WO2022183670A1 - 用于有载分接开关蓄能器的全程助推装置、蓄能器以及有载分接开关 - Google Patents

用于有载分接开关蓄能器的全程助推装置、蓄能器以及有载分接开关 Download PDF

Info

Publication number
WO2022183670A1
WO2022183670A1 PCT/CN2021/108799 CN2021108799W WO2022183670A1 WO 2022183670 A1 WO2022183670 A1 WO 2022183670A1 CN 2021108799 W CN2021108799 W CN 2021108799W WO 2022183670 A1 WO2022183670 A1 WO 2022183670A1
Authority
WO
WIPO (PCT)
Prior art keywords
hook
accumulator
energy storage
driven
angle
Prior art date
Application number
PCT/CN2021/108799
Other languages
English (en)
French (fr)
Inventor
李壮壮
邢立华
田秀
王彦利
孙亚朋
吕俊平
罗辉
邹俊端
Original Assignee
北京航天控制仪器研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202110227475.4A external-priority patent/CN113113246B/zh
Priority claimed from CN202110226638.7A external-priority patent/CN113113245B/zh
Application filed by 北京航天控制仪器研究所 filed Critical 北京航天控制仪器研究所
Publication of WO2022183670A1 publication Critical patent/WO2022183670A1/zh
Priority to US18/457,765 priority Critical patent/US20230402227A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H9/00Details of switching devices, not covered by groups H01H1/00 - H01H7/00
    • H01H9/0005Tap change devices
    • H01H9/0027Operating mechanisms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F29/00Variable transformers or inductances not covered by group H01F21/00
    • H01F29/02Variable transformers or inductances not covered by group H01F21/00 with tappings on coil or winding; with provision for rearrangement or interconnection of windings
    • H01F29/04Variable transformers or inductances not covered by group H01F21/00 with tappings on coil or winding; with provision for rearrangement or interconnection of windings having provision for tap-changing without interrupting the load current
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F29/00Variable transformers or inductances not covered by group H01F21/00
    • H01F29/02Variable transformers or inductances not covered by group H01F21/00 with tappings on coil or winding; with provision for rearrangement or interconnection of windings
    • H01F29/025Constructional details of transformers or reactors with tapping on coil or windings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H3/00Mechanisms for operating contacts
    • H01H3/22Power arrangements internal to the switch for operating the driving mechanism
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H3/00Mechanisms for operating contacts
    • H01H3/32Driving mechanisms, i.e. for transmitting driving force to the contacts

Definitions

  • the invention relates to the technical field of on-load tap-changers, in particular to a whole-course booster device, an accumulator and an on-load tap-changer for an on-load tap-changer accumulator.
  • on-load tap changers are used to switch, under load, by means of the on-load diverter switch from the current winding tap to the new winding tap preselected by the off-load tap selector.
  • the on-load diverter switch In the case of a load, especially an ultra-high voltage and a load, if the switching of the on-load switch is not in place, the on-load switch or even the entire transformer will be unusable. Therefore, in order to improve the reliability of the on-load tap-changer, one of the design priorities is to ensure that the on-load tap-changer is switched in place.
  • German invention patents DE1956369 and DE2806282, the Chinese invention patent authorization announcement number CN102024552B and the Chinese utility model authorization announcement number CN2891237 respectively describe an accumulator for an on-load tap-changer.
  • the above-mentioned accumulators have similar mechanical structures and the same working principle, and all belong to the carriage type accumulators.
  • the above-mentioned accumulator adopts the following design: on the one hand, when the longest diameter of the eccentric wheel is close to the shaft center A roller is set so that after the lower carriage starts to move, if the lower carriage moves slowly to a certain extent, the roller can collide with one side of the lower carriage, so that the rotation of the eccentric wheel directly driven by the electric mechanism can add additional On the other hand, set another roller at the position where the longest diameter of the eccentric wheel is far away from the axis.
  • the The other roller can collide with one of the bumps of the lower carriage, so that the rotation of the eccentric wheel, which is directly driven by the motor mechanism, can additionally push the lower carriage exactly to the new end position.
  • Chinese Invention Patent Grant No. CN107438889B describes another accumulator for an on-load tap-changer.
  • the accumulator has an elastic energy storage element and a transmission device having an input hub, an output hub, a variable transmission ratio transmission device, a first coupling device and a second coupling device.
  • the working process is as follows: in the first stage, the blocks of the upper and lower gears of the first coupling device and the second coupling device are not in contact with each other, and neither the energy storage device nor the driven shaft moves. In the second stage, the stops of the upper and lower gears of the first coupling device are in contact with each other, while the stops of the upper and lower gears of the second coupling device are not in contact with each other.
  • the energy storage device is gradually tightened and the driven shaft is not move.
  • the blocks of the upper and lower gears of the first coupling device are no longer in contact with each other, while the blocks of the upper and lower gears of the second coupling device are in contact with each other, and the energy storage device gradually relaxes and drives the driven shaft to rotate to the lower an extreme position.
  • the stops of the upper and lower gears of the first coupling device will contact each other, so that the driving element can catch up with the driven element, so that the motor mechanism can cooperate or replace
  • the energy storage device drives the driven shaft to rotate.
  • the above-mentioned accumulators only realize partial boosting, specifically: Certain positions in the movement process have the possibility of helping the driven shaft of the accumulator to rotate; but it cannot achieve full boosting, specifically: the booster device of the accumulator is at any position during the entire movement of the driven shaft of the accumulator ( In particular, both the starting phase and the ending phase) have the possibility of assisting the rotation of the driven shaft of the accumulator.
  • the purpose of the present invention is to overcome the deficiencies of the prior art, and to provide a full-range booster device, an accumulator and an on-load tap-changer for an on-load tap-changer accumulator, wherein the accumulator can realize a full-range booster , that is, the booster device of the accumulator has the possibility of helping the driven shaft of the accumulator to rotate at any position (especially the beginning and ending stages) of the driven shaft of the accumulator, so as to compensate for the load In the field of tap changer technology, the accumulator cannot realize the blank of the whole process of boosting.
  • a full-range booster device for an on-load tap-changer accumulator including two sheave intermittent mechanisms and a central gear;
  • Both the two sheave intermittent mechanisms include a dial gear, an active dial, a dial pin, a driven sheave and a booster plate; the active dial with the dial pin is coaxially fixed to the dial gear and The axial direction is not in contact, and the booster plate is fixedly connected to the driven sheave, and the driven sheave is provided with radial grooves;
  • the two sheave intermittent mechanisms are installed staggered up and down, and the two dial gears are driven by the same central gear; the positional relationship between the two sheave intermittent mechanisms satisfies the following constraints:
  • One of the active dials of the intermittent mechanism of the sheave rotates by an angle of ⁇ 1, and through the cooperation of the dial circular pins and the radial grooves on the driven wheel, the rotation of the booster plate on the driven sheave needs a boosting angle; the other sheave intermittently
  • the active dial of the mechanism rotates (360°- ⁇ 1) angle, its dial pin is just located in the notch of the radial groove.
  • the components that need to be boosted on the accumulator of the on-load tap changer are placed between the two booster plates.
  • only one radial groove is provided on the driven sheave.
  • Accumulator for on-load tap-changer including epicyclic gear train, mechanical energy storage device, said full-range booster device, drive transmission mechanism with variable instantaneous transmission ratio, drive shaft, driven shaft, limit device ,flywheel;
  • the flywheel is connected with the driven shaft without relative rotation
  • variable instantaneous transmission ratio drive transmission mechanism is used to convert the rotation of the drive shaft in any direction into the unidirectional rotational drive of the epicyclic gear train;
  • the limiting device is used to limit the flywheel during the energy storage process of the mechanical energy storage device
  • the mechanical energy storage device is used for mechanical energy storage when the epicyclic gear train rotates and the driven wheel is stationary. After the stored energy is in place, it provides power for the epicyclic gear train to continue to rotate, and the epicyclic gear train unlocks the limit device and drives it.
  • the flywheel rotates, which in turn drives the driven shaft to rotate to a predetermined terminal angle position;
  • the whole-course booster device provides an auxiliary thrust to ensure that the driven wheel rotates to the above-mentioned terminal angular position.
  • the epicyclic gear train includes a sun gear, at least one planetary gear, a ring gear, and a planet carrier device; the sun gear and the sun gear are coaxially and fixedly connected, and the flywheel is fixedly connected to the ring gear through two starting plates At least one planetary gear is placed between the ring gear and the sun gear through a planetary carrier device, which is located between the ring gear and the flywheel in the axial direction and is in contact with the two, and meshes with the two respectively.
  • One end of the mechanical energy storage device is rotatably connected to the central shaft of one of the planetary gears, and can follow the rotation of one of the planetary gears to realize the change of tension and relaxation states.
  • the inner ring gear remains stationary, and one of the planetary gears is driven by the sun gear. It runs down to the dead center position of the epicyclic gear train. At this time, the inner gear is unlocked and the mechanical energy storage device begins to relax gradually from the tensioned state.
  • the planet carrier device includes two trigger levers and a planet carrier;
  • the planet carrier includes a central rotating part and outstretched support rods, the number of the support rods corresponds to the number of planetary gears, and the planetary gears are installed on the upper end surface of the support rod through a central shaft; the central rotating part is extended out. Two trigger levers for unlocking the limiter.
  • the limiting device includes two hook protrusions, two hooks, two hook limit blocks and a limit block provided on the flywheel; wherein the hook, the hook limit block and the limit block is installed on the lower bracket; the limit block is used to limit the rotation of the flywheel; the two hooks are respectively used to cooperate with the hook protrusions to realize the position of the flywheel in two switching.
  • the rear rotation limit; the hook limit block is used to limit the state in which the hook is not hooked to the hook protrusion.
  • the main body of the hook is a rod with a hook, and a collision rod and a limit rod are respectively provided on both sides of the rod; a compression spring is installed between the hook limit stop and the rod with a hook, and the bending When the hook is hooked on the hook protrusion, the compression spring is in a compressed state, and the collision bar can be triggered by a trigger lever arranged on the planet carrier device to complete the separation between the hook and the hook protrusion; After the hook protrusion is disengaged, the compression spring provides thrust to the rod with the hook, and the limit rod cooperates with the hook limit stop to realize the limit of the hook, and to ensure that at this time, the position of the collision rod is the same as that of the hook.
  • the trigger lever does not interfere.
  • there is a force point on the contact surface between the hook and the hook protrusion and the rotation center of the hook is on the same arc surface with the center axis of the flywheel as the center.
  • the drive transmission mechanism of the variable instantaneous transmission ratio includes a curved grooved disk, a driving sector tooth, a roller, and a first central gear;
  • the curved grooved disk is connected with the drive shaft without relative rotation, and the lower end surface of the curved grooved disk is provided with a curved line
  • the radial direction of the driving sector tooth is fixed with a roller that can move in the curved slot, the roller can be driven by the curved slot disk to make the driving sector tooth rotate, the driving sector tooth meshes with the first central gear, the first A central gear is fixed coaxially with the central gear in the full-range booster;
  • the curved groove has two terminal angular positions that are on the same line with the center of the central axis, so that the curved groove plate rotates 180 degrees from any direction °, the roller can be rotated from one terminal angular position to another terminal angular position.
  • x and y are the abscissa and ordinate of the roller of the driving sector, respectively, r is the distance between the roller of the driving sector and the central axis of rotation of the driving sector, ⁇ is the inclination angle of the starting and ending positions of the driving sector, and L is the curved groove disc The distance between the rotation center axis and the rotation center axis of the driving sector teeth, ⁇ is the rotation angle of the driving sector teeth.
  • the inclination angle of the radial vector of the rollers driving the sector teeth ⁇ is the inclination angle of the starting and ending positions of the driving fan teeth, and ⁇ is the rotation angle of the driving fan teeth. .
  • the mechanical energy storage device includes an elastic energy storage sleeve and two elastic energy storage guide rods; the elastic energy storage element is sheathed outside the two elastic energy storage guide rods, and one end of the small diameter elastic energy storage guide rod is hinged on the planetary gear , the other end is inserted into the inner cavity of another large-diameter elastic energy storage guide rod, and the large-diameter elastic energy storage guide rod is inserted into the elastic energy storage sleeve, so that the elastic energy storage element is in the inner cavity of the elastic energy storage sleeve, and the large-diameter elastic energy storage guide rod is inserted into the elastic energy storage sleeve. Both the rod and the elastic energy storage sleeve are hinged with the lower bracket.
  • An on-load tap changer comprising the accumulator; an electric mechanism for providing driving rotational power for the drive shaft of the accumulator, an on-load switch and a no-load tap selector; the no-load tap selector
  • the switch is used to preselect the winding tap to be switched to without load, and the on-load switch is used to switch with load from the current winding tap to the preselected new winding tap.
  • the accumulator, the on-load tap changer and the off-load tap selector are connected in series.
  • the accumulator is connected with the on-load switch to form a switch core, the switch core and the off-load tap selector are distributed in parallel in a split manner, the off-load tap selector is placed in the transformer, and the switch core is placed in the outside the transformer.
  • the present invention has the following advantages compared with the prior art:
  • the present invention considers that in the actual operation of the on-load tap-changer, the elastic force of the mechanical energy storage device is insufficient or fails, or it cannot relax to a predetermined state, or is in an overload state or is in a low temperature, so that the oil around the mechanism is very viscous. In unfavorable situations, the driven shaft driven by the mechanical energy storage device runs slower than normal.
  • the full-range boosting device has a full-range boosting capability, specifically: at any position (especially the start stage and the end stage) in the entire movement process of the driven shaft, if the running speed of the driven shaft is slow to a certain extent,
  • the full-range booster device has at least one member capable of catching up with the booster block on the component directly or indirectly connected to the driven shaft to cooperate or replace the mechanical energy storage device to directly drive the driven shaft directly without delay in a mechanical contact manner. Or the booster block on the indirectly connected components, and then drive the driven shaft to rotate, so as to ensure that the driven shaft can finally reach the predetermined terminal angle position, so that the reliability of the accumulator is higher.
  • the present invention avoids the cumbersome motion transformation between the accumulator's rotary motion and the linear motion, and avoids the use of more stages of gear transmission, so that the motion transmission efficiency is higher and the reliability is higher.
  • the limiting device of the present invention directly limits the flywheel that has no relative rotation with the driven shaft, the limiting object is more direct, and the limiting effect is more reliable.
  • the two hooks of the limiting device of the present invention are arranged separately, and in one switching, after the limiting hook is disengaged from the corresponding hook protrusion, there will be no mechanical contact between the two, which is beneficial to It ensures the service life of the limit hook and reduces the risk of use.
  • the two hooks of the limiting device of the present invention are arranged separately, so that after one hook is disengaged from the hook protrusion, the other hook can remain in a static state, and the limiting device has two hook limit stops respectively. It is used to quickly and reliably limit the state in which the two hooks are not hooked to the hook protrusions, thereby ensuring that the two hooks can easily and reliably hook the corresponding hook protrusions.
  • Fig. 1 is the bottom view of the whole process booster of the present invention
  • Figure 2 is a first view of the accumulator for an on-load tap-changer of the present invention
  • Figure 3 is a second view of the accumulator for an on-load tap-changer of the present invention.
  • Figure 4 is a third view of the accumulator for an on-load tap-changer of the present invention.
  • Figure 5 is a fourth view of the accumulator for an on-load tap-changer of the present invention.
  • FIG. 6 is a bottom view of a preferred embodiment of the curvilinear groove plate for an accumulator of the present invention.
  • Fig. 7 is the view of the sun gear for accumulator of the present invention in ⁇ 1 angle position
  • Figure 8 is a view of the sun gear for the accumulator of the present invention at an angular position of ⁇ 12;
  • Fig. 9 is the view of the sun gear for accumulator of the present invention in ⁇ 2 angle position
  • Figure 10 is a view of the sun gear for an accumulator of the present invention in an ⁇ 3 angular position
  • Fig. 11 is the first preferred embodiment of the on-load tap-changer with accumulator of the present invention.
  • Figure 12 shows another preferred embodiment of the on-load tap-changer with accumulator according to the present invention.
  • the present invention proposes a full-range booster device for an on-load tap-changer accumulator, the full-range booster device comprising two sheave intermittent mechanisms and a central gear;
  • Both the two sheave intermittent mechanisms include a dial gear, an active dial, a dial pin, a driven sheave and a booster plate; the active dial with the dial pin is coaxially fixed to the dial gear and The axial direction is not in contact, and the booster plate is fixedly connected to the driven sheave, and the driven sheave is provided with radial grooves;
  • the two sheave intermittent mechanisms are installed staggered up and down, and the two dial gears are driven by the same central gear; the positional relationship between the two sheave intermittent mechanisms satisfies the following constraints:
  • One of the active dials of the intermittent mechanism of the sheave rotates at an angle of ⁇ 1, and through the cooperation between the dial circular pin and the radial groove on the driven wheel, the booster plate on the driven sheave rotates by the angle ⁇ that needs to be boosted; the other sheave
  • the active dial of the intermittent mechanism rotates (360°- ⁇ 1), its dial pin is just located in the notch of the radial groove.
  • the present invention proposes an accumulator for an on-load tap-changer, the accumulator comprising:
  • sun gear connected to a mechanical energy storage device and capable of compressing and or releasing said mechanical energy storage device when the drive shaft rotates;
  • a ring gear (driven device), which is connected to a mechanical energy storage device and drives the driven shaft to rotate when the mechanical energy storage device is released;
  • a variable instantaneous transmission ratio driven transmission mechanism is connected to the inner gear
  • the accumulator driven shaft can drive the on-load diverter switch to rotate in one direction in one switching of the on-load tap-changer and in the opposite direction in the next switching of the on-load tap-changer.
  • the change of the transmission ratio of the transmission mechanism can lead to the change of the output speed. Specifically, the larger the transmission ratios i 1 and i 2 are, the smaller the output speeds v 2 and v 4 are.
  • a drive transmission with a variable instantaneous transmission ratio is exemplarily understood as during the rotation of the sun gear from the angle ⁇ 1 to the angle ⁇ 2 and during the rotation from the angle ⁇ 2 to the angle ⁇ 3 and or from the angle ⁇ 3
  • the instantaneous transmission ratio i1 of the drive transmission mechanism can remain the same or become larger or smaller or change positive or negative or infinite.
  • a driven transmission with a variable instantaneous transmission ratio is exemplarily understood as during the rotation of the ring gear from the angle ⁇ 5 to the angle ⁇ 4 and during the rotation from the angle ⁇ 4 to the angle ⁇ 3 and or from the ⁇ 3 angle. 3.
  • the instantaneous transmission ratio i2 of the driven transmission mechanism can remain the same or become larger or smaller or change positive or negative or infinite.
  • a switching of the on-load tap-changer is exemplarily understood to mean that the on-load tap-changer completes a no-load preselection to the winding tap (n, n+1) to be switched to and from the current winding
  • the next switching of the on-load tap-changer is exemplarily understood to mean that the on-load tap-changer completes a no-load preselection to the next winding tap (n, n+1) to be switched to and from the current winding.
  • the sun gear and the mechanical energy storage device are configured such that when the sun gear rotates from an angle ⁇ 1 to an angle ⁇ 2 , the mechanical energy storage device is gradually compressed until it is in a state of maximum tension, and during this process
  • the driven shaft described in is stationary.
  • the mechanical energy storage device, the ring gear and the driven transmission mechanism are configured such that the mechanical energy storage device gradually relaxes when the sun gear rotates from an angle ⁇ 2 to an angle ⁇ 3 , and at this During the process the driven shaft is rotated from the ⁇ 1 angle or from an angular position intermediate between the ⁇ 1 angle and the ⁇ 2 angle to the ⁇ 2 angle.
  • the full range booster is configured such that the full range booster
  • the movement of the sun gear and/or the ring gear and/or the driven shaft and/or the mechanical transmission affects or hinders or assists;
  • the driven shaft having at least one member capable of cooperating with or in place of the mechanical energy storage device so that the driven shaft can be rotated or can be rotated to an angle ⁇ 2 from an angle ⁇ 1 or from an angular position intermediate between the angle ⁇ 1 and the angle ⁇ 2 ;
  • the driven shaft is rotatable or rotatable to ⁇ 2 angle from the ⁇ 1 angle or from an angular position intermediate between the ⁇ 1 angle and the ⁇ 2 angle.
  • the driven shaft remains stationary at the angle ⁇ 1 .
  • the sun gear and the mechanical energy storage device are configured such that when the sun gear rotates from an angle ⁇ 3 to an angle ⁇ 2 , the mechanical energy storage device is gradually compressed until it is in a state of maximum tension, and during this process
  • the driven shaft described in is stationary.
  • the mechanical energy storage device, the ring gear and the driven transmission mechanism are configured such that the mechanical energy storage device gradually relaxes when the sun gear rotates from the angle ⁇ 2 to the angle ⁇ 1 , and at this During the process the driven shaft is rotated from the ⁇ 2 angle or from an angular position intermediate between the ⁇ 1 angle and the ⁇ 2 angle to the ⁇ 1 angle.
  • the full range booster is configured such that the full range booster
  • the driven shaft having at least one member capable of cooperating with or in place of the mechanical energy storage device such that the driven shaft can be rotated or can be rotated to an angle ⁇ 1 from an angle ⁇ 2 or from an angular position intermediate between the angle ⁇ 1 and the angle ⁇ 2 ;
  • the driven shaft is rotatable or is rotatable to the ⁇ 1 angle from the ⁇ 2 angle or from an angular position intermediate between the ⁇ 1 angle and the ⁇ 2 angle.
  • the driven shaft remains stationary at the angle ⁇ 2 .
  • the drive transmission mechanism is configured such that
  • the continuous rotation of the drive shaft in any direction can make the sun gear rotate from the angle ⁇ 3 to the angle ⁇ 2 , and then to the angle ⁇ 1.
  • the drive transmission can be configured in any desired manner, for example a crank-rocker mechanism or a curved sheave mechanism.
  • the drive transmission mechanism of the present invention comprises a curved grooved disk, a driving sector tooth, a roller, and a first sun gear
  • the curved grooved disk is connected between the drive shaft and the driving sector tooth and contains a curved groove.
  • the driving sector teeth comprise a rotating wheel with a central axis and a roller wheel capable of moving in a curved groove is fixedly connected in the radial direction of the central axis.
  • the rollers can be driven by the curved grooves to rotate the drive teeth and the sun gear.
  • the curved groove is configured such that continuous rotation of the drive shaft in any direction enables the sun gear to rotate from an angle ⁇ 1 to an angle ⁇ 3 or from an angle ⁇ 3 to an angle ⁇ 1 and correspondingly in the above two processes.
  • the movements are mirror-symmetrical to each other.
  • the curve of the curve groove is closed.
  • the mechanical transmission device includes a limit device, and the limit device acts on the driven shaft.
  • the limiting device is configured such that the limiting device
  • the mechanical transmission includes a trigger mechanism that acts on the driven shaft.
  • the trigger mechanism is configured such that the trigger mechanism
  • the third part, the present invention proposes a kind of on-load tap-changer, and the on-load tap-changer comprises:
  • an on-load diverter switch for on-load switching from the current winding tap to a preselected new winding tap (n, n+1);
  • ⁇ 1 / ⁇ 12 / ⁇ 2 / ⁇ 3 are several angular positions of the sun gear in one switching process, and ⁇ 1 / ⁇ 2 is the limit angular position of the driven shaft of the accumulator.
  • Figure 1 shows a full-range booster device for an on-load tap-changer accumulator, including two sheave intermittent mechanisms and a sun gear (that is, the second sun gear in the accumulator);
  • the two The sheave intermittent mechanism includes a dial gear, an active dial, a dial pin, a driven sheave, and a booster plate;
  • the active dial with the dial pin is coaxially fixed with the dial gear and does not axially contact , the booster plate is fixedly connected to the driven sheave, and radial grooves are set on the driven sheave;
  • the two sheave intermittent mechanisms are installed up and down in a staggered manner, and the two dial gears are driven by the same central gear;
  • the positional relationship of the wheel intermittent mechanism satisfies the following constraints: the active dial of one of the sheave intermittent mechanisms rotates by an angle of ⁇ 1, and through the cooperation of the dial circular pin and the radial groove on the driven wheel, the booster plate on the driven sheave needs to be rotated
  • Boosting angle ⁇ when the active dial of another sheave intermittent mechanism rotates (360°- ⁇ 1) angle, its dial pin is just located in the notch of the radial groove.
  • a booster component is required on the on-load tap-changer accumulator placed between the two booster plates.
  • the booster component required is the ring gear booster block 262.
  • the components that need boosting can be installed on the driven shaft of the traditional accumulator or the components directly or indirectly connected with the driven shaft.
  • FIGS. 2 , 3 , 4 , and 5 show a preferred embodiment of the energy storage device 13 according to the invention for the on-load tap-changer 10 in views from different angles.
  • the accumulator 13 includes a bracket 16, a curved groove disc 17, a driving sector tooth 18, a first sun gear 19, a second sun gear 20, a first sheave intermittent mechanism 21, a second sheave intermittent mechanism 22, and a mechanical energy storage device 23.
  • the bracket 16 includes an upper bracket plate 161, a lower bracket plate 162 and a support column therebetween.
  • the curved groove plate 17 is located below the upper support plate 161 and is connected to the accumulator drive shaft 131 in a rotationally fixed manner.
  • the curved groove plate 17 has a curved groove 171 , and the curved groove 171 includes a first terminal angular position 172 and a second terminal angular position 173 .
  • a roller 181 that can move in the curved groove 171 is fixedly connected in the radial direction of the drive tooth 18 .
  • the rollers 181 can be driven by the curved groove disc 17 to make the driving sector teeth 18 rotate.
  • the central axis of the first sun gear 19 and the accumulator drive shaft 131 are on the same line, and the driving sector teeth 18 drive the first sun gear 19 to rotate with a fixed transmission ratio; in order to ensure a certain transmission ratio, the first sun gear 19 is relatively small in diameter.
  • the first sun gear 19 is coaxially fixed and connected to a larger diameter second sun gear 20, the two do not contact in the axial direction, and the first sun gear 19 is coaxially fixed and connected.
  • the two central gears 20 simultaneously drive the first dial gear 211 of the first sheave intermittent mechanism 21 and the second dial gear 221 of the second sheave intermittent mechanism 22 to rotate at the same transmission ratio.
  • the first sheave intermittent mechanism 21 and the second sheave intermittent mechanism 22 have similar mechanical structures, both of which are typical sheave mechanisms, but the structures of the two are designed to be staggered up and down, so as to avoid structural interference and reduce the space occupied.
  • the first sheave intermittent mechanism 21 includes a first dial gear 211, a first driving dial 212, a first dial circular pin 213, a first driven sheave 214, and a first dial gear 214.
  • a booster plate 215 .
  • the first active dial 212 and the first dial gear 211 are coaxially fixed and not in contact with each other in the axial direction.
  • the first booster plate 215 is fixedly connected to the first driven sheave 214 at a specific position.
  • the rest range of the first driven sheave 214 is 300°, and the motion range is 60°, and generally should have 3 radial grooves. However, according to use requirements, only one radial groove is opened in the first driven sheave 214, and the other two positions are not grooved.
  • the working principle of the first sheave intermittent mechanism 21 is as follows: the first active dial 212 is rotated under the driving of the first dial gear 211, and the first dial circular pin 213 on the first active dial 212 does not enter the first slave.
  • the first driven sheave 214 and the The first booster plate 215 remains stationary.
  • the first dial circular pin 213 just enters the radial groove of the first driven sheave 214 the inner concave locking arc of the first driven sheave 214 and the outer convex locking arc of the first driving dial 212 are also just separated.
  • the first driven sheave 214 is driven by the first dial pin 213 to rotate, and drives the first booster plate 215 to move.
  • the first booster plate 215 is used to push the ring gear booster block 262 on the output device 26 when necessary.
  • the sun gear 24 , the planetary gears 25 , the ring gear 261 of the output device 26 and the planet carrier 271 of the planet carrier device 27 together form a typical epicyclic gear train.
  • the sun gear 24 is fixed coaxially with the first sun gear 19 and the second sun gear 20 without axial contact.
  • One end of the mechanical energy storage device 23 is rotatably connected to the central shaft of the planetary gear 25 , and the other end is rotatably connected above the lower support plate 162 .
  • the output device 26 further includes a ring gear booster block 262 , a first activation plate 263 , a second activation plate 264 , a flywheel 265 , a first hook protrusion 266 and a second hook protrusion 267 .
  • the ring gear booster block 262 is fixedly connected to the outer ring of the inner ring gear 261 for transmitting the boosting force of the booster plates 215 and 225 to the inner ring gear 261 .
  • the starting plates 263 and 264 are used to fix the flywheel 265 on the ring gear 261, and on the other hand, when the ring gear 261 starts to rotate, it is used to directly collide with the strut of the planet carrier 271 for a short time, thereby helping The ring gear 261 starts to rotate.
  • the hook protrusions 266 and 267 are located in the middle area of the circular arc surface of the flywheel 265 .
  • the planet carrier arrangement 27 also includes a first trigger lever 272 and a second trigger lever 273 .
  • the trigger rods 272 and 273 in the same plane are fixedly connected with the planet carrier 271 and rotate coaxially with the ring gear 261 and the flywheel 265 .
  • the trigger rods 272 and 273 are located below the lower bracket 162 and are used to trigger the first hook 281 and the second hook 282 of the limiting device 28 .
  • the limiting device 28 includes a first hook 281 , a second hook 282 , a first hook limit block 283 , a second hook limit block 284 and a limit block 285 .
  • the first hook 281 and the second hook 282 can hook the corresponding hook protrusions 266 and 267 through the hook portion, thereby restricting the rotation of the flywheel 265 from a forward direction or a reverse direction.
  • the limit stops 285 have stop damping on the two collision surfaces with the flywheel 265 for preventing the rotation angle of the flywheel 265 from exceeding the required angle.
  • the structures of the first hook 281 and the second hook 282 are the same, and the main body of the hook is a rod with a hook, and a collision rod and a limit rod are respectively set on both sides of the rod;
  • a compression spring is installed between the rods of the hook.
  • the compression spring When the hook is hooked on the hook protrusion, the compression spring is in a compressed state, and the collision bar can be triggered by a trigger lever arranged on the planet carrier device to complete the hook and the hook.
  • the outer collision surfaces of the hook protrusions 266 and 267 are matched with the outer collision surfaces of the corresponding hooks 281 and 282, so that they can be squeezed into the corresponding hooks 281 and 282 during the movement of the flywheel 265, and pass through them.
  • the side hook surfaces and the inner side hook surfaces of the corresponding hooks 281 and 282 enable them to be stably locked by the corresponding hooks 281 and 282 .
  • the two small compression springs and the hook limit stop 283 cooperate together to prevent the trigger rod 172 (or 173 ) from colliding with the corresponding hook 281 (or 282).
  • the hook 281 (or 282) hooks the flywheel 265 the two small compression springs and the hook limit stop 283 (or 284) cooperate together to make the hook 281 (or 282) hook the flywheel 265 stably, And can be triggered by the corresponding trigger lever 172 (or 173 ), thereby releasing the flywheel 265 .
  • FIG. 6 shows a preferred embodiment of the curved groove disc 17 of the accumulator 13 according to the invention.
  • the first terminal angular position 172 and the second terminal angular position 173 are on the same straight line as the rotation center point of the curved groove plate 17, so the current first terminal angular position 172 of the curved groove plate 17 rotates to the current second
  • the rotation angles of the terminal angular position 173 or the current second terminal angular position 173 to the current first terminal angular position 172 are both 180°.
  • the accumulator drive shaft can be rotated 180° in any direction, so that the roller 182 can be rotated from one terminal angular position 172 (or 173) to another terminal angular position 173 (or 172).
  • FIG. 7 shows the sun gear 24 in the ⁇ 1 position.
  • the roller 181 of the drive tooth 18 is in the first terminal angular position 172 of the curved grooved disk 17 .
  • the first hook protrusion 266 of the flywheel 265 is hooked by the first hook 281 .
  • the accumulator driven shaft 132 is in the beta 1 angular position.
  • the energy storage compression spring of the mechanical energy storage device 23 is in a relaxed state.
  • the first dial round pin 213 is attached to the side of the first driven sheave 214 without the radial groove, and can be rotated clockwise away from the first driven sheave 214 .
  • the second dial round pin 223 is located at the notch of the radial groove of the second driven sheave 224 and can enter the radial groove of the second driven sheave 224 by clockwise rotation.
  • the radial grooves of the first driven sheave 214 and the second driven sheave 224 are on the same straight line.
  • the booster plates 215 and 225 are respectively located on both sides of the ring gear booster block 262 and are at the limit positions.
  • the booster plate 215 has no obstacles in the clockwise direction
  • the booster plate 225 has no obstacles in the counterclockwise direction.
  • the curved groove disc 17 will rotate at a constant speed in any rotation direction without interruption.
  • the sector teeth 18 are driven to rotate in a clockwise direction.
  • the sun gears 19 and 20 and the sun gear 24 rotate counterclockwise under the driving of the driving sector teeth 18 .
  • the flywheel 265 is hooked by the first hook 281 and blocked by the limiting block 285 , the ring gear 261 remains stationary at the initial position.
  • the planetary gear 25 cannot rotate, and the sun gear 24, the planetary gear 25 and the ring gear 261 together form the planetary gear train.
  • the sun gear 24 acts as a driving wheel to drive the planetary gear 25 to “revolve” around the sun gear 24 in the counterclockwise direction, thereby compressing the energy storage compression spring of the mechanical energy storage device 23 until the mechanical energy storage device 23 reaches the position shown in FIG. 8 . .
  • the dial gears 211 and 221 rotate clockwise, thereby driving the active dials 212 and 222 to rotate clockwise as well.
  • the first dial circular pin 213 gradually moves away from the first driven sheave 214, and the outer convex locking arc of the first driving dial 212 gradually enters the inner concave locking arc of the first driven sheave 214, so that the A driven sheave 214 and the first booster plate 215 fixed therewith remain stationary.
  • the second dial round pin 223 enters the radial groove of the second driven sheave 224 and drives the second driven sheave 224 and the second booster plate 225 to rapidly rotate counterclockwise until the sheave intermittent mechanism 21 and 22 to the position shown in Figure 8.
  • the sun gear 24 is in the ⁇ 12 angular position.
  • the mechanical energy storage device 23 is compressed to a certain position but the compression amount does not reach the maximum value.
  • the end of the outer convex locking arc of the first driving dial 212 reaches the end of the inner concave locking arc of the first driven sheave 214 after rotating through a certain angle.
  • the first driven sheave 214 and the first booster plate 215 are still in the initial position.
  • the second dial round pin 223 has completed the driving of the second driven sheave 224 and is about to move away from the notch of the radial groove of the second driven sheave 224 in the clockwise direction.
  • the outer convex locking arc of the second driving dial 222 is about to enter the inner concave locking arc of the second driven sheave 224 .
  • the second booster plate 225 moves away from the ring gear booster block 262 in the counterclockwise direction, and rotates to the next limit position.
  • the sun gear 24 continues to rotate in the counterclockwise direction under the driving of the curved groove disc 17 .
  • the ring gear 261 remains stationary in the initial position.
  • the energy storage compression spring of the mechanical energy storage device 23 continues to be gradually compressed under the driving of the planetary gear 25 until the mechanical energy storage device 23 reaches the position shown in FIG. 9 .
  • the active dials 212 and 222 continue to rotate clockwise until the sheave intermittent mechanisms 21 and 22 reach the position shown in FIG. 9 .
  • the sun gear 24 is in the ⁇ 2 angular position.
  • the mechanical energy storage device 23 is compressed to the dead center position and the compression amount reaches the maximum value.
  • the first trigger lever 272 of the planet carrier device 27 gradually moves in the counterclockwise direction and just contacts the first hook 281 of the limiting device 28 at this time.
  • the first dial round pin 213 just reaches the notch of the radial groove of the first driven sheave 214 , and the outer convex locking arc of the first driving dial 212 is about to break away from the inner concave lock of the first driven sheave 214 Arc stop.
  • the first driven sheave 214 and the first booster plate 215 are still in the initial position.
  • the second dial circular pin 223 is near the side of the second driven sheave 224 where the radial groove is not opened, and one end of the concave locking arc of the second driving dial 222 reaches the end of the second driven sheave 224 One end of the convex locking arc.
  • the sun gear 24 continues to rotate in the counterclockwise direction under the driving of the curved groove disc 17 .
  • the first trigger lever 272 of the planet carrier device 27 triggers the first hook 281 immediately, thereby releasing the flywheel 265 .
  • the planet carrier 271 of the planet carrier device 27 mechanically collides with the first activation plate 263 .
  • the sun gear 24, the planetary gear 25 and the ring gear 261 together form a differential gear train.
  • the sun gear 24 and the planetary gear 25 act as driving wheels to drive the ring gear 261 to rotate in a stepwise and rapidly counterclockwise direction until the The ring gear 261 and the booster block 262 reach the position shown in FIG. 10 .
  • the first dial circular pin 213 enters the radial groove of the first driven sheave 214, and drives the first driven sheave 214 and the first booster plate 215 to rapidly rotate counterclockwise.
  • the first booster plate 215 can be connected to the ring gear 261.
  • the ring gear booster block 262 is in direct contact, and the motor mechanism 11 will be able to cooperate with or replace the mechanical energy storage device 23 to drive the inner ring gear 261 to rotate.
  • the second dial circular pin 223 continues to rotate clockwise and gradually approaches the side of the second driven sheave 224 without radial grooves until the sheave intermittent mechanisms 21 and 22 reach the position shown in FIG. 10 .
  • the sun gear 24 is in the ⁇ 3 angular position.
  • the roller 181 of the drive tooth 18 is in the second terminal angular position 173 of the curved grooved disk 17 .
  • the second hook protrusion 267 of the flywheel 265 is hooked by the second hook 282 , and the other side of the flywheel 265 is blocked by the limiting block 285 .
  • the accumulator driven shaft 132 is in the beta 2 angular position.
  • the energy storage compression spring of the mechanical energy storage device 23 is again in a relaxed state.
  • the first dial circular pin 213 is located at the notch of the radial groove of the first driven sheave 214 and can be rotated counterclockwise into the radial groove of the first driven sheave 214 .
  • the second dial round pin 223 is attached to the side of the second driven sheave 224 without the radial groove, and can be rotated counterclockwise away from the second driven sheave 224 .
  • the radial grooves of the first driven sheave 214 and the second driven sheave 224 are on the same straight line.
  • the booster plates 215 and 225 are respectively located on both sides of the ring gear booster block 262 and are at the limit positions.
  • the booster plate 215 has no obstacles in the clockwise direction, and the booster plate 225 has no obstacles in the counterclockwise direction. So far, the accumulator has completed all the actions in one switching process of the on-load tap changer 10, and is in the initial position of the next switching.
  • FIG. 11 shows a first preferred embodiment of the on-load tap-changer 10 of the present invention, which includes a motor-drive mechanism 11 , an accumulator 13 , an on-load diverter switch 14 and an off-load tap selector 15 .
  • the accumulator drive shaft 131 can rotate in any direction under the driving of the motor mechanism 11 .
  • the accumulator driven shaft 132 can drive the on-load switch 14 to rotate. And, through the action of the accumulator 13, the accumulator driven shaft 132 can drive the on-load diverter switch 14 to rotate in one direction during one switching of the on-load tap changer 10, and when the on-load tap changer 10 is switched Rotate in the opposite direction in one switch.
  • the on-load diverter switch 14 and the off-load tap selector 15 are constructed in the prior art and are therefore not shown in detail in the present invention. Among them, the off-load tap selector 15 is used to preselect the winding tap (n, n+1) to be switched to without load, and the on-load changeover switch 14 is used to switch from the current winding tap to the preselected one. New winding taps (n, n+1).
  • the energy accumulator 13 and the on-load changeover switch 14 are enclosed in the changeover core housing 121 and together form the changeover core 12 .
  • the accumulator drive shaft 131 drives the accumulator 13 and the off-load tap selector 15 at the same time, and the accumulator 13, the on-load diverter switch 14 and the off-load tap selector
  • the selectors 15 are connected in series, so that the switching core 12 and the off-load tap selector 15 form a series-integrated distribution.
  • Figure 12 shows another preferred embodiment of the on-load tap-changer of the present invention. It includes the motor mechanism 11, the on-load changeover switch 14, the off-load tap selector and the accumulator 13; the accumulator 13 and the on-load changeover switch 14 are enclosed in the changeover core housing 121 to form the changeover core 12, so
  • the switching core 12 is distributed in parallel with the off-load tap selector 15, the off-load tap selector is placed in the transformer, and the switching core is placed outside the transformer;
  • the selector drive shaft is driven by the motor mechanism 11 151, the no-load tap selector 15 is driven by the selector drive shaft 151 to realize that the no-load tap selector is preselected to the winding tap to be switched without load;
  • the accumulator drive shaft 131 is driven by the electric mechanism to realize the The on-load changeover switch switches on-load from the current winding tap to the preselected new winding tap.
  • the accumulator driven shaft 132 can drive the on-load switch 14 to rotate.
  • the accumulator driven shaft 132 can drive the on-load changeover switch 14 to rotate in one direction during one switching of the on-load tap changer 10, and when the on-load tap changer 10 is switched Rotate in the opposite direction in one switch.
  • the on-load diverter switch 14 and the off-load tap selector 15 are constructed in the prior art and are therefore not shown in detail in the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transmission Devices (AREA)

Abstract

本发明涉及用于有载分接开关蓄能器的全程助推装置、蓄能器以及有载分接开关,全程助推装置,包括两个槽轮间歇机构以及中心齿轮;所述两个槽轮间歇机构均包括拨盘齿轮、主动拨盘、拨盘圆销、从动槽轮以及助推板;带有拨盘圆销的主动拨盘与拨盘齿轮同轴固定且轴向不接触,助推板固定连接在从动槽轮上,所述从动槽轮上开设径向槽;两个槽轮间歇机构上下交错安装,两个拨盘齿轮由同一个中心齿轮驱动;两个槽轮间歇机构位置关系满足如下约束条件:其中一个槽轮间歇机构的主动拨盘转动α1角度,通过拨盘圆销与从动轮上径向槽的配合使得从动槽轮上的助推板转动需要助推的角度α;另外一个槽轮间歇机构的主动拨盘转动(360°-α1)角度时,其拨盘圆销正好位于径向槽的槽口。

Description

用于有载分接开关蓄能器的全程助推装置、蓄能器以及有载分接开关
本申请要求于2021年3月1日提交中国专利局、申请号为202110227475.4、发明名称为“用于有载分接开关蓄能器的全程助推装置、蓄能器以及有载分接开关”和2021年3月1日提交中国专利局、申请号为202110226638.7、发明名称为“一种分体式有载分接开关”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及有载分接开关技术领域,特别涉及一种用于有载分接开关蓄能器的全程助推装置、蓄能器以及有载分接开关。
背景技术
众所周知,有载分接开关用于在有负载的情况下通过有载切换开关从当前的绕组抽头切换到由无载分接选择器预选好的新的绕组抽头。在有负载尤其是超高压有负载的情况,如果有载切换开关的切换不到位,将会导致有载切换开关甚至整个变压器无法使用。因此,为了提高有载分接开关的可靠性,其中一个设计重点是保证有载分接开关切换到位。
德国发明专利DE1956369和DE2806282、中国发明专利授权公告号CN102024552B以及中国实用新型授权公告号CN2891237分别描述了一种用于有载分接开关的蓄能器。上述蓄能器具有相似的机械结构和相同的工作原理,均属于滑架式蓄能器。考虑到储能弹簧弹力不足、低温使得油非常粘稠以及其他使得有载分接开关切换不到位的不利情况,上述蓄能器采用如下设计:一方面,在偏心轮最长径靠近轴心位置设置一个滚轮,使得在下滑架开始运动后,如果下滑架运动缓慢到一定程度,所述滚轮能够与下滑架其中一侧碰块碰撞,这样可以通过由电动机构直接带动的偏心轮的旋转,附加地 启动下滑架的运动;另一方面,在偏心轮最长径远离轴心位置设置另一个滚轮,在下滑架运动到下一个新的终端位置前,如果下滑架运动缓慢到一定程度,所述另一个滚轮能够与下滑架其中一侧碰块碰撞,这样可以通过由电动机构直接带动的偏心轮的旋转,附加地将下滑架准确地推动到新的终端位置。
中国发明专利授权公告号CN107438889B描述了另一种用于有载分接开关的蓄能器。所述蓄能器具有弹性储能元件和传动装置,所述传动装置具有输入毂、输出毂、可变传动比的传动器件、第一耦联装置和第二耦联装置。其工作过程为:第一阶段,第一耦联装置和第二耦联装置的上、下齿轮的挡块均未相互接触,储能装置和从动轴均未移动。第二阶段,第一耦联装置上、下齿轮的挡块相互接触,而第二耦联装置上、下齿轮的挡块未相互接触,这个阶段,储能装置逐渐张紧而从动轴未移动。第三阶段,第一耦联装置上、下齿轮的挡块不再相互接触,而第二耦联装置上、下齿轮的挡块相互接触,储能装置逐渐松弛并带动从动轴转动到下一个极限位置。在这个阶段,如果从动轴的转速缓慢到一定程度,第一耦联装置上、下齿轮的挡块将会相互接触,使得驱动元件能够追上从动元件,从而使得电动机构能够协同或者取代储能装置驱动从动轴转动。但是由于有载切换开关的切换时间占有载分接开关整个切换过程的比例较小以及曲线槽的设计局限性,所以在从动轴转动过程的后半段,驱动元件无法追上从动元件,从而在此阶段无法实现助推功能。
综上所诉,为了避免不利情况下有载切换开关切换不到位的情况,上述蓄能器都只实现了局部助推,具体为:蓄能器的助推装置在蓄能器从动轴整个运动过程的某些位置具有帮助蓄能器从动轴转动的可能性;而无法实现全程助推,具体为:蓄能器的助推装置在蓄能器从动轴整个运动过程的任何位置(特别是开始阶段和结束阶段)都具有帮助蓄能器从动轴转动的可能性。
发明内容
本发明的目的在于克服现有技术的不足,提供一种用于有载分接开关蓄 能器的全程助推装置、蓄能器以及有载分接开关,其中蓄能器能够实现全程助推,也就是蓄能器的助推装置在蓄能器从动轴整个运动过程的任何位置(特别是开始阶段和结束阶段)都具有帮助蓄能器从动轴转动的可能性,从而弥补有载分接开关技术领域蓄能器无法实现全程助推的空白。
本发明目的通过如下技术方案予以实现:用于有载分接开关蓄能器的全程助推装置,包括两个槽轮间歇机构以及中心齿轮;
所述两个槽轮间歇机构均包括拨盘齿轮、主动拨盘、拨盘圆销、从动槽轮以及助推板;带有拨盘圆销的主动拨盘与拨盘齿轮同轴固定且轴向不接触,助推板固定连接在从动槽轮上,所述从动槽轮上开设径向槽;
两个槽轮间歇机构上下交错安装,两个拨盘齿轮由同一个中心齿轮驱动;两个槽轮间歇机构位置关系满足如下约束条件:
其中一个槽轮间歇机构的主动拨盘转动α1角度,通过拨盘圆销与从动轮上径向槽的配合使得从动槽轮上的助推板转动需要助推的角度;另外一个槽轮间歇机构的主动拨盘转动(360°-α1)角度时,其拨盘圆销正好位于径向槽的槽口。
优选的,初始状态,两个助推板之间放置有载分接开关蓄能器上需要助推的部件。
优选的,从动槽轮上的径向槽只开设一个。
用于有载分接开关的蓄能器,包括周转轮系、机械储能装置、所述的全程助推装置、可变瞬时传动比的驱动传动机构、驱动轴、从动轴、限位装置、飞轮;
所述飞轮与从动轴无相对转动地连接;
所述可变瞬时传动比的驱动传动机构用于将驱动轴任意方向的旋转转化成周转轮系的单方向的旋转驱动;
所述的限位装置用于在机械储能装置储能过程中对飞轮进行限位;
所述机械储能装置用于在周转轮系旋转且从动轮静止过程中进行机械储能,储能到位后为周转轮系提供继续旋转的动力,由所述周转轮系解锁限位装置并驱动飞轮转动,进而带动从动轴转动到预定的终端角度位置;
所述全程助推装置提供辅助推力保证从动轮转动至上述终端角度位置。
优选的,所述的周转轮系包括太阳轮、至少一个行星齿轮、内齿圈、行星架装置;太阳轮与中心齿轮同轴固定连接,飞轮通过两个启动板固连在所述内齿圈上,至少一个行星齿轮通过行星架装置置于内齿圈与太阳轮之间,并分别与二者进行啮合,所述行星架装置在轴向方向上位于内齿圈与飞轮之间且与二者同轴转动,机械储能装置的一端可旋转地连接在其中一个行星齿轮的中心轴上,能够跟随其中一个行星齿轮的转动实现张紧、松弛状态的变化。
优选的,全程助推装置中一个槽轮间歇机构的主动拨盘转动360°-α1角度的过程中,由于限位装置的限位作用内齿圈保持静止,其中一个行星齿轮在太阳轮的带动下运行至周转轮系死点位置,此时,内齿圈解锁、机械储能装置由张紧状态开始逐渐松弛。
优选的,所述行星架装置包括两个触发杆以及一个行星架;
所述行星架包括中心旋转部分以及外伸的支杆,支杆的数量与行星齿轮的数量相对应,行星齿轮通过中心轴安装在所述支杆的上端面;所述中心旋转部分外伸设置两个用于实现限位装置解锁的触发杆。
优选的,所述限位装置包括设置在飞轮上的两个卡钩凸起、两个卡钩、两个卡钩限位挡块以及限位挡块;其中卡钩、卡钩限位挡块以及限位挡块均安装在下支架上;所述限位挡块用于对飞轮的转动实现限位;所述两个卡钩分别用于与卡钩凸起配合实现两次切换中对飞轮到位后的转动限制;所述卡钩限位挡块用于对卡钩未钩住卡钩凸起的状态进行限位。
优选的,所述卡钩主体为带弯钩的杆件、该杆件两侧分别设置碰撞杆以及限位杆;卡钩限位挡块与带弯钩的杆件之间安装压簧,弯钩钩住卡钩凸起 时,所述压簧处于压缩状态,所述的碰撞杆能够通过设置在行星架装置上触发杆触发完成弯钩与卡钩凸起之间的脱离;在弯钩与卡钩凸起脱离后,由所述压簧向带弯钩的杆件提供推力,由限位杆与卡钩限位挡块配合实现卡钩的限位,并保证此时,碰撞杆位置与所述触发杆不发生干涉。
优选的,弯钩与卡钩凸起的接触面上存在一受力点与卡钩转动中心处于以飞轮中心轴为中心的同一个圆弧面上。
优选的,所述可变瞬时传动比的驱动传动机构包括曲线槽盘、驱动扇齿、滚轮、第一中心齿轮;曲线槽盘与驱动轴无相对转动地连接,曲线槽盘的下端面设置曲线槽;驱动扇齿的径向方向固连一个能够在所述曲线槽内运动的滚轮,滚轮能够被曲线槽盘驱动进而使得驱动扇齿转动,驱动扇齿与第一中心齿轮啮合,所述第一中心齿轮与全程助推装置中的中心齿轮同轴固连;所述曲线槽上具有两个与中心轴的中心在同一条直线上的终端角度位置,使得曲线槽盘从任一方向转动180°,所述滚轮能够从一终端角度位置转动到另一个终端角度位置。
优选的,所述曲线槽的曲线以两个终端角度位置为界,一侧曲线方程为x′=Rcos(ω+β),y′=Rsin(ω+β);另一侧曲线方程为x″=Rcos(ω-β),y″=Rsin(ω-β);其中,以曲线槽盘旋转中心为坐标原点,x′、x″为曲线上各点的横坐标,y′、y″为曲线上各点的纵坐标;R为驱动扇齿的滚轮的矢径长度,ω为驱动扇齿的滚轮的矢径倾斜角度,β为曲线槽盘的转动角度。
优选的,
Figure PCTCN2021108799-appb-000001
其中,x、y分别为驱动扇齿的滚轮的横坐标和纵坐标,r为驱动扇齿的滚轮与驱动扇齿旋转中心轴的间距,θ为驱动扇齿起止位置倾角,L为曲线槽盘旋转中心轴与驱动扇齿旋转中心轴的间距,α为驱动扇齿的转动角度。
优选的,驱动扇齿的滚轮的矢径倾斜角度
Figure PCTCN2021108799-appb-000002
θ为驱动扇齿起止位置倾角,α为驱动扇齿的转动角度。。
优选的,机械储能装置包括弹性储能套筒以及两个弹性储能导杆;弹性储能元件套装在两个弹性储能导杆外部,小直径弹性储能导杆一端铰接在行星齿轮上,另一端插入另一大直径弹性储能导杆内腔,大直径弹性储能导杆插入弹性储能套筒,使得弹性储能元件处于弹性储能套筒内腔,大直径弹性储能导杆和弹性储能套筒均与下支架铰接。
一种有载分接开关,包括所述蓄能器;为所述蓄能器驱动轴提供驱动旋转动力的电动机构、有载切换开关和无载分接选择器;所述无载分接选择器用于无负载地预选到要被切换到的绕组抽头,有载切换开关用于从当前的绕组抽头有负载地切换到预选的新的绕组抽头。
优选的,所述蓄能器、有载分接开关与无载分接选择器串行连接。
优选的,蓄能器与有载切换开关连接构成切换芯子,所述切换芯子与无载分接选择器并联分体式分布,无载分接选择器放置在变压器中,切换芯子放置在变压器外。
由于采用了上述的技术方案,本发明与现有技术相比存在如下优点:
1、本发明考虑到有载分接开关在实际运行中,遇到机械储能装置的弹力不足或者发生故障或者无法松弛到预定的状态或者处于过载状态或者处于低温使得机构周围的油非常粘稠等不利情况,由机械储能装置驱动的从动轴的运行速度比正常情况下的运行速度缓慢。所述全程助推装置具有全程助推能力,具体为:在从动轴的整个运动过程中的任何位置(特别是开始阶段和结束阶段),如果从动轴的运行速度缓慢到一定程度时,全程助推装置都具有至少一个构件能够追上与从动轴直接或间接连接的部件上的助推块协同或者取代机械储能装置以机械接触的方式直接地不延迟地驱动与从动轴直接或间接连接的部件上的助推块,进而驱动从动轴转动,以确保从动轴能够最终到达预定的终端角度位置,使得蓄能器的可靠性更高。
2、本发明避免了蓄能器进行旋转运动与直线运动之间繁琐的运动变换以及避免了采用较多级的齿轮传动,从而使其运动传递效率更高,可靠性更高。
3、本发明的限位装置直接对与从动轴无相对转动的飞轮进行限位,限位对象更加直接,限位效果更加可靠。
4、本发明的限位装置的两个卡钩分开布置,并且在一次切换中,限位卡钩与对应的卡钩凸起脱离后,两者之间不会再产生机械接触,从而有利于保证限位卡钩的使用寿命,也降低了使用风险。
5、本发明的限位装置的两个卡钩分开布置,使得一个卡钩与卡钩凸起脱离后另一个卡钩能够保持静止状态,并且限位装置具有两个卡钩限位挡块分别用于快速可靠地对两个卡钩未钩住卡钩凸起的状态进行限位,从而保证了两个卡钩能够容易可靠的钩住对应的卡钩凸起。
附图说明
图1是本发明的全程助推装置的仰视图;
图2为本发明的用于有载分接开关的蓄能器的第一视图;
图3为本发明的用于有载分接开关的蓄能器的第二视图;
图4为本发明的用于有载分接开关的蓄能器的第三视图;
图5为本发明的用于有载分接开关的蓄能器的第四视图
图6为本发明的用于蓄能器的曲线槽盘的一种优选实施方式的仰视图;
图7为本发明的用于蓄能器的太阳轮处于α 1角度位置的视图;
图8为本发明的用于蓄能器的太阳轮处于α 12角度位置的视图;
图9为本发明的用于蓄能器的太阳轮处于α 2角度位置的视图;
图10为本发明的用于蓄能器的太阳轮处于α 3角度位置的视图;
图11为本发明的具有蓄能器的有载分接开关的第一优选实施方式;
图12为本发明的具有蓄能器的有载分接开关的另一优选实施方式。
具体实施方式
第一部分,本发明提出一种用于有载分接开关蓄能器的全程助推装置,所述全程助推装置包括两个槽轮间歇机构以及中心齿轮;
所述两个槽轮间歇机构均包括拨盘齿轮、主动拨盘、拨盘圆销、从动槽轮以及助推板;带有拨盘圆销的主动拨盘与拨盘齿轮同轴固定且轴向不接触,助推板固定连接在从动槽轮上,所述从动槽轮上开设径向槽;
两个槽轮间歇机构上下交错安装,两个拨盘齿轮由同一个中心齿轮驱动;两个槽轮间歇机构位置关系满足如下约束条件:
其中一个槽轮间歇机构的主动拨盘转动α1角度,通过拨盘圆销与从动轮上径向槽的配合使得从动槽轮上的助推板转动需要助推的角度α;另外一个槽轮间歇机构的主动拨盘转动(360°-α1)角度时,其拨盘圆销正好位于径向槽的槽口。
第二部分,本发明提出一种用于有载分接开关的蓄能器,所述蓄能器包括
-蓄能器驱动轴,所述蓄能器驱动轴能够在所述电动机构的驱动下沿任意方向旋转;
-蓄能器从动轴,所述蓄能器从动轴能够驱动所述有载切换开关旋转;
-根据第一部分构造的全程助推装置;
-机械储能装置;
-太阳轮(驱动装置),所述太阳轮与机械储能装置连接并且在所述驱动轴转动时能够压紧和或释放所述机械储能装置;
-内齿圈(从动装置),所述内齿圈与机械储能装置连接并且在所述机械储能装置释放时驱动所述从动轴转动;
-机械传动装置,所述机械传动装置包括:
·可变瞬时传动比的驱动传动机构,所述驱动传动机构连接在所述驱动
轴与所述太阳轮之间;和或
·可变瞬时传动比的从动传动机构,所述从动传动机构连接在所述内齿
圈与所述从动轴之间。
所述蓄能器从动轴能驱动有载切换开关在所述有载分接开关的一次切换中沿单方向旋转,并且在所述有载分接开关的下一次切换中沿相反方向旋转。
在这里,驱动传动机构的瞬时传动比示例性地定义为i 1=v 1:v 2,其中,v 1是瞬时输入速度,具体为所述驱动轴的瞬时转速;v 2是瞬时输出速度,具体为所述太阳轮的瞬时运动速度。从动传动机构的瞬时传动比示例性地定义为i 2=v 3:v 4,其中,v 3是瞬时输入速度,具体为所述内齿圈的瞬时运动速度;v 4是瞬时输出速度,具体为所述从动轴的瞬时转速。进一步可以得出,瞬时输出速度的计算公式为v 2=v 1:i 1、v 4=v 3:i 2。因此,传动机构的传动比发生变化能够导致输出速度发生变化,具体为传动比i 1、i 2越大,输出速度v 2、v 4越小。
在这里,可变瞬时传动比的驱动传动机构示例性地理解为在太阳轮从α 1角度转动到α 2角度过程中和或从α 2角度转动到α 3角度过程中和或从α 3角度转动到α 4角度过程中和或从α 4角度转动到α 5角度过程中,驱动传动机构的瞬时传动比i 1可以保持相等或变大或变小或改变正负或无穷大。同理,可变瞬时传动比的从动传动机构示例性地理解为在内齿圈从α 5角度转动到α 4角度过程中和或从α 4角度转动到α 3角度过程中和或从α 3角度转动到α 2角度过程中和或从α 2角度转动到α 1角度过程中,从动传动机构的瞬时传动比i 2可以保持相等或变大或变小或改变正负或无穷大。
在这里,所述有载分接开关的一次切换示例性地理解为所述有载分接开关完成无负载地预选到要被切换到的绕组抽头(n、n+1)以及从当前的绕组抽头有负载地切换到预选的新的绕组抽头(n、n+1)的完整切换过程。所述有载分接开关的下一次切换示例性地理解为所述有载分接开关完成无负载 地预选到下一个要被切换到的绕组抽头(n、n+1)以及从当前的绕组抽头有负载地切换到下一个预选的新的绕组抽头(n、n+1)的完整切换过程。
所述太阳轮和所述机械储能装置构造成,使得所述太阳轮从α 1角度转动到α 2角度时逐渐压缩所述机械储能装置直至其处于最大的张紧状态,并且在这个过程中所述从动轴静止。
所述机械储能装置、所述内齿圈和所述从动传动机构构造成,使得所述机械储能装置在所述太阳轮从α 2角度转动到α 3角度时逐渐松弛,并且在这个过程中所述从动轴从β 1角度或从β 1角度与β 2角度之间的中间角度位置转动到β 2角度。
所述全程助推装置构造成,使得所述全程助推装置
·在所述太阳轮从α 1角度转动到α 2角度时,不会对机械储能装置和或
太阳轮和或内齿圈和或从动轴和或机械传动装置的运动造成影响或产生阻碍或产生助推;
·在所述太阳轮从α 2角度转动到α 3角度时,并且在内齿圈和或从动轴以预定速度或大于预定速度运动的情况下,不会对机械储能装置和或太阳轮和或内齿圈和或从动轴和或机械传动装置的运动造成影响或产生阻碍或产生助推;和或
具有至少一个构件能够协同或者取代所述机械储能装置使得所述从动轴从β 1角度或从β 1角度与β 2角度之间的中间角度位置转动或者能够转动到β 2角度;
·在所述太阳轮从α 2角度转动到α 3角度时,在内齿圈和或从动轴的运动速度缓慢到一定程度时,具有至少一个构件能够协同或者取代所述机械储能装置使得所述从动轴从β 1角度或从β 1角度与β 2角度之间的中间角度位置转动或者能够转动到β 2角度。
特别地,在太阳轮从α 1角度转动到α 2角度时,从动轴在β 1角度保持静止。
所述太阳轮和所述机械储能装置构造成,使得所述太阳轮从α 3角度转动到α 2角度时逐渐压缩所述机械储能装置直至其处于最大的张紧状态,并且在这个过程中所述从动轴静止。
所述机械储能装置、所述内齿圈和所述从动传动机构构造成,使得所述机械储能装置在所述太阳轮从α 2角度转动到α 1角度时逐渐松弛,并且在这个过程中所述从动轴从β 2角度或从β 1角度与β 2角度之间的中间角度位置转动到β 1角度。
所述全程助推装置构造成,使得所述全程助推装置
·在所述太阳轮从α 3角度转动到α 2角度时,不会对机械储能装置和或太阳轮和或内齿圈和或从动轴和或机械传动装置的运动造成影响或产生阻碍或产生助推;
·在所述太阳轮从α 2角度转动到α 1角度时,并且在内齿圈和或从动轴以预定速度或大于预定速度运动的情况下,不会对机械储能装置和或太阳轮和或内齿圈和或从动轴和或机械传动装置的运动造成影响或产生阻碍或产生助推;和或
具有至少一个构件能够协同或者取代所述机械储能装置使得所述从动轴从β 2角度或从β 1角度与β 2角度之间的中间角度位置转动或者能够转动到β 1角度;
·在所述太阳轮从α 2角度转动到α 1角度时,在内齿圈和或从动轴的运动速度缓慢到一定程度时,具有至少一个构件能够协同或者取代所述机械储能装置使得所述从动轴从β 2角度或从β 1角度与β 2角度之间的中间角度位置转动或者能够转动到β 1角度。
特别地,在太阳轮从α 3角度转动到α 2角度时,从动轴在β 2角度保持静止。
所述驱动传动机构构造成,使得
·所述驱动轴沿任意方向持续转动能够使太阳轮从α 1角度转动到α 2角度,再转动到α 3角度。
·所述驱动轴沿任意方向持续转动能够使太阳轮从α 3角度转动到α 2角度,再转动到α 1角度。
在这里,驱动传动机构可以按照需求以任意方式构造,例如曲柄摇杆机构或者曲线槽轮机构。
本发明所述驱动传动机构包含曲线槽盘、驱动扇齿、滚轮、第一中心齿轮,所述曲线槽盘连接在驱动轴和驱动扇齿之间并且包含曲线槽。特别地,所述驱动扇齿包括具有中心轴的转动轮并且在其中心轴径向方向固定连接一个能够在曲线槽中运动的滚轮。所述滚轮能够被曲线槽驱动进而使得驱动扇齿以及太阳轮转动。
所述曲线槽构造成,使得所述驱动轴沿任意方向持续转动能够使所述太阳轮从α 1角度转动到α 3角度或从α 3角度转动到α 1角度并且在上述两个过程中对应的运动彼此镜像对称地进行。所述曲线槽的曲线是封闭的。
所述机械传动装置包括限位装置,所述限位装置作用到所述从动轴上。所述限位装置构造成,使得所述限位装置
·在所述太阳轮从α 2角度转动到α 3角度(或从α 2角度转动到α 1角度)时,防止所述驱动轴正向和或反向旋转离开β 2角度(或β 1角度);
·在所述从动轴在β 1角度(或β 2角度)时,防止从动轴从β 1角度(或β 2角度)两侧离开β 1角度(或β 2角度)。
所述机械传动装置包括触发机构,所述触发机构作用到所述从动轴上。所述触发机构构造成,使得所述触发机构
·在所述太阳轮在α 2角度或从α 2角度转动到α 3角度过程中或从α 2角度转动到α 1角度过程中松开所述限位装置。
第三部分,本发明提出一种有载分接开关,所述有载分接开关包括:
-电动机构;
-无载分接选择器,所述无载分接选择器用于无负载地预选到要被切换到的绕组抽头(n、n+1);
-有载切换开关,所述有载切换开关用于从当前的绕组抽头有负载地切换到预选的新的绕组抽头(n、n+1);
-根据第二部分构造的蓄能器。
上述及下文α 11223为一次切换过程中太阳轮的几个角度位置,β 12为蓄能器从动轴的极限角度位置。
实施例
图1给出一种用于有载分接开关蓄能器的全程助推装置,包括两个槽轮间歇机构以及中心齿轮(亦即蓄能器中的第二中心齿轮);所述两个槽轮间歇机构均包括拨盘齿轮、主动拨盘、拨盘圆销、从动槽轮以及助推板;带有拨盘圆销的主动拨盘与拨盘齿轮同轴固定且轴向不接触,助推板固定连接在从动槽轮上,所述从动槽轮上开设径向槽;两个槽轮间歇机构上下交错安装,两个拨盘齿轮由同一个中心齿轮驱动;两个槽轮间歇机构位置关系满足如下约束条件:其中一个槽轮间歇机构的主动拨盘转动α1角度,通过拨盘圆销与从动轮上径向槽的配合使得从动槽轮上的助推板转动需要助推的角度α;另外一个槽轮间歇机构的主动拨盘转动(360°-α1)角度时,其拨盘圆销正好位于径向槽的槽口。初始状态,两个助推板之间放置有载分接开关蓄能器上需要助推部件,在下述给出的蓄能器中该需要助推部件为齿圈助推块262,当然根据不同的安装位置,需要助推的部件可以安装在传统蓄能器的从动轴或者与从动轴直接或间接连接的部件上。
图2、图3、图4、图5以不同角度的视图示出本发明的用于有载分接开关10的蓄能器13的一种优选实施方式。蓄能器13包括支架16、曲线槽盘17、驱动扇齿18、第一中心齿轮19、第二中心齿轮20、第一槽轮间歇机构21、第二槽轮间歇机构22、机械储能装置23、太阳轮24、行星齿轮 25、输出装置26、行星架装置27、限位装置28。具体地,支架16包括上支架板161、下支架板162以及两者之间的支撑柱。曲线槽盘17位于上支架板161下方,并且与储能器驱动轴131无相对转动地连接。曲线槽盘17具有曲线槽171,曲线槽171包括第一终端角度位置172、第二终端角度位置173。在驱动扇齿18的径向方向固定连接一个能够在曲线槽171中运动的滚轮181。所述滚轮181能够被曲线槽盘17驱动进而使得驱动扇齿18转动。第一中心齿轮19的中心轴与蓄能器驱动轴131在同一条直线上,驱动扇齿18以固定的传动比驱动第一中心齿轮19转动;为了保证一定大小的传动比,第一中心齿轮19的直径相对较小。同样为了保证一定大小的传动比以及避免拨盘齿轮的直径过小,在第一中心齿轮19同轴地固定连接直径较大的第二中心齿轮20,二者在轴向方向不接触,并且第二中心齿轮20以相同的传动比同时驱动第一槽轮间歇机构21的第一拨盘齿轮211和第二槽轮间歇机构22的第二拨盘齿轮221转动。
第一槽轮间歇机构21和第二槽轮间歇机构22具有相似的机械结构,均为典型的槽轮机构,但是两者的结构设计成上下交错的形式,以便在避免结构干涉的同时减少了占用的空间。以第一槽轮间歇机构21为例,第一槽轮间歇机构21包括第一拨盘齿轮211、第一主动拨盘212、第一拨盘圆销213、第一从动槽轮214以及第一助推板215。其中,第一主动拨盘212与第一拨盘齿轮211同轴固定且轴向不接触。第一助推板215在特定位置固定连接在第一从动槽轮214上。第一从动槽轮214的歇停范围是300°,运动范围是60°,通常应该具有3个径向槽。然而根据使用需要,第一从动槽轮214只开了一个径向槽,另外两个位置未开槽。第一槽轮间歇机构21工作原理为:第一主动拨盘212在第一拨盘齿轮211的带动下旋转,在第一主动拨盘212上的第一拨盘圆销213未进入第一从动槽轮214的径向槽时,由于第一从动槽轮214的内凹锁止弧被第一主动拨盘212的外凸锁止弧卡住,此时第一从动槽轮214和第一助推板215保持静止。在第一拨 盘圆销213刚进入第一从动槽轮214的径向槽时,第一从动槽轮214的内凹锁止弧与第一主动拨盘212的外凸锁止弧也刚好分离。此后,第一从动槽轮214受第一拨盘圆销213的驱使而转动,并且带动第一助推板215运动。第一助推板215用于在必要的时候推动输出装置26上的齿圈助推块262。
太阳轮24、行星齿轮25、输出装置26的内齿圈261与行星架装置27的行星架271共同组成了典型的周转轮系。太阳轮24与第一中心齿轮19、第二中心齿轮20同轴固定且轴向不接触。机械储能装置23的一端可旋转地连接在行星齿轮25的中心轴上,另一端可旋转地连接在下支架板162的上方。
输出装置26还包括齿圈助推块262、第一启动板263、第二启动板264、飞轮265、第一卡钩凸起266以及第二卡钩凸起267。齿圈助推块262固定连接在内齿圈261的外圈上,用于将助推板215和225的助推力传递到内齿圈261上。启动板263和264一方面用于将飞轮265固定连接在内齿圈261上,另一方面用于在内齿圈261开始转动的时候与行星架271的支杆直接产生短暂的碰撞,从而帮助内齿圈261启动转动。卡钩凸起266和267位于飞轮265的圆弧面的中间区域。
行星架装置27还包括第一触发杆272和第二触发杆273。处于同一平面的触发杆272和273与行星架271固定连接,并且与内齿圈261、飞轮265同轴转动。触发杆272和273位于下支架162的下方,用于触发限位装置28的第一卡钩281和第二卡钩282。
限位装置28包括第一卡钩281、第二卡钩282、第一卡钩限位挡块283、第二卡钩限位挡块284以及限位挡块285。第一卡钩281和第二卡钩282能够通过弯钩部位钩住对应的卡钩凸起266和267,从而从正向或反向限定飞轮265的转动。限位挡块285在与飞轮265的两个碰撞面上具有停顿阻尼,用于防止飞轮265的旋转角度超过所需角度。
第一卡钩281和第二卡钩282的结构相同,卡钩主体均为带弯钩的杆件、该杆件两侧分别设置碰撞杆以及限位杆;卡钩限位挡块与带弯钩的杆件之间安装压簧,弯钩钩住卡钩凸起时,所述压簧处于压缩状态,所述的碰撞杆能够通过设置在行星架装置上触发杆触发完成弯钩与卡钩凸起之间的脱离;在弯钩与卡钩凸起脱离后,由所述压簧向带弯钩的杆件提供推力,由限位杆与卡钩限位挡块配合实现卡钩的限位,并保证此时,碰撞杆位置与所述触发杆不发生干涉。弯钩与卡钩凸起的接触面上存在一受力点与卡钩转动中心处于以飞轮中心轴为中心的同一个圆弧面上。
卡钩凸起266和267的外侧碰撞面与对应的卡钩281和282的外侧碰撞面相配合,使其在飞轮运动265运动过程中能够挤压进对应的卡钩281和282,并且通过其内侧弯钩面与对应的卡钩281和282的内侧弯钩面使其被对应的卡钩281和282稳定地锁定。
在卡钩281(或282)没有钩住飞轮265的时候,两个小压簧和卡钩限位挡块283(或284)配合在一起避免触发杆172(或173)碰撞到对应的卡钩281(或282)。在卡钩281(或282)钩住飞轮265的时候,两个小压簧和卡钩限位挡块283(或284)配合在一起使卡钩281(或282)稳定地钩住飞轮265,并且能够被对应的触发杆172(或173)触发,从而释放飞轮265。
图6示出本发明的蓄能器13的曲线槽盘17的一种优选实施方式。具体地,第一终端角度位置172和第二终端角度位置173与曲线槽盘17的旋转中心点处于同一条直线上,因此曲线槽盘17当前的第一终端角度位置172转动到当前的第二终端角度位置173或当前的第二终端角度位置173转动到当前的第一终端角度位置172两个过程中旋转的角度均为180°。在分接开关10的一次切换过程中,蓄能器驱动轴可以沿任意方向旋转180°,使得所述滚轮182能够从一终端角度位置172(或173)转动到另一个终端角度位置173(或172)。
图7、图8、图9、图10示出本发明的蓄能器13的部分关键构件在工作过程中四个关键时刻的姿态图。本发明的蓄能器13的工作方式如下:如图7所示,太阳轮24处于α 1位置。驱动扇齿18的滚轮181处于曲线槽盘17的第一终端角度位置172。飞轮265的第一卡钩凸起266被第一卡钩281钩住。蓄能器从动轴132处于β 1角度位置。机械储能装置23的储能压簧处于松弛状态。第一拨盘圆销213贴在第一从动槽轮214未开径向槽的一侧,并且能够通过顺时针转动远离第一从动槽轮214。第二拨盘圆销223位于第二从动槽轮224径向槽的槽口,并且能够通过顺时针转动进入第二从动槽轮224的径向槽。第一从动槽轮214和第二从动槽轮224的径向槽处于同一条直线上。助推板215和225分别位于齿圈助推块262的两侧,并且处于极限位置。其中,助推板215在顺时针方向没有障碍,助推板225在逆时针方向没有障碍。运动过程中,曲线槽盘17将沿任意旋转方向不间断地匀速转动。运动开始后,在曲线槽盘17的驱动下驱动扇齿18沿顺时针方向旋转。在驱动扇齿18的驱动下中心齿轮19和20以及太阳轮24沿逆时针旋转。一方面,因为飞轮265被第一卡钩281钩住以及被限位挡块285挡住,所以内齿圈261在初始位置保持静止。此时,周转轮系中,行星齿轮25无法转动,太阳轮24、行星齿轮25和内齿圈261共同组成行星轮系。太阳轮24作为主动轮驱动行星齿轮25沿逆时针方向绕着太阳轮24“公转”,从而压缩机械储能装置23的储能压簧,直至机械储能装置23达到如图8所示的位置。另一方面,在第二中心齿轮20的驱动下,拨盘齿轮211和221沿顺时针旋转,从而带动主动拨盘212和222同样沿顺时针方向转动。其中,第一拨盘圆销213逐渐远离第一从动槽轮214,第一主动拨盘212的外凸锁止弧逐渐进入第一从动槽轮214的内凹锁止弧,从而使得第一从动槽轮214和与其固连的第一助推板215保持静止。第二拨盘圆销223进入第二从动槽轮224的径向槽内,并且驱动第二从动槽轮224和第二助推板225 快速沿逆时针方向旋转,直至槽轮间歇机构21和22达到如图8所示的位置。
在如图8所示的位置,太阳轮24处于α 12角度位置。机械储能装置23被压缩到一定位置但压缩量未达到最大值。第一主动拨盘212的外凸锁止弧的一端转动过一定角度后到达第一从动槽轮214的内凹锁止弧的一端。第一从动槽轮214和第一助推板215仍然处于初始位置。第二拨盘圆销223完成了对第二从动槽轮224的驱动,并且即将沿顺时针方向远离第二从动槽轮224的径向槽的槽口。同时,第二主动拨盘222的外凸锁止弧即将进入第二从动槽轮224的内凹锁止弧。第二助推板225沿逆时针方向远离齿圈助推块262,并且转动到下一个极限位置。继续运动后,在曲线槽盘17的驱动下太阳轮24继续沿逆时针方向旋转。一方面,内齿圈261仍然在初始位置保持静止。机械储能装置23的储能压簧在行星齿轮25的驱动下继续逐渐被压缩,直至机械储能装置23到达如图9所示的位置。另一方面,主动拨盘212和222继续沿顺时针方向转动,直至槽轮间歇机构21和22到达如图9所示位置。
在如图9所示的位置,太阳轮24处于α 2角度位置。机械储能装置23被压缩到死点位置并且压缩量达到最大值。在行星齿轮25的带动下行星架装置27的第一触发杆272随之逐渐沿逆时针方向运动并且此时刚好与限位装置28的第一卡钩281接触。第一拨盘圆销213刚好到达第一从动槽轮214的径向槽的槽口,并且第一主动拨盘212的外凸锁止弧即将脱离第一从动槽轮214的内凹锁止弧。此时,第一从动槽轮214和第一助推板215仍然处于初始位置。第二拨盘圆销223在第二从动槽轮224未开径向槽的一侧的附近,并且第二主动拨盘222的内凹锁止弧的一端到达第二从动槽轮224的外凸锁止弧的一端。继续运动后,在曲线槽盘17的驱动下太阳轮24继续沿逆时针方向旋转。一方面,行星架装置27的第一触发杆272随即触发第一卡钩281,从而释放飞轮265。行星架装置27的行星架271与第一 启动板263机械碰撞。此时太阳轮24、行星齿轮25和内齿圈261共同组成差动轮系,太阳轮24和行星齿轮25作为主动轮一起驱动内齿圈261阶跃式地迅速地沿逆时针方向转动,直至内齿圈261和助推块262到达如图10所示位置。另一方面,第一拨盘圆销213进入第一从动槽轮214的径向槽内,并且驱动第一从动槽轮214和第一助推板215快速沿逆时针方向旋转。特别地,在内齿圈261开始转动后的任何时刻,如果内齿圈261的转速在机械储能装置23的驱动下缓慢到一定程度,第一助推板215都可以与内齿圈261上的齿圈助推块262直接接触,此时电动机构11将能够协同或者取代机械储能装置23驱动内齿圈261转动。第二拨盘圆销223继续沿顺时针转动并且逐渐靠近第二从动槽轮224未开径向槽的一侧,直至槽轮间歇机构21和22到达如图10所示位置。
在如图10所示的位置,太阳轮24处于α 3角度位置。驱动扇齿18的滚轮181处于曲线槽盘17的第二终端角度位置173。飞轮265的第二卡钩凸起267被第二卡钩282钩住,飞轮265的另一侧被限位挡块285挡住。蓄能器从动轴132处于β 2角度位置。机械储能装置23的储能压簧再次处于松弛状态。第一拨盘圆销213位于第一从动槽轮214径向槽的槽口,并且能够通过逆时针转动进入第一从动槽轮214的径向槽。第二拨盘圆销223贴在第二从动槽轮224未开径向槽的一侧,并且能够通过逆时针转动远离第二从动槽轮224。第一从动槽轮214和第二从动槽轮224的径向槽处于同一条直线上。助推板215和225分别位于齿圈助推块262的两侧,并且处于极限位置。其中,助推板215在顺时针方向没有障碍,助推板225在逆时针方向没有障碍。至此,蓄能器完成了有载分接开关10的一次切换过程中的全部动作,并处于下一次切换的初始位置。
图11示出本发明的有载分接开关10的第一优选实施方式,所述有载分接开关包括电动机构11、蓄能器13、有载切换开关14和无载分接选择器15。蓄能器驱动轴131能够在电动机构11的驱动下沿任意方向旋转。蓄 能器从动轴132能够驱动有载切换开关14旋转。并且,通过蓄能器13的作用,蓄能器从动轴132能驱动有载切换开关14在有载分接开关10的一次切换中沿单方向旋转,以及在有载分接开关10的下一次切换中沿相反方向旋转。有载切换开关14和无载分接选择器15采用现有技术构造,因此在本发明中没有详细示出。其中,无载分接选择器15用于无负载地预选到要被切换到的绕组抽头(n、n+1),有载切换开关14用于从当前的绕组抽头有负载地切换到预选的新的绕组抽头(n、n+1)。蓄能器13和有载切换开关14被包围在切换芯子壳体121中,并且共同组合成为切换芯子12。在有载分接开关10的工作过程中,蓄能器驱动轴131同时驱动蓄能器13和无载分接选择器15,并且蓄能器13、有载切换开关14和无载分接选择器15串行连接,从而使得切换芯子12与无载分接选择器15形成串联一体式分布。
图12示出本发明有载分接开关的另一优选实施方式。包括电动机构11、有载切换开关14和无载分接选择器以及蓄能器13;蓄能器13和有载切换开关14被包围在切换芯子壳体121中构成切换芯子12,所述的切换芯子12与无载分接选择器15并联分体式分布,无载分接选择器放置在变压器中,切换芯子放置在变压器外;由所述的电动机构11驱动选择器驱动轴151,由选择器驱动轴151驱动无载分接选择器15实现无载分接选择器无负载地预选到要被切换到的绕组抽头;由所述电动机构驱动蓄能器驱动轴131实现有载切换开关从当前的绕组抽头有负载地切换到预选的新的绕组抽头。蓄能器从动轴132能够驱动有载切换开关14旋转。并且,通过蓄能器13的作用,蓄能器从动轴132能驱动有载切换开关14在有载分接开关10的一次切换中沿单方向旋转,并且在有载分接开关10的下一次切换中沿相反方向旋转。有载切换开关14和无载分接选择器15采用现有技术构造,因此在本发明中没有详细示出。
以上所述,仅为本发明最佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。
本发明说明书中未作详细描述的内容属于本领域专业技术人员的公知技术。

Claims (18)

  1. 用于有载分接开关蓄能器的全程助推装置,其特征在于:包括两个槽轮间歇机构以及中心齿轮;
    所述两个槽轮间歇机构均包括拨盘齿轮、主动拨盘、拨盘圆销、从动槽轮以及助推板;带有拨盘圆销的主动拨盘与拨盘齿轮同轴固定且轴向不接触,助推板固定连接在从动槽轮上,所述从动槽轮上开设径向槽;
    两个槽轮间歇机构上下交错安装,两个拨盘齿轮由同一个中心齿轮驱动;两个槽轮间歇机构位置关系满足如下约束条件:
    其中一个槽轮间歇机构的主动拨盘转动α1角度,通过拨盘圆销与从动轮上径向槽的配合使得从动槽轮上的助推板转动需要助推的角度;另外一个槽轮间歇机构的主动拨盘转动(360°-α1)角度时,其拨盘圆销正好位于径向槽的槽口。
  2. 根据权利要求1所述的全程助推装置,其特征在于:初始状态,两个助推板之间放置有载分接开关蓄能器上需要助推的部件。
  3. 根据权利要求1所述的全程助推装置,其特征在于:从动槽轮上的径向槽只开设一个。
  4. 用于有载分接开关的蓄能器,其特征在于:包括周转轮系、机械储能装置、权利要求1-3之一所述的全程助推装置、可变瞬时传动比的驱动传动机构、驱动轴、从动轴、限位装置、飞轮;
    所述飞轮与从动轴无相对转动地连接;
    所述可变瞬时传动比的驱动传动机构用于将驱动轴任意方向的旋转转化成周转轮系的单方向的旋转驱动;
    所述的限位装置用于在机械储能装置储能过程中对飞轮进行限位;
    所述机械储能装置用于在周转轮系旋转且从动轮静止过程中进行机械储能,储能到位后为周转轮系提供继续旋转的动力,由所述周转轮系解锁限位装置并驱动飞轮转动,进而带动从动轴转动到预定的终端角度位置;
    所述全程助推装置提供辅助推力保证从动轮转动至上述终端角度位置。
  5. 根据权利要求4所述的蓄能器,其特征在于:所述的周转轮系包括太阳轮、至少一个行星齿轮、内齿圈、行星架装置;太阳轮与中心齿轮同轴固定连接,飞轮通过两个启动板固连在所述内齿圈上,至少一个行星齿轮通过行星架装置置于内齿圈与太阳轮之间,并分别与二者进行啮合,所述行星架装置在轴向方向上位于内齿圈与飞轮之间且与二者同轴转动,机械储能装置的一端可旋转地连接在其中一个行星齿轮的中心轴上,能够跟随其中一个行星齿轮的转动实现张紧、松弛状态的变化。
  6. 根据权利要求5所述的蓄能器,其特征在于:
    全程助推装置中一个槽轮间歇机构的主动拨盘转动360°-α1角度的过程中,由于限位装置的限位作用内齿圈保持静止,其中一个行星齿轮在太阳轮的带动下运行至周转轮系死点位置,此时,内齿圈解锁、机械储能装置由张紧状态开始逐渐松弛。
  7. 根据权利要求5所述的蓄能器,其特征在于:所述行星架装置包括两个触发杆以及一个行星架;
    所述行星架包括中心旋转部分以及外伸的支杆,支杆的数量与行星齿轮的数量相对应,行星齿轮通过中心轴安装在所述支杆的上端面;所述中心旋转部分外伸设置两个用于实现限位装置解锁的触发杆。
  8. 根据权利要求4所述的蓄能器,其特征在于:所述限位装置包括设置在飞轮上的两个卡钩凸起、两个卡钩、两个卡钩限位挡块以及限位挡块;其中卡钩、卡钩限位挡块以及限位挡块均安装在下支架上;所述限位挡块用于对飞轮的转动实现限位;所述两个卡钩分别用于与卡钩凸起配合实现两次切换中对飞轮到位后的转动限制;所述卡钩限位挡块用于对卡钩未钩住卡钩凸起的状态进行限位。
  9. 根据权利要求8所述的蓄能器,其特征在于:所述卡钩主体为带弯钩的杆件、该杆件两侧分别设置碰撞杆以及限位杆;卡钩限位挡块与带弯钩 的杆件之间安装压簧,弯钩钩住卡钩凸起时,所述压簧处于压缩状态,所述的碰撞杆能够通过设置在行星架装置上触发杆触发完成弯钩与卡钩凸起之间的脱离;在弯钩与卡钩凸起脱离后,由所述压簧向带弯钩的杆件提供推力,由限位杆与卡钩限位挡块配合实现卡钩的限位,并保证此时,碰撞杆位置与所述触发杆不发生干涉。
  10. 根据权利要求9所述的蓄能器,其特征在于:弯钩与卡钩凸起的接触面上存在一受力点与卡钩转动中心处于以飞轮中心轴为中心的同一个圆弧面上。
  11. 根据权利要求4所述的蓄能器,其特征在于:所述可变瞬时传动比的驱动传动机构包括曲线槽盘、驱动扇齿、滚轮、第一中心齿轮;
    曲线槽盘与驱动轴无相对转动地连接,曲线槽盘的下端面设置曲线槽;驱动扇齿的径向方向固连一个能够在所述曲线槽内运动的滚轮,滚轮能够被曲线槽盘驱动进而使得驱动扇齿转动,驱动扇齿与第一中心齿轮啮合,所述第一中心齿轮与全程助推装置中的中心齿轮同轴固连;所述曲线槽上具有两个与中心轴的中心在同一条直线上的终端角度位置,使得曲线槽盘从任一方向转动180°,所述滚轮能够从一终端角度位置转动到另一个终端角度位置。
  12. 根据权利要求11所述的蓄能器,其特征在于:所述曲线槽的曲线以两个终端角度位置为界,一侧曲线方程为x′=R cos(ω+β),y′=R sin(ω+β);另一侧曲线方程为x″=R cos(ω-β),y″=R sin(ω-β);其中,以曲线槽盘旋转中心为坐标原点,x′、x″为曲线上各点的横坐标,y′、y″为曲线上各点的纵坐标;R为驱动扇齿的滚轮的矢径长度,ω为驱动扇齿的滚轮的矢径倾斜角度,β为曲线槽盘的转动角度。
  13. 根据权利要求12所述的蓄能器,其特征在于:
    Figure PCTCN2021108799-appb-100001
    其中,x、y分别为驱动扇齿的滚轮的横坐标和纵坐标,r为驱动扇齿的滚轮与驱动扇齿旋转中心轴的间 距,θ为驱动扇齿起止位置倾角,L为曲线槽盘旋转中心轴与驱动扇齿旋转中心轴的间距,α为驱动扇齿的转动角度。
  14. 根据权利要求12所述的蓄能器,其特征在于:驱动扇齿的滚轮的矢径倾斜角度
    Figure PCTCN2021108799-appb-100002
    θ为驱动扇齿起止位置倾角,α为驱动扇齿的转动角度。。
  15. 根据权利要求4所述的蓄能器,其特征在于:机械储能装置包括弹性储能套筒以及两个弹性储能导杆;弹性储能元件套装在两个弹性储能导杆外部,小直径弹性储能导杆一端铰接在行星齿轮上,另一端插入另一大直径弹性储能导杆内腔,大直径弹性储能导杆插入弹性储能套筒,使得弹性储能元件处于弹性储能套筒内腔,大直径弹性储能导杆和弹性储能套筒均与下支架铰接。
  16. 一种有载分接开关,其特征在于:包括权利要求4-15任一所述蓄能器;为所述蓄能器驱动轴提供驱动旋转动力的电动机构、有载切换开关和无载分接选择器;所述无载分接选择器用于无负载地预选到要被切换到的绕组抽头,有载切换开关用于从当前的绕组抽头有负载地切换到预选的新的绕组抽头。
  17. 根据权利要求16所述的有载分接开关,其特征在于:所述蓄能器、有载分接开关与无载分接选择器串行连接。
  18. 根据权利要求16所述的有载分接开关,其特征在于:蓄能器与有载切换开关连接构成切换芯子,所述切换芯子与无载分接选择器并联分体式分布,无载分接选择器放置在变压器中,切换芯子放置在变压器外。
PCT/CN2021/108799 2021-03-01 2021-07-28 用于有载分接开关蓄能器的全程助推装置、蓄能器以及有载分接开关 WO2022183670A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/457,765 US20230402227A1 (en) 2021-03-01 2023-08-29 Full range boosting device for accumulator of on-load tap changer, accumulator, and on-load tap changer

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202110227475.4 2021-03-01
CN202110226638.7 2021-03-01
CN202110227475.4A CN113113246B (zh) 2021-03-01 2021-03-01 用于有载分接开关蓄能器的全程助推装置、蓄能器以及有载分接开关
CN202110226638.7A CN113113245B (zh) 2021-03-01 2021-03-01 一种分体式有载分接开关

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/457,765 Continuation US20230402227A1 (en) 2021-03-01 2023-08-29 Full range boosting device for accumulator of on-load tap changer, accumulator, and on-load tap changer

Publications (1)

Publication Number Publication Date
WO2022183670A1 true WO2022183670A1 (zh) 2022-09-09

Family

ID=83154901

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/108799 WO2022183670A1 (zh) 2021-03-01 2021-07-28 用于有载分接开关蓄能器的全程助推装置、蓄能器以及有载分接开关

Country Status (2)

Country Link
US (1) US20230402227A1 (zh)
WO (1) WO2022183670A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103430267A (zh) * 2011-03-12 2013-12-04 赖茵豪森机械制造公司 有载分接开关
CN107438889A (zh) * 2015-03-17 2017-12-05 赖茵豪森机械制造公司 用于有载分接开关的蓄能器以及具有蓄能器的有载分接开关
DE102018132027A1 (de) * 2018-12-13 2020-06-18 Maschinenfabrik Reinhausen Gmbh GETRIEBE sowie Laststufenschalter mit dem Getriebe
CN113113246A (zh) * 2021-03-01 2021-07-13 北京航天控制仪器研究所 用于有载分接开关蓄能器的全程助推装置、蓄能器以及有载分接开关
CN113113245A (zh) * 2021-03-01 2021-07-13 北京航天控制仪器研究所 一种分体式有载分接开关

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103430267A (zh) * 2011-03-12 2013-12-04 赖茵豪森机械制造公司 有载分接开关
CN107438889A (zh) * 2015-03-17 2017-12-05 赖茵豪森机械制造公司 用于有载分接开关的蓄能器以及具有蓄能器的有载分接开关
DE102018132027A1 (de) * 2018-12-13 2020-06-18 Maschinenfabrik Reinhausen Gmbh GETRIEBE sowie Laststufenschalter mit dem Getriebe
CN113113246A (zh) * 2021-03-01 2021-07-13 北京航天控制仪器研究所 用于有载分接开关蓄能器的全程助推装置、蓄能器以及有载分接开关
CN113113245A (zh) * 2021-03-01 2021-07-13 北京航天控制仪器研究所 一种分体式有载分接开关

Also Published As

Publication number Publication date
US20230402227A1 (en) 2023-12-14

Similar Documents

Publication Publication Date Title
CN113113244B (zh) 一种用于有载分接开关的串联式蓄能器以及有载分接开关
US9251971B2 (en) On-load tap changer
RU2345437C2 (ru) Переключатель шунтирующего сопротивления, способ управления таким переключателем и использование такого переключателя
CN113113245B (zh) 一种分体式有载分接开关
WO2013042685A1 (ja) 負荷時タップ切換装置、及びその蓄勢機構
CN101725753B (zh) 一种可脱位复位的电控阀齿轮传动机构
WO2022183670A1 (zh) 用于有载分接开关蓄能器的全程助推装置、蓄能器以及有载分接开关
CN113113246B (zh) 用于有载分接开关蓄能器的全程助推装置、蓄能器以及有载分接开关
EP1958224B1 (en) A device for transmitting rotary motion
CN113113243B (zh) 一种用于有载分接开关的多机械储能装置的蓄能器以及有载分接开关
CN202008930U (zh) 高压开关弹簧操动机构的储能装置
CN112259389B (zh) 单向有载分接开关的操作机构
JP4127571B2 (ja) 負荷時タップ切換器
WO2022179280A1 (zh) 一种用于有载分接开关的多机械储能装置的蓄能器以及有载分接开关
CN201498391U (zh) 高压断路器弹簧操动机构
CN112849331B (zh) 自行车变速装置
CN113012955A (zh) 一种有载分接开关的蓄能器
CN107327542B (zh) 一种用于开关柜的棘爪行星齿轮减速器
CN111370257A (zh) 一种负荷开关/隔离开关防误型操作手柄及其使用方法
CN110159477A (zh) 一种海上发电装置
CN218039065U (zh) 一种降力凸轮机构
CN108962639A (zh) 一种智能型有载调压开关盘式驱动机构
CN214428500U (zh) 组合电器机构
CN211858435U (zh) 一种具有操作切换机构的手动转换开关
CN113113270B (zh) 一种合闸保持分闸脱扣系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21928748

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 11.01.2024)