WO2022183824A1 - 微机电麦克风及电子设备 - Google Patents

微机电麦克风及电子设备 Download PDF

Info

Publication number
WO2022183824A1
WO2022183824A1 PCT/CN2021/143028 CN2021143028W WO2022183824A1 WO 2022183824 A1 WO2022183824 A1 WO 2022183824A1 CN 2021143028 W CN2021143028 W CN 2021143028W WO 2022183824 A1 WO2022183824 A1 WO 2022183824A1
Authority
WO
WIPO (PCT)
Prior art keywords
microphone
substrate
units
microelectromechanical
openings
Prior art date
Application number
PCT/CN2021/143028
Other languages
English (en)
French (fr)
Inventor
邹泉波
邱冠勋
王喆
Original Assignee
歌尔微电子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 歌尔微电子股份有限公司 filed Critical 歌尔微电子股份有限公司
Publication of WO2022183824A1 publication Critical patent/WO2022183824A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R19/00Electrostatic transducers
    • H04R19/005Electrostatic transducers using semiconductor materials
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R19/00Electrostatic transducers
    • H04R19/04Microphones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2201/00Details of transducers, loudspeakers or microphones covered by H04R1/00 but not provided for in any of its subgroups
    • H04R2201/003Mems transducers or their use

Definitions

  • MEMS micro-electro-mechanical
  • Microelectromechanical microphones are widely used in various electronic devices, such as smartphones, tablet computers, in-vehicle intelligent systems, and smart speakers.
  • FIG. 1 shows a schematic diagram of a MEMS microphone.
  • the MEMS microphone includes an upper casing 101 and a base 102 .
  • the upper shell 101 and the base 102 together constitute the shell of the MEMS microphone.
  • In the base 102 there is a sound hole 103 .
  • a microphone substrate 104 is provided on the base.
  • the opening of the microphone substrate 104 is opposite to the acoustic hole 103 .
  • the microphone unit 105 is provided on the microphone substrate 104 .
  • the microphone unit 105 includes a diaphragm and a back plate.
  • the front cavity 104a of the MEMS microphone is formed before the diaphragm in the microphone unit 105 and the sidewall of the opening of the microphone substrate 104 .
  • the microphone unit 105 is connected to the microphone integrated circuit ASIC 107 through the lead wire 106 .
  • An object of the present disclosure is to provide a new technical solution for a microelectromechanical microphone.
  • a microelectromechanical microphone comprising: an upper case; a base including a sound hole and forming a housing of the microelectromechanical microphone together with the upper case; a microphone substrate disposed on the base
  • the upper part includes at least two first openings, the at least two first openings communicate with the sound holes; and at least two microphone units are formed on the substrate and respectively correspond to the first openings , wherein the at least two microphone units are acoustically arranged in parallel on the microphone substrate, wherein the at least two microphone units respectively include a diaphragm and a back plate, the diaphragm and the first opening
  • the side wall of the microphone encloses at least a part of the front cavity of the microphone, and wherein the at least two microphone units are connected in series on the circuit.
  • an electronic device comprising the microelectromechanical microphone disclosed herein.
  • the performance of the microelectromechanical microphone can be improved.
  • FIG. 1 shows a schematic diagram of a MEMS microphone in the prior art.
  • Figure 2 shows a schematic diagram of a microelectromechanical microphone according to one embodiment.
  • Figure 3 shows a schematic top view of a microelectromechanical microphone unit in a microelectromechanical microphone according to one embodiment.
  • Figure 4 shows a schematic side view of a microelectromechanical microphone unit according to one embodiment.
  • Figure 5 shows a schematic circuit diagram of a microelectromechanical microphone according to one embodiment.
  • Figure 6 shows a lumped model of a microelectromechanical microphone according to one embodiment.
  • Figure 7 shows a schematic side view of a microelectromechanical microphone unit according to another embodiment.
  • Figure 8 shows a schematic diagram of a microelectromechanical microphone according to another embodiment.
  • FIG. 9 shows a schematic top view of a microelectromechanical microphone chip in a microelectromechanical microphone according to yet another embodiment.
  • FIG. 10 shows a schematic circuit diagram of a microelectromechanical microphone according to yet another embodiment.
  • Figure 11 shows a schematic diagram of an electronic device according to one embodiment.
  • Figure 2 shows a schematic diagram of a microelectromechanical microphone according to one embodiment.
  • the MEMS microphone includes: an upper casing 11 , a base 12 , a microphone substrate 14 and at least two microphone units 15 a and 15 b.
  • the base 12 includes a sound hole 13 .
  • the base 12 together with the upper case 11 forms the housing of the MEMS microphone.
  • the housing encloses the internal components of the MEMS microphone.
  • the microphone substrate 14 is disposed over the base 12 and includes at least two first openings 14a, 14b. At least two first openings 14a, 14b communicate with the acoustic hole 13 . At least two microphone units 15a, 15b are formed on the substrate 14 and correspond to the first openings 14a, 14b, respectively. Sound waves may propagate to the microphone units 15a, 15b via the sound hole 13 and the first openings 14a, 14b.
  • the microphone units 15a, 15b receive the vibrations of the sound waves and generate corresponding electrical signals.
  • the microphone units 15a, 15b may be connected to the microphone ASIC 17 through the leads 16 .
  • the leads 16 and the microphone ASIC 17 are merely exemplary, and in some other embodiments, the microphone ASIC 17 may also be located outside the MEMS microphone.
  • Fig. 4 is a cross-sectional view taken along line X-X' of Fig. 3 .
  • at least two microphone units 15a, 15b respectively include diaphragms 33a, 33b and back plates 32a, 32b.
  • the diaphragms 33a, 33b and the back plates 32a, 32b are spaced apart by spacers 31 .
  • the diaphragms 33a, 33b and the side walls of the first openings 14a, 14b enclose at least a part of the front cavity of the microphone.
  • the microphone units are acoustically connected in parallel on the microphone substrate, the microphone units can achieve the accumulation of the signal-to-noise ratio acoustically. Also, in this microelectromechanical microphone, electrical noise is small compared to acoustic noise. Therefore, this electrical series noise has little effect on the MEMS microphone.
  • the performance of the microelectromechanical microphone can be improved as a whole.
  • the voltage borne by each microphone unit is relatively small (less than the pull-in voltage Vp).
  • Vp the pull-in voltage
  • this also improves the acoustic overload point AOP/Total Harmonic Distortion THD of the MEMS microphone.
  • the microphone substrate is disposed above the base, the sound hole is disposed in the base, and the opening of the microphone substrate is opposite the sound hole of the base.
  • the microphone units are arranged to be acoustically parallel and electrically connected in series, the performance of the MEMS microphone can be effectively improved.
  • the microphone units since a plurality of microphone units are formed on the same microphone substrate, the microphone units have strong consistency and are located close to each other. In this case, adopting this arrangement is beneficial to improve the performance of the MEMS microphone.
  • the microphone unit 15a includes two electrodes A 1 , B 1 .
  • a 1 and B 1 may be the diaphragm and the back plate or the back plate and the diaphragm, respectively.
  • the microphone unit 15b includes two electrodes A 2 , B 2 .
  • a 2 and B 2 may be the diaphragm and the back plate or the back plate and the diaphragm, respectively.
  • the sensing node A and the power supply terminal B are respectively connected to both ends of the two microphone units 15a and 15b in series, ie the electrodes A 1 and B 2 .
  • the sensing node A is connected to the buffer (or impedance converter) 18 and outputs the sensing voltage vo .
  • Sensing node A, along with electrodes B 1 , A 2 , and power supply terminal B are shown in the top view of FIG. 3 .
  • the sense node A is a high impedance node.
  • the DC voltage V bias is applied to the power supply terminal B, and the AC signal vo is output from the buffer 18 .
  • V bias may be twice V bias1 .
  • S oc is also doubled. Therefore, a 6dB increase in sensitivity can be obtained.
  • N 20*log 10
  • V bias is limited to V bias1 , the bias voltage experienced by each microphone unit is reduced. Therefore, the reliability of the microphone unit is improved. Furthermore, since each microphone unit operates with a lower V bias1 /Vp ratio, the acoustic overload point AOP/Total Harmonic Distortion THD can be improved.
  • FIG. 6 schematically shows a lumped model of a microelectromechanical microphone according to one embodiment.
  • P represents the input sound pressure
  • V out represents the output signal of the microphone unit.
  • C m represents the compliance of the diaphragm
  • L m represents the mass of the diaphragm
  • R m represents the acoustic resistance of the MEMS microphone including the perforations and gaps in the back plate.
  • R f is the acoustic resistance of the front hole
  • L f is the air mass in the front hole
  • C f is the compliance of the front hole.
  • R v represents the acoustic resistance of the vent
  • C b represents the compliance of the back cavity.
  • K represents a buffer (or impedance converter).
  • the microelectromechanical microphone may further include a raised substrate 41 .
  • the booster substrate 41 is located between the microphone substrate 14 and the base 12 .
  • the booster substrate 41 includes a second opening 42 . At least two first openings 14a, 14b communicate with the acoustic hole 13 via the second opening 42 .
  • a plurality of microphone units can be conveniently arranged on the base, thereby facilitating the simplification of the packaging process of the microelectromechanical microphone.
  • the raised substrate helps multiple microphone units share a single sound hole in the base.
  • a certain gap can be formed between the microphone substrate and the base. In this way, the sound waves entering from the sound hole can be dispersed to each microphone unit more evenly, so that each microphone unit can generate a more consistent acoustic output.
  • the microphone substrate and the base are spaced apart, thereby reducing noise/acoustic resistance.
  • the cross-sectional area of the second apertures 42 is greater than the combined cross-sectional area of the first apertures 14a, 14b.
  • the designer and/or automatic design apparatus can be assisted in generating a desired MEMS microphone design.
  • the cross-sectional area of the first apertures 14a , 14b is within the cross-sectional area of the second aperture 42 .
  • the designer and/or the automatic design apparatus can be helped to generate a better MEMS microphone design.
  • the depth of the second opening 42 is greater than or equal to 50 microns.
  • the booster substrate may space the microphone substrate from the base by at least 50 microns.
  • the side wall of the first opening may affect the sound wave, thereby increasing the sound wave. Noise/Acoustic Resistance. For the size of the MEMS microphone, this adverse effect can be effectively reduced by raising the above-mentioned separation distance of the substrate.
  • At least two of the second openings 14a, 14b of the first openings 14a, 14b share a side wall W, for example, as shown in FIG. 4 .
  • the sidewalls W are part of the microphone substrate 14 .
  • the microelectromechanical microphone may further include a microphone-specific integrated circuit chip 17 .
  • the microphone ASIC chip 17 is provided in the housing of the microelectromechanical microphone.
  • the series output of the at least two microphone units 15a, 15b is connected to the input of the microelectromechanical microphone 17, eg via lead 16.
  • the microelectromechanical microphone further includes at least two additional microphone units and the at least two additional microphone units are in circuit parallel with the aforementioned at least two microphone units.
  • the microelectromechanical microphone includes microphone units 51 , 52 , 53 , 54 . 9 and 10 show the arrangement of the microphone units 51 , 52 , 53 , 54 . As shown in FIG. 9 , the microphone units 51 , 52 , 53 , and 54 are acoustically arranged in parallel on the microphone substrate 14 .
  • FIG. 10 shows the circuit connections of the microphone units 51 , 52 , 53 , 54 . The microphone units 51 and 52 are connected in series, and the microphone units 53 and 54 are connected in series. The series-connected microphone units 51 , 52 are connected in parallel with the series-connected microphone units 53 , 54 .
  • the microphone unit 51 includes two electrodes A 1 , B 1 .
  • a 1 and B 1 may be the diaphragm and the back plate or the back plate and the diaphragm, respectively.
  • the microphone unit 52 includes two electrodes A 2 , B 2 .
  • a 2 and B 2 may be the diaphragm and the back plate or the back plate and the diaphragm, respectively.
  • the microphone unit 53 includes two electrodes A 3 , B 3 .
  • a 3 and B 3 may be the diaphragm and the back plate or the back plate and the diaphragm, respectively.
  • the microphone unit 54 includes two electrodes A 4 , B 4 .
  • a 4 and B 4 may be the diaphragm and the back plate or the back plate and the diaphragm, respectively.
  • the sensing node A and the power supply terminal B are respectively connected to both ends of the two groups of serial microphone units 51 , 52 and 53 , 54, namely electrodes A1, A3 and B2, B4 .
  • the sensing node A is connected to the buffer (or impedance converter) 58 and outputs the sensing voltage v o .
  • Sensing node A, and electrodes B 1 , A 2 , A 3 , B 3 , A 4 , B 4 and power supply terminal B are shown in the top view of FIG. 9 .
  • Figure 11 shows a schematic diagram of an electronic device according to one embodiment.
  • the electronic device 60 includes the microelectromechanical microphone 61 described herein.
  • the electronic device 60 may be, for example, a smartphone, a tablet computer, or the like.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Electrostatic, Electromagnetic, Magneto- Strictive, And Variable-Resistance Transducers (AREA)
  • Micromachines (AREA)
  • Details Of Audible-Bandwidth Transducers (AREA)

Abstract

本公开涉及一种微机电麦克风及电子设备。微机电麦克风包括:上壳;基座,包括声孔,并且与上壳一起形成微机电麦克风的壳体;麦克风衬底,被设置在基座上方并包括至少两个第一开孔,至少两个第一开孔与声孔连通;以及至少两个麦克风单元,形成在衬底上并且分别与所述第一开孔相对应。至少两个麦克风单元在声学上并联设置在麦克风衬底上,至少两个麦克风单元分别包括振膜和背极板,所述振膜和第一开孔的侧壁围成麦克风前腔的至少一部分,以及至少两个麦克风单元在电路上串联。

Description

微机电麦克风及电子设备
本公开要求于2021年03月01日提交中国专利局,申请号为202110224613.3,申请名称为“微机电麦克风及电子设备”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
这里公开的实施例涉及微机电(MEMS)麦克风技术领域,以及具体涉及一种微机电麦克风及电子设备。
背景技术
微机电麦克风被广泛应用于各种电子设备,例如,智能手机、平板电脑、车载智能系统、智能音箱等。
图1示出了一个微机电麦克风的示意图。如图1所示,微机电麦克风包括上壳101和基座102。上壳101和基座102共同构成微机电麦克风的壳体。在基座102中有声孔103。在基座上设置麦克风衬底104。麦克风衬底104的开孔与与声孔103相对。在麦克风衬底104上设置麦克风单元105。麦克风单元105包括振膜和背极板。在麦克风单元105中的振膜和麦克风衬底104的开孔侧壁之前形成微机电麦克风的前腔104a。麦克风单元105通过引线106与麦克风集成电路ASIC 107连接。
发明内容
本公开的一个目的是提供的用于微机电麦克风的新技术方案。
根据本公开的第一方面,提供了一种微机电麦克风,包括:上壳;基座,包括声孔,并且与上壳一起形成微机电麦克风的壳体;麦克风衬底,被设置在基座上方并包括至少两个第一开孔,所述至少两个第一开孔与所述声孔连通;以及至少两个麦克风单元,形成在衬底上并且分别与所述第一开孔相对应,其中,所述至少两个麦克风单元在声学上并联设置在所述 麦克风衬底上,其中,所述至少两个麦克风单元分别包括振膜和背极板,所述振膜和第一开孔的侧壁围成麦克风前腔的至少一部分,以及其中,所述至少两个麦克风单元在电路上串联。
根据本公开的第一方面,提供了一种电子设备,包括这里公开的微机电麦克风。
根据本公开的实施例,可以提高微机电麦克风的性能。
通过以下参照附图对本公开的示例性实施例的详细描述,本公开的其它特征及其优点将会变得清楚。
附图说明
被结合在说明书中并构成说明书的一部分的附图示出了本公开的实施例,并且连同其说明一起用于解释本公开的原理。
图1示出了现有技术中的一个微机电麦克风的示意图。
图2示出了根据一个实施例的微机电麦克风的示意图。
图3示出了根据一个实施例的微机电麦克风中的微机电麦克风单元的示意性顶视图。
图4示出了根据一个实施例的微机电麦克风单元的示意性侧视图。
图5示出了根据一个实施例的微机电麦克风的示意性电路图。
图6示出了根据一个实施例的微机电麦克风的集总模型。
图7示出了根据另一个实施例的微机电麦克风单元的示意性侧视图。
图8示出了根据另一个实施例的微机电麦克风的示意图。
图9示出了根据又一个实施例的微机电麦克风中的微机电麦克风芯片的示意性顶视图。
图10示出了根据又一个实施例的微机电麦克风的示意性电路图。
图11示出了根据一个实施例的电子设备的示意图。
具体实施方式
现在将参照附图来详细描述本公开的各种示例性实施例。应注意到:除非另外具体说明,否则在这些实施例中阐述的部件和步骤的相对布置、 数字表达式和数值不限制本公开的范围。
以下对至少一个示例性实施例的描述实际上仅仅是说明性的,决不作为对本公开及其应用或使用的任何限制。
对于相关领域普通技术人员已知的技术、方法和设备可能不作详细讨论,但在适当情况下,所述技术、方法和设备应当被视为说明书的一部分。
在这里示出和讨论的所有例子中,任何具体值应被解释为仅仅是示例性的,而不是作为限制。因此,示例性实施例的其它例子可以具有不同的值。
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步讨论。
图2示出了根据一个实施例的微机电麦克风的示意图。
如图2所示,微机电麦克风包括:上壳11、基座12、麦克风衬底14和至少两个麦克风单元15a、15b。
基座12包括声孔13。基座12与上壳11一起形成微机电麦克风的壳体。壳体包围微机电麦克风的内部组件。麦克风衬底14被设置在基座12上方并包括至少两个第一开孔14a、14b。至少两个第一开孔14a、14b与声孔13连通。至少两个麦克风单元15a、15b形成在衬底14上并且分别与第一开孔14a、14b相对应。声波可以经由声孔13和第一开孔14a、14b传播到麦克风单元15a、15b。麦克风单元15a、15b接收声波的振动并产生相应的电信号。
如图2所示,麦克风单元15a、15b可以通过引线16连接到麦克风ASIC 17。本领域技术人员应当理解,这里的引线16和麦克风ASIC 17仅仅是示例性的,在一些其他实施例中,麦克风ASIC 17也可以位于微机电麦克风的外面。
如图3所示,至少两个麦克风单元15a、15b在声学上并联设置在麦克风衬底14上。图4是沿图3的X-X’线的截面图。如图4所示,至少两个麦克风单元15a、15b分别包括振膜33a、33b和背极板32a、32b。例如,振膜33a、33b和背极板32a、32b通过间隔件31被间隔开。振膜33a、33b 和第一开孔14a、14b的侧壁围成麦克风前腔的至少一部分。
在这个实施例中,由于麦克风单元在声学上并联在麦克风衬底上,因此,麦克风单元可以在声学上实现信噪比的累加。而且,在这种微机电麦克风中,相比于声学噪声,电学噪声很小。因此,这种电学上的串联噪声对于微机电麦克风的影响很小。
此外,由于麦克风单元在电学上串联,因此,可以在整体上提升微机电麦克风的性能。例如,由于施加在串联的麦克风单元两端的总电压不变,因此,每个麦克风单元所承受的电压较小(小于吸合电压Vp)。这样,可以提高微机电麦克风中的麦克风单元的可靠性。此外,这样也可以改善微机电麦克风的声学过载点AOP/总谐波失真THD。
在这里所描述的微机电麦克风中,麦克风衬底设置在基座上方,声孔被设置在基座中,麦克风衬底的开孔与基座的声孔相对。对于这种紧凑结构的微机电麦克风来说,通过将麦克风单元设置成在声学上并联并在电学上串联,可以有效地提升这种微机电麦克风的性能。此外,由于多个麦克风单元形成在相同的麦克风衬底上,因此麦克风单元一致性较强且相互之间的距离较近。在这种情况,采用这种设置有利于提高微机电麦克风的性能。
如图5所示,至少两个麦克风单元15a、15b在电路上串联。在图5中,麦克风单元15a包括两个电极A 1、B 1。A 1、B 1可以分别是振膜和背极板或者背极板和振膜。麦克风单元15b包括两个电极A 2、B 2。同样地,A 2、B 2可以分别是振膜和背极板或者背极板和振膜。感测节点A和电源端点B分别连接到串联两个麦克风单元15a、15b的两端,即电极A 1、B 2。感测节点A与缓冲器(或阻抗转换器)18连接,并输出感测电压v o。在图3的顶视图中示出了感测节点A、与电极B 1、A 2和电源端点B。
对于图5所示MEMS麦克风的电路,感测节点A是一个高阻抗节点。在声频下,电量Q=CV,其中,C是串联的麦克风单元的总电容,V是跨越串联的所有电容(振膜和背极板)的电压。在电源端点B施加直流电压V bias,在缓冲器18输出交流信号v o。麦克风的本征灵敏度可以表示为:S oc=dv o/dp,其中,p是输入声压。
为了说明的简便起见,这里假设所有麦克风单元都是一致的,即:S m1=S m2=S m,V bias1=V bias2<=75%V p,其中,S m是机械灵敏度(=dW/dp,W是振膜有效位移),V p是每个麦克风单元的吸合电压。
这里,S oc1=S oc2=S m(V bias1/Gap1)<=0.75V pS m/Gap,其中,Gap=Gap 1是每个麦克风单元的空气间隙。另外,为了安全起见,V bias1=V bias2由V p来限制,通常V bias1=V bias2<=(65~75%)V p
对于多个麦克风单元串联的配置,可以分成如下两种情况来考虑。
如果总的偏置电压V bias是不受限的,则V bias可以是V bias1的两倍。在这种情况下,S oc也被加倍。因此,可以得到6dB的灵敏度提升。对于N个麦克风单元串联的情况,可以得到20*log 10(N)的灵敏度提升。
如果总的偏置电压V bias被限制为V bias1,则每个麦克风单元所承受的偏压减小。因此,麦克风单元的可靠性提高。此外,由于每个麦克风单元以较低的V bias1/Vp比进行工作,因此,声学过载点AOP/总谐波失真THD可以得到改善。
图6示意性地示出了根据一个实施例的微机电麦克风的集总模型。在图6中,P表示输入声压,V out表示麦克风单元的输出信号。C m表示振膜的顺性(compliance),L m表示振膜的质量(mass),R m表示包括背极板中的穿孔和间隙的微机电麦克风的声阻。R f表示前孔的声阻,L f表示前孔中的空气质量,C f表示前孔的顺性。R v表示通气孔的声阻,C b表示背腔的顺性。K表示缓冲器(或阻抗转换器)。
在微机电麦克风的集总模型中,微机电麦克风的振膜的声阻是产生噪声的主要原因。由于多个(N个)麦克风单元在声学上并联,因此,振膜(及背极板)的声阻减小为原本声阻(1/N)。相应地,噪声也减小10*log 10(N)。在N=2的情况下,噪声减小3dB。由于诸如麦克风ASIC的工艺越来越成熟,这些器件中的电噪声是可控的并且越来越小,因此,麦克风单元的机械噪声的减小能够显著地减小微机电麦克风的整体噪声。
就这里所采用的微机电麦克风结构来说,麦克风单元形成在麦克风衬底上并且与基座上的声孔相对。因此,可以认为:C m=N*C m1,L m=L m1/N,R m=R m1/N,其中,C m1是第一麦克风单元的振膜的顺性,L m1是第一麦克风 单元的振膜的质量,R m1是第一麦克风单元的振膜的声阻。从这里可以看出,通过在声学上并联设置麦克风单元,可以显著减小微机电麦克风的整体噪声。
在一个实施例中,如图7、8所示,微机电麦克风还可以包括垫高衬底41。垫高衬底41位于麦克风衬底14和基座12之间。垫高衬底41包括第二开孔42。至少两个第一开孔14a、14b经由第二开孔42与声孔13连通。
通过使用垫高衬底,可以方便将多个麦克风单元设置在基座上,从而有利于简化微机电麦克风的封装工艺。
此外,垫高衬底有助于多个麦克风单元共用基座上的一个声孔。
此外,通过垫高衬底,在麦克风衬底和基座之间可以形成一定的间隙。这样,从声孔进入的声波可以较均匀地分散到各个麦克风单元,从而使得各个麦克风单元产生较一致的声学输出。
此外,通过垫高衬底,使得麦克风衬底和基座间隔开,从而减小噪声/声阻。
在一个例子中,第二开孔42的横截面面积大于第一开孔14a、14b的横截面的总面积。在这个例子中,通过设定垫高衬底的开孔面积与麦克风衬底的开孔面积之间的关系,可以帮助设计人员和/或自动设计装置产生符合需要的微机电麦克风设计。
在另一个例子中,第一开孔14a、14b的横截面区域位于第二开孔42的横截面区域的范围之内。在这个例子中,通过规定垫高衬底的开孔与麦克风衬底的开孔的位置关系及范围,可以帮助设计人员和/或自动设计装置产生较好的微机电麦克风设计。
例如,第二开孔42的深度大于等于50微米。换句话说,垫高衬底可以将麦克风衬底与基座间隔开至少50微米。在这里的微机电麦克风中,由于多个麦克风单元共用同一个声孔,因此,当声波从声孔进入各个第一开孔时,第一开孔的侧壁可能会对声波产生影响,从而增加噪声/声阻。对于微机电麦克风的尺寸来说,通过垫高衬底的上述间隔距离,可以有效减小这种不利影响。
在另一个实施例中,第二开孔14a、14b中的至少两个第一开孔14a、 14b共用一个侧壁W,例如,如图4所示。侧壁W是麦克风衬底14的一部分。通过令至少两个第一开孔共用一个侧壁,可以提高微机电麦克风的集成度。此外,这不需要单独制造不同的微机电麦克风单元,从而简化微机电麦克风的工艺。通过这种方式,可以节省微机电麦克风内部的空间,由于微机电麦克风的小型化。此外,由于不同的麦克风单元共用一个侧壁,因此,在这种不同的麦克风单元之间不存在间隙。这样,进入微机电麦克风的声波不会由于这种间隙而产生额外的噪声。
例如,还可以有至少三个第一开孔共用一个侧壁。
如图2、8所示,微机电麦克风还可以包括麦克风专用集成电路芯片17。麦克风专用集成电路芯片17被设置在微机电麦克风的壳体内。至少两个麦克风单元15a、15b的串联输出例如通过引线16被连接到微机电麦克风17的输入。
在又一个实施例中,微机电麦克风还包括至少两个额外的麦克风单元以及,该至少两个额外的麦克风单元在电路上与前述至少两个麦克风单元并联。例如,在图9中,微机电麦克风包括麦克风单元51、52、53、54。图9和图10示出了麦克风单元51、52、53、54的布置。如图9所示,麦克风单元51、52、53、54在声学上并联设置在麦克风衬底14。图10示出了麦克风单元51、52、53、54的电路连接。麦克风单元51、52串联,麦克风单元53、54串联。串联的麦克风单元51、52与串联的麦克风单元53、54并联。
在图10中,麦克风单元51包括两个电极A 1、B 1。A 1、B 1可以分别是振膜和背极板或者背极板和振膜。麦克风单元52包括两个电极A 2、B 2。同样地,A 2、B 2可以分别是振膜和背极板或者背极板和振膜。麦克风单元53包括两个电极A 3、B 3。A 3、B 3可以分别是振膜和背极板或者背极板和振膜。麦克风单元54包括两个电极A 4、B 4。同样地,A 4、B 4可以分别是振膜和背极板或者背极板和振膜。感测节点A和电源端点B分别连接到两组串联麦克风单元51、52和53、54的两端,即电极A 1、A 3和B 2、B 4。感测节点A与缓冲器(或阻抗转换器)58连接,并输出感测电压v o。在图9的顶视图中示出了感测节点A、与电极B 1、A 2、A 3、B 3、A 4、B 4和电源端点 B。
图11示出了根据一个实施例的电子设备的示意图。如图11所示,电子设备60包括这里描述的微机电麦克风61。电子设备60例如可以是智能手机、平板电脑等。
虽然已经通过例子对本公开的一些特定实施例进行了详细说明,但是本领域的技术人员应该理解,以上例子仅是为了进行说明,而不是为了限制本公开的范围。

Claims (11)

  1. 一种微机电麦克风,包括:
    上壳;
    基座,包括声孔,并且与上壳一起形成微机电麦克风的壳体;
    麦克风衬底,被设置在基座上方并包括至少两个第一开孔,所述至少两个第一开孔与所述声孔连通;以及
    至少两个麦克风单元,形成在衬底上并且分别与所述第一开孔相对应,
    其中,所述至少两个麦克风单元在声学上并联设置在所述麦克风衬底上,
    其中,所述至少两个麦克风单元分别包括振膜和背极板,所述振膜和第一开孔的侧壁围成麦克风前腔的至少一部分,以及
    其中,所述至少两个麦克风单元在电路上串联。
  2. 根据权利要求1所述的微机电麦克风,还包括:垫高衬底,
    其中,所述垫高衬底位于麦克风衬底和所述基座之间,
    其中,所述垫高衬底包括第二开孔,以及所述至少两个第一开孔经由所述第二开孔与所述声孔连通。
  3. 根据权利要求2所述的微机电麦克风,其中,所述第二开孔的横截面面积大于所述第一开孔的横截面的总面积。
  4. 根据权利要求3所述的微机电麦克风,其中,所述第一开孔的横截面区域位于所述第二开孔的横截面区域的范围之内。
  5. 根据权利要求2所述的微机电麦克风,其中,所述第二开孔的深度大于等于50微米。
  6. 根据权利要求1至5中任意一项所述的微机电麦克风,其中,所述振膜和背极板通过间隔件被间隔开。
  7. 根据权利要求1至6中任意一项所述的微机电麦克风,其中,所述第二开孔中的至少两个第二开孔共用一个侧壁,所述侧壁是麦克风衬底的一部分。
  8. 根据权利要求7所述的微机电麦克风,其中,所述第二开孔中的至少三个第二开孔共用一个侧壁。
  9. 根据权利要求1至8中任意一项所述的微机电麦克风,还包括:麦克风专用集成电路芯片,
    其中,所述麦克风专用集成电路芯片被设置在所述壳体内,以及所述至少两个麦克风单元的串联输出被连接到所述麦克风专用集成电路芯片的输入。
  10. 根据权利要求1至9中任意一项所述的微机电麦克风,还包括:至少两个额外的麦克风单元,
    其中,所述至少两个额外的麦克风单元在电路上与所述至少两个麦克风单元并联。
  11. 一种电子设备,包括根据权利要求1-10中的任何一个所述的微机电麦克风。
PCT/CN2021/143028 2021-03-01 2021-12-30 微机电麦克风及电子设备 WO2022183824A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110224613.3 2021-03-01
CN202110224613.3A CN113132876B (zh) 2021-03-01 2021-03-01 微机电麦克风及电子设备

Publications (1)

Publication Number Publication Date
WO2022183824A1 true WO2022183824A1 (zh) 2022-09-09

Family

ID=76772625

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/143028 WO2022183824A1 (zh) 2021-03-01 2021-12-30 微机电麦克风及电子设备

Country Status (2)

Country Link
CN (1) CN113132876B (zh)
WO (1) WO2022183824A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113132876B (zh) * 2021-03-01 2023-08-04 歌尔微电子股份有限公司 微机电麦克风及电子设备

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070047746A1 (en) * 2005-08-23 2007-03-01 Analog Devices, Inc. Multi-Microphone System
US20110110550A1 (en) * 2009-11-11 2011-05-12 Analog Devices, Inc. Microphone with Variable Low Frequency Cutoff
US20120213400A1 (en) * 2011-02-23 2012-08-23 Omron Corporation Acoustic sensor and microphone
CN202679624U (zh) * 2012-05-25 2013-01-16 歌尔声学股份有限公司 Mems麦克风
CN104602171A (zh) * 2013-10-30 2015-05-06 北京卓锐微技术有限公司 一种集成的硅电容麦克风
CN105072551A (zh) * 2015-08-20 2015-11-18 歌尔声学股份有限公司 Mems麦克风和mems声学传感芯片
CN110463225A (zh) * 2017-03-30 2019-11-15 思睿逻辑国际半导体有限公司 用于监控麦克风的装置和方法
CN110603817A (zh) * 2017-05-09 2019-12-20 富士胶片株式会社 压电麦克风芯片及压电麦克风
CN113132876A (zh) * 2021-03-01 2021-07-16 歌尔微电子股份有限公司 微机电麦克风及电子设备

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN212435926U (zh) * 2020-06-24 2021-01-29 杭州士兰集昕微电子有限公司 级联微型麦克风

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070047746A1 (en) * 2005-08-23 2007-03-01 Analog Devices, Inc. Multi-Microphone System
US20110110550A1 (en) * 2009-11-11 2011-05-12 Analog Devices, Inc. Microphone with Variable Low Frequency Cutoff
US20120213400A1 (en) * 2011-02-23 2012-08-23 Omron Corporation Acoustic sensor and microphone
CN202679624U (zh) * 2012-05-25 2013-01-16 歌尔声学股份有限公司 Mems麦克风
CN104602171A (zh) * 2013-10-30 2015-05-06 北京卓锐微技术有限公司 一种集成的硅电容麦克风
CN105072551A (zh) * 2015-08-20 2015-11-18 歌尔声学股份有限公司 Mems麦克风和mems声学传感芯片
CN110463225A (zh) * 2017-03-30 2019-11-15 思睿逻辑国际半导体有限公司 用于监控麦克风的装置和方法
CN110603817A (zh) * 2017-05-09 2019-12-20 富士胶片株式会社 压电麦克风芯片及压电麦克风
CN113132876A (zh) * 2021-03-01 2021-07-16 歌尔微电子股份有限公司 微机电麦克风及电子设备

Also Published As

Publication number Publication date
CN113132876A (zh) 2021-07-16
CN113132876B (zh) 2023-08-04

Similar Documents

Publication Publication Date Title
US20200413198A1 (en) Bone conduction mems microphone
WO2022183824A1 (zh) 微机电麦克风及电子设备
WO2022100551A1 (zh) Mems压电微扬声器、微扬声器单元及电子设备
US20230217154A1 (en) Acoustic sensor assembly having improved frequency response
CN105072551A (zh) Mems麦克风和mems声学传感芯片
CN212259333U (zh) 硅基麦克风装置及电子设备
WO2023025286A1 (zh) 一种麦克风
US20230370785A1 (en) Silicon Based Microphone Apparatus And Electronic Device
WO2021248929A1 (zh) 硅基麦克风装置及电子设备
WO2021248928A1 (zh) 硅基麦克风装置及电子设备
US20230370784A1 (en) Silicon-Based Microphone Device And Electronic Device
WO2022057199A1 (zh) 硅基麦克风装置及电子设备
CN204836580U (zh) Mems麦克风和mems声学传感芯片
WO2021248930A1 (zh) 硅基麦克风装置及电子设备
CN115334434B (zh) 麦克风组件及电子设备
CN217216896U (zh) 骨传导麦克风及其振动组件
WO2022012042A1 (zh) 声音采集装置、声音处理设备及方法、装置、存储介质
CN213880182U (zh) 麦克风电路及麦克风
WO2023185736A1 (zh) 一种微机电系统麦克风及电子设备
WO2023247046A1 (en) Microelectromechanical audio module and apparatus comprising such audio module
CN108156565A (zh) 传感装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21928895

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE