WO2022183671A1 - 亚表面缺陷的检测装置 - Google Patents

亚表面缺陷的检测装置 Download PDF

Info

Publication number
WO2022183671A1
WO2022183671A1 PCT/CN2021/108841 CN2021108841W WO2022183671A1 WO 2022183671 A1 WO2022183671 A1 WO 2022183671A1 CN 2021108841 W CN2021108841 W CN 2021108841W WO 2022183671 A1 WO2022183671 A1 WO 2022183671A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light source
detection device
illumination light
waveguide
Prior art date
Application number
PCT/CN2021/108841
Other languages
English (en)
French (fr)
Inventor
冯胜
翟中生
王选择
谢博娅
Original Assignee
赤壁精迈光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 赤壁精迈光电科技有限公司 filed Critical 赤壁精迈光电科技有限公司
Publication of WO2022183671A1 publication Critical patent/WO2022183671A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined

Definitions

  • the invention relates to the field of defect detection, in particular to a subsurface defect detection device.
  • the characterization methods of subsurface defects can be divided into two categories: destructive detection methods and non-destructive detection methods. Compared with the lossy detection method, the nondestructive method is faster and more efficient.
  • Commonly used non-destructive detection methods of subsurface defects mainly include confocal microscopy, optical coherence tomography and total internal reflection microscopy. When confocal microscopy is used to detect subsurface defects, it must scan point by point, which is inefficient. In addition, when it works in fluorescence mode, fluorescent substances must be introduced into the sample during polishing.
  • the depth resolution of optical coherence tomography depends on the coherence length of the light source, and its typical longitudinal resolution is tens of microns, which is difficult to characterize the subsurface defects of optical components such as fused silica.
  • the total internal reflection microscope device is composed of a total internal reflection illumination unit and a microscopic unit, and has the advantages of simple structure, low cost, easy realization of large-area rapid detection and online detection, etc.
  • the evanescent wave at the interface of the transparent medium is very sensitive to the tiny defects on the surface of the transparent medium;
  • the geometric scale of surface defects reaches or exceeds the light wave length, the normal propagation of evanescent waves is severely disrupted, resulting in significant scattered light. Therefore, the light wave in the guided wave mode illuminates the surface of the transparent medium, and can detect tiny defects with a geometric scale as small as the length of the light wave, and the sensitivity is very high.
  • the existing detection devices often have the problems of strong mechanical vibration interference, high requirements on synchronization control stability, and low detection efficiency and speed.
  • the problem solved by the present invention is to provide a subsurface defect detection device, which on the one hand avoids mechanical vibration interference, reduces the difficulty of synchronous control, and on the other hand, improves the detection efficiency and speed.
  • the present invention provides a subsurface defect detection device, comprising: a light source assembly, the light source assembly is suitable for generating illumination light, and the illumination light is diverging light; the illumination light is coupled into the object to be inspected to form a waveguide light, the waveguide light propagates in a guided wave mode in the object to be detected; an imaging assembly, the imaging assembly includes: an area array image sensor suitable for collecting the scattered waveguide light to obtain a defect image; a processing component adapted to process the defect image.
  • the to-be-detected piece includes: a first surface and a second surface that are opposite and separated from each other, and a side surface located between the first surface and the second surface, the side surface and the first surface Both the surface and the second surface intersect; the illumination light is coupled into the object to be inspected through the side surface to form a waveguide light.
  • the illumination light is contactlessly coupled into the side surface of the object to be inspected.
  • the imaging component includes: at least two area array image sensors.
  • the light source assembly is a point light source assembly, a one-dimensional lattice light source assembly or a line light source assembly.
  • the light source assembly is a one-dimensional lattice light source assembly perpendicular to the diverging surface; or, the light source assembly is a linear light source assembly perpendicular to the diverging surface.
  • the light source assembly includes: a light emitting module suitable for generating light; and a coupling module suitable for shaping the light generated by the light emitting module to form the illumination light.
  • the coupling module includes: at least one of an optical fiber, an optical waveguide or a cylindrical lens.
  • auxiliary light source assembly the auxiliary light source assembly is suitable for generating auxiliary illumination light projected to the first surface and the second surface respectively.
  • the auxiliary illumination light is grazingly incident on the first surface and the second surface.
  • the dimension along the extending direction of the guided wave is the length of the object to be inspected, and the dimension perpendicular to the extending direction of the waveguide and perpendicular to at least one of the first surface and the second surface is the dimension of the object to be inspected.
  • the thickness of the to-be-detected part; the length of the to-be-detected part is greater than the thickness of the to-be-detected part.
  • it also includes: a conveying assembly, the conveying assembly is suitable for sending the to-be-tested piece to a test position.
  • the processing component includes: an image processing unit, which is suitable for preprocessing the defect image; and an identification unit, which is suitable for processing the defects in the preprocessed defect image. identify.
  • the illumination light is divergent light, which can form many plane waveguide lights with different propagation directions, and can realize multi-angle detection, so that each subsurface defect can simultaneously scatter the waveguide lights in different propagation directions to form the exit Scattered light with a wide angle distribution improves imaging efficiency and speed; moreover, the area array image sensor is used in the imaging component to obtain defect images, and with the divergent illumination light, it can avoid the detection of sub-surface defects by scanning, thereby Avoid mechanical vibration interference and reduce the difficulty of synchronous control.
  • the illumination light is coupled into the to-be-detected component through the side surface of the to-be-detected component to form a waveguide light, which can detect the entire to-be-detected component without any shaded parts. , which is conducive to the realization of no dead zone detection.
  • the illumination light is contactlessly coupled into the side surface of the object to be inspected.
  • the illumination light is directly projected to the side surface of the object to be detected, without passing through a condensed medium such as liquid or colloid, and will not cause damage to the surface of the object to be detected.
  • the detection device further includes: an auxiliary light source assembly, the auxiliary light source assembly generates auxiliary illumination light grazingly incident on the first surface and the second surface.
  • the auxiliary illumination light can image the surface defects on the first surface and the second surface, so that false signals caused by surface defects can be eliminated in the process of sub-surface defect detection, and the sub-surface defect can be effectively improved. Surface defect detection accuracy.
  • 1 is a schematic diagram of the optical path of a detection device for subsurface defects
  • FIG. 2 is a schematic three-dimensional structure diagram of an embodiment of a subsurface defect detection device of the present invention
  • FIG. 3 is a schematic plan view of the embodiment of the detection device shown in FIG. 2;
  • FIG. 4 is a schematic diagram of the optical path of the embodiment of the detection device shown in FIG. 2;
  • FIG. 5 is a schematic diagram of the optical path of the waveguide light formed by the embodiment of the detection device shown in FIG. 2 being scattered;
  • FIG. 6 is a schematic diagram of a wavefront of the waveguide light formed by the embodiment of the detection device shown in FIG. 2 after being expanded by a plane wave;
  • FIG. 7 is a schematic structural diagram of another embodiment of the detection device for subsurface defects of the present invention.
  • FIG. 8 is a schematic structural diagram of still another embodiment of the subsurface defect detection device of the present invention.
  • the detection device for realizing subsurface defects in the prior art has the problems of strong mechanical vibration interference, high difficulty in synchronous control, and low detection efficiency and speed. Now combined with a subsurface defect detection device to analyze the reasons for the above problems:
  • FIG. 1 a schematic diagram of the optical path of a subsurface defect detection device is shown.
  • the illumination light 21 generated by the light source (not shown in the figure) is incident on the surface of the object to be imaged 22 ; the imaging assembly 25 collects the backscatter of the illumination light 21 projected on the surface of the object to be imaged 22 through the beam splitting device 24 ray 23 for imaging.
  • the imaging device In order to improve the local illumination light intensity, the imaging device generally uses a line light source to generate the illumination light 21, so the formed illumination light 21 is a one-dimensional light in the direction perpendicular to the paper surface; in order to realize the overall imaging of the to-be-imaged part 22 , the incident position of the illumination light 21 needs to be constantly changed to image the to-be-imaged member 22 in a scanning manner.
  • the propagation direction of the illumination light 21 generated by the imaging device is fixed in a small range, and on the premise of not changing the light source and optical components, the angular distribution range of the scattered light formed by the illumination light 21 scattered by the target object is relatively small. Narrow, causing the problem of imaging dead angle in some solid angle directions.
  • the present invention provides a subsurface defect detection device, comprising: a light source assembly, the light source assembly is suitable for generating illumination light, and the illumination light is divergent light; the illumination light is coupled into the to-be-detected In the component to form a waveguide light, the waveguide light propagates in a guided wave mode in the to-be-detected component; an imaging component, the imaging component includes: an area array image sensor, the area array image sensor is suitable for collecting scattered scattered waveguide light to obtain a defect image; a processing assembly adapted to process the defect image.
  • the illumination light is divergent light, which can form planar waveguide light with different propagation directions, and can realize multi-angle detection, so that each subsurface defect can simultaneously scatter the waveguide light in different propagation directions to form an exit angle
  • the widely distributed scattered light improves the imaging efficiency and speed; moreover, the area array image sensor is used in the imaging component to obtain the defect image, and with the divergent illumination light, the detection of sub-surface defects by scanning can be avoided, thereby avoiding Mechanical vibration interference reduces the difficulty of synchronous control.
  • FIG. 2 is a schematic three-dimensional structure diagram of an embodiment of the detection device for subsurface defects of the present invention, wherein FIG. 3 is a schematic plan view of the embodiment of the detection device shown in FIG. 2; A schematic diagram of an optical path showing an embodiment of the detection device.
  • the inspection device images the subsurface defects of the object to be inspected 100 .
  • the to-be-detected object 100 has a first surface 101 and a second surface 102, and the first surface 101 and the second surface 102 are disposed opposite to and separated from each other.
  • the to-be-detected member 100 is a plate-shaped light guide material.
  • the to-be-detected object 100 is flat glass. Therefore, the sub-surface defects are sub-surface defects such as bubbles, impurities, and chipping inside the flat glass.
  • the to-be-detected part may also be a flat sapphire layer, a dielectric film layer, and even the to-be-detected part may also be a flat surface such as a polyester film (PET film), a polyimide film, etc. flexible material film.
  • PET film polyester film
  • polyimide film etc. flexible material film.
  • the detection device includes: a light source assembly (not marked in the figure), the light source assembly is suitable for generating illumination light 111, the illumination light 111 is divergent light; the illumination light 111 is coupled into the object to be inspected 100 to form a waveguide Light 112 (as shown in FIG. 4 ), the waveguide light 112 propagates in the guided wave mode in the object to be inspected 100 ; an imaging assembly (not marked in the figure), the imaging assembly includes: an area array image sensor 141/ 142, the area array image sensor 141/142 is suitable for collecting the scattered waveguide light 112 to obtain the defect image; the processing component 150, the processing component 150 is suitable for processing the defect image.
  • the illumination light 111 is diverging light, so it can form planar waveguide light 112 with different propagation directions, and can realize multi-angle detection, so that each subsurface defect can scatter the waveguide light 112 in different propagation directions at the same time to form a relatively high output angle distribution.
  • a wide range of scattered light can improve the imaging efficiency and speed; moreover, the area array image sensor 141/142 is used in the imaging component to obtain the defect image, and with the divergent illumination light 111, the detection of sub-surface defects can be avoided by scanning. So as to avoid mechanical vibration interference and reduce the difficulty of synchronous control.
  • the object to be tested 100 includes: a first surface 101 and a second surface 102 arranged opposite to each other; the waveguide light 112 is located on the first surface 101 and the second surface 102 Multiple total internal reflections occur between them and propagate in guided wave mode.
  • the waveguide light 112a/112b formed after being coupled into the object to be inspected 100 is the waveguide light in different propagation directions, realizing multi-angle detection, and the subsurface defects 100a/100c at different positions can scatter the waveguide
  • the same subsurface defect 100a/100c can scatter the waveguide light 112 in different propagation directions, for example, the subsurface defect 100a can scatter the waveguide light 112a and the waveguide light 112b, and the subsurface defect 100c can scatter the waveguide light 112b.
  • the waveguide light 112 formed after being coupled into the to-be-imaged component 100 is actually composed of plane waves 112a/112b in different propagation directions.
  • the energy of the waveguide light 112 composed of the plane waves 112a/112b in different propagation directions is confined in the waveguide with limited size, even if the light source and optical elements are not changed, the waveguide propagating in the to-be-imaged object 100
  • the intensity of the light 112 is also large (the dotted line 114 in FIG. 6 shows the light field in the to-be-imaged component 100 and the light intensity distribution of the light field of the formed evanescent wave), so that the imaging quality can be effectively improved.
  • evanescent waves are formed on the first surface 101 and the second surface 102 .
  • the light field of the evanescent wave seamlessly covers the range of the first surface 101 and the second surface 102, and is scattered by the sub-surface target to form scattered light with a wide distribution of exit directions and angles, so as to achieve no dead angle.
  • the object to be inspected 100 further includes: a side surface 103 located between the first surface 101 and the second surface 102, the side surface 103 and the first surface 103 Both the first surface 101 and the second surface 102 intersect, and the illumination light 111 is coupled into the object to be inspected 100 through the side surface 103 to form a waveguide light 112 .
  • the side surface 103 is perpendicular to the first surface 101 and the second surface 102 .
  • the illumination light 111 is coupled into the object to be inspected 100 through the side surface 103 of the object to be inspected 100 , so that the entire surface of the object to be inspected 100 can be inspected without any shaded parts, which is beneficial to Implementation without dead-band detection.
  • the illumination light 111 is contactlessly coupled into the side surface 103 of the object to be inspected 100 , that is, the illumination light 111 is directly coupled into the object to be inspected without being conducted by a condensed matter medium Side 103 of 100.
  • the illumination light 111 is contactlessly coupled into the side surface 103 of the object to be inspected 100, and the illumination light 111 is directly projected onto the side surface 103 of the object to be inspected 100, without passing through a condensed medium such as liquid or colloid, and will not be treated
  • the surface imaging conditions of the test piece 100 cause damage.
  • the light source components are point light source components.
  • the light source assembly includes: a light-emitting module (not shown in the figure), the light-emitting module is suitable for generating light; a coupling module 110b, the coupling module 110b is suitable for shaping the light generated by the light-emitting module to The illumination light 111 is formed.
  • the coupling module 110b is also suitable for coupling the illumination light 111 into the object to be inspected 100 to be the waveguide light 112 propagating in the object to be inspected 100 in a guided mode.
  • the coupling module 110b is an optical fiber.
  • the detection device further includes: a coupling detection component (not marked in the figure), the coupling detection component is suitable for detecting and adjusting the coupling of the illumination light 111 into the to-be-detected object 100 efficiency.
  • the coupling detection assembly includes: a photosensitive element 121 , and the photosensitive element 121 and the light source assembly are respectively located on both sides of the object to be detected 100 along the extending direction A of the guided wave.
  • the photosensitive element 121 receives the intensity of the unscattered waveguide light 111 on the other side of the to-be-detected object 100 in the waveguide extending direction A, so that the coupling of the illumination light 111 into the to-be-detected can be monitored and adjusted. coupling efficiency in the component 100 to ensure that the coupling efficiency is optimized.
  • the detection device further includes: an auxiliary light source assembly 130 , and the auxiliary light source assembly 130 is adapted to generate light projected onto the first surface 101 and the second surface 102 respectively. Auxiliary lighting.
  • the auxiliary illumination light generated by the auxiliary light source assembly 130 is used to detect defects on the surfaces of the first surface 101 and the second surface 102, so that the detection of subsurface defects of the to-be-detected object can be performed.
  • the influence of the defects on the surface of the first surface 101 and the second surface 102 is excluded, and false signals caused by the defects on the surface are eliminated, thereby improving the detection accuracy of sub-surface defects.
  • the auxiliary illumination light is grazingly incident on the first surface 101 and the second surface 102 .
  • the grazing incidence means that the auxiliary illumination light is projected onto the first surface 101 and the second surface 102 at an incident angle close to 90°.
  • the auxiliary light source assembly may be a parallel light source assembly, that is, the generated auxiliary illumination light may be parallel light.
  • the auxiliary light source assembly 130 generates light with a divergence angle of less than 10°, that is, the parallel light refers to light with a divergence angle of less than 10°.
  • the object to be inspected 100 is flat glass, and the inspection device embodiment is used to detect subsurface defects in the flat glass. Therefore, the auxiliary illumination light generated by the auxiliary illumination light source 130 can detect the surface attachments (such as dust) on the first surface 101 and the second surface 102, so as to be eliminated in the final defect detection result False signals caused by surface attachments can effectively improve the accuracy of defect detection and effectively avoid misjudgments in defect detection.
  • the surface attachments such as dust
  • the dimension along the guided wave extending direction A is the length L of the to-be-detected part 100, perpendicular to the guided wave extending direction A and perpendicular to the first surface 101 and the first surface 101 and the first surface 101.
  • the dimension of at least one of the two surfaces 102 is the thickness D of the object to be inspected 100 .
  • the length L of the object to be inspected 100 is greater than the thickness D of the object to be inspected 100 .
  • the ratio of the length L of the object to be inspected 100 to the thickness D of the object to be inspected 100 is greater than 10.
  • the thickness D of the to-be-detected piece is less than or equal to 5 mm.
  • the illumination light 111 has a predetermined divergence angle ⁇ at least in a divergent surface (not shown in the figure), wherein the divergent surface is perpendicular to at least one of the first surface 101 or the second surface 102 , the divergence angle ⁇ of the illumination light 111 needs to be adapted to the thickness D of the object to be detected, so as to optimize the coupling efficiency and reduce the loss of light energy.
  • the divergence angle ⁇ 2tan -1 (D/2R), wherein D is the size of the to-be-detected object 100 perpendicular to the waveguide extending direction A and parallel to the divergent surface, and R is the light of the light source assembly The distance from the outgoing end face to the object to be inspected 100 .
  • the light source assembly further includes: an adjustment module (not shown in the figure), the adjustment module is connected to the light-emitting module, and the adjustment module is suitable for adjusting the intensity of the light generated by the light-emitting module. light intensity, and then achieve the purpose of adjusting the light intensity of the illumination light, so as to meet the detection requirements of different parts to be detected.
  • the detection apparatus further includes: an imaging assembly 140 (as shown in FIG. 2 ), and the imaging assembly includes: an area array image sensor 141 / 142 (as shown in FIG. 3 ) shown), the area array image sensor 141/142 is adapted to collect the scattered waveguide light 112 to obtain an image of the defect.
  • the area array image sensors 141/142 in the imaging assembly collect scattered light with a wide distribution of exit angles, and the position of the illumination light 111, the object to be inspected 100 and the imaging assembly can be realized without changing the positions of the illumination light 111, the object to be inspected 100 and the imaging assembly.
  • the overall detection of the detection element 100 avoids detection by scanning, avoids mechanical vibration interference, and reduces the difficulty of synchronization control.
  • the imaging assembly includes: at least two area array image sensors 141/142.
  • the photosensitive surfaces of the area array image sensors 141 / 142 face the first surface 101 and the second surface 102 respectively.
  • Using an area array image sensor, combined with divergent illumination light, can not only effectively improve the detection efficiency, but also avoid the interference of mechanical vibration, which is conducive to improving the detection accuracy.
  • the object to be inspected 100 is flat glass, and the inspection device embodiment is used to detect subsurface defects in the flat glass. Therefore, the use of the area array image sensor can effectively avoid the change of the position of the object to be detected 100, the light source assembly and the imaging assembly 140, avoid mechanical vibration interference caused by the movement of the three during the detection process, reduce the system the complexity.
  • the detection device further includes: a conveying assembly 160, and the conveying assembly 160 is suitable for conveying the object to be inspected. 100 into the detection position.
  • the conveying assembly 160 realizes the conveying of the to-be-tested object 100 by means of mechanical and electrical control.
  • the conveying assembly 160 realizes the conveying of the to-be-detected object 100 through a conveying mechanism.
  • the setting of the conveying assembly 160 can make it possible to integrate the detection device with the production line, which is beneficial to the realization of real-time monitoring in the production process.
  • the inspection apparatus further includes: a processing component 150, which is suitable for processing the defective image.
  • the processing component 150 performs defect detection based on the defect image.
  • the processing component 150 includes: an image processing unit, which is suitable for preprocessing the defect image; and an identification unit, which is suitable for preprocessing the preprocessed defect image. Identify defects in.
  • the image processing unit is connected to the imaging component 140, obtains the defect image obtained by the imaging component 140, and preprocesses the defect image to improve the quality of the defect image;
  • the identification unit is connected to the image processing unit to obtain The defect image preprocessed by the image processing unit;
  • the identification unit invokes an appropriate identification algorithm code to identify the defect in the defect image, and then outputs the parameters of the corresponding defect.
  • the practice of setting the light source assembly as a point light source assembly is only an example. In other embodiments of the present invention, the light source assembly may also be set in other shapes.
  • FIG. 7 a schematic structural diagram of another embodiment of the detection device of the present invention is shown.
  • the light source assembly is a one-dimensional dot matrix light source assembly.
  • FIG. 7 is a top view of the first surface 201 of the object to be inspected 200 .
  • the coupling module 210b of the light source assembly includes: a plurality of optical fibers 211b, and the plurality of optical fibers 211b are in a plane parallel to the first surface 201 and along a plane parallel to the side surface 203 The directions are distributed in parallel. Therefore, in this embodiment, the light source component is a one-dimensional lattice light source component that is perpendicular to the diverging surface.
  • the coupling module 210b in the light source assembly may also be at least one of an optical waveguide or a cylindrical lens, so the light source assembly is a linear light source assembly perpendicular to the diverging surface (as shown in FIG. 8 , The coupling module 310b of the optical waveguide is shown).
  • the illumination light is diverging light, which can form planar waveguide light with different propagation directions, realize multi-angle detection, so that each subsurface defect can scatter the waveguide light in different propagation directions at the same time to form
  • the scattered light with a wide distribution of angles is emitted, which improves the imaging efficiency and speed; moreover, the area array image sensor is used in the imaging component to obtain the defect image, and with the divergent illumination light, the detection of sub-surface defects by scanning can be avoided. So as to avoid mechanical vibration interference and reduce the difficulty of synchronous control.
  • the illuminating light is coupled into the to-be-detected part through the side surface of the to-be-detected part to form a waveguide light, which can detect the complete to-be-detected part without the occluded part, It is beneficial to the realization of no dead zone detection.
  • the illumination light is contactlessly coupled into the side surface of the object to be inspected. The illumination light is directly projected to the side of the object to be detected, without passing through a condensed medium such as liquid or colloid, and will not cause damage to the surface imaging conditions of the object to be detected.
  • the detection device further includes: an auxiliary light source assembly, the auxiliary light source assembly generates auxiliary illumination light grazingly incident on the first surface and the second surface.
  • the auxiliary illumination light can image the surface defects on the first surface and the second surface, so that false signals caused by surface defects can be eliminated in the process of sub-surface defect detection, and the sub-surface defect can be effectively improved. Surface defect detection accuracy.

Abstract

一种亚表面缺陷的检测装置,包括:适宜于产生照明光(111)的光源组件,照明光(111)为发散光;该照明光(111)耦合入待检测件(100)中以形成波导光(112),波导光(112)在待检测件(100)中以导波模式传播;成像组件,包括:面阵图像传感器(141,142),其适宜于采集被散射的波导光(112)以获得缺陷图像;处理组件(150),其适宜于对缺陷图像进行处理。该检测装置能够实现多角度检测以提高成像效率;而且,成像组件中采用面阵图像传感器(141,142)获得缺陷图像,配合呈发散光的照明光(111),能够避免扫描方式的引用,从而避免机械振动干扰、降低同步控制难度。

Description

亚表面缺陷的检测装置
本申请要求于2021年3月3日提交中国专利局、申请号为202110238855.8、发明名称为“亚表面缺陷的检测装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及缺陷检测领域,特别涉及一种亚表面缺陷的检测装置。
背景技术
大型高功率激光装置如美国国家点火装置、法国兆焦耳激光装置以及中国神光系列装置等通常都需要使用一定数量的大口径光学元件。光学元件的缺陷不仅影响了其长期稳定性、镀膜质量和面形精度,而且直接降低了光学系统的抗激光损伤阈值,影响了其光束质量和使用寿命。对光学元件的亚表面成像,特别是针对亚表面缺陷的表征方法,能够有效地检测光学元件内的缺陷,从而显得尤为重要。
目前亚表面缺陷的表征方法可以分为两大类:有损探测法和无损探测法。相对于有损探测法,无损方法更为迅速,效率更高。常用的无损探测亚表面缺陷的方法主要有:共聚焦显微技术、光学相干层析技术以及全内反射显微技术等。共聚焦显微技术探测亚表面缺陷时必须做逐点扫描,效率很低;另外,其工作于荧光模式时,样品在抛光过程中必须引入荧光物质。光学相干层析技术的深度分辨率依赖于光源的相干长度,其典型的纵向分辨率为十几微米,难以用来表征熔石英等光学元件的亚表面缺陷。全内反射显微装置由全内反射照明单元与显微单元组成,具有结构简单、成本低、容易实现大面积快速检测 及在线检测等优点。
全内反射照明单元所产生的光波在待检测的透明介质中以导波模式(guided mode)进行传播时,在透明介质界面的隐失波(Evanescent wave)对透明介质表面的微小缺陷非常敏感;当表面缺陷的几何尺度达到或超过光波长度时,隐失波的正常传播就会受到严重破坏,从而产生明显的散射光。因此导波模式的光波对透明介质表面进行照明,可以探测几何尺度小至光波长度的微小缺陷,灵敏度非常高。
但是现有检测装置,往往存在机械振动干扰强、同步控制稳定性要求高,而且检测效率和速度低下的问题。
发明内容
本发明解决的问题是提供一种亚表面缺陷的检测装置,一方面避免机械振动干扰、降低同步控制难度,另一方面,提高检测效率和速度。
为解决上述问题,本发明提供一种亚表面缺陷的检测装置,包括:光源组件,所述光源组件适宜于产生照明光,所述照明光为发散光;所述照明光耦合入待检测件中以形成波导光,所述波导光在所述待检测件中以导波模式传播;成像组件,所述成像组件包括:面阵图像传感器,所述面阵图像传感器适宜于采集被散射的波导光以获得缺陷图像;处理组件,所述处理组件适宜于对所述缺陷图像进行处理。
可选的,所述待检测件包括:相背设置且相互分离的第一表面和第二表面、以及位于所述第一表面和第二表面之间的侧面,所述侧面与所述第一表面和第二表面均相交;所述照明光经所述侧面耦合入所述待检测件以形成波导光。
可选的,所述照明光无接触耦合入所述待检测件的侧面。
可选的,所述成像组件包括:至少2个面阵图像传感器。
可选的,所述光源组件为点状光源组件、一维点阵光源组件或线光源组件。
可选的,所述光源组件为垂直所述发散面的一维点阵光源组件;或者,所述光源组件为垂直所述发散面的线状光源组件。
可选的,所述光源组件包括:发光模块,所述发光模块适宜于产生光线;耦合模块,所述耦合模块适宜于对所述发光模块所产生的光线整形以形成所述照明光。
可选的,所述耦合模块包括:光纤、光波导或柱状透镜中的至少一个。
可选的,还包括:辅助光源组件,所述辅助光源组件适宜于产生分别投射至第一表面和第二表面的辅助照明光。
可选的,所述辅助照明光掠入射至所述第一表面和所述第二表面。
可选的,所述待检测件中,沿导波延伸方向的尺寸为所述待检测件的长度,垂直波导延伸方向且垂直第一表面和第二表面中至少一个的尺寸为所述待检测件的厚度;所述待检测件的长度大于所述待检测件的厚度。
可选的,所述照明光至少在发散面内具有预设发散角,其中所述发散面垂直所述第一表面或第二表面中至少一个;所述照明光的发散角为α=2tan -1(D/2R),其中D为垂直导波延伸方向且平行所述发散面的所述待检测件的尺寸,R为所述光源组件光线出射的端面至所述待检测件的距离。
可选的,还包括:输送组件,所述输送组件适宜于将所述待检测件送入检测位置。
可选的,所述处理组件包括:图像处理单元,所述图像处理单元适宜于对所述缺陷图像进行预处理;识别单元,所述识别单元适宜于 对经预处理的缺陷图像中的缺陷进行识别。
与现有技术相比,本发明的技术方案具有以下优点:
本发明技术方案中,所述照明光为发散光,能够形成许多不同传播方向的平面波导光,能够实现多角度检测,使每个亚表面缺陷都能同时散射不同传播方向的波导光以形成出射角度分布较广的散射光线,提高成像效率和速度;而且,成像组件中采用面阵图像传感器获得缺陷图像,配合呈发散状的照明光,能够避免采用扫描的方式对亚表面缺陷进行检测,从而避免机械振动干扰、降低同步控制难度。
本发明可选方案中,所述照明光经所述待检测件的侧面耦合入所述待检测件以形成波导光,能够对完整的所述待检测件进行检测,不会出现被遮挡的部分,有利于无死区检测的实现。
本发明可选方案中,所述照明光无接触耦合入所述待检测件的侧面。所述照明光直接投射至所述待检测件的侧面,无需经过液体或者胶体等凝聚态介质,不会对待检测件的表面造成破坏。
本发明可选方案中,所述检测装置还包括:辅助光源组件,所述辅助光源组件产生掠入射至第一表面和第二表面的辅助照明光。所述辅助照明光能够对所述第一表面和所述第二表面的表面上缺陷进行成像,从而能够在亚表面缺陷检测的过程中,剔除表面上缺陷所引起的假信号,能够有效提高亚表面缺陷检测精度。
附图说明
图1是一种亚表面缺陷的检测装置的光路示意图;
图2是本发明亚表面缺陷的检测装置一实施例的立体结构示意图,
图3是图2所示检测装置实施例的平面结构示意图;
图4是图2所示检测装置实施例的光路示意图;
图5是图2所示检测装置实施例所形成波导光被散射的光路示意图;
图6是图2所示检测装置实施例所形成波导光被平面波展开后的波阵面示意图;
图7是本发明亚表面缺陷的检测装置另一实施例的结构示意图;
图8是本发明亚表面缺陷的检测装置再一实施例的结构示意图。
具体实施方式
由背景技术可知,现有技术中实现亚表面缺陷的检测装置存在机械振动干扰强、同步控制难度高且检测效率和速度低下的问题。现结合一种亚表面缺陷的检测装置分析上述问题的原因:
参考图1,示出了一种亚表面缺陷的检测装置的光路示意图。
光源(图中未示出)产生的照明光21入射至待成像件22的表面上;所述成像组件25通过分光装置24采集投射至所述待成像件22表面的照明光21的背向散射的光线23以进行成像。
为了提高局部照明光强,所述成像装置一般采用线光源产生照明光21,因此所形成的照明光21为垂直纸面方向上的一维光线;为了实现对所述待成像件22整体的成像,所述照明光21入射的位置需要不停地变换、以扫描的方式对所述待成像件22进行成像。
可见,所述成像装置进行成像的过程中,所述照明光21、待成像件22以及所述成像组件25三者之间的位置关系会发生变化,因此容易受到机械振动干扰。因此,所述照明光21、待成像件22以及所述成像组件25三者之间的位置变化需要同步控制,存在成像速度慢、效率低等问题。
此外,所述成像装置所产生照明光21的传播方向固定在较小范围,在不改变光源以及光学元器件的前提下,所述照明光21经目标 物散射形成的散射光的角度分布范围较窄,在某些立体角方向上造成成像死角的问题。
为了改善上述问题,发展出了全内反射原理对亚表面缺陷进行检测的装置。但是采用全内反射原理实现亚表面缺陷检测的装置中,依旧存在成像死角和成像死区,以及由此而引起的检测效率和速度低下的问题。
为解决所述技术问题,本发明提供一种亚表面缺陷的检测装置,包括:光源组件,所述光源组件适宜于产生照明光,所述照明光为发散光;所述照明光耦合入待检测件中以形成波导光,所述波导光在所述待检测件中以导波模式传播;成像组件,所述成像组件包括:面阵图像传感器,所述面阵图像传感器适宜于采集被散射的波导光以获得缺陷图像;处理组件,所述处理组件适宜于对所述缺陷图像进行处理。
本发明技术方案中,所述照明光为发散光,能够形成不同传播方向的平面波导光,能够实现多角度检测,使每个亚表面缺陷都能同时散射不同传播方向的波导光以形成出射角度分布较广的散射光线,提高成像效率和速度;而且,成像组件中采用面阵图像传感器获得缺陷图像,配合呈发散状的照明光,能够避免采用扫描的方式对亚表面缺陷进行检测,从而避免机械振动干扰、降低同步控制难度。
为使本发明的上述目的、特征和优点能够更为明显易懂,下面结合附图对本发明的具体实施例做详细的说明。
参考图2至图4,其中图2是本发明亚表面缺陷的检测装置一实施例的立体结构示意图,其中图3是图2所示检测装置实施例的平面结构示意图;图4是图2所示检测装置实施例的光路示意图。
所述检测装置对待检测件100的亚表面缺陷进行成像。所述待检测件100具有第一表面101和第二表面102,所述第一表面101和所述第二表面102相背设置且相互分离。
本发明一些实施例中,所述待检测件100为平板状的导光材料。 本实施例中,所述待检测件100为平板玻璃。因此所述亚表面缺陷为平板玻璃内部的气泡、杂质、面崩等表面下缺陷。
本发明其他实施例中,所述待检测件还可以为平板状的蓝宝石层、介质膜层,甚至所述待检测件还可以为诸如聚酯薄膜(PET薄膜)、聚酰亚胺薄膜等平整的柔性材料膜层。
所述检测装置包括:光源组件(图中未标示),所述光源组件适宜于产生照明光111,所述照明光111为发散光;所述照明光111耦合入待检测件100中以形成波导光112(如图4所示),所述波导光112在所述待检测件100中以导波模式传播;成像组件(图中未标示),所述成像组件包括:面阵图像传感器141/142,所述面阵图像传感器141/142适宜于采集被散射的波导光112以获得缺陷图像;处理组件150,所述处理组件150适宜于对所述缺陷图像进行处理。
所述照明光111为发散光,因此能够形成不同传播方向的平面波导光112,能够实现多角度检测,使每个亚表面缺陷都能同时散射不同传播方向的波导光112以形成出射角度分布较广的散射光线,提高成像效率和速度;而且,成像组件中采用面阵图像传感器141/142获得缺陷图像,配合呈发散状的照明光111,能够避免采用扫描的方式对亚表面缺陷进行检测,从而避免机械振动干扰、降低同步控制难度。
如图3和图4所示,所述待检测件100包括:相背设置的第一表面101和第二表面102;所述波导光112在所述第一表面101和所述第二表面102之间发生多次全内反射,以导波模式传播。
如图5所示,耦合入所述待检测件100中后所形成的波导光112a/112b为不同传播方向的波导光,实现多角度检测,不同位置的亚表面缺陷100a/100c均能够散射波导光以实现检测,而且同一亚表面缺陷100a/100c能够散射不同传播方向的波导光112,例如亚表面缺陷100a能够散射波导光112a和波导光112b,亚表面缺陷100c能够散射波导光112b。
从另一角度看,如图6所示,耦合入所述待成像件100中后所形成的波导光112,实际上是由不同传播方向的平面波112a/112b组成。由不同传播方向的所述平面波112a/112b组成的所述波导光112的能量被局限于尺寸有限的波导中,即使不改变光源和光学元件,所述待成像件100中所传播的所述波导光112的强度也很大(如图6中虚线114示意出了所述待成像件100中的光场以及所形成隐失波的光场的光强分布),从而能够有效提高成像质量。所述波导光112在所述待成像件中传播时,所述第一表面101上和所述第二表面102上形成隐失波(Evanescent wave)。所述隐失波的光场无缝覆盖所述第一表面101和所述第二表面102的范围,受亚表面目标物的散射,形成出射方向角分布较广的散射光,实现无死角的高质量、高速度、高效率成像。
继续参考图3和图4,本发明一些实施例中,所述待检测件100还包括:位于所述第一表面101和第二表面102之间的侧面103,所述侧面103与所述第一表面101和第二表面102均相交,所述照明光111经所述侧面103耦合入所述待检测件100以形成波导光112。具体的,本实施例中所述侧面103垂直所述第一表面101和所述第二表面102。
所述照明光111经所述待检测件100的侧面103耦合入所述待检测件100中,从而能够对所述待检测件100的完整表面进行检测,不会出现被遮挡的部分,有利于无死区检测的实现。
此外,本实施例中,所述照明光111无接触耦合入所述待检测件100的侧面103,也就是说,所述照明光111未经凝聚态介质传导即直接耦合入所述待检测件100的侧面103。
所述照明光111无接触耦合入所述待检测件100的侧面103,所述照明光111直接投射至所述待检测件100的侧面103,无需经过液体或者胶体等凝聚态介质,不会对待检测件100的表面成像条件造成破坏。
本发明一些实施例中,所述光源组件为点状光源组件。具体的,所述光源组件包括:发光模块(图中未示出),所述发光模块适宜于产生光线;耦合模块110b,所述耦合模块110b适宜于对所述发光模块所产生的光线整形以形成所述照明光111。此外,本实施例中,所述耦合模块110b还适宜于将所述照明光111耦合入所述待检测件100以在所述待检测件100中以导播模式传播的波导光112。如图3所示,本实施例中,所述耦合模块110b为光纤。
本发明一些实施例中,所述检测装置还包括:耦合检测组件(图中未标示),所述耦合检测组件适宜于检测并调节所述照明光111耦合入所述待检测件100中的耦合效率。
具体的,如图3所示,所述耦合检测组件包括:感光元件121,沿导波延伸方向A,所述感光元件121与所述光源组件分别位于所述待检测件100的两侧。
由于所述波导光111在所述待检测件100中以导波模式传播,除了在所述待检测件100中被散射的部分,大部分波导光111会沿着导波延伸方向A传播至所述待检测件100的另一侧。所述感光元件121在所述导波延伸方向A所述待检测件100的另一侧接收未被散射的波导光111的强度,从而能够监测并调节所述照明光111耦合入所述待检测件100中的耦合效率,以确保耦合效率达到最优。
继续参考图3,本发明一些实施例中,所述检测装置还包括:辅助光源组件130,所述辅助光源组件130适宜于产生分别投射至所述第一表面101和所述第二表面102的辅助照明光。
所述辅助光源组件130所产生的辅助照明光用以对所述第一表面101和所述第二表面102的表面上缺陷进行检测,从而能够在所述待检测件的亚表面缺陷的检测中排除所述第一表面101和所述第二表面102的表面上缺陷的影响,剔除表面上缺陷引起的假信号,进而提高亚表面缺陷检测的精度。
本实施例中,所述辅助照明光掠入射至所述第一表面101和所述第二表面102。其中,掠入射的意思是指,所述辅助照明光以接近于90°的入射角投射至所述第一表面101和所述第二表面102。具体的,所述辅助光源组件可以为平行光光源组件,即所产生的辅助照明光可以为平行光。所述辅助光源组件130产生发散角小于10°的光线,即所述平行光指发散角小于10°的光线。
本实施例中,所述待检测件100为平板玻璃,所述检测装置实施例用以对所述平板玻璃中的表面下缺陷进行检测。因此所述辅助照明光源130所产生的辅助照明光能够对所述第一表面101和所述第二表面102上的表面附着物(例如灰尘)进行检测,从而能够在最终的缺陷检测结果中剔除表面附着物所引起的假信号,能够有效提高缺陷检测精度,有效避免缺陷检测中的误判。
需要说明的是,所述待检测件100中,沿导波延伸方向A的尺寸为所述待检测件100的长度L,垂直导波延伸方向A且垂直所述第一表面101和所述第二表面102中至少一个的尺寸为所述待检测件100的厚度D。本发明一些实施例中,所述待检测件100的长度L大于所述待检测件100的厚度D。如图3所示,本实施例中,所述待检测件100的长度L与所述待检测件100的厚度D的比值大于10。具体的,所述待检测件的厚度D小于等于5mm。
还需要说明的是,所述照明光111至少在发散面(图中未示出)内具有预设发散角α,其中所述发散面垂直所述第一表面101或第二表面102中至少一个,所述照明光111的发散角α需要与所述待检测件的厚度D相适应,以优化耦合效率、降低光能损耗。具体的,所述发散角α=2tan -1(D/2R),其中D为垂直导波延伸方向A且平行所述发散面的所述待检测件100的尺寸,R为所述光源组件光线出射的端面至所述待检测件100的距离。
此外,本实施例中,所述光源组件还包括:调节模块(图中未示出),所述调节模块与所述发光模块相连,所述调节模块适宜于调节 所述发光模块所产生光线的光强,进而达到调节照明光光强的目的,从而满足不同待检测件的检测需求。
继续参考图2至图4,本发明一些实施例中,所述检测装置还包括:成像组件140(如图2所示),所述成像组件包括:面阵图像传感器141/142(如图3所示),所述面阵图像传感器141/142适宜于采集被散射的波导光112以获得缺陷图像。
所述成像组件中的面阵图像传感器141/142采集出射角度分布广泛的散射光线,无需改变照明光111、待检测件100和所述成像组件三者之间的位置即可实现对所述待检测件100整体的检测,从而避免采用扫描的方式对进行检测,避免机械振动干扰、降低同步控制难度。
如图2和图3所示,所述成像组件包括:至少2个面阵图像传感器141/142。所述面阵图像传感器141/142的感光面分别朝向所述第一表面101和所述第二表面102。采用面阵列图像传感器,结合发散的照明光,不仅能够有效提高检测效率,还能够避免机械振动的干扰,有利于提高检测精度。
具体的,本实施例中,所述待检测件100为平板玻璃,所述检测装置实施例用以对所述平板玻璃中的表面下缺陷进行检测。因此采用面阵列图像传感器,能够有效避免待检测件100、所述光源组件以及所述成像组件140三者之间位置的变化,避免在检测过程中三者的运动造成的机械振动干扰、降低系统复杂度。
此外,所述检测装置的同步控制难度较低,如图2所示,本发明一些实施例中,所述检测装置还包括:输送组件160,所述输送组件160适宜于将所述待检测件100送入检测位置。
具体的,所述输送组件160通过机械与电气控制的方式实现所述待检测件100的运送。本实施例中,所述输送组件160通过传送机构实现待检测件100的运送。所述输送组件160的设置能够使所述检测装置与生产线集成成为可能,有利于生产过程中的实时监测的实现。
继续参考图2和图3,所述检测装置还包括:处理组件150,所述处理组件150适宜于对所述缺陷图像进行处理。
所述处理组件150基于所述缺陷图像进行缺陷检测。
本发明一些实施例中,所述处理组件150包括:图像处理单元,所述图像处理单元适宜于对所述缺陷图像进行预处理;识别单元,所述识别单元适宜于对经预处理的缺陷图像中的缺陷进行识别。
所述图像处理单元与所述成像组件140相连,获得成像组件140所获得的缺陷图像,并对缺陷图像进行预处理以提高缺陷图像的质量;所述识别单元与所述图像处理单元相连,获得经所述图像处理单元预处理的缺陷图像;所述识别单元调用适当的识别算法代码对所述缺陷图像中的缺陷进行识别,进而输出相应缺陷的参数。
需要说明的是,所述光源组件设置为点状光源组件的做法仅为一实例。本发明其他实施例中,所述光源组件还可以设置为其他形状。
参考图7,示出了本发明检测装置另一实施例的结构示意图。
本实施例与前述实施例相同之处,本发明在此不再赘述。本实施例与前述实施例不同之处在于,如图7所示,本实施例中,所述光源组件为一维点阵光源组件。
需要说明的是,图7是俯视所述待检测件200的第一表面201的视图。
如图7所述,本实施例中,所述光源组件的耦合模块210b包括:多个光纤211b,所述多个光纤211b在平行所述第一表面201的平面内,沿平行所述侧面203的方向平行分布。因此,本实施例中,所述光源组件为垂直所述发散面的一维点阵光源组件。
还需说明的是,将所述光源组件中的耦合模块210b设置为多个光纤211b的做法仅为一示例。本发明其他实施例,所述光源组件中的耦合模块也可以是光波导或柱状透镜中的至少一个,所以所述光源 组件为垂直所述发散面的线状光源组件(如图8中设置为光波导的所述耦合模块310b所示)。
综上,本发明技术方案中,所述照明光为发散光,能够形成不同传播方向的平面波导光,实现多角度检测,使每个亚表面缺陷都能同时散射不同传播方向的波导光以形成出射角度分布较广的散射光线,提高成像效率和速度;而且,成像组件中采用面阵图像传感器获得缺陷图像,配合呈发散状的照明光,能够避免采用扫描的方式对亚表面缺陷进行检测,从而避免机械振动干扰、降低同步控制难度。发明可选方案中,所述照明光经所述待检测件的侧面耦合入所述待检测件以形成波导光,能够对完整的所述待检测件进行检测,不会出现被遮挡的部分,有利于无死区检测的实现。本发明可选方案中,所述照明光无接触耦合入所述待检测件的侧面。所述照明光直接投射至所述待检测件的侧面,无需经过液体或者胶体等凝聚态介质,不会对待检测件的表面成像条件造成破坏。本发明可选方案中,所述检测装置还包括:辅助光源组件,所述辅助光源组件产生掠入射至第一表面和第二表面的辅助照明光。所述辅助照明光能够对所述第一表面和所述第二表面的表面上缺陷进行成像,从而能够在亚表面缺陷检测的过程中,剔除表面上缺陷所引起的假信号,能够有效提高亚表面缺陷检测精度。
虽然本发明披露如上,但本发明并非限定于此。任何本领域技术人员,在不脱离本发明的精神和范围内,均可作各种更动与修改,因此本发明的保护范围应当以权利要求所限定的范围为准。

Claims (14)

  1. 一种亚表面缺陷的检测装置,其特征在于,包括:
    光源组件,所述光源组件适宜于产生照明光,所述照明光为发散光;
    所述照明光耦合入待检测件中以形成波导光,所述波导光在所述待检测件中以导波模式传播;
    成像组件,所述成像组件包括:面阵图像传感器,所述面阵图像传感器适宜于采集被散射的波导光以获得缺陷图像;
    处理组件,所述处理组件适宜于对所述缺陷图像进行处理。
  2. 如权利要求1所述的检测装置,其特征在于,所述待检测件包括:相背设置且相互分离的第一表面和第二表面、以及位于所述第一表面和第二表面之间的侧面,所述侧面与所述第一表面和第二表面均相交;
    所述照明光经所述侧面耦合入所述待检测件以形成波导光。
  3. 如权利要求2所述的检测装置,其特征在于,所述照明光无接触耦合入所述待检测件的侧面。
  4. 如权利要求1~3中任一项所述的检测装置,其特征在于,所述成像组件包括:至少2个面阵图像传感器。
  5. 如权利要求1所述的检测装置,其特征在于,所述光源组件为点状光源组件、一维点阵光源组件或线光源组件。
  6. 如权利要求5所述的检测装置,其特征在于,所述光源组件为垂直所述发散面的一维点阵光源组件;
    或者,所述光源组件为垂直所述发散面的线状光源组件。
  7. 如权利要求5所述的检测装置,其特征在于,所述光源组件包括:
    发光模块,所述发光模块适宜于产生光线;
    耦合模块,所述耦合模块适宜于对所述发光模块所产生的光线整形以形成所述照明光。
  8. 如权利要求7所述的检测装置,其特征在于,所述耦合模块包括:光纤、光波导或柱状透镜中的至少一个。
  9. 如权利要求1所述的检测装置,其特征在于,还包括:辅助光源组件,所述辅助光源组件适宜于产生分别投射至第一表面和第二表面的辅助照明光。
  10. 如权利要求9所述的检测装置,其特征在于,所述辅助照明光掠入射至所述第一表面和所述第二表面。
  11. 如权利要求1所述的检测装置,其特征在于,所述待检测件中,沿导波延伸方向的尺寸为所述待检测件的长度,垂直波导延伸方向且垂直第一表面和第二表面中至少一个的尺寸为所述待检测件的厚度;
    所述待检测件的长度大于所述待检测件的厚度。
  12. 如权利要求11所述的检测装置,其特征在于,所述照明光至少在发散面内具有预设发散角,其中所述发散面垂直所述第一表面或第二表面中至少一个;
    所述照明光的发散角为α=2 tan -1(D/2R),其中D为垂直导波延伸方向且平行所述发散面的所述待检测件的尺寸,R为所述光源组件光线出射的端面至所述待检测件的距离。
  13. 如权利要求1所述的检测装置,其特征在于,还包括:输送组件,所述输送组件适宜于将所述待检测件送入检测位置。
  14. 如权利要求1所述的检测装置,其特征在于,所述处理组件包括:
    图像处理单元,所述图像处理单元适宜于对所述缺陷图像进行预处理;
    识别单元,所述识别单元适宜于对经预处理的缺陷图像中的缺陷 进行识别。
PCT/CN2021/108841 2021-03-03 2021-07-28 亚表面缺陷的检测装置 WO2022183671A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110238855.8A CN113008796A (zh) 2021-03-03 2021-03-03 亚表面缺陷的检测装置
CN202110238855.8 2021-03-03

Publications (1)

Publication Number Publication Date
WO2022183671A1 true WO2022183671A1 (zh) 2022-09-09

Family

ID=76404860

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/108841 WO2022183671A1 (zh) 2021-03-03 2021-07-28 亚表面缺陷的检测装置

Country Status (2)

Country Link
CN (1) CN113008796A (zh)
WO (1) WO2022183671A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113008796A (zh) * 2021-03-03 2021-06-22 赤壁精迈光电科技有限公司 亚表面缺陷的检测装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005121783A1 (de) * 2004-06-08 2005-12-22 Deutsche Montan Technologie Gmbh Verfahren und vorrichtung zur untersuchung von bohrkern-proben
US20050280806A1 (en) * 2004-06-16 2005-12-22 Nikon Corporation Surface inspection apparatus, polarization illuminating device and light-receiving device
CN101059436A (zh) * 2007-04-16 2007-10-24 浙江大学 非扫描式智能数字化集成spr检测器
CN103105400A (zh) * 2013-01-29 2013-05-15 合肥知常光电科技有限公司 大口径光学元件表面缺陷的检测分类方法及装置
CN103105403A (zh) * 2013-01-21 2013-05-15 合肥知常光电科技有限公司 透明光学元件表面缺陷的检测方法及装置
CN111220624A (zh) * 2020-01-18 2020-06-02 哈尔滨工业大学 表面及亚表面一体化共焦显微测量装置和方法
CN113008796A (zh) * 2021-03-03 2021-06-22 赤壁精迈光电科技有限公司 亚表面缺陷的检测装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL130087A0 (en) * 1999-05-24 2000-02-29 Nova Measuring Instr Ltd Optical inspection method and system
US7136158B2 (en) * 2004-06-10 2006-11-14 Uchicago Argonne Llc Optical apparatus for laser scattering by objects having complex shapes
US20070115464A1 (en) * 2005-11-21 2007-05-24 Harding Kevin G System and method for inspection of films
US8368289B2 (en) * 2008-04-10 2013-02-05 SpectraQuest, Inc. Nondestructive testing apparatus and method
CN104792798A (zh) * 2014-01-20 2015-07-22 南京理工大学 基于全内反射照明技术的亚表面损伤测量装置及方法
CN110044930A (zh) * 2019-04-23 2019-07-23 华中科技大学 一种基于暗场照明的曲面玻璃次表面缺陷检测方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005121783A1 (de) * 2004-06-08 2005-12-22 Deutsche Montan Technologie Gmbh Verfahren und vorrichtung zur untersuchung von bohrkern-proben
US20050280806A1 (en) * 2004-06-16 2005-12-22 Nikon Corporation Surface inspection apparatus, polarization illuminating device and light-receiving device
CN101059436A (zh) * 2007-04-16 2007-10-24 浙江大学 非扫描式智能数字化集成spr检测器
CN103105403A (zh) * 2013-01-21 2013-05-15 合肥知常光电科技有限公司 透明光学元件表面缺陷的检测方法及装置
CN103105400A (zh) * 2013-01-29 2013-05-15 合肥知常光电科技有限公司 大口径光学元件表面缺陷的检测分类方法及装置
CN111220624A (zh) * 2020-01-18 2020-06-02 哈尔滨工业大学 表面及亚表面一体化共焦显微测量装置和方法
CN113008796A (zh) * 2021-03-03 2021-06-22 赤壁精迈光电科技有限公司 亚表面缺陷的检测装置

Also Published As

Publication number Publication date
CN113008796A (zh) 2021-06-22

Similar Documents

Publication Publication Date Title
US5355213A (en) Inspection system for detecting surface flaws
EP0178037B1 (en) Compact laser scanning system
US7511807B2 (en) Method and apparatus for detection of inclusion in glass
US6097482A (en) High speed flaw detecting system for reflective material
JP3192426B2 (ja) 表面検査装置
US8400630B2 (en) Method and device for the detection of defects in an object
JP3036733B2 (ja) 透明体の欠陥検出装置
JPS5965708A (ja) 自動表面検査用のゾンデ
CN104502409A (zh) 基于阵列激光源的结构表面裂纹红外无损检测及成像方法
WO2022183671A1 (zh) 亚表面缺陷的检测装置
KR101446061B1 (ko) 투명 기판의 표면 패턴 불량 측정 장치
CN110044930A (zh) 一种基于暗场照明的曲面玻璃次表面缺陷检测方法
WO2022183672A1 (zh) 亚表面的成像装置
JP2000298102A (ja) 表面検査装置
JP4492275B2 (ja) 表面検査装置
JP4775492B2 (ja) 表面検査装置
CN1410763A (zh) 空间曲线型微细管道内表面形貌检测器
CN2562183Y (zh) 微细管道内表面形貌检测器
JP2017125805A (ja) シートのキズ欠点検査装置
JP2000314707A (ja) 表面検査装置および方法
JP2009025269A (ja) 光透過性シートの欠点検査装置および欠点検査方法
KR200291821Y1 (ko) 결함 변형 동시 계측용 휴대용 비접촉 비파괴 레이저계측기
JPH0579994A (ja) 透明体欠陥検査装置
CN208091940U (zh) 一种主动透射式太赫兹复合材料无损检测装置
KR101952902B1 (ko) 빛의 굴절 현상을 이용한 광학 스캐닝 시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21928749

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21928749

Country of ref document: EP

Kind code of ref document: A1