireless terminals in smart cities, wireless terminals in smart homes, IAB-MT, etc.
  • the embodiment of the present application does not limit the specific technology and specific device form adopted by the terminal device.
  • An embodiment of the present application provides a method for adjusting the block error rate, including: when the block error rate BLER of the edge user equipment UE is a preset value, obtaining the resource block RB of each interfering adjacent cell in at least one interfering adjacent cell of the edge UE Utilization rate: judging whether the RB utilization rate of each target interference neighbor cell in at least one target interference neighbor cell is less than the first preset threshold of each target interference neighbor cell, wherein at least one target interference neighbor cell is the at least In an interfering neighboring cell, N interfering neighboring cells that meet the preset conditions for edge UE interference, N is a positive integer; if the RB utilization rate of each target interfering neighboring cell is less than the first preset of each target interfering neighboring cell threshold, then increase the BLER of the edge UE.
  • Figure 1 shows a schematic flow chart of a method for adjusting the block error rate provided by an embodiment.
  • the method provided by this embodiment is applicable to network side equipment (such as base stations, etc.), and the method includes the following steps:
  • the base station acquires an edge UE and at least one interfering neighboring cell of the edge UE.
  • the method of "the base station obtains the edge UE and at least one interfering neighboring cell of the edge UE" in step S110 may be: the base station receives the first event reported by the edge UE, the first event includes the interfering neighboring cell of the edge UE, The first event is used to indicate that the difference between the received power of the interfering neighboring cell of the edge UE and the received power of the cell where the edge UE is located is not less than a preset threshold.
  • step S110 the base station obtains the edge UE and at least one interfering neighbor cell of the edge UE is realized by configuring the first event (for example, A3 event) in the cell: the UE reporting the A3 event to the base station is an edge UE, and at least one of the A3 event reports The neighboring cell is at least one interfering neighboring cell of the edge UE.
  • the A3 event is triggered when the difference between the received power of its neighbor cell and the received power of the cell where the UE is located is not less than the preset threshold. Report the A3 incident.
  • the present application may also obtain the edge UE and the interfering neighbor cell of the edge UE according to other methods.
  • the base station sets the BLER of the edge UE to a preset value.
  • Each edge UE needs to set BLER respectively.
  • the preset value can be understood as the BLER default value.
  • the default BLER values of different edge UEs may be the same or different.
  • the preset value may be configured according to the protocol standard of 3GPP, or may be configured according to other principles.
  • the base station sets the BLER adjustment identifier of the edge UE as the first identifier.
  • the BLER adjustment flag of the edge UE may be AdjustBLERFlag
  • the AdjustBLERFlag is a UE-level variable, that is, an edge UE has a BLER adjustment flag.
  • the first identifier is 0, and the second identifier is 1; or, the first identifier is 1, and the second identifier is 0.
  • other values can also be selected for the first identifier and the second identifier.
  • the base station acquires the RB utilization rate of each interfering neighboring cell of the edge UE.
  • each cell can periodically collect statistics on the RB utilization rate of its own cell and send it to the surrounding interfered cells.
  • the RB utilization rate of each interfering neighboring cell of the edge UE is the RB utilization rate at the cell level or the RB utilization rate at the bandwidth part (Bandwidth Part, BWP) level.
  • the RB utilization rate of each interfering neighboring cell of the edge UE is the RB utilization rate of the cell level; while for 5G, the RB utilization rate of each interfering neighboring cell of the edge UE is The rate is the RB utilization rate at the cell level or the RB utilization rate at the BWP level.
  • the base station judges whether the RB utilization rate of each target interfering neighboring cell in at least one target interfering neighboring cell is less than the first preset threshold of each target interfering neighboring cell, wherein at least one target interfering neighboring cell is at least one interfering In the neighboring cells, N interfering neighboring cells whose interference to the edge UE satisfies a preset condition, where N is a positive integer.
  • the at least one target interfering neighboring cell is N interfering neighboring cells that meet preset conditions for interfering with the edge UE.
  • the at least one target interfering neighboring cell may be the N interfering neighboring cells with the strongest interference for the edge UE.
  • N The value of N is selected according to the interference strength received by the edge UE and the computational complexity.
  • the value of the first preset threshold may be the same or different.
  • the base station uses the RB utilization rate corresponding to the BWP activated by the edge UE to determine whether the RB utilization rate of each target interference neighbor cell is less than the RB utilization rate of the edge UE.
  • the first preset threshold of the target interfering neighboring cell is the RB utilization rate of the BWP level.
  • the base station increases the BLER adjustment flag of the edge UE BLER, and change the BLER adjustment flag of the edge UE from the first flag to the second flag.
  • step S140 If the RB utilization rate of at least one target interfering neighboring cell among all target interfering neighboring cells is respectively greater than or equal to the first preset threshold of the at least one target interfering neighboring cell, return to step S140.
  • FIG. 2 shows a schematic flowchart of another block error rate adjustment method provided by an embodiment. As shown in FIG. 2, after step S160, the method further includes step S170 -S190.
  • the base station reacquires the RB utilization rate of each interfering neighboring cell in at least one interfering neighboring cell of the edge UE.
  • the base station judges whether the RB utilization rate of each target interference neighbor cell in at least one target interference neighbor cell is greater than a second preset threshold of each target interference neighbor cell.
  • the value of the second preset threshold may be the same or different.
  • the base station uses the RB utilization rate corresponding to the BWP activated by the edge UE to judge whether the RB utilization rate of each target interference neighbor cell is greater than the RB utilization rate The second preset threshold of the target interfering neighboring cell.
  • the base station restores the BLER of the edge UE is a preset value, and the BLER adjustment flag of the edge UE is changed from the second flag to the first flag.
  • step S140 If the RB utilization rate of at least one target interfering neighboring cell among all target interfering neighboring cells is less than or equal to the second preset threshold of the at least one target interfering neighboring cell, return to step S140.
  • the method includes the steps of:
  • the base station acquires UE1 belonging to Cell1 and an interfering neighboring cell Cell2 of UE1.
  • Cell1 is configured with an A3 event.
  • UE1 reports an A3 event and the neighbor cell that reports the A3 event is Cell2, UE1 is an edge UE, and the interfering neighbor cell of UE1 is Cell2.
  • the base station sets the BLER of UE1 to 10%.
  • the base station sets the BLER adjustment flag AdjustBLERFlag of UE1 to 0.
  • the base station acquires the RB utilization rate RBratio of Cell2.
  • the base station judges whether the RB utilization rate RBratio of Cell2 is less than the first preset threshold 30% of Cell2.
  • step S260 If the RB utilization rate RBratio of Cell2 is less than 30%, increase the BLER of UE1 from 10% to 20%, and set the BLER adjustment flag AdjustBLERFlag of UE1 from 0 to 1; if the RB utilization rate RBratio of Cell2 is greater than or If it is equal to 30%, return to step S240.
  • the base station reacquires the RB utilization rate RBratio of Cell2, and if the RB utilization rate RBratio of Cell2 is greater than the second preset threshold value 50% of Cell2, restore the BLER of UE1 to 10%, and adjust the BLER adjustment flag AdjustBLERFlag of UE1 from 1 set to 0.
  • the method includes the steps of:
  • the base station acquires UE1 belonging to Cell1 and an interfering neighboring cell Cell2 of UE1.
  • Cell1 is configured with an A3 event.
  • UE1 reports an A3 event and the neighbor cell that reports the A3 event is Cell2, UE1 is an edge UE, and the interfering neighbor cell of UE1 is Cell2.
  • the base station sets the BLER of UE1 to 10%.
  • the base station sets the BLER adjustment flag AdjustBLERFlag of UE1 to 0.
  • the base station acquires the RB utilization rate BWPRBratio of each BWP of Cell2.
  • the base station judges whether the RB utilization rate BWPRBratio of the BWP of Cell2 corresponding to the BWP activated by UE1 is less than the first preset threshold 30% of Cell2.
  • step S360 If the RB utilization rate BWPRBratio of the BWP of Cell2 corresponding to the BWP activated by UE1 is less than 30%, increase the BLER of UE1 from 10% to 20%, and set the BLER adjustment flag AdjustBLERFlag of UE1 from 0 to 1; if If the RB utilization rate BWPRBratio of the BWP of Cell2 corresponding to the BWP activated by UE1 is less than 30%, return to step S340.
  • the base station reacquires the RB utilization rate BWPRBratio of each BWP of Cell2, and if the RB utilization rate BWPRBratio of the BWP of Cell2 corresponding to the BWP activated by UE1 is greater than the second preset threshold of Cell2, 50%, restore the BLER of UE1 to 10 %, and set the BLER adjustment flag AdjustBLERFlag of UE1 from 1 to 0.
  • the method includes the steps of:
  • the base station acquires UE1 belonging to Cell1 and interfering neighboring cells Cell2, Cell3 and Cell4 of UE1.
  • Cell1 is configured with an A3 event.
  • UE1 reports an A3 event
  • the neighbor cells reporting the A3 event are Cell2, Cell3, and Cell4
  • UE1 is an edge UE
  • the interfering neighbor cells of UE1 are Cell2, Cell3, and Cell4.
  • the base station sets the BLER of UE1 to 10%.
  • the base station sets the BLER adjustment flag AdjustBLERFlag of UE1 to 0.
  • the base station obtains the RB utilization rate Cell2RBratio of Cell2, the RB utilization rate Cell3RBratio of Cell3, and the RB utilization rate Cell4RBratio of Cell4.
  • the base station judges whether the RB utilization rate Cell2RBratio of Cell2 is less than 30% of the first preset threshold of Cell2, and judges whether the RB utilization rate Cell3RBratio of Cell3 is less than 30% of the first preset threshold of Cell3.
  • step S460 If yes, increase the BLER of UE1 from 10% to 20%, and set the BLER adjustment flag AdjustBLERFlag of UE1 from 0 to 1; if the RB utilization rate Cell2RBratio of Cell2 is greater than or equal to the first preset threshold of Cell2 30 % or the RB utilization rate Cell3RBratio of Cell3 is greater than or equal to less than 30% of the first preset threshold of Cell3, then return to step S440.
  • the base station reacquires the RB utilization rate Cell2RBratio of Cell2, the RB utilization rate Cell3RBratio of Cell3 and the RB utilization rate Cell4RBratio of Cell4, if the RB utilization rate Cell2Rbratio of Cell2 is greater than the second preset threshold of Cell2 50%, and the RB utilization rate of Cell3
  • Cell3RBratio is greater than 50% of the second preset threshold of Cell3
  • the BLER of UE1 is restored to 10%
  • the BLER adjustment flag AdjustBLERFlag of UE1 is set from 1 to 0.
  • the method includes the following steps:
  • the base station acquires UE1 belonging to Cell1 and interfering neighboring cells Cell2, Cell3 and Cell4 of UE1.
  • Cell1 is configured with an A3 event.
  • UE1 reports an A3 event
  • the neighbor cells reporting the A3 event are Cell2, Cell3, and Cell4
  • UE1 is an edge UE
  • the interfering neighbor cells of UE1 are Cell2, Cell3, and Cell4.
  • the base station sets the BLER of UE1 to 10%.
  • the base station sets the BLER adjustment flag AdjustBLERFlag of UE1 to 0.
  • the base station acquires the RB utilization rate Cell2RBratio of Cell2, the RB utilization rate Cell3RBratio of Cell3, and the RB utilization rate Cell4RBratio of Cell4.
  • the base station judges whether the RB utilization rate Cell2RBratio of Cell2 is less than 20% of the first preset threshold of Cell2, and judges whether the RB utilization rate Cell3RBratio of Cell3 is less than 30% of the first preset threshold of Cell3.
  • the base station reacquires the RB utilization rate Cell2RBratio of Cell2, the RB utilization rate Cell3RBratio of Cell3, and the RB utilization rate Cell4RBratio of Cell4, if the RB utilization rate Cell2Rbratio of Cell2 is greater than the second preset threshold of Cell2 50%, and the RB utilization rate of Cell3
  • Cell3RBratio is greater than 70% of the second preset threshold of Cell3
  • the BLER of UE1 is restored to 10%
  • the BLER adjustment flag AdjustBLERFlag of UE1 is set from 1 to 0.
  • the embodiment of the present application provides a method for adjusting the block error rate, including: setting the block error rate BLER of the edge user equipment UE as a preset value, and setting the BLER adjustment flag of the edge UE as the first flag;
  • the block error rate BLER of the UE is a preset value
  • the BLER of the edge UE is increased, thereby realizing self-discipline.
  • FIG. 3 shows a schematic structural diagram of a block error rate adjustment device provided by an embodiment.
  • the block error rate adjustment device includes a processing module 10 and a communication module 11 .
  • the communication module 11 is configured to obtain the resource block RB utilization rate of each interfering adjacent cell in at least one interfering adjacent cell of the edge UE when the block error rate BLER of the edge user equipment UE is a preset value; the processing module 10, It is set to judge whether the RB utilization rate of each target interference neighbor cell in at least one target interference neighbor cell is less than the first preset threshold value of each target interference neighbor cell, wherein the at least one target interference neighbor cell is at least one In the interfering neighboring cells, N interfering neighboring cells that meet the preset conditions for the interference of the edge UE, N is a positive integer; the RB utilization rate of each target interfering neighboring cell is less than the first preset threshold of each target interfering neighboring cell In this case, increase the BLER of the edge UE.
  • the block error rate adjustment device provided in this embodiment is to implement the block error rate adjustment method in the above embodiment.
  • the implementation principle and technical effect of the block error rate adjustment device provided in this embodiment are similar to those in the above embodiment, and will not be repeated here.
  • the processing module 10 is also configured to set the BLER of the edge UE to The BLER adjustment flag of the edge UE is changed from the first flag to the second flag.
  • the communication module 11 is further configured to reacquire the RB utilization rate of each interfering neighboring cell in at least one interfering neighboring cell of the edge UE after the processing module 10 increases the BLER of the edge UE; the processing module 10, It is also set to judge whether the RB utilization rate of each target interference neighbor cell in at least one target interference neighbor cell is greater than the second preset threshold value of each target interference neighbor cell; the RB utilization rate of each target interference neighbor cell is greater than In the case of the second preset threshold for each target interfering neighbor cell, restore the BLER of the edge UE to the preset value.
  • the BLER adjustment flag of the edge UE is the second flag; the processing module 10 is also configured to set the BLER of the edge UE to a preset value after the BLER of the edge UE is restored to a preset value.
  • the adjustment flag is changed from the second flag to the first flag.
  • the communication module 11 is further configured to obtain the edge UE and at least one interfering neighboring cell of the edge UE.
  • the communication module 11 is configured to obtain the edge UE and at least one interfering neighboring cell of the edge UE in the following manner: receiving a first event reported by the edge UE, wherein the first event is used to indicate at least one of the edge UE The difference between the received power of the interfering neighboring cell and the receiving power of the cell where the edge UE is located is not less than a preset threshold; determining at least one interfering neighboring cell indicated in the first event as at least one interfering neighboring cell of the edge UE .
  • an edge UE has a BLER adjustment identifier.
  • the RB utilization rate of each interfering neighboring cell of the edge UE is a cell-level RB utilization rate or a bandwidth part BWP-level RB utilization rate.
  • the value of N is selected according to the intensity of interference received by the edge UE and the computational complexity.
  • the first identifier is 0, and the second identifier is 1; or, the first identifier is 1, and the second identifier is 0.
  • An embodiment of the present application further provides a communication node, including: a processor configured to implement the method provided in any embodiment of the present application when executing a computer program.
  • a communication node is a base station.
  • Fig. 4 shows a schematic structural diagram of a base station provided by an embodiment.
  • the base station includes a processor 60, a memory 61 and a communication interface 62; the number of processors 60 in the base station can be one or more
  • a processor 60 is taken as an example; the processor 60, memory 61, and communication interface 62 in the base station can be connected through a bus or in other ways, and in FIG. 4, the connection through a bus is taken as an example.
  • a bus refers to one or more of a variety of bus structures, including a memory bus or memory controller, a peripheral bus, an accelerated graphics port, a processor, or a local bus using any of a variety of bus structures.
  • the memory 61 can be configured to store software programs, computer-executable programs and modules, such as program instructions/modules corresponding to the methods in the embodiments of the present application.
  • the processor 60 executes at least one function application and data processing of the base station by running the software programs, instructions and modules stored in the memory 61, that is, implements the above method.
  • the memory 61 may include a program storage area and a data storage area, wherein the program storage area may store an operating system and an application program required by at least one function; the data storage area may store data created according to the use of the terminal, and the like.
  • the memory 61 may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one magnetic disk storage device, flash memory device, or other non-volatile solid-state storage devices.
  • memory 61 may include memory located remotely relative to processor 60, and these remote memories may be connected to the base station through a network. Examples of the aforementioned networks include, but are not limited to, the Internet, intranets, networks, mobile communication networks, and combinations thereof.
  • the communication interface 62 can be configured to receive and send data.
  • the embodiment of the present application also provides a computer-readable storage medium, on which a computer program is stored, and when the computer program is executed by a processor, the method provided in any embodiment of the present application is implemented.
  • the computer storage medium in the embodiments of the present application may use any combination of one or more computer-readable media.
  • the computer readable medium may be a computer readable signal medium or a computer readable storage medium.
  • a computer-readable storage medium may be, for example but not limited to, an electrical, magnetic, optical, electromagnetic, infrared, or semiconductor system, device, or device, or any combination thereof.
  • Computer-readable storage media include (non-exhaustive list): electrical connections with one or more conductors, portable computer disks, hard disks, Random Access Memory (RAM), Read-Only Memory (Read-Only Memory) , ROM), erasable programmable read-only memory (Electrically Erasable Programmable Read-Only Memory, EPROM), flash memory, optical fiber, portable compact disk read-only memory (Compact Disc Read-Only Memory, CD-ROM), optical storage devices , a magnetic storage device, or any suitable combination of the above.
  • a computer-readable storage medium may be any tangible medium that contains or stores a program that can be used by or in conjunction with an instruction execution system, apparatus, or device.
  • a computer readable signal medium may include a data signal carrying computer readable program code in baseband or as part of a carrier wave. Such propagated data signals may take many forms, including but not limited to electromagnetic signals, optical signals, or any suitable combination of the foregoing.
  • a computer-readable signal medium may also be any computer-readable medium other than a computer-readable storage medium, which can send, propagate, or transmit a program for use by or in conjunction with an instruction execution system, apparatus, or device. .
  • the program code contained on the computer readable medium can be transmitted by any appropriate medium, including but not limited to wireless, electric wire, optical cable, radio frequency (Radio Frequency, RF), etc., or any suitable combination of the above.
  • any appropriate medium including but not limited to wireless, electric wire, optical cable, radio frequency (Radio Frequency, RF), etc., or any suitable combination of the above.
  • Computer program code for performing the operations of the present disclosure may be written in one or more programming languages, or a combination of programming languages, including object-oriented programming languages such as Java, Smalltalk, C++, Ruby, Go), also includes conventional procedural programming languages (such as the "C" language or similar programming languages).
  • the program code may execute entirely on the user's computer, partly on the user's computer, as a stand-alone software package, partly on the user's computer and partly on a remote computer or entirely on the remote computer or server.
  • the remote computer can be connected to the user's computer through any kind of network, including a Local Area Network (LAN) or a Wide Area Network (WAN), or it can be connected to an external computer such as use an Internet service provider to connect via the Internet).
  • LAN Local Area Network
  • WAN Wide Area Network
  • user terminal covers any suitable type of wireless user equipment, such as a mobile phone, a portable data processing device, a portable web browser or a vehicle-mounted mobile station.
  • the various embodiments of the present application can be implemented in hardware or special purpose circuits, software, logic or any combination thereof.
  • some aspects may be implemented in hardware, while other aspects may be implemented in firmware or software, which may be executed by a controller, microprocessor or other computing device, although the application is not limited thereto.
  • Computer program instructions may be assembly instructions, Instruction Set Architecture (ISA) instructions, machine instructions, machine-related instructions, microcode, firmware instructions, state setting data, or written in any combination of one or more programming languages source or object code.
  • ISA Instruction Set Architecture
  • Any logic flow block diagrams in the drawings of the present application may represent program steps, or may represent interconnected logic circuits, modules and functions, or may represent a combination of program steps and logic circuits, modules and functions.
  • Computer programs can be stored on memory.
  • the memory may be of any type suitable to the local technical environment and may be implemented using any suitable data storage technology, such as but not limited to ROM, RAM, optical memory devices and systems (digital versatile disc DVD or CD discs), etc.
  • Computer readable media may include non-transitory storage media.
  • Data processors can be of any type suitable for the local technical environment, such as but not limited to general purpose computers, special purpose computers, microprocessors, digital signal processors (Digital Signal Processing, DSP), application specific integrated circuits (Application Specific Integrated Circuit, ASIC ), programmable logic devices (Field-Programmable Gate Array, FPGA) and processors based on multi-core processor architecture.
  • DSP Digital Signal Processing
  • ASIC Application Specific Integrated Circuit
  • FPGA Field-Programmable Gate Array

Abstract

本申请公开了一种误块率调整方法、通信节点及存储介质。该方法包括:在边缘用户设备UE的误块率BLER为预设值的情况下,获取边缘UE的至少一个干扰邻区中每个干扰邻区的资源块RB利用率;判断至少一个目标干扰邻区中每个目标干扰邻区的RB利用率是否小于所述每个目标干扰邻区的第一预设阈值,其中,所述至少一个目标干扰邻区为所述至少一个干扰邻区中对边缘UE干扰满足预设条件的N个干扰邻区,N为正整数;在每个目标干扰邻区的RB利用率小于所述每个目标干扰邻区的第一预设阈值的情况下,调高边缘UE的BLER。

Description

误块率调整方法、通信节点及存储介质
本申请要求在2021年05月19日提交中国专利局、申请号为202110546563.0的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,例如涉及一种误块率调整方法、通信节点及存储介质。
背景技术
随着无线通信技术的飞速发展,用户对流量的需求越来越高。通常,在一个小区的网络覆盖下,离基站越近的用户接收信号的强度越强,而离基站越远的用户接收信号的强度越低。并且,这些离基站远的用户受到来自周围小区的干扰也比较强,导致这部分用户的体验就可能会成为网络的瓶颈。因此,如何提升这部分用户的流量以及用户体验就会成为当前亟需解决的问题。
发明内容
本申请实施例提出一种误块率调整方法、通信节点及存储介质,利用边缘用户设备(User Equipment,UE)的干扰邻区的负荷情况自适应调整边缘UE的误块率(BLock Error Rate,BLER),从而提升边缘UE的吞吐量,改善用户体验。
本申请实施例提出了一种误块率调整方法,包括:
在边缘用户设备UE的误块率BLER为预设值的情况下,获取边缘UE的至少一个干扰邻区中每个干扰邻区的资源块RB利用率;
判断至少一个目标干扰邻区中每个目标干扰邻区的RB利用率是否小于所述每个目标干扰邻区的第一预设阈值,其中,所述至少一个目标干扰邻区为所述至少一个干扰邻区中对边缘UE干扰满足预设条件的N个干扰邻区,N为正整数;
在每个目标干扰邻区的RB利用率小于所述每个目标干扰邻区的第一预设阈值的情况下,调高边缘UE的BLER。
本申请实施例还提出了一种通信节点,包括:处理器;处理器设置为在执行计算机程序时实现上述任一实施例的方法。
本申请提供了一种计算机可读存储介质,存储有计算机程序,计算机程序被处理器执行时实现上述任一实施例的方法。
关于本申请的以上实施例和其他方面以及其实现方式,在附图说明、具体实施方式和权利要求中提供更多说明。
附图说明
图1是一实施例提供的一种误块率调整方法的流程示意图;
图2是一实施例提供的另一种误块率调整方法的流程示意图;
图3是一实施例提供的一种误块率调整装置的结构示意图;
图4是一实施例提供的一种基站的结构示意图。
具体实施方式
应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
在后续的描述中,使用用于表示元件的诸如“模块”、“部件”或“单元”的后缀仅为了有利于本申请的说明,其本身没有特有的意义。因此,“模块”、“部件”或“单元”可以混合地使用。
通常,在一个小区的网络覆盖下,离基站近的用户由于距基站的距离近、路损小,接收信号的强度通常都比较强,且受到周围小区的干扰也比较小,用户自身的信干噪比不会成为制约流量的因素;然而,离基站远的用户由于距基站的距离远、路损大,接收信号的强度通常都比较低,且由于处于小区边缘,受到周围小区的干扰也比较强,这部分用户的信干噪比就会比较低,导致这部分用户的体验就可能会成为网络的瓶颈,对于运营商而言,这部分用户也可能成为投诉网络质量不好的集中用户群体。因此,如何提升这部分用户的流量以及用户体验就会成为当前亟需解决的问题。本申请实施例提供了一种移动通信网络(包括但不限于第五代移动通信网络(5th-Generation,5G)),该网络的网络架构可以包括终端设备和网络侧设备(也可以称为网络设备或者接入网设备)。终端设备通过无线的方式与网络侧设备连接,终端设备可以是固定位置的,也可以是可移动的。在本申请实施例中,提供一种可运行于上述网络架构上的误块率调整方法、通信节点及存储介质,利用边缘UE的干扰邻区的负荷情况自适应调整边缘UE的BLER,从而在中低负荷下提升边缘UE的吞吐量,改善用户体验。
网络侧设备是终端设备通过无线方式接入到该移动通信系统中的接入设备,可以是基站(base station)、演进型基站(evolved NodeB,eNodeB)、集成接入回传(Integrated Access and Backhaul,IAB)节点、中继节点(relay node, RN)、发送接收点(transmission reception point,TRP)、接入点(Access Point,AP)、5G移动通信系统中的下一代基站(next generation NodeB,gNB)、未来移动通信系统中的基站或无线保真(Wireless Fidelity,WiFi)系统中的接入节点等;也可以是完成基站部分功能的模块或单元,例如,可以是集中式单元(central unit,CU),也可以是分布式单元(distributed unit,DU),或者集成接入回传-移动终端(Integrated Access and Backhaul-Mobile-Termination,IAB-MT)、IAB-DU。本申请的实施例对网络侧设备所采用的具体技术和具体设备形态不做限定。
终端设备也可以称为终端、用户设备(user equipment,UE)、移动台、移动终端等。终端设备可以是手机、平板电脑、带无线收发功能的电脑、虚拟现实终端设备、增强现实终端设备、工业控制中的无线终端、无人驾驶中的无线终端、远程手术中的无线终端、智能电网中的无线终端、运输安全中的无线终端、智慧城市中的无线终端、智慧家庭中的无线终端、IAB-MT等等。本申请的实施例对终端设备所采用的具体技术和具体设备形态不做限定。
下面,结合网络侧设备和终端设备描述本申请实施例提供的方案。在本申请的描述中,术语“系统”和“网络”在本申请中常被可互换使用。“第一”、“第二”等词汇,仅用于区分描述的目的,而不能理解为指示或暗示相对重要性,也不能理解为指示或暗示顺序。本申请下述多个实施例可以单独执行,多个实施例之间也可以相互结合执行,本申请实施例对此不作具体限制。
本申请实施例提供一种误块率调整方法,包括:当边缘用户设备UE的误块率BLER为预设值时,获取边缘UE的至少一个干扰邻区中每个干扰邻区的资源块RB利用率;判断至少一个目标干扰邻区中每个目标干扰邻区的RB利用率是否小于所述每个目标干扰邻区的第一预设阈值,其中,至少一个目标干扰邻区为所述至少一个干扰邻区中对边缘UE干扰满足预设条件的N个干扰邻区,N为正整数;若每个目标干扰邻区的RB利用率小于所述每个目标干扰邻区的第一预设阈值,则调高边缘UE的BLER。
图1示出了一实施例提供的一种误块率调整方法的流程示意图,如图1所示,本实施例提供的方法适用于网络侧设备(如基站等),该方法包括如下步骤:
S110、基站获取边缘UE和边缘UE的至少一个干扰邻区。
在一实施例中,步骤S110中“基站获取边缘UE和边缘UE的至少一个干扰邻区”的方法可以为:基站接收边缘UE上报的第一事件,第一事件包括边缘 UE的干扰邻区,第一事件用于指示边缘UE的干扰邻区的接收功率与边缘UE所在小区的接收功率的差值不小于预设阈值。
即步骤S110中“基站获取边缘UE和边缘UE的至少一个干扰邻区”是通过小区配置第一事件(例如A3事件)实现:向基站上报A3事件的UE为边缘UE,A3事件上报的至少一个邻区为边缘UE的至少一个干扰邻区。A3事件依据第三代合作伙伴计划(3rd Generation Partnership Project,3GPP)协议标准规定,当UE测量出其邻区的接收功率与UE自身所在小区的接收功率的差值不小于预设阈值时,触发上报A3事件。
当然,本申请也可以根据其他方法获取边缘UE和边缘UE的干扰邻区。
S120、基站将边缘UE的BLER设置为预设值。
每个边缘UE分别需要设置BLER。预设值可以理解为BLER默认值。在本申请实施例中,不同边缘UE的BLER默认值可以相同,也可以不同。
在一实施例中,预设值可以根据3GPP的协议标准配置,也可以根据其他原则配置。
S130、基站将边缘UE的BLER调整标识设置为第一标识。
在一实施例中,边缘UE的BLER调整标识可以为AdjustBLERFlag,AdjustBLERFlag为UE级变量,即一个边缘UE具有一个BLER调整标识。
可选的,第一标识为0,第二标识为1;或者,第一标识为1,第二标识为0。当然,第一标识和第二标识也可以选择其他值。
S140、基站获取边缘UE的每个干扰邻区的RB利用率。
可以理解的是,每个小区都可以周期性地统计本小区的RB利用率并将其发送给周围受干扰的小区。
在一实施例中,边缘UE的每个干扰邻区的RB利用率为小区级的RB利用率或者带宽部分(Bandwidth Part,BWP)级的RB利用率。
对于第四代移动通信网络(4th-Generation,4G),边缘UE的每个干扰邻区的RB利用率为小区级的RB利用率;而对于5G,边缘UE的每个干扰邻区的RB利用率为小区级的RB利用率或者BWP级的RB利用率。
S150、基站判断至少一个目标干扰邻区中每个目标干扰邻区的RB利用率是否小于所述每个目标干扰邻区的第一预设阈值,其中,至少一个目标干扰邻区为至少一个干扰邻区中对边缘UE干扰满足预设条件的N个干扰邻区,N为正整数。
在一实施例中,至少一个目标干扰邻区为对边缘UE干扰满足预设条件的N 个干扰邻区,例如至少一个目标干扰邻区可以为对边缘UE干扰最强的N个干扰邻区。
N的取值根据边缘UE受到的干扰强度以及计算复杂度选择。
另外,对于不同的目标干扰邻区,其第一预设阈值的取值可以相同,也可以不同。
当边缘UE的每个目标干扰邻区的RB利用率为BWP级的RB利用率时,基站是使用边缘UE激活的BWP对应的RB利用率判断每个目标干扰邻区的RB利用率是否小于该目标干扰邻区的第一预设阈值的。
S160、若每个目标干扰邻区的RB利用率小于所述每个目标干扰邻区的第一预设阈值,且此时边缘UE的BLER调整标识为第一标识,则基站调高边缘UE的BLER,并将边缘UE的BLER调整标识从第一标识变为第二标识。
若全部目标干扰邻区中的至少一个目标目标干扰邻区的RB利用率分别大于或者等于该至少一个目标干扰邻区的第一预设阈值,则返回执行步骤S140。
在上述实施例的基础上,结合图1,图2示出了一实施例提供的另一种误块率调整方法的流程示意图,如图2所示,在步骤S160后,方法还包括步骤S170-S190。
S170、基站重新获取边缘UE的至少一个干扰邻区中每个干扰邻区的RB利用率。
S180、基站判断至少一个目标干扰邻区中每个目标干扰邻区的RB利用率是否大于所述每个目标干扰邻区的第二预设阈值。
另外,对于不同的目标干扰邻区,其第二预设阈值的取值可以相同,也可以不同。
当边缘UE的每个目标干扰邻区的RB利用率为BWP级的RB利用率时,基站是使用边缘UE激活的BWP对应的RB利用率判断每个目标干扰邻区的RB利用率是否大于该目标干扰邻区的第二预设阈值的。
S190、若每个目标干扰邻区的RB利用率大于所述每个目标干扰邻区的第二预设阈值,且此时边缘UE的BLER调整标识为第二标识,则基站还原边缘UE的BLER为预设值,并将边缘UE的BLER调整标识从第二标识变为第一标识。
若全部目标干扰邻区中的至少一个目标干扰邻区的RB利用率分别小于或者等于该至少一个目标干扰邻区的第二预设阈值,则返回执行步骤S140。
下面罗列一些示例性实施方式,用于说明本申请实施例提供的误块率调整 方法。下述示例性实施方式可以单一执行,也可以组合执行。
在第一个示例性实施方式中,该示例性实施方式适用于4G系统,该方法包括如下步骤:
S210、基站获取归属于Cell1的UE1和UE1的干扰邻区Cell2。
Cell1配置A3事件,当UE1上报了A3事件、且A3事件上报的邻区为Cell2时,UE1为边缘UE,UE1的干扰邻区为Cell2。
S220、基站将UE1的BLER设置为10%。
S230、基站将UE1的BLER调整标识AdjustBLERFlag设置为0。
S240、基站获取Cell2的RB利用率RBratio。
S250、基站判断Cell2的RB利用率RBratio是否小于Cell2的第一预设阈值30%。
S260、若Cell2的RB利用率RBratio小于30%,则将UE1的BLER从10%调高到20%,并将UE1的BLER调整标识AdjustBLERFlag从0置为1;若Cell2的RB利用率RBratio大于或等于30%,则返回步骤S240。
S270、基站重新获取Cell2的RB利用率RBratio,若Cell2的RB利用率RBratio大于Cell2的第二预设阈值50%,则将UE1的BLER还原回10%,并将UE1的BLER调整标识AdjustBLERFlag从1置为0。
在第二个示例性实施方式中,该示例性实施方式适用于5G系统,该方法包括如下步骤:
S310、基站获取归属于Cell1的UE1和UE1的干扰邻区Cell2。
Cell1配置A3事件,当UE1上报了A3事件、且A3事件上报的邻区为Cell2时,UE1为边缘UE,UE1的干扰邻区为Cell2。
S320、基站将UE1的BLER设置为10%。
S330、基站将UE1的BLER调整标识AdjustBLERFlag设置为0。
S340、基站获取Cell2的每个BWP的RB利用率BWPRBratio。
S350、基站判断UE1激活的BWP对应的Cell2的BWP的RB利用率BWPRBratio是否小于Cell2的第一预设阈值30%。
S360、若UE1激活的BWP对应的Cell2的BWP的RB利用率BWPRBratio小于30%,则将UE1的BLER从10%调高到20%,并将UE1的BLER调整标识AdjustBLERFlag从0置为1;若UE1激活的BWP对应的Cell2的BWP的RB利用率BWPRBratio小于30%,则返回步骤S340。
S370、基站重新获取Cell2的每个BWP的RB利用率BWPRBratio,若UE1激活的BWP对应的Cell2的BWP的RB利用率BWPRBratio大于Cell2的第二预设阈值50%,则将UE1的BLER还原回10%,并将UE1的BLER调整标识AdjustBLERFlag从1置为0。
在第三个示例性实施方式中,该示例性实施方式适用于4G系统,该方法包括如下步骤:
S410、基站获取归属于Cell1的UE1和UE1的干扰邻区Cell2,Cell3和Cell4。
Cell1配置A3事件,当UE1上报了A3事件、且A3事件上报的邻区为Cell2,Cell3和Cell4时,UE1为边缘UE,UE1的干扰邻区为Cell2,Cell3和Cell4。
S420、基站将UE1的BLER设置为10%。
S430、基站将UE1的BLER调整标识AdjustBLERFlag设置为0。
S440、基站获取Cell2的RB利用率Cell2RBratio,Cell3的RB利用率Cell3RBratio和Cell4的RB利用率Cell4RBratio。
S450、当N取2时,基站判断Cell2的RB利用率Cell2RBratio是否小于Cell2的第一预设阈值30%,以及判断Cell3的RB利用率Cell3RBratio是否小于Cell3的第一预设阈值30%。
S460、若是,则将UE1的BLER从10%调高到20%,并将UE1的BLER调整标识AdjustBLERFlag从0置为1;若Cell2的RB利用率Cell2RBratio大于或等于Cell2的第一预设阈值30%或Cell3的RB利用率Cell3RBratio大于或等于小于Cell3的第一预设阈值30%,则返回步骤S440。
S470、基站重新获取Cell2的RB利用率Cell2RBratio,Cell3的RB利用率Cell3RBratio和Cell4的RB利用率Cell4RBratio,若Cell2的RB利用率Cell2Rbratio大于Cell2的第二预设阈值50%、且Cell3的RB利用率Cell3RBratio大于Cell3的第二预设阈值50%,则将UE1的BLER还原回10%,并将UE1的BLER调整标识AdjustBLERFlag从1置为0。
在第四个示例性实施方式中,该示例性实施方式适用于4G系统,该方法包括如下步骤:
S510、基站获取归属于Cell1的UE1和UE1的干扰邻区Cell2,Cell3和Cell4。
Cell1配置A3事件,当UE1上报了A3事件、且A3事件上报的邻区为Cell2,Cell3和Cell4时,UE1为边缘UE,UE1的干扰邻区为Cell2,Cell3和Cell4。
S520、基站将UE1的BLER设置为10%。
S530、基站将UE1的BLER调整标识AdjustBLERFlag设置为0。
S540、基站获取Cell2的RB利用率Cell2RBratio,Cell3的RB利用率Cell3RBratio和Cell4的RB利用率Cell4RBratio。
S550、当N取2时,基站判断Cell2的RB利用率Cell2RBratio是否小于Cell2的第一预设阈值20%,以及判断Cell3的RB利用率Cell3RBratio是否小于Cell3的第一预设阈值30%。
S560、若是,则将UE1的BLER从10%调高到20%,并将UE1的BLER调整标识AdjustBLERFlag从0置为1;若Cell2的RB利用率Cell2RBratio大于或等于Cell2的第一预设阈值20%或Cell3的RB利用率Cell3RBratio大于或等于Cell3的第一预设阈值30%,则返回步骤S540。
S570、基站重新获取Cell2的RB利用率Cell2RBratio,Cell3的RB利用率Cell3RBratio和Cell4的RB利用率Cell4RBratio,若Cell2的RB利用率Cell2Rbratio大于Cell2的第二预设阈值50%、且Cell3的RB利用率Cell3RBratio大于Cell3的第二预设阈值70%,则将UE1的BLER还原回10%,并将UE1的BLER调整标识AdjustBLERFlag从1置为0。
本申请实施例提供了一种误块率调整方法,包括:将边缘用户设备UE的误块率BLER设置为预设值,并将边缘UE的BLER调整标识设置为第一标识;在边缘用户设备UE的误块率BLER为预设值的情况下,获取边缘UE的至少一个干扰邻区中每个干扰邻区的资源块RB利用率;判断至少一个目标干扰邻区中每个目标干扰邻区的RB利用率是否小于所述每个目标干扰邻区的第一预设阈值,其中,所述至少一个目标干扰邻区为所述至少一个干扰邻区中对边缘UE干扰满足预设条件的N个干扰邻区,N为正整数;在每个目标干扰邻区的RB利用率小于所述每个目标干扰邻区的第一预设阈值的情况下,调高边缘UE的BLER。本申请通过利用边缘UE的干扰邻区的负荷情况,在每个目标干扰邻区的RB利用率均小于该目标干扰邻区的第一预设阈值时,调高边缘UE的BLER,从而实现自适应调整边缘UE的BLER。这样一来,能够提升边缘UE的吞吐量,从而改善用户体验。
图3示出了一实施例提供的一种误块率调整装置的结构示意图,如图3所示,误块率调整装置包括处理模块10和通信模块11。
通信模块11,设置为在边缘用户设备UE的误块率BLER为预设值的情况下,获取边缘UE的至少一个干扰邻区中每个干扰邻区的资源块RB利用率;处理模块10,设置为判断至少一个目标干扰邻区中每个目标干扰邻区的RB利用率是否小于所述每个目标干扰邻区的第一预设阈值,其中,所述至少一个目标 干扰邻区为至少一个干扰邻区中对边缘UE干扰满足预设条件的N个干扰邻区,N为正整数;在每个目标干扰邻区的RB利用率小于所述每个目标干扰邻区的第一预设阈值的情况下,调高边缘UE的BLER。
本实施例提供的误块率调整装置为实现上述实施例的误块率调整方法,本实施例提供的误块率调整装置实现原理和技术效果与上述实施例类似,此处不再赘述。
在一实施例中,在边缘UE的误块率BLER为预设值的情况下,边缘UE的BLER调整标识为第一标识;处理模块10,还设置为在调高边缘UE的BLER后,将边缘UE的BLER调整标识从第一标识变为第二标识。
在一实施例中,通信模块11,还设置为在处理模块10调高边缘UE的BLER后,重新获取边缘UE的至少一个干扰邻区中每个干扰邻区的RB利用率;处理模块10,还设置为判断至少一个目标干扰邻区中每个目标干扰邻区的RB利用率是否大于所述每个目标干扰邻区的第二预设阈值;在每个目标干扰邻区的RB利用率大于所述每个目标干扰邻区的第二预设阈值的情况下,将边缘UE的BLER还原为预设值。
在一实施例中,调高边缘UE的BLER后,边缘UE的BLER调整标识为第二标识;处理模块10,还设置为在将边缘UE的BLER还原为预设值后,将边缘UE的BLER调整标识从第二标识变为第一标识。
在一实施例中,通信模块11,还设置为获取边缘UE和边缘UE的至少一个干扰邻区。
在一实施例中,通信模块11是设置为通过如下方式获取边缘UE和边缘UE的至少一个干扰邻区:接收边缘UE上报的第一事件,其中,第一事件用于指示边缘UE的至少一个干扰邻区的接收功率与边缘UE所在小区的接收功率的差值不小于预设阈值;将所述第一事件中所指示的至少一个干扰邻区确定为所述边缘UE的至少一个干扰邻区。
在一实施例中,一个边缘UE具有一个BLER调整标识。
在一实施例中,边缘UE的每个干扰邻区的RB利用率为小区级的RB利用率或者带宽部分BWP级的RB利用率。
在一实施例中,N的取值根据边缘UE受到的干扰强度以及计算复杂度选择。
在一实施例中,第一标识为0,第二标识为1;或者,第一标识为1,第二标识为0。
本申请实施例还提供了一种通信节点,包括:处理器,处理器设置为在执行计算机程序时实现如本申请任意实施例所提供的方法。
示例性的,下述实施例提供一种通信节点为基站的结构示意图。
图4示出了一实施例提供的一种基站的结构示意图,如图4所示,该基站包括处理器60、存储器61和通信接口62;基站中处理器60的数量可以是一个或多个,图4中以一个处理器60为例;基站中的处理器60、存储器61、通信接口62可以通过总线或其他方式连接,图4中以通过总线连接为例。总线表示多类总线结构中的一种或多种,包括存储器总线或者存储器控制器,外围总线,图形加速端口,处理器或者使用多种总线结构中的任意总线结构的局域总线。
存储器61作为一种计算机可读存储介质,可设置为存储软件程序、计算机可执行程序以及模块,如本申请实施例中的方法对应的程序指令/模块。处理器60通过运行存储在存储器61中的软件程序、指令以及模块,从而执行基站的至少一种功能应用以及数据处理,即实现上述的方法。
存储器61可包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序;存储数据区可存储根据终端的使用所创建的数据等。此外,存储器61可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。在一些实例中,存储器61可包括相对于处理器60远程设置的存储器,这些远程存储器可以通过网络连接至基站。上述网络的实例包括但不限于互联网、企业内部网、网络、移动通信网及其组合。
通信接口62可设置为数据的接收与发送。
本申请实施例还提供了一种计算机可读存储介质,计算机可读存储介质上存储有计算机程序,该计算机程序被处理器执行时实现如本申请任意实施例所提供的方法。
本申请实施例的计算机存储介质,可以采用一个或多个计算机可读的介质的任意组合。计算机可读介质可以是计算机可读信号介质或者计算机可读存储介质。计算机可读存储介质例如可以是但不限于:电、磁、光、电磁、红外线、或半导体的系统、装置或器件,或者任意以上的组合。计算机可读存储介质包括(非穷举的列表):具有一个或多个导线的电连接、便携式计算机磁盘、硬盘、随机存取存储器(Random Access Memory,RAM)、只读存储器(Read-Only Memory,ROM)、可擦式可编程只读存储器(Electrically Erasable Programmable  Read-Only Memory,EPROM)、闪存、光纤、便携式紧凑磁盘只读存储器(Compact Disc Read-Only Memory,CD-ROM)、光存储器件、磁存储器件、或者上述的任意合适的组合。在本申请中,计算机可读存储介质可以是任何包含或存储程序的有形介质,该程序可以被指令执行系统、装置或者器件使用或者与其结合使用。
计算机可读的信号介质可以包括在基带中或者作为载波一部分传播的数据信号,数据信号中承载了计算机可读的程序代码。这种传播的数据信号可以采用多种形式,包括但不限于电磁信号、光信号或上述的任意合适的组合。计算机可读的信号介质还可以是计算机可读存储介质以外的任何计算机可读介质,该计算机可读介质可以发送、传播或者传输用于由指令执行系统、装置或者器件使用或者与其结合使用的程序。
计算机可读介质上包含的程序代码可以用任何适当的介质传输,包括但不限于无线、电线、光缆、射频(Radio Frequency,RF)等等,或者上述的任意合适的组合。
可以以一种或多种程序设计语言或多种程序设计语言组合来编写用于执行本公开操作的计算机程序代码,程序设计语言包括面向对象的程序设计语言(诸如Java、Smalltalk、C++、Ruby、Go),还包括常规的过程式程序设计语言(诸如“C”语言或类似的程序设计语言)。程序代码可以完全地在用户计算机上执行、部分地在用户计算机上执行、作为一个独立的软件包执行、部分在用户计算机上部分在远程计算机上执行、或者完全在远程计算机或服务器上执行。在涉及远程计算机的情形中,远程计算机可以通过任意种类的网络(包括网络(Local Area Network,LAN)或广域网(Wide Area Network,WAN))连接到用户计算机,或者,可以连接到外部计算机(例如利用因特网服务提供商来通过因特网连接)。
本领域内的技术人员应明白,术语用户终端涵盖任何适合类型的无线用户设备,例如移动电话、便携数据处理装置、便携网络浏览器或车载移动台。
一般来说,本申请的多种实施例可以在硬件或专用电路、软件、逻辑或其任何组合中实现。例如,一些方面可以被实现在硬件中,而其它方面可以被实现在可以被控制器、微处理器或其它计算装置执行的固件或软件中,尽管本申请不限于此。
本申请的实施例可以通过移动装置的数据处理器执行计算机程序指令来实现,例如在处理器实体中,或者通过硬件,或者通过软件和硬件的组合。计算机程序指令可以是汇编指令、指令集架构(Instruction Set Architecture,ISA)指令、机器指令、机器相关指令、微代码、固件指令、状态设置数据、或者以一 种或多种编程语言的任意组合编写的源代码或目标代码。
本申请附图中的任何逻辑流程的框图可以表示程序步骤,或者可以表示相互连接的逻辑电路、模块和功能,或者可以表示程序步骤与逻辑电路、模块和功能的组合。计算机程序可以存储在存储器上。存储器可以具有任何适合于本地技术环境的类型并且可以使用任何适合的数据存储技术实现,例如但不限于ROM、RAM、光存储器装置和系统(数码多功能光碟DVD或CD光盘)等。计算机可读介质可以包括非瞬时性存储介质。数据处理器可以是任何适合于本地技术环境的类型,例如但不限于通用计算机、专用计算机、微处理器、数字信号处理器(Digital Signal Processing,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、可编程逻辑器件(Field-Programmable Gate Array,FPGA)以及基于多核处理器架构的处理器。

Claims (12)

  1. 一种误块率调整方法,包括:
    在边缘用户设备UE的误块率BLER为预设值的情况下,获取所述边缘UE的至少一个干扰邻区中每个干扰邻区的资源块RB利用率;
    判断至少一个目标干扰邻区中每个目标干扰邻区的RB利用率是否小于所述每个目标干扰邻区的第一预设阈值,其中,所述至少一个目标干扰邻区为所述至少一个干扰邻区中对所述边缘UE干扰满足预设条件的N个干扰邻区,N为正整数;
    在每个目标干扰邻区的RB利用率小于所述每个目标干扰邻区的第一预设阈值的情况下,调高所述边缘UE的BLER。
  2. 根据权利要求1所述的方法,其中,在所述边缘UE的误块率BLER为预设值的情况下,所述边缘UE的BLER调整标识为第一标识;
    在调高所述边缘UE的BLER后,还包括:
    将所述边缘UE的BLER调整标识从所述第一标识变为第二标识。
  3. 根据权利要求1所述的方法,在调高所述边缘UE的BLER后,还包括:
    重新获取所述边缘UE的至少一个干扰邻区中每个干扰邻区的RB利用率,并判断至少一个目标干扰邻区中每个目标干扰邻区的RB利用率是否大于所述每个目标干扰邻区的第二预设阈值;
    在每个目标干扰邻区的RB利用率大于所述每个目标干扰邻区的第二预设阈值的情况下,将所述边缘UE的BLER还原为所述预设值。
  4. 根据权利要求3所述的方法,其中,调高所述边缘UE的BLER后,所述边缘UE的BLER调整标识为第二标识;
    在将所述边缘UE的BLER还原为所述预设值后,还包括:
    将所述边缘UE的BLER调整标识从所述第二标识变为第一标识。
  5. 根据权利要求1所述的方法,所述获取所述边缘UE的至少一个干扰邻区中每个干扰邻区的资源块RB利用率之前,还包括:
    获取边缘UE和所述边缘UE的至少一个干扰邻区。
  6. 根据权利要求5所述的方法,其中,所述获取边缘UE和所述边缘UE的至少一个干扰邻区,包括:
    接收所述边缘UE上报的第一事件,其中,所述第一事件用于指示所述边缘UE的至少一个干扰邻区的接收功率与所述边缘UE所在小区的接收功率的差值不小于预设阈值;
    将所述第一事件中所指示的至少一个干扰邻区确定为所述边缘UE的至少一个干扰邻区。
  7. 根据权利要求2或4所述的方法,其中,一个边缘UE具有一个BLER调整标识。
  8. 根据权利要求1或3所述的方法,其中,所述边缘UE的每个干扰邻区的RB利用率为小区级的RB利用率或者带宽部分BWP级的RB利用率。
  9. 根据权利要求1所述的方法,其中,N的取值根据所述边缘UE受到的干扰强度以及计算复杂度选择。
  10. 根据权利要求2或4所述的方法,其中,
    所述第一标识为0,所述第二标识为1;或者,
    所述第一标识为1,所述第二标识为0。
  11. 一种通信节点,包括:处理器;
    所述处理器设置为在执行计算机程序时实现如权利要求1-10中任一所述的误块率调整方法。
  12. 一种计算机可读存储介质,存储有计算机程序,所述计算机程序被处 理器执行时实现如权利要求1-10中任一所述的误块率调整方法。
PCT/CN2022/093752 2021-05-19 2022-05-19 误块率调整方法、通信节点及存储介质 WO2022242702A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP22804022.6A EP4344101A1 (en) 2021-05-19 2022-05-19 Method for adjusting block error rate, and communication node and storage medium
BR112023024056A BR112023024056A2 (pt) 2021-05-19 2022-05-19 Método para ajustar a taxa de erro de bloco, nó de comunicação e meio de armazenamento

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110546563.0 2021-05-19
CN202110546563.0A CN115378526A (zh) 2021-05-19 2021-05-19 一种误块率调整方法、通信节点及存储介质

Publications (1)

Publication Number Publication Date
WO2022242702A1 true WO2022242702A1 (zh) 2022-11-24

Family

ID=84058880

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/093752 WO2022242702A1 (zh) 2021-05-19 2022-05-19 误块率调整方法、通信节点及存储介质

Country Status (4)

Country Link
EP (1) EP4344101A1 (zh)
CN (1) CN115378526A (zh)
BR (1) BR112023024056A2 (zh)
WO (1) WO2022242702A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1862992A (zh) * 2006-01-05 2006-11-15 华为技术有限公司 Wcdma系统中误块率目标值的动态控制方法
CN102469521A (zh) * 2010-11-18 2012-05-23 鼎桥通信技术有限公司 一种动态调整QoS指标的方法
US20150236808A1 (en) * 2012-09-25 2015-08-20 Telefonaktiebolaget L M Ericsson (Publ) Method and apparatus for radio link adaptation for flexible subframe communications
CN108990078A (zh) * 2017-05-31 2018-12-11 中国移动通信集团设计院有限公司 Lte网络下行干扰的优化方法、系统、设备及存储介质

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1862992A (zh) * 2006-01-05 2006-11-15 华为技术有限公司 Wcdma系统中误块率目标值的动态控制方法
CN102469521A (zh) * 2010-11-18 2012-05-23 鼎桥通信技术有限公司 一种动态调整QoS指标的方法
US20150236808A1 (en) * 2012-09-25 2015-08-20 Telefonaktiebolaget L M Ericsson (Publ) Method and apparatus for radio link adaptation for flexible subframe communications
CN108990078A (zh) * 2017-05-31 2018-12-11 中国移动通信集团设计院有限公司 Lte网络下行干扰的优化方法、系统、设备及存储介质

Also Published As

Publication number Publication date
CN115378526A (zh) 2022-11-22
EP4344101A1 (en) 2024-03-27
BR112023024056A2 (pt) 2024-02-06

Similar Documents

Publication Publication Date Title
US11129086B2 (en) System message notification and sending method and apparatus
US11388644B2 (en) Apparatus and method for load balancing in wireless communication system
US9432818B2 (en) Controlling communication devices
US9681464B2 (en) Cooperative transmission within heterogeneous stations
US20140126360A1 (en) System and Method for WiFi Offload
US10057937B2 (en) Communications via multiple access points
US10939356B2 (en) Access-point discovery of wireless-network topology
WO2017107104A1 (zh) 通信方法及设备
KR102126614B1 (ko) 웨이크-업 라디오 링크 적응
WO2016000491A1 (zh) 确定拉远射频单元rru的方法与设备
US20220183018A1 (en) Sidelink transmission method and terminal
WO2014166246A1 (zh) 一种无线网络间负载均衡的方法、装置和系统
WO2011116659A1 (zh) 一种长期演进先进系统中用户接入服务小区的方法
EP4027566A1 (en) Dynamically changing the primary cell (pcell) for fifth generation (5g) carrier aggregation
KR20210121238A (ko) 5g 무선 통신 시스템들에서 물리적 다운링크 제어 채널을 송신하기 위한 위치 기반 corset 구성
WO2021012802A1 (zh) 一种通信节点的协作方法和系统、存储介质和电子设备
CN104168595A (zh) 一种多点协作传输方法、装置及系统
WO2022242702A1 (zh) 误块率调整方法、通信节点及存储介质
EP3211952B1 (en) Joint interference rejection method and device, and method and device for realizing uplink comp
EP3190834A1 (en) Control method and device for enabling station
WO2018170863A1 (zh) 一种波束避让方法及基站
US20130083738A1 (en) Method and apparatus for modifying resource allocation
CN116326009A (zh) 边链路资源选择方法以及装置
US10314083B2 (en) Systems and methods for traffic offloading in multi-radio-access-technology networks
CN110637446A (zh) 无线通信中tcp代理设备辅助的通信方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22804022

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18562119

Country of ref document: US

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112023024056

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: 2022804022

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022804022

Country of ref document: EP

Effective date: 20231219

ENP Entry into the national phase

Ref document number: 112023024056

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20231117