WO2022179280A1 - 一种用于有载分接开关的多机械储能装置的蓄能器以及有载分接开关 - Google Patents

一种用于有载分接开关的多机械储能装置的蓄能器以及有载分接开关 Download PDF

Info

Publication number
WO2022179280A1
WO2022179280A1 PCT/CN2021/140657 CN2021140657W WO2022179280A1 WO 2022179280 A1 WO2022179280 A1 WO 2022179280A1 CN 2021140657 W CN2021140657 W CN 2021140657W WO 2022179280 A1 WO2022179280 A1 WO 2022179280A1
Authority
WO
WIPO (PCT)
Prior art keywords
energy storage
angle
hook
driven
rotation
Prior art date
Application number
PCT/CN2021/140657
Other languages
English (en)
French (fr)
Inventor
孙亚朋
李壮壮
邢立华
王彦利
田秀
吕俊平
罗辉
邹俊端
Original Assignee
北京航天控制仪器研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202110215113.3A external-priority patent/CN113012955B/zh
Priority claimed from CN202110226628.3A external-priority patent/CN113113243B/zh
Priority claimed from CN202110226638.7A external-priority patent/CN113113245B/zh
Application filed by 北京航天控制仪器研究所 filed Critical 北京航天控制仪器研究所
Publication of WO2022179280A1 publication Critical patent/WO2022179280A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F29/00Variable transformers or inductances not covered by group H01F21/00
    • H01F29/02Variable transformers or inductances not covered by group H01F21/00 with tappings on coil or winding; with provision for rearrangement or interconnection of windings
    • H01F29/04Variable transformers or inductances not covered by group H01F21/00 with tappings on coil or winding; with provision for rearrangement or interconnection of windings having provision for tap-changing without interrupting the load current
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H3/00Mechanisms for operating contacts
    • H01H3/22Power arrangements internal to the switch for operating the driving mechanism
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H3/00Mechanisms for operating contacts
    • H01H3/22Power arrangements internal to the switch for operating the driving mechanism
    • H01H3/30Power arrangements internal to the switch for operating the driving mechanism using spring motor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H3/00Mechanisms for operating contacts
    • H01H3/32Driving mechanisms, i.e. for transmitting driving force to the contacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H9/00Details of switching devices, not covered by groups H01H1/00 - H01H7/00

Definitions

  • the invention relates to the technical field of on-load tap-changers, in particular to an energy accumulator of a multi-mechanical energy storage device for on-load tap-changers and an on-load tap-changer.
  • the on-load tap-changer is used to switch from the current winding tap to the new winding tap preselected by the off-load tap selector via the on-load diverter switch under load, so that under load, in real time, Continuously adjust the output voltage of the transformer.
  • the on-load diverter switch needs to realize a step-like fast action, so the on-load tap-changer needs an accumulator to convert the continuous and slow rotating motion of the motor mechanism into the on-load diverter switch. Brief, rapid turning movements.
  • German invention patents DE1956369 and DE2806282, the Chinese invention patent authorization announcement number CN102024552B and the Chinese utility model authorization announcement number CN2891237 respectively describe an accumulator for an on-load tap-changer.
  • the above-mentioned accumulators have a similar mechanical structure and the same working principle.
  • the above-mentioned accumulators all include an eccentric wheel, an upper carriage, an energy storage spring, a lower carriage, a bracket with a guide rod, and a limit device, wherein the upper carriage and the lower carriage can be connected to each other along the guide rod on the bracket. Independently reciprocating linear movement between the two end positions.
  • the above accumulators convert the rotational motion of the drive shaft in any direction into the linear motion of the upper carriage through the eccentric wheel, and lock the movement of the lower carriage through the limit device, so that the upper carriage and the lower carriage can pass through the upper carriage and the lower carriage.
  • the displacement difference generated between them charges the energy storage spring between the two.
  • the above accumulators all need to convert the rotational motion into linear motion first, and then convert the linear motion into rotational motion.
  • the cumbersome motion conversion makes the above energy storage.
  • the device has the disadvantages of large required space and complex components.
  • the limiting devices of the above-mentioned accumulators all limit the position of the lower carriage that performs linear motion.
  • after the limit hook is separated from the lower frame due to structural limitations, there will always be sliding friction between the limit hook and the fast-moving lower frame, which will affect the service life of the limit hook, and also exist Risk of wear debris and accidents.
  • the purpose of the present invention is to overcome the deficiencies of the prior art and provide an accumulator for an on-load tap changer and an on-load tap changer, wherein the accumulator does not need to perform cumbersome movements between rotary motion and linear motion Transformations, in particular, have features that reduce friction between components.
  • an accumulator for an on-load tap changer comprising a drive shaft, a driven shaft, and a mechanical energy storage device; and also includes a mechanical transmission device, a drive device, and a driven device;
  • the mechanical transmission device is coupled between the drive shaft and the drive device, and is used to convert the rotation of the drive shaft in any direction into a unidirectional rotation of the drive device, and rotate in the opposite direction in the next switching of the on-load tap-changer. , drive the driving device to rotate through rotation; the driven device is used to realize the required angle of the driven shaft rotation;
  • the driving device is used to realize the tension or relaxation state of the mechanical energy storage device
  • the mechanical energy storage device is coupled between the driving device and the driven device for driving the driven device to rotate.
  • the mechanical transmission device is a drive transmission mechanism with a variable instantaneous transmission ratio
  • the drive transmission mechanism with a variable instantaneous transmission ratio is a curved grooved disk
  • the curved grooved disk includes a curved groove provided on the lower end surface and a center
  • the shaft is the input hub
  • the curved groove has two terminal angular positions on the same straight line with the center of the central axis, so that the curved groove plate can be rotated 180° from any direction, and the roller on the driving device can be rotated from one terminal angular position to another. Terminal angular position.
  • At least two sets of mechanical energy storage devices are installed between the driving device and the driven device, and during one switching process of the on-load tap-changer, at least two sets of mechanical energy storage devices are in different tension and or relaxation state.
  • the driving device includes a rotating wheel with a central axis and a roller, one end of at least two sets of mechanical energy storage devices are respectively installed on both sides of the central axis, and the roller is installed on the rotating wheel and its position is not in the The vertical line of the center line of the rotation angle range of the rotation wheel during a switching process.
  • the driving device further includes two triggering devices, the two triggering devices are installed on both sides of the central axis of the rotating wheel, and the rollers extending downward are installed below the two triggering devices for triggering the limit during the rotation of the rotating wheel.
  • the limit device is used to realize the limit during the switching process of the on-load tap changer.
  • the driven device includes a driven transmission mechanism with a variable instantaneous transmission ratio and a rotating wheel with a central axis; the other ends of at least two sets of mechanical energy storage devices are respectively installed on both sides of the central axis and rotate.
  • a sector gear is arranged on the wheel, which is used to cooperate with the driven transmission mechanism of variable instantaneous transmission ratio, and the driven transmission mechanism of variable instantaneous transmission ratio drives the driven shaft to rotate at the required angle.
  • variable instantaneous transmission ratio driven transmission mechanism includes a transmission gear, an output gear, and a flywheel;
  • the transmission gear meshes with the sector gear and the output gear on the driven device respectively, and is used to convert the rotation angle of the driven device into the required rotation angle of the driven shaft.
  • the output gear is fixedly connected with the flywheel, and the flywheel is fixed with the driven shaft. even.
  • the limiting device includes two hook protrusions, two hooks, two hook limit blocks and a limit block provided on the flywheel; wherein the hook, the hook limit block and the limit block is installed on the lower bracket; the limit block is used to limit the rotation of the flywheel; the two hooks are respectively used to cooperate with the hook protrusions to realize the position of the flywheel in two switching.
  • the rear rotation limit; the hook limit block is used to limit the state in which the hook is not hooked to the hook protrusion.
  • the main body of the hook is a rod with a hook, and a collision rod and a limit rod are respectively provided on both sides of the rod; a compression spring is installed between the hook limit stop and the rod with a hook, and the bending When the hook is hooked on the hook protrusion, the compression spring is in a compressed state, and the collision bar can be triggered by a trigger roller provided on the driving device to complete the separation between the hook and the hook protrusion; After the bulge is disengaged, the compression spring provides a thrust to the rod with the hook, and the limit rod cooperates with the hook limit stop to realize the limit of the hook, and to ensure that at this time, the position of the collision rod is the same as that of the hook.
  • the trigger wheel does not interfere.
  • there is a force point on the contact surface between the hook and the hook protrusion and the rotation center of the hook is on the same arc surface with the center axis of the flywheel as the center.
  • the mechanical energy storage device includes an elastic energy storage sleeve and two elastic energy storage guide rods; the elastic energy storage element is sheathed outside the two elastic energy storage guide rods, and one end of the small-diameter elastic energy storage guide rod is hinged on the driving device , the other end is inserted into the inner cavity of another large-diameter elastic energy storage guide rod, and the large-diameter elastic energy storage guide rod is inserted into the elastic energy storage sleeve, so that the elastic energy storage element is in the inner cavity of the elastic energy storage sleeve, and the large-diameter elastic energy storage guide rod is inserted into the elastic energy storage sleeve. Both the rod and the elastic energy storage sleeve are hinged to the driven device.
  • the end of the small-diameter elastic energy storage guide rod is in mechanical contact with the end of the elastic energy storage sleeve.
  • the driving device includes a main balance wheel, a roller and an auxiliary balance wheel, the rotation center of the main balance wheel does not coincide with the rotation center of the curved groove plate; the roller wheel is placed in the curved groove, and is coupled with the main balance wheel; the auxiliary balance wheel is coupled with the main balance wheel for pushing the mechanical energy storage device to periodically compress and release.
  • the transmission ratio between the auxiliary balance wheel and the main balance wheel is less than 360.
  • the rotation center of the auxiliary balance wheel does not coincide with the rotation center of the main balance wheel.
  • the driving device further includes a locking mechanism for locking the drive shaft;
  • the locking mechanism includes a positioning element and a positioning element; the positioning element is coupled to the external fixing structure; the positioning element is coupled to the on the drive shaft; after the positioning element is engaged with the locking element, the drive shaft is locked.
  • the driven device is a flywheel
  • the mechanical energy storage device is a torsion spring
  • one end of the torsion spring is fixedly connected to the auxiliary balance wheel, and the other end is connected to the flywheel, and the flywheel and the driven shaft are not connected in relative rotation.
  • a compensating pressure block and a compensating pressure rod are arranged under the auxiliary balance wheel, the compensating pressure block rotates with the auxiliary balance wheel, the compensating pressure rod is pushed by the compensating pressure block, and the flywheel is driven by the compensating pressure rod to rotate, so as to realize the boosting Purpose.
  • An on-load tap changer comprising the accumulator; an electric mechanism for providing driving rotational power for the drive shaft of the accumulator, an on-load switch and a no-load tap selector; the no-load tap selector
  • the switch is used to preselect the winding tap to be switched to without load, and the on-load switch is used to switch with load from the current winding tap to the preselected new winding tap.
  • the accumulator, the on-load tap changer and the off-load tap selector are connected in series.
  • the accumulator is connected with the on-load switch to form a switch core, the switch core and the off-load tap selector are distributed in parallel in a split manner, the off-load tap selector is placed in the transformer, and the switch core is placed in the outside the transformer.
  • the present invention has the following advantages compared with the prior art:
  • the present invention avoids the cumbersome motion transformation between the rotary motion and the linear motion of the accumulator, so that the motion transmission efficiency and reliability are higher.
  • the present invention avoids the friction between the eccentric wheel and the upper carriage, reduces the possibility of generating wear debris, and has the advantages of small wear and high reliability.
  • the limiting device of the present invention directly limits the flywheel that has no relative rotation with the driven shaft, the limiting object is more direct, and the limiting effect is more reliable.
  • the two hooks of the limiting device of the present invention are arranged separately, and in one switching, after the limiting hook is disengaged from the corresponding hook protrusion, there will be no mechanical contact between the two, which is beneficial to It ensures the service life of the limit hook and reduces the risk of use.
  • the periodic reciprocating rotational motion converted by the motion conversion device of the present invention directly pushes the elastic energy storage element 14 to compress and release periodically, without motion isolation mechanism, simple structure and high reliability;
  • the elastic energy storage element of the present invention which periodically compresses and releases, directly pushes the drive shaft to perform periodic reciprocating rotational motion, has no motion isolation mechanism, has a simple structure, and has high reliability;
  • the curved groove disc of the motion conversion device of the present invention has a curved groove.
  • the curved groove can drive the cam to perform periodic reciprocating rotation around the rotation center of the main balance wheel, and the main balance wheel can be designed through the curve design of the curved groove. Reciprocating motion required by different swing angles, high flexibility in structural design;
  • the elastic energy storage element of the present invention is coupled between the motion conversion device and the drive shaft. After the positioning element is engaged with the clamping element, the drive shaft is locked. At this time, one end of the elastic energy storage element is locked, and the other end is locked. It moves under the push of the main balance wheel, thereby realizing the compression and energy storage of the elastic energy storage element.
  • the energy storage process involves few components, and the locking effect of the locking mechanism is fully utilized, so that the structure of the accumulator is simple;
  • the main balance wheel can realize periodic reciprocating rotational motion through the motion conversion of the curved groove plate and the cam.
  • the reciprocating rotational motion angle range is less than 180°, and the reciprocating rotational motion angle range can be adjusted by setting the auxiliary balance wheel. Adaptive design adjustment, flexible structural design, good adaptability.
  • Fig. 1 is the first preferred embodiment of the on-load tap-changer with accumulator of the present invention
  • Figure 2 is a first view of the accumulator for an on-load tap-changer of the present invention
  • Figure 3 is a second view of the accumulator for an on-load tap-changer of the present invention.
  • Figure 4 is a third view of the accumulator for an on-load tap-changer of the present invention.
  • Figure 5 is a bottom view of a preferred embodiment of the curved groove plate for an accumulator of the present invention.
  • Fig. 6 is the top view of the drive device for the accumulator of the present invention in the ⁇ 1 angle position;
  • Fig. 7 is the top view of the drive device for accumulator of the present invention in the ⁇ 2 angle position
  • Fig. 8 is the top view of the drive device for accumulator of the present invention in the ⁇ 3 angle position
  • Fig. 9 is the top view of the drive device for the accumulator of the present invention in the ⁇ 5 angle position
  • Fig. 10 is another preferred embodiment of the on-load tap-changer with accumulator according to the present invention.
  • FIG. 11 is a schematic diagram of an accumulator in Embodiment 2 provided by the present invention.
  • Fig. 12 is the top view of the accumulator in embodiment 2;
  • FIG. 13 is a schematic diagram of the accumulator motion conversion device in Embodiment 2;
  • Figure 14 is a view of the internal parts of the accumulator in Embodiment 2 (upper part);
  • Figure 15 is a view of the internal parts of the accumulator in Embodiment 2 (lower part);
  • FIG. 16 is a schematic diagram of an on-load tap-changer realized by using Embodiment 2.
  • FIG. 16 is a schematic diagram of an on-load tap-changer realized by using Embodiment 2.
  • FIG. 1 shows a first preferred embodiment of an on-load tap-changer 10 of the present invention, which includes a motor-drive mechanism 11 , an accumulator 13 , an on-load diverter switch 14 and an off-load tap selector 15 .
  • the accumulator drive shaft 131 can rotate in any direction under the driving of the motor mechanism 11 .
  • the accumulator driven shaft 132 can drive the on-load switch 14 to rotate. And, through the action of the accumulator 13, the accumulator driven shaft 132 can drive the on-load diverter switch 14 to rotate in one direction during one switching of the on-load tap changer 10, and when the on-load tap changer 10 is switched Rotate in the opposite direction in one switch.
  • the on-load diverter switch 14 and the off-load tap selector 15 are constructed in the prior art and are therefore not shown in detail in the present invention.
  • a switchover is exemplarily understood to mean that the on-load tap-changer 10 performs a no-load preselection to the winding tap (n, n+1) to be switched to and a load-bearing switchover from the current winding tap to the preselected one. Complete switching process for new winding taps (n, n+1).
  • the next switching of the on-load tap-changer 10 is exemplarily understood to mean that the on-load tap-changer 10 completes a no-load preselection to the next winding tap (n, n+1) to be switched to and from the current A complete switching process of switching the winding tap of , with load, to the next preselected new winding tap (n, n+1).
  • the energy accumulator 13 and the on-load changeover switch 14 are enclosed in the changeover core housing 121 and together form the changeover core 12 .
  • the accumulator drive shaft 131 drives the accumulator 13 and the off-load tap selector 15 at the same time, and the accumulator 13, the on-load diverter switch 14 and the off-load tap selector
  • the selectors 15 are connected in series, so that the switching core 12 and the off-load tap selector 15 form a series-integrated distribution.
  • FIG. 10 shows another preferred embodiment of an on-load tap changer 10 , which includes a motor mechanism 11 , an on-load diverter switch 14 , an off-load tap selector, and an accumulator 13 ;
  • the accumulator 13 and the on-load switch 14 are enclosed in the switch core housing 121 to form the switch core 12 , and the switch core 12 and the off-load tap selector 15 are distributed in parallel in a split type, and the no-load tap is connected.
  • the selector is placed in the transformer, and the switching core is placed outside the transformer; the selector drive shaft 151 is driven by the motor mechanism 11, and the no-load tap selector 15 is driven by the selector drive shaft 151 to realize the no-load tap selector.
  • the winding tap to be switched to is preselected without load; the drive of the energy storage drive shaft 131 by the motor-drive mechanism enables the on-load changeover switch to switch under load from the current winding tap to the new preselected winding tap.
  • the accumulator driven shaft 132 can drive the on-load switch 14 to rotate.
  • the accumulator driven shaft 132 can drive the on-load changeover switch 14 to rotate in one direction during one switching of the on-load tap changer 10, and when the on-load tap changer 10 is switched Rotate in the opposite direction in one switch.
  • the on-load diverter switch 14 and the off-load tap selector 15 are constructed in the prior art and are therefore not shown in detail in the present invention.
  • the accumulator of the present invention includes a driving shaft, a driven shaft, a mechanical energy storage device, a mechanical transmission device, a driving device, and a driven device;
  • the drive shaft can rotate in any direction under the drive of the electric mechanism; the driven shaft can drive the on-load switch to rotate; the mechanical transmission device is a switchable connection between the drive shaft and the drive device.
  • the driving device and the a mechanical energy storage device is connected and capable of compressing and or releasing the mechanical energy storage device when the drive shaft rotates;
  • the driven device comprises a variable energy storage device connected between the driven device and the driven shaft
  • a driven transmission mechanism of an instantaneous transmission ratio and a rotating wheel with a central shaft; the driven device is connected with a mechanical energy storage device and drives the driven shaft
  • the change of the transmission ratio of the transmission mechanism can lead to the change of the output speed. Specifically, the larger the transmission ratios i 1 and i 2 are, the smaller the output speeds v 2 and v 4 are.
  • a drive transmission with a variable instantaneous transmission ratio is understood as an example to mean during the rotation of the drive device from the angle ⁇ 1 to the angle ⁇ 2 and or from the angle ⁇ 2 to the angle ⁇ 3 and or from the angle ⁇ 3
  • the instantaneous transmission ratio i1 of the drive transmission mechanism can remain the same or become larger or smaller or change positive or negative or infinite.
  • the variable instantaneous transmission ratio driven transmission mechanism is exemplarily understood as the process of rotating the driven device from the angle ⁇ 5 to the angle ⁇ 4 and during the rotation from the angle ⁇ 4 to the angle ⁇ 3 and or from the angle ⁇ 3. 3.
  • the instantaneous transmission ratio i2 of the driven transmission mechanism can remain the same or become larger or smaller or change positive or negative or infinite.
  • the drive device and the mechanical energy storage device are configured such that the drive device
  • the at least one additional set of energy storage devices is gradually released when turning from an angle ⁇ 1 to an angle ⁇ 2 until it is in a relaxed state, and the driven shaft is stationary during this process, and the at least one set of energy storage devices in a relaxed state.
  • the mechanical energy storage device, the driven device, and the driven transmission mechanism are configured such that the at least one set of energy storage devices gradually relaxes as the drive device rotates from an angle ⁇ 3 to an angle ⁇ 4 , and During this process the driven shaft rotates from an angle ⁇ 1 to an angle ⁇ 2 and the at least one further set of energy storage devices is in a relaxed state.
  • the driven shaft remains stationary at the angle ⁇ 1 when the drive is rotated from the angle ⁇ 1 to the angle ⁇ 2 and or from the angle ⁇ 2 to the angle ⁇ 3 .
  • the driven shaft remains stationary at angle ⁇ 2 .
  • the drive device and the mechanical energy storage device are configured such that the drive device
  • the at least one set of energy storage devices is gradually released when rotated from an angle of ⁇ 5 to an angle of ⁇ 4 until it is in a relaxed state, and the driven shaft is stationary during this process, and the at least one further set of energy storage devices in a relaxed state.
  • the mechanical energy storage device, the driven device, and the driven transmission are configured such that the at least one further set of energy storage devices gradually relaxes as the drive device rotates from an angle ⁇ 3 to an angle ⁇ 2 , and during this process the driven shaft rotates from an angle of ⁇ 2 to an angle of ⁇ 1 , and the at least one set of energy storage devices is in a relaxed state.
  • the driven shaft remains stationary at the angle ⁇ 2 when the drive is rotated from the angle ⁇ 5 to the angle ⁇ 4 and or from the angle ⁇ 4 to the angle ⁇ 3.
  • the driven shaft remains stationary at the angle ⁇ 1 .
  • the at least one set of energy storage devices, the driven device, and the driven transmission are configured such that the at least one set of energy storage devices, the driven device, and the driven transmission are together
  • the driven shaft is rotated from the ⁇ 1 angle or from the intermediate angle position between the ⁇ 1 angle and the ⁇ 2 angle or can be rotated to the ⁇ 2 angle ;
  • the at least one further set of energy storage devices, the driven device and the driven transmission are configured such that the at least one further set of stored energy devices, the driven device and the driven transmission Together
  • the driven shaft When the member is rotated from the ⁇ 3 angle to the ⁇ 2 angle, the driven shaft is rotated or can be rotated to the ⁇ 1 angle from the ⁇ 2 angle or from an intermediate angular position between the ⁇ 1 angle and the ⁇ 2 angle ; and or the drive device is configured such that the drive device
  • the elastic force of the elastic energy storage device is insufficient or fails, or it cannot relax to a predetermined state, or it is in an overload state or is in a low temperature, so that the oil around the mechanism is very viscous, etc.
  • the unfavorable situation is that the driven device and/or the driven shaft driven by the elastic energy storage device operates at a slower speed than normal operation.
  • the driving device will catch up with the driven device and directly drive the driven device in a mechanical contact manner, thereby driving the driven shaft to rotate.
  • the drive transmission mechanism is configured such that
  • the continuous rotation of the drive shaft in any direction enables the drive device to rotate from ⁇ 1 to ⁇ 2 , then to ⁇ 3 , then to ⁇ 4 , and then to ⁇ 5 .
  • the continuous rotation of the drive shaft in any direction enables the drive to rotate from an angle ⁇ 5 to an angle ⁇ 4 , then to an angle ⁇ 3 , then to an angle ⁇ 2 , and then to an angle ⁇ 1.
  • the drive transmission can be constructed in any desired manner, eg a crank-rocker mechanism or a curved sheave mechanism.
  • the drive transmission mechanism includes a curved grooved disk, which is connected between the drive shaft and the drive device and contains curved grooves.
  • the drive device comprises a rotating wheel with a central axis and fixedly connected in its radial direction with a roller movable in a curved groove. The rollers can be driven by the curved grooves to cause the drive to rotate.
  • the curved groove is configured such that continuous rotation of the drive shaft in any direction enables the drive to rotate from an angle ⁇ 1 to an angle ⁇ 5 or from an angle ⁇ 5 to an angle ⁇ 1 and correspondingly in the above two processes.
  • the movements are mirror-symmetrical to each other.
  • the curve of the curve groove is closed.
  • the mechanical transmission device includes a limit device, and the limit device acts on the driven shaft.
  • the limiting device is configured such that the limiting device
  • the mechanical transmission includes a trigger mechanism that acts on the driven shaft.
  • the trigger mechanism is configured such that the trigger mechanism releases the limiter during the rotation of the drive device at the ⁇ 3 angle or from the ⁇ 3 angle to the ⁇ 4 angle or from the ⁇ 3 angle to the ⁇ 2 angle. bit device.
  • ⁇ 1 to ⁇ 5 are several angular positions of the drive device during one switching process of the on-load tap changer, and ⁇ 1 and ⁇ 2 are the limit angular positions of the driven shaft of the accumulator.
  • FIGS. 2 , 3 and 4 show a preferred embodiment of the energy storage device 13 according to the invention for the on-load tap-changer 10 in views from different angles.
  • the accumulator 13 includes a bracket 16 , a curved groove plate 17 , a driving device 18 , a mechanical energy storage device 19 , a driven device 20 , a transmission gear 21 , an output device 22 , and a limit device 23 .
  • the bracket 16 includes an upper bracket plate 161, a lower bracket plate 162 and a support column therebetween.
  • the curved groove plate 17 is located below the upper support plate 161 and is connected to the accumulator drive shaft 131 in a rotationally fixed manner.
  • the curved groove plate 17 has a curved groove, and the curved groove includes a first terminal angular position 171 and a second terminal angular position 172 .
  • the drive device 18 comprises a rotating wheel 181 with a central axis and is fixedly connected in the radial direction with a roller 182 which can move in a curved groove.
  • the rollers 182 can be driven by the curved groove disc 17 to rotate the driving device 18 .
  • the driving device 18 also includes a first triggering device 183 and a second triggering device 184 .
  • the first triggering device 183 and the second triggering device 184 have rollers extending downward, and are fixedly connected to the rotating wheel 181 at specific positions, so as to trigger the limiting device 23 during the rotation of the rotating wheel 181 .
  • the mechanical energy storage device 19 includes two elastic energy storage devices with the same structure, namely a first elastic energy storage device 191 and a second elastic energy storage device 192 .
  • the first elastic energy storage device 191 includes a first elastic energy storage guide rod 1911 and a first elastic energy storage sleeve 1912 .
  • the second elastic energy storage device 192 includes a second elastic energy storage guide rod 1921 and a second elastic energy storage sleeve 1922 .
  • the ends of the elastic energy storage guide rods 1911 and 1921 are rotatably connected to the two extending arms of the rotating wheel 181 which are in a straight line.
  • the ends of the elastic energy storage sleeves 1912 and 1922 are rotatably connected to the two extending arms of the driven sector 20 which are in a straight line.
  • the other ends of the elastic energy storage guide rods 1911 and 1921 can be generated with the other ends of the corresponding elastic energy storage sleeves 1912 and 1922. mechanical contact.
  • the output device 22 includes an output gear 221 , a flywheel 222 , a first hook protrusion 223 and a second hook protrusion 224 .
  • the driven sector tooth 20 drives the transmission gear 21 to rotate at a fixed transmission ratio, and the transmission gear 21 also drives the output gear 221 to rotate at a fixed transmission ratio.
  • the rotation center axis of the output gear 221 is aligned with the accumulator drive shaft 131 .
  • the rotation center axis of the rotating wheel 181 , the driven sector teeth 20 , and the transmission gear 21 and the accumulator drive shaft 131 are in the same plane.
  • the flywheel 222 is fixedly connected to the output gear 221 , and has a first hook protrusion 223 and a second hook protrusion 224 in the middle area of its arc surface.
  • the limiting device 23 includes a first hook 231 , a second hook 232 , a first hook limit block 233 , a second hook limit block 234 and a limit block 235 .
  • the first hook 231 and the second hook 232 can hook the corresponding hook protrusions 223 and 224 through the hook parts, so as to limit the rotation of the flywheel 222 from the forward or reverse rotation directions.
  • the limit block 235 has stop damping on the two collision surfaces with the flywheel 222 to prevent the rotation angle of the flywheel 222 from exceeding a required angle.
  • the first hook 231 and the second hook 232 have the same structure, the main body of the hook is a rod with a hook, and the collision rod and the limit rod are respectively set on both sides of the rod;
  • a compression spring is installed between the rods with the hook.
  • the compression spring When the hook is hooked on the hook protrusion, the compression spring is in a compressed state, and the collision bar can be triggered by a trigger roller provided on the driving device to complete the hook and the hook.
  • There is a force point on the contact surface between the hook and the hook protrusion and the rotation center of the hook is on the same arc surface with the center axis of the flywheel as the center.
  • the outer collision surfaces of the hook protrusions 223 and 224 are matched with the outer collision surfaces of the corresponding hooks 231 and 232, so that they can be squeezed into the corresponding hooks 231 and 232 during the movement of the flywheel 222, and pass through the inner sides of the corresponding hooks 231 and 232.
  • the hook surfaces and the inner hook surfaces of the corresponding hooks 231 and 232 can be stably locked by the corresponding hooks 231 and 232 .
  • the two small compression springs and the hook limit stop 233 cooperate together to make the hook 231 (or 232) hook the flywheel 222 stably, And can be triggered by the corresponding trigger device 183 (or 184 ), thereby releasing the flywheel 222 .
  • FIG. 5 shows a preferred embodiment of the curved groove disk 17 of the accumulator 13 according to the invention.
  • the first terminal angular position 171 and the second terminal angular position 172 are on the same straight line as the rotation center point of the curved groove plate 17, so the current first terminal angular position 171 of the curved groove plate 17 rotates to the current second
  • the rotation angle between the terminal angular position 172 or the current second terminal angular position 172 to the current first terminal angular position 171 is both 180°.
  • the accumulator drive shaft 131 rotates 180° in any direction, so that the roller 182 can rotate from one terminal angle position 171 (or 172) to another terminal angle position 172 (or 171).
  • FIG. 6 shows the posture diagrams of some key components of the accumulator 13 of the present invention (the energy storage compression spring is not shown) at four key moments in the working process.
  • the accumulator 13 of the present invention works as follows: As shown in FIG. 6 , the drive 18 is in the ⁇ 1 angular position. The first hook protrusion 223 of the flywheel 222 is hooked by the first hook 231 . The accumulator driven shaft 132 is in the beta 1 angular position. The straight lines where the two end points of the extending arms of the rotating wheel 181 and the driven sector teeth 20 are located respectively form a certain angle with the vertical direction of the top view plane.
  • the energy storage compression spring of the first elastic energy storage device 191 is in a relaxed state, and the energy storage compression spring of the second elastic energy storage device 192 is in a tensioned state.
  • the rollers 182 are in the first terminal angular position 171 of the curved groove disc 17 .
  • the curved groove disc 17 will rotate at a constant speed in any rotation direction without interruption.
  • the rotating wheel 181 rotates in the counterclockwise direction under the driving of the curved groove disc 17 .
  • the flywheel 222 is hooked by the first hook 231 and blocked by the limiting block 235 , the driven tooth 20 remains stationary at the initial position. Therefore, the energy storage compression spring of the first elastic energy storage device 191 is gradually tensioned, and the energy storage compression spring of the second elastic energy storage device 192 is gradually relaxed until the energy accumulator 13 reaches the position shown in FIG. 7 .
  • the drive means 18 is in the ⁇ 2 angular position.
  • the energy storage compression springs of the first elastic energy storage device 191 and the second elastic energy storage device 192 are both in a critical state where the compression amount is 0, and the driven sector teeth 20 remain stationary at the initial position.
  • the driving device 18 continues to rotate in the counterclockwise direction under the driving of the curved groove disc 17, and the driven sector teeth 20 still remain stationary at the initial position.
  • the energy storage compression spring of the first elastic energy storage device 191 continues to be gradually tensioned, and the energy storage compression spring of the second elastic energy storage device 192 is in a relaxed state until the accumulator 13 reaches the position shown in FIG. 8 .
  • the drive means 18 is in the ⁇ 3 angular position.
  • the energy storage compression spring of the first elastic energy storage device 191 reaches the maximum tension state and the first energy storage guide rod 1911 and the first energy storage sleeve 1912 are in mechanical contact.
  • the energy storage compression spring of the second elastic energy storage device 192 is always in a relaxed state.
  • the first trigger device 183 of the driving device 18 is about to collide with the first hook 231 .
  • the first hook 231 releases the flywheel 222 under the collision of the first trigger device 183 , and the driven sector tooth 20 rapidly rotates in a stepwise manner under the drive of the energy storage compression spring of the first elastic energy storage device 191 , through a certain transmission ratio, the transmission gear 21 is driven to rotate, so that the accumulator driven shaft 132 rapidly rotates from the angle ⁇ 1 to the angle ⁇ 2 .
  • the drive device 18 is rotated to the ⁇ 3 angular position.
  • the drive device 18 still rotates in the counterclockwise direction until the accumulator 13 reaches the position shown in FIG. 9 .
  • the elastic force of the elastic energy storage device is insufficient or fails, or cannot be relaxed to a predetermined state, or is in an overload state, or is in a low temperature, the oil around the mechanism is very viscous, etc.
  • the driven sector 20 driven by the device 191 and the accumulator driven shaft 132 operate at a slower speed than normal.
  • the first energy storage guide rod 1911 will catch up with the first energy storage sleeve 1912, so that the driving device 18 replaces the energy storage pressure
  • the spring directly drives the driven sector teeth 20 to rotate.
  • the drive means 18 is in the ⁇ 5 angular position.
  • the second hook protrusion 224 of the flywheel 222 is hooked by the second hook 232 , and the other side of the flywheel 222 is blocked by the limiting block 235 .
  • the accumulator driven shaft 132 is in the beta 2 angular position. Both the rotating wheel 181 and the driven sector teeth 20 rotate counterclockwise by a certain angle compared with the initial position.
  • the energy storage compression spring of the first elastic energy storage device 191 is in a tension state, and the energy storage compression spring of the second elastic energy storage device 192 is in a relaxed state.
  • the rollers 182 are in the second terminal angular position 172 of the curved groove disc 17 . So far, the accumulator has completed all the actions in one switching process of the on-load tap changer 10, and is in the initial position of the next switching.
  • the accumulator includes:
  • Motion conversion device 13b (mechanical transmission device + driving device), the motion conversion device 13b is coupled between the mechanical energy storage device 14b and the motor output shaft 111b, and includes converting rotational motion in any direction into a reciprocating swing
  • the moving transmission device can realize the purpose of converting rotational motion in any direction into reciprocating swing motion
  • Mechanical energy storage device 14b the mechanical energy storage device 14b is connected between the motion conversion device 13b and the drive shaft 121b, under the interaction between the motion conversion device and the drive shaft, the mechanical energy storage device can realize periodicity. Accumulate and release.
  • the driven device in this example the driven device is the flywheel 20b, is connected with the driven shaft without relative rotation.
  • the accumulator further includes:
  • Locking mechanism 15b which keeps the position of the drive shaft 121b unchanged, and compresses the mechanical energy storage device 14b when the motor output shaft 111b rotates;
  • the locking mechanism 15b includes a positioning element 151b and a detent element 152b, and a stop damping 24b, the positioning element 151b and the stop damper 24b are coupled to the outer frame 21b, and the locking element 152b is coupled to the drive shaft 121b;
  • the triggering mechanism 16b which makes the locking mechanism 15b act, so that the locking mechanism 15b cannot keep the drive shaft 121b in position, and the mechanical energy storage device 14b pushes the drive shaft 121b to rotate.
  • the motion converting device 13b makes the motor output shaft 111b rotate by an angle ⁇ in any direction, releasing the mechanical energy storage device 14b, and the locking mechanism 15b keeps the drive shaft 121b in the same position (the positioning element 151b and the locking element 152b is coupled, so that the drive shaft 121b is limited and stationary); the drive shaft 121b is stationary.
  • the motion conversion device 13b makes the motor output shaft 111b rotate by an angle ⁇ + ⁇ in any direction, compressing the mechanical energy storage device 14b, and the locking mechanism 15b keeps the drive shaft 121b in the same position (the positioning element 151b and the card The position element 152b is coupled, so that the drive shaft 121b is limited to be stationary); the drive shaft 121b is stationary.
  • the trigger mechanism 16b makes the locking mechanism 15b act (the trigger mechanism 16b makes the positioning element 151b or the The positioning element 152b acts to disengage the positioning element 151b from the positioning element 152b, and the drive shaft 121b is not limited), so that the locking mechanism 15b cannot keep the drive shaft 121b in the same position, so that the mechanical energy storage device 14b is released.
  • the drive shaft 121b rotates.
  • the motion conversion device 13b causes the motor output shaft 111b to rotate through an angle of ⁇ + ⁇ + ⁇ + ⁇ in any direction, compressing the mechanical energy storage device 14b, and the locking mechanism 15b keeps the drive shaft 121b in the same position (the positioning The element 151b is coupled with the locking element 152b, so that the drive shaft 121b is restrained to be stationary); the drive shaft 121b is stationary.
  • the trigger mechanism 16b is coupled to the motion conversion device 13b, and the motion conversion device 13b makes the motor output shaft 111b rotate by an angle ⁇ in any direction, the rotation angle of the trigger mechanism 16b is ⁇ '; the motion conversion When the device 13b makes the motor output shaft 111b rotate by an angle ⁇ + ⁇ in any direction, the rotation angle of the trigger mechanism 16b is ⁇ '+ ⁇ '. When the motion conversion device 13b makes the motor output shaft 111b rotate by an angle ⁇ + ⁇ + ⁇ in any direction, the rotation angle of the trigger mechanism 16b is ⁇ '+ ⁇ '+ ⁇ '. When the motion conversion device 13b makes the motor output shaft 111b rotate by an angle ⁇ + ⁇ + ⁇ + ⁇ in any direction, the rotation angle of the trigger mechanism 16b is ⁇ '+ ⁇ '+ ⁇ '+ ⁇ '.
  • the rotation angle of the trigger mechanism 16b is ⁇ '+ ⁇ '+ ⁇ '+ ⁇ '- ⁇ '; the motion conversion device 13b makes the motor output shaft 111b rotate in any direction by an angle of ⁇ + ⁇ + ⁇ + ⁇ + ⁇ or ⁇ + ⁇ + ⁇ + ⁇ - When ⁇ - ⁇ , the rotation angle of the trigger mechanism 16b is ⁇ '+ ⁇ '+ ⁇ '+ ⁇ '- ⁇ '; the motion conversion device 13b makes the motor output shaft 111b rotate by an angle ⁇ + ⁇ in any direction When + ⁇ + ⁇ + ⁇ + ⁇ + ⁇ or ⁇ + ⁇ + ⁇ + ⁇ - ⁇ - ⁇ - ⁇ , the rotation angle of the trigger mechanism 16b is ⁇ '+ ⁇ '+ ⁇ '- ⁇ '- ⁇ '; the motion conversion device 13b makes the motor output shaft 111b rotate by an angle of ⁇ + ⁇ in any direction When + ⁇ + ⁇ + ⁇ + ⁇ + ⁇ or ⁇ + ⁇ + ⁇ + ⁇ - ⁇ - ⁇ - ⁇ , the rotation angle of the trigger mechanism 16b is ⁇ '+ ⁇ '+ ⁇ '- ⁇ '
  • the trigger mechanism has periodic reciprocating rotational motion
  • the periodic reciprocating rotational motion has the same characteristics in a strict sense (regardless of the characteristic angle ⁇ , Under the conditions of ⁇ , ⁇ , and ⁇ , which direction is the rotation, and the characteristic angles ⁇ ', ⁇ ', ⁇ ', and ⁇ ' of the corresponding rotation of the trigger mechanism are strictly consistent)
  • the motion conversion device 13b includes a drive transmission mechanism with a variable instantaneous transmission ratio and a driving device; wherein the drive transmission mechanism with a variable instantaneous transmission ratio includes a curved grooved disk 17b, and the curved grooved disk 17b includes a curved grooved disk 17b. Slot 171b and input hub 172b.
  • the driving device includes a main balance wheel 181b and a cam 19b; the rotation center of the main balance wheel 181b does not coincide with the rotation center of the curved groove disc 17b.
  • the cam 19b is coupled to the main balance wheel 181b, and the cam 19b is placed in the curved groove 171b of the curved groove plate 17b.
  • the input hub 172b is connected with the motor output shaft 111b without relative rotation.
  • the curved groove plate 17b cooperates with the cam 19b, so that when the motor output shaft 111b rotates by an angle ⁇ in any direction, the rotation angle of the main balance wheel 181b is ⁇ '.
  • the curved groove plate 17b cooperates with the cam 19b, so that when the motor output shaft 111b rotates by an angle ⁇ + ⁇ in any direction, the rotation angle of the main balance wheel 181b is ⁇ '+ ⁇ '.
  • the curved groove disc 17b cooperates with the cam 19b, so that when the output shaft of the motor 111b rotates by an angle ⁇ + ⁇ + ⁇ in any direction, the rotation angle of the main balance wheel 181b is ⁇ '+ ⁇ '+ ⁇ '. .
  • the curved groove plate 17b cooperates with the cam 19b, so that when the motor output shaft 111b rotates by an angle of ⁇ + ⁇ + ⁇ + ⁇ in any direction, the rotation angle of the main balance wheel 181b is ⁇ '+ ⁇ '+ ⁇ '+ ⁇ '.
  • the curved groove plate 17b cooperates with the cam 19b, so that when the motor output shaft rotates by an angle of ⁇ + ⁇ + ⁇ + ⁇ + ⁇ or ⁇ + ⁇ + ⁇ + ⁇ - ⁇ in any direction, the main balance wheel
  • the rotation angle of 181b is ⁇ '+ ⁇ '+ ⁇ '+ ⁇ '- ⁇ '.
  • ⁇ , ⁇ , ⁇ , and ⁇ are the first to fourth angles, which are all positive numbers greater than 0;
  • ⁇ ', ⁇ ', ⁇ ', and ⁇ ' are the first to fourth transmission angles, which are all greater than 0. Positive number.
  • the rotation angle of the main balance wheel 181b is ⁇ '+ ⁇ '+ ⁇ '+ ⁇ '- ⁇ '- ⁇ '.
  • the curved groove disc 17b cooperates with the cam 19b, so that the motor output shaft 111b rotates in any direction by an angle of ⁇ + ⁇ + ⁇ + ⁇ + ⁇ + ⁇ or ⁇ + ⁇ + ⁇ + ⁇ - ⁇ - ⁇
  • the rotation angle of the main balance wheel 181b is ⁇ '+ ⁇ '+ ⁇ '+ ⁇ '- ⁇ '- ⁇ '- ⁇ '.
  • the curved groove plate 17b cooperates with the cam 19b, so that the motor output shaft 111b rotates in any direction by an angle of ⁇ + ⁇ + ⁇ + ⁇ + ⁇ + ⁇ + ⁇ + ⁇ or ⁇ + ⁇ + ⁇ + ⁇ - ⁇
  • the rotation angle of the main balance wheel 181b is ⁇ '+ ⁇ '+ ⁇ '+ ⁇ '- ⁇ '- ⁇ '- ⁇ '- ⁇ '.
  • the main balance wheel can realize periodic reciprocating rotational motion, and the periodic reciprocating rotational motion is strictly consistent.
  • the rotation angle ⁇ + ⁇ + ⁇ + ⁇ of the motor output shaft 111b is a divisor of 360°.
  • the swing angle of the main balance wheel 181b is ⁇ '+ ⁇ '+ ⁇ '+ ⁇ ' ⁇ 180°.
  • the motion conversion device 13b further includes a secondary balance wheel 182b, and the secondary balance wheel 182b is coupled with the main balance wheel 181b.
  • FIG. 16 shows an on-load tap changer realized by using the accumulator of Example 2, including a motor 11b having a motor output shaft 111b and an on-load converter 12b having a drive shaft 121b, and the accumulator 10b includes:
  • the motion conversion device 13b which is coupled between the mechanical energy storage device 14b and the motor output shaft 111b, is used to convert rotational motion in any direction into swing motion.
  • the mechanical energy storage device 14b is connected between the motion conversion device 13b and the drive shaft 121b.
  • a locking mechanism 15b that keeps the drive shaft 121b in position and compresses the mechanical energy storage device 14b when the motor output shaft 111b rotates.
  • the triggering mechanism 16b which makes the locking mechanism 15b act, so that the locking mechanism 15b cannot keep the drive shaft 121b in position, and the mechanical energy storage device 14b pushes the drive shaft 121b to rotate.
  • the motion conversion device 13b makes:
  • the 0° reference position of the motor output shaft 111b corresponds to the swing of the drive shaft 121b to the dead center position.
  • the mechanical energy storage device 14b When the motor output shaft 111b rotates by an angle of 160° in any direction, the mechanical energy storage device 14b is released, and the drive shaft 121b rotates at this time. When the motor output shaft rotates to 160°, the drive shaft 121b can be rotated. At this time, the mechanical energy storage device 14b has a large elastic potential energy through the compression and energy storage of the energy storage section. Since the drive shaft 121b can be rotated at this time, the mechanical energy storage device 14b releases elastic potential energy and pushes the drive shaft to rotate rapidly, and the moment of this angle is the moment of release.
  • the mechanical energy storage device 14b When the motor output shaft 111b rotates by an angle of 180° in any direction, the mechanical energy storage device 14b is compressed, and the drive shaft 121b does not rotate at this time. During the rotation of the motor output shaft 111b from 160° to 180°, the drive shaft 121b remains at the dead center position or is supplemented to the dead center static position, and the mechanical energy storage device 14b is compressed, and this angle section is the pressure compensation section.
  • the above-mentioned transition section, energy storage section, and pressure compensation section constitute a single-cycle motion conversion.
  • the rotation angle of the motor output shaft is 180°, and the drive shaft swings from the swing dead point position I to the swing dead point position II. Further, the output shaft of the motor continues to move 180° in any direction on this basis, and continues to form a single-cycle motion conversion of the transition section, the energy storage section, and the pressure compensation section.
  • the drive shaft has a swing stop position II to swing to the swing stop position. I.
  • the transition section angle is equal to the pressure compensation section angle.
  • the trigger mechanism 16b is coupled to the motion conversion device 13b such that:
  • the trigger mechanism 16b rotates at an angle of 16°.
  • the trigger mechanism does not actuate the locking mechanism, and this angle segment is a transition segment.
  • the rotation angle of the motor output shaft 111b in any direction is ⁇ 160°
  • the rotation angle of the trigger mechanism 16b is ⁇ 208°.
  • the motor output shaft 111b is rotated from 20° to 160°, the trigger mechanism does not actuate the locking mechanism, and this angle section is the energy storage section.
  • the trigger mechanism 16b rotates at an angle of 208°. At this time, the trigger mechanism makes the locking mechanism act, so that the positioning element 151b is disengaged from the locking element 152b.
  • the trigger mechanism 16b rotates at an angle of 224°.
  • the trigger mechanism makes the locking mechanism act, and this angle section is the pressure compensation section.
  • the locking mechanism 15b includes a positioning element 151b and a detent element 152b, the positioning element 151b is coupled to the frame 21b, the detent element 152b is coupled to the output hub (ie the flywheel) 20b, and the output hub 20b is connected to the frame 21b.
  • the driven shaft has no relative rotational connection, so that:
  • the positioning element 151b is coupled with the locking element 152b, so that the drive shaft 121b is limited and stationary.
  • the locking mechanism is in a locked state, and the angle segment is a transition segment.
  • the positioning element 151b is coupled with the locking element 152b, so that the driving shaft 121b is limited and stationary.
  • the motor output shaft 111b is rotated from 20° to 160°, the locking mechanism is in a locked state, and this angle section is the energy storage section.
  • the trigger mechanism 16b makes the positioning element 151b or the locking element 152b act, so that the positioning element 151b is disengaged from the locking element 152b, and the drive shaft 121b is not limited bit. At this time, the locking element 152b is disengaged from the positioning element 151b on one side, and quickly moves to the positioning element on the other side.
  • the positioning element 151b is coupled or disengaged from the locking element 152b, and the driving shaft 121b is limited.
  • the locking element is disengaged from the positioning element on one side, and quickly rotates to the dead center position on the other side, or is pressed to the dead center position on the other side, so that the card
  • the positioning element is engaged with the positioning element on the other side, and the drive shaft is limited.
  • This angle section is the supplementary pressure section.
  • the trigger mechanism 16b interacts with the locking mechanism 15b such that:
  • the trigger mechanism 16b rotates at an angle of 16°, the trigger mechanism 16b cannot actuate the locking mechanism 15b, and the locking mechanism 15b keeps the drive shaft 121b in position.
  • the motor output shaft 111b is rotated from 0° to 20°, the locking mechanism is in a locked state, and the angle segment is a transition segment.
  • the rotation angle of the motor output shaft 111b in any direction is ⁇ 160°
  • the rotation angle of the trigger mechanism 16b is ⁇ 208°
  • the trigger mechanism 16b cannot actuate the locking mechanism 15b
  • the locking mechanism 15b keeps the drive shaft 121b in position.
  • the motor output shaft 111b is rotated from 20° to 160°
  • the locking mechanism is in a locked state, and this angle section is the energy storage section.
  • the trigger mechanism 16b rotates at an angle of 208°.
  • the trigger mechanism 16b activates the locking mechanism 15b so that the locking mechanism 15b cannot keep the drive shaft 121b in position.
  • the drive shaft 121b is pushed by the energy storage element 14b, rapidly rotates 120°, and stops rotating under the action of the stop damper 24b. Stopped at rest. At this time, the locking element 152b is disengaged from the positioning element 151b on one side, and quickly moves to the positioning element on the other side.
  • the trigger mechanism 16b rotates at an angle of 224°, and the trigger mechanism 16b cannot actuate the locking mechanism 15b, which can keep the drive shaft 121b in position.
  • the positioning element 151b of the locking mechanism 15b is coupled with the locking element 152b, so that the driving shaft 121b is limited to be stationary, and the trigger mechanism 16b is rotated from a rotation angle of 208° to Corner 224°.
  • the pressure compensation block 22b rotates from the angle of 208° to the angle of 224°, the pressure compensation block 22b pushes the pressure compensation rod 23b to move, and the pressure compensation rod 23b pushes the output hub 20b Rotate, so that the positioning element 151b of the locking mechanism 15b is coupled with the locking element 152b, and the output hub 20b is connected with the driven shaft without relative rotation, so that the driven shaft is limited and stationary.
  • the clamping element is disengaged from the positioning element on one side, and quickly rotates to the dead center position on the other side, or is compensated by the compensating rod to the dead center position on the other side. , so that the clamping element is engaged with the positioning element on the other side, and the drive shaft is limited.
  • This angle section is the supplementary pressure section.
  • the motion conversion device 13b includes:
  • the curved groove disc 17b includes a curved groove 171b and an input hub 172b, and the input hub 172b is connected with the motor output shaft 111b without relative rotation.
  • the main balance wheel 181b, the rotation center of the main balance wheel 181b does not coincide with the rotation center of the curved groove plate 17b.
  • the auxiliary balance wheel 182b is also included, the auxiliary balance wheel 182b is coupled with the main balance wheel 181b, and the transmission ratio is 1.6.
  • the cam 19b which is coupled to the main balance wheel 181b, is placed in the curved groove 172b of the curved groove plate 17b.
  • the 0° reference position of the motor output shaft 111b corresponds to the main balance wheel 181b and the auxiliary balance wheel 182b swinging to the dead center position.
  • the rotation angle of the main balance wheel 181b is 10°
  • the rotation angle of the auxiliary balance wheel 182b is 16°.
  • the motor output shaft 111b rotates from 0° to 20°
  • the secondary balance wheel rotates from 0° to 16°, and this angle segment is the transition segment.
  • the rotation angle of the motor output shaft 111b in any direction is ⁇ 160°
  • the rotation angle of the main balance wheel 181b is ⁇ 130°
  • the rotation angle of the auxiliary balance wheel 182b is ⁇ 208°.
  • the motor output shaft 111b rotates from 20° to 160°
  • the auxiliary balance wheel rotates from 16° to 208°
  • this angle section is the energy storage section.
  • the rotation angle of the main balance wheel 181b is 140°
  • the rotation angle of the auxiliary balance wheel 182b is 224°.
  • the motor output shaft 111b rotates from 160° to 180°
  • the auxiliary balance wheel rotates from 208° to 224°, and this angle section is the pressure compensation section.
  • the above-mentioned transition section, energy storage section, and pressure compensation section constitute a single-cycle motion conversion.
  • the rotation angle of the motor output shaft is 180°
  • the main balance wheel 181b swings from the swing dead center position of 0° to the swing dead center position of 140°. ° position
  • the secondary balance wheel 182b swings from the swing dead center position of 0° to the swing dead center position of 224°.
  • the output shaft of the motor continues to move 180° in any direction on this basis, and continues to form a single-cycle motion conversion of the transition section, the energy storage section, and the pressure compensation section.
  • the secondary balance wheel 182b swings from the swing dead center position of 224° to the swing dead center position of 0°.
  • the rotation angle of the main balance wheel 181b is the same (both are 20°)
  • the rotation angle of the auxiliary balance wheel 182b is the same (both are 16°). That is, the motor continues to rotate:
  • the rotation angle of the main balance wheel 181b is 130°
  • the rotation angle of the auxiliary balance wheel 182b is 208°.
  • the motor output shaft 111b rotates from 180° to 200° or 160°
  • the secondary balance wheel rotates from 224° to 208°, and this angle segment is the transition segment.
  • the rotation angle of the main balance wheel 181b is >10°
  • the rotation angle of the auxiliary balance wheel 182b is >16°.
  • the motor output shaft 111b rotates from 200° to 360° or from 160° to 20°
  • the auxiliary balance wheel rotates from 208° to 16°, and this angle section is the energy storage section.
  • the rotation angle of the main balance wheel 181b is 10°
  • the rotation angle of the auxiliary balance wheel 182b is 16°. This is the end time of energy storage.
  • the rotation angle of the main balance wheel 181b is 0°
  • the rotation angle of the auxiliary balance wheel 182b is 0°.
  • the motor output shaft 111b rotates from 340° to 360° or from 20° to 0°
  • the auxiliary balance wheel rotates from 16° to 0°, and this angle section is the pressure compensation section.
  • the rotation angle ⁇ + ⁇ + ⁇ + ⁇ of the motor output shaft 111b is a divisor of 360°.
  • the swing angle of the main balance 181b is ⁇ '+ ⁇ '+ ⁇ '+ ⁇ ' ⁇ 180°.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transmission Devices (AREA)

Abstract

本发明涉及一种用于有载分接开关的多机械储能装置的蓄能器以及有载分接开关,蓄能器中驱动轴能够在电动机构的驱动下沿任意方向旋转,通过可变瞬时传动比的驱动传动机构将驱动轴任意方向的旋转转换为单方向旋转,并在有载分接开关的下一次切换中沿相反方向旋转,进而带动驱动装置转动,由驱动装置的转动实现不同机械储能装置的张紧或松弛状态,机械储能装置到位后带动从动装置转动,进而实现从动轴所需转动角度。本发明避免了蓄能器进行旋转运动与直线运动之间繁琐的运动变换,从而使其运动传递效率更高、可靠性更高。此外,本发明避免了偏心轮与上滑架之间的摩擦,减小了产生磨屑的可能性,具有磨损小、可靠性高的优点。

Description

一种用于有载分接开关的多机械储能装置的蓄能器以及有载分接开关
本申请要求于2021年3月1日提交中国专利局、申请号为202110226628.3、发明名称为“一种用于有载分接开关的多机械储能装置的蓄能器以及有载分接开关”、2021年3月1日提交中国专利局、申请号为202110226638.7、发明名称为“一种分体式有载分接开关”和2021年2月25日提交中国专利局、申请号为202110215113.3、发明名称为“一种有载分接开关的蓄能器”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及有载分接开关技术领域,特别涉及一种用于有载分接开关的多机械储能装置的蓄能器以及有载分接开关。
背景技术
有载分接开关用于在有负载的情况下通过有载切换开关从当前的绕组抽头切换到由无载分接选择器预选好的新的绕组抽头,从而在有负载地情况下实时地、不间断地调整变压器的输出电压。在有负载特别是超高压有负载的情况下,有载切换开关需要实现阶跃式的快速动作,因此有载分接开关需要蓄能器将电动机构连续缓慢的转动运动转换成有载切换开关短暂快速的转动运动。
德国发明专利DE1956369和DE2806282、中国发明专利授权公告号CN102024552B以及中国实用新型授权公告号CN2891237分别描述了一种用于有载分接开关的蓄能器。上述蓄能器具有相似的机械结构和相同的工作原理。在机械结构上,上述蓄能器都包括偏心轮、上滑架、储能弹簧、下滑架、具有导杆的支架以及限位装置,其中上滑架和下滑架可以沿支架上的导杆彼 此无关地在两个终端位置之间往复直线运动。在工作原理上,上述蓄能器都是通过偏心轮将驱动轴任意方向的旋转运动转换成上滑架的直线运动,并且通过限位装置锁定下滑架的运动,从而通过上滑架与下滑架之间产生的位移差使两者之间的储能弹簧储能。在上滑架即将移动到终端位置并且此时储能弹簧储能到最大程度时,由上滑架触发限位装置,使得下滑架进行与上滑架直线运动同方向地阶跃式地快速直线运动,然后通过转换机构将下滑架的快速直线运动转换成有载切换开关驱动轴的快速旋转运动。
综上所诉,为了产生有载切换开关短暂快速的转动运动,上述蓄能器都需要先将旋转运动转换成直线运动,然后再将直线运动转换成旋转运动,繁琐的运动转换使得上述蓄能器具有所需空间大、构件复杂繁多等缺点。为了限定从动轴的转动,上述蓄能器的限位装置都是对进行直线运动的下滑架进行限位,然而下滑架与从动轴之间还存在直线运动与旋转运动的运动转换,因此导致上述限位装置的限位对象不够直接,限位效果不够可靠。并且,在限位卡钩与下滑架脱离后,由于结构的限制,限位卡钩与快速运动的下滑架之间一直会存在滑动摩擦,这将影响限位卡钩的使用寿命,同时也存在产生磨屑、引发事故的风险。
发明内容
本发明的目的在于克服现有技术的不足,提供一种用于有载分接开关的蓄能器以及有载分接开关,其中蓄能器不需要进行旋转运动与直线运动之间繁琐的运动变换,特别是具有减少构件间摩擦的特点。
本发明目的通过如下技术方案予以实现:一种有载分接开关的蓄能器,包括驱动轴、从动轴、机械储能装置;还包括机械传动装置、驱动装置、从动装置;
还包括机械传动装置、驱动装置、从动装置;
所述的机械传动装置耦连到驱动轴与驱动装置之间,用于将驱动轴任意方向的旋转转换为驱动装置单方向旋转,并在有载分接开关的下一次切换中 沿相反方向旋转,通过旋转带动驱动装置转动;所述从动装置用于实现从动轴转动所需角度;
所述的驱动装置用于实现机械储能装置的张紧或松弛状态;
所述的机械储能装置耦连到驱动装置与从动装置之间,用于驱动从动装置转动。
优选的,所述机械传动装置为可变瞬时传动比的驱动传动机构,所述的可变瞬时传动比的驱动传动机构为曲线槽盘,所述曲线槽盘包括设置在下端面的曲线槽以及中心轴即输入毂;
所述曲线槽上具有两个与中心轴的中心在同一条直线上的终端角度位置,使得曲线槽盘从任一方向转动180°,驱动装置上的滚轮能够从一终端角度位置转动到另一个终端角度位置。
优选的,所述曲线槽的曲线以两个终端角度位置为界,一侧曲线方程为x′=Rcos(ω+β),y′=Rsin(ω+β);另一侧曲线方程为x″=Rcos(ω-β),y″=Rsin(ω-β);其中,以曲线槽盘旋转中心为坐标原点,x′、x″为曲线上各点的横坐标,y′、y″为曲线上各点的纵坐标;R为驱动装置的滚轮的矢径长度
Figure PCTCN2021140657-appb-000001
其中,r为驱动装置的滚轮与驱动装置旋转中心轴的间距,θ为驱动装置起止位置倾角,L为曲线槽盘旋转中心轴与驱动装置旋转中心轴的间距,α为驱动装置的转动角度,ω为驱动装置的滚轮的矢径倾斜角度;β为曲线槽盘的转动角度。
优选的,所述驱动装置和从动装置之间安装至少两组机械储能装置,且在有载分接开关一次切换过程中,至少存在两组机械储能装置处于不同的张紧和或松弛状态。
优选的,所述驱动装置包括具有中心轴的转动轮以及滚轮,至少两组机械储能装置的一端分别安装在所述中心轴的两侧,所述滚轮安装在转动轮上且其位置不处于一次切换过程中转动轮转角范围的中心线的垂直线上。
优选的,所述驱动装置还包括两个触发装置,两个触发装置安装在转动轮的中心轴的两侧,其下方安装向下伸出的滚轮,用于在转动轮转动过程中触发限位装置,所述的限位装置用于有载分接开关切换过程中实现限位。
优选的,所述的从动装置包括可变瞬时传动比的从动传动机构以及具有中心轴的转动轮;至少两组机械储能装置的另一端分别安装在所述中心轴的两侧,转动轮上设置扇形齿轮,用于与可变瞬时传动比的从动传动机构进行配合,由可变瞬时传动比的从动传动机构驱动从动轴转动所需角度。
优选的,所述可变瞬时传动比的从动传动机构包括传动齿轮、输出齿轮、飞轮;
所述传动齿轮分别与从动装置上的扇形齿轮以及输出齿轮啮合,用于将从动装置的转动角度转换成从动轴所需转动角度,输出齿轮与飞轮固连,飞轮与从动轴固连。
优选的,所述限位装置包括设置在飞轮上的两个卡钩凸起、两个卡钩、两个卡钩限位挡块以及限位挡块;其中卡钩、卡钩限位挡块以及限位挡块均安装在下支架上;所述限位挡块用于对飞轮的转动实现限位;所述两个卡钩分别用于与卡钩凸起配合实现两次切换中对飞轮到位后的转动限制;所述卡钩限位挡块用于对卡钩未钩住卡钩凸起的状态进行限位。
优选的,所述卡钩主体为带弯钩的杆件、该杆件两侧分别设置碰撞杆以及限位杆;卡钩限位挡块与带弯钩的杆件之间安装压簧,弯钩钩住卡钩凸起时,所述压簧处于压缩状态,所述碰撞杆能够通过设置在驱动装置上触发滚轮触发完成弯钩与卡钩凸起之间的脱离;在弯钩与卡钩凸起脱离后,由所述压簧向带弯钩的杆件提供推力,由限位杆与卡钩限位挡块配合实现卡钩的限位,并保证此时,碰撞杆位置与所述触发滚轮不发生干涉。
优选的,弯钩与卡钩凸起的接触面上存在一受力点与卡钩转动中心处于以飞轮中心轴为中心的同一个圆弧面上。
优选的,机械储能装置包括弹性储能套筒以及两个弹性储能导杆;弹性储能元件套装在两个弹性储能导杆外部,小直径弹性储能导杆一端铰接在驱动装置上,另一端插入另一大直径弹性储能导杆内腔,大直径弹性储能导杆插入弹性储能套筒,使得弹性储能元件处于弹性储能套筒内腔,大直径弹性储能导杆和弹性储能套筒均与从动装置铰接。
优选的,弹性储能元件储能过程中压缩到最大状态时,小直径弹性储能导杆的端部与弹性储能套筒的端部产生机械接触。
优选的,所述的驱动装置包括主摆轮、滚轮和副摆轮,所述主摆轮的转动中心与所述曲线槽盘的转动中心不重合;所述滚轮放置于所述曲线槽内,且与所述主摆轮耦连;所述副摆轮与主摆轮耦连,用于推动机械储能装置周期性进行压缩和释放。
优选的,所述的副摆轮与主摆轮的传动比小于360。
优选的,所述副摆轮的转动中心与主摆轮的转动中心不重合。
优选的,所述驱动装置还包括用于锁定所述驱动轴的锁定机构;所述锁定机构包括定位元件、卡位元件;所述定位元件耦连到外部固定结构上;卡位元件耦连到所述驱动轴上;定位元件与卡位元件咬合后,锁定所述驱动轴。
优选的,所述的从动装置为飞轮,所述的机械储能装置为扭簧,扭簧的一端固连副摆轮,另一端连接飞轮,所述飞轮与从动轴无相对转动的连接。
优选的,所述副摆轮下方设置补压块以及补压杆,所述补压块随副摆轮转动,通过补压块推动补压杆,由补压杆推动飞轮旋转,实现助推的目的。
一种有载分接开关,包括所述蓄能器;为所述蓄能器驱动轴提供驱动旋转动力的电动机构、有载切换开关和无载分接选择器;所述无载分接选择器用于无负载地预选到要被切换到的绕组抽头,有载切换开关用于从当前的绕组抽头有负载地切换到预选的新的绕组抽头。
优选的,所述蓄能器、有载分接开关与无载分接选择器串行连接。
优选的,蓄能器与有载切换开关连接构成切换芯子,所述切换芯子与无载分接选择器并联分体式分布,无载分接选择器放置在变压器中,切换芯子放置在变压器外。
由于采用了上述的技术方案,本发明与现有技术相比存在如下优点:
1、本发明避免了蓄能器进行旋转运动与直线运动之间繁琐的运动变换,从而使其运动传递效率更高、可靠性更高。
2、本发明避免了偏心轮与上滑架之间的摩擦,减小了产生磨屑的可能性,具有磨损小、可靠性高的优点。
3、本发明的限位装置直接对与从动轴无相对转动的飞轮进行限位,限位对象更加直接,限位效果更加可靠。
4、本发明的限位装置的两个卡钩分开布置,并且在一次切换中,限位卡钩与对应的卡钩凸起脱离后,两者之间不会再产生机械接触,从而有利于保证限位卡钩的使用寿命,也降低了使用风险。
5、本发明经运动转换装置转换得到的周期性往复旋转运动,直接推动弹性的储能元件14周期性进行压缩和释放,无运动隔离机构,结构简单,可靠性高;
6、本发明周期性进行压缩和释放的弹性的储能元件,直接推动驱动轴进行周期性往复旋转运动,无运动隔离机构,结构简单,可靠性高;
7、本发明运动转换装置的曲线槽盘具有曲线槽,该曲线槽的可带动凸轮绕主摆轮的转动中心进行周期性的往复旋转运动,并且可通过曲线槽的曲线设计,实现主摆轮不同摆角需要的往复运动,结构设计灵活性高;
8、本发明弹性的储能元件耦连到运动转换装置与驱动轴之间,当定位元件与卡位元件咬合后,驱动轴被锁定,此时,弹性的储能元件一端被锁定,另一端在主摆轮的推动下运动,由此实现弹性的储能元件的压缩蓄能,该蓄能过程涉及元件少,充分利用了锁定机构的锁定作用,使蓄能器结构简单;
9、本发明经过曲线槽盘、凸轮的运动转换,主摆轮可实现周期性的往 复旋转运动,该往复旋转运动角度范围<180°,可通过设置副摆轮对该往复旋转运动角度范围进行适应性设计调整,结构设计灵活,适应性好。
附图说明
图1是本发明的具有蓄能器的有载分接开关的第一优选实施方式;
图2为本发明的用于有载分接开关的蓄能器的第一视图;
图3为本发明的用于有载分接开关的蓄能器的第二视图;
图4为本发明的用于有载分接开关的蓄能器的第三视图;
图5为本发明的用于蓄能器的曲线槽盘的一种优选实施方式的仰视图;
图6为本发明的用于蓄能器的驱动装置处于α 1角度位置的俯视图;
图7为本发明的用于蓄能器的驱动装置处于α 2角度位置的俯视图;
图8为本发明的用于蓄能器的驱动装置处于α 3角度位置的俯视图;
图9为本发明的用于蓄能器的驱动装置处于α 5角度位置的俯视图;
图10为本发明具有蓄能器的有载分接开关的另一优选实施方式;
图11为本发明提供的实施例2中蓄能器示意图;
图12为实施例2蓄能器顶视图;
图13为实施例2蓄能器运动转换装置示意图;
图14为实施例2蓄能器内部零件图(上部);
图15为实施例2蓄能器内部零件图(下部);
图16为利用实施例2实现的一种有载分接开关示意图。
具体实施方式
图1示出本发明的有载分接开关10的第一优选实施方式,所述有载分接开关包括电动机构11、蓄能器13、有载切换开关14和无载分接选择器15。蓄能器驱动轴131能够在电动机构11的驱动下沿任意方向旋转。蓄能器从动轴132能够驱动有载切换开关14旋转。并且,通过蓄能器13的作用,蓄能器从动轴132能驱动有载切换开关14在有载分接开关10的一次切换中沿单方向旋转,以及在有载分接开关10的下一次切换中沿相反方向旋转。 有载切换开关14和无载分接选择器15采用现有技术构造,因此在本发明中没有详细示出。其中,一次切换示例性地理解为所述有载分接开关10完成无负载地预选到要被切换到的绕组抽头(n、n+1)以及从当前的绕组抽头有负载地切换到预选的新的绕组抽头(n、n+1)的完整切换过程。所述有载分接开关10的下一次切换示例性地理解为所述有载分接开关10完成无负载地预选到下一个要被切换到的绕组抽头(n、n+1)以及从当前的绕组抽头有负载地切换到下一个预选的新的绕组抽头(n、n+1)的完整切换过程。蓄能器13和有载切换开关14被包围在切换芯子壳体121中,并且共同组合成为切换芯子12。在有载分接开关10的工作过程中,蓄能器驱动轴131同时驱动蓄能器13和无载分接选择器15,并且蓄能器13、有载切换开关14和无载分接选择器15串行连接,从而使得切换芯子12与无载分接选择器15形成串联一体式分布。
图10给出一种有载分接开关10的另一优选实施方式,包括电动机构11、有载切换开关14和无载分接选择器以及蓄能器13;
蓄能器13和有载切换开关14被包围在切换芯子壳体121中构成切换芯子12,所述的切换芯子12与无载分接选择器15并联分体式分布,无载分接选择器放置在变压器中,切换芯子放置在变压器外;由所述的电动机构11驱动选择器驱动轴151,由选择器驱动轴151驱动无载分接选择器15实现无载分接选择器无负载地预选到要被切换到的绕组抽头;由所述电动机构驱动蓄能器驱动轴131实现有载切换开关从当前的绕组抽头有负载地切换到预选的新的绕组抽头。蓄能器从动轴132能够驱动有载切换开关14旋转。并且,通过蓄能器13的作用,蓄能器从动轴132能驱动有载切换开关14在有载分接开关10的一次切换中沿单方向旋转,并且在有载分接开关10的下一次切换中沿相反方向旋转。有载切换开关14和无载分接选择器15采用现有技术构造,因此在本发明中没有详细示出。
下面对上述有载切换开关中的蓄能器进行详细介绍。
实施例1
本发明蓄能器包括驱动轴、从动轴、机械储能装置、机械传动装置、驱动装置、从动装置;
驱动轴能够在所述电动机构的驱动下沿任意方向旋转;从动轴能够驱动所述有载切换开关旋转;所述机械传动装置为连接在所述驱动轴与所述驱动装置之间的可变瞬时传动比的驱动传动机构;所述驱动装置和从动装置之间安装至少两组机械储能装置,至少两组储能装置在所述驱动轴和或所述从动轴转动时能够具有至少两种不同的张紧和或松弛状态(即有不同的状态即可,可以包含两个都是张紧的,一个张紧、一个松弛,两个都是松弛的);所述驱动装置与机械储能装置连接并且在所述驱动轴转动时能够压紧和或释放所述机械储能装置;所述从动装置包括连接在所述从动装置与所述从动轴之间的可变瞬时传动比的从动传动机构以及具有中心轴的转动轮;所述从动装置与机械储能装置连接并且在所述机械储能装置释放时驱动所述从动轴转动;
在这里,驱动传动机构的瞬时传动比示例性地定义为i 1=v 1:v 2,其中,v 1是瞬时输入速度,具体为所述驱动轴的瞬时转速;v 2是瞬时输出速度,具体为所述驱动装置的瞬时运动速度。从动传动机构的瞬时传动比示例性地定义为i 2=v 3:v 4,其中,v 3是瞬时输入速度,具体为所述从动装置的瞬时运动速度;v 4是瞬时输出速度,具体为所述从动轴的瞬时转速。进一步可以得出,瞬时输出速度的计算公式为v 2=v 1:i 1、v 4=v 3:i 2。因此,传动机构的传动比发生变化能够导致输出速度发生变化,具体为传动比i 1、i 2越大,输出速度v 2、v 4越小。
在这里,可变瞬时传动比的驱动传动机构示例性地理解为在驱动装置从α 1角度转动到α 2角度过程中和或从α 2角度转动到α 3角度过程中和或从α 3角度转动到α 4角度过程中和或从α 4角度转动到α 5角度过程中,驱动传动机构的瞬时传动比i 1可以保持相等或变大或变小或改变正负或无穷大。同理, 可变瞬时传动比的从动传动机构示例性地理解为在从动装置从α 5角度转动到α 4角度过程中和或从α 4角度转动到α 3角度过程中和或从α 3角度转动到α 2角度过程中和或从α 2角度转动到α 1角度过程中,从动传动机构的瞬时传动比i 2可以保持相等或变大或变小或改变正负或无穷大。
所述驱动装置和所述机械储能装置构造成,使得所述驱动装置
●从α 1角度转动到α 2角度时逐渐释放所述至少一组另外的储能装置直至其处于松弛状态,并且在这个过程中所述从动轴静止,以及所述至少一组储能装置处于松弛状态。
●从α 2角度转动到α 3角度时逐渐压缩所述至少一组储能装置,并且在这个过程中所述从动轴仍然静止,以及所述至少一组另外的储能装置处于松弛状态。
●从α 4角度转动到α 5角度时逐渐压紧所述至少一组储能装置,并且在这个过程中所述从动轴静止,以及所述至少一组另外的储能装置处于松弛状态。
所述机械储能装置、所述从动装置和所述从动传动机构构造成,使得所述至少一组储能装置在所述驱动装置从α 3角度转动到α 4角度时逐渐松弛,并且在这个过程中所述从动轴从β 1角度转动到β 2角度,以及所述至少一组另外的储能装置处于松弛状态。
特别地,在驱动装置从α 1角度转动到α 2角度时和或从α 2角度转动到α 3角度时,从动轴在β 1角度保持静止。在驱动装置从α 4角度转动到α 5角度时,从动轴在β 2角度保持静止。
所述驱动装置和所述机械储能装置构造成,使得所述驱动装置
●从α 5角度转动到α 4角度时逐渐释放所述至少一组储能装置直至其处于松弛状态,并且在这个过程中所述从动轴静止,以及所述至少一组另外的储能装置处于松弛状态。
●从α 4角度转动到α 3角度时逐渐压缩所述至少一组另外的储能装置,并且在这个过程中所述从动轴仍然静止,以及所述至少一组储能装置处于松弛状态。
●从α 2角度转动到α 1角度时逐渐压紧所述至少一组另外的储能装置,并且在这个过程中所述从动轴静止,以及所述至少一组储能装置处于松弛状态。
所述机械储能装置、所述从动装置和所述从动传动机构构造成,使得所述至少一组另外的储能装置在所述驱动装置从α 3角度转动到α 2角度时逐渐松弛,并且在这个过程中所述从动轴从β 2角度转动到β 1角度,以及所述至少一组储能装置处于松弛状态。
特别地,在驱动装置从α 5角度转动到α 4角度时和或从α 4角度转动到α 3角度时,从动轴在β 2角度保持静止。在驱动装置从α 2角度转动到α 1角度时,从动轴在β 1角度保持静止。
所述至少一组储能装置、所述从动装置和所述从动传动机构构造成,使得所述至少一组储能装置、所述从动装置和所述从动传动机构一起
●在所述驱动装置从α 3角度转动到α 4角度时,使所述从动轴从β 1角度或从β 1角度与β 2角度之间的中间角度位置转动或者能够转动到β 2角度;
和或所述驱动装置构造成,使得所述驱动装置
●从α 3角度转动到α 4角度时,取代所述至少一组储能装置的储能元件,使所述从动轴从β 1角度或从β 1角度与β 2角度之间的中间角度位置转动或者能够转动到β 2角度。
所述至少一组另外的储能装置、所述从动装置和所述从动传动机构构造成,使得所述至少一组另外的储能装置、所述从动装置和所述从动传动机构一起
●在所述构件从α 3角度转动到α 2角度时,使所述从动轴从β 2角度或从β 1角度与β 2角度之间的中间角度位置转动或者能够转动到β 1角度;和或所述驱动装置构造成,使得所述驱动装置
●从α 3角度转动到α 2角度时,取代所述至少一组另外的储能装置的储能元件,使所述从动轴从β 2角度或从β 1角度与β 2角度之间的中间角度位置转动或者能够转动到β 1角度。
在这里,考虑到有载分接开关在实际运行中,遇到弹性储能装置的弹力不足或者发生故障或者无法松弛到预定的状态或者处于过载状态或者处于低温使得机构周围的油非常粘稠等不利情况,由弹性储能装置驱动的从动装置和或从动轴的运行速度比正常情况下的运行速度缓慢。当从动装置和或从动轴的运行速度缓慢到一定程度时,驱动装置将会追上从动装置并且以机械接触的方式直接驱动从动装置,进而驱动从动轴转动。
所述驱动传动机构构造成,使得
●所述驱动轴沿任意方向持续转动能够使驱动装置从α 1角度转动到α 2角度,再转动到α 3角度,再转动到α 4角度,再转动到α 5角度。
●所述驱动轴沿任意方向持续转动能够使驱动装置从α 5角度转动到α 4角度,再转动到α 3角度,再转动到α 2角度,再转动到α 1角度。
驱动传动机构可以按照需求以任意方式构造,例如曲柄摇杆机构或者曲线槽轮机构。
所述驱动传动机构包含曲线槽盘,所述曲线槽盘连接在驱动轴和驱动装置之间并且包含曲线槽。特别地,所述驱动装置包括具有中心轴的转动轮并且在其径向方向固定连接一个能够在曲线槽中运动的滚轮。所述滚轮能够被曲线槽驱动进而使得驱动装置转动。
所述曲线槽构造成,使得所述驱动轴沿任意方向持续转动能够使所述驱动装置从α 1角度转动到α 5角度或从α 5角度转动到α 1角度并且在上述两个过程中对应的运动彼此镜像对称地进行。所述曲线槽的曲线是封闭的。
所述机械传动装置包括限位装置,所述限位装置作用到所述从动轴上。所述限位装置构造成,使得所述限位装置
●在所述驱动装置从α 3角度转动到α 4角度(或从α 3角度转动到α 2角度)时,防止所述驱动轴正向和/或反向旋转离开β 2角度(或β 1角度);
●在所述从动轴在β 1角度(或β 2角度)时,防止从动轴从β 1角度(或β 2角度)两侧离开β 1角度(或β 2角度);
所述机械传动装置包括触发机构,所述触发机构作用到所述从动轴上。所述触发机构构造成,使得所述触发机构在所述驱动装置在α 3角度或从α 3角度转动到α 4角度过程中或从α 3角度转动到α 2角度过程中松开所述限位装置。
上述α 1~α 5为有载分接开关一次切换过程中驱动装置的几个角度位置,β 1、β 2为蓄能器从动轴的极限角度位置。
图2、图3、图4以不同角度的视图示出本发明的用于有载分接开关10的蓄能器13的一种优选实施方式。蓄能器13包括支架16、曲线槽盘17、驱动装置18、机械储能装置19、从动装置20、传动齿轮21、输出装置22、限位装置23。具体地,支架16包括上支架板161、下支架板162以及两者之间的支撑柱。曲线槽盘17位于上支架板161下方,并且与储能器驱动轴131无相对转动地连接。曲线槽盘17具有曲线槽,曲线槽包括第一终端角度位置171、第二终端角度位置172。
驱动装置18包括具有中心轴的转动轮181并且在径向方向固定连接一个能够在曲线槽中运动的滚轮182。所述滚轮182能够被曲线槽盘17驱动进而使得驱动装置18转动。驱动装置18还包括第一触发装置183和第二触发装置184。第一触发装置183和第二触发装置184具有向下伸出的滚轮,并在特定位置固定连接在转动轮181上,用于在转动轮181转动过程中触发限位装置23。
机械储能装置19包括两个结构相同的弹性储能装置,分别为第一弹性储能装置191和第二弹性储能装置192。第一弹性储能装置191包括第一弹性储能导杆1911和第一弹性储能套筒1912。相应地,第二弹性储能装置192包括第二弹性储能导杆1921和第二弹性储能套筒1922。弹性储能导杆1911、1921的端部可转动地连接在转动轮181的两个处于一条直线上的伸出臂上。弹性储能套筒1912、1922的端部可转动地连接在从动扇齿20的两个处于一条直线上的伸出臂上。并且,在两个弹性储能装置的储能压簧压缩到最大状态时,弹性储能导杆1911、1921的另外的端部能够与对应的弹性储能套筒1912、1922另外的端部产生机械接触。
输出装置22包括输出齿轮221、飞轮222、第一卡钩凸起223以及第二卡钩凸起224。从动扇齿20以固定的传动比驱动传动齿轮21转动,传动齿轮21也以固定的传动比驱动输出齿轮221转动。输出齿轮221的旋转中心轴与蓄能器驱动轴131在一条直线上。转动轮181、从动扇齿20、传动齿轮21的旋转中心轴与蓄能器驱动轴131在同一个平面内。飞轮222固定连接在输出齿轮221上,并且在其圆弧面的中间区域具有第一卡钩凸起223和第二卡钩凸起224。
限位装置23包括第一卡钩231、第二卡钩232、第一卡钩限位挡块233、第二卡钩限位挡块234以及限位挡块235。第一卡钩231和第二卡钩232能够通过弯钩部位钩住对应的卡钩凸起223和224,从而从正向或反向两个旋转方向限定飞轮222的转动。限位挡块235在与飞轮222的两个碰撞面上具有停顿阻尼,用于防止飞轮222的旋转角度超过所需角度。
第一卡钩231和第二卡钩232的结构形式相同,卡钩的主体均为带弯钩的杆件、该杆件两侧分别设置碰撞杆以及限位杆;卡钩限位挡块与带弯钩的杆件之间安装压簧,弯钩钩住卡钩凸起时,所述压簧处于压缩状态,所述碰撞杆能够通过设置在驱动装置上触发滚轮触发完成弯钩与卡钩凸起之间的脱离;在弯钩与卡钩凸起脱离后,由所述压簧向带弯钩的杆件提供推力,由 限位杆与卡钩限位挡块配合实现卡钩的限位,并保证此时,碰撞杆位置与所述触发滚轮不发生干涉。弯钩与卡钩凸起的接触面上存在一受力点与卡钩转动中心处于以飞轮中心轴为中心的同一个圆弧面上。
卡钩凸起223和224的外侧碰撞面与对应的卡钩231和232的外侧碰撞面相配合,使其在飞轮222运动过程中能够挤压进对应的卡钩231和232,并且通过其内侧弯钩面与对应的卡钩231和232的内侧弯钩面能够使其被对应的卡钩231和232稳定地锁定。在卡钩231(或232)没有钩住飞轮222的时候,两个小压簧和卡钩限位挡块233(或234)配合在一起避免触发装置183(或184)碰撞到对应的卡钩231(或232)。在卡钩231(或232)钩住飞轮222的时候,两个小压簧和卡钩限位挡块233(或234)配合在一起使卡钩231(或232)稳定地钩住飞轮222,并且能够被对应的触发装置183(或184)触发,从而释放飞轮222。
图5示出本发明的蓄能器13的曲线槽盘17的一种优选实施方式。具体地,第一终端角度位置171和第二终端角度位置172与曲线槽盘17的旋转中心点处于同一条直线上,因此曲线槽盘17当前的第一终端角度位置171转动到当前的第二终端角度位置172或当前的第二终端角度位置172转动到当前的第一终端角度位置171两个过程中旋转的角度均为180°。在分接开关10的一次切换过程中,蓄能器驱动轴131沿任意方向旋转180°,使得所述滚轮182能够从一终端角度位置171(或172)转动到另一个终端角度位置172(或171)。
图6、图7、图8、图9示出本发明的蓄能器13的部分关键构件(储能压簧未示出)在工作过程中四个关键时刻的姿态图。本发明的蓄能器13的工作方式如下:如图6所示,驱动装置18处于α 1角度位置。飞轮222的第一卡钩凸起223被第一卡钩231钩住。蓄能器从动轴132处于β 1角度位置。转动轮181和从动扇齿20的伸出臂的两个端点所在的直线与俯视图平面竖直方向分别成一定的角度。第一弹性储能装置191的储能压簧处于松弛状 态,第二弹性储能装置192的储能压簧处于张紧状态。滚轮182处于曲线槽盘17的第一终端角度位置171。运动过程中,曲线槽盘17将沿任意旋转方向不间断地匀速转动。运动开始后,在曲线槽盘17的驱动下转动轮181沿逆时针方向旋转。因为飞轮222被第一卡钩231钩住以及被限位挡块235挡住,所以从动扇齿20在初始位置保持静止。因此,第一弹性储能装置191的储能压簧逐渐张紧,第二弹性储能装置192的储能压簧逐渐松弛,直至蓄能器13达到如图7所示的位置。
在如图7所示的位置,驱动装置18处于α 2角度位置。第一弹性储能装置191和第二弹性储能装置192的储能压簧均处于压缩量为0的临界状态,从动扇齿20仍然在初始位置保持静止。继续运动后,在曲线槽盘17的驱动下驱动装置18继续沿逆时针方向旋转,从动扇齿20仍然在初始位置保持静止。第一弹性储能装置191的储能压簧继续逐渐张紧,第二弹性储能装置192的储能压簧一直处于松弛状态,直至蓄能器13达到如图8所示的位置。
在如图8所示的位置,驱动装置18处于α 3角度位置。第一弹性储能装置191的储能压簧达到最大的张紧状态并且第一储能导杆1911和第一储能套筒1912产生机械接触。第二弹性储能装置192的储能压簧一直处于松弛状态。驱动装置18的第一触发装置183即将与第一卡钩231碰撞。继续运动后,第一卡钩231在第一触发装置183的碰撞下释放飞轮222,从动扇齿20在第一弹性储能装置191的储能压簧的驱动下阶跃式地迅速地转动,通过一定传动比驱动传动齿轮21转动,进而使得蓄能器从动轴132从β 1角度快速转动到β 2角度。此时,驱动装置18转动到α 3角度位置。然而在曲线槽盘17的驱动下驱动装置18仍然沿逆时针方向旋转,直至蓄能器13达到如图9所示的位置。在这个过程中,如果遇到弹性储能装置的弹力不足或者发生故障或者无法松弛到预定的状态或者处于过载状态或者处于低温使得机构周围的油非常粘稠等不利情况,由第一弹性储能装置191驱动的从动扇齿20和蓄能器从动轴132的运行速度比正常情况下的运行速度缓慢。当从 动扇齿20和蓄能器从动轴132的运行速度缓慢到一定程度时,第一储能导杆1911会追赶上第一储能套筒1912,从而使得驱动装置18代替储能压簧直接驱动从动扇齿20转动。
在如图9所示的位置,驱动装置18处于α 5角度位置。飞轮222的第二卡钩凸起224被第二卡钩232钩住,飞轮222的另一侧被限位挡块235挡住。蓄能器从动轴132处于β 2角度位置。转动轮181和从动扇齿20与初始位置相比均逆时针转动一定角度。第一弹性储能装置191的储能压簧处于张紧状态,第二弹性储能装置192的储能压簧处于松弛状态。滚轮182处于曲线槽盘17的第二终端角度位置172。至此,蓄能器完成了有载分接开关10的一次切换过程中的全部动作,并处于下一次切换的初始位置。
实施例2
如图11、图12所示,蓄能器包括:
运动转换装置13b(机械传动装置+驱动装置),所述运动转换装置13b耦连到所述的机械储能装置14b与电机输出轴111b之间,并且包括将任意方向的旋转运动转换为往复摆动运动的传动器件,可实现将任意方向的旋转运动转换为往复摆动运动的目的;
机械储能装置14b,所述机械储能装置14b连接到所述的运动转换装置13b与驱动轴121b之间,在运动转换装置与驱动轴的相互作用下,机械储能装置可实现周期性的蓄能和释放。
从动装置,本例中从动装置为飞轮20b,与从动轴无相对转动的连接。
如图13、图14所示,所述蓄能器进一步还包括:
锁定机构15b,所述锁定机构15b使驱动轴121b保持位置不变,电机输出轴111b旋转时压缩机械储能装置14b;所述锁定机构15b包括定位元件151b和卡位元件152b,以及停动阻尼器24b,所述定位元件151b及停动阻尼器24b耦连到外部机架21b上,所述卡位元件152b耦连到驱动轴121b上;
触发机构16b,所述触发机构16b使锁定机构15b动作,造成锁定机构15b不能使驱动轴121b保持位置不变,机械储能装置14b推动驱动轴121b转动。
所述运动转换装置13b使得所述电机输出轴111b沿任意方向旋转角度α时,使机械储能装置14b释放,锁定机构15b使驱动轴121b保持位置不变(所述定位元件151b与卡位元件152b耦连,使驱动轴121b被限位静止);驱动轴121b静止。
所述运动转换装置13b使得所述电机输出轴111b沿任意方向旋转角度α+β时,使机械储能装置14b压缩,锁定机构15b使驱动轴121b保持位置不变(所述定位元件151b与卡位元件152b耦连,使驱动轴121b被限位静止);驱动轴121b静止。
所述运动转换装置13b使得所述电机输出轴111b沿任意方向旋转角度α+β+γ时,所述触发机构16b使锁定机构15b动作(所述触发机构16b使所述定位元件151b或所述卡位元件152b动作,使定位元件151b与卡位元件152b脱离,驱动轴121b不被限位),造成锁定机构15b不能使驱动轴121b保持位置不变,使机械储能装置14b释放,此时驱动轴121b转动。
所述运动转换装置13b使得所述电机输出轴111b沿任意方向旋转角度α+β+γ+ε时,使机械储能装置14b压缩,锁定机构15b使驱动轴121b保持位置不变(所述定位元件151b与卡位元件152b耦连,使驱动轴121b被限位静止);驱动轴121b静止。
所述触发机构16b耦连到所述运动转换装置13b上,所述运动转换装置13b使得所述电机输出轴111b沿任意方向旋转角度α时,触发机构16b旋转角度为α’;所述运动转换装置13b使得所述电机输出轴111b沿任意方向旋转角度α+β时,触发机构16b旋转角度为α’+β’。所述运动转换装置13b使得所述电机输出轴111b沿任意方向旋转角度α+β+γ时,触发机构16b旋转角度为α’+β’+γ’。所述运动转换装置13b使得所述电机输 出轴111b沿任意方向旋转角度α+β+γ+ε时,触发机构16b旋转角度为α’+β’+γ’+ε’。
进一步,所述运动转换装置13b使得所述电机输出轴111b沿任意方向旋转角度α+β+γ+ε+α或α+β+γ+ε-α时,触发机构16b旋转角度为α’+β’+γ’+ε’-α’;所述运动转换装置13b使得所述电机输出轴111b沿任意方向旋转角度α+β+γ+ε+α+β或α+β+γ+ε-α-β时,触发机构16b旋转角度为α’+β’+γ’+ε’-α’-β’;所述运动转换装置13b使得所述电机输出轴111b沿任意方向旋转角度α+β+γ+ε+α+β+γ或α+β+γ+ε-α-β-γ时,触发机构16b旋转角度为α’+β’+γ’+ε’-α’-β’-γ’;所述运动转换装置13b使得所述电机输出轴111b沿任意方向旋转角度α+β+γ+ε+α+β+γ+ε或α+β+γ+ε-α-β-γ-ε时,触发机构16b旋转角度为α’+β’+γ’+ε’-α’-β’-γ’-ε’。
其中,α、β、γ、ε分别为第一至第四角度,均为大于0的正数;α’、β’、γ’、ε’分别为第一至第四传递角度,均为大于0的正数。
由此保证电机输出轴任意方向的旋转运动输入,触发机构均有周期性的往复旋转运动,并且,该周期性的往复旋转运动具有严格意义上的一致特征(无论电机输出轴在特征角α、β、γ、ε条件下是何种方向的旋转,触发机构相应转动个的特征角α’、β’、γ’、ε’严格一致)
如图4所示,所述运动转换装置13b包括可变瞬时传动比的驱动传动机构以及驱动装置;其中可变瞬时传动比的驱动传动机构包括曲线槽盘17b,所述曲线槽盘17b包括曲线槽171b和输入毂172b。驱动装置包括主摆轮181b、凸轮19b;所述主摆轮181b的转动中心与所述曲线槽盘17b的转动中心不重合。所述凸轮19b耦连于所述主摆轮181b,所述凸轮19b放置于所述曲线槽盘17b的曲线槽171b内。所述输入毂172b与电机输出轴111b无相对转动的连接。
所述曲线槽盘17b和所述凸轮19b配合,使得所述电机输出轴111b沿任意方向旋转角度α时,所述主摆轮181b旋转角度为α’。
所述曲线槽盘17b和所述凸轮19b配合,使得所述电机输出轴111b沿任意方向旋转角度α+β时,所述主摆轮181b旋转角度为α’+β’。
所述曲线槽盘17b和所述凸轮19b配合,使得所述电机输111b出轴沿任意方向旋转角度α+β+γ时,所述主摆轮181b旋转角度为α’+β’+γ’。
所述曲线槽盘17b和所述凸轮19b配合,使得所述电机输出轴111b沿任意方向旋转角度α+β+γ+ε时,所述主摆轮181b旋转角度为α’+β’+γ’+ε’。
所述曲线槽盘17b和所述凸轮19b配合,使得所述电机输出轴沿任意方向旋转角度α+β+γ+ε+α或α+β+γ+ε-α时,所述主摆轮181b旋转角度为α’+β’+γ’+ε’-α’。α、β、γ、ε分别为第一至第四角度,均为大于0的正数;α’、β’、γ’、ε’分别为第一至第四传递角度,均为大于0的正数。
所述曲线槽盘17b和所述凸轮19b配合,使得所述电机输出轴111b沿任意方向旋转角度α+β+γ+ε+α+β或α+β+γ+ε-α-β时,所述主摆轮181b旋转角度为α’+β’+γ’+ε’-α’-β’。
所述曲线槽盘17b和所述凸轮19b配合,使得所述电机输出轴111b沿任意方向旋转角度α+β+γ+ε+α+β+γ或α+β+γ+ε-α-β-γ时,所述主摆轮181b旋转角度为α’+β’+γ’+ε’-α’-β’-γ’。
所述曲线槽盘17b和所述凸轮19b配合,使得所述电机输出轴111b沿任意方向旋转角度α+β+γ+ε+α+β+γ+ε或α+β+γ+ε-α-β-γ-ε时,所述主摆轮181b旋转角度为α’+β’+γ’+ε’-α’-β’-γ’-ε’。
由此保证电机输出轴任意方向的旋转运动输入,在运动转换机构的运动 转换作用下,主摆轮可实现周期性的往复旋转运动,并且,该周期性的往复旋转运动具有严格意义上的一致特征(无论电机输出轴在特征角α、β、γ、ε条件下是何种方向的旋转,触发机构相应转动个的特征角α’、β’、γ’、ε’严格一致)
所述电机输出轴111b的旋转角度α+β+γ+ε为360°的约数。
所述主摆轮181b的摆动角度α’+β’+γ’+ε’<180°。
优选的,所述运动转换装置13b还包括副摆轮182b,所述副摆轮182b与主摆轮181b耦连。
图16为利用实施例2蓄能器实现的有载分接开关包括具有电机输出轴111b的电机11b和具有驱动轴121b的有载转换器12b,所述蓄能器10b包括:
运动转换装置13b,所述运动转换装置13b耦连到所述的机械储能装置14b与电机输出轴111b之间,用于将任意方向的旋转运动转换为摆动运动。
机械储能装置14b,所述机械储能装置14b连接到所述的运动转换装置13b与驱动轴121b之间。
锁定机构15b,所述锁定机构15b使驱动轴121b保持位置不变,电机输出轴111b旋转时压缩机械储能装置14b。
触发机构16b,所述触发机构16b使锁定机构15b动作,造成锁定机构15b不能使驱动轴121b保持位置不变,机械储能装置14b推动驱动轴121b转动。
其中,所述运动转换装置13b使得:
电机输出轴111b的0°基准位置,对应驱动轴121b摆动至止点位置。
电机输出轴111b沿任意方向旋转角度20°时,使机械储能装置14b释放,并且此时驱动轴121b静止。电机输出轴111b由0°转至20°过程中,驱动轴121b保持静止,该角度段为过度段。
电机输出轴111b沿任意方向旋转角度<160°时,使机械储能装置14b 压缩,并且此时驱动轴121b静止。电机输出轴111b由20°转至160°过程中,驱动轴121b保持静止,机械储能装置14b被压缩,该角度段为蓄能段。
电机输出轴111b沿任意方向旋转角度160°时,使机械储能装置14b释放,并且此时驱动轴121b转动。电机输出轴转至160°时刻,驱动轴121b可转动,此时机械储能装置14b经过蓄能段的压缩蓄能,具有较大弹性势能,由于此时驱动轴121b可转动,机械储能装置14b释放弹性势能,推动驱动轴快速旋转,该角度时刻为释放时刻。
电机输出轴111b沿任意方向旋转角度180°时,使机械储能装置14b压缩,并且此时驱动轴121b不转动。电机输出轴111b由160°转至180°过程中,驱动轴121b保持止点位置静止或被补压至止点静止位置,机械储能装置14b被压缩,该角度段为补压段。
上述过度段、蓄能段、补压段构成一次单周期运动转换,该周期过程中,电机输出轴旋转角度为180°,驱动轴由摆动止点位置Ⅰ摆动至摆动止点位置Ⅱ。进一步,电机输出轴在此基础上继续沿任一方向运动180°,继续形成过度段、蓄能段、补压段的单周期运动转换,驱动轴有摆动止点位置Ⅱ摆动至摆动止点位置Ⅰ。并且,过度段角度与补压段角度相等。
所述触发机构16b耦连到所述运动转换装置13b上,使得:
电机输出轴111b沿任意方向旋转角度20°时,触发机构16b旋转角度为16°。电机输出轴111b由0°转至20°过程中,触发机构未使锁定机构动作,该角度段为过度段。
电机输出轴111b沿任意方向旋转角度<160°时,触发机构16b旋转角度为<208°。电机输出轴111b由20°转至160°过程中,触发机构未使锁定机构动作,该角度段为蓄能段。
电机输出轴111b沿任意方向旋转角度160°时,触发机构16b旋转角度为208°。此时触发机构使锁定机构动作,使定位元件151b与卡位元件152b脱离。
电机输出轴111b沿任意方向旋转角度180°时,触发机构16b旋转角度为224°。电机输出轴111b由160°转至180°过程中,触发机构使锁定机构动作,该角度段为补压段。
所述锁定机构15b包括定位元件151b和卡位元件152b,所述定位元件151b耦连到机架21b上,所述卡位元件152b耦连到输出毂(即飞轮)20b上,输出毂20b与从动轴无相对转动的连接,使得:
电机输出轴111b沿任意方向旋转角度20°时,所述定位元件151b与卡位元件152b耦连,使驱动轴121b被限位静止。电机输出轴111b由0°转至20°过程中,锁定机构为锁定状态,该角度段为过度段。
电机输出轴121b沿任意方向旋转角度<160°时,所述定位元件151b与卡位元件152b耦连,使驱动轴121b被限位静止。电机输出轴111b由20°转至160°过程中,锁定机构为锁定状态,该角度段为蓄能段。
电机输出轴111b沿任意方向旋转角度160°时,所述触发机构16b使所述定位元件151b或所述卡位元件152b动作,使定位元件151b与卡位元件152b脱离,驱动轴121b不被限位。此时卡位元件152b与一侧的定位元件151b脱离,并快速驶向另一侧的定位元件。
电机输出轴111b沿任意方向旋转角度180°时,所述定位元件151b与卡位元件152b耦连或脱离,驱动轴121b被限位。电机输出轴111b由160°转至180°过程中,卡位元件与一侧的定位元件脱离,并快速旋转至另一侧止点位置,或者被补压至另一侧止点位置,使卡位元件与另一侧的定位元件咬合,驱动轴被限位。该角度段为补压段。
所述触发机构16b与所述锁定机构15b相互作用,使得:
电机输出轴111b沿任意方向旋转角度20°时,触发机构16b旋转角度为16°,触发机构16b不能使锁定机构15b动作,锁定机构15b使驱动轴121b保持位置不变。电机输出轴111b由0°转至20°过程中,锁定机构为锁定状态,该角度段为过度段。
电机输出轴111b沿任意方向旋转角度<160°时,触发机构16b旋转角度为<208°,触发机构16b不能使锁定机构15b动作,锁定机构15b使驱动轴121b保持位置不变。电机输出轴111b由20°转至160°过程中,锁定机构为锁定状态,该角度段为蓄能段。
电机输出轴111b沿任意方向旋转角度160°时,触发机构16b旋转角度为208°,所述触发机构16b使锁定机构15b动作,造成锁定机构15b不能使驱动轴121b保持位置不变。驱动轴121b在储能元件14b推动下,快速转动120°,并在停动阻尼器24b的作用下停止转动,同时,锁定机构15b的定位元件151b与卡位元件152b耦连,使驱动轴121b被限位静止。此时卡位元件152b与一侧的定位元件151b脱离,并快速驶向另一侧的定位元件。
电机输出轴111b沿任意方向旋转角度180°时,触发机构16b旋转角度为224°,触发机构16b不能使锁定机构15b动作,所述锁定机构15b能使驱动轴121b保持位置不变。
特别的,当电机输出轴111b沿任意方向旋转角度介于160°与180°之间时,触发机构16b旋转角度介于208°与224°之间,所述锁定机构15b不能或能使驱动轴121b保持位置不变。使得:
当所述锁定机构15b能使驱动轴121b保持位置不变时,锁定机构15b的定位元件151b与卡位元件152b耦连,使驱动轴121b被限位静止,触发机构16b由转角208°转动至转角224°。
当所述锁定机构15b不能使驱动轴121b保持位置不变时,补压块22b由转角208°转动至转角224°,补压块22b推动补压杆23b运动,补压杆23b推动输出毂20b旋转,使得锁定机构15b的定位元件151b与卡位元件152b耦连,输出毂20b与从动轴无相对转动的连接,使从动轴被限位静止。
电机输出轴111b由160°转至180°过程中,卡位元件与一侧的定位元件脱离,并快速旋转至另一侧止点位置,或者被补压杆补压至另一侧止点位置,使卡位元件与另一侧的定位元件咬合,驱动轴被限位。该角度段为补压 段。
如图4所示,所述运动转换装置13b包括:
曲线槽盘17b,所述曲线槽盘17b包括曲线槽171b和输入毂172b,输入毂172b与电机输出轴111b无相对转动的连接。
主摆轮181b,所述主摆轮181b的转动中心与所述曲线槽盘17b的转动中心不重合。
优选的,还包括副摆轮182b,所述副摆轮182b与主摆轮181b耦连,传动比为1.6。
凸轮19b,所述凸轮19b耦连于所述主摆轮181b,所述凸轮19b放置于所述曲线槽盘17b的曲线槽172b内。
电机输出轴111b的0°基准位置,对应主摆轮181b、副摆轮182b摆动至止点位置。
使得:
电机输出轴111b沿任意方向旋转角度20°时,所述主摆轮181b旋转角度为10°,所述副摆轮182b旋转角度为16°。电机输出轴111b由0°转至20°过程中,副摆轮由0°转至16°,该角度段为过度段。
电机输出轴111b沿任意方向旋转角度<160°时,所述主摆轮181b旋转角度为<130°,所述副摆轮182b旋转角度为<208°。电机输出轴111b由20°转至160°过程中,副摆轮由16°转至208°,该角度段为蓄能段。
电机输出轴111b沿任意方向旋转角度160°时,所述主摆轮181b旋转角度为130°,所述副摆轮182b旋转角度为208°。此时为蓄能结束时刻。
电机输出轴111b沿任意方向旋转角度180°时,所述主摆轮181b旋转角度为140°,所述副摆轮182b旋转角度为224°。电机输出轴111b由160°转至180°过程中,副摆轮由208°转至224°,该角度段为补压段。
上述过度段、蓄能段、补压段构成一次单周期运动转换,该周期过程中,电机输出轴旋转角度为180°,主摆轮181b由摆动止点0°位置摆动至摆动 止点位置140°位置,副摆轮182b由摆动止点0°位置摆动至摆动止点位置224°位置。
进一步,电机输出轴在此基础上继续沿任一方向运动180°,继续形成过度段、蓄能段、补压段的单周期运动转换,主摆轮181b由摆动止点140°位置摆动至摆动止点位置0°位置,副摆轮182b由摆动止点224°位置摆动至摆动止点位置0°位置。并且,过度段与补压段,主摆轮181b转动角度相等(都为20°),副摆轮182b转动角度相等(都为16°)。即电机继续旋转:
电机输出轴111b沿任意方向旋转角度200°或160°时,所述主摆轮181b旋转角度为130°,所述副摆轮182b旋转角度为208°。电机输出轴111b由180°转至200°或160°过程中,副摆轮由224°转至208°,该角度段为过度段。
电机输出轴111b沿任意方向旋转角度<340°或>20°时,所述主摆轮181b旋转角度为>10°,所述副摆轮182b旋转角度>16°。电机输出轴111b由200°转至360°或由160°转至20°过程中,副摆轮由208°转至16°,该角度段为蓄能段。
电机输出轴111b沿任意方向旋转角度340°或20°时,所述主摆轮181b旋转角度为10°,所述副摆轮182b旋转角度为16°。此时为蓄能结束时刻。
电机输出轴111b沿任意方向旋转角度360°或0°时,所述主摆轮181b旋转角度为0°,所述副摆轮182b旋转角度为0°。电机输出轴111b由340°转至360°或由20°转至0°过程中,副摆轮由16°转至0°,该角度段为补压段。
所述电机输出轴111b的旋转角度α+β+γ+ε=180°,所述主摆轮181b的摆动角度α’+β’+γ’+ε’=140°,所述主摆轮181b的摆动角度α”+β”+γ”+ε”=224°。
所述电机输出轴111b的旋转角度α+β+γ+ε为360°的约数。所述主 摆轮181b的摆动角度α’+β’+γ’+ε’<180°。
以上所述,仅为本发明最佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。
本发明说明书中未作详细描述的内容属于本领域专业技术人员的公知技术。

Claims (22)

  1. 一种有载分接开关的蓄能器,包括驱动轴、从动轴、机械储能装置;其特征在于:
    还包括机械传动装置、驱动装置、从动装置;
    所述的机械传动装置耦连到驱动轴与驱动装置之间,用于将驱动轴任意方向的旋转转换为驱动装置单方向旋转,并在有载分接开关的下一次切换中沿相反方向旋转,通过旋转带动驱动装置转动;所述从动装置用于实现从动轴转动所需角度;
    所述的驱动装置用于实现机械储能装置的张紧或松弛状态;
    所述的机械储能装置耦连到驱动装置与从动装置之间,用于驱动从动装置转动。
  2. 根据权利要求1所述的蓄能器,其特征在于:所述机械传动装置为可变瞬时传动比的驱动传动机构,所述的可变瞬时传动比的驱动传动机构为曲线槽盘,所述曲线槽盘包括设置在下端面的曲线槽以及中心轴即输入毂;
    所述曲线槽上具有两个与中心轴的中心在同一条直线上的终端角度位置,使得曲线槽盘从任一方向转动180°,驱动装置上的滚轮能够从一终端角度位置转动到另一个终端角度位置。
  3. 根据权利要求2所述的蓄能器,其特征在于:所述曲线槽的曲线以两个终端角度位置为界,一侧曲线方程为x′=R cos(ω+β),y′=R sin(ω+β);另一侧曲线方程为x″=R cos(ω-β),y″=R sin(ω-β);其中,以曲线槽盘旋转中心为坐标原点,x′、x″为曲线上各点的横坐标,y′、y″为曲线上各点的纵坐标;R为驱动装置的滚轮的矢径长度
    Figure PCTCN2021140657-appb-100001
    其中,r为驱动装置的滚轮与驱动装置旋转中心轴的间距,θ为驱动装置起止位置倾角,L为曲线槽盘旋转中心轴与驱动装置旋转中心轴的间距,α为驱动装 置的转动角度,ω为驱动装置的滚轮的矢径倾斜角度;β为曲线槽盘的转动角度。
  4. 根据权利要求2所述的蓄能器,其特征在于:所述驱动装置和从动装置之间安装至少两组机械储能装置,且在有载分接开关一次切换过程中,至少存在两组机械储能装置处于不同的张紧和或松弛状态。
  5. 根据权利要求4所述的蓄能器,其特征在于:所述驱动装置包括具有中心轴的转动轮以及滚轮,至少两组机械储能装置的一端分别安装在所述中心轴的两侧,所述滚轮安装在转动轮上且其位置不处于一次切换过程中转动轮转角范围的中心线的垂直线上。
  6. 根据权利要求5所述的蓄能器,其特征在于:所述驱动装置还包括两个触发装置,两个触发装置安装在转动轮的中心轴的两侧,其下方安装向下伸出的滚轮,用于在转动轮转动过程中触发限位装置,所述的限位装置用于有载分接开关切换过程中实现限位。
  7. 根据权利要求6所述的蓄能器,其特征在于:所述的从动装置包括可变瞬时传动比的从动传动机构以及具有中心轴的转动轮;至少两组机械储能装置的另一端分别安装在所述中心轴的两侧,转动轮上设置扇形齿轮,用于与可变瞬时传动比的从动传动机构进行配合,由可变瞬时传动比的从动传动机构驱动从动轴转动所需角度。
  8. 根据权利要求7所述的蓄能器,其特征在于:所述可变瞬时传动比的从动传动机构包括传动齿轮、输出齿轮、飞轮;
    所述传动齿轮分别与从动装置上的扇形齿轮以及输出齿轮啮合,用于将从动装置的转动角度转换成从动轴所需转动角度,输出齿轮与飞轮固连,飞轮与从动轴固连。
  9. 根据权利要求8所述的蓄能器,其特征在于:所述限位装置包括设置在飞轮上的两个卡钩凸起、两个卡钩、两个卡钩限位挡块以及限位挡块;其中卡钩、卡钩限位挡块以及限位挡块均安装在下支架上;所述限位挡块用 于对飞轮的转动实现限位;所述两个卡钩分别用于与卡钩凸起配合实现两次切换中对飞轮到位后的转动限制;所述卡钩限位挡块用于对卡钩未钩住卡钩凸起的状态进行限位。
  10. 根据权利要求9所述的蓄能器,其特征在于:所述卡钩主体为带弯钩的杆件、该杆件两侧分别设置碰撞杆以及限位杆;卡钩限位挡块与带弯钩的杆件之间安装压簧,弯钩钩住卡钩凸起时,所述压簧处于压缩状态,所述碰撞杆能够通过设置在驱动装置上触发滚轮触发完成弯钩与卡钩凸起之间的脱离;在弯钩与卡钩凸起脱离后,由所述压簧向带弯钩的杆件提供推力,由限位杆与卡钩限位挡块配合实现卡钩的限位,并保证此时,碰撞杆位置与所述触发滚轮不发生干涉。
  11. 根据权利要求10所述的蓄能器,其特征在于:弯钩与卡钩凸起的接触面上存在一受力点与卡钩转动中心处于以飞轮中心轴为中心的同一个圆弧面上。
  12. 根据权利要求4所述的蓄能器,其特征在于:机械储能装置包括弹性储能套筒以及两个弹性储能导杆;弹性储能元件套装在两个弹性储能导杆外部,小直径弹性储能导杆一端铰接在驱动装置上,另一端插入另一大直径弹性储能导杆内腔,大直径弹性储能导杆插入弹性储能套筒,使得弹性储能元件处于弹性储能套筒内腔,大直径弹性储能导杆和弹性储能套筒均与从动装置铰接。
  13. 根据权利要求12所述的蓄能器,其特征在于:弹性储能元件储能过程中压缩到最大状态时,小直径弹性储能导杆的端部与弹性储能套筒的端部产生机械接触。
  14. 根据权利要求1所述的蓄能器,其特征在于:所述的驱动装置包括主摆轮、滚轮和副摆轮,所述主摆轮的转动中心与所述曲线槽盘的转动中心不重合;所述滚轮放置于所述曲线槽内,且与所述主摆轮耦连;所述副摆轮与主摆轮耦连,用于推动机械储能装置周期性进行压缩和释放。
  15. 根据权利要求14所述的蓄能器,其特征在于:所述的副摆轮与主摆轮的传动比小于360。
  16. 根据权利要求14所述的蓄能器,其特征在于:所述副摆轮的转动中心与主摆轮的转动中心不重合。
  17. 根据权利要求14所述的蓄能器,其特征在于:还包括用于锁定所述驱动轴的锁定机构;所述锁定机构包括定位元件、卡位元件;所述定位元件耦连到外部固定结构上;卡位元件耦连到所述驱动轴上;定位元件与卡位元件咬合后,锁定所述驱动轴。
  18. [根据细则91更正 23.06.2022] 
    根据权利要求14所述的蓄能器,其特征在于:所述的从动装置为飞轮,所述的机械储能装置为扭簧,扭簧的一端固连副摆轮,另一端连接飞轮,所述飞轮与从动轴无相对转动的连接。
  19. [根据细则91更正 23.06.2022] 
    根据权利要求14所述的蓄能器,其特征在于:所述副摆轮下方设置补压块以及补压杆,所述补压块随副摆轮转动,通过补压块推动补压杆,由补压杆推动飞轮旋转,实现助推的目的。
  20. [根据细则91更正 23.06.2022] 
    一种有载分接开关,其特征在于:包括权利要求1-17任一所述蓄能器;为所述蓄能器驱动轴提供驱动旋转动力的电动机构、有载切换开关和无载分接选择器;所述无载分接选择器用于无负载地预选到要被切换到的绕组抽头,有载切换开关用于从当前的绕组抽头有负载地切换到预选的新的绕组抽头。
  21. [根据细则91更正 23.06.2022] 
    根据权利要求20所述的有载分接开关,其特征在于:所述蓄能器、有载分接开关与无载分接选择器串行连接。
  22. [根据细则91更正 23.06.2022] 
    根据权利要求20所述的有载分接开关,其特征在于:蓄能器与有载切换开关连接构成切换芯子,所述切换芯子与无载分接选择器并联分体式分布,无载分接选择器放置在变压器中,切换芯子放置在变压器外。
PCT/CN2021/140657 2021-02-25 2021-12-23 一种用于有载分接开关的多机械储能装置的蓄能器以及有载分接开关 WO2022179280A1 (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN202110215113.3 2021-02-25
CN202110215113.3A CN113012955B (zh) 2021-02-25 2021-02-25 一种有载分接开关的蓄能器
CN202110226638.7 2021-03-01
CN202110226628.3 2021-03-01
CN202110226628.3A CN113113243B (zh) 2021-03-01 2021-03-01 一种用于有载分接开关的多机械储能装置的蓄能器以及有载分接开关
CN202110226638.7A CN113113245B (zh) 2021-03-01 2021-03-01 一种分体式有载分接开关

Publications (1)

Publication Number Publication Date
WO2022179280A1 true WO2022179280A1 (zh) 2022-09-01

Family

ID=83048677

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/140657 WO2022179280A1 (zh) 2021-02-25 2021-12-23 一种用于有载分接开关的多机械储能装置的蓄能器以及有载分接开关

Country Status (1)

Country Link
WO (1) WO2022179280A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106024443A (zh) * 2016-06-16 2016-10-12 上海华明电力设备制造有限公司 一种快速机构在组合式有载分接开关中的应用
CN107438889A (zh) * 2015-03-17 2017-12-05 赖茵豪森机械制造公司 用于有载分接开关的蓄能器以及具有蓄能器的有载分接开关
CN113012955A (zh) * 2021-02-25 2021-06-22 北京航天控制仪器研究所 一种有载分接开关的蓄能器
CN113113244A (zh) * 2021-03-01 2021-07-13 北京航天控制仪器研究所 一种用于有载分接开关的串联式蓄能器以及有载分接开关
CN113113243A (zh) * 2021-03-01 2021-07-13 北京航天控制仪器研究所 一种用于有载分接开关的多机械储能装置的蓄能器以及有载分接开关
CN113113245A (zh) * 2021-03-01 2021-07-13 北京航天控制仪器研究所 一种分体式有载分接开关

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107438889A (zh) * 2015-03-17 2017-12-05 赖茵豪森机械制造公司 用于有载分接开关的蓄能器以及具有蓄能器的有载分接开关
CN106024443A (zh) * 2016-06-16 2016-10-12 上海华明电力设备制造有限公司 一种快速机构在组合式有载分接开关中的应用
CN113012955A (zh) * 2021-02-25 2021-06-22 北京航天控制仪器研究所 一种有载分接开关的蓄能器
CN113113244A (zh) * 2021-03-01 2021-07-13 北京航天控制仪器研究所 一种用于有载分接开关的串联式蓄能器以及有载分接开关
CN113113243A (zh) * 2021-03-01 2021-07-13 北京航天控制仪器研究所 一种用于有载分接开关的多机械储能装置的蓄能器以及有载分接开关
CN113113245A (zh) * 2021-03-01 2021-07-13 北京航天控制仪器研究所 一种分体式有载分接开关

Similar Documents

Publication Publication Date Title
CN113113244B (zh) 一种用于有载分接开关的串联式蓄能器以及有载分接开关
RU2345437C2 (ru) Переключатель шунтирующего сопротивления, способ управления таким переключателем и использование такого переключателя
US20130341166A1 (en) On-load tap changer
CN104704588A (zh) 用于有载分接开关的蓄力器
BR112012000693B1 (pt) Comutador de derivação em carga com um acumulador de energia
CN107230569B (zh) 一种带储能机构的pc级自动转换开关装置
CN113113245B (zh) 一种分体式有载分接开关
WO2022179280A1 (zh) 一种用于有载分接开关的多机械储能装置的蓄能器以及有载分接开关
WO2013042685A1 (ja) 負荷時タップ切換装置、及びその蓄勢機構
JP2018508124A (ja) 負荷時タップ切換器用のエネルギー蓄積器並びにエネルギー蓄積器を有する負荷時タップ切換器
CN113113243B (zh) 一种用于有载分接开关的多机械储能装置的蓄能器以及有载分接开关
CN112584010B (zh) 一种移动终端设备的摄像头调节机构
CN113113246B (zh) 用于有载分接开关蓄能器的全程助推装置、蓄能器以及有载分接开关
WO2022183670A1 (zh) 用于有载分接开关蓄能器的全程助推装置、蓄能器以及有载分接开关
CN112259389B (zh) 单向有载分接开关的操作机构
JP4127571B2 (ja) 負荷時タップ切換器
WO2007111565A1 (en) A method and a device for transmitting rotary motion
CN113012955A (zh) 一种有载分接开关的蓄能器
US3055227A (en) Accumulator
CN114257025A (zh) 一种安装稳固的电机
CN212072015U (zh) 一种扭矩平衡机构及具有该机构的运动关节
CN116759248A (zh) 一种有载分接开关的对置滑盒式快速机构
CN217468226U (zh) 一种有载分接开关的联动装置
JP3285977B2 (ja) 負荷時タップ切換器の蓄勢装置
CN216429333U (zh) 一种自动复位式按压开闭装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21927704

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205N DATED 17/10/2023)