WO2022181666A1 - Air nozzle - Google Patents

Air nozzle Download PDF

Info

Publication number
WO2022181666A1
WO2022181666A1 PCT/JP2022/007524 JP2022007524W WO2022181666A1 WO 2022181666 A1 WO2022181666 A1 WO 2022181666A1 JP 2022007524 W JP2022007524 W JP 2022007524W WO 2022181666 A1 WO2022181666 A1 WO 2022181666A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
pipe
injection
air nozzle
base portion
Prior art date
Application number
PCT/JP2022/007524
Other languages
French (fr)
Japanese (ja)
Inventor
久男 奥脇
Original Assignee
イースタン技研株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by イースタン技研株式会社 filed Critical イースタン技研株式会社
Publication of WO2022181666A1 publication Critical patent/WO2022181666A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B3/00Spraying or sprinkling apparatus with moving outlet elements or moving deflecting elements
    • B05B3/02Spraying or sprinkling apparatus with moving outlet elements or moving deflecting elements with rotating elements
    • B05B3/04Spraying or sprinkling apparatus with moving outlet elements or moving deflecting elements with rotating elements driven by the liquid or other fluent material discharged, e.g. the liquid actuating a motor before passing to the outlet
    • B05B3/06Spraying or sprinkling apparatus with moving outlet elements or moving deflecting elements with rotating elements driven by the liquid or other fluent material discharged, e.g. the liquid actuating a motor before passing to the outlet by jet reaction, i.e. creating a spinning torque due to a tangential component of the jet
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B5/00Cleaning by methods involving the use of air flow or gas flow
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B5/00Cleaning by methods involving the use of air flow or gas flow
    • B08B5/02Cleaning by the force of jets, e.g. blowing-out cavities

Definitions

  • the present invention removes residual liquid (moisture) or adhering chips, dust, oil stains, etc. from cleaning with a cleaning liquid to products (workpieces) that have been manufactured or completed in a manufacturing factory or articles in a cleaning facility.
  • the present invention relates to an air nozzle that dries the surface of a product (work) or article by blowing it off with an air jet pressure.
  • chips, dust, or residual cutting oil or mold release agent that adheres to the surface of the product (work) is washed with a washing liquid, and then air is removed.
  • a washing liquid a washing liquid
  • air air is removed.
  • resin-molded products such as trays, container boxes, and HDDs for storing food, clothing, machine parts, etc.
  • trays and container boxes there are plastic containers that store lunch boxes sold at convenience stores, supermarkets, and the like.
  • trays and container boxes are used to protect semiconductor chips in the process of shipping semiconductor chips. Subject to work process.
  • the above-mentioned products are cleaned of oil stains, chips, and scraps by spraying a cleaning liquid and then blowing off moisture with air. is frequently done.
  • the above washing and drying processes are also performed at cleaning facilities that specialize in washing.
  • air guns exist in conventional cleaning equipment. After washing with a cleaning liquid to remove chips, dust, or residual cutting oil from products (workpieces) with uneven surfaces such as trays, remove moisture remaining on most of the surface with the above-mentioned air gun. It was possible to dry However, it has been difficult to substantially completely drain the cleaning liquid remaining in the depressions of the uneven surface of the product (work).
  • washing and drying means require a large number of workers and a large amount of related equipment such as compressors. be a burden.
  • the recent cleaning equipment can solve the above problems, it actively scrapes out liquid and dust remaining in grooves, holes, etc., as well as the surface of the product (work), making it easy to clean. It cannot be said that draining can be performed perfectly, and further development is required.
  • the jetting portion rotates together with the rotating body by the rotational force that is the component of the jetting force due to the air jetting from the nozzle.
  • a device has been developed in which water such as cleaning liquid is blown off by intermittent air jets. In this type of device, as can be seen in the graph of FIG. When the number of revolutions exceeds , the wavy or intermittent effect of air injection deteriorates, resulting in continuous air injection, which may cause a phenomenon of deterioration in drying quality (which may be called drying work performance).
  • the rotating wave nozzle has a characteristic that the rotating shaft is rotatably supported by bearings, so that it can be easily rotated even with low-pressure compressed air, so that the number of revolutions can easily increase. And it is said that the drying quality deteriorates at a high number of revolutions. That is, between the number of rotations of the rotary wave nozzle and the drying quality, it becomes difficult to blow off droplets efficiently when the number of rotations increases beyond the optimum value.
  • the rotary wave nozzle blows compressed air in a wave pattern (periodically and intermittently) to the workpiece, so it is possible to blow off the droplets efficiently. It is however, when the rotational speed exceeds the optimum value, the interval of the compressed air blown in waves gradually becomes shorter, and eventually the compressed air stops generating waves. It has been pointed out that this is equivalent to continuously injecting compressed air, and that the drying quality is degraded (see FIG. 13). Furthermore, it has been pointed out that the higher the rotational speed of the rotary wave nozzle, the shorter the life of the bearing and the louder the noise.
  • Patent Document 1 rotation speed suppression means for suppressing such an excessive increase in the rotation speed (rotational speed) of the rotating body is provided.
  • the rotation speed suppressing means in Patent Document 1 has a very complicated structure, and there is a good chance that it will be difficult and expensive to manufacture.
  • the nozzle when cleaning and draining the surface of the product (workpiece) by jetting air from the nozzle, the nozzle itself also rotates along the circular trajectory at its base as the main body rotates.
  • the high-pressure jet air jetted from the nozzle forms a substantially doughnut-shaped jet region on the product (work).
  • the object of the present invention (technical problem to be solved) is to actively scrape out moisture remaining in depressions as well as the surface of a product (work) such as a part, drain off the attached liquid, or Means for easily blowing off oil stains mixed with oil and dust, efficiently blowing off dust such as cutting chips, and suppressing an excessive increase in the number of revolutions have an extremely simple configuration. Furthermore, it is possible to prevent or minimize the occurrence of a portion where no jet air exists in the injection area of the high-pressure jet air jetted from the nozzle to the product (work), and to minimize the amount of air jet. To provide an air nozzle capable of increasing wind force and pressure.
  • the invention of claim 1 includes a cylindrical housing portion having an opening at one end in the axial direction and a and a stationary body which is rotatably housed and mounted in the stationary base, has an air flow path therein, is orthogonal to the axis of rotation, and extends from the inner side of the cylindrical housing section.
  • a rotating body having a rotating base portion having a tip surface portion facing an opening, and one injection pipe and one control pipe provided on the tip surface portion and communicating with the air flow path, wherein the injection pipe and the Each root portion of the control pipe is spaced apart from the rotation center of the tip surface portion, and each injection direction is set to be inclined at a predetermined angle with respect to the rotation axis center line, and the injection pipe follows the movement trajectory of the root portion.
  • the inner diameter of the control pipe is equal to or larger than the inner diameter of the injection pipe, and the injection is performed on the extension of the injection air of the injection pipe.
  • the invention of claim 2 is the air nozzle of claim 1, wherein the inner diameter of the control pipe is larger than the inner diameter of the injection pipe, thereby solving the above problems.
  • the invention of claim 3 is the air nozzle of claim 1 or 2, wherein the control pipe and the injection pipe have a vertical pipe portion and an inclined pipe portion, and the vertical pipe portion is positioned on the root side of the jet pipe, the jet pipe has a vertical pipe and an inclined pipe portion, and the vertical pipe portion is positioned on the root portion side of the jet pipe.
  • the invention of claim 4 is the air nozzle of claim 1 or 2, wherein the control pipe and the injection pipe are vertical in the vicinity of both base portions and arcuate in the other portions.
  • the above problem was solved by
  • the invention of claim 5 is the air nozzle according to any one of claims 1, 2, 3, or 4, wherein the centers of root portions of the injection pipe and the control pipe are aligned with the rotation center of the rotation base.
  • the above problem was solved by using an air nozzle set at a point-symmetrical position.
  • the invention of Claim 6 is the air nozzle according to any one of Claims 1, 2, 3, 4, or 5, wherein the tip injection ports of the injection pipe and the control pipe are configured to rotate the rotation base portion.
  • the above problem was solved by making the air nozzle parallel to the plane.
  • the invention according to claim 7 is the air nozzle according to any one of claims 1, 2, 3, 4, 5, or 6, wherein the injection holes through which the respective tips of the injection pipe and the control pipe are inserted are The above problem is solved by providing an air nozzle that is provided with a disk portion that is provided and attached to the rotation base.
  • the invention of claim 8 is the air nozzle according to any one of claims 1, 2, 3, 4, 5, 6, or 7, wherein the lower first base portion to which the air nozzle is mounted, and the lower first base portion.
  • a lower second base portion that supports the base portion so as to be swingable and fixed in a direction orthogonal to the direction in which the work advances, and a second base portion that supports the base portion so as to be swingable and fixed in the same direction as the direction in which the work advances.
  • the above problem is solved by providing an air nozzle including an air nozzle base having a lower third base portion.
  • the invention of Claim 9 is the air nozzle according to any one of Claims 1, 2, 3, 4, 5, 6, or 7, wherein the upper first base portion to which the air nozzle is mounted, and the upper first base portion.
  • the above problem is solved by providing an air nozzle having an air nozzle base including an upper second base portion that pivotally supports the base portion so as to be able to swing and fix in the same direction as the work progressing direction.
  • a rotating body having one injection pipe and one control pipe provided on the tip surface portion and communicating with the air flow path is provided, and the root portion of each of the injection pipe and the control pipe is provided. is spaced apart from the center of rotation of the tip surface portion, and the direction of each injection is set to be inclined at a predetermined angle with respect to the center line of the rotation axis, and the injection pipe is based on the tangential direction of the movement locus circle of the root portion. Both sides of the tangential line on the plane of rotation can be swung and fixed within a predetermined angle range. As a result, both the base portions of the injection pipe and the control pipe can be brought close to the center of rotation on the tip surface portion of the rotation base portion.
  • the flowing high pressure air flows intensively and efficiently into the injection pipe and the control pipe, resulting in a very high pressure air injection from the injection pipe and the control pipe.
  • the injection pipe and the control pipe are located near the rotation center of the rotation base portion, so that the air injection from both the injection pipe and the control pipe can be concentrated near the rotation center of the tip surface portion. Therefore, in the process of drying the product (work), the injection air from the injection pipe and the control pipe eliminates or minimizes the windless area where there is no injection air to the product (work). Both blasts of air synergistically combine to achieve a very large drying job on the workpiece.
  • the control pipe is arranged at a predetermined angle in a region on the opposite side of the rotation direction from the normal line on the rotation plane with reference to the normal direction of the movement locus circle of the root portion. Since the control pipe is provided so that the air injection direction of the injection pipe and the direction of injection are inclined to the opposite side with respect to the axial center line of the rotation base of the rotating body, the injection can be performed.
  • the injection of the control tube is directed against or against the direction of injection by the tube.
  • control pipe plays the role of controlling the rotation speed of the rotating body, and the injection force of the control pipe itself can be maintained large, so the air injection of the injection pipe is possible.
  • air injection is added by the control pipe, and the drying operation for the product (work) can be maintained well.
  • one injection pipe and one control pipe can be arranged close to the center of rotation on the tip surface of the rotating body, so that the injection
  • the blast air in each tube and control tube can act synergistically to increase wind speed and pressure.
  • the injection air of the control pipe and the injection air of the injection pipe intersect on the extension line of the injection direction, and the product (work) is arranged at the intersecting position, so that the injection area It is possible to prevent a doughnut-shaped injection range in which a blank area in which no injection air exists is generated in the nozzle, and to enable effective injection to be performed over the entire injection area.
  • the inner diameter of the control pipe is larger than the inner diameter of the jet pipe, so that the control pipe can sufficiently control the rotational speed of the rotating body, and the drying performance by the air jet is extremely high. It can be expensive.
  • control pipe and the injection pipe have a vertical pipe portion and an inclined pipe portion, the vertical pipe portion is located on the root portion side of the injection pipe, and the injection pipe is It has a vertical pipe and an inclined pipe portion, and the vertical pipe portion is located on the root portion side of the injection pipe, and the root portions of the injection pipe and the control pipe are vertical pipe portions, respectively. It is possible to easily assemble the structure for rotating the root portion in the circumferential direction, and to simplify the angle adjusting mechanism in the root portion of the injection pipe and the control pipe.
  • the control pipe and the injection pipe are arcuate, and the vicinity of both root portions are vertical, thereby smoothing and favorably flowing the injection air from the rotating base portion. Pressure loss can be minimized.
  • the centers of the root portions of the injection pipe and the control pipe are set at positions that are symmetrical with respect to the rotation center of the rotation base portion. The balance of the air injection is improved, and the rotation of the rotation base can be stabilized.
  • the tip injection ports of the injection pipe and the control pipe are parallel to the rotation plane of the rotation base, so that the injection pipe and the control pipe can be angled in any direction on the rotation plane. is changed, the injection state of the air injection can be made uniform.
  • a disk portion mounted on the rotating base is provided with an injection hole through which the tip of each of the injection pipe and the control pipe is inserted.
  • the air nozzles can be swung and fixed in the direction of movement of the workpiece and in a direction orthogonal to the direction of movement of the workpiece, so that the direction of air injection from each air nozzle can be set in a desired direction. It is possible to perform drying work according to the type and shape of the work.
  • (A) is a vertical cross-sectional side view of the air nozzle of the present invention
  • (B) is a plan view of the air nozzle viewed from the opening side of the rotating main body
  • (C) is an enlarged cross-sectional view of (A) taken along the arrow Y1-Y1
  • (D) is an enlarged view of ( ⁇ )
  • (E) is a cross-sectional view of the cylindrical housing portion of (A) taken along the line Y2-Y2.
  • (A) is a vertical cross-sectional side view in which the main members of the air nozzle of the present invention are disassembled
  • (B) is a vertical cross-sectional side view in which the rotating body of the air nozzle is disassembled
  • (C) is a main part of the rotating body of (B) in another direction.
  • 1 is a cross-sectional view seen from .
  • (A) is a perspective view of the control tube and the support block in the rotating body
  • (B) is an enlarged cross-sectional view of the main part showing the root portion of the control tube and the support block
  • (C) is the main part separating the rotation base and the control tube.
  • (D) is a cross-sectional view of the main part in which the rotation base and the injection pipe are separated
  • (E) is a cross-sectional plan view at the support block.
  • (A) is a plan view of the air nozzle in the initial state seen from the opening side in the present invention
  • (B) is a plan view of the air nozzle in the present invention seen from the opening side in a state where the ejection pipe and the control pipe are changed by a predetermined angle.
  • (A) to (C) are plan views of the main part seen from the opening side in a state in which the injection pipe and the control pipe are shifted by a predetermined angle from their initial positions.
  • FIG. 1 is a partially cutaway plan view of FIG. 1 is a schematic vertical cross-sectional view of an air jet drying system to which the air nozzle of the present invention is applied; FIG. FIG.
  • FIG. 11 is a schematic vertical cross-sectional view of a transport drive unit of another embodiment of the air jet drying system;
  • (A) is a plan view showing another embodiment of the arrangement of the injection pipes and control pipes of the present invention, viewed from the opening side, and
  • (B) is still another embodiment of the arrangement of the injection pipes and control pipes of the present invention.
  • 2 is a plan view seen from the opening side shown;
  • FIG. (A) and (B) are longitudinal side views of another embodiment of the injection pipe and control pipe of the present invention.
  • FIG. 4 is a plan view of the embodiment in which the inner diameters of the injection pipe and the control pipe are equal, viewed from the opening side; It is a graph which shows the rotation speed of an air nozzle, and the relationship of drying quality.
  • FIG. 4 is an exploded view of an upper air nozzle unit having a swinging mechanism;
  • (A) and (B) are a side view and a plan view showing the prior art.
  • the air nozzle An of the present invention basically comprises a fixed body A1 and a rotating body A2.
  • the rotating body A2 is equipped with an injection pipe 41 and a control pipe 42 (Fig. 1, See Figure 2, etc.). Details of the injection pipe 41 and the control pipe 42 will be described later.
  • product (work) 9 there is a term "product (work) 9", but this product (work) 9 is not limited to products manufactured in a manufacturing facility such as a factory, but is used to clean articles. It also includes items that are subject to cleaning, such as cleaning facilities.
  • these products are collectively referred to as a product (work) 9. As shown in FIG.
  • the fixed body A1 is a non-rotatable structure, and the rotary body A2 is attached to the fixed body A1 so as to be rotatable (Fig. 1(A), (B), FIG. 2, FIG. 4, etc.].
  • the gas of the air injected from the air nozzle An is mainly ordinary air, but various types of gas are also included.
  • air in the following description may be replaced with "gas”.
  • the fixed main body A1 is mainly composed of a fixed base portion 1 and a cylindrical housing portion 2 [see FIGS. 1(A), (E) and 2(A)].
  • the air nozzle An has an “opening side” and a “rear side” in the axial direction (see FIGS. 1, 2, etc.).
  • the opening side may be referred to as a "front side”.
  • the axial direction refers to the linear direction of the axis that is the center of rotation when the rotating body A2 rotates.
  • the line of the axis that serves as the center of rotation is referred to as the rotation axis line L of the air nozzle An.
  • the rotation axis line L is an axis line common to all the constituent members constituting the air nozzle An. Therefore, the rotation axis core line L is also applied to the rotation base portion 3 and the disk portion 5 that constitute the rotation main body A2. Further, when the rotating body A2 is attached to the fixed body A1, the core (shaft) of the fixed body A1 coincides or substantially coincides with the rotational axis core L (see FIG. 1(A)).
  • the stationary body A1 and the rotating body A2 constituting the air nozzle An are in a state where the axis of the stationary body A1 coincides with the rotation axis line L when the rotating body A2 is incorporated in the stationary body A1. Therefore, the rotating shaft center line L is also used as the shaft center line of the fixed main body A1 [see FIG. 1(A)]. Further, positions of the opening side (front side) and the rear side of the fixed body A1 and the rotating body A2 are determined with respect to the rotation axis L (see FIG. 1(A)). The axis of rotation L is shown in the main figures.
  • the fixed base portion 1 has a fixed cylindrical portion 11 and a connection fixed flange portion 12 [see FIGS. 1 and 2(A)].
  • the fixed cylindrical portion 11 is configured in a substantially hollow cylindrical shape (see FIGS. 1 to 3), and the rotation base portion 3 of the rotation main body A2, which will be described later, is rotatable about the rotation axis L as a rotation axis. It is worn as As described above, the fixed cylindrical portion 11 has a substantially hollow cylindrical shape, and has a cylindrical through portion 11b that is open on both sides in the axial direction along the rotation axis L of the cylindrical shape. Threaded holes 11c having internal threads are formed at regular intervals along the periphery of the opening of the rear end of the fixed cylindrical portion 11 (see FIG. 2).
  • the fixed flange portion 12 for connection serves as a lid when housing and arranging the bearing 34 and the spacer 35 mounted between the inside of the fixed cylindrical portion 11 and the rotary main body A2, and also serves as an air nozzle for an air nozzle base 6, which will be described later. It serves as a connecting member for attaching An (see FIGS. 7, 8, 14 to 17, etc.).
  • the connecting fixed flange portion 12 is fixed to one axial end of the fixed cylindrical portion 11 with a plurality of fasteners 13 such as screws.
  • the fixed flange portion 12 for connection is formed in an annular disc shape and is larger than the outer diameter of the fixed cylindrical portion 11 .
  • a fixed through hole 12a, a connection hole 12b, and a connection hole 12c are formed in the fixed flange portion 12 for connection. The connection between the fixed cylindrical portion 11 and the connecting fixed flange portion 12 is performed by the fixture 13, the connection hole 12b, and the screw hole 11c.
  • the cylindrical housing portion 2 is formed to have a larger diameter than the fixed cylindrical portion 11 of the fixed base portion 1, and has a cylindrical container shape (see FIGS. 1(A) and 2(A)). ].
  • the cylindrical housing portion 2 has a cylindrical side wall plate portion 21 and a closing plate portion 22, and has an opening portion 2a on one end side in the axial direction and on the side opposite to the closing plate portion 22.
  • the opening side of the cylindrical housing portion 2 of the fixed main body A1 is defined as the opening side (front side), and the opposite side in the axial direction along the rotation axis L is defined as the rear side (Figs. See Figure 3, etc.).
  • a through hole 22a into which one axial end of the fixed cylindrical portion 11 of the fixed base portion 1 is inserted is formed on the closing plate portion 22 side of the cylindrical housing portion 2.
  • the portion 22 is fixed by a fixing means such as welding.
  • a portion of the fixed cylindrical portion 11 on one end side in the axial direction is in a state of biting into the closing plate portion 22 of the cylindrical housing portion 2 (see FIGS. 1A, 1E, 2A, etc.). ]. That is, a portion of one end of the fixed cylindrical portion 11 in the axial direction is inserted into the cylindrical housing portion 2 .
  • annular brim is formed on the outer peripheral side surface of the fixed cylindrical portion 11 near the opening side (front side) in the axial direction, and the diameter of the portion near the opening side (front side) in the axial direction with the annular brim as a boundary is becomes a small-diameter portion with a smaller diameter, and there is a stepped portion 11a serving as a stepped portion.
  • the stepped portion 11a serves as a stopper for inserting and connecting the small-diameter portion of the stationary cylindrical portion 11 into the through hole 22a of the closing plate portion 22 of the cylindrical housing portion 2, and as a positioning function.
  • the rotating body A2 has a rotating base portion 3, an injection pipe 41, a control pipe 42, and a disk portion 5 [see FIGS. 1, 2(B), and 3].
  • the rotating base portion 3 is composed of a rotating cylindrical portion 31 and a rotating flange portion 32 (see FIGS. 1(A), 2(B), 3, 4, etc.).
  • the rotary cylindrical portion 31 is formed in the shape of a cylindrical cup and is composed of a cylindrical side surface portion 31a and a tip surface portion 31b.
  • the cylindrical side surface portion 31a constitutes the outer periphery of the rotating cylindrical portion 31, and the tip surface portion 31b is a portion that closes the axial opening side (front side) of the rotating cylindrical portion 31. As shown in FIG.
  • an air flow path 31s is formed as a cylindrical void [see FIGS. 1(A), 2(B) and 2(C)].
  • the tip surface portion 31b constitutes the bottom portion of the rotating cylindrical portion 31, and has a circular shape when viewed from the opening side.
  • the rotating cylindrical portion 31 of the rotating base portion 3 is formed with an expanded chamber portion 311 having an enlarged inner diameter near the tip surface portion 31b.
  • the air flow path 31s is configured to have a larger volume at the tip surface portion 31b side than at other portions.
  • the tip surface portion 31b may be a separate member from the cylindrical side surface portion 31a as a member constituting the rotating cylindrical portion 31 of the rotating base portion 3 [Figs. C)].
  • the tip surface portion 31b is formed as a separate member, it is formed in the shape of a disc, and is fixed by a fastener such as a screw so as to close the opening of the rotating cylindrical portion 31 on the expansion chamber portion 311 side. 1 (A), FIGS. 2 (B) and (C)].
  • the rear side of the rotary cylindrical portion 31 is an open air inlet 31d.
  • Two air discharge portions 31m and 31n which are through holes penetrating between the inside and the outside of the rotary cylindrical portion 31, are formed in the tip surface portion 31b of the rotary cylindrical portion 31.
  • a root portion 41j of the injection pipe 41 and a root portion 42j of the control pipe 42 which will be described later, are attached to the air discharge portion 31m and the air discharge portion 31n formed on the tip surface portion 31b [Figs. (D), see FIGS. 2B and 2C].
  • a rotating flange portion 32 is fixed to the axially rearward side of the rotating cylindrical portion 31 with a fastener 33 such as a screw [see FIGS. 1(A) and 2(B)].
  • a fastener 33 such as a screw [see FIGS. 1(A) and 2(B)].
  • the rotary flange portion 32 has an annular disk shape, an air inlet hole 32a is formed, and a connection hole 32b is formed around the periphery of the air inlet hole 32a.
  • a threaded hole 31e is formed in the axially rearward end face of the rotating cylindrical portion 31, and the rotating flange portion 32 is fixed to the rotating cylindrical portion 31 by a connecting hole 32b, a threaded hole 31e and a fastener 33 [FIG. A), see FIG. 2(B)].
  • the outer peripheral edge of the rotating flange portion 32 can be rotatably locked to the inner peripheral edge of the fixing through-hole 12a of the connection fixing flange portion 12 of the fixed main body A1 [Figs. A), (B)].
  • the injection pipe 41 and the control pipe 42 are attached to the tip surface portion 31b of the rotation base portion 3.
  • the number of injection pipes 41 is one, and serves to dry the product (work) 9 and rotate the rotary body A2.
  • the number of control pipes 42 is one, and it has the role of suppressing the number of revolutions (rotational speed) of the rotating body A2 by the injection pipes 41, and the role of drying the product (work) 9 together with the injection pipes 41.
  • the air injection directions of the injection pipe 41 and the control pipe 42 are set to be inclined at predetermined angles ⁇ a and ⁇ b with respect to the rotation axis center line L of the rotation base portion 3 [FIG. (D), FIGS. 3B, 3C, and 3D].
  • the root portions 41j and 42j of the injection pipe 41 and the control pipe 42 are attached to the tip surface portion 31b of the rotating cylindrical portion 31 [Figs. 1(C), (D), Figs. , see (D)].
  • the injection pipe 41 and the control pipe 42 rotate around their base portions 41j and 42j, so that the injection angle can be changed on the plane of rotation of the rotating body A2 (see FIGS. 4 and 5).
  • the rotation plane is a plane orthogonal to the rotation axis center line L of the rotation main body A2. That is.
  • Root portions 41j and 42j of the injection pipe 41 and the control pipe 42 are formed as linear pipe body portions, and these linear pipe body portions are referred to as vertical pipe portions 41a and 42a. 1 (C), (D), and FIG. 3 (B), (C), (D)].
  • root portions 41j and 42j are formed near the axial ends of the vertical tube portion 41a and the vertical tube portion 42a.
  • Root portions 41j and 42j of the injection pipe 41 and the control pipe 42 are circular pipes having a circular cross-section and a substantially new circular shape, and oscillate on the rotation plane with the center of the diameter of the root portions 41j and 42j as the oscillating center P1. (See FIGS. 4 and 5). The rocking structure will be described later.
  • the injection pipe 41 mainly has a vertical pipe portion 41a and an inclined pipe portion 41b [see FIGS. 1(C), (D), 3(B), (C), and (D)].
  • Both the vertical tube portion 41a and the inclined tube portion 41b are straight tubular bodies, and the inclined tube portion 41b is inclined at a predetermined angle ⁇ a with respect to the pipe length direction of the vertical tube portion 41a [FIG. (D), FIGS. 3B, 3C, and 3D]. That is, the pipe length direction of the inclined pipe portion 41b is the air injection direction, and the inclined pipe portion 41b is configured to be inclined at an angle ⁇ a with respect to the rotation axis center line L.
  • the air injection angle from the tip injection port 41c is an angle ⁇ a with respect to the rotation axis center line L. As shown in FIG.
  • control pipe 42 has the same structure as the injection pipe 41, and has an inclined pipe portion 42b together with the vertical pipe portion 42a described above [Figs. , (C) and (D)].
  • Both the vertical tube portion 42a and the inclined tube portion 42b are straight tubular bodies, and the inclined tube portion 42b is inclined at an angle ⁇ 2 with respect to the longitudinal direction of the vertical tube portion 42a [Figs. ), see FIGS. 3B, 3C, and 3D].
  • the pipe length direction of the inclined pipe portion 42b is the direction of air injection, and the inclined pipe portion 42b is inclined at an angle ⁇ b with respect to the rotation axis L, thereby
  • the air injection angle from the tip injection port 42c is an angle ⁇ b with respect to the center line L of the rotation axis.
  • the angle ⁇ b of the control pipe 42 may be set equal to or different from the angle ⁇ a of the injection pipe 41 .
  • the jet pipe 41 is capable of swinging on the plane of rotation about the swing center P1 of the root portion 41j.
  • the inclination angle ⁇ a with respect to is unchanged and always constant.
  • the control tube 42 can oscillate on the plane of rotation about the oscillation center P1 of the root portion 42j, and the rotation axis
  • the inclination angle ⁇ b with respect to the core line L does not change and is always constant.
  • Pivot centers P1 and P2 of root portions 41j and 42j of injection pipe 41 and control pipe 42, respectively, are separated from rotation center P of tip surface portion 31b of rotary base portion 3 (see FIGS. 1(B) and 3). , see FIG. 4].
  • the rotating body A2 rotates around the rotation axis L with respect to the fixed body A1.
  • the pivot center P1 of the root portion 41j of the injection pipe 41 and the pivot center P2 of the root portion 42j of the control pipe 42 are aligned with the rotation base portion.
  • the center of rotation P of the tip surface portion 31b of 3 is the center of the diameter.
  • the trajectory along which the swing center P1 of the injection pipe 41 moves is called a trajectory circle Q1
  • the trajectory along which the swing center P2 of the control pipe 42 moves is called a trajectory circle Q2.
  • the injection pipe 41 has a reference tangent line Lt set at an arbitrary position on the rotation plane with reference to the tangential direction of the movement locus circle Q1 of the swing center P1 of the root portion 41j.
  • the point of contact of the reference tangent line Lt with the movement locus circle Q1 is the pivot center P1 of the root portion 41j.
  • Both sides of the reference tangent line Lt on the plane of rotation of the reference tangent line Lt can be swung and fixed within a swing angle .theta.1. That is, it oscillates in the range of +.theta.1 and -.theta.1 on the plane of rotation with respect to the reference tangent line Lt [see FIGS. 1(B), 4 and 5].
  • the swing angle ⁇ 1 is in the range of + ⁇ 1 and - ⁇ 1, from about 0 degrees to less than about 90 degrees, and properly about +30 degrees and -30 degrees (see FIG. 5).
  • a reference normal line Ln is set at an arbitrary position on the rotation plane with reference to the normal line direction of the movement locus circle Q2 of the swing center P2 of the root portion 42j.
  • the intersection of the reference normal line Ln and the movement locus circle Q2 is the position of the swing center P2 of the root portion 42j.
  • the rotation base portion 3 can be swung and fixed within a predetermined swing angle ⁇ 2 [see FIGS. 1(B), 4 and 5]. .
  • the reference normal line Ln is set as a line connecting the rotation center P of the tip surface portion 31b and the swing center P2 of the base portion 42j of the control pipe 42. , and the installation position of the reference normal line Ln is also fixed with respect to the tip surface portion 31b.
  • the front side of the reference normal line Ln is the advancing side along the rotation direction of the tip surface portion 31b of the rotating body A2 with the reference normal line Ln as the reference, and is opposite to the advancing side with the reference normal line Ln as the reference.
  • the side, ie the rear side, is called the opposite side of the reference normal line Ln (see FIG. 4).
  • the side opposite to the reference normal Ln is referred to as the rotationally opposite side. 4 and 5, the reference tangent line Lt and the reference normal line Ln are indicated by dashed-dotted lines, and the directions of air injection in the injection pipe portion 41 and the control pipe 42 are indicated by solid lines.
  • the movement locus circle Q1 of the oscillation center P1 of the injection pipe 41 and the movement locus circle Q2 of the oscillation center P2 of the control pipe 42 are concentric circles centered on the rotation center P [Fig. See FIGS. 3(E), 4, and 5].
  • the diameters of the movement trajectory circle Q1 and the movement trajectory circle Q2 are the same [see FIGS. reference).
  • the distance from the rotation center P of the swing center P1 of the root portion 41j of the injection pipe portion 41 and the swing center P2 of the root portion 42j of the control pipe 42 is be equal.
  • the center of rotation P and the centers of oscillation P1 and P2 are aligned in a straight line, the positional relationship is symmetrical about the center of rotation P [see FIGS. ].
  • the control pipe 42 suppresses an excessive increase in the rotational speed of the rotating body A2 due to the injection pipe 41, and serves to maintain an appropriate rotational speed. Therefore, when the air injection force from the injection pipe 41 is F1 and the air injection force from the control pipe 42 is F2, the rotation driving force of the rotating body A2 by the injection pipe 41 is F1 cos ⁇ 1, and the rotation suppressing force by the control pipe 42 is F2 sin ⁇ 2.
  • the injection force F1 and the injection force F2 are forces having a direction parallel to the plane of rotation of the rotating body A2.
  • the rotational driving force F1 cos ⁇ 1 is set larger than the rotation suppressing force F2 sin ⁇ 2.
  • the rotating body A2 is rotated around the rotation axis center line L around the center of rotation P1 by the injection from the injection pipe 41 during operation.
  • the injection pipe 41 is a pipe member that circulates air to generate an air injection for cleaning and an air injection for propulsion that becomes a rotational force to rotate the rotating body A2.
  • One end of the injection pipe 41 is a root portion 41j.
  • the root portion 41j is inserted into the air discharge portion 31m provided on the cylindrical side surface portion 31a of the rotating cylindrical portion 31 and near the tip surface portion 31b side, and the root portion 41j swings within the air discharge portion 31m at the pivot center P1. is the center of oscillation (see FIGS. 3, 4, and 5).
  • the control pipe 42 controls the rotational speed of the rotating body A2 and performs drying work together with the injection pipe 41.
  • One end of the control tube 42 is a root portion 42j.
  • the base portion 42j is inserted into an air discharge portion 31n provided on the cylindrical side surface portion 31a of the rotary cylindrical portion 31 and near the tip surface portion 31b side, and the base portion 42j swings within the air discharge portion 31n at a center point P2. is the center of oscillation (see FIGS. 3, 4, and 5).
  • the inner diameter D2 of the control pipe 42 is set equal to or larger than the inner diameter D1 of the injection pipe 41 [Figs. 1(B), (C), (D), Figs. See (E)]. That is, D2 ⁇ D1.
  • the inner diameter D1 of the injection pipe 41 and the inner diameter D2 of the control pipe 42 are relatively large with respect to the tip surface portion 31b. percent. Furthermore, the inner diameter D1 of the injection pipe 41 and the inner diameter D2 of the control pipe 42 may be made equal (see FIG. 12).
  • the embodiment in which the inner diameter D1 of the injection tube 41 and the inner diameter D2 of the control tube 42 are equal includes that the inner diameter D1 and the inner diameter D2 are substantially equal. In this case, the fact that the pipe inner diameter D1 of the injection pipe 41 is slightly larger than the pipe inner diameter D2 of the control pipe 42 is included substantially equivalently.
  • a jet support block 45 and a control support block 46 are used in this mounting structure.
  • the injection pipe 41 is attached to the tip surface portion 31b via the injection support block 45
  • the control support block 46 is attached to the tip surface portion 31b via the control support block 46 (see FIG. 3).
  • the injection support block 45 is formed with a support hole 45a.
  • a fixing screw hole 45b is formed in a direction orthogonal to the hole direction of the support hole 45a.
  • a fixed groove 41d is formed in the circumferential direction on the outer circumference of the root portion 41j of the injection pipe 41 (see FIG. 3). Then, the root portion 41j of the injection pipe 41 is inserted into the support hole 45a, the fixing screw 47 is screwed into the fixing screw hole 45b, and the tip of the fixing screw 47 is inserted into the screw hole fixing groove 41d of the root portion 41j. is set [see FIGS. 3(B) and 3(C)].
  • the injection pipe 41 can be swung around the swing center P1 of the root portion 41j. 41 can be fixed at any desired angle.
  • the control support block 46 has substantially the same shape as the injection support block 45 and has a symmetrical shape.
  • a support hole 46a is formed in the control support block 46, and a fixing screw hole 46b is formed in a direction orthogonal to the hole direction of the support hole 46a.
  • a fixing groove 42d is formed in the outer circumference of the root portion 42j of the control pipe 42, the root portion 42j of the control pipe 42 is inserted into the support hole 46a, and a fixing screw 47 is screwed into the fixing screw hole 46b. , the tip of the fixing screw 47 is set to be inserted into the screw hole fixing groove 42d of the root portion 42j.
  • control tube 42 By loosening the fixing screw 47, the control tube 42 can be swung around the swing center P2 of the base portion 42j. 42 can be fixed at any desired angle. Further, the support hole 45a of the injection support block 45 is installed so as to match the air discharge portion 31m of the tip surface portion 31b, and the support hole 46a of the control support block 46 is installed so as to match the air discharge portion 31n.
  • the injection pipe 41, the tip injection port 41c, and the tip injection port 42c of the control pipe 42 are formed parallel to the rotation plane of the rotation base portion 3 [Figs. (B), (C), (D)]. That is, the tip ejection port 41c and the tip ejection port 42c are parallel to the opening surface of the opening 2a of the cylindrical housing portion 2. As shown in FIG.
  • the disc portion 5 allows jet air from the tip jet port 41c of the jet pipe 41 and the tip jet port 42c of the control pipe 42 to pass through.
  • the disc portion 5 is connected to the tip surface portion 31b of the rotating cylindrical portion 31 of the rotating base portion 3 so that the rotation centers of the disc portion 5 and the rotating base portion 3 match or substantially match.
  • a cylindrical collar portion 53 is provided between the tip surface portion 31b and the disk portion 5 to provide a predetermined gap, and the tip surface portion 31b, the disk portion 5 and the collar portion 53 are screwed together. It is fixed by a fixing tool 54 such as (see FIGS. 1 and 2).
  • a mounting through hole 5n is formed in the disk portion 5, a threaded portion of a fastener 54 such as a screw is passed through the mounting through hole 5n, and the fastener 54 is screwed into the screw hole of the collar portion 53.
  • the disk portion 5 and the injection pipe 41 rotate with the rotation base portion 3 as a rotation axis along the rotation axis core line L. suppresses and controls the excessive rise of
  • the collar portion 53 may be formed integrally with the tip surface portion 31b of the rotating cylindrical portion 31 of the rotating base portion 3. As shown in FIG.
  • the disc portion 5 is set so as to be located on the rear side in the axial direction from the opening peripheral edge of the opening portion 2a of the cylindrical housing portion 2 of the fixed main body A1.
  • the disk portion 5 is positioned inside the opening 2 a of the cylindrical housing portion 2 , that is, on the rear side of the cylindrical housing portion 2 .
  • the opening 2a of the cylindrical housing portion 2 and the disk portion 5 form a substantially flat cylindrical void chamber S having a depth dimension H from the opening portion 2a on the opening side of the cylindrical housing portion 2 [ See FIG. 1(A)].
  • the depth dimension H is an amount for setting the volume of the void chamber S, and by appropriately adjusting the depth dimension H, the volume can also be set as appropriate.
  • the depth dimension H of the void chamber S is a very small amount compared to the overall height of the cylindrical housing portion 2 .
  • the outer peripheral edge 5a of the disk portion 5 is installed so as to be in a non-contact state with the inner peripheral side of the cylindrical side wall plate portion 21 of the cylindrical housing portion 2. As shown in FIG.
  • An injection hole 51 is formed in the disc portion 5 .
  • a tip injection port 41 c of the injection pipe 41 and the control pipe 42 and a tip injection port 42 c of the control pipe 42 pass through the injection hole 51 .
  • the tip ejection port 41c and the tip ejection port 42c need only penetrate the ejection hole 51 by a small amount.
  • the tip injection port 41c of the injection pipe 41 is configured so as not to extend beyond the opening 2a of the cylindrical housing portion 2 [see FIGS. 1(A), (C), and (D)].
  • the tip injection port 41c of the injection pipe 41 and the tip injection port 42c of the control pipe 42 are positioned inward without going beyond the opening 2a of the cylindrical housing portion 2 and do not protrude outward.
  • the air nozzle An is equipped with two bearings 34 .
  • the first bearing 34 is inserted into the fixing body A1 through the opening on the rear side in the axial direction of the fixing base portion 1, then the spacer 35 is inserted, and then the second bearing 34 is inserted.
  • the spacer 35 is composed of two cylindrical rings, one of which is mounted along the inner peripheral side of the cylindrical through portion 11b of the fixed cylindrical portion 11 of the fixed body A1, and the other of which rotates. It is mounted along the cylindrical side surface portion 31a of the rotation base portion 3 of the main body A2 (see FIGS. 1(A) and 2(A)).
  • a connecting fixed flange portion 12 is fixed to the rear end portion of the fixed base portion 1 of the fixed main body A1 by means of fasteners 13 such as screws, and the first and second bearings 34 and spacers 35 are used to fix the fixed main body A1. It is fixed between the base portion 1 and the rotating base portion 3 of the rotating body A2. Further, the rotary flange portion 32 is fixed to the rear side end of the rotary cylindrical portion 31 of the rotary main body A2 at the fixed through hole 12a of the connection fixed flange portion 12 with a fastener 33 such as a screw. As a result, the rotating body A2 is rotatably attached to the fixed body A1, and the rotating body A2 rotates about the rotation center line L (see FIGS. 1(A), (B) and 4). .
  • the rotating body A2 is provided with a flat cylindrical container portion 36 having a space portion 36b therein [see FIGS. 1(A), 2(B), and (C)].
  • the container portion 36 is formed in a substantially donut or floating ring shape, and has a hollow space portion 36b inside.
  • the container portion 36 is fixed to the rotating base portion 3 of the rotating body A2 and installed at a position closer to the closing plate portion 22 side of the cylindrical housing portion 2 of the stationary body A1.
  • the container part 36 rotates together with the rotating main body A2.
  • An annular insertion through-hole 36a is formed in the surface of the container portion 36 that is close to the closing plate portion 22 side of the cylindrical housing portion 2, and the fixed cylindrical portion 11 of the fixed main body A1 is inserted into the insertion through-hole 36a. 1(A) and 2].
  • a gap is formed between the inner peripheral edge of the insertion through-hole 36a of the container portion 36 and the outer periphery of the fixed cylindrical portion 11 of the fixed base portion 1, so that they are not in contact with each other.
  • a bearing 34 provided between the fixed body A1 and the rotary body A2 is arranged at the tip portion of the fixed cylindrical portion 11 on the axial opening side.
  • the container part 36 is a reservoir container for the leaked grease or lubricating oil.
  • oil stains can be prevented from diffusing into the cylindrical housing portion 2, and the product (work) 9 can be prevented from being soiled during the drying operation of the product (work).
  • the container part 36 may not be attached to the air nozzle An.
  • a normal air nozzle An for drying work has a rotating part provided with an air injection pipe supported by a bearing, and has smooth rotation performance. It is easy to rise.
  • the drying quality or drying efficiency deteriorates in a high rotational speed region where the rotational speed is excessively increased. That is, between the rotation speed of the rotating portion of the air nozzle An and the drying quality, the drying efficiency or the drying quality improves until the rotation speed at the rotation speed reaches its optimum value, but the rotation at the rotation speed If the number continues to rise beyond its optimum value, it becomes difficult to blow off the droplets efficiently (see FIG. 6A).
  • the air injection from the control pipe 42 resists the air injection from the injection pipe 41, suppresses the increase in the number of revolutions (rotational speed) of the rotating body A2, It prevents the number of revolutions (rotational speed) from becoming excessive, and always maintains the number of revolutions (rotational speed) of the rotating body A2 in an optimal state.
  • the air jet from the tip jet outlet 41 of the jet pipe 41 can be wavy (periodically or intermittently) and can be jetted onto the product (work) 9, and droplets can be efficiently blown off. . It is possible to blow off the liquid (cleaning liquid, etc.), dust, oil stains, etc. adhering to the product (work) 9, and to maximize the effect of the drying operation.
  • the injection air from the control pipe 42 and the injection air from the injection pipe 41 intersect on the extension line of the injection direction [see FIG. 6(A)].
  • the jet air from each of the injection pipe 41 and the control pipe 42 expands in the radial direction as it moves away from the tip injection port, and intersects at a predetermined distance.
  • the intersecting portion of the injection air becomes circular.
  • the air injection area by the injection area 41 is defined as the injection pipe air injection area
  • the air injection area by the control pipe 42 is defined as the control pipe air injection area. Let it be the injection area.
  • the general air injection area becomes a circular injection area in which no windless area occurs (see FIG. 6A).
  • FIG. 6B shows an air injection region in a conventional general injection device.
  • the air injection region is circular and doughnut-shaped, and the region near the center of the injection region A windless region where there is no wind occurs. According to the present invention, it is possible to prevent a doughnut-shaped area in which no air is present in the air injection area, so that the product (work) 9 can be dried very efficiently.
  • the air nozzle An in the present invention is used as an air nozzle unit U by being connected to the air nozzle base 6 (see FIGS. 7 and 8). Specifically, a plurality of air nozzles An are attached to the air nozzle base 6 and used. Further, the air nozzle unit U is assembled to a frame 7 of an air jet drying system B (also called an air jet drying device B) (see FIG. 8).
  • an air jet drying system B also called an air jet drying device B
  • the air jet drying system B includes a frame 7 and a blower section 8, and the blower section 8 is incorporated in the frame 7 (see FIG. 8).
  • the air blower 8 produces compressed air and sends out the compressed air, and is specifically an electric blower or an electric compressor. Compressed air is supplied from the air blower 8 through the air hose 72 to the air nozzle An attached to the air nozzle base 6 of each air nozzle unit U (see FIGS. 7 and 8).
  • one air blower 8 sends compressed air to one air nozzle An, and one air blower 8 sends compressed air to two or more air nozzles An.
  • compressed air is sent to the air nozzle An of .
  • an air hose 72 and a branch joint 73 are provided. Compressed air flows through the two air hoses 72 via , and can be sent to the two air nozzles An (see FIGS. 8, 9, etc.).
  • the air nozzle unit U on the lower side is provided with the air blower 8 for each air nozzle An. Further, in the air nozzle units U on the upper and middle tiers, one air blower 8 is provided for two air nozzles An.
  • the first embodiment of the air nozzle base 6 has a base substrate 66 (see FIG. 7).
  • the base substrate 66 is formed in a substantially plate shape.
  • An air nozzle unit U having a plurality of air nozzles An attached to the air nozzle base 6 is attached to a predetermined position of the frame 7 of the air jet drying system B via the air nozzle base 6 attachment portion.
  • the air nozzle unit U is divided into a lower stage air nozzle unit U, an upper stage air nozzle unit U, and a middle stage air nozzle unit U depending on the position where it is attached to the frame 7 of the air jet drying system B.
  • the middle air nozzle unit U ejects air from both left and right sides perpendicular to the direction of movement of the workpiece.
  • the lower air nozzle unit U is installed below the transport driving part 71a of the transport part 71
  • the upper air nozzle unit U is installed above the transport driving part 71a
  • the middle air nozzle unit U is installed.
  • U is positioned between the lower and upper air nozzle units U in the vertical direction, and is displaced rearward or forward from the lower and upper air nozzle units U along the work traveling direction. be done. This is to prevent the air injection by the air nozzle unit U on the middle stage from interfering with the air injection by the air nozzle units U on the lower and upper stages (see FIGS. 8 and 9).
  • the base substrate 66 has a flat installation surface portion to which the air nozzles An are connected and installed, and the installation surface portion is provided with air supply holes 66a equal in number to the air nozzles An to be installed [Fig. 7(B)]. Then, the air blower 8 causes the compressed air to flow into the air supply hole 66a of the base substrate 66, and then into the air flow path 31s from the air inlet 31d of the rotating body A2 of the air nozzle An.
  • the compressed air in the air flow path 31s flows into the injection pipe 41, and air is injected from the tip injection port 41c in an inclined manner with respect to the rotation axis center line L, and the rotating body A2 automatically rotates. . While the rotary main body A2 automatically rotates, the air jetted from the jet pipe 41 blows away the moisture such as cleaning liquid, oil, and dust such as cutting chips adhering to the product (work) 9. can.
  • the air jet drying system B has a conveying part 71 attached to the frame 7 .
  • the transport unit 71 has a transport drive unit 71a arranged along the direction from the transport entrance side of the frame 7 to the transport exit side.
  • the transport drive unit 71a serves to transport the product (work) 9 from the transport entrance side of the frame 7 toward the transport exit side, and uses, for example, a belt conveyor, an endless flexible member, etc., and is driven by a motor. It is driven to rotate by electric power such as.
  • the carriage is a metal mesh, or a mesh (net) member made of metal, resin, rubber, etc., so that the air jetted from both upper and lower directions by the air nozzles An can pass through satisfactorily. .
  • the work advancing direction is the direction in which the product (work) 9 is conveyed by the conveying unit 71, and is the same direction as the direction from the conveying entrance side of the frame 7 to the conveying exit side. , FIGS. 9 and 14 to 17, the direction of travel is illustrated.
  • the transport drive unit 71a is of the belt conveyor type, and there are two embodiments.
  • the first embodiment as shown in FIG. It has two driven wheels 71n for supporting the rotation of the conveying driving part 71a. Then, the drive wheel 71m is rotated by the motor to rotate the belt conveyor (conveyor drive section 71a) and to rotate stably by the driven wheel 71n.
  • the lower air nozzle unit U is arranged between the passage of the upper belt portion and the passage of the lower belt portion.
  • the transport driving portion 71a In another embodiment of the transport driving portion 71a, as shown in FIG. 9, four guide wheels 71s are vertically and vertically arranged between the driving wheel 71m and the driven wheel 71n of the transport driving portion 71a of the belt conveyor type. A part of the passage of the belt portion on the lower side of the belt conveyor is moved to an upper position so as to be close to the passage of the belt portion on the upper side. As a result, a part of the belt portion on the lower side is positioned upward, so that a space for arranging the air nozzle unit U on the lower side can be provided. In this embodiment, since the air nozzle unit U on the lower side is not sandwiched between the passages of the belt portions positioned above and below the transport drive section 71a, the air nozzle unit U can be easily installed.
  • the air nozzle unit U is installed so as to surround the transport section 71 in the vertical direction and the horizontal (width) direction when the transport entrance side of the air jet drying system B is viewed from the front.
  • the upper air nozzle unit U positioned above the conveying section 71 may be configured so that its position can be adjusted in the vertical direction.
  • the intermediate air nozzle units U mounted on both the left and right sides of the conveying section 71 may be configured so that the spacing between them can be adjusted in the left-right direction.
  • air jet A product (work) 9 is moved by a transport section 71 attached to the frame 7 of the drying system B. As shown in FIG.
  • a product (work) 9 placed on a conveyer-type transport drive unit 71a of the transport unit 71 is transported to the mounting position of the air nozzle unit U, where the transport unit 71 is transported downward, upward, leftward, and downward.
  • the installation positions of the lower, upper, and middle air nozzle units U installed on the right side are defined as drying work areas. Then, in the process in which the portion of the transport drive unit 71a on which the product (work) 9 is placed passes through the drying work area, air is jetted from the air nozzles An of the air nozzle units U on the lower, upper, and middle tiers. , blows away the cleaning liquid adhering to the product (work) 9 and the dust, dust, or oil stains that could not be removed in the previous process, and dries the product (work) 9 . Furthermore, in some cases washing is also performed together with drying.
  • the transport drive unit 71a may be provided with a transport stand that moves in the work advancing direction by the rotational motion of the transport drive unit 71a as required.
  • the carrier table is a tray-shaped one on which the product (work) 9 is placed, and serves to transfer the product (work) 9 on the carrier drive unit 71a in a stable state. is.
  • the carriage is preferably used when the product (work) 9 is particularly small.
  • the air nozzle An when the rotating body A2 is in operation, the air is injected from the tip injection port 41c of the injection pipe 41 in the gap chamber S formed by the opening 2a of the cylindrical housing portion 2 and the disk portion 5. Air flow becomes turbulent. Furthermore, in the gap chamber S, the air jet from the injection pipe 41 and the turbulent air flow described above are mixed to generate a more active and complex air flow, resulting in a product. (Work) 9 can be cleaned very efficiently by blowing away liquid such as cleaning liquid, oil, or dust such as chips, and drying or cleaning.
  • one injection pipe 41 and one control pipe 42 are arranged close to the rotation center P of the tip surface portion 31b of the rotation base portion 3. be.
  • the air velocity and pressure of the injection pipe 41 and the control pipe 42 can be increased.
  • the depth dimension of the container box that is, the dimension from the opening to the bottom of the container box is conventionally about 100 mm to about 150 mm.
  • the air nozzle An in the present invention can perform the drying operation powerfully up to a container box with a depth of about 250 mm and about 400 mm (see FIG. 6(A)).
  • the air nozzle unit U on the lower side of the air jet drying system B and the air nozzles An in the air nozzle unit U on the upper side of the air jet drying system B have a oscillating structure, and perform a oscillating operation by oscillating at a desired oscillating angle. (See FIGS. 14 and 15).
  • the air nozzle base 6 of the air nozzle on the lower side in the air jet drying system B includes a lower first base portion 61, and pivotally supports the lower first base portion 61 so as to be capable of swinging and fixing in a direction orthogonal to the work advancing direction.
  • lower second base portion 62, lower third base portion 63 pivotally supporting the second base portion 62 so as to be swingable and fixable in the work advancing direction, pivot bolts 67 and swing restricting bolts 68.
  • the lower first base portion 61 has a flat rectangular or square installation board 611 and rocking side plates 612 formed on both sides thereof in the width direction.
  • a swing regulation hole 612b is formed in each.
  • Swing control holes 612b are formed on both sides of the pivot hole 612a.
  • the pivot hole 612a and the swing regulation hole 612b are screw holes.
  • An air passage hole 611a is formed in the center of the installation board 611, and a plurality of mounting holes 611b for the air nozzles An are formed at regular intervals around the air passage hole 611a.
  • the mounting hole 611b is a screw hole.
  • An air nozzle An is attached to the installation substrate 61a of the lower first base portion 61 via a fastener such as a bolt, and an air hose 72 is attached to the air nozzle An via an air passage hole 611a.
  • the lower second base portion 62 is a square-shaped frame-shaped member such as a rectangle or a square, and the square-shaped frame is constituted by two opposing rocking main plates 621 and two opposing rocking secondary plates 622 . (See FIGS. 14 and 15).
  • a pivot hole 621a and a swing regulation hole 621b are formed in the swing main plate 621, and swing regulation holes 621b are formed on both sides of the pivot hole 621a.
  • the pivot hole 621 a and the swing regulation hole 621 b of the swing main plate 621 are equivalent or substantially equivalent to the pivot hole 612 a and the swing regulation hole 612 b of the lower first base portion 61 .
  • the swing follower plate 622 is formed with a swing pivot hole 622a and a swing long hole 622b. . These rocking pivot hole 622a and rocking long hole 622b are merely through holes and are not internally threaded.
  • the lower first base portion 61 is placed in the rectangular frame of the lower second base portion 62 so that both swing side plates 612 of the lower first base portion 61 and the swing main plate 621 of the lower second base portion 62 face each other.
  • a base portion 61 is inserted.
  • the pivot bolt 67 is inserted into the swing pivot hole 622a of the lower second base portion 62 and the pivot hole 612a of the lower first base portion 61 and screwed into the pivot hole 612a.
  • the swing restricting bolt 68 is inserted into the swing long hole 622b of the lower second base portion 62 and the swing restricting hole 612b of the lower first base portion 61 and screwed into the swing restricting hole 612b.
  • the lower first base portion 61 swings left and right with respect to the lower second base portion 62 via the pivot bolts 67 , and the lower first base portion 61 swings by tightening the pivot bolts 67 and the swing restricting bolts 68 .
  • the base portion 61 can be fixed at a desired angle with respect to the lower second base portion 62 .
  • the vertical swing angle of the lower first base portion 61 is approximately 15 degrees to approximately 30 degrees, preferably approximately 25 degrees.
  • the length dimension of the long swing hole 622b of the lower second base portion 62 is set so as to achieve such a swing angle.
  • washers and spring washers may be used in tightening and fixing the pivotal bolt 67 and the swing restricting bolt 68 used in the oscillating type air nozzle base 6 of the air nozzle An.
  • the lower third base portion 63 is a substantially rectangular frame-shaped member, and a rectangular frame is configured by two opposing rocking support side plates 631 and two opposing connecting side plates 632 (see FIG. 14). , see FIG. 15).
  • the swing support side plate 631 is formed with a swing pivot hole 631a and a swing long hole 631b. . These rocking pivot hole 631a and rocking long hole 631b are merely through holes and are not internally threaded.
  • the swing pivot support hole 631 a and the swing long hole 631 b in the swing support side plate 631 are equivalent or substantially equivalent to the swing pivot support hole 622 a and the swing long hole 622 b of the swing follower plate 622 in the lower second base portion 62 . is.
  • a plurality of assembled parts of the lower first base part 61 and the lower second base part 62 can be mounted on the lower third base part 63 at predetermined intervals. Therefore, in the lower third base portion 63, a plurality of sets of rocking pivot holes 631a and rocking long holes 631b are provided on both rocking support side plates 631 at predetermined intervals. [See FIG. 15(B)].
  • four assembled lower first base portions 61 and lower second base portions 62 are attached to the lower third base portion 63.
  • the present invention is limited to this. Instead, one or three or more assembled lower first base portions 61 and lower second base portions 62 may be mounted.
  • the lower third base portion 63 is arranged so that both swing support side plates 631 of the lower third base portion 63 and the swing main plate 621 of the lower second base portion 62 in which the lower first base portion 61 is incorporated face each other.
  • a plurality of lower second base portions 62 are inserted into the rectangular frame of the portion 63 .
  • the pivot bolt 67 is inserted into the swing pivot hole 622a of the lower third base portion 63 and the pivot hole 621a of the lower second base portion 62 and screwed into the pivot hole 621a.
  • the swing restricting bolt 68 is inserted into the swing long hole 631b of the lower third base portion 63 and the swing restricting hole 621b of the lower second base portion 62 and screwed into the swing restricting hole 621b.
  • the lower second base portion 62 incorporating the lower first base portion 61 swings left and right with respect to the lower third base portion 63 via the pivot bolts 67, and
  • the lower second base portion 62 can be fixed at a desired angle to the lower third base portion 63 by tightening the motion restricting bolt 68 .
  • the vertical swing angle of the lower second base portion 62 is approximately 15 degrees to approximately 30 degrees, preferably approximately 25 degrees.
  • the length dimension of the long swing hole 631b of the lower third base portion 63 is set so as to achieve such a swing angle.
  • the lower third base portion 63 is a substantially rectangular frame-shaped member, and both rocking support side plates 631 are arranged along the longitudinal direction thereof. Then, the lower third base portion 63 in the air nozzle unit U on the lower side is installed in the frame 7 of the air jet drying system B so that the longitudinal direction is the same as the work traveling direction in the air jet drying system B. [See FIG. 8, FIG. 14(A), etc.].
  • the air nozzle unit U on the lower side is in a state in which a plurality (four in this embodiment) of air nozzles An (four in this embodiment) are arranged substantially in a line.
  • the lower second base portion 62 can be swung and fixed in the same direction as the work advancing direction.
  • the lower first base portion 61 to which the air nozzle An is attached can swing the air nozzle An in the same direction and in the direction perpendicular to the direction of movement of the work, and the air nozzle An can swing substantially in all directions. It is movable and fixed, and is configured to increase the degree of freedom in setting the swing angle.
  • the air nozzle base 6 of the upper air nozzle in the air jet drying system B has an upper first base portion 64, and the upper first base portion 64 can be swung and fixed in a direction orthogonal to the work advancing direction. It has an upper second base portion 65, a pivot bolt 67, and a swing restricting bolt 68 (see FIGS. 16 and 17).
  • the upper first base portion 64 and the upper second base portion 65 are supported by the pivot bolt 67 and the swing control bolt 68. It is configured so that it can be swung in the same direction with respect to and can be freely fixed.
  • the upper first base portion 64 has a flat and rectangular installation board 641 and rocking side plates 642 formed on both sides thereof in the width direction. are formed respectively. Swing regulation holes 642b are formed on both sides of the pivot hole 642a. These pivot holes 642a and swing regulation holes 642b are screw holes.
  • a plurality of air passage holes 641a are formed in the center of the installation board 641, and a plurality of mounting holes 641b for fixing the air nozzles An are formed at regular intervals around each of the air passage holes 641a.
  • the mounting hole 641b is a screw hole.
  • a plurality of air nozzles An are attached to the installation substrate 641 of the upper first base portion 64, and the air hose 72 is attached to the air nozzles An through the air passage hole 641a.
  • two air nozzles An are attached to the installation board 641 .
  • the upper second base portion 65 is a substantially rectangular frame-shaped member, and a rectangular frame is configured by two opposing rocking support side plates 651 and two opposing connecting side plates 652 (see FIG. 16). , see FIG. 17).
  • the swing support side plate 651 is formed with a swing pivot hole 652a and a swing long hole 652b. .
  • These rocking pivot hole 652a and rocking long hole 652b are merely through holes and are not internally threaded.
  • the swing pivot hole 652a and the swing long hole 652b in the swing support side plate 651 are equivalent or substantially equivalent to the pivot hole 642a and the swing restriction hole 642b of the swing main plate 641 in the upper first base portion 64, respectively.
  • a plurality of upper first base portions 64 can be attached to the upper first base portion 64 at predetermined intervals. Therefore, in the upper second base portion 65, a plurality of sets of rocking pivot holes 652a and rocking long holes 652b are provided on both rocking support side plates 6351 at predetermined intervals. .
  • two upper first base portions 64 are attached to the upper second base portion 65.
  • the present invention is not limited to this, and one or three or more upper first base portions 64 are attached. It may be the upper first base portion 64 .
  • a plurality of upper parts are formed within the rectangular frame of the upper second base part 65 so that both the swing supporting side plates 651 of the upper second base part 65 and the main swing plate 641 of the upper first base part 64 face each other.
  • a first base portion 64 is inserted.
  • the pivot bolt 67 is inserted into the swing pivot hole 652a of the upper second base portion 65 and the pivot hole 642a of the upper first base portion 64 and screwed into the pivot hole 642a.
  • the swing restricting bolt 68 is inserted into the long swing hole 642b of the upper second base portion 65 and the swing restricting hole 642b of the upper first base portion 64, and screwed into the swing restricting hole 642b.
  • the upper first base portion 64 swings left and right with respect to the upper first base portion 64 via the pivot bolts 67 .
  • the base portion 64 can be fixed at a desired angle with respect to the upper second base portion 65 .
  • the horizontal swing angle of the upper first base portion 64 is about 15 degrees to about 30 degrees in the vertical direction, preferably about 25 degrees.
  • the length dimension of the long swing hole 652b of the upper second base portion 65 is set so as to achieve such a swing angle.
  • Two air nozzles An are attached to the installation substrate 641 of the upper first base portion 64 .
  • a total of four air nozzles An are provided, two each in the direction perpendicular to and in the same direction as the work advancing direction (see FIGS. 16 and 17).
  • the two air nozzles An attached to the upper first base portion 64 are simultaneously moved in the same direction with respect to the work traveling direction. It oscillates to
  • Cylindrical housing part A2 Rotating main body 3
  • Rotating base part 31b Tip surface part 31s... Air flow path 41... Injection pipe 42
  • Control pipe 41a , 42a ...vertical tube portion, 41b, 42b...inclined tube portion, 5...disc portion, 61...lower first base portion, 62...lower second base portion, 63...lower third base portion, 64...upper first base portion Base portion, 65... Upper second base portion, L... Rotation axis core line.

Landscapes

  • Nozzles (AREA)
  • Cleaning In General (AREA)

Abstract

[Purpose] To provide an air nozzle that dries a product by blowing away residual cleaning liquid on the product using a jet of air. [Configuration] The air nozzle is provided with: a fixation body A1 having a cylindrical housing 2 and a fixed base 1 that is connected to the axial other end side of said cylindrical housing 2; and a rotary body A2 having a rotary base 3 which is rotatably housed and installed within the fixed base 1 and which has a leading end surface part 31 that is perpendicular to a rotation axis line L and that faces an opening from the internal side of the housing 2, and having a single jetting tube 41 and a single control tube 42 that are respectively provided to a leading end surface part 31b and that are connected with an air passage 31s. The jetting tube 41 is configured to be capable of being fixed and oscillated, with reference to a tangent line of a movement locus circle of a base end part of the jetting tube, within a prescribed angular range on both sides of the tangent line on a rotary plane. The control tube 42 is configured to be capable of being fixed and oscillated, with reference to a normal line of the movement locus circle of the base end part of the control tube, within a prescribed angular range in a region from the normal line to the side opposite to the rotational direction on the rotary plane. The control tube 42 is configured to have an inner diameter equal to or greater than that of the jetting tube 41.

Description

エアノズルair nozzle
 本発明は、製造工場において製造過程又は製造完了した製造物(ワーク)又は洗浄施設における物品に対して洗浄液での洗浄による残留液(水分)或いは付着した切粉,塵,油汚れ等をエア(空気)噴射の圧力にて吹き飛ばし、製造物(ワーク),物品の表面を乾燥させるエアノズルに関する。 The present invention removes residual liquid (moisture) or adhering chips, dust, oil stains, etc. from cleaning with a cleaning liquid to products (workpieces) that have been manufactured or completed in a manufacturing factory or articles in a cleaning facility. The present invention relates to an air nozzle that dries the surface of a product (work) or article by blowing it off with an air jet pressure.
 種々の製造物(ワーク)の製造過程において、その最終段階で、洗浄液で洗浄が行われた後に、洗浄された後に製造品の表面に残留した水分を除去し、乾燥させる必要がある。或いは、物品(例えば食器及び食品収納容器等)に対する洗浄を行うクリーニング施設等においても、物品が洗浄(クリーニング)された後に表面に残留した水分(残留液)を除去し、乾燥させる必要がある。この製造物(ワーク)又は物品から水分を除去し乾燥させるまでの工程は、製造物(ワーク)の製造効率を向上させるためにも洗浄に要する時間は短時間であることが要求される。製造物(ワーク)及び物品の洗浄行程における、乾燥行程は、通常は、高圧のエア噴射によって、製造物(ワーク)の表面に残留した液を吹き飛ばすようにして乾燥させている。 In the manufacturing process of various products (workpieces), in the final stage, it is necessary to remove the water remaining on the surface of the product after cleaning with a cleaning liquid and dry it. Alternatively, in a cleaning facility or the like that cleans articles (such as tableware and food storage containers), it is necessary to remove moisture (residual liquid) remaining on the surface after the articles have been washed (cleaned) and dry them. The process of removing water from the product (work) or article and drying it requires a short time for cleaning, in order to improve the production efficiency of the product (work). In the drying process in the cleaning process of the product (work) and articles, the product (work) is usually dried by blowing off liquid remaining on the surface of the product (work) by jetting high-pressure air.
 また、機械部品の製造の業界などでは、機械部品等の製造過程において製造物(ワーク)の表面に付着した切粉、塵或いは残留した切削油或いは離型剤等を洗浄液で洗浄した後でエア・ガンで吹き飛ばして除去したり、或いは洗浄液で洗浄することなくエア・ガンで吹き飛ばして除去することが一般的に行われている。 Also, in the machine parts manufacturing industry, etc., in the manufacturing process of machine parts, etc., chips, dust, or residual cutting oil or mold release agent that adheres to the surface of the product (work) is washed with a washing liquid, and then air is removed. - It is common practice to blow off with a gun or remove with an air gun without cleaning with a cleaning solution.
 ここで、洗浄液による洗浄行程及びその後の乾燥行程が必要な製造物(ワーク)として、具体的には、樹脂成型品で、食品,衣類,機械部品等を収納するトレイ,コンテナボックス、及びHDD用ケース及び該HDD用ケースを収納するトレイ,コンテナボックス等があり、その他の樹脂成型品,機械加工品等が存在する。 Here, as products (works) that require a cleaning process with a cleaning liquid and a subsequent drying process, specifically, resin-molded products such as trays, container boxes, and HDDs for storing food, clothing, machine parts, etc. There are cases, trays, container boxes, and the like for housing the HDD cases, and there are other resin molded products, machined products, and the like.
 なお、トレイ,コンテナボックスの具体例として、コンビニエンスストア又はスーパー等で販売されるお弁当を収納する樹脂製の容器が存在する。また、トレイ,コンテナボックスとして、半導体チップを出荷する工程で、半導体チップを保護するための容器があり、このようなトレイ,コンテナボックスも温水シャワーで洗浄することがあり、このようなものが乾燥作業行程の対象となる。 As a specific example of trays and container boxes, there are plastic containers that store lunch boxes sold at convenience stores, supermarkets, and the like. In addition, trays and container boxes are used to protect semiconductor chips in the process of shipping semiconductor chips. Subject to work process.
 そして、機械製造業では、その生産現場において、前述した製造物(ワーク)の油汚れ,切粉,くずを、洗浄液を噴射して洗浄し、次いでエアによって水分を吹き飛ばし、このような洗浄と乾燥を行うことが頻繁に行われている。特に、製造過程における製造物(ワーク)の洗浄液を吹き飛ばすための装置が存在する。また、上記洗浄及び乾燥の工程は、機械製造業における生産現場以外に、洗浄を専門とするクリーニング施設でも行われる。 In the machine manufacturing industry, at the production site, the above-mentioned products (workpieces) are cleaned of oil stains, chips, and scraps by spraying a cleaning liquid and then blowing off moisture with air. is frequently done. In particular, there are devices for blowing off the cleaning liquid of the product (workpiece) in the manufacturing process. In addition to the production sites in the machine manufacturing industry, the above washing and drying processes are also performed at cleaning facilities that specialize in washing.
特開2018-187530号公報JP 2018-187530 A 特開2018-94490号公報JP 2018-94490 A
 従来の洗浄装置において、例えばエアガン等が存在する。トレイ等の表面に凹凸のある製造物(ワーク)から切粉、塵或いは残留した切削油等の残留物を取り除くため洗浄液等にて洗浄後、前述のエアガンによって、表面の大部分に残った水分を乾燥させることはできるものであった。しかし、製造物(ワーク)の凹凸表面の窪んだところに残留する洗浄液の水切りを略完全に行うことは困難であった。 For example, air guns exist in conventional cleaning equipment. After washing with a cleaning liquid to remove chips, dust, or residual cutting oil from products (workpieces) with uneven surfaces such as trays, remove moisture remaining on most of the surface with the above-mentioned air gun. It was possible to dry However, it has been difficult to substantially completely drain the cleaning liquid remaining in the depressions of the uneven surface of the product (work).
 そのために、洗浄液の水切りを略完全に行うために、製造物(ワーク)を立掛けた状態とし、製造物(ワーク)から洗浄液が自然に下方に落下して流れ出すように搬送する、又は長時間、エアを噴きつける、或いはエアの温度を上げるなどさまざまな手段がとられている。しかし、これらの作業は、極めて非効率的であり、製造物(ワーク)の洗浄行程にかなりの時間が占められることになる。 For this reason, in order to drain the cleaning liquid almost completely, the product (work) is placed in a standing state, and the cleaning liquid naturally falls downward and flows out from the product (work), or it is conveyed for a long time. , blowing air, or raising the temperature of the air. However, these operations are extremely inefficient, and a considerable amount of time is occupied by the process of cleaning products (workpieces).
 そして、このような洗浄,乾燥の手段では多くの作業員が必要であり、またコンプレッサ等の関連機器も大量に必要とするため、設備を拡張させなくてはならず、自動化及びコスト面でも大きな負担となる。最近の洗浄装置においては、上記問題点を解決することはできるものの、製造物(ワーク)の表面はもちろん、溝,孔等の窪んだ箇所に残留する液,塵を積極的に掻き出し、容易に水切りを完全に行うことができるとは言えず、さらなる開発が要求されている。 In addition, such washing and drying means require a large number of workers and a large amount of related equipment such as compressors. be a burden. Although the recent cleaning equipment can solve the above problems, it actively scrapes out liquid and dust remaining in grooves, holes, etc., as well as the surface of the product (work), making it easy to clean. It cannot be said that draining can be performed perfectly, and further development is required.
 さらに、特許文献1における回転波動ノズルのように、ノズルからのエア噴射による、噴射力の分力である回転力にて回転体と共に噴射部分が回転し、洗浄後の乾燥作業で、波動状或いは間欠状のエア噴射を当てて洗浄液等の水分を吹き飛ばすものが開発されている。そして、この種のものでは、図13の回転体の回転数(回転速度)と乾燥品質の関係を示すグラフに見られるように、回転体の回転数(回転速度)が過剰に上昇し、一定の回転数を越えたあたりからエア噴射の波動性或いは間欠性効果が劣化し、連続的なエア噴射となり、乾燥品質(乾燥作業性能と呼んでもよい)が劣化する現象が生じることがある。 Furthermore, as in the rotary wave nozzle in Patent Document 1, the jetting portion rotates together with the rotating body by the rotational force that is the component of the jetting force due to the air jetting from the nozzle. A device has been developed in which water such as cleaning liquid is blown off by intermittent air jets. In this type of device, as can be seen in the graph of FIG. When the number of revolutions exceeds , the wavy or intermittent effect of air injection deteriorates, resulting in continuous air injection, which may cause a phenomenon of deterioration in drying quality (which may be called drying work performance).
 特許文献1では、従来の同種のものに対して、以下のような問題点が提示されている。この問題点を記載すると、回転波動ノズルは、回転軸が軸受で回転自在に支持されているので、低圧の圧縮空気でも容易に回転できるため、回転数が上がり易いという特性を有している。そして、高回転数では乾燥品質が悪くなるとされている。つまり、回転波動ノズルの回転数と乾燥品質との間には、回転数がその最適値を超えて上昇すると、液滴を効率よく吹き飛ばすことが困難になる。 In Patent Document 1, the following problems are presented with respect to conventional devices of the same type. To address this problem, the rotating wave nozzle has a characteristic that the rotating shaft is rotatably supported by bearings, so that it can be easily rotated even with low-pressure compressed air, so that the number of revolutions can easily increase. And it is said that the drying quality deteriorates at a high number of revolutions. That is, between the number of rotations of the rotary wave nozzle and the drying quality, it becomes difficult to blow off droplets efficiently when the number of rotations increases beyond the optimum value.
 そして、回転数がその最適値に達するまでは、回転波動ノズルは、圧縮空気を波動状(周期的、間欠的)にワークに吹き付けているため、液滴を効率よく吹き飛ばすことが可能であるとされている。しかし、回転数がその最適値を超えてしまうと、波動状に吹き付けられる圧縮空気の間隔が次第に短くなっていき、やがて圧縮空気が波動を生じなくなる。これでは、圧縮空気を連続的に噴射することと等しくなるため、乾燥品質が低下することになると指摘されている(図13参照)。さらにまた、回転波動ノズルの回転数が高くなると、軸受の寿命が短くなり、騒音も大きくなるという問題も指摘されている。 Until the rotation speed reaches its optimum value, the rotary wave nozzle blows compressed air in a wave pattern (periodically and intermittently) to the workpiece, so it is possible to blow off the droplets efficiently. It is However, when the rotational speed exceeds the optimum value, the interval of the compressed air blown in waves gradually becomes shorter, and eventually the compressed air stops generating waves. It has been pointed out that this is equivalent to continuously injecting compressed air, and that the drying quality is degraded (see FIG. 13). Furthermore, it has been pointed out that the higher the rotational speed of the rotary wave nozzle, the shorter the life of the bearing and the louder the noise.
 特許文献1では、このような、回転体の回転数(回転速度)の過剰な上昇を抑制するための回転数抑制手段が具備されている。しかしながら、特許文献1における回転数抑制手段は、その構造が極めて複雑であり、そのために製造が困難で且つ高価なものとなるおそれが十分にある。 In Patent Document 1, rotation speed suppression means for suppressing such an excessive increase in the rotation speed (rotational speed) of the rotating body is provided. However, the rotation speed suppressing means in Patent Document 1 has a very complicated structure, and there is a good chance that it will be difficult and expensive to manufacture.
 さらに、ノズルのエア噴射によって、製造物(ワーク)の表面の洗浄及び水切りを行うときに、ノズル自体も本体の回転動作に伴って、その付け根の円軌跡に沿って回転するものであり、ノズルから噴射された高圧の噴射エアは製造物(ワーク)に対して略ドーナツ状の噴射領域を構成することになる。 Furthermore, when cleaning and draining the surface of the product (workpiece) by jetting air from the nozzle, the nozzle itself also rotates along the circular trajectory at its base as the main body rotates. The high-pressure jet air jetted from the nozzle forms a substantially doughnut-shaped jet region on the product (work).
 そのために、ノズルのエア噴射による高圧の噴射エアの営造物に対するドーナツ状の噴射領域において、その中心は高圧の噴射エアが存在しない領域が存在することになる。つまり無風領域が生じる。そして、この噴射エアが存在しない領域では、水切り洗浄が行われず、乾燥が不完全になるおそれがある。洗浄装置として、製造物(ワーク)又は物品がコンベアによって移動するものであるとしても、ノズルから噴射された高圧の噴射エアが略ドーナツ状の噴射領域となる場合には、コンベアによる移動速度を低速とする必要があり、水切り洗浄の作業効率が悪くなることも十分に起こりえるものである。 Therefore, in the donut-shaped ejection area of the high-pressure ejected air from the nozzle toward the structure, there is an area in the center where there is no high-pressure ejected air. In other words, a windless area is generated. In the area where the jet air does not exist, there is a possibility that the drying may be incomplete because the draining cleaning is not performed. Even if the product (work) or article is moved by a conveyor as a cleaning device, if the high-pressure jetted air jetted from the nozzle forms a substantially doughnut-shaped jetting area, the moving speed by the conveyor should be reduced. It is quite possible that the work efficiency of draining and washing will be deteriorated.
 また、製造物(ワーク)において、例えばコンテナボックス等のように開口から底面までの深さ寸法が大きな容器においては乾燥洗浄作業で、極めて深い位置にある底面へエア噴射によるエアが到達できなかったり、或いはと到達できたとしても、そのエアの圧力が不足で、十分なエア噴射を当てることがでず、換言するならば風力及び風圧が共に不足し、このようなことによって製造物(ワーク)に対する乾燥作業が不完全となるおそれがある。 In addition, in products (workpieces), for example, in containers with a large depth from the opening to the bottom, such as a container box, the air cannot reach the bottom at an extremely deep position during the drying and cleaning work. , or even if it can be reached, the air pressure is insufficient and sufficient air injection cannot be applied. There is a risk that the drying work for the will be incomplete.
 このような問題を解決するには、乾燥装置におけるエア噴射の風力,風圧を大きくすることが考えられる。このような構造を備えたものは、例えば従来技術として特許文献2に開示されているように、エアを噴射する管(ノズル部材)として比較的太いものが使用されている装置が存在している(図18参照)。しかし、特許文献2のように、単にエアを噴射する管を太くしたとしても、エア噴射の風力は大きくすることは可能でなるが、前述したように装置の回転数(回転速度)の過剰な上昇を抑制することができないものであり、エア噴射による風力がさらに大きくなることで、回転数が異常に上昇するおそれがある。 In order to solve such problems, it is conceivable to increase the wind force and wind pressure of the air injection in the drying equipment. As for devices with such a structure, for example, as disclosed in Patent Document 2 as a prior art, there is a device that uses a relatively thick pipe (nozzle member) for injecting air. (See Figure 18). However, as in Patent Document 2, even if the pipe for injecting air is simply made thicker, it is possible to increase the wind force of the air injection, but as described above, the number of rotations (rotational speed) of the device is excessive. The increase cannot be suppressed, and there is a possibility that the rotation speed will abnormally increase due to the increased wind force generated by the air injection.
 そこで、本発明の目的(解決しようとする技術的課題)は、部品等の製造物(ワーク)の表面はもちろん窪んだところに残留する水分も積極的に掻き出し、付着した液体の水切り又は付着した油及び塵が混じった油汚れを容易に吹き飛ばし、また切粉等の粉塵を吹き飛ばすことを効率的に行い、さらに、過剰に回転数が上昇することを抑制するための手段を極めて簡単な構成とし、また、さらに、ノズルから噴射された高圧の噴射エアの製造物(ワーク)に対する噴射領域内に噴射エアの存在しない部分が生じることを防止し、或いは最小限に抑えるようにし、且つエア噴射の風力及び圧力を大きくできるようにしたエアノズルを提供することにある。 Therefore, the object of the present invention (technical problem to be solved) is to actively scrape out moisture remaining in depressions as well as the surface of a product (work) such as a part, drain off the attached liquid, or Means for easily blowing off oil stains mixed with oil and dust, efficiently blowing off dust such as cutting chips, and suppressing an excessive increase in the number of revolutions have an extremely simple configuration. Furthermore, it is possible to prevent or minimize the occurrence of a portion where no jet air exists in the injection area of the high-pressure jet air jetted from the nozzle to the product (work), and to minimize the amount of air jet. To provide an air nozzle capable of increasing wind force and pressure.
 そこで、発明者は、上記課題を解決すべく、鋭意研究を重ねた結果、請求項1の発明を、軸方向一端に開口を有する円筒ハウジング部と,該円筒ハウジング部の軸方向他端側に接続された固定ベース部とを有する固定本体と、前記固定ベース内に回転自在に収納装着され且つ内部に空気流路を有すると共に回転軸芯線に直交し且つ前記円筒ハウジング部の内方側から前記開口に対向する先端面部を有する回転ベース部と,前記先端面部に設けられると共に前記空気流路と連通する1つの噴射管及び1つの制御管とを有する回転本体とを備え、前記噴射管及び前記制御管のそれぞれの根本部は前記先端面部の回転中心から離間すると共にそれぞれの噴射方向は前記回転軸芯線に対して所定角度に傾斜するように設定され、前記噴射管は前記根本部の移動軌跡円の接線を基準にして回転平面上における接線の両側を所定角度の範囲で揺動且つ固定自在とされ、前記制御管は根本部の移動軌跡円の法線を基準にして回転平面上における法線から回転方向と反対側の領域で所定角度の範囲で揺動且つ固定自在とされ、前記制御管の内径は前記噴射管の内径と同等以上とし、前記噴射管の噴射エアの延長上における噴射領域と、前記制御管の噴射エアの延長上における噴射領域とは交わるエアノズルとしたことにより、上記課題を解決した。 Therefore, as a result of earnest research in order to solve the above-mentioned problems, the inventors have found that the invention of claim 1 includes a cylindrical housing portion having an opening at one end in the axial direction and a and a stationary body which is rotatably housed and mounted in the stationary base, has an air flow path therein, is orthogonal to the axis of rotation, and extends from the inner side of the cylindrical housing section. A rotating body having a rotating base portion having a tip surface portion facing an opening, and one injection pipe and one control pipe provided on the tip surface portion and communicating with the air flow path, wherein the injection pipe and the Each root portion of the control pipe is spaced apart from the rotation center of the tip surface portion, and each injection direction is set to be inclined at a predetermined angle with respect to the rotation axis center line, and the injection pipe follows the movement trajectory of the root portion. With the tangent line of the circle as a reference, both sides of the tangent line on the rotation plane can be swung and fixed within a predetermined angle range. The inner diameter of the control pipe is equal to or larger than the inner diameter of the injection pipe, and the injection is performed on the extension of the injection air of the injection pipe. The problem described above has been solved by providing an air nozzle in which the region intersects with the injection region on the extension of the injection air of the control pipe.
 請求項2の発明を、請求項1に記載のエアノズルにおいて、前記制御管の内径は前記噴射管の内径よりも大なるエアノズルとしたことにより、上記課題を解決した。 The invention of claim 2 is the air nozzle of claim 1, wherein the inner diameter of the control pipe is larger than the inner diameter of the injection pipe, thereby solving the above problems.
 請求項3の発明を、請求項1又は2の何れか1項に記載のエアノズルにおいて、前記制御管及び前記噴射管は、垂直管部と傾斜管部とを有しており、前記垂直管部は前記噴射管の根本部側に位置し、前記噴射管は垂直管と傾斜管部とを有しており、前記垂直管部は前記噴射管の根本部側に位置してなるエアノズルとしたことにより、上記課題を解決した。 The invention of claim 3 is the air nozzle of claim 1 or 2, wherein the control pipe and the injection pipe have a vertical pipe portion and an inclined pipe portion, and the vertical pipe portion is positioned on the root side of the jet pipe, the jet pipe has a vertical pipe and an inclined pipe portion, and the vertical pipe portion is positioned on the root portion side of the jet pipe. The above problem was solved by
 請求項4の発明を、請求項1又は2の何れか1項に記載のエアノズルにおいて、前記制御管及び前記噴射管は、両根本部付近は垂直状とし、他は弧状としてなるエアノズルとしたことにより、上記課題を解決した。請求項5の発明を、請求項1,2,3又は4の何れか1項に記載のエアノズルにおいて、前記噴射管と前記制御管のそれぞれの根本部中心は、前記回転ベース部の回転中心に対して点対称となる位置に設定されてなるエアノズルとしたことにより、上記課題を解決した。 The invention of claim 4 is the air nozzle of claim 1 or 2, wherein the control pipe and the injection pipe are vertical in the vicinity of both base portions and arcuate in the other portions. The above problem was solved by The invention of claim 5 is the air nozzle according to any one of claims 1, 2, 3, or 4, wherein the centers of root portions of the injection pipe and the control pipe are aligned with the rotation center of the rotation base. The above problem was solved by using an air nozzle set at a point-symmetrical position.
 請求項6の発明を、請求項1,2,3,4又は5の何れか1項に記載のエアノズルにおいて、前記噴射管と前記制御管におけるそれぞれの先端噴射口は、前記回転ベース部の回転平面と平行となるエアノズルとしたことにより、上記課題を解決した。請求項7の発明を、請求項1,2,3,4,5又は6の何れか1項に記載のエアノズルにおいて、前記噴射管と前記制御管のそれぞれの先端が挿通する噴射用孔部が設けられ前記回転ベースに装着される円板部が備えられてなるエアノズルとしてなるエアノズルとしたことにより、上記課題を解決した。 The invention of Claim 6 is the air nozzle according to any one of Claims 1, 2, 3, 4, or 5, wherein the tip injection ports of the injection pipe and the control pipe are configured to rotate the rotation base portion. The above problem was solved by making the air nozzle parallel to the plane. The invention according to claim 7 is the air nozzle according to any one of claims 1, 2, 3, 4, 5, or 6, wherein the injection holes through which the respective tips of the injection pipe and the control pipe are inserted are The above problem is solved by providing an air nozzle that is provided with a disk portion that is provided and attached to the rotation base.
 請求項8の発明を、請求項1,2,3,4,5,6又は7の何れか1項に記載のエアノズルにおいて、前記エアノズルが装着される下部第1ベース部と、該下部第1ベース部をワーク進行方向に対して直交する方向に揺動且つ固定自在に支持する下部第2ベース部と、該第2ベース部をワーク進行方向に対して同一方向に揺動且つ固定自在に支持する下部第3ベース部とを備えたエアノズルベースが具備されてなるエアノズルとしたことにより、上記課題を解決した。請求項9の発明を、請求項1,2,3,4,5,6又は7の何れか1項に記載のエアノズルにおいて、前記エアノズルが装着される上部第1ベース部と、該上部第1ベース部をワーク進行方向に対して同一方向に揺動且つ固定自在に軸支する上部第2ベース部とを備えたエアノズルベースが具備されてなるエアノズルとしたことにより、上記課題を解決した。 The invention of claim 8 is the air nozzle according to any one of claims 1, 2, 3, 4, 5, 6, or 7, wherein the lower first base portion to which the air nozzle is mounted, and the lower first base portion. A lower second base portion that supports the base portion so as to be swingable and fixed in a direction orthogonal to the direction in which the work advances, and a second base portion that supports the base portion so as to be swingable and fixed in the same direction as the direction in which the work advances. The above problem is solved by providing an air nozzle including an air nozzle base having a lower third base portion. The invention of Claim 9 is the air nozzle according to any one of Claims 1, 2, 3, 4, 5, 6, or 7, wherein the upper first base portion to which the air nozzle is mounted, and the upper first base portion. The above problem is solved by providing an air nozzle having an air nozzle base including an upper second base portion that pivotally supports the base portion so as to be able to swing and fix in the same direction as the work progressing direction.
 請求項1の発明では、先端面部に設けられると共に前記空気流路と連通する1つの噴射管及び1つの制御管とを有する回転本体とを備え、前記噴射管及び前記制御管のそれぞれの根本部は前記先端面部の回転中心から離間すると共にそれぞれの噴射方向は前記回転軸芯線に対して所定角度に傾斜するように設定され、前記噴射管は前記根本部の移動軌跡円の接線方向を基準にして回転平面上における接線の両側を所定角度の範囲で揺動且つ固定自在とされる構成としている。これによって、噴射管と制御管の両根本部を、回転ベース部の先端面部における回転中心に近接させることができ、そのために、回転本体の空気流路内を回転軸芯線に沿って直線状に流れる高圧エアが噴射管及び制御管に集中的且つ効率的に流れ込み、噴射管及び制御管から極めて高圧のエア噴射ができる。 In the invention of claim 1, a rotating body having one injection pipe and one control pipe provided on the tip surface portion and communicating with the air flow path is provided, and the root portion of each of the injection pipe and the control pipe is provided. is spaced apart from the center of rotation of the tip surface portion, and the direction of each injection is set to be inclined at a predetermined angle with respect to the center line of the rotation axis, and the injection pipe is based on the tangential direction of the movement locus circle of the root portion. Both sides of the tangential line on the plane of rotation can be swung and fixed within a predetermined angle range. As a result, both the base portions of the injection pipe and the control pipe can be brought close to the center of rotation on the tip surface portion of the rotation base portion. The flowing high pressure air flows intensively and efficiently into the injection pipe and the control pipe, resulting in a very high pressure air injection from the injection pipe and the control pipe.
 さらに、噴射管と制御管とは、回転ベース部の回動中心付近に位置しており、噴射管と制御管との両方のエア噴射を先端面部の回動中心付近に集中させることができる。したがって、製造物(ワーク)への乾燥作業を行う工程で、噴射管と制御管の噴射エアは、製造物(ワーク)に対して噴射エアが存在しない無風領域を無くし、或いは最小限にして、両方の噴射エアが相乗的に合わさって、製造物(ワーク)に対して極めて大きな乾燥作業を実現することができる。 Furthermore, the injection pipe and the control pipe are located near the rotation center of the rotation base portion, so that the air injection from both the injection pipe and the control pipe can be concentrated near the rotation center of the tip surface portion. Therefore, in the process of drying the product (work), the injection air from the injection pipe and the control pipe eliminates or minimizes the windless area where there is no injection air to the product (work). Both blasts of air synergistically combine to achieve a very large drying job on the workpiece.
 また、この種の回転タイプの乾燥装置においては、回転本体の回転数(回転速度)が過剰に増加しすぎることによって、エアノズルのエア噴射による製造物(ワーク)に対する乾燥品質或いは乾燥作業の効率が劣化することがある。このような場合でも、請求項1に係る発明では、前記制御管は根本部の移動軌跡円の法線方向を基準にして回転平面上における法線から回転方向と反対側の領域で所定角度の範囲で揺動且つ固定自在とされたことにより、噴射管のエア噴射方向と回転本体の回転ベース部の軸芯線に対して反対側に噴射方向が傾斜する制御管が設けられたことによって、噴射管による噴射方向と反対方向又は抵抗する方向となるように制御管の噴射が行われる。 Also, in this type of rotary type drying device, the number of revolutions (rotational speed) of the rotary main body is excessively increased, resulting in a reduction in the drying quality or the efficiency of the drying operation for the product (workpiece) by air injection from the air nozzle. It may deteriorate. Even in such a case, in the invention according to claim 1, the control pipe is arranged at a predetermined angle in a region on the opposite side of the rotation direction from the normal line on the rotation plane with reference to the normal direction of the movement locus circle of the root portion. Since the control pipe is provided so that the air injection direction of the injection pipe and the direction of injection are inclined to the opposite side with respect to the axial center line of the rotation base of the rotating body, the injection can be performed. The injection of the control tube is directed against or against the direction of injection by the tube.
 以上のことによって、回転ベース部の回転数(回転速度)が過剰に増加することを抑制し、該回転ベース部が適正な回転数(回転速度)となるようにすることができ且つその状態を維持することができ、製造物(ワーク)に付着した(洗浄液等の)液体や、塵埃,油汚れ等の吹き飛ばしの効果を最良なものとし乾燥品質を極めて良好なものにできる。また、制御管によるエア噴射も製造物(ワーク)に対する乾燥に寄与し、噴射管の乾燥作業と共により一層確実なる乾燥作業にすることができる。また、制御管は噴射管よりも管内径を、同等以上としたことにより、制御管による回転本体の回転数制御を行う役目と共に、制御管自体の噴射力も大きく維持できるので、噴射管のエア噴射と共に、制御管によるエア噴射が加わり、製造物(ワーク)に対する乾燥作業を良好に維持できる。 As described above, it is possible to suppress an excessive increase in the number of rotations (rotational speed) of the rotation base section, to allow the number of rotations (rotational speed) of the rotation base section to reach an appropriate level, and to prevent such a state. It is possible to maximize the effect of blowing away liquid (cleaning liquid, etc.), dust, oil stains, etc. adhering to the product (work), and achieve extremely good drying quality. In addition, the air jetting from the control pipe also contributes to the drying of the product (work), and the drying work of the jet pipe and the drying work can be made more reliable. In addition, by making the inner diameter of the control pipe equal to or larger than that of the injection pipe, the control pipe plays the role of controlling the rotation speed of the rotating body, and the injection force of the control pipe itself can be maintained large, so the air injection of the injection pipe is possible. At the same time, air injection is added by the control pipe, and the drying operation for the product (work) can be maintained well.
 さらに、請求項1に係る発明におけるエアノズルでは、繰り返し述べるが、1本の噴射管と、1本の制御管が回転本体の先端面部における回転中心付近に近接して配置することができることにより、噴射管及び制御管のそれぞれの噴射エアが相乗的に作用して、風速及び圧力を大きくすることができる。これによって、特に、製造物(ワーク)において、その深さ寸法が大きな容器、例えばコンテナボックス等の乾燥洗浄作業では、極めて深い位置にある底部へ強力なエア噴射を当てることができ、乾燥作業を略完璧且つ確実に行うことができる。さらに、請求項1の発明では、前記制御管の噴射エアと前記噴射管の噴射エアは噴射方向延長線上で交わることにより、その交わる位置に製造物(ワーク)が配置されることにより、噴射領域において噴射エアの存在しない空白領域が生ずるドーナツ状の噴射範囲となることを防止し、噴射領域全体に有効的な噴射が行われるようにすることができる。 Furthermore, in the air nozzle according to the first aspect of the invention, as described repeatedly, one injection pipe and one control pipe can be arranged close to the center of rotation on the tip surface of the rotating body, so that the injection The blast air in each tube and control tube can act synergistically to increase wind speed and pressure. This makes it possible to apply a powerful air jet to the very deep bottom of a product (work), especially in the dry cleaning operation of a container with a large depth dimension, such as a container box, and the drying operation can be improved. It can be done almost perfectly and reliably. Furthermore, in the invention of claim 1, the injection air of the control pipe and the injection air of the injection pipe intersect on the extension line of the injection direction, and the product (work) is arranged at the intersecting position, so that the injection area It is possible to prevent a doughnut-shaped injection range in which a blank area in which no injection air exists is generated in the nozzle, and to enable effective injection to be performed over the entire injection area.
 請求項2の発明では、前記制御管の内径は前記噴射管の内径よりも大なる構成により、制御管による回転本体の回転速度の制御を十分に果たすと共に、そのエア噴射による乾燥作業能力も極めて高いものにできる。 In the second aspect of the invention, the inner diameter of the control pipe is larger than the inner diameter of the jet pipe, so that the control pipe can sufficiently control the rotational speed of the rotating body, and the drying performance by the air jet is extremely high. It can be expensive.
 請求項3の発明では、前記制御管及び前記噴射管は、垂直管部と傾斜管部とを有しており、前記垂直管部は前記噴射管の根本部側に位置し、前記噴射管は垂直管と傾斜管部とを有しており、前記垂直管部は前記噴射管の根本部側に位置してなる構成により、噴射管及び制御管の根本部がそれぞれ垂直管部としたことにより、根本部を周方向に回動させる構成を組付け易いものにでき、噴射管及び制御管の根本部における角度調整機構を簡単にすることができる。 In the invention according to claim 3, the control pipe and the injection pipe have a vertical pipe portion and an inclined pipe portion, the vertical pipe portion is located on the root portion side of the injection pipe, and the injection pipe is It has a vertical pipe and an inclined pipe portion, and the vertical pipe portion is located on the root portion side of the injection pipe, and the root portions of the injection pipe and the control pipe are vertical pipe portions, respectively. It is possible to easily assemble the structure for rotating the root portion in the circumferential direction, and to simplify the angle adjusting mechanism in the root portion of the injection pipe and the control pipe.
 請求項4の発明では、前記制御管及び前記噴射管は、弧状とし、両根本部付近は垂直状としたことにより、回転ベース部からの噴射エアの流れを円滑且つ良好にして、噴射エアの圧力の損失を最小限にすることができる。請求項5の発明では、前記噴射管と前記制御管のそれぞれの根本部中心は、前記回転ベース部の回転中心に対して点対称となる位置に設定されたことにより、噴射管及び制御管からのエア噴射のバランスが良好となり回転ベース部の回転を安定させることができる。請求項6の発明では、前記噴射管と前記制御管の先端噴射口は、前記回転ベース部の回転平面と平行となることにより、噴射管及び制御管を、回転平面上における何れの方向に角度を変更させても、そのエア噴射の噴射状態を
均一にすることができる。
According to the fourth aspect of the invention, the control pipe and the injection pipe are arcuate, and the vicinity of both root portions are vertical, thereby smoothing and favorably flowing the injection air from the rotating base portion. Pressure loss can be minimized. According to the fifth aspect of the invention, the centers of the root portions of the injection pipe and the control pipe are set at positions that are symmetrical with respect to the rotation center of the rotation base portion. The balance of the air injection is improved, and the rotation of the rotation base can be stabilized. In the sixth aspect of the present invention, the tip injection ports of the injection pipe and the control pipe are parallel to the rotation plane of the rotation base, so that the injection pipe and the control pipe can be angled in any direction on the rotation plane. is changed, the injection state of the air injection can be made uniform.
 請求項7の発明では、前記噴射管と前記制御管のそれぞれの先端が挿通する噴射用孔部が設けられ前記回転ベースに装着される円板部が備えられたことにより、円筒ハウジング部内に水滴と共に汚れの浸入を防止することができる。請求項8及び請求項9の発明では、エアノズルをワーク進行方向及びワーク進行方向に直交する方向に揺動且つ固定自在とすることで、各エアノズルのエア噴射の方向を所望の方向に設定することができ、ワークの種類及び形状に応じた乾燥作業を行うことができる。 In the seventh aspect of the present invention, a disk portion mounted on the rotating base is provided with an injection hole through which the tip of each of the injection pipe and the control pipe is inserted. In addition, it is possible to prevent the infiltration of dirt. In the eighth and ninth aspects of the invention, the air nozzles can be swung and fixed in the direction of movement of the workpiece and in a direction orthogonal to the direction of movement of the workpiece, so that the direction of air injection from each air nozzle can be set in a desired direction. It is possible to perform drying work according to the type and shape of the work.
(A)は本発明のエアノズルの縦断側面図、(B)はエアノズルの回転本体の開口側より見た平面図、(C)は(A)のY1-Y1矢視拡大断面図、(D)は(A)の(α)部拡大図、(E)は(A)の円筒ハウジング部の断面としたY2-Y2矢視図である。(A) is a vertical cross-sectional side view of the air nozzle of the present invention, (B) is a plan view of the air nozzle viewed from the opening side of the rotating main body, (C) is an enlarged cross-sectional view of (A) taken along the arrow Y1-Y1, (D). (A) is an enlarged view of (α), and (E) is a cross-sectional view of the cylindrical housing portion of (A) taken along the line Y2-Y2. (A)は本発明のエアノズルにおける主要部材を分解した縦断側面図、(B)はエアノズルにおける回転本体の分解した縦断側面図、(C)は(B)の回転本体の主要部を別の方向から見た断面図である。(A) is a vertical cross-sectional side view in which the main members of the air nozzle of the present invention are disassembled, (B) is a vertical cross-sectional side view in which the rotating body of the air nozzle is disassembled, and (C) is a main part of the rotating body of (B) in another direction. 1 is a cross-sectional view seen from . (A)は回転本体における制御管及び支持ブロックの斜視図、(B)は制御管の根本部箇所及び支持ブロックを示す要部拡大断面図、(C)は回転ベースと制御管を分離した要部断面図、(D)は回転ベースと噴射管を分離した要部断面図、(E)支持ブロック箇所における横断平面図である。(A) is a perspective view of the control tube and the support block in the rotating body, (B) is an enlarged cross-sectional view of the main part showing the root portion of the control tube and the support block, and (C) is the main part separating the rotation base and the control tube. (D) is a cross-sectional view of the main part in which the rotation base and the injection pipe are separated, and (E) is a cross-sectional plan view at the support block. (A)は本発明におけるエアノズルの初期状態の開口側より見た平面図、(B)は本発明におけるエアノズルの噴射管及び制御管を所定角度変化させた状態の開口側より見た平面図である。(A) is a plan view of the air nozzle in the initial state seen from the opening side in the present invention, and (B) is a plan view of the air nozzle in the present invention seen from the opening side in a state where the ejection pipe and the control pipe are changed by a predetermined angle. be. (A)乃至(C)は噴射管及び制御管を初期位置から所定角度変化させた状態の開口側より見た要部平面図である。(A) to (C) are plan views of the main part seen from the opening side in a state in which the injection pipe and the control pipe are shifted by a predetermined angle from their initial positions. (A)は本発明における下段側のエアノズルユニットのエアノズルの噴射領域を示す乾燥作業状態図、(B)は従来技術によるドーナツ型の噴射領域の略示図である。(A) is a drying operation state diagram showing the jetting area of the air nozzles of the air nozzle unit on the lower side in the present invention, and (B) is a schematic diagram of the donut-shaped jetting area according to the prior art. (A)は4個のエアノズルが備わったエアノズルユニットの平面図、(B)は(A)の一部切除したX1-X1矢視断面図、(C)は2個のエアノズルが備わったエアノズルユニットの一部切除した平面図である。(A) is a plan view of an air nozzle unit equipped with four air nozzles, (B) is a cross-sectional view of (A) cut along the X1-X1 arrow, and (C) is an air nozzle unit equipped with two air nozzles. 1 is a partially cutaway plan view of FIG. 本発明のエアノズルをエア噴射乾燥システムに適用した縦断側面略示図である。1 is a schematic vertical cross-sectional view of an air jet drying system to which the air nozzle of the present invention is applied; FIG. エア噴射乾燥システムの別の実施形態の搬送駆動部の縦断側面略示図ある。FIG. 11 is a schematic vertical cross-sectional view of a transport drive unit of another embodiment of the air jet drying system; (A)は本発明の噴射管及び制御管の配置の別の実施形態を示す開口側より見た平面図、(B)は本発明の噴射管及び制御管の配置のさらに別の実施形態を示す開口側より見た平面図、である。(A) is a plan view showing another embodiment of the arrangement of the injection pipes and control pipes of the present invention, viewed from the opening side, and (B) is still another embodiment of the arrangement of the injection pipes and control pipes of the present invention. 2 is a plan view seen from the opening side shown; FIG. (A),(B)は本発明の噴射管及び制御管の別の実施形態の縦断側面図である。(A) and (B) are longitudinal side views of another embodiment of the injection pipe and control pipe of the present invention. 噴射管と制御管の内径を等しくした実施形態の開口側より見た平面図である。FIG. 4 is a plan view of the embodiment in which the inner diameters of the injection pipe and the control pipe are equal, viewed from the opening side; エアノズルの回転数と乾燥品質の関係を示すグラフである。It is a graph which shows the rotation speed of an air nozzle, and the relationship of drying quality. (A)は首振り機構を有する下段側のエアノズルユニット側面図、(B)は(A)の一部切除した(β)部拡大図、(C)は(B)の一部切除したY3-Y3矢視図である。(A) is a side view of the lower air nozzle unit having a swinging mechanism, (B) is an enlarged view of (β) part of (A), and (C) is Y3- of (B) partly removed. It is a Y3 arrow view. (A)は首ふり機構を有する下段側のエアノズルユニットの分解斜視図、(B)はエアノズルユニットにおいて一部組み立てた拡大斜視図である。(A) is an exploded perspective view of a lower air nozzle unit having a swinging mechanism, and (B) is an enlarged perspective view of a partially assembled air nozzle unit. (A)は首ふり機構を有する上段側のエアノズルユニットの側面図、(B)は(A)のY4-Y4矢視断面図である。(A) is a side view of an upper air nozzle unit having a swinging mechanism, and (B) is a cross-sectional view taken along line Y4-Y4 of (A). 首ふり機構を有する上段側のエアノズルユニットの分解視図である。FIG. 4 is an exploded view of an upper air nozzle unit having a swinging mechanism; (A)及び(B)は従来技術を示す側面図及び平面図である。(A) and (B) are a side view and a plan view showing the prior art.
 以下、本発明の実施形態を図面に基づいて説明する。本発明のエアノズルAnは、基本的な構成として、主に固定本体A1と回転本体A2とを備えたものであり、該回転本体A2には噴射管41と制御管42とが備わる(図1,図2等参照)。噴射管41及び制御管42の詳細については後述する。また、以下の説明において、製造物(ワーク)9という文言が存在するが、この製造物(ワーク)9は、工場等の製造施設にて製造された製造物に限らず、物品の洗浄を行うクリーニング施設等の洗浄の対象となる物品も含まれる。以下、本説明では、これらのものを総称して製造物(ワーク)9という。 Hereinafter, embodiments of the present invention will be described based on the drawings. The air nozzle An of the present invention basically comprises a fixed body A1 and a rotating body A2. The rotating body A2 is equipped with an injection pipe 41 and a control pipe 42 (Fig. 1, See Figure 2, etc.). Details of the injection pipe 41 and the control pipe 42 will be described later. Also, in the following description, there is a term "product (work) 9", but this product (work) 9 is not limited to products manufactured in a manufacturing facility such as a factory, but is used to clean articles. It also includes items that are subject to cleaning, such as cleaning facilities. Hereinafter, in this description, these products are collectively referred to as a product (work) 9. As shown in FIG.
 固定本体A1は、非回転の構造物であり、該固定本体A1に対して前記回転本体A2は、固定本体A1に回転自在となる構造にて装着されたものである〔図1(A),(B),図2,図4等参照〕。なお、本発明では、エアノズルAnより噴射される空気の気体は、主に普通の空気であるが、種々の種類の気体も含まれる。また、以下説明において空気とした文言は、気体に置き換えても良い。 The fixed body A1 is a non-rotatable structure, and the rotary body A2 is attached to the fixed body A1 so as to be rotatable (Fig. 1(A), (B), FIG. 2, FIG. 4, etc.]. In the present invention, the gas of the air injected from the air nozzle An is mainly ordinary air, but various types of gas are also included. In addition, the term "air" in the following description may be replaced with "gas".
 固定本体A1は、主に固定ベース部1と円筒ハウジング部2とから構成されている〔図1(A),(E),図2(A)参照〕。ここで、本発明において、エアノズルAnは、軸方向において「開口側」と「後方側」とを有する(図1,図2等参照)。また、前記開口側については、「前方側」と称しても良い。軸方向は、回転本体A2が回転するときの回転中心となる軸芯の線方向のことを言う。回転中心となる軸芯の線のことをエアノズルAnにおける回転軸芯線Lと称する。また、該回転軸芯線Lは、エアノズルAnを構成する全構成部材に共通する軸芯線である。よって、該回転軸芯線Lは、回転本体A2を構成する回転ベース部3及び円板部5にも適用される。さらに、固定本体A1に回転本体A2を装着した状態で、固定本体A1の中(軸)心線は回転軸芯線Lに一致又は略一致する〔図1(A)参照〕。 The fixed main body A1 is mainly composed of a fixed base portion 1 and a cylindrical housing portion 2 [see FIGS. 1(A), (E) and 2(A)]. Here, in the present invention, the air nozzle An has an “opening side” and a “rear side” in the axial direction (see FIGS. 1, 2, etc.). Also, the opening side may be referred to as a "front side". The axial direction refers to the linear direction of the axis that is the center of rotation when the rotating body A2 rotates. The line of the axis that serves as the center of rotation is referred to as the rotation axis line L of the air nozzle An. Further, the rotation axis line L is an axis line common to all the constituent members constituting the air nozzle An. Therefore, the rotation axis core line L is also applied to the rotation base portion 3 and the disk portion 5 that constitute the rotation main body A2. Further, when the rotating body A2 is attached to the fixed body A1, the core (shaft) of the fixed body A1 coincides or substantially coincides with the rotational axis core L (see FIG. 1(A)).
 つまり、エアノズルAnを構成する固定本体A1と回転本体A2は、固定本体A1に回転本体A2が組み込まれた状態で、固定本体A1の軸芯が前記回転軸芯線Lに一致する状態でとなる。したがって、回転軸芯線Lは、固定本体A1の軸芯線としても共用される〔図1(A)参照〕。また、回転軸芯線Lに対して、固定本体A1と回転本体A2には、前記開口側(前方側)及び前記後方側の位置が決定される〔図1(A)参照〕。回転軸芯線Lは、主要
な図に記載されている。
In other words, the stationary body A1 and the rotating body A2 constituting the air nozzle An are in a state where the axis of the stationary body A1 coincides with the rotation axis line L when the rotating body A2 is incorporated in the stationary body A1. Therefore, the rotating shaft center line L is also used as the shaft center line of the fixed main body A1 [see FIG. 1(A)]. Further, positions of the opening side (front side) and the rear side of the fixed body A1 and the rotating body A2 are determined with respect to the rotation axis L (see FIG. 1(A)). The axis of rotation L is shown in the main figures.
 固定ベース部1は、固定円筒部11と接続用固定フランジ部12とを有する〔図1,図2(A)参照〕。固定円筒部11は、略中空円筒形状に構成されたものであり(図1乃至図3参照)、後述する回転本体A2の回転ベース部3が回転軸芯線Lを回転の軸として回転自在となるように装着される。固定円筒部11は、前述したように、略中空円筒形状であり、円筒形状における回転軸芯線Lに沿う軸方向両側が開放された円筒状貫通部11bを有する。固定円筒部11の後方側端部の開口周縁には、内ネジが形成されたネジ孔11cが前記周縁に沿って等間隔に形成されている(図2参照)。 The fixed base portion 1 has a fixed cylindrical portion 11 and a connection fixed flange portion 12 [see FIGS. 1 and 2(A)]. The fixed cylindrical portion 11 is configured in a substantially hollow cylindrical shape (see FIGS. 1 to 3), and the rotation base portion 3 of the rotation main body A2, which will be described later, is rotatable about the rotation axis L as a rotation axis. It is worn as As described above, the fixed cylindrical portion 11 has a substantially hollow cylindrical shape, and has a cylindrical through portion 11b that is open on both sides in the axial direction along the rotation axis L of the cylindrical shape. Threaded holes 11c having internal threads are formed at regular intervals along the periphery of the opening of the rear end of the fixed cylindrical portion 11 (see FIG. 2).
 接続用固定フランジ部12は、固定円筒部11内と、回転本体A2との間に装着される軸受34とスペーサ35とを収納配置するときの蓋としての役目と、後述するエアノズルベース6にエアノズルAnを装着するための接続部材としての役目をなす(図7,図8,図14乃至図17等参照)。接続用固定フランジ部12は、固定円筒部11の軸方向一端にビス等の複数の固着具13にて固着される。接続用固定フランジ部12は、環状の円板形状に形成され前記固定円筒部11の外径寸法よりも大きい。接続用固定フランジ部12には固定貫通孔12a,接続孔12b及び接続孔12cが形成されている。固定円筒部11と接続用固定フランジ部12との連結には、固着具13と接続孔12bとネジ孔11cとによって行われる。 The fixed flange portion 12 for connection serves as a lid when housing and arranging the bearing 34 and the spacer 35 mounted between the inside of the fixed cylindrical portion 11 and the rotary main body A2, and also serves as an air nozzle for an air nozzle base 6, which will be described later. It serves as a connecting member for attaching An (see FIGS. 7, 8, 14 to 17, etc.). The connecting fixed flange portion 12 is fixed to one axial end of the fixed cylindrical portion 11 with a plurality of fasteners 13 such as screws. The fixed flange portion 12 for connection is formed in an annular disc shape and is larger than the outer diameter of the fixed cylindrical portion 11 . A fixed through hole 12a, a connection hole 12b, and a connection hole 12c are formed in the fixed flange portion 12 for connection. The connection between the fixed cylindrical portion 11 and the connecting fixed flange portion 12 is performed by the fixture 13, the connection hole 12b, and the screw hole 11c.
 円筒ハウジング部2は、前記固定ベース部1の固定円筒部11よりも直径が大きく形成されたものであり、円筒状の容器形状をなしている〔図1(A),図2(A)参照〕。該円筒ハウジング部2は、円筒状側壁板部21と閉鎖板部22とを有し、軸方向の一端側で且つ前記閉鎖板部22と反対側が開口部2aとなっている。そして、前述したように、固定本体A1の円筒ハウジング部2の開口している側を開口側(前方側)とし、回転軸芯線Lに沿う軸方向において反対側を後方側とする(図1乃至図3等参照)。 The cylindrical housing portion 2 is formed to have a larger diameter than the fixed cylindrical portion 11 of the fixed base portion 1, and has a cylindrical container shape (see FIGS. 1(A) and 2(A)). ]. The cylindrical housing portion 2 has a cylindrical side wall plate portion 21 and a closing plate portion 22, and has an opening portion 2a on one end side in the axial direction and on the side opposite to the closing plate portion 22. As shown in FIG. As described above, the opening side of the cylindrical housing portion 2 of the fixed main body A1 is defined as the opening side (front side), and the opposite side in the axial direction along the rotation axis L is defined as the rear side (Figs. See Figure 3, etc.).
 円筒ハウジング部2の閉鎖板部22側には、前記固定ベース部1の固定円筒部11の軸方向一端が挿入する貫通孔22aが形成され、固定円筒部11と、円筒ハウジング部2の閉鎖板部22とが溶接等の固着手段にて固着される。このとき、固定円筒部11の軸方向一端側の一部は、円筒ハウジング部2の閉鎖板部22に喰い込む状態である〔図1(A),(E),図2(A)等参照〕。つまり、固定円筒部11の軸方向一端の一部が円筒ハウジング部2内に入り込んでいる。 A through hole 22a into which one axial end of the fixed cylindrical portion 11 of the fixed base portion 1 is inserted is formed on the closing plate portion 22 side of the cylindrical housing portion 2. The portion 22 is fixed by a fixing means such as welding. At this time, a portion of the fixed cylindrical portion 11 on one end side in the axial direction is in a state of biting into the closing plate portion 22 of the cylindrical housing portion 2 (see FIGS. 1A, 1E, 2A, etc.). ]. That is, a portion of one end of the fixed cylindrical portion 11 in the axial direction is inserted into the cylindrical housing portion 2 .
 そのために固定円筒部11の軸方向開口側(前方側)寄りの外周側面は、環形鍔状部が形成され、環形鍔状部を境にして軸方向開口側(前方側)寄りの部分の直径が小さくなる小径部となり、その段差となる段差部11aが存在する。段差部11aは、固定円筒部11の小径部を円筒ハウジング部2の閉鎖板部22の貫通孔22aに挿入接続するためのストッパ及び位置合せの役目をなしている。 For this reason, an annular brim is formed on the outer peripheral side surface of the fixed cylindrical portion 11 near the opening side (front side) in the axial direction, and the diameter of the portion near the opening side (front side) in the axial direction with the annular brim as a boundary is becomes a small-diameter portion with a smaller diameter, and there is a stepped portion 11a serving as a stepped portion. The stepped portion 11a serves as a stopper for inserting and connecting the small-diameter portion of the stationary cylindrical portion 11 into the through hole 22a of the closing plate portion 22 of the cylindrical housing portion 2, and as a positioning function.
 次に、回転本体A2は、回転ベース部3と、噴射管41と、制御管42と、円板部5とを有する〔図1,図2(B),図3参照〕。回転ベース部3は、回転円筒部31と回転フランジ部32とから構成される〔図1(A),図2(B),図3,図4等参照〕。回転円筒部31は、円筒カップ状に形成され、円筒側面部31aと先端面部31bから構成される。円筒側面部31aは、回転円筒部31の外周を構成し、先端面部31bは、回転円筒部31の軸方向開口側(前方側)を閉鎖する部位である。回転円筒部31の内部は円筒状の空隙とした空気流路31sが形成されている〔図1(A),図2(B),(C)参照〕。先端面部31bは、回転円筒部31の底部を構成する部分であり、開口側より見て円形状であり、その直径中心が回転本体A2の回転軸芯線Lが通過する回動中心P1となる。 Next, the rotating body A2 has a rotating base portion 3, an injection pipe 41, a control pipe 42, and a disk portion 5 [see FIGS. 1, 2(B), and 3]. The rotating base portion 3 is composed of a rotating cylindrical portion 31 and a rotating flange portion 32 (see FIGS. 1(A), 2(B), 3, 4, etc.). The rotary cylindrical portion 31 is formed in the shape of a cylindrical cup and is composed of a cylindrical side surface portion 31a and a tip surface portion 31b. The cylindrical side surface portion 31a constitutes the outer periphery of the rotating cylindrical portion 31, and the tip surface portion 31b is a portion that closes the axial opening side (front side) of the rotating cylindrical portion 31. As shown in FIG. Inside the rotating cylindrical portion 31, an air flow path 31s is formed as a cylindrical void [see FIGS. 1(A), 2(B) and 2(C)]. The tip surface portion 31b constitutes the bottom portion of the rotating cylindrical portion 31, and has a circular shape when viewed from the opening side.
 回転ベース部3の回転円筒部31は、先端面部31b側付近で内径が拡張された、拡開室部311が形成されている。該拡開室部311では、空気流路31sが先端面部31b側で他の部分よりも容積が大きくなるように構成されている。そのために先端面部31bは、回転ベース部3の回転円筒部31を構成する部材として、円筒側面部31aとは、別部材とすることもある〔図1(A),図2(B),(C)参照〕。先端面部31bを別部材とする場合には、円板の円板状に形成され、ビス等の固着具によって回転円筒部31の拡開室部311側の開口を塞ぐように固着される〔図1(A),図2(B),(C)参照〕。 The rotating cylindrical portion 31 of the rotating base portion 3 is formed with an expanded chamber portion 311 having an enlarged inner diameter near the tip surface portion 31b. In the expanded chamber portion 311, the air flow path 31s is configured to have a larger volume at the tip surface portion 31b side than at other portions. For this reason, the tip surface portion 31b may be a separate member from the cylindrical side surface portion 31a as a member constituting the rotating cylindrical portion 31 of the rotating base portion 3 [Figs. C)]. When the tip surface portion 31b is formed as a separate member, it is formed in the shape of a disc, and is fixed by a fastener such as a screw so as to close the opening of the rotating cylindrical portion 31 on the expansion chamber portion 311 side. 1 (A), FIGS. 2 (B) and (C)].
 回転円筒部31の後方側は、開口された空気入口31dとなっている。回転円筒部31の先端面部31bには、回転円筒部31の内部と外部との間を貫通する貫通孔とした2つの空気排出部31m及び空気排出部31nが形成されている。先端面部31bに形成された空気排出部31m及び空気排出部31nは、後述する噴射管41の根本部41j及び制御管42の根本部42jが装着される〔図1(A),(C),(D),図2(B),(C)参照〕。 The rear side of the rotary cylindrical portion 31 is an open air inlet 31d. Two air discharge portions 31m and 31n, which are through holes penetrating between the inside and the outside of the rotary cylindrical portion 31, are formed in the tip surface portion 31b of the rotary cylindrical portion 31. As shown in FIG. A root portion 41j of the injection pipe 41 and a root portion 42j of the control pipe 42, which will be described later, are attached to the air discharge portion 31m and the air discharge portion 31n formed on the tip surface portion 31b [Figs. (D), see FIGS. 2B and 2C].
 回転円筒部31の軸方向後方側には、回転フランジ部32がビス等の固着具33にて固着される〔図1(A),図2(B)等参照〕。回転フランジ部32は、前記固定本体A1に装着されたときに、該固定本体A1の接続用固定フランジ部12に回転自在に係止し、安定した状態で回転本体A2が回転できるようにする役目をなす。 A rotating flange portion 32 is fixed to the axially rearward side of the rotating cylindrical portion 31 with a fastener 33 such as a screw [see FIGS. 1(A) and 2(B)]. When the rotary flange portion 32 is attached to the fixed main body A1, it is rotatably engaged with the connecting fixed flange portion 12 of the fixed main body A1 so that the rotary main body A2 can rotate in a stable state. form.
 回転フランジ部32は、環状円板状をなし、空気入口孔32aが形成され、該空気入口孔32aの周縁に接続孔32bが形成されている。回転円筒部31の軸方向後方側の端面にはネジ孔31eが形成され、回転フランジ部32が回転円筒部31に、接続孔32b,ネジ孔31e及び固着具33により固着される〔図1(A),図2(B)参照〕。回転フランジ部32の外周縁は、固定本体A1の接続用固定フランジ部12の固定用貫通孔12aの内周縁に回転自在に係止できるようになっている〔図1(A),図2(A),(B)参照〕。 The rotary flange portion 32 has an annular disk shape, an air inlet hole 32a is formed, and a connection hole 32b is formed around the periphery of the air inlet hole 32a. A threaded hole 31e is formed in the axially rearward end face of the rotating cylindrical portion 31, and the rotating flange portion 32 is fixed to the rotating cylindrical portion 31 by a connecting hole 32b, a threaded hole 31e and a fastener 33 [FIG. A), see FIG. 2(B)]. The outer peripheral edge of the rotating flange portion 32 can be rotatably locked to the inner peripheral edge of the fixing through-hole 12a of the connection fixing flange portion 12 of the fixed main body A1 [Figs. A), (B)].
 次に、噴射管41と制御管42について説明する。噴射管41及び制御管42は、回転ベース部3の先端面部31bに装着されている。噴射管41は、その数は1本であり、製造物(ワーク)9に対する乾燥作業及び回転本体A2の回転動作を行わせる役目をなす。制御管42は、その数は1本であり、噴射管41による回転本体A2の回転数(回転速度)を抑制させる役目と、噴射管41と共に製造物(ワーク)9に対する乾燥作業を行わせる役目もなす。噴射管41と制御管42のエアの噴射方向は、回転ベース部3の回転軸芯線Lに対して所定角度θa,θbを有して傾斜するように設定されている〔図1(C),(D),図3(B),(C),(D)参照〕。 Next, the injection pipe 41 and the control pipe 42 will be explained. The injection pipe 41 and the control pipe 42 are attached to the tip surface portion 31b of the rotation base portion 3. As shown in FIG. The number of injection pipes 41 is one, and serves to dry the product (work) 9 and rotate the rotary body A2. The number of control pipes 42 is one, and it has the role of suppressing the number of revolutions (rotational speed) of the rotating body A2 by the injection pipes 41, and the role of drying the product (work) 9 together with the injection pipes 41. Also eggplant. The air injection directions of the injection pipe 41 and the control pipe 42 are set to be inclined at predetermined angles θa and θb with respect to the rotation axis center line L of the rotation base portion 3 [FIG. (D), FIGS. 3B, 3C, and 3D].
 噴射管41及び制御管42は、それぞれの根本部41j,42j側が、回転円筒部31の先端面部31bに装着される〔図1(C),(D),図3(B),(C),(D)参照〕。そして、噴射管41及び制御管42は、それぞれの根本部41j,42jを中心として回動し、回転本体A2における回転平面上において、噴射角度を変化させることができる(図4,図5参照)。ここで、回転平面とは、回転本体A2の回転軸芯線Lに対して直交する平面のことであり、具体的には回転ベース部3の先端面部31bと同一平面若しくは該平面に平行な平面のことである。 The root portions 41j and 42j of the injection pipe 41 and the control pipe 42 are attached to the tip surface portion 31b of the rotating cylindrical portion 31 [Figs. 1(C), (D), Figs. , see (D)]. The injection pipe 41 and the control pipe 42 rotate around their base portions 41j and 42j, so that the injection angle can be changed on the plane of rotation of the rotating body A2 (see FIGS. 4 and 5). . Here, the rotation plane is a plane orthogonal to the rotation axis center line L of the rotation main body A2. That is.
 噴射管41及び制御管42のそれぞれの根本部41j,42j付近は直線状の管体部分として形成されており、この直線状の管体部分を垂直管部41a及び垂直管部42aと称する〔図1(C),(D),図3(B),(C),(D)参照〕。つまり、垂直管部41a,垂直管部42aの軸端付近が根本部41j,42jとなっている。噴射管41及び制御管42のそれぞれの根本部41j,42jは断面円形状の略新円状の円管であり、根本部41j,42jの直径中心を揺動中心P1として回転平面上を揺動するものである(図4,図5参照)。揺動する構造は後述する。 The vicinity of root portions 41j and 42j of the injection pipe 41 and the control pipe 42 are formed as linear pipe body portions, and these linear pipe body portions are referred to as vertical pipe portions 41a and 42a. 1 (C), (D), and FIG. 3 (B), (C), (D)]. In other words, root portions 41j and 42j are formed near the axial ends of the vertical tube portion 41a and the vertical tube portion 42a. Root portions 41j and 42j of the injection pipe 41 and the control pipe 42 are circular pipes having a circular cross-section and a substantially new circular shape, and oscillate on the rotation plane with the center of the diameter of the root portions 41j and 42j as the oscillating center P1. (See FIGS. 4 and 5). The rocking structure will be described later.
 噴射管41は、主に前述した垂直管部41aと共に傾斜管部41bを有している〔図1(C),(D),図3(B),(C),(D)参照〕。垂直管部41aと傾斜管部41bとは、共に直線状管体であり、傾斜管部41bは、垂直管部41aの管長方向に対して所定の角度θaで傾斜する〔図1(C),(D),図3(B),(C),(D)参照〕。つまり、傾斜管部41bの管長方向がエアの噴射方向となり、該傾斜管部41bが前記回転軸芯線Lに対して角度θaを有して傾斜するように構成されることで、噴射管41の先端噴射口41cからのエア噴射角度は回転軸芯線Lに対して角度θaとなる。 The injection pipe 41 mainly has a vertical pipe portion 41a and an inclined pipe portion 41b [see FIGS. 1(C), (D), 3(B), (C), and (D)]. Both the vertical tube portion 41a and the inclined tube portion 41b are straight tubular bodies, and the inclined tube portion 41b is inclined at a predetermined angle θa with respect to the pipe length direction of the vertical tube portion 41a [FIG. (D), FIGS. 3B, 3C, and 3D]. That is, the pipe length direction of the inclined pipe portion 41b is the air injection direction, and the inclined pipe portion 41b is configured to be inclined at an angle θa with respect to the rotation axis center line L. The air injection angle from the tip injection port 41c is an angle θa with respect to the rotation axis center line L. As shown in FIG.
 次に、制御管42は、噴射管41の構成と同様であり、前述した垂直管部42aと共に傾斜管部42bを有している〔図1(C),(D),図3(B),(C),(D)参照〕。垂直管部42aと傾斜管部42bとは、共に直線状管体であり、傾斜管部42bは、垂直管部42aの管長方向に対して角度θ2で傾斜する〔図1(C),(D),図3(B),(C),(D)参照〕。つまり、傾斜管部42bの管長方向がエアの噴射方向となり、該傾斜管部42bが前記回転軸芯線Lに対して角度θbを有して傾斜するように構成されることで、制御管42の先端噴射口42cからのエア噴射角度は回転軸芯線Lに対して角度θbとなる。また、制御管42における角度θbは、噴射管41における角度θaと同等に設定してもよいし、異なるものに設定してもよい。 Next, the control pipe 42 has the same structure as the injection pipe 41, and has an inclined pipe portion 42b together with the vertical pipe portion 42a described above [Figs. , (C) and (D)]. Both the vertical tube portion 42a and the inclined tube portion 42b are straight tubular bodies, and the inclined tube portion 42b is inclined at an angle θ2 with respect to the longitudinal direction of the vertical tube portion 42a [Figs. ), see FIGS. 3B, 3C, and 3D]. That is, the pipe length direction of the inclined pipe portion 42b is the direction of air injection, and the inclined pipe portion 42b is inclined at an angle θb with respect to the rotation axis L, thereby The air injection angle from the tip injection port 42c is an angle θb with respect to the center line L of the rotation axis. Also, the angle θb of the control pipe 42 may be set equal to or different from the angle θa of the injection pipe 41 .
 そして、噴射管41は、根本部41jの揺動中心P1を中心として回転平面上を揺動することができるものであり、噴射管41が何れの方向に揺動しても、回転軸芯線Lに対する傾斜角度θaは、変わらず、常時一定である。同様に、制御管42は、根本部42jの揺動中心P1を中心として回転平面上を揺動することができるものであり、制御管42が何れの方向にに揺動しても、回転軸芯線Lに対する傾斜角度θbは、変わらず、常時一定である。 The jet pipe 41 is capable of swinging on the plane of rotation about the swing center P1 of the root portion 41j. The inclination angle θa with respect to is unchanged and always constant. Similarly, the control tube 42 can oscillate on the plane of rotation about the oscillation center P1 of the root portion 42j, and the rotation axis The inclination angle θb with respect to the core line L does not change and is always constant.
 噴射管41及び制御管42のそれぞれの根本部41j,42jの揺動中心P1,P2は、回転ベース部3の先端面部31bの回転中心Pから離間している〔図1(B),図3,図4参照〕。回転本体A2は、固定本体A1に対して回転軸芯線Lの周囲を回転する。そして、回転本体A2が回転軸芯線Lを回転軸として回転動作を行うときには、噴射管41の根本部41jの揺動中心P1及び制御管42の根本部42jの揺動中心P2は、回転ベース部3の先端面部31bの回転中心Pを直径中心として円周状に移動し、その移動軌跡は円形となる〔図1(B),図3,図4参照〕。そして、噴射管41の揺動中心P1の移動する軌跡を移動軌跡円Q1と称し、制御管42の揺動中心P2の移動する軌跡を移動軌跡円Q2と称する。 Pivot centers P1 and P2 of root portions 41j and 42j of injection pipe 41 and control pipe 42, respectively, are separated from rotation center P of tip surface portion 31b of rotary base portion 3 (see FIGS. 1(B) and 3). , see FIG. 4]. The rotating body A2 rotates around the rotation axis L with respect to the fixed body A1. When the rotating body A2 rotates around the rotation axis L, the pivot center P1 of the root portion 41j of the injection pipe 41 and the pivot center P2 of the root portion 42j of the control pipe 42 are aligned with the rotation base portion. 3, the center of rotation P of the tip surface portion 31b of 3 is the center of the diameter. The trajectory along which the swing center P1 of the injection pipe 41 moves is called a trajectory circle Q1, and the trajectory along which the swing center P2 of the control pipe 42 moves is called a trajectory circle Q2.
 噴射管41は、根本部41jの揺動中心P1の移動軌跡円Q1の接線方向を基準にして回転平面上における任意の位置に基準接線Ltが設定される。ここで、基準接線Ltの移動軌跡円Q1との接点は根本部41jの揺動中心P1の位置とする。前記基準接線Ltを中心にして該基準接線Ltの回転平面上における両側をそれぞれの揺動角度θ1の範囲で揺動且つ固定自在とされる。つまり、基準接線Ltに対して回転平面上に+θ1及び-θ1の範囲で揺動する〔図1(B),図4,図5参照〕。揺動角度θ1は、具体的には、+θ1及び-θ1の範囲において、約0度乃至約90度未満であり、適正には+約30度及び-約30度である(図5参照)。 The injection pipe 41 has a reference tangent line Lt set at an arbitrary position on the rotation plane with reference to the tangential direction of the movement locus circle Q1 of the swing center P1 of the root portion 41j. Here, the point of contact of the reference tangent line Lt with the movement locus circle Q1 is the pivot center P1 of the root portion 41j. Both sides of the reference tangent line Lt on the plane of rotation of the reference tangent line Lt can be swung and fixed within a swing angle .theta.1. That is, it oscillates in the range of +.theta.1 and -.theta.1 on the plane of rotation with respect to the reference tangent line Lt [see FIGS. 1(B), 4 and 5]. Specifically, the swing angle θ1 is in the range of +θ1 and -θ1, from about 0 degrees to less than about 90 degrees, and properly about +30 degrees and -30 degrees (see FIG. 5).
 また、制御管42は、根本部42jの揺動中心P2の移動軌跡円Q2の法線方向を基準にして回転平面上における任意の位置に基準法線Lnが設定される。ここで、基準法線Lnの移動軌跡円Q2との交点は根本部42jの揺動中心P2の位置とする。該基準法線Lnから回転ベース部3の回転方向と反対側の領域で所定の揺動角度θ2の範囲で揺動且つ固定自在とされる〔図1(B),図4,図5参照〕。基準法線Lnは、先端面部31bの回転中心Pと、制御管42の根本部42jの揺動中心P2とを結ぶ線として設定されるものであり、制御管42の根本部42jは先端面部31bに対して設置位置が不動であり、基準法線Lnも先端面部31bに対して設置位置が不動となる。 In the control pipe 42, a reference normal line Ln is set at an arbitrary position on the rotation plane with reference to the normal line direction of the movement locus circle Q2 of the swing center P2 of the root portion 42j. Here, the intersection of the reference normal line Ln and the movement locus circle Q2 is the position of the swing center P2 of the root portion 42j. In a region on the opposite side of the rotation direction of the rotation base portion 3 from the reference normal line Ln, the rotation base portion 3 can be swung and fixed within a predetermined swing angle θ2 [see FIGS. 1(B), 4 and 5]. . The reference normal line Ln is set as a line connecting the rotation center P of the tip surface portion 31b and the swing center P2 of the base portion 42j of the control pipe 42. , and the installation position of the reference normal line Ln is also fixed with respect to the tip surface portion 31b.
 よって、基準法線Lnを基準にして回転本体A2における先端面部31bの回転方向に沿って、基準法線Lnの前方側を前進側とし、基準法線Lnを基準にして前進側と反対となる側つまり後方側を基準法線Lnの反対側という(図4参照)。基準法線Lnの反対側を、回転方向反対側と称する。また、図4及び図5において、前記基準接線Lt及び前記基準法線Lnは、一点鎖線にて示され、噴射管部41及び制御管42におけるエア噴射方向は実線にて示されている。 Therefore, the front side of the reference normal line Ln is the advancing side along the rotation direction of the tip surface portion 31b of the rotating body A2 with the reference normal line Ln as the reference, and is opposite to the advancing side with the reference normal line Ln as the reference. The side, ie the rear side, is called the opposite side of the reference normal line Ln (see FIG. 4). The side opposite to the reference normal Ln is referred to as the rotationally opposite side. 4 and 5, the reference tangent line Lt and the reference normal line Ln are indicated by dashed-dotted lines, and the directions of air injection in the injection pipe portion 41 and the control pipe 42 are indicated by solid lines.
 ここで、噴射管41の揺動中心P1の移動軌跡円Q1と、制御管42の揺動中心P2の移動軌跡円Q2は、回転中心Pを中心とする同心円である〔図1(B),図3(E),図4,図5参照〕。そして、移動軌跡円Q1と移動軌跡円Q2とは直径が同一となる場合と〔図1(B),図3(E),図4,図5参照〕、異なる場合とが存在する(図10参照)。移動軌跡円Q1と移動軌跡円Q2とが同一であるときには噴射管部41の根本部41jの揺動中心P1と、制御管42の根本部42jの揺動中心P2の回転中心Pからの距離が等しくなる。そして、回転中心Pと揺動中心P1,P2とが一直線状に並ぶときには、回転中心Pを中心とする点対称の位置関係となる〔図1(B),図3(E),図4参照〕。 Here, the movement locus circle Q1 of the oscillation center P1 of the injection pipe 41 and the movement locus circle Q2 of the oscillation center P2 of the control pipe 42 are concentric circles centered on the rotation center P [Fig. See FIGS. 3(E), 4, and 5]. There are cases where the diameters of the movement trajectory circle Q1 and the movement trajectory circle Q2 are the same [see FIGS. reference). When the moving trajectory circle Q1 and the moving trajectory circle Q2 are the same, the distance from the rotation center P of the swing center P1 of the root portion 41j of the injection pipe portion 41 and the swing center P2 of the root portion 42j of the control pipe 42 is be equal. When the center of rotation P and the centers of oscillation P1 and P2 are aligned in a straight line, the positional relationship is symmetrical about the center of rotation P [see FIGS. ].
 制御管42は、噴射管41による回転本体A2の回転速度の過剰な上昇を抑制し、適正な回転速度を維持する役目をなすものである。したがって噴射管41からのエアの噴射力F1とし、制御管42からのエアの噴射力F2とすると、噴射管41による回転本体A2の回転推進力はF1cosθ1であり、制御管42による回転抑制力はF2sinθ2となる。 The control pipe 42 suppresses an excessive increase in the rotational speed of the rotating body A2 due to the injection pipe 41, and serves to maintain an appropriate rotational speed. Therefore, when the air injection force from the injection pipe 41 is F1 and the air injection force from the control pipe 42 is F2, the rotation driving force of the rotating body A2 by the injection pipe 41 is F1 cos θ1, and the rotation suppressing force by the control pipe 42 is F2 sin θ2.
 ただし、噴射力F1及び噴射力F2は、回転本体A2の回転平面上に対して平行となる方向を有する力である。ここで、回転本体A2が適正方向に回転するために、回転推進力F1cosθ1は、回転抑制力F2sinθ2よりも大きく設定される。これによって、回転本体A2は、稼働時に噴射管41の噴射により回動中心P1を中心とし、回転軸芯線Lの周囲に沿って回転する。 However, the injection force F1 and the injection force F2 are forces having a direction parallel to the plane of rotation of the rotating body A2. Here, in order for the rotating body A2 to rotate in an appropriate direction, the rotational driving force F1 cos θ1 is set larger than the rotation suppressing force F2 sin θ2. As a result, the rotating body A2 is rotated around the rotation axis center line L around the center of rotation P1 by the injection from the injection pipe 41 during operation.
 噴射管41は、空気を流通させて洗浄用のエア噴射と、回転本体A2を回転させる回転力となる推進用のエア噴射を発生させる管部材である。噴射管41の一端は、根本部41jである。該根本部41jは、回転円筒部31の円筒側面部31aで且つ先端面部31b側寄りの位置に設けられた空気排出部31mに挿入され、根本部41jが空気排出部31m内で揺動中心P1を揺動の中心として周方向に回転自在となるように構成される(図3,図4,図5参照)。 The injection pipe 41 is a pipe member that circulates air to generate an air injection for cleaning and an air injection for propulsion that becomes a rotational force to rotate the rotating body A2. One end of the injection pipe 41 is a root portion 41j. The root portion 41j is inserted into the air discharge portion 31m provided on the cylindrical side surface portion 31a of the rotating cylindrical portion 31 and near the tip surface portion 31b side, and the root portion 41j swings within the air discharge portion 31m at the pivot center P1. is the center of oscillation (see FIGS. 3, 4, and 5).
 制御管42は、回転本体A2の回転速度を抑制させ且つ噴射管41と共に乾燥作業を行う。制御管42の一端は、根本部42jである。該根本部42jは、回転円筒部31の円筒側面部31aで且つ先端面部31b側寄りの位置に設けられた空気排出部31nに挿入され、根本部42jが空気排出部31n内で揺動中心P2を揺動の中心として周方向に回転自在となるように構成される(図3,図4,図5参照)。 The control pipe 42 controls the rotational speed of the rotating body A2 and performs drying work together with the injection pipe 41. One end of the control tube 42 is a root portion 42j. The base portion 42j is inserted into an air discharge portion 31n provided on the cylindrical side surface portion 31a of the rotary cylindrical portion 31 and near the tip surface portion 31b side, and the base portion 42j swings within the air discharge portion 31n at a center point P2. is the center of oscillation (see FIGS. 3, 4, and 5).
 制御管42の管内径D2は、噴射管41の管内径D1に対して同等又は大きく設定される〔図1(B),(C),(D),図3(C),(D),(E)参照〕。
つまり、D2≧D1である。
The inner diameter D2 of the control pipe 42 is set equal to or larger than the inner diameter D1 of the injection pipe 41 [Figs. 1(B), (C), (D), Figs. See (E)].
That is, D2≧D1.
 ここで、噴射管41の管内径D1と、制御管42の管内径D2は、先端面部31bに対して比較的大径であり、具体的には先端面部31bの直径の約20パーセント~約50パーセント程度である。さらに、噴射管41の管内径D1と、制御管42の管内径D2とは、等しくすることもある(図12参照)。噴射管41の管内径D1と、制御管42の管内径D2とを等しくする実施形態では、管内径D1と管内径D2とが略同等であることも含まれる。そして、この場合、噴射管41の管内径D1が、制御管42の管内径D2よりも僅かに大きくなることも略同等に含まれる。 Here, the inner diameter D1 of the injection pipe 41 and the inner diameter D2 of the control pipe 42 are relatively large with respect to the tip surface portion 31b. percent. Furthermore, the inner diameter D1 of the injection pipe 41 and the inner diameter D2 of the control pipe 42 may be made equal (see FIG. 12). The embodiment in which the inner diameter D1 of the injection tube 41 and the inner diameter D2 of the control tube 42 are equal includes that the inner diameter D1 and the inner diameter D2 are substantially equal. In this case, the fact that the pipe inner diameter D1 of the injection pipe 41 is slightly larger than the pipe inner diameter D2 of the control pipe 42 is included substantially equivalently.
 次に、噴射管41と制御管42における回転ベース部3の先端面部31bに対する装着構造を説明する。この装着構造には、噴射支持ブロック45及び制御支持ブロック46が使用される。噴射管41は、噴射支持ブロック45を介して先端面部31bに装着され、制御支持ブロック46は、制御支持ブロック46を介して先端面部31bに装着される(図3参照)。 Next, the mounting structure of the injection pipe 41 and the control pipe 42 with respect to the tip surface portion 31b of the rotation base portion 3 will be described. A jet support block 45 and a control support block 46 are used in this mounting structure. The injection pipe 41 is attached to the tip surface portion 31b via the injection support block 45, and the control support block 46 is attached to the tip surface portion 31b via the control support block 46 (see FIG. 3).
 噴射支持ブロック45は、支持孔45aが形成される。また、支持孔45aの孔方向に直交する方向に固定ネジ孔45bが形成される。また、噴射管41の根本部41jの外周には、周方向に固定溝41dが形成される(図3参照)。そして、支持孔45aに噴射管41の根本部41jが挿入され、固定ネジ孔45bに固定ネジ47がねじ込まれ、固定ネジ47の先端を根本部41jのネジ孔固定溝41dに挿入されるように設定される〔図3(B),(C)参照〕。 The injection support block 45 is formed with a support hole 45a. A fixing screw hole 45b is formed in a direction orthogonal to the hole direction of the support hole 45a. A fixed groove 41d is formed in the circumferential direction on the outer circumference of the root portion 41j of the injection pipe 41 (see FIG. 3). Then, the root portion 41j of the injection pipe 41 is inserted into the support hole 45a, the fixing screw 47 is screwed into the fixing screw hole 45b, and the tip of the fixing screw 47 is inserted into the screw hole fixing groove 41d of the root portion 41j. is set [see FIGS. 3(B) and 3(C)].
 固定ネジ47をゆるめることにより、噴射管41は根本部41jの揺動中心P1を中心にして揺動させることができ、所望の位置で固定ネジ47を締め付けることで先端面部31bに対して噴射管41を所望の角度で固定できる。 By loosening the fixing screw 47, the injection pipe 41 can be swung around the swing center P1 of the root portion 41j. 41 can be fixed at any desired angle.
 制御支持ブロック46は、噴射支持ブロック45と略同等の形状であり、左右対称の形状となる。制御支持ブロック46には支持孔46aが形成され、また支持孔46aの孔方向に直交する方向に固定ネジ孔46bが形成される。また、制御管42の根本部42jの外周には、周方向に固定溝42dが形成され、支持孔46aに制御管42の根本部42jが挿入され、固定ネジ孔46bに固定ネジ47がねじ込まれ、固定ネジ47の先端を根本部42jのネジ孔固定溝42dに挿入されるように設定される。 The control support block 46 has substantially the same shape as the injection support block 45 and has a symmetrical shape. A support hole 46a is formed in the control support block 46, and a fixing screw hole 46b is formed in a direction orthogonal to the hole direction of the support hole 46a. A fixing groove 42d is formed in the outer circumference of the root portion 42j of the control pipe 42, the root portion 42j of the control pipe 42 is inserted into the support hole 46a, and a fixing screw 47 is screwed into the fixing screw hole 46b. , the tip of the fixing screw 47 is set to be inserted into the screw hole fixing groove 42d of the root portion 42j.
 固定ネジ47をゆるめることにより、制御管42は根本部42jの揺動中心P2を中心にして揺動させることができ、所望の位置で固定ネジ47を締め付けることで先端面部31bに対して制御管42を所望の角度で固定できる。また、噴射支持ブロック45の支持孔45aは、先端面部31bの空気排出部31mに一致するように設置され、制御支持ブロック46の支持孔46aは空気排出部31nに一致するように設置される。 By loosening the fixing screw 47, the control tube 42 can be swung around the swing center P2 of the base portion 42j. 42 can be fixed at any desired angle. Further, the support hole 45a of the injection support block 45 is installed so as to match the air discharge portion 31m of the tip surface portion 31b, and the support hole 46a of the control support block 46 is installed so as to match the air discharge portion 31n.
 噴射管41と先端噴射口41cと、制御管42の先端噴射口42cは、回転ベース部3の回転平面と平行に形成される〔図1(A),(C),(D),図3(B),(C),(D)参照〕。つまり、先端噴射口41c及び先端噴射口42cは、円筒ハウジング部2の開口部2aの開口面と平行となる。 The injection pipe 41, the tip injection port 41c, and the tip injection port 42c of the control pipe 42 are formed parallel to the rotation plane of the rotation base portion 3 [Figs. (B), (C), (D)]. That is, the tip ejection port 41c and the tip ejection port 42c are parallel to the opening surface of the opening 2a of the cylindrical housing portion 2. As shown in FIG.
 円板部5は、噴射管41の先端噴射口41c及び制御管42の先端噴射口42cの噴射エアを通過可能としたものである。そして、円板部5は、回転ベース部3の回転円筒部31の先端面部31bに、円板部5と回転ベース部3との回転中心が一致又は略一致するように接続される。このとき、該先端面部31bと前記円板部5との間には、所定間隔を設けるために円筒状のカラー部53が設けられ、先端面部31bと円板部5とカラー部53とがビス等の固着具54にて固着される(図1,図2参照)。 The disc portion 5 allows jet air from the tip jet port 41c of the jet pipe 41 and the tip jet port 42c of the control pipe 42 to pass through. The disc portion 5 is connected to the tip surface portion 31b of the rotating cylindrical portion 31 of the rotating base portion 3 so that the rotation centers of the disc portion 5 and the rotating base portion 3 match or substantially match. At this time, a cylindrical collar portion 53 is provided between the tip surface portion 31b and the disk portion 5 to provide a predetermined gap, and the tip surface portion 31b, the disk portion 5 and the collar portion 53 are screwed together. It is fixed by a fixing tool 54 such as (see FIGS. 1 and 2).
 円板部5には、取付用貫通孔5nが形成され、該取付用貫通孔5nにビス等の固着具54の螺子部が貫通され、カラー部53の螺子孔に固着具54が螺合される。回転本体A2において、円板部5及び噴射管41は、回転ベース部3を回転軸芯線Lに沿う回転軸として回転動作を行うものであり、制御管42は回転動作における回転数(回転速度)の過剰な上昇を抑制制御するものである。また、前記カラー部53は、回転ベース部3の回転円筒部31の先端面部31bに、一体形成されることある。 A mounting through hole 5n is formed in the disk portion 5, a threaded portion of a fastener 54 such as a screw is passed through the mounting through hole 5n, and the fastener 54 is screwed into the screw hole of the collar portion 53. be. In the rotary main body A2, the disk portion 5 and the injection pipe 41 rotate with the rotation base portion 3 as a rotation axis along the rotation axis core line L. suppresses and controls the excessive rise of Further, the collar portion 53 may be formed integrally with the tip surface portion 31b of the rotating cylindrical portion 31 of the rotating base portion 3. As shown in FIG.
 円板部5は、固定本体A1の円筒ハウジング部2の開口部2aの開口周縁よりも軸方向後方側に位置するように設定される。そして、円板部5は、円筒ハウジング部2の開口部2aよりも内方側、つまり円筒ハウジング部2の後方側に位置する構造となる。そして、円筒ハウジング部2の開口部2aと、円板部5とによって、開口部2aから深さ寸法Hとなる略扁平円筒状の空隙室Sが円筒ハウジング部2の開口側に形成される〔図1(A)参照〕。 The disc portion 5 is set so as to be located on the rear side in the axial direction from the opening peripheral edge of the opening portion 2a of the cylindrical housing portion 2 of the fixed main body A1. The disk portion 5 is positioned inside the opening 2 a of the cylindrical housing portion 2 , that is, on the rear side of the cylindrical housing portion 2 . The opening 2a of the cylindrical housing portion 2 and the disk portion 5 form a substantially flat cylindrical void chamber S having a depth dimension H from the opening portion 2a on the opening side of the cylindrical housing portion 2 [ See FIG. 1(A)].
 前記深さ寸法Hは、空隙室Sの容積を設定する量であり、深さ寸法Hを適宜調整することで、容積も適宜設定できる。具体的には、空隙室Sの深さ寸法Hは、円筒ハウジング部2の全体の高さに比較して僅かな量である。さらに、円板部5の外周縁5aは円筒ハウジング部2の円筒状側壁板部21の内周側に非接触状態となるように設置されている。 The depth dimension H is an amount for setting the volume of the void chamber S, and by appropriately adjusting the depth dimension H, the volume can also be set as appropriate. Specifically, the depth dimension H of the void chamber S is a very small amount compared to the overall height of the cylindrical housing portion 2 . Furthermore, the outer peripheral edge 5a of the disk portion 5 is installed so as to be in a non-contact state with the inner peripheral side of the cylindrical side wall plate portion 21 of the cylindrical housing portion 2. As shown in FIG.
 円板部5には、噴射用孔部51が形成されている。該噴射用孔部51には、噴射管41及び制御管42の先端噴射口41c及び制御管42の先端噴射口42cが貫通する。その貫通する状態は、先端噴射口41c及び先端噴射口42cが噴射用孔部51に僅かで量でも貫通していればよい。 An injection hole 51 is formed in the disc portion 5 . A tip injection port 41 c of the injection pipe 41 and the control pipe 42 and a tip injection port 42 c of the control pipe 42 pass through the injection hole 51 . As for the penetrating state, the tip ejection port 41c and the tip ejection port 42c need only penetrate the ejection hole 51 by a small amount.
 噴射管41の先端噴射口41cは、円筒ハウジング部2の開口部2aを超えない構成となっている〔図1(A),(C),(D)参照〕。つまり、噴射管41の先端噴射口41c及び制御管42の先端噴射口42cは、円筒ハウジング部2の開口部2aを越えることなく、内方に位置し、外方に突出することはない。 The tip injection port 41c of the injection pipe 41 is configured so as not to extend beyond the opening 2a of the cylindrical housing portion 2 [see FIGS. 1(A), (C), and (D)]. In other words, the tip injection port 41c of the injection pipe 41 and the tip injection port 42c of the control pipe 42 are positioned inward without going beyond the opening 2a of the cylindrical housing portion 2 and do not protrude outward.
 本発明におけるエアノズルAnにおける固定本体A1と回転本体A2との組付けについて説明する。エアノズルAnには2個の軸受34が備わっている。まず、固定本体A1において固定ベース部1の軸方向の後方側の開口箇所から第1の軸受34が挿入され、次いでスペーサ35が挿入され、次いで、第2の軸受34が挿入される。 The assembly of the fixed main body A1 and the rotating main body A2 in the air nozzle An according to the present invention will be explained. The air nozzle An is equipped with two bearings 34 . First, the first bearing 34 is inserted into the fixing body A1 through the opening on the rear side in the axial direction of the fixing base portion 1, then the spacer 35 is inserted, and then the second bearing 34 is inserted.
 次に、回転本体A2の回転ベース部3が第1及び第2の軸受34の内周側に挿入される。スペーサ35は、2個の円筒状リングであって、その1つは固定本体A1の固定円筒部11の円筒状貫通部11bの内周側に沿うようにして装着され、他の1つは回転本体A2の回転ベース部3の円筒側面部31aに沿うように装着される〔図1(A),図2(A)参照〕。 Next, the rotation base portion 3 of the rotation main body A2 is inserted into the inner peripheral side of the first and second bearings 34. The spacer 35 is composed of two cylindrical rings, one of which is mounted along the inner peripheral side of the cylindrical through portion 11b of the fixed cylindrical portion 11 of the fixed body A1, and the other of which rotates. It is mounted along the cylindrical side surface portion 31a of the rotation base portion 3 of the main body A2 (see FIGS. 1(A) and 2(A)).
 そして、固定本体A1の固定ベース部1の後方側端部に接続用固定フランジ部12がビス等の固着具13によって固着され、第1,第2の軸受34及びスペーサ35が固定本体A1の固定ベース部1と、回転本体A2の回転ベース部3との間に固定される。さらに、前記接続用固定フランジ部12の固定貫通孔12a箇所で、且つ回転本体A2の回転円筒部31の後方側端に回転フランジ部32がビス等の固着具33にて固着される。これによって、固定本体A1に対して回転本体A2が回転自在に装着され、該回転本体A2は回転軸芯線Lを回転中心線として回転する〔図1(A),(B),図4参照〕。 A connecting fixed flange portion 12 is fixed to the rear end portion of the fixed base portion 1 of the fixed main body A1 by means of fasteners 13 such as screws, and the first and second bearings 34 and spacers 35 are used to fix the fixed main body A1. It is fixed between the base portion 1 and the rotating base portion 3 of the rotating body A2. Further, the rotary flange portion 32 is fixed to the rear side end of the rotary cylindrical portion 31 of the rotary main body A2 at the fixed through hole 12a of the connection fixed flange portion 12 with a fastener 33 such as a screw. As a result, the rotating body A2 is rotatably attached to the fixed body A1, and the rotating body A2 rotates about the rotation center line L (see FIGS. 1(A), (B) and 4). .
 回転本体A2には、内部に空隙部36bが設けられた扁平円筒形状の容器部36が具備される実施形態が存在する〔図1(A),図2(B),(C)参照〕。容器部36は、略ドーナツ或いは浮き輪状に形成されたものであり、内部が中空状の空隙部36bを有するものである。該容器部36は、回転本体A2の回転ベース部3に固着され且つ固定本体A1の円筒ハウジング部2の閉鎖板部22側寄りの位置に設置される。 There is an embodiment in which the rotating body A2 is provided with a flat cylindrical container portion 36 having a space portion 36b therein [see FIGS. 1(A), 2(B), and (C)]. The container portion 36 is formed in a substantially donut or floating ring shape, and has a hollow space portion 36b inside. The container portion 36 is fixed to the rotating base portion 3 of the rotating body A2 and installed at a position closer to the closing plate portion 22 side of the cylindrical housing portion 2 of the stationary body A1.
 容器部36は、回転本体A2と共に回転する。容器部36には、円筒ハウジング部2の閉鎖板部22側に近接する面に環状の挿入用貫通孔36aが形成されており、該挿入用貫通孔36aに前記固定本体A1の固定円筒部11の軸方向開口側の先端部分が挿入する構成である〔図1(A),図2参照〕。容器部36の挿入用貫通孔36aの内周縁と固定ベース部1の固定円筒部11の外周との間には隙間を生じるようにしており、相互に非接触である。固定円筒部11の軸方向開口側の先端部分には、固定本体A1と回転本体A2との間に設けられる軸受34が配置されている。 The container part 36 rotates together with the rotating main body A2. An annular insertion through-hole 36a is formed in the surface of the container portion 36 that is close to the closing plate portion 22 side of the cylindrical housing portion 2, and the fixed cylindrical portion 11 of the fixed main body A1 is inserted into the insertion through-hole 36a. 1(A) and 2]. A gap is formed between the inner peripheral edge of the insertion through-hole 36a of the container portion 36 and the outer periphery of the fixed cylindrical portion 11 of the fixed base portion 1, so that they are not in contact with each other. A bearing 34 provided between the fixed body A1 and the rotary body A2 is arranged at the tip portion of the fixed cylindrical portion 11 on the axial opening side.
 つまり、固定本体A1と回転本体A2との間に装着された軸受34の位置する箇所の周囲が、容器部36によって包囲されると共に環状の空隙部36bが存在する構成となっている(図1,図3参照)。そして、軸受34のグリース又は潤滑用オイル等が漏れ出して、固定本体A1と回転本体A2との間から垂れ落ちた油分を、容器部36の空隙部36b内に溜めることができる。 In other words, the periphery of the location where the bearing 34 mounted between the fixed body A1 and the rotary body A2 is surrounded by the container portion 36 and has an annular gap portion 36b (see FIG. 1). , see Figure 3). Grease or lubricating oil leaks from the bearing 34 and drips down from between the fixed main body A1 and the rotary main body A2.
 つまり、容器部36は、漏れ出したグリース又は潤滑用オイルのための溜め容器である。これによって、油分の汚れが円筒ハウジング部2内に拡散しないようにすることができるとともに、製造物(ワーク)9の乾燥作業で、該製造物(ワーク)9を汚してしまうことを防止できる。エアノズルAnには容器部36は装着されなくても構わない。 In other words, the container part 36 is a reservoir container for the leaked grease or lubricating oil. As a result, oil stains can be prevented from diffusing into the cylindrical housing portion 2, and the product (work) 9 can be prevented from being soiled during the drying operation of the product (work). The container part 36 may not be attached to the air nozzle An.
 一般的に、乾燥作業を行う通常のエアノズルAnは、エア噴射の管が設けられた回転部分が軸受で支持されており、円滑な回転性能を有しているので、前記回転部分の回転速度が上昇し易いものである。特に、回転速度が過剰に上昇しすぎた高回転数域では乾燥品質或いは乾燥効率が劣化するという問題がある。すなわち、エアノズルAnの回転部分の回転数と乾燥品質との間には、回転速度おける回転数がその最適値に到達するまでは、乾燥効率又は乾燥品質は向上してゆくが、回転速度おける回転数がその最適値を越えて上昇し続けると、液滴を効率よく吹き飛ばすことが困難になる〔図6(A)参照〕。 In general, a normal air nozzle An for drying work has a rotating part provided with an air injection pipe supported by a bearing, and has smooth rotation performance. It is easy to rise. In particular, there is a problem that the drying quality or drying efficiency deteriorates in a high rotational speed region where the rotational speed is excessively increased. That is, between the rotation speed of the rotating portion of the air nozzle An and the drying quality, the drying efficiency or the drying quality improves until the rotation speed at the rotation speed reaches its optimum value, but the rotation at the rotation speed If the number continues to rise beyond its optimum value, it becomes difficult to blow off the droplets efficiently (see FIG. 6A).
 つまり、回転数がその最適値に達するまでは、圧縮空気を波動状(周期的、間欠的)にワークに吹き付けることができ、液滴を効率よく吹き飛ばすことができる。しかし、回転速度が過剰に上昇し、回転数がその最適値を超えると、波動状に吹き付けられる圧縮空気の間隔が次第に短くなっていき、やがて、圧縮空気が波動を生じなくなる。これでは、圧縮空気を連続的に噴射することに等しいため、乾燥品質及び乾燥作業効率が低下することになる。また、回転波動ノズルの回転数が高くなると、軸受の寿命が短くなり、騒音も大きくなるという問題がある。 In other words, until the rotation speed reaches its optimum value, compressed air can be blown onto the workpiece in waves (periodically and intermittently), and droplets can be blown off efficiently. However, when the rotational speed increases excessively and the number of revolutions exceeds its optimum value, the interval of the compressed air blown in waves gradually becomes shorter, and eventually the compressed air ceases to generate waves. Since this is equivalent to continuously injecting compressed air, the drying quality and drying work efficiency are reduced. Further, when the number of revolutions of the rotary wave nozzle increases, there is a problem that the service life of the bearing is shortened and the noise is increased.
 本発明では、エアノズルAnにおける回転本体A2の回転速度が過剰に上昇しすぎることによって、上述したように、エアノズルAnのエア噴射による製造物(ワーク)9に対する乾燥作業の効率が劣化し、乾燥作業が上手く行かないという事態が生じることを防止し、また、回転本体A2の回転速度が過剰に増加することで軸受や他の部材に対しても負担がかかることも防止できる。 In the present invention, if the rotation speed of the rotating body A2 in the air nozzle An is excessively increased, as described above, the efficiency of drying the product (work) 9 by the air injection of the air nozzle An is deteriorated. In addition, it is possible to prevent bearings and other members from being overloaded due to an excessive increase in the rotational speed of the rotating body A2.
 つまり、回転本体A2の回転速度,回転数には、適正な数値が存在する。また、製造物(ワーク)9の形状及びサイズによっても、回転本体A2の回転速度を調整し最適な状態にすることが好ましい。このような場合、本発明では、制御管42のエア噴射(制御エア噴射)が、噴射管41のエア噴射に抵抗し、回転本体A2の回転数(回転速度)の上昇を抑制し、過剰な回転数(回転速度)となることを防止し、回転本体A2の回転数(回転速度)を常時最適な状態に維持するものである。 In other words, there are appropriate numerical values for the rotation speed and number of rotations of the rotating body A2. Further, it is preferable to adjust the rotation speed of the rotating body A2 to obtain an optimum state depending on the shape and size of the product (work) 9 as well. In such a case, in the present invention, the air injection from the control pipe 42 (control air injection) resists the air injection from the injection pipe 41, suppresses the increase in the number of revolutions (rotational speed) of the rotating body A2, It prevents the number of revolutions (rotational speed) from becoming excessive, and always maintains the number of revolutions (rotational speed) of the rotating body A2 in an optimal state.
 これによって、噴射管41の先端噴射出口41からのエア噴射は、波動状(周期的、間欠的)にして、製造物(ワーク)9に吹き付けることができ、液滴を効率よく吹き飛ばすことができる。製造物(ワーク)9に付着した(洗浄液等の)液体や、塵埃,油汚れ等の吹き飛ばし、乾燥作業の効果を最良なものにできる。 As a result, the air jet from the tip jet outlet 41 of the jet pipe 41 can be wavy (periodically or intermittently) and can be jetted onto the product (work) 9, and droplets can be efficiently blown off. . It is possible to blow off the liquid (cleaning liquid, etc.), dust, oil stains, etc. adhering to the product (work) 9, and to maximize the effect of the drying operation.
 次に、制御管42の噴射エアと、噴射管41の噴射エアは噴射方向延長線上で交わる構成である〔図6(A)参照〕。噴射管41と制御管42のそれぞれの噴射エアは先端噴射口から遠ざかるにしたがって、放射方向に拡張し、所定距離で交わることになり、さらに噴射管41及び制御管42が回転することで、両噴射エアの交わり部分が円形状となる。 Next, the injection air from the control pipe 42 and the injection air from the injection pipe 41 intersect on the extension line of the injection direction [see FIG. 6(A)]. The jet air from each of the injection pipe 41 and the control pipe 42 expands in the radial direction as it moves away from the tip injection port, and intersects at a predetermined distance. The intersecting portion of the injection air becomes circular.
 そして、噴射領域41によるエア噴射領域を噴射管エア噴射領域とし、制御管42によるエア噴射領域を制御管エア噴射領域とし、両者が交わりながら回転して形成される総合的な噴射領域を総合エア噴射領域とする。これによって、総合エア噴射領域は、円形状で且つ無風の領域が生じない噴射領域となる〔図6(A)参照〕。 The air injection area by the injection area 41 is defined as the injection pipe air injection area, and the air injection area by the control pipe 42 is defined as the control pipe air injection area. Let it be the injection area. As a result, the general air injection area becomes a circular injection area in which no windless area occurs (see FIG. 6A).
 図6(B)は、従来の一般的な噴射装置におけるエア噴射領域を示したものであり、そのエア噴射領域は円形状で且つドーナツ状であり、その噴射領域の中心付近の領域では噴射エアが存在しない無風の領域が生じる。本発明では、エア噴射領域内に無風の領域が存在するドーナツ状とはならないようにでき、極めて効率的な製造物(ワーク)9に対する乾燥作業ができる。 FIG. 6B shows an air injection region in a conventional general injection device. The air injection region is circular and doughnut-shaped, and the region near the center of the injection region A windless region where there is no wind occurs. According to the present invention, it is possible to prevent a doughnut-shaped area in which no air is present in the air injection area, so that the product (work) 9 can be dried very efficiently.
 本発明におけるエアノズルAnは、エアノズルベース6に接続装着されてエアノズルユニットUとして使用されるものである(図7,図8参照)。具体的には、複数のエアノズルAnが、エアノズルベース6に装着されて使用されるものである。さらに、前記エアノズルユニットUは、エア噴射乾燥システムB(エア噴射乾燥装置Bと称することもある)の枠体7に組み付けられる(図8参照)。 The air nozzle An in the present invention is used as an air nozzle unit U by being connected to the air nozzle base 6 (see FIGS. 7 and 8). Specifically, a plurality of air nozzles An are attached to the air nozzle base 6 and used. Further, the air nozzle unit U is assembled to a frame 7 of an air jet drying system B (also called an air jet drying device B) (see FIG. 8).
 エア噴射乾燥システムBは、枠体7と送風部8とを備えており、枠体7に送風部8が組み込まれている(図8参照)。該送風部8は、圧縮空気を製造し、該圧縮空気を送り出すものであり、具体的には、電動ブロワー又は電動コンプレッサ等である。そして、送風部8からエアホース72を介して各エアノズルユニットUのエアノズルベース6を介して該エアノズルベース6に装着されたエアノズルAnに圧縮空気が供給される(図7,図8参照)。 The air jet drying system B includes a frame 7 and a blower section 8, and the blower section 8 is incorporated in the frame 7 (see FIG. 8). The air blower 8 produces compressed air and sends out the compressed air, and is specifically an electric blower or an electric compressor. Compressed air is supplied from the air blower 8 through the air hose 72 to the air nozzle An attached to the air nozzle base 6 of each air nozzle unit U (see FIGS. 7 and 8).
 また、エアノズルユニットUにおいて、各エアノズルAnに送風部8から圧縮空気を送る構造では、1つの送風部8で1個のエアノズルAnに圧縮空気を送る場合と、1つの送風部8で2個以上のエアノズルAnに圧縮空気を送る場合が存在する。1つの送風部8で2個以上の複数のエアノズルAnに圧縮空気を送る場合では、エアホース72と分岐継手73が備わり、送風部8からの圧縮空気が1本のエアホース72で送り出され分岐継手73を介して2本のエアホース72に圧縮空気が流れ、2個のエアノズルAnに圧縮空気を送ることができる(図8,図9等参照)。本発明の実施形態では、下段側のエアノズルユニットUにおいては、各エアノズルAnごとに送風部8が備わっている。また、上段側及び中段側のエアノズルユニットUにおいては、2個のエアノズルAnに対して1台の送風部8が備わっている。 In addition, in the air nozzle unit U, in the structure in which compressed air is sent from the air blower 8 to each air nozzle An, one air blower 8 sends compressed air to one air nozzle An, and one air blower 8 sends compressed air to two or more air nozzles An. There is a case where compressed air is sent to the air nozzle An of . When one air blower 8 sends compressed air to two or more air nozzles An, an air hose 72 and a branch joint 73 are provided. Compressed air flows through the two air hoses 72 via , and can be sent to the two air nozzles An (see FIGS. 8, 9, etc.). In the embodiment of the present invention, the air nozzle unit U on the lower side is provided with the air blower 8 for each air nozzle An. Further, in the air nozzle units U on the upper and middle tiers, one air blower 8 is provided for two air nozzles An.
 エアノズルユニットUにおけるエアノズルベース6には、種々の実施形態が存在する。まず、エアノズルベース6の第1実施形態では、ベース基板66を有する(図7参照)。ベース基板66は、略プレート状に形成されている。複数のエアノズルAnがエアノズルベース6に装着されたエアノズルユニットUは、エアノズルベース6の取付部分を介して、エア噴射乾燥システムBの枠体7の所定位置に装着される。エアノズルユニットUは、エア噴射乾燥システムBの枠体7に装着される位置によって、下段側のエアノズルユニットU,上段側のエアノズルユニットU及び中段側のエアノズルユニットUに分けられる。 There are various embodiments of the air nozzle base 6 in the air nozzle unit U. First, the first embodiment of the air nozzle base 6 has a base substrate 66 (see FIG. 7). The base substrate 66 is formed in a substantially plate shape. An air nozzle unit U having a plurality of air nozzles An attached to the air nozzle base 6 is attached to a predetermined position of the frame 7 of the air jet drying system B via the air nozzle base 6 attachment portion. The air nozzle unit U is divided into a lower stage air nozzle unit U, an upper stage air nozzle unit U, and a middle stage air nozzle unit U depending on the position where it is attached to the frame 7 of the air jet drying system B.
 下段側のエアノズルユニットUは、製造物(ワーク)9の下方からエア噴射を行うものであり、上段側のエアノズルユニットUは、製造物(ワーク)9の上方からエア噴射を行うものであり、中段側のエアノズルユニットUは、ワーク進行方向に直交する左右両側からエア噴射を行うものである。 The air nozzle unit U on the lower side jets air from below the product (work) 9, and the air nozzle unit U on the upper side jets air from above the product (work) 9. The middle air nozzle unit U ejects air from both left and right sides perpendicular to the direction of movement of the workpiece.
 具体的には、下段側のエアノズルユニットUは搬送部71の搬送駆動部71aの下方側に設置され、上段側のエアノズルユニットUは搬送駆動部71aの上方側に設置され、中段側のエアノズルユニットUは、上下方向において下段側及び上段側のエアノズルユニットUの間に位置し、且つ、ワーク進行方向に沿って、下段側及び上段側のエアノズルユニットUよりも後方側又は前方側にずれて配置される。これは、中段側のエアノズルユニットUによるエア噴射が下段及び上段のエアノズルユニットUのエア噴射と干渉しないようにするためである(図8,図9参照)。 Specifically, the lower air nozzle unit U is installed below the transport driving part 71a of the transport part 71, the upper air nozzle unit U is installed above the transport driving part 71a, and the middle air nozzle unit U is installed. U is positioned between the lower and upper air nozzle units U in the vertical direction, and is displaced rearward or forward from the lower and upper air nozzle units U along the work traveling direction. be done. This is to prevent the air injection by the air nozzle unit U on the middle stage from interfering with the air injection by the air nozzle units U on the lower and upper stages (see FIGS. 8 and 9).
 乾燥作業エリアにボルト,ナット等の固着具を介して装着される。ベース基板66には、エアノズルAnが接続設置される平坦状の設置面部を有しており、該設置面部に、装着されるエアノズルAnの個数と同等の空気供給孔66aが設けられている〔図7(B)参照〕。そして、送風部8によって、圧縮空気がベース基板66の空気供給孔66aに流れて、エアノズルAnの回転本体A2の空気入口31dから空気流路31sに流れ込む。さらに、空気流路31s内の圧縮空気が噴射管41に流入し、先端噴射口41cから回転軸芯線Lに対して傾斜状にエア噴出が行われ、回転本体A2が自動的に回転動作を行う。回転本体A2が自動的な回転動作を行いつつ、噴射管41から噴射されたエア(空気)が製造物(ワーク)9に付着した洗浄液等の水分,油分,切粉等の塵を吹き飛ばすことができる。 It is attached to the drying work area via fasteners such as bolts and nuts. The base substrate 66 has a flat installation surface portion to which the air nozzles An are connected and installed, and the installation surface portion is provided with air supply holes 66a equal in number to the air nozzles An to be installed [Fig. 7(B)]. Then, the air blower 8 causes the compressed air to flow into the air supply hole 66a of the base substrate 66, and then into the air flow path 31s from the air inlet 31d of the rotating body A2 of the air nozzle An. Further, the compressed air in the air flow path 31s flows into the injection pipe 41, and air is injected from the tip injection port 41c in an inclined manner with respect to the rotation axis center line L, and the rotating body A2 automatically rotates. . While the rotary main body A2 automatically rotates, the air jetted from the jet pipe 41 blows away the moisture such as cleaning liquid, oil, and dust such as cutting chips adhering to the product (work) 9. can.
 エア噴射乾燥システムBは、枠体7に搬送部71が装着されている。搬送部71は、枠体7の搬送入口側から搬送出口側に向う方向に沿って配置された搬送駆動部71aを有している。搬送駆動部71aは、枠体7の搬送入口側から搬送出口側に向かって製造物(ワーク)9を搬送する役目をなすものであり、例えばベルトコンベア,無端可撓部材等が使用され、モータ等の電動にて回転駆動する。また、該搬送台は、金網、或いは金属製又は樹脂製,ゴム製等のメッシュ(網)状の部材で、エアノズルAnによる上下両方向からのエア噴射によるエアが良好に通過できるようになっている。そして、ワーク進行方向とは、製造物(ワーク)9が搬送部71によって搬送される方向のことで、枠体7の搬送入口側から搬送出口側に向う方向と同等の方向であり、図8,図9、図14乃至図17において進行方向が図示されている。 The air jet drying system B has a conveying part 71 attached to the frame 7 . The transport unit 71 has a transport drive unit 71a arranged along the direction from the transport entrance side of the frame 7 to the transport exit side. The transport drive unit 71a serves to transport the product (work) 9 from the transport entrance side of the frame 7 toward the transport exit side, and uses, for example, a belt conveyor, an endless flexible member, etc., and is driven by a motor. It is driven to rotate by electric power such as. The carriage is a metal mesh, or a mesh (net) member made of metal, resin, rubber, etc., so that the air jetted from both upper and lower directions by the air nozzles An can pass through satisfactorily. . The work advancing direction is the direction in which the product (work) 9 is conveyed by the conveying unit 71, and is the same direction as the direction from the conveying entrance side of the frame 7 to the conveying exit side. , FIGS. 9 and 14 to 17, the direction of travel is illustrated.
 搬送駆動部71aは、前述したようにベルトコンベアタイプとしたものでは2つの実施形態が存在し、その第1実施形態では、図8に示すように、モータによって回転する駆動輪71mと、ベルトコンベアタイプとした搬送駆動部71aの回転を支持する従動輪71nの2つを備えたものである。そして、モータにより駆動輪71mが回転し、ベルトコンベア(搬送駆動部71a)を回転させると共に従動輪71nにて安定した回転をさせるものである。このベルトコンベアタイプとした搬送駆動部71aの実施形態では、上段側のベルト部の通路と、下段側のベルト部の通路との間に、下段側のエアノズルユニットUが配置される。 As described above, the transport drive unit 71a is of the belt conveyor type, and there are two embodiments. In the first embodiment, as shown in FIG. It has two driven wheels 71n for supporting the rotation of the conveying driving part 71a. Then, the drive wheel 71m is rotated by the motor to rotate the belt conveyor (conveyor drive section 71a) and to rotate stably by the driven wheel 71n. In this embodiment of the belt conveyor type transport drive unit 71a, the lower air nozzle unit U is arranged between the passage of the upper belt portion and the passage of the lower belt portion.
 また、搬送駆動部71aの別の実施形態では、図9に示すように、ベルトコンベアタイプとした搬送駆動部71aの駆動輪71mと従動輪71nとの間に4個の案内輪71sを上下且つ左右対称となるように設け、ベルトコンベアにおける下段側のベルト部分の通路の一部を上方位置に移動させ、上段側のベルト部分の通路に近接させたものである。これによって、下段側のベルト部分の一部が上方に位置することで下段側のエアノズルユニットUの配置スペースを設けることができるようにしたものである。この実施形態では、下段側のエアノズルユニットUが、搬送駆動部71aの上下に位置するベルト部分の通路に挟まれないのでエアノズルユニットUが設置し易い構成となる。 In another embodiment of the transport driving portion 71a, as shown in FIG. 9, four guide wheels 71s are vertically and vertically arranged between the driving wheel 71m and the driven wheel 71n of the transport driving portion 71a of the belt conveyor type. A part of the passage of the belt portion on the lower side of the belt conveyor is moved to an upper position so as to be close to the passage of the belt portion on the upper side. As a result, a part of the belt portion on the lower side is positioned upward, so that a space for arranging the air nozzle unit U on the lower side can be provided. In this embodiment, since the air nozzle unit U on the lower side is not sandwiched between the passages of the belt portions positioned above and below the transport drive section 71a, the air nozzle unit U can be easily installed.
 エアノズルユニットUは、エア噴射乾燥システムBの搬送入口側を正面より見て、搬送部71の上下方向及び左右(幅)方向を囲むようにして設置されている。そして、搬送部71の上方に位置する上段側のエアノズルユニットUは上下方向に位置調整可能な構成にすることもある。また、搬送部71の左右両側に装着される中段側のエアノズルユニットUは、左右方向に間隔を調整できる構成にすることもある。エア噴射乾燥システムBによって、製造物(ワーク)9に付着した洗浄液等の水分,油分或いは切粉等の塵を吹き飛ばして製造物(ワーク)9の乾燥(洗浄ともいう)を行うときには、エア噴射乾燥システムBの枠体7に装着された搬送部71によって製造物(ワーク)9の移動を行う。 The air nozzle unit U is installed so as to surround the transport section 71 in the vertical direction and the horizontal (width) direction when the transport entrance side of the air jet drying system B is viewed from the front. The upper air nozzle unit U positioned above the conveying section 71 may be configured so that its position can be adjusted in the vertical direction. In addition, the intermediate air nozzle units U mounted on both the left and right sides of the conveying section 71 may be configured so that the spacing between them can be adjusted in the left-right direction. When drying (also called cleaning) the product (work) 9 by blowing away moisture such as cleaning liquid, oil, or dust such as cutting chips adhering to the product (work) 9 by the air jet drying system B, air jet A product (work) 9 is moved by a transport section 71 attached to the frame 7 of the drying system B. As shown in FIG.
 搬送部71のコンベアタイプ等の搬送駆動部71a上に載置された製造物(ワーク)9がエアノズルユニットUの装着箇所に搬送され、そこで搬送部71の下方側,上方側,左方側及び右方側に設置された下段側,上段側,中段側のそれぞれのエアノズルユニットUの設置箇所を乾燥作業領域とする。そして、搬送駆動部71aにおける製造物(ワーク)9が載置された部分が乾燥作業領域を通過する過程で、下段側,上段側,中段側のそれぞれのエアノズルユニットUのエアノズルAnからのエア噴射にて、製造物(ワーク)9に付着した洗浄液及び、その前過程で落としきれなかった塵,埃或いは油汚れを吹き飛ばし、製造物(ワーク)9を乾燥させるものである。さらに、場合によっては洗浄も乾燥と共に行われることもある。 A product (work) 9 placed on a conveyer-type transport drive unit 71a of the transport unit 71 is transported to the mounting position of the air nozzle unit U, where the transport unit 71 is transported downward, upward, leftward, and downward. The installation positions of the lower, upper, and middle air nozzle units U installed on the right side are defined as drying work areas. Then, in the process in which the portion of the transport drive unit 71a on which the product (work) 9 is placed passes through the drying work area, air is jetted from the air nozzles An of the air nozzle units U on the lower, upper, and middle tiers. , blows away the cleaning liquid adhering to the product (work) 9 and the dust, dust, or oil stains that could not be removed in the previous process, and dries the product (work) 9 . Furthermore, in some cases washing is also performed together with drying.
 なお、搬送駆動部71aには、該搬送駆動部71aの回転動作によってワーク進行方向に移動する搬送台が必要に応じて具備されることもある。搬送台は、具体的には、製造物(ワーク)9が載置されるトレイ状のものであり、製造物(ワーク)9が搬送駆動部71a上を安定した状態で移送できる役目をなすものである。搬送台は、製造物(ワーク)9が特に小型である場合に使用されることが好ましい。 It should be noted that the transport drive unit 71a may be provided with a transport stand that moves in the work advancing direction by the rotational motion of the transport drive unit 71a as required. Specifically, the carrier table is a tray-shaped one on which the product (work) 9 is placed, and serves to transfer the product (work) 9 on the carrier drive unit 71a in a stable state. is. The carriage is preferably used when the product (work) 9 is particularly small.
 また、エアノズルAnにおいては、回転本体A2が動作時で円筒ハウジング部2の開口部2aと、円板部5とによって形成された空隙室Sでは、噴射管41の先端噴射口41cから噴射された空気(エア)の流れが乱流状態となる。さらに、空隙室S内で噴射管41からの空気噴出と、前述した乱流状態の空気(エア)の流れがとが、混ざり合って、より一層活発で複雑な空気流を発生させ、製造物(ワーク)9に付着した洗浄液等の液体,油分又は切粉等の塵の吹飛しと、乾燥或によるクリーニングを極めて効率的に行うことができる。 Further, in the air nozzle An, when the rotating body A2 is in operation, the air is injected from the tip injection port 41c of the injection pipe 41 in the gap chamber S formed by the opening 2a of the cylindrical housing portion 2 and the disk portion 5. Air flow becomes turbulent. Furthermore, in the gap chamber S, the air jet from the injection pipe 41 and the turbulent air flow described above are mixed to generate a more active and complex air flow, resulting in a product. (Work) 9 can be cleaned very efficiently by blowing away liquid such as cleaning liquid, oil, or dust such as chips, and drying or cleaning.
 本発明におけるエアノズルAnでは、前述したように、1本の噴射管41と、1本の制御管42とを回転ベース部3における先端面部31bの回転中心P付近に近接して配置されてものである。これによって、噴射管41及び制御管42の風速及び圧力を大きくすることができ、乾燥作業における製造物(ワーク)9で、特に深さ寸法の大きな容器、例えばコンテナボックス等の深さの有る立方体又は円筒形状の容器等における乾燥洗浄作業で、極めて深さ寸法の大きなものの底部の乾燥作業を行うことができる。 In the air nozzle An according to the present invention, as described above, one injection pipe 41 and one control pipe 42 are arranged close to the rotation center P of the tip surface portion 31b of the rotation base portion 3. be. As a result, the air velocity and pressure of the injection pipe 41 and the control pipe 42 can be increased. Alternatively, it is possible to dry the bottom of a cylindrical container or the like having a very large depth in the dry cleaning operation.
 具体的には、従来の一般的な噴射装置では、前記コンテナボックスを乾燥洗浄する場合、該コンテナボックスの深さ寸法、つまり開口から底面までの寸法が、従来では約100mm乃至約150mm程度までが限界であったが、本発明におけるエアノズルAnでは、深さ寸法が約250mmミリ約400mm程度のコンテナボックスまで、乾燥作業を強力に行うことができる〔図6(A)参照〕。また、前述したように、エアノズルAの噴射管エア噴射領域と制御管エア噴射領域とが回転することによって形成される総合エア噴射領域には、無風領域が存在せずよって、コンテナボックスに対して、極めて有効に乾燥作業ができる〔図6(A)参照〕。 Specifically, when the container box is dry-washed, the depth dimension of the container box, that is, the dimension from the opening to the bottom of the container box is conventionally about 100 mm to about 150 mm. Although it was the limit, the air nozzle An in the present invention can perform the drying operation powerfully up to a container box with a depth of about 250 mm and about 400 mm (see FIG. 6(A)). In addition, as described above, there is no calm area in the total air injection area formed by the rotation of the air injection area of the injection pipe of the air nozzle A and the air injection area of the control tube. , the drying operation can be performed very effectively [see FIG. 6(A)].
 次に、エアノズルベース6の別の実施形態を説明する。この実施形態では、エア噴射乾燥システムBの下段側のエアノズルユニットUと、上段側のエアノズルユニットUにおける各エアノズルAnを首振り状構造とし、首振りによる揺動動作を行い且つ所望の揺動角度で固定することができる構成としたものである(図14,図15参照)。 Next, another embodiment of the air nozzle base 6 will be described. In this embodiment, the air nozzle unit U on the lower side of the air jet drying system B and the air nozzles An in the air nozzle unit U on the upper side of the air jet drying system B have a oscillating structure, and perform a oscillating operation by oscillating at a desired oscillating angle. (See FIGS. 14 and 15).
 まず、エア噴射乾燥システムBにおける下段側のエアノズルのエアノズルベース6は、下部第1ベース部61と、該下部第1ベース部61をワーク進行方向に直交する方向に揺動且つ固定自在に軸支する下部第2ベース部62と、該第2ベース部62をワーク進行方向に揺動且つ固定自在に軸支する下部第3ベース部63と、枢支ボルト67及び揺動規制ボルト68を備えている。 First, the air nozzle base 6 of the air nozzle on the lower side in the air jet drying system B includes a lower first base portion 61, and pivotally supports the lower first base portion 61 so as to be capable of swinging and fixing in a direction orthogonal to the work advancing direction. lower second base portion 62, lower third base portion 63 pivotally supporting the second base portion 62 so as to be swingable and fixable in the work advancing direction, pivot bolts 67 and swing restricting bolts 68. there is
 下部第1ベース部61は、平坦状且つ長方形又は正方形等の方形状の設置基板611とその幅方向両側に揺動側板612が形成され、両該揺動側板612には、枢支孔612a,揺動規制孔612bがそれぞれ形成されている。そして、枢支孔612aを中心に位置させその両側に揺動規制孔612bが形成されている。 The lower first base portion 61 has a flat rectangular or square installation board 611 and rocking side plates 612 formed on both sides thereof in the width direction. A swing regulation hole 612b is formed in each. Swing control holes 612b are formed on both sides of the pivot hole 612a.
 これら枢支孔612a及び揺動規制孔612bは、ネジ孔である。前記設置基板611には、その中心にエア通路孔611aが形成されており、該エア通路孔611aの周囲にエアノズルAnの複数の取付孔611bが等間隔に形成されている。該取付孔611bはネジ孔である。下部第1ベース部61の設置基板61aには、エアノズルAnがボルト等の固着具を介して装着され、エアホース72がエア通路孔611aを介してエアノズルAnに装着される。 The pivot hole 612a and the swing regulation hole 612b are screw holes. An air passage hole 611a is formed in the center of the installation board 611, and a plurality of mounting holes 611b for the air nozzles An are formed at regular intervals around the air passage hole 611a. The mounting hole 611b is a screw hole. An air nozzle An is attached to the installation substrate 61a of the lower first base portion 61 via a fastener such as a bolt, and an air hose 72 is attached to the air nozzle An via an air passage hole 611a.
 次に、下部第2ベース部62は、長方形又は正方形等の方形状の枠状部材であり、2つの対向する揺動主板621及び2つの対向する揺動従板622によって方形状枠が構成されている(図14,図15参照)。揺動主板621には枢支孔621a,揺動規制孔621bが形成されており、枢支孔621aを中心に位置させその両側に揺動規制孔621bが形成されている。揺動主板621の枢支孔621a及び揺動規制孔621bは、下部第1ベース部61の枢支孔612a及び揺動規制孔612bと同等又は略同等である。 Next, the lower second base portion 62 is a square-shaped frame-shaped member such as a rectangle or a square, and the square-shaped frame is constituted by two opposing rocking main plates 621 and two opposing rocking secondary plates 622 . (See FIGS. 14 and 15). A pivot hole 621a and a swing regulation hole 621b are formed in the swing main plate 621, and swing regulation holes 621b are formed on both sides of the pivot hole 621a. The pivot hole 621 a and the swing regulation hole 621 b of the swing main plate 621 are equivalent or substantially equivalent to the pivot hole 612 a and the swing regulation hole 612 b of the lower first base portion 61 .
 揺動従板622には、揺動枢支孔622a及び揺動長孔622bが形成されており、揺動枢支孔622aを中心に位置させその両側に揺動長孔622bが形成されている。これら、揺動枢支孔622a及び揺動長孔622bは、単なる貫通孔であり、内ネジは形成されていない。 The swing follower plate 622 is formed with a swing pivot hole 622a and a swing long hole 622b. . These rocking pivot hole 622a and rocking long hole 622b are merely through holes and are not internally threaded.
 下部第2ベース部62の揺動長孔622bにおける揺動枢支孔622aと揺動長孔622bの配置構成と、下部第1ベース部61の揺動側板612における枢支孔612a及び揺動規制孔612bとの配置構成は同一であり、酢と揺動枢支孔622aとの位置が一致すると両揺動規制孔612bとの位置は一致するように構成されている(図15参照)。 Arrangement configuration of swing pivot hole 622a and swing long hole 622b in swing long hole 622b of lower second base portion 62, pivot support hole 612a in swing side plate 612 of lower first base portion 61, and swing regulation The arrangement configuration with the hole 612b is the same, and when the positions of the vinegar and the swing pivot hole 622a match, the positions of both swing regulation holes 612b match (see FIG. 15).
 そして、下部第1ベース部61の両揺動側板612と、下部第2ベース部62の揺動主板621とが対向するようにして、下部第2ベース部62の方形状枠内に下部第1ベース部61が挿入される。そして、下部第2ベース部62の揺動枢支孔622aと下部第1ベース部61の枢支孔612aに枢支ボルト67を挿入し、枢支孔612aと螺合させる。また、下部第2ベース部62の揺動長孔622bと、下部第1ベース部61の揺動規制孔612bに揺動規制ボルト68を挿入し、揺動規制孔612bと螺合させる。 Then, the lower first base portion 61 is placed in the rectangular frame of the lower second base portion 62 so that both swing side plates 612 of the lower first base portion 61 and the swing main plate 621 of the lower second base portion 62 face each other. A base portion 61 is inserted. Then, the pivot bolt 67 is inserted into the swing pivot hole 622a of the lower second base portion 62 and the pivot hole 612a of the lower first base portion 61 and screwed into the pivot hole 612a. Further, the swing restricting bolt 68 is inserted into the swing long hole 622b of the lower second base portion 62 and the swing restricting hole 612b of the lower first base portion 61 and screwed into the swing restricting hole 612b.
 これによって、下部第1ベース部61は、下部第2ベース部62に対して枢支ボルト67を介して左右両側に揺動し、枢支ボルト67及び揺動規制ボルト68の締付けにより下部第1ベース部61は下部第2ベース部62に対して所望の角度で固定することができる。下部第1ベース部61の左右の揺動角度は上下方向に約15度乃至約30度程度であり、好適には約25度程度が好適である。そして、このような揺動角度となるように下部第2ベース部62の揺動長孔622bの長さ寸法が設定される。ここで、エアノズルAnの首振りタイプのエアノズルベース6に使用される枢支ボルト67及び揺動規制ボルト68による締付固定において、特に図示しないが、ワッシャ及びスプリングワッシャが使用されることもある。 As a result, the lower first base portion 61 swings left and right with respect to the lower second base portion 62 via the pivot bolts 67 , and the lower first base portion 61 swings by tightening the pivot bolts 67 and the swing restricting bolts 68 . The base portion 61 can be fixed at a desired angle with respect to the lower second base portion 62 . The vertical swing angle of the lower first base portion 61 is approximately 15 degrees to approximately 30 degrees, preferably approximately 25 degrees. The length dimension of the long swing hole 622b of the lower second base portion 62 is set so as to achieve such a swing angle. Here, although not shown, washers and spring washers may be used in tightening and fixing the pivotal bolt 67 and the swing restricting bolt 68 used in the oscillating type air nozzle base 6 of the air nozzle An.
 次に、下部第3ベース部63は、略長方形状の枠状部材であり、2つの対向する揺動支持側板631及び2つの対向する連結側板632によって長方形状枠が構成されている(図14,図15参照)。揺動支持側板631には、揺動枢支孔631a及び揺動長孔631bが形成されており、揺動枢支孔631aを中心に位置させその両側に揺動長孔631bが形成されている。これら、揺動枢支孔631a及び揺動長孔631bは、単なる貫通孔であり、内ネジは形成されていない。揺動支持側板631における揺動枢支孔631a及び揺動長孔631bは、下部第2ベース部62における揺動従板622の揺動枢支孔622a及び揺動長孔622bと同等又は略同等である。 Next, the lower third base portion 63 is a substantially rectangular frame-shaped member, and a rectangular frame is configured by two opposing rocking support side plates 631 and two opposing connecting side plates 632 (see FIG. 14). , see FIG. 15). The swing support side plate 631 is formed with a swing pivot hole 631a and a swing long hole 631b. . These rocking pivot hole 631a and rocking long hole 631b are merely through holes and are not internally threaded. The swing pivot support hole 631 a and the swing long hole 631 b in the swing support side plate 631 are equivalent or substantially equivalent to the swing pivot support hole 622 a and the swing long hole 622 b of the swing follower plate 622 in the lower second base portion 62 . is.
 下部第3ベース部63には、下部第1ベース部61と下部第2ベース部62とを組付けたものが複数個所定間隔をおいて装着できるようにしている。したがって、下部第3ベース部63において、揺動枢支孔631a及び揺動長孔631bの集合を一組としたものが、両揺動支持側板631に所定間隔をおいて複数組設けられている〔図15(B)参照〕。本発明の実施形態では、下部第3ベース部63に装着される下部第1ベース部61と下部第2ベース部62の組付けたものが4個の装着される構成としたが、これに限定されず下部第1ベース部61と下部第2ベース部62の組付けたものを1個又は3個以上装着される構成としてもよい。 A plurality of assembled parts of the lower first base part 61 and the lower second base part 62 can be mounted on the lower third base part 63 at predetermined intervals. Therefore, in the lower third base portion 63, a plurality of sets of rocking pivot holes 631a and rocking long holes 631b are provided on both rocking support side plates 631 at predetermined intervals. [See FIG. 15(B)]. In the embodiment of the present invention, four assembled lower first base portions 61 and lower second base portions 62 are attached to the lower third base portion 63. However, the present invention is limited to this. Instead, one or three or more assembled lower first base portions 61 and lower second base portions 62 may be mounted.
 そして、下部第3ベース部63の両揺動支持側板631と、下部第1ベース部61が組み込まれた下部第2ベース部62の揺動主板621とが対向するようにして、下部第3ベース部63の長方形枠内に複数の下部第2ベース部62が挿入される。そして、下部第3ベース部63の揺動枢支孔622aと下部第2ベース部62の枢支孔621aに枢支ボルト67を挿入し、枢支孔621aと螺合させる。また、下部第3ベース部63の揺動長孔631bと、下部第2ベース部62の揺動規制孔621bに揺動規制ボルト68を挿入し、揺動規制孔621bと螺合させる。 Then, the lower third base portion 63 is arranged so that both swing support side plates 631 of the lower third base portion 63 and the swing main plate 621 of the lower second base portion 62 in which the lower first base portion 61 is incorporated face each other. A plurality of lower second base portions 62 are inserted into the rectangular frame of the portion 63 . Then, the pivot bolt 67 is inserted into the swing pivot hole 622a of the lower third base portion 63 and the pivot hole 621a of the lower second base portion 62 and screwed into the pivot hole 621a. Further, the swing restricting bolt 68 is inserted into the swing long hole 631b of the lower third base portion 63 and the swing restricting hole 621b of the lower second base portion 62 and screwed into the swing restricting hole 621b.
 これによって、下部第1ベース部61が組み込まれた下部第2ベース部62は、下部第3ベース部63に対して枢支ボルト67を介して左右両側に揺動し、枢支ボルト67及び揺動規制ボルト68の締付けにより下部第2ベース部62は下部第3ベース部63に対して所望の角度で固定することができる。下部第2ベース部62の左右の揺動角度は上下方向に約15度乃至約30度程度であり、好適には約25度程度が好適である。そして、このような揺動角度となるように下部第3ベース部63の揺動長孔631bの長さ寸法が設定される。 As a result, the lower second base portion 62 incorporating the lower first base portion 61 swings left and right with respect to the lower third base portion 63 via the pivot bolts 67, and The lower second base portion 62 can be fixed at a desired angle to the lower third base portion 63 by tightening the motion restricting bolt 68 . The vertical swing angle of the lower second base portion 62 is approximately 15 degrees to approximately 30 degrees, preferably approximately 25 degrees. The length dimension of the long swing hole 631b of the lower third base portion 63 is set so as to achieve such a swing angle.
 下段側のエアノズルユニットUは、下部第3ベース部63が略長方形状の枠状部材としたものであり、その長手方向に沿って両揺動支持側板631が配置される。そして、下段側のエアノズルユニットUにおける下部第3ベース部63の長手方向が、エア噴射乾燥システムBにおけるワーク進行方向と同一となるように、該エア噴射乾燥システムBの枠体7に設置される〔図8,図14(A)等参照〕。 In the air nozzle unit U on the lower side, the lower third base portion 63 is a substantially rectangular frame-shaped member, and both rocking support side plates 631 are arranged along the longitudinal direction thereof. Then, the lower third base portion 63 in the air nozzle unit U on the lower side is installed in the frame 7 of the air jet drying system B so that the longitudinal direction is the same as the work traveling direction in the air jet drying system B. [See FIG. 8, FIG. 14(A), etc.].
 つまり、下段側のエアノズルユニットUは、複数(本実施形態では4個)のエアノズルAn(本実施形態では4個)が略一列状に配列された状態となる。これによって、下部第2ベース部62は、ワーク進行方向に対して同一方向に揺動且つ固定自在となる。また、エアノズルAnが装着された下部第1ベース部61は、エアノズルAnをワーク進行方向に対して同一及び直交する方向に揺動することができ、実質的にはエアノズルAnが略全方向に揺動且つ固定自在とされ、揺動角度の設定の自由度を高くすることができる構成としたものである。 That is, the air nozzle unit U on the lower side is in a state in which a plurality (four in this embodiment) of air nozzles An (four in this embodiment) are arranged substantially in a line. As a result, the lower second base portion 62 can be swung and fixed in the same direction as the work advancing direction. In addition, the lower first base portion 61 to which the air nozzle An is attached can swing the air nozzle An in the same direction and in the direction perpendicular to the direction of movement of the work, and the air nozzle An can swing substantially in all directions. It is movable and fixed, and is configured to increase the degree of freedom in setting the swing angle.
 次に、エア噴射乾燥システムBにおける上段側のエアノズルのエアノズルベース6は、上部第1ベース部64と、該上部第1ベース部64をワーク進行方向に対して直交する方向に揺動且つ固定自在に軸支する上部第2ベース部65と枢支ボルト67と揺動規制ボルト68を備えている(図16,図17参照)。これらが上部第1ベース部64と上部第2ベース部65とが枢支ボルト67及び揺動規制ボルト68にて、上部第1ベース部64がエア噴射乾燥システムBにおけるワーク進行方向及びワーク進行方向に対して同一方向に揺動且つ固定自在となる構成としたものである。 Next, the air nozzle base 6 of the upper air nozzle in the air jet drying system B has an upper first base portion 64, and the upper first base portion 64 can be swung and fixed in a direction orthogonal to the work advancing direction. It has an upper second base portion 65, a pivot bolt 67, and a swing restricting bolt 68 (see FIGS. 16 and 17). The upper first base portion 64 and the upper second base portion 65 are supported by the pivot bolt 67 and the swing control bolt 68. It is configured so that it can be swung in the same direction with respect to and can be freely fixed.
 上部第1ベース部64は、平坦状且つ長方形状の設置基板641とその幅方向両側に揺動側板642が形成され、両該揺動側板642には、枢支孔642a,揺動規制孔642bがそれぞれ形成されている。そして、枢支孔642aを中心に位置させその両側に揺動規制孔642bが形成されている。これら枢支孔642a及び揺動規制孔642bは、ネジ孔である。 The upper first base portion 64 has a flat and rectangular installation board 641 and rocking side plates 642 formed on both sides thereof in the width direction. are formed respectively. Swing regulation holes 642b are formed on both sides of the pivot hole 642a. These pivot holes 642a and swing regulation holes 642b are screw holes.
 前記設置基板641には、その中心に複数のエア通路孔641aが形成されており、該各エア通路孔641aの周囲にエアノズルAnの固定用の複数の取付孔641bが等間隔に形成されている。該取付孔641bはネジ孔である。上部第1ベース部64の設置基板641には、複数のエアノズルAnが装着され、エアホース72がエア通路孔641aを介してエアノズルAnに装着される。本発明における実施形態では、設置基板641には2つのエアノズルAnが装着される。 A plurality of air passage holes 641a are formed in the center of the installation board 641, and a plurality of mounting holes 641b for fixing the air nozzles An are formed at regular intervals around each of the air passage holes 641a. . The mounting hole 641b is a screw hole. A plurality of air nozzles An are attached to the installation substrate 641 of the upper first base portion 64, and the air hose 72 is attached to the air nozzles An through the air passage hole 641a. In the embodiment of the present invention, two air nozzles An are attached to the installation board 641 .
 次に、上部第2ベース部65は、略長方形状の枠状部材であり、2つの対向する揺動支持側板651及び2つの対向する連結側板652によって長方形状枠が構成されている(図16,図17参照)。揺動支持側板651には、揺動枢支孔652a及び揺動長孔652bが形成されており、揺動枢支孔652aを中心に位置させその両側に揺動長孔652bが形成されている。これら、揺動枢支孔652a及び揺動長孔652bは、単なる貫通孔であり、内ネジは形成されていない。揺動支持側板651における揺動枢支孔652a及び揺動長孔652bは、上部第1ベース部64における揺動主板641の枢支孔642a及び揺動規制孔642bと同等又は略同等である。 Next, the upper second base portion 65 is a substantially rectangular frame-shaped member, and a rectangular frame is configured by two opposing rocking support side plates 651 and two opposing connecting side plates 652 (see FIG. 16). , see FIG. 17). The swing support side plate 651 is formed with a swing pivot hole 652a and a swing long hole 652b. . These rocking pivot hole 652a and rocking long hole 652b are merely through holes and are not internally threaded. The swing pivot hole 652a and the swing long hole 652b in the swing support side plate 651 are equivalent or substantially equivalent to the pivot hole 642a and the swing restriction hole 642b of the swing main plate 641 in the upper first base portion 64, respectively.
 上部第1ベース部64には、上部第1ベース部64が複数個所定間隔をおいて装着できるようにしている。したがって、上部第2ベース部65において、揺動枢支孔652a及び揺動長孔652bの集合を一組としたものが、両揺動支持側板6351に所定間隔をおいて複数組設けられている。本発明の実施形態では、上部第2ベース部65に装着される上部第1ベース部64が2個の装着される構成としたものであるが、これに限定されず1個又は3個以上の上部第1ベース部64としてもよい。 A plurality of upper first base portions 64 can be attached to the upper first base portion 64 at predetermined intervals. Therefore, in the upper second base portion 65, a plurality of sets of rocking pivot holes 652a and rocking long holes 652b are provided on both rocking support side plates 6351 at predetermined intervals. . In the embodiment of the present invention, two upper first base portions 64 are attached to the upper second base portion 65. However, the present invention is not limited to this, and one or three or more upper first base portions 64 are attached. It may be the upper first base portion 64 .
 そして、上部第2ベース部65の両揺動支持側板651と、上部第1ベース部64の揺動主板641とが対向するようにして、上部第2ベース部65の長方形枠内に複数の上部第1ベース部64が挿入される。そして、上部第2ベース部65の揺動枢支孔652aと上部第1ベース部64の枢支孔642aに枢支ボルト67を挿入し、枢支孔642aと螺合させる。また、上部第2ベース部65の揺動長孔642bと、上部第1ベース部64の揺動規制孔642bに揺動規制ボルト68を挿入し、揺動規制孔642bと螺合させる。 A plurality of upper parts are formed within the rectangular frame of the upper second base part 65 so that both the swing supporting side plates 651 of the upper second base part 65 and the main swing plate 641 of the upper first base part 64 face each other. A first base portion 64 is inserted. Then, the pivot bolt 67 is inserted into the swing pivot hole 652a of the upper second base portion 65 and the pivot hole 642a of the upper first base portion 64 and screwed into the pivot hole 642a. Further, the swing restricting bolt 68 is inserted into the long swing hole 642b of the upper second base portion 65 and the swing restricting hole 642b of the upper first base portion 64, and screwed into the swing restricting hole 642b.
 これによって、上部第1ベース部64は、上部第1ベース部64に対して枢支ボルト67を介して左右両側に揺動し、枢支ボルト67及び揺動規制ボルト68の締付けにより上部第1ベース部64は上部第2ベース部65に対して所望の角度で固定することができる。上部第1ベース部64の左右の揺動角度は上下方向に約15度乃至約30度程度であり、好適には約25度程度が好適である。 As a result, the upper first base portion 64 swings left and right with respect to the upper first base portion 64 via the pivot bolts 67 . The base portion 64 can be fixed at a desired angle with respect to the upper second base portion 65 . The horizontal swing angle of the upper first base portion 64 is about 15 degrees to about 30 degrees in the vertical direction, preferably about 25 degrees.
 そして、このような揺動角度となるように上部第2ベース部65の揺動長孔652bの長さ寸法が設定される。上部第1ベース部64の設置基板641には、2個のエアノズルAnが装着されている。このように、上段側のエアノズルユニットUでは、ワーク進行方向に対して直交方向及びに同一方向に2個ずつ全部で4個のエアノズルAnが設けられている(図16,図17参照)。そして、1つの上部第1ベース部64が上部第2ベース部65に対して揺動することで、上部第1ベース部64に装着された2つのエアノズルAnも同時にワーク進行方向に対して同一方向に揺動するものである。 The length dimension of the long swing hole 652b of the upper second base portion 65 is set so as to achieve such a swing angle. Two air nozzles An are attached to the installation substrate 641 of the upper first base portion 64 . Thus, in the air nozzle unit U on the upper side, a total of four air nozzles An are provided, two each in the direction perpendicular to and in the same direction as the work advancing direction (see FIGS. 16 and 17). As one upper first base portion 64 swings with respect to the upper second base portion 65, the two air nozzles An attached to the upper first base portion 64 are simultaneously moved in the same direction with respect to the work traveling direction. It oscillates to
 A1…固定本体、1…固定ベース部、2…円筒ハウジング部、A2…回転本体、3…回転ベース部、31b…先端面部、31s…空気流路、41…噴射管、42…制御管、41a,42a…垂直管部、41b,42b…傾斜管部、5…円板部、61…下部第1ベース部、62…下部第2ベース部、63…下部第3ベース部、64…上部第1ベース部、65…上部第2ベース部、L…回転軸芯線。 A1... Fixed main body 1... Fixed base part 2... Cylindrical housing part A2... Rotating main body 3... Rotating base part 31b... Tip surface part 31s... Air flow path 41... Injection pipe 42... Control pipe 41a , 42a...vertical tube portion, 41b, 42b...inclined tube portion, 5...disc portion, 61...lower first base portion, 62...lower second base portion, 63...lower third base portion, 64...upper first base portion Base portion, 65... Upper second base portion, L... Rotation axis core line.

Claims (9)

  1.  軸方向一端に開口を有する円筒ハウジング部と,該円筒ハウジング部の軸方向他端側に接続された固定ベース部とを有する固定本体と、前記固定ベース内に回転自在に収納装着され且つ内部に空気流路を有すると共に回転軸芯線に直交し且つ前記円筒ハウジング部の内方側から前記開口に対向する先端面部を有する回転ベース部と,前記先端面部に設けられると共に前記空気流路と連通する1つの噴射管及び1つの制御管とを有する回転本体とを備え、前記噴射管及び前記制御管のそれぞれの根本部は前記先端面部の回転中心から離間すると共にそれぞれの噴射方向は前記回転軸芯線に対して所定角度に傾斜するように設定され、前記噴射管は前記根本部の移動軌跡円の接線を基準にして回転平面上における接線の両側を所定角度の範囲で揺動且つ固定自在とされ、前記制御管は根本部の移動軌跡円の法線を基準にして回転平面上における法線から回転方向と反対側の領域で所定角度の範囲で揺動且つ固定自在とされ、前記制御管の内径は前記噴射管の内径と同等以上とし、前記噴射管の噴射エアの延長上における噴射領域と、前記制御管の噴射エアの延長上における噴射領域とは交わることを特徴とするエアノズル。 a fixed body having a cylindrical housing portion having an opening at one end in the axial direction; and a fixed base portion connected to the other end side in the axial direction of the cylindrical housing portion; a rotation base portion having an air flow path, perpendicular to the axis of rotation, and having a front end face facing the opening from the inner side of the cylindrical housing; a rotating body having one injection pipe and one control pipe, the root portion of each of the injection pipe and the control pipe being separated from the rotation center of the tip surface portion and the injection direction of each being aligned with the rotation axis The injection pipe is set so as to be inclined at a predetermined angle with respect to the base portion, and the injection pipe can be swung and fixed on both sides of the tangent line on the rotation plane with reference to the tangent line of the movement locus circle of the base portion within a predetermined angle range. The control tube is swingable and fixed within a range of a predetermined angle in a region opposite to the direction of rotation from the normal line on the plane of rotation with reference to the normal line of the movement locus circle of the root portion. An air nozzle having an inner diameter equal to or greater than the inner diameter of the injection pipe, wherein the injection area on the extension of the injection air of the injection pipe and the injection area on the extension of the injection air of the control pipe intersect.
  2.  請求項1に記載のエアノズルにおいて、前記制御管の管内径は前記噴射管の管内径よりも大なることを特徴とするエアノズル。 The air nozzle according to claim 1, wherein the inner diameter of said control pipe is larger than the inner diameter of said injection pipe.
  3.  請求項1又は2の何れか1項に記載のエアノズルにおいて、前記制御管及び前記噴射管は、垂直管部と傾斜管部とを有しており、前記垂直管部は前記噴射管の根本部側に位置し、前記噴射管は垂直管と傾斜管部とを有しており、前記垂直管部は前記噴射管の根本部側に位置してなることを特徴とするエアノズル。 3. The air nozzle according to claim 1, wherein the control pipe and the injection pipe each have a vertical pipe portion and an inclined pipe portion, the vertical pipe portion being the root portion of the injection pipe. , wherein the injection pipe has a vertical pipe and an inclined pipe portion, and the vertical pipe portion is positioned on the root portion side of the injection pipe.
  4.  請求項1又は2の何れか1項に記載のエアノズルにおいて、前記制御管及び前記噴射管は、両根本部付近は垂直状とし、他は弧状としてなることを特徴とするエアノズル。 The air nozzle according to claim 1 or 2, wherein the control pipe and the injection pipe are vertical in the vicinity of both base portions and arcuate in the other portions.
  5.  請求項1,2,3又は4の何れか1項に記載のエアノズルにおいて、前記噴射管と前記制御管のそれぞれの根本部中心は、前記回転ベース部の回転中心に対して点対称となる位置に設定されてなることを特徴とするエアノズル。 5. The air nozzle according to any one of claims 1, 2, 3, and 4, wherein the centers of root portions of said injection pipe and said control pipe are positioned symmetrically with respect to the center of rotation of said rotation base. An air nozzle characterized by being set to
  6.  請求項1,2,3,4又は5の何れか1項に記載のエアノズルにおいて、前記噴射管と前記制御管におけるそれぞれの先端噴射口は、前記回転ベース部の回転平面と平行となることを特徴とするエアノズル。 6. The air nozzle according to any one of claims 1, 2, 3, 4, and 5, wherein tip injection ports of said injection pipe and said control pipe are parallel to the rotation plane of said rotation base. Characterized air nozzle.
  7.  請求項1,2,3,4,5又は6の何れか1項に記載のエアノズルにおいて、前記噴射管と前記制御管のそれぞれの先端が挿通する噴射用孔部が設けられ前記回転ベースに装着される円板部が備えられてなることを特徴とするエアノズル。 7. The air nozzle according to any one of claims 1, 2, 3, 4, 5, or 6, wherein an injection hole is provided through which the tip of each of the injection pipe and the control pipe is inserted, and is mounted on the rotation base. An air nozzle, characterized in that it comprises a disc portion that is filled with air.
  8.  請求項1,2,3,4,5,6又は7の何れか1項に記載のエアノズルにおいて、前記エアノズルが装着される下部第1ベース部と、該下部第1ベース部をワーク進行方向に対して直交する方向に揺動且つ固定自在に支持する下部第2ベース部と、該第2ベース部をワーク進行方向に対して同一方向に揺動且つ固定自在に支持する下部第3ベース部とを備えたエアノズルベースが具備されてなることを特徴とするエアノズル。 8. The air nozzle according to any one of claims 1, 2, 3, 4, 5, 6, or 7, wherein the lower first base portion to which the air nozzle is attached, and the lower first base portion are arranged in the work advancing direction. and a lower third base portion which supports the second base portion so as to swing and fixably in a direction orthogonal to the workpiece, and a third lower base portion which supports the second base portion so as to swing and fixably in the same direction as the work advancing direction. An air nozzle comprising an air nozzle base having
  9.  請求項1,2,3,4,5,6又は7の何れか1項に記載のエアノズルにおいて、前記エアノズルが装着される上部第1ベース部と、該上部第1ベース部をワーク進行方向に対して同一方向に揺動且つ固定自在に軸支する上部第2ベース部とを備えたエアノズルベースが具備されてなることを特徴とするエアノズル。 8. The air nozzle according to any one of claims 1, 2, 3, 4, 5, 6, or 7, wherein the upper first base portion to which the air nozzle is attached, and the upper first base portion are arranged in the work advancing direction. An air nozzle, comprising: an air nozzle base having an upper second base portion pivotally supported so as to swing in the same direction and to be fixed.
PCT/JP2022/007524 2021-02-26 2022-02-24 Air nozzle WO2022181666A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021030709A JP6923242B1 (en) 2021-02-26 2021-02-26 Air nozzle
JP2021-030709 2021-02-26

Publications (1)

Publication Number Publication Date
WO2022181666A1 true WO2022181666A1 (en) 2022-09-01

Family

ID=77269572

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/007524 WO2022181666A1 (en) 2021-02-26 2022-02-24 Air nozzle

Country Status (2)

Country Link
JP (1) JP6923242B1 (en)
WO (1) WO2022181666A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6979248B1 (en) * 2021-08-06 2021-12-08 イースタン技研株式会社 Air nozzle

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018187530A (en) * 2017-04-28 2018-11-29 富士電機株式会社 Rotational wave nozzle
WO2020075567A1 (en) * 2018-10-08 2020-04-16 ピュアトラスト株式会社 Nozzle and gas ejection device
JP2020165556A (en) * 2019-03-28 2020-10-08 イースタン技研株式会社 Air ejection drying system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018187530A (en) * 2017-04-28 2018-11-29 富士電機株式会社 Rotational wave nozzle
WO2020075567A1 (en) * 2018-10-08 2020-04-16 ピュアトラスト株式会社 Nozzle and gas ejection device
JP2020165556A (en) * 2019-03-28 2020-10-08 イースタン技研株式会社 Air ejection drying system

Also Published As

Publication number Publication date
JP2022131658A (en) 2022-09-07
JP6923242B1 (en) 2021-08-18

Similar Documents

Publication Publication Date Title
TWI751665B (en) Air nozzle
CN110369403B (en) Dry ice cleaning nozzle, dry ice cleaning machine and secondary pollution prevention dry ice cleaning method
JP6091057B2 (en) Shot blasting equipment
US10870125B2 (en) Painting booths comprising painting chambers and overspray removal units
JP6630011B1 (en) Air jet drying system
CN107442515B (en) Through cleaning device and cleaning method thereof
KR200476774Y1 (en) Apparatus for washing tube bundle of cooler
WO2022181666A1 (en) Air nozzle
US7686022B2 (en) Nozzle device, and cleaning apparatus equipped with the nozzle device
JP2018089590A (en) Cleaning medium jetting device and casting sand removal device with cleaning medium jetting device
CN114147629A (en) Rotating disc type sand blasting machine
KR100433452B1 (en) Cleaning apparatus for Brush
CN103143424B (en) Fluidized bed type air flow crusher for online cleaning and online sterilization
JP6704494B1 (en) Air nozzle
JP6979248B1 (en) Air nozzle
CN210647553U (en) Dry ice cleaning nozzle and dry ice cleaning machine
JP6616035B1 (en) Air nozzle
JP6749741B1 (en) Nozzle and gas ejection device
KR20190093336A (en) Small size dryice blasting apparatus
JP2008036617A (en) Air screw nozzle
JPH09285749A (en) Device for cleaning inside of pipe
JP2024135621A (en) Air nozzle
TWM525433U (en) Dry ice clean device
JP5688608B2 (en) Blasting equipment
JP4783467B2 (en) Air screw nozzle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22759701

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22759701

Country of ref document: EP

Kind code of ref document: A1