WO2022181630A1 - Thermally conductive member and heat exchange device - Google Patents

Thermally conductive member and heat exchange device Download PDF

Info

Publication number
WO2022181630A1
WO2022181630A1 PCT/JP2022/007359 JP2022007359W WO2022181630A1 WO 2022181630 A1 WO2022181630 A1 WO 2022181630A1 JP 2022007359 W JP2022007359 W JP 2022007359W WO 2022181630 A1 WO2022181630 A1 WO 2022181630A1
Authority
WO
WIPO (PCT)
Prior art keywords
plate portion
heat
joint
facing
member according
Prior art date
Application number
PCT/JP2022/007359
Other languages
French (fr)
Japanese (ja)
Inventor
雅昭 花野
Original Assignee
日本電産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電産株式会社 filed Critical 日本電産株式会社
Priority to CN202280007801.3A priority Critical patent/CN116648594A/en
Publication of WO2022181630A1 publication Critical patent/WO2022181630A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes

Definitions

  • the present disclosure relates to heat conduction members and heat exchange devices.
  • a vapor chamber is known as a heat-conducting member that dissipates heat from a heat source.
  • a hollow portion in which the working fluid is sealed is formed by stacking two opposing plate-like bodies.
  • the heating element When the heating element is thermally connected to the vapor chamber, the working fluid undergoes a phase change to vapor phase.
  • the gas-phase working fluid moves to the heat-dissipating portion, dissipates latent heat, and undergoes a phase change to a liquid phase.
  • the present disclosure aims to improve the rigidity of the housing.
  • An exemplary heat transfer member of the present disclosure includes a housing, a working medium, and a heat sink.
  • the housing has a first plate portion, a second plate portion, and an internal space.
  • the first plate portion and the second plate portion are arranged to face each other in a first direction.
  • the internal space accommodates the working medium.
  • the first plate portion has a first plate portion and a side portion.
  • the first plate extends in a second direction perpendicular to the first direction.
  • the side portion extends from the end of the first plate portion in the second direction toward the second plate portion.
  • the second plate portion has a second plate portion.
  • the second plate portion extends in the second direction and is arranged on one side of the first direction relative to the first plate portion.
  • the internal space is the space between the first plate portion and the second plate portion in the first direction.
  • the thickness of the first plate portion in the first direction is greater than the thickness of the second plate portion in the first direction.
  • the heat sink is arranged on an end surface of the second plate portion facing one of the first directions.
  • An exemplary heat exchange device of the present disclosure includes the heat transfer member described above and a cooling device that cools the heat transfer member.
  • the cooling device has a box.
  • the box body is arranged on the end surface of the second plate portion facing one of the first directions, and covers the heat sink.
  • the box has an inlet through which a coolant flows and an outlet through which the coolant flows out.
  • the rigidity of the housing can be improved.
  • FIG. 1 is a cross-sectional view of the heat exchange device viewed from the Y direction.
  • FIG. 2 is a cross-sectional view of the heat exchange device viewed from the X direction.
  • FIG. 3 is a plan view of the heat-conducting member viewed from the Z direction.
  • FIG. 4 is an enlarged cross-sectional view of the vicinity of the joint portion of the heat-conducting member.
  • the direction in which the first plate portion 11 and the second plate portion 12 of the heat conducting member 100 face each other is referred to as the "Z direction” and denoted by Z in the drawings.
  • Z direction the direction from the first plate portion 11 to the second plate portion 12
  • Z direction other Zb the direction from the second plate portion 12 to the first plate portion 11
  • Z direction one direction perpendicular to the Z direction
  • X direction the direction perpendicular to the Z direction
  • the direction perpendicular to both the Z direction and the X direction is called the "Y direction” and denoted by the symbol Y in the drawings. That is, the Z, X and Y directions are perpendicular to each other.
  • parallel means not only a state in which they do not intersect at all no matter how far they are extended, but also a state in which they are substantially parallel. contains a state.
  • perpendicular and perpendicular respectively include not only the state in which the two intersect each other at 90 degrees, but also the state in which they are substantially perpendicular and the state in which they are substantially orthogonal. That is, “parallel”, “perpendicular” and “perpendicular” each include a state in which there is an angular deviation in the positional relationship between the two without departing from the gist of the present disclosure.
  • FIG. 1 is a cross-sectional view of the heat exchange device 500 viewed from the Y direction.
  • FIG. 2 is a cross-sectional view of the heat exchange device 500 viewed from the X direction.
  • FIG. 3 is a plan view of the heat conducting member 100 viewed from the Z direction.
  • FIG. 4 is an enlarged sectional view of the vicinity of the joint portion 13 of the heat conducting member 100.
  • FIG. 1 shows a cross-sectional structure of the heat exchange device 500 taken along an imaginary plane P1 parallel to both the X direction and the Z direction in FIG.
  • FIG. 1 shows a cross-sectional structure of the heat exchange device 500 taken along an imaginary plane P2 parallel to both the Y direction and the Z direction in FIG.
  • FIG. 4 is an enlarged view of a portion P surrounded by a dashed line in FIG.
  • the heat exchange device 500 includes a heat transfer member 100 and a cooling device 200 that cools the heat transfer member 100 .
  • the heat exchange device 500 is attached to a heat source (not shown) such as a heating element, and exchanges heat between the heat conducting member 100 to which heat is transferred from the heat source and the fluid f as a coolant flowing inside the cooling device 200. conduct. That is, the heat source is cooled by dissipating heat to the heat conducting member 100 .
  • the heat conducting member 100 also called a vapor chamber, is attached to a heat source and dissipates heat to the cooling device 200 .
  • the heat conducting member 100 can dissipate heat to the surrounding atmosphere at the portion that does not contact the cooling device 200 and the heat source.
  • the cooling device 200 is in contact with the end surface of the heat conducting member 100 facing the one Z direction Za.
  • the heat source can contact the end surface of the heat conducting member 100 facing the other side Zb in the Z direction.
  • the heat source contacts the heat conducting member 100 so as to be heat transferable via a heat conducting sheet (not shown).
  • a thermally conductive sheet has high thermal conductivity and high heat resistance.
  • the thermally conductive sheet for example, a graphite sheet, a composite resin sheet containing a thermally conductive material, or the like can be used.
  • heat dissipation grease containing a heat conductive material may be used instead of the heat conductive sheet.
  • the heat source may directly contact the heat conducting member 100 .
  • a heat source is, for example, a power transistor of an inverter provided in a traction motor for driving wheels of a vehicle. This power transistor is, for example, an IGBT (Insulated Gate Bipolar Transistor).
  • the amount of heat generated by an IGBT is generally 100 W or more.
  • the heat conducting member 100 is mounted on the traction motor.
  • the thickness of the heat conducting member 100 in the Z direction is, for example, 5 mm or more.
  • the application and size of the heat conducting member 100 are not limited to the above examples.
  • the heat conducting member 100 has a heat source contact portion (reference numerals omitted) and a heat radiation portion (reference numerals omitted).
  • the heat source contact portion is, for example, a portion of the heat conducting member 100 that can come into contact with the heat source and receives heat transfer from the heat source.
  • the heat radiation part radiates the heat transferred to the heat source contact part to the outside.
  • the end surface of the thermally conductive member 100 facing the other Zb in the Z direction serves as a heat radiating portion.
  • the cooling device 200 is attached to the heat radiating portion of the heat conducting member 100 .
  • the heat-conducting member 100 includes a housing 1, a working medium 2, a wick structure 3, and a heat sink 4.
  • the working medium 2 is pure water in this embodiment, it may be a medium other than water.
  • the working medium 2 is any one of alcohol compounds such as methanol and ethanol, alternative fluorocarbons such as hydrofluorocarbons, hydrocarbon compounds such as propane and isobutane, fluorohydrocarbon compounds such as difluoromethane, ethylene glycol, and the like. good too.
  • the working medium 2 can be used appropriately according to the usage environment of the heat conducting member 100 .
  • the housing 1 has an internal space 10 in which the working medium 2 is accommodated, and a first plate portion 11 and a second plate portion 12 that are arranged facing each other in the Z direction. is an example of the "first direction" of . Further, the housing 1 further has a joint portion 13 of the first plate portion 11 and the second plate portion 12 and a column portion 14 .
  • the internal space 10 is a closed space surrounded by the first plate portion 11 and the second plate portion 12, and is maintained in a reduced pressure state, for example, at a pressure lower than the atmospheric pressure. Since the internal space 10 is in a decompressed state, the working medium 2 is easily vaporized within the internal space 10 . In addition, the internal space 10 further accommodates the wick structure 3, the column portion 14, and the like.
  • the first plate portion 11 is arranged on the other side Zb in the Z direction than the second plate portion 12 .
  • the first plate portion 11 covers the end surface of the second plate portion 12 facing the other Zb in the Z direction and is joined to this end surface.
  • metal with high thermal conductivity such as copper is used.
  • a metal plating layer may be formed on the surface.
  • Metals other than copper include, for example, any metal such as iron, aluminum, zinc, silver, gold, magnesium, manganese, and titanium, or alloys containing at least any of the above metals including copper (brass, duralumin, stainless steel, etc.) can be used.
  • the first plate portion 11 and the second plate portion 12 of this embodiment are rectangular when viewed from the Z direction (see FIG. 3, for example).
  • the shapes of the first plate portion 11 and the second plate portion 12 are not limited to this example.
  • each of the first plate portion 11 and the second plate portion 12 may have a polygonal shape with multiple corners or a circular shape when viewed from the Z direction.
  • the first plate portion 11 has a first plate portion 111 and side portions 112 .
  • the first plate portion 111 extends in a direction perpendicular to the Z direction.
  • the "direction perpendicular to the Z direction" is an example of the "second direction” in the present invention, and includes the X direction and the Y direction in this embodiment.
  • the side surface portion 112 extends from the end of the first plate portion 111 in the direction perpendicular to the Z direction toward the second plate portion 12 .
  • the second plate portion 12 has a second plate portion 121 .
  • the second plate portion 121 spreads in a direction perpendicular to the Z direction and is arranged on one side Za in the Z direction from the first plate portion 111 .
  • the internal space 10 is the space between the first plate portion 111 and the second plate portion 121 in the Z direction.
  • the thickness W1 of the first plate portion 111 in the Z direction is thicker than the thickness W2 of the second plate portion 121 in the Z direction.
  • the thickness W1 of the first plate portion 111 in the Z direction is thicker than the thicknesses d1 and d2 of the first joint portion 113 and the second joint portion 122 in the Z direction, respectively.
  • the first plate portion 111 is less likely to deform even when the internal pressure of the housing 1 increases. Therefore, expansion of the housing 1 can be suppressed.
  • the width of the first plate portion 111 in the direction perpendicular to the Z direction is narrower than the width of the second plate portion 121 in the direction perpendicular to the Z direction. More specifically, the width in the direction perpendicular to the Z direction of the end surface of the first plate portion 111 facing the internal space 10 and facing one Z direction Za is It is narrower than the width in the direction perpendicular to the Z direction of the end face facing the other Z direction Zb. For example, as shown in FIGS. 1 and 3, the width Lx1 of the first plate portion 111 in the X direction is narrower than the width Lx2 of the second plate portion 121 in the X direction.
  • the width Ly1 of the first plate portion 111 in the Y direction is narrower than the width Ly2 of the second plate portion 121 in the Y direction. This makes it difficult for the first plate portion 111 to deform even when the internal pressure of the housing 1 increases due to vaporization of the working medium 2 .
  • the area of the end surface of the first plate portion 111 facing the one Z direction Za is the area of the end surface of the second plate portion 121 facing the other Z direction Zb (for example, Sc smaller than the area of the part surrounded by In this way, even if the internal pressure of the housing 1 increases due to vaporization of the working medium 2 , the first plate portion 111 is less likely to deform than the second plate portion 121 .
  • the heat sink 4 is arranged on the end surface of the second plate portion 121 facing one Z direction Za (see FIGS. 1 and 2).
  • the arrangement of the heat sink 4 makes it difficult for the second plate portion 121, which is thinner than the first plate portion 111, to deform, so that the strength of the housing 1 can be improved.
  • the heat dissipation area of the heat transferred from the vaporized working medium 2 to the second plate portion 121 increases. Therefore, the rigidity of the housing 1 can be improved, and the cooling efficiency of the heat conducting member 100 can be improved.
  • the side surface portion 112 inclines more outward than the internal space 10 in the direction perpendicular to the Z direction toward one Z direction Za. For example, when viewed from the Y direction, the side surface portion 112 inclines further outward than the internal space 10 in the X direction toward one Z direction Za. In addition, when viewed from the X direction, the side surface portion 112 inclines further outward than the internal space 10 in the Y direction toward one Za in the Z direction.
  • the end portion on the Z direction one Za side of the outer surface of the side surface portion 112 (see Sb in FIG. 3 and FIG. 3 Sa and FIG. 4A).
  • the outer surface of the side surface portion 112 is a surface of the side surface portion 112 that faces the outside of the housing 1 .
  • the outside in the direction perpendicular to the Z direction is the outside in the direction perpendicular to the Z direction, and means the direction from the inside to the outside of the internal space 10 in the direction perpendicular to the Z direction.
  • this illustration does not exclude a configuration in which the end B on the one Z-direction Za side of the outer surface of the side surface portion 112 is not arranged outside the end A on the other Z-direction Zb side in the direction perpendicular to the Z direction. .
  • the end portion on the Z direction one Za side of the inner surface of the side surface portion 112 (see Sc in FIG. 3 and C in FIG. 4) is the Z direction on the outer surface of the side surface portion 112 On the other hand, it is arranged inside the end on the Zb side (see Sa in FIG. 3 and A in FIG. 4).
  • the inner surface of the side surface portion 112 is the surface of the side surface portion 112 that faces the inside of the housing 1 .
  • the inner side in the direction perpendicular to the Z direction is the inner side in the direction perpendicular to the Z direction, and means the direction from the outside to the inside of the internal space 10 in the direction perpendicular to the Z direction.
  • the side surface portion 112 receives a force directed from the inside to the outside of the housing 1 .
  • the end C of the inner surface of the side surface 112 is arranged inside the end A of the outer surface of the side surface 112 in the direction perpendicular to the Z direction.
  • the first plate portion 11 is less likely to separate from the second plate portion 12 as compared with the configuration in which C is not arranged inside the end portion A.
  • the force component directed in the other Z direction Zb can be made smaller.
  • the housing 1 becomes difficult to deform, and for example, the hermeticity of the internal space 10 that encloses the working medium 2 can be stably maintained.
  • the end C on the Z direction one Za side of the inner surface of the side surface 112 is inside the end A on the Z direction other Zb side of the outer surface of the side surface 112.
  • first plate portion 11 further has a first joint portion 113 .
  • the first joint portion 113 extends outward from the housing 1 in a direction perpendicular to the Z direction from the end portion of the side portion 112 on one Za side in the Z direction.
  • the second plate portion 12 further has a second joint portion 122 .
  • the second joint portion 122 extends outward from the end of the second plate portion 121 in a direction perpendicular to the Z direction.
  • the first joint 113 is joined to the second joint 122 at the joint portion 13 .
  • the end portion of the first joint portion 113 on the one Za side in the Z direction is connected to the end portion of the second joint portion 122 on the other Zb side in the Z direction.
  • both are directly joined in this embodiment, they are not limited to this example, and may be indirectly joined via an intermediate member such as a metal plate or a plated layer.
  • the thickness d1 in the Z direction of the first joint 113 is thicker than the thickness d2 in the Z direction of the second joint 122 (see FIG. 1). Due to d1>d2, the rigidity of the first joint portion 113 is improved. Therefore, when the internal pressure of the housing 1 increases due to the vaporization of the working medium 2 , it is possible to prevent the first joint portion 113 from deforming and separating from the second joint portion 122 . Therefore, the joint strength between the first joint portion 113 and the second joint portion 122 can be improved.
  • the joint portion 13 has an annular shape when viewed from the Z direction.
  • the housing 1 has a joint portion 13 .
  • the outer edge of the first plate portion 11 is joined to the second plate portion 12 at the joining portion 13 .
  • the connecting portion 13 By forming the connecting portion 13 into a continuous annular shape, the internal space 10 can be formed inside the annular connecting portion 13 when viewed from the Z direction.
  • the internal space 10 can be reliably sealed, compared to a configuration in which the joint portions of the first joint portion 113 and the second joint portion 122 are not connected to each other in an annular shape.
  • the joining means of the first joining portion 113 and the second joining portion 122 are not particularly limited.
  • the joining means may be a method of joining by applying heat and pressure, diffusion joining, joining using brazing material, or the like.
  • the joint portion 13 may include a sealing portion.
  • the sealed portion is, for example, a portion where an injection port for injecting the working medium 2 into the housing 1 is sealed by welding or the like in the manufacturing process of the heat conducting member 100 .
  • the pillar portion 14 is arranged in the internal space 10 .
  • the housing 1 has the pillars 14 .
  • the post 14 extends from one of the first plate portion 11 and the second plate portion 12 .
  • the strength of the housing 1 in the Z direction can be improved.
  • the column portion 14 extends in the Z direction from the end surface of the first plate portion 111 facing the one Z direction Za.
  • the tip of the pillar 14 (here, the end on one Za side in the Z direction) is in contact with the wick structure 3 .
  • the column portion 14 is not limited to the example of the present embodiment.
  • the column portion 14 may extend from the end surface of the second plate portion 121 facing the other Zb in the Z direction.
  • the direction in which the columnar portion 14 extends may be inclined from the Z direction.
  • the tip of the column portion 14 extending from the first plate portion 111 may be in contact with the second plate portion 121 and may be connected to the end surface of the second plate portion 121 facing the other Z direction Zb.
  • the tip of the column portion 14 extending from the second plate portion 121 may be in contact with the first plate portion 111, and may be connected to the end surface of the first plate portion 111 facing the Z-direction one side Za.
  • the column portion 14 may be a solid member or a porous body.
  • the solid member may be a metal column, and the porous body may be a sintered body of metal powder.
  • a "solid” member means a so-called solid member, which is densely packed and not porous.
  • a "solid” member may be a member having no internal cavities or a member having one or more macroscopic cavities therein. No gaseous or liquid working medium 2 enters the interior of the solid member.
  • the heat-conducting member 100 further includes the wick structure 3 housed in the internal space 10 .
  • the wick structure 3 has a capillary structure.
  • the interior of the wick structure 3 is permeable to the liquefied working medium 2 .
  • the wick structure 3 is a porous body such as a sintered body of metal powder in this embodiment. However, it is not limited to this illustration, and the wick structure 3 may be mesh-shaped, for example.
  • the wick structure 3 may be a portion of the housing 1, and may include, for example, a plurality of grooves arranged on the end face of the second plate portion 121 facing the other Zb in the Z direction. good.
  • the material of the wick structure 3 is copper in this embodiment. However, it is not limited to this illustration, and other metals or alloys, carbon fibers, and ceramics may be employed.
  • the wick structure 3 is arranged on the end surface of the second plate portion 121 facing the other Zb in the Z direction, and extends in a direction perpendicular to the Z direction.
  • the working medium 2 in liquid state penetrates the wick structure 3 by capillary action. Therefore, the working medium 2 can be moved faster within the wick structure 3 .
  • the working medium 2 can be moved more quickly from the end surface of the wick structure 3 facing the one Z direction Zb toward the end surface of the second plate portion 121 facing the one Z direction Za.
  • the working medium 2 can be moved faster in the direction perpendicular to the Z direction.
  • the wick structure 3 is not limited to the example of this embodiment.
  • the wick structure 3 can be arranged on at least one of the end face of the first plate portion 111 facing one Z direction Za and the end face of the second plate portion 121 facing the other Z direction Zb.
  • Heat sink 4 is attached to the end surface of the second plate portion 121 facing the one Z direction Za.
  • Heat sink 4 is made of a metal material such as Al or Cu. The heat sink 4 dissipates the heat transferred from the heat conducting member 100 to the fluid f flowing inside the cooling device 200 .
  • the outer edge of the end of the heat sink 4 on the other Zb side in the Z direction is arranged outside the wick structure 3, Specifically, it is arranged outside the outer edge of the end surface of the wick structure 3 facing one Z direction Za (see Sf in FIG. 3 and F in FIG. 4).
  • heat radiated from the working medium 2 inside the wick structure 3 to the second plate portion 121 can be efficiently transferred to the heat sink 4 . Therefore, the heat conduction efficiency of the heat conduction member 100 can be improved.
  • At least a part of the outer edge of the end of the heat sink 4 on the other Zb side in the Z direction has a wick structure in the direction perpendicular to the Z direction. It may be arranged inside the outer edge of the end face facing one Za in the Z direction of the body 3 (see Sf in FIG. 3 and F in FIG. 4). Alternatively, at least part of the outer edge portion of the end portion of the heat sink 4 on the other Zb side in the Z direction (see Se in FIG. 3 and E in FIG. It may overlap with the outer edge of the facing end face (see Sf in FIG. 3 and F in FIG. 4). In this way, the size of the heat sink 4 in the direction perpendicular to the Z direction can be made smaller. Therefore, the heat conducting member 100 having the heat sink 4 can be made more compact.
  • the heat sink 4 includes a base 41 and fins 42 .
  • the base 41 has a plate-like shape extending in a direction perpendicular to the Z direction, and is rectangular when viewed from the Z direction in this embodiment.
  • the base 41 is arranged at the end of the heat conducting member 100 on one Za side in the Z direction.
  • the end surface of the base 41 facing the Z direction Zb contacts the end surface of the second plate portion 121 facing the Z direction Za.
  • the substrate 41 may be in direct contact, or may be in indirect contact via a member having high thermal conductivity. In the latter, for example, the substrate 41 may be in indirect contact via a heat conductive sheet, heat dissipation grease, or the like, as in the case of the heat source.
  • the fins 42 protrude from the base 41 in one Z-direction Za.
  • the fins 42 are plate-shaped and extend in the longitudinal direction (for example, the X direction) of the housing 1 when viewed from the Z direction, and a plurality of fins 42 are arranged in the short direction (for example, the Y direction).
  • heat sink 4 is not limited to the above examples.
  • heat sink 4 may be a component of cooling device 200 . That is, the cooling device 200 may have the heat sink 4 .
  • the fins 42 may be columnar and may be arranged two-dimensionally in a direction perpendicular to the Z direction.
  • the columnar fins 42 may be arranged both in the X direction and in the Y direction.
  • the number of fins 42 may be singular.
  • the fins 42 may protrude from the heat conducting member 100 . That is, the base 41 may be omitted.
  • the fin 42 may be a member different from the heat conducting member 100 (especially the second plate portion 121) and fixed to the end surface of the heat conducting member 100 facing the one Z direction Za.
  • fins 42 may be part of heat conducting member 100 .
  • the fins 42 and the second plate portion 121 may be different parts of the same member.
  • the fin 42 may be a cut-and-raised portion obtained by cutting and raising a part of the end portion of the second plate portion 121 in the one Z direction Za.
  • the cooling device 200 has a box 220 and a fluid flow path Pf (see FIGS. 1 and 2).
  • the box 220 has a lidded tubular shape and opens in the other Z direction Zb.
  • the box 220 has therein a fluid channel Pf through which the fluid f flows.
  • the fluid f flows in the X direction in the fluid flow path Pf.
  • the box 220 is arranged on the end surface of the second plate portion 121 facing the Z-direction one Za, and covers the heat sink 4 . That is, the heat sink 4 is arranged inside the fluid flow path Pf.
  • the end of the box 220 on the other Zb side in the Z direction is fixed to the base 41 by a means such as screwing with a sealing member (not shown) such as an O-ring interposed therebetween.
  • the means for fixing the box 220 is not limited to this example, and may be welding, adhesion, or the like. As described above, when the base 41 is omitted, the end of the box 220 on the other Zb side in the Z direction is similarly fixed to the end face of the heat conducting member 100 facing the one Za in the Z direction.
  • the box 220 has an inlet 221 through which the fluid f flows and an outlet 222 through which the fluid f flows out (see FIG. 1).
  • the fluid f is an example of the "refrigerant" of this invention.
  • the inlet 221 is arranged on one side of the box 220 in the X direction.
  • the outflow port 222 is arranged on the other side of the box 220 in the X direction.
  • the inflow port 221 and the outflow port 222 are connected to a pump (not shown) for circulating the fluid f, a radiator (not shown) for cooling the fluid f, and the like.
  • Driving the pump causes the fluid f to circulate through the fluid flow path Pf, the radiator, and the pump.
  • the fluid f can flow into the fluid channel Pf from the inlet 221 of the box 220 . Inside the fluid flow path Pf, the fluid f contacts the fins 42 of the heat sink 4 . The fluid f can flow out of the fluid channel Pf from the outlet 222 of the box 220 .
  • the heat sink 4 can radiate heat to the fluid f, so the heat radiation efficiency of the heat sink 4 can be improved. Further, the fluid f heat-transferred from the heat sink 4 is caused to flow out of the box 220 through the outlet 222, and a new fluid f is caused to flow into the box 220 through the inlet 221, whereby the heat is transferred. It is possible to continue to supply the fluid f in the vicinity of the heat sink 4 . Therefore, the heat radiation efficiency of the heat sink 4 can be further improved.
  • the fluid f is a coolant, which is water in this embodiment.
  • the fluid f is not limited to this example, and may be a liquid such as an antifreeze liquid such as ethylene glycol or propylene glycol.
  • the fluid f may be gas such as air. Therefore, the heat exchange device 500 can be used as a cold plate to cool the heat source.
  • the heat transfer from the heat source to the heat sink 4 by the heat conducting member 100 is radiated from the heat sink 4 to the fluid f, particularly from the fins 42 .
  • the heat-transferred fluid f flows out from the outlet 222, is cooled by the radiator, and then returns to the fluid flow path Pf. That is, the cooled fluid f flows from the inlet 221 into the fluid flow path Pf.
  • the heat exchange device 500 can cool the heat source.
  • the cooling device 200 may have a member for attaching the box 220 to an object other than the heat conducting member 100, a member for increasing the area of the outer surface of the box 220, and the like.
  • the end portion of the box 200 on the other Z direction Zb side may be fixed to the end face of the second joint portion 122 facing the Z direction one Za, or the first joint It may be fixed to the outer surface of at least one of the portion 113 and the second joint portion 122 in the direction perpendicular to the Z direction. This makes it possible to widen the fluid flow path Pf and increase the area where the heat conducting member 100 is in contact with the fluid f. Therefore, the cooling efficiency of the heat transfer member 100 by the cooling device 200 can be further improved.
  • the present disclosure can be used for cooling heat sources.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

A first plate and a second plate of this thermally conductive member are positioned facing each other in a first direction. A first panel section of the first plate extends in a second direction orthogonal to the first direction. A second panel section of the second plate extends in the second direction, and is positioned further toward one side in the first direction than the first panel section. The space between the first panel section and the second panel section is an internal space in which a working medium is accommodated. The thickness of the first panel section is greater than that of the second panel section in the first direction. A heat sink is positioned on a surface of the second panel section, said surface facing one side in the first direction.

Description

熱伝導部材、熱交換装置Heat conduction member, heat exchange device
 本開示は、熱伝導部材、熱交換装置に関する。 The present disclosure relates to heat conduction members and heat exchange devices.
 従来、熱源を放熱する熱伝導部材として、ベーパーチャンバーが知られている。ベーパーチャンバーでは、対向する2枚の板状体を重ねることにより、作動流体が封入された空洞部が形成される。ベーパーチャンバ―に発熱体が熱的に接続されると、作動流体が気相へ相変化する。気相の作動流体は、放熱部に移動して潜熱を放熱し、液相へ相変化する。(たとえば日本国公開公報:特開2019-82264号公報参照) Conventionally, a vapor chamber is known as a heat-conducting member that dissipates heat from a heat source. In the vapor chamber, a hollow portion in which the working fluid is sealed is formed by stacking two opposing plate-like bodies. When the heating element is thermally connected to the vapor chamber, the working fluid undergoes a phase change to vapor phase. The gas-phase working fluid moves to the heat-dissipating portion, dissipates latent heat, and undergoes a phase change to a liquid phase. (For example, Japanese publication: see JP 2019-82264)
日本国公開公報:特開2019-82264号公報Japanese publication: JP 2019-82264
 しかしながら、対向する2枚の板状体のうちの一方の厚さが他方の厚さよりも薄い場合、空洞部の内圧が高くなると、他方の板状体が形状を維持し難かった。そのため、筐体の剛性向上が望まれる。 However, when the thickness of one of the two opposing plate-shaped bodies is thinner than the thickness of the other, it is difficult for the other plate-shaped body to maintain its shape when the internal pressure of the cavity increases. Therefore, it is desired to improve the rigidity of the housing.
 本開示は、筐体の剛性を向上することを目的とする。 The present disclosure aims to improve the rigidity of the housing.
 本開示の例示的な熱伝導部材は、筐体と、作動媒体と、ヒートシンクと、を備える。前記筐体は、第1プレート部と、第2プレート部と、内部空間と、を有する。前記第1プレート部及び前記第2プレート部は、第1方向において対向して配置される。前記内部空間には、前記作動媒体が収容される。前記第1プレート部は、第1板部と、側面部と、を有する。前記第1板部は、前記第1方向と垂直な第2方向に広がる。前記側面部は、前記第1板部の前記第2方向における端部から前記第2プレート部に向かって延びる。前記第2プレート部は、第2板部を有する。前記第2板部は、前記第2方向に広がって、前記第1板部よりも第1方向の一方に配置される。前記内部空間は、前記第1方向における前記第1板部及び第2板部間の空間である。前記第1板部の前記第1方向における厚さは、前記第2板部の前記第1方向における厚さよりも厚い。前記第2板部の前記第1方向の一方を向く端面には、前記ヒートシンクが配置される。 An exemplary heat transfer member of the present disclosure includes a housing, a working medium, and a heat sink. The housing has a first plate portion, a second plate portion, and an internal space. The first plate portion and the second plate portion are arranged to face each other in a first direction. The internal space accommodates the working medium. The first plate portion has a first plate portion and a side portion. The first plate extends in a second direction perpendicular to the first direction. The side portion extends from the end of the first plate portion in the second direction toward the second plate portion. The second plate portion has a second plate portion. The second plate portion extends in the second direction and is arranged on one side of the first direction relative to the first plate portion. The internal space is the space between the first plate portion and the second plate portion in the first direction. The thickness of the first plate portion in the first direction is greater than the thickness of the second plate portion in the first direction. The heat sink is arranged on an end surface of the second plate portion facing one of the first directions.
 本開示の例示的な熱交換装置は、上記の熱伝導部材と、前記熱伝導部材を冷却する冷却装置と、を備える。前記冷却装置は、箱体を有する。前記箱体は、前記第2板部の前記第1方向の一方を向く端面に配置されて、前記ヒートシンクを覆う。前記箱体は、冷媒が流入する流入口と、前記冷媒が流出する流出口と、を有する。 An exemplary heat exchange device of the present disclosure includes the heat transfer member described above and a cooling device that cools the heat transfer member. The cooling device has a box. The box body is arranged on the end surface of the second plate portion facing one of the first directions, and covers the heat sink. The box has an inlet through which a coolant flows and an outlet through which the coolant flows out.
 本開示の例示的な熱伝導部材、熱交換装置によれば、筐体の剛性を向上することができる。 According to the exemplary heat transfer member and heat exchange device of the present disclosure, the rigidity of the housing can be improved.
図1は、Y方向から見た熱交換装置の断面図である。FIG. 1 is a cross-sectional view of the heat exchange device viewed from the Y direction. 図2は、X方向から見た熱交換装置の断面図である。FIG. 2 is a cross-sectional view of the heat exchange device viewed from the X direction. 図3は、Z方向から見た熱伝導部材の平面図である。FIG. 3 is a plan view of the heat-conducting member viewed from the Z direction. 図4は、熱伝導部材の接合部分の近傍を拡大した断面図である。FIG. 4 is an enlarged cross-sectional view of the vicinity of the joint portion of the heat-conducting member.
 以下に図面を参照して例示的な実施形態を説明する。 An exemplary embodiment will be described below with reference to the drawings.
 なお、本明細書では、熱伝導部材100の第1プレート部11及び第2プレート部12が対向する方向を「Z方向」と呼び、図面では符号Zを付す。Z方向のうち、第1プレート部11から第2プレート部12への向きを「Z方向一方Za」と呼び、第2プレート部12から第1プレート部11への向きを「Z方向他方Zb」と呼ぶ。また、Z方向と垂直な1方向を「X方向」と呼び、図面では符号Xを付す。さらに、Z方向及びX方向の両方と垂直な方向を「Y方向」と呼び、図面では符号Yを付す。つまり、Z方向、X方向、Y方向は、互いに垂直である。 In this specification, the direction in which the first plate portion 11 and the second plate portion 12 of the heat conducting member 100 face each other is referred to as the "Z direction" and denoted by Z in the drawings. In the Z direction, the direction from the first plate portion 11 to the second plate portion 12 is called “Z direction one Za”, and the direction from the second plate portion 12 to the first plate portion 11 is called “Z direction other Zb”. call. Also, one direction perpendicular to the Z direction is called the "X direction" and is denoted by X in the drawings. Furthermore, the direction perpendicular to both the Z direction and the X direction is called the "Y direction" and denoted by the symbol Y in the drawings. That is, the Z, X and Y directions are perpendicular to each other.
 また、以下では、方位、線、及び面のうちのいずれかと他のいずれかとの位置関係において、「平行」は、両者がどこまで延長しても全く交わらない状態のみならず、実質的に平行である状態を含む。また、「垂直」及び「直交」はそれぞれ、両者が互いに90度で交わる状態のみならず、実質的に垂直である状態及び実質的に直交する状態を含む。つまり、「平行」、「垂直」及び「直交」はそれぞれ、両者の位置関係に本開示の主旨を逸脱しない程度の角度ずれがある状態を含む。 In addition, hereinafter, in terms of the positional relationship between any one of azimuths, lines, and planes and any other, "parallel" means not only a state in which they do not intersect at all no matter how far they are extended, but also a state in which they are substantially parallel. contains a state. Also, "perpendicular" and "perpendicular" respectively include not only the state in which the two intersect each other at 90 degrees, but also the state in which they are substantially perpendicular and the state in which they are substantially orthogonal. That is, "parallel", "perpendicular" and "perpendicular" each include a state in which there is an angular deviation in the positional relationship between the two without departing from the gist of the present disclosure.
<1.熱交換装置>
 図1は、Y方向から見た熱交換装置500の断面図である。図2は、X方向から見た熱交換装置500の断面図である。図3は、Z方向から見た熱伝導部材100の平面図である。図4は、熱伝導部材100の接合部分13の近傍を拡大した断面図である。なお、図1は、図3においてX方向及びZ方向の両方と平行な仮想の平面P1で熱交換装置500を切断した断面構造を示す。図1は、図3においてY方向及びZ方向の両方と平行な仮想の平面P2で熱交換装置500を切断した断面構造を示す。図4は、図1の破線で囲まれた部分Pを拡大した図である。
<1. Heat exchange device>
FIG. 1 is a cross-sectional view of the heat exchange device 500 viewed from the Y direction. FIG. 2 is a cross-sectional view of the heat exchange device 500 viewed from the X direction. FIG. 3 is a plan view of the heat conducting member 100 viewed from the Z direction. FIG. 4 is an enlarged sectional view of the vicinity of the joint portion 13 of the heat conducting member 100. As shown in FIG. 1 shows a cross-sectional structure of the heat exchange device 500 taken along an imaginary plane P1 parallel to both the X direction and the Z direction in FIG. FIG. 1 shows a cross-sectional structure of the heat exchange device 500 taken along an imaginary plane P2 parallel to both the Y direction and the Z direction in FIG. FIG. 4 is an enlarged view of a portion P surrounded by a dashed line in FIG.
 熱交換装置500は、熱伝導部材100と、熱伝導部材100を冷却する冷却装置200と、を備える。熱交換装置500は、発熱体などの熱源(図示省略)に装着され、熱源から熱伝達される熱伝導部材100と、冷却装置200の内部を流れる冷媒としての流体fとの間で熱交換を行う。つまり、熱源は、熱伝導部材100に放熱することで冷却される。 The heat exchange device 500 includes a heat transfer member 100 and a cooling device 200 that cools the heat transfer member 100 . The heat exchange device 500 is attached to a heat source (not shown) such as a heating element, and exchanges heat between the heat conducting member 100 to which heat is transferred from the heat source and the fluid f as a coolant flowing inside the cooling device 200. conduct. That is, the heat source is cooled by dissipating heat to the heat conducting member 100 .
 <1-1.熱伝導部材>
 熱伝導部材100は、ベーパーチャンバーとも呼ばれ、熱源に装着されて、冷却装置200に放熱する。また、冷却装置200及び熱原と接触しない部分では、熱伝導部材100は、周囲の大気へと放熱できる。本実施形態では、熱伝導部材100のZ方向一方Zaを向く端面に、冷却装置200が接する。また、熱源は、熱伝導部材100のZ方向他方Zbを向く端面に接触可能である。たとえば、熱源は、熱伝導シート(図示省略)を介して、熱伝達可能に熱伝導部材100と接する。熱伝導シートは、高い熱伝導性と高い耐熱性とを有する。熱伝導シートには、たとえば、グラファイトシート、熱伝導性材料を含む複合樹脂シートなどを採用できる。又は、熱伝導シートに代えて、熱伝導性材料を含む放熱グリスが用いられてもよい。或いは、熱源は、直接、熱伝導部材100に接してもよい。熱源は、たとえば、車両の車輪を駆動するためのトラクションモータに備えられるインバータのパワートランジスタが挙げられる。このパワートランジスタは、たとえばIGBT(Insulated Gate Bipolar Transistor)である。IGBTの発熱量は、一般的に100W以上である。この場合、熱伝導部材100は、トラクションモータに搭載される。熱伝導部材100のZ方向における厚さは、たとえば5mm以上である。但し、熱伝導部材100の用途及びサイズは、上述の例示に限定されない。
<1-1. Heat-conducting member>
The heat conducting member 100 , also called a vapor chamber, is attached to a heat source and dissipates heat to the cooling device 200 . In addition, the heat conducting member 100 can dissipate heat to the surrounding atmosphere at the portion that does not contact the cooling device 200 and the heat source. In the present embodiment, the cooling device 200 is in contact with the end surface of the heat conducting member 100 facing the one Z direction Za. In addition, the heat source can contact the end surface of the heat conducting member 100 facing the other side Zb in the Z direction. For example, the heat source contacts the heat conducting member 100 so as to be heat transferable via a heat conducting sheet (not shown). A thermally conductive sheet has high thermal conductivity and high heat resistance. As the thermally conductive sheet, for example, a graphite sheet, a composite resin sheet containing a thermally conductive material, or the like can be used. Alternatively, heat dissipation grease containing a heat conductive material may be used instead of the heat conductive sheet. Alternatively, the heat source may directly contact the heat conducting member 100 . A heat source is, for example, a power transistor of an inverter provided in a traction motor for driving wheels of a vehicle. This power transistor is, for example, an IGBT (Insulated Gate Bipolar Transistor). The amount of heat generated by an IGBT is generally 100 W or more. In this case, the heat conducting member 100 is mounted on the traction motor. The thickness of the heat conducting member 100 in the Z direction is, for example, 5 mm or more. However, the application and size of the heat conducting member 100 are not limited to the above examples.
 熱伝導部材100は、熱源接触部(符号省略)と、放熱部(符号省略)と、を有する。熱源接触部は、たとえば熱伝導部材100のうちの熱源と接触可能な部分であり、熱源から熱伝達される。放熱部は、熱源接触部に伝達された熱を外部に放出する。本実施形態では、熱伝導部材100のZ方向他方Zbを向く端面などが放熱部となる。冷却装置200は、熱伝導部材100の放熱部に装着される。 The heat conducting member 100 has a heat source contact portion (reference numerals omitted) and a heat radiation portion (reference numerals omitted). The heat source contact portion is, for example, a portion of the heat conducting member 100 that can come into contact with the heat source and receives heat transfer from the heat source. The heat radiation part radiates the heat transferred to the heat source contact part to the outside. In the present embodiment, the end surface of the thermally conductive member 100 facing the other Zb in the Z direction serves as a heat radiating portion. The cooling device 200 is attached to the heat radiating portion of the heat conducting member 100 .
 熱伝導部材100は、筐体1と、作動媒体2と、ウィック構造体3と、ヒートシンク4と、を備える。なお、作動媒体2は、本実施形態では純水であるが、水以外の媒体であってもよい。たとえば、作動媒体2は、メタノール及びエタノールなどのアルコール化合物、ハイドロフルオロカーボンなどの代替フロン、プロパン及びイソブタンなどの炭化水素化合物、ジフルオロメタンなどのフッ化炭化水素化合物、エチレングリコールなどのいずれかであってもよい。作動媒体2は、熱伝導部材100の使用環境に応じて適宜採用できる。 The heat-conducting member 100 includes a housing 1, a working medium 2, a wick structure 3, and a heat sink 4. Although the working medium 2 is pure water in this embodiment, it may be a medium other than water. For example, the working medium 2 is any one of alcohol compounds such as methanol and ethanol, alternative fluorocarbons such as hydrofluorocarbons, hydrocarbon compounds such as propane and isobutane, fluorohydrocarbon compounds such as difluoromethane, ethylene glycol, and the like. good too. The working medium 2 can be used appropriately according to the usage environment of the heat conducting member 100 .
  <1-1-1.筐体>
 筐体1は、作動媒体2が収容された内部空間10と、Z方向において対向して配置される第1プレート部11及び第2プレート部12と、を有する、なお、Z方向は、本発明の「第1方向」の一例である。また、筐体1は、第1プレート部11及び第2プレート部12の接合部分13と、柱部14と、をさらに有する。
<1-1-1. Housing>
The housing 1 has an internal space 10 in which the working medium 2 is accommodated, and a first plate portion 11 and a second plate portion 12 that are arranged facing each other in the Z direction. is an example of the "first direction" of . Further, the housing 1 further has a joint portion 13 of the first plate portion 11 and the second plate portion 12 and a column portion 14 .
 内部空間10は、第1プレート部11及び第2プレート部12で囲まれた密閉空間であり、たとえば大気圧よりも気圧が低い減圧状態に維持される。内部空間10が減圧状態であることにより、内部空間10内で作動媒体2が気化し易くなる。また、内部空間10には、ウィック構造体3及び柱部14などがさらに収容される。 The internal space 10 is a closed space surrounded by the first plate portion 11 and the second plate portion 12, and is maintained in a reduced pressure state, for example, at a pressure lower than the atmospheric pressure. Since the internal space 10 is in a decompressed state, the working medium 2 is easily vaporized within the internal space 10 . In addition, the internal space 10 further accommodates the wick structure 3, the column portion 14, and the like.
 第1プレート部11は、第2プレート部12よりもZ方向他方Zbに配置される。第1プレート部11は、第2プレート部12のZ方向他方Zbを向く端面を覆い、この端面に接合される。 The first plate portion 11 is arranged on the other side Zb in the Z direction than the second plate portion 12 . The first plate portion 11 covers the end surface of the second plate portion 12 facing the other Zb in the Z direction and is joined to this end surface.
 第1プレート部11及び第2プレート部12の材料には、たとえば、銅などの熱伝導性の高い金属が用いられる。また、その表面に、金属メッキ層が形成されてもよい。銅以外の金属としては、たとえば、鉄、アルミニウム、亜鉛、銀、金、マグネシウム、マンガン、及びチタンなどのいずれかの金属、又は、銅を含む上述の少なくともいずれかの金属を含む合金(真鍮、ジェラルミン、ステンレス鋼など)を用いることができる。 For the material of the first plate portion 11 and the second plate portion 12, for example, metal with high thermal conductivity such as copper is used. Moreover, a metal plating layer may be formed on the surface. Metals other than copper include, for example, any metal such as iron, aluminum, zinc, silver, gold, magnesium, manganese, and titanium, or alloys containing at least any of the above metals including copper (brass, duralumin, stainless steel, etc.) can be used.
 本実施形態の第1プレート部11及び第2プレート部12は、Z方向から見て矩形である(たとえば図3参照)。但し、第1プレート部11及び第2プレート部12の形状は、この例示に限定されない。たとえば、第1プレート部11及び第2プレート部12はそれぞれ、Z方向から見て、複数の角を有する多角形、または円形などであってもよい。 The first plate portion 11 and the second plate portion 12 of this embodiment are rectangular when viewed from the Z direction (see FIG. 3, for example). However, the shapes of the first plate portion 11 and the second plate portion 12 are not limited to this example. For example, each of the first plate portion 11 and the second plate portion 12 may have a polygonal shape with multiple corners or a circular shape when viewed from the Z direction.
 第1プレート部11は、第1板部111と、側面部112と、を有する。第1板部111は、Z方向と垂直な方向に広がる。なお、「Z方向と垂直な方向」は、本発明の「第2方向」の一例であり、本実施形態ではX方向、Y方向を含む。側面部112は、第1板部111のZ方向と垂直な方向における端部から第2プレート部12に向かって延びる。第2プレート部12は、第2板部121を有する。第2板部121は、Z方向と垂直な方向に広がって、第1板部111よりもZ方向一方Zaに配置される。内部空間10は、Z方向における第1板部111及び第2板部121間の空間である。 The first plate portion 11 has a first plate portion 111 and side portions 112 . The first plate portion 111 extends in a direction perpendicular to the Z direction. The "direction perpendicular to the Z direction" is an example of the "second direction" in the present invention, and includes the X direction and the Y direction in this embodiment. The side surface portion 112 extends from the end of the first plate portion 111 in the direction perpendicular to the Z direction toward the second plate portion 12 . The second plate portion 12 has a second plate portion 121 . The second plate portion 121 spreads in a direction perpendicular to the Z direction and is arranged on one side Za in the Z direction from the first plate portion 111 . The internal space 10 is the space between the first plate portion 111 and the second plate portion 121 in the Z direction.
 本実施形態では、第1板部111のZ方向における厚さW1は、第2板部121のZ方向における厚さW2とよりも厚い。W1>W2とすることで、作動媒体2の気化により筐体1の内圧が高くなっても、第1板部111を変形し難くすることができる。 In this embodiment, the thickness W1 of the first plate portion 111 in the Z direction is thicker than the thickness W2 of the second plate portion 121 in the Z direction. By setting W1>W2, even if the internal pressure of the housing 1 increases due to vaporization of the working medium 2, the deformation of the first plate portion 111 can be made difficult.
 好ましくは、第1板部111のZ方向における厚さW1は、第1接合部113及び第2接合部122のZ方向におけるそれぞれの厚さd1,d2よりも厚い。第1板部111の厚さW1をより厚くすることにより、筐体1の内圧が上昇しても、第1板部111が変形し難くなる。従って、筐体1の膨張を抑制できる。 Preferably, the thickness W1 of the first plate portion 111 in the Z direction is thicker than the thicknesses d1 and d2 of the first joint portion 113 and the second joint portion 122 in the Z direction, respectively. By increasing the thickness W1 of the first plate portion 111, the first plate portion 111 is less likely to deform even when the internal pressure of the housing 1 increases. Therefore, expansion of the housing 1 can be suppressed.
 また、第1板部111のZ方向と垂直な方向における幅は、第2板部121のZ方向と垂直な方向における幅よりも狭い。より具体的には、第1板部111の内部空間10に面してZ方向一方Zaを向く端面のZ方向と垂直な方向における幅は、第2板部121の内部空間10に面してZ方向他方Zbを向く端面のZ方向と垂直な方向における幅よりも狭い。たとえば、図1及び図3に示すように、第1板部111のX方向における幅Lx1は、第2板部121のX方向における幅Lx2よりも狭い。また、図2及び図3に示すように、第1板部111のY方向における幅Ly1は、第2板部121のY方向における幅Ly2よりも狭い。こうすれば、作動媒体2の気化により筐体1の内圧が高くなっても、第1板部111は変形し難くなる。 Also, the width of the first plate portion 111 in the direction perpendicular to the Z direction is narrower than the width of the second plate portion 121 in the direction perpendicular to the Z direction. More specifically, the width in the direction perpendicular to the Z direction of the end surface of the first plate portion 111 facing the internal space 10 and facing one Z direction Za is It is narrower than the width in the direction perpendicular to the Z direction of the end face facing the other Z direction Zb. For example, as shown in FIGS. 1 and 3, the width Lx1 of the first plate portion 111 in the X direction is narrower than the width Lx2 of the second plate portion 121 in the X direction. 2 and 3, the width Ly1 of the first plate portion 111 in the Y direction is narrower than the width Ly2 of the second plate portion 121 in the Y direction. This makes it difficult for the first plate portion 111 to deform even when the internal pressure of the housing 1 increases due to vaporization of the working medium 2 .
 さらに、第1板部111のZ方向一方Zaを向く端面(たとえば図3のSdで囲まれた部分)の面積は、第2板部121のZ方向他方Zbを向く端面(たとえば図3のScで囲まれた部分)の面積よりも狭い。こうすれば、作動媒体2の気化により筐体1の内圧が高くなっても、第1板部111は、第2板部121よりも変形し難くなる。 Furthermore, the area of the end surface of the first plate portion 111 facing the one Z direction Za (for example, the portion surrounded by Sd in FIG. 3) is the area of the end surface of the second plate portion 121 facing the other Z direction Zb (for example, Sc smaller than the area of the part surrounded by In this way, even if the internal pressure of the housing 1 increases due to vaporization of the working medium 2 , the first plate portion 111 is less likely to deform than the second plate portion 121 .
 一方、第2板部121のZ方向一方Zaを向く端面には、ヒートシンク4が配置される(図1及び図2参照)。ヒートシンク4の配置により、第1板部111よりも薄い第2板部121が変形し難くなるので、筐体1の強度を向上できる。さらに、気化した作動媒体2から第2板部121に伝達される熱の放熱面積が増加する。従って、筐体1の剛性を向上できるとともに、熱伝導部材100の冷却効率を向上できる。 On the other hand, the heat sink 4 is arranged on the end surface of the second plate portion 121 facing one Z direction Za (see FIGS. 1 and 2). The arrangement of the heat sink 4 makes it difficult for the second plate portion 121, which is thinner than the first plate portion 111, to deform, so that the strength of the housing 1 can be improved. Furthermore, the heat dissipation area of the heat transferred from the vaporized working medium 2 to the second plate portion 121 increases. Therefore, the rigidity of the housing 1 can be improved, and the cooling efficiency of the heat conducting member 100 can be improved.
 側面部112は、Z方向一方Zaに向かうにつれて、Z方向と垂直な方向における内部空間10よりも外方に傾く。たとえば、Y方向から見て、側面部112は、Z方向一方Zaに向かうにつれてX方向における内部空間10よりも外方に傾く。また、X方向から見て、側面部112は、Z方向一方Zaに向かうにつれてY方向における内部空間10よりも外方に傾く。好ましくは、Z方向と垂直な方向において、側面部112の外側面におけるZ方向一方Za側の端部(図3のSb及び図4のB参照)は、Z方向他方Zb側の端部(図3のSa及び図4のA参照)よりも外側に配置される。なお、側面部112の外側面は、側面部112において筐体1の外部に向く面である。Z方向と垂直な方向における外側は、Z方向と垂直な方向の外方であり、Z方向と垂直な方向において内部空間10の内部から外部に向く方向を意味する。Z方向と垂直な方向において側面部112の外側面における端部Bを端部Aよりも外側に配置することにより、Z方向と垂直な方向における第1板部111の幅(たとえばLx1,Ly1)をより狭くすることができる。従って、第1プレート部11がより変形し難くなり、特に第1板部111をより変形し難くすることができる。なお、この例示は、Z方向と垂直な方向において、側面部112の外側面におけるZ方向一方Za側の端部BがZ方向他方Zb側の端部Aよりも外側に配置されない構成を排除しない。 The side surface portion 112 inclines more outward than the internal space 10 in the direction perpendicular to the Z direction toward one Z direction Za. For example, when viewed from the Y direction, the side surface portion 112 inclines further outward than the internal space 10 in the X direction toward one Z direction Za. In addition, when viewed from the X direction, the side surface portion 112 inclines further outward than the internal space 10 in the Y direction toward one Za in the Z direction. Preferably, in a direction perpendicular to the Z direction, the end portion on the Z direction one Za side of the outer surface of the side surface portion 112 (see Sb in FIG. 3 and FIG. 3 Sa and FIG. 4A). In addition, the outer surface of the side surface portion 112 is a surface of the side surface portion 112 that faces the outside of the housing 1 . The outside in the direction perpendicular to the Z direction is the outside in the direction perpendicular to the Z direction, and means the direction from the inside to the outside of the internal space 10 in the direction perpendicular to the Z direction. By arranging the end portion B on the outer surface of the side surface portion 112 outside the end portion A in the direction perpendicular to the Z direction, the width of the first plate portion 111 in the direction perpendicular to the Z direction (for example, Lx1, Ly1) can be made narrower. Therefore, the deformation of the first plate portion 11 becomes more difficult, and the deformation of the first plate portion 111 in particular can be made more difficult. Note that this illustration does not exclude a configuration in which the end B on the one Z-direction Za side of the outer surface of the side surface portion 112 is not arranged outside the end A on the other Z-direction Zb side in the direction perpendicular to the Z direction. .
 さらに好ましくは、Z方向と垂直な方向において、側面部112の内側面におけるZ方向一方Za側の端部(図3のSc及び図4のC参照)は、側面部112の外側面におけるZ方向他方Zb側の端部(図3のSa及び図4のA参照)よりも内側に配置される。なお、側面部112の内側面は、側面部112において筐体1の内部に向く面である。Z方向と垂直な方向における内側は、Z方向と垂直な方向の内方であり、Z方向と垂直な方向において内部空間10の外部から内部に向く方向を意味する。作動媒体2の気化に伴い筐体1の内圧の増加によって、側面部112は、筐体1の内側から外側に向かう力を受ける。この際、Z方向と垂直な方向において側面部112の内側面の端部Cが側面部112の外側面の端部Aよりも内側に配置されることにより、Z方向と垂直な方向において端部Cが端部Aよりも内側に配置されない構成と比べて、第1プレート部11が第2プレート部12から離れ難くなる。たとえば、側面部112が受ける力のうち、Z方向他方Zbを向く分力をより小さくすることができる。従って、筐体1が変形し難くなり、たとえば、作動媒体2を封入する内部空間10の密閉性を安定的に維持できる。なお、この例示は、Z方向と垂直な方向において、側面部112の内側面におけるZ方向一方Za側の端部Cが側面部112の外側面におけるZ方向他方Zb側の端部Aよりも内側に配置されない構成を排除しない。 More preferably, in a direction perpendicular to the Z direction, the end portion on the Z direction one Za side of the inner surface of the side surface portion 112 (see Sc in FIG. 3 and C in FIG. 4) is the Z direction on the outer surface of the side surface portion 112 On the other hand, it is arranged inside the end on the Zb side (see Sa in FIG. 3 and A in FIG. 4). In addition, the inner surface of the side surface portion 112 is the surface of the side surface portion 112 that faces the inside of the housing 1 . The inner side in the direction perpendicular to the Z direction is the inner side in the direction perpendicular to the Z direction, and means the direction from the outside to the inside of the internal space 10 in the direction perpendicular to the Z direction. As the working medium 2 evaporates, the internal pressure of the housing 1 increases, and the side surface portion 112 receives a force directed from the inside to the outside of the housing 1 . At this time, the end C of the inner surface of the side surface 112 is arranged inside the end A of the outer surface of the side surface 112 in the direction perpendicular to the Z direction. The first plate portion 11 is less likely to separate from the second plate portion 12 as compared with the configuration in which C is not arranged inside the end portion A. For example, of the force that the side surface portion 112 receives, the force component directed in the other Z direction Zb can be made smaller. Therefore, the housing 1 becomes difficult to deform, and for example, the hermeticity of the internal space 10 that encloses the working medium 2 can be stably maintained. In this example, in the direction perpendicular to the Z direction, the end C on the Z direction one Za side of the inner surface of the side surface 112 is inside the end A on the Z direction other Zb side of the outer surface of the side surface 112. Do not exclude configurations that are not placed in
 また、第1プレート部11は、第1接合部113をさらに有する。第1接合部113は、側面部112のZ方向一方Za側の端部からZ方向と垂直な方向において筐体1の外部に向かって広がる。第2プレート部12は、第2接合部122をさらに有する。第2接合部122は、第2板部121のZ方向と垂直な方向における端部からこの方向の外方に広がる。第1接合部113は、接合部分13において、第2接合部122に接合される。つまり、第1接合部113のZ方向一方Za側の端部は、第2接合部122のZ方向他方Zb側の端部に接続される。なお、両者は、本実施形態では直接に接合されるが、この例示に限定されず、金属板、メッキ層などの中間部材を介して間接的に接合されてもよい。 In addition, the first plate portion 11 further has a first joint portion 113 . The first joint portion 113 extends outward from the housing 1 in a direction perpendicular to the Z direction from the end portion of the side portion 112 on one Za side in the Z direction. The second plate portion 12 further has a second joint portion 122 . The second joint portion 122 extends outward from the end of the second plate portion 121 in a direction perpendicular to the Z direction. The first joint 113 is joined to the second joint 122 at the joint portion 13 . In other words, the end portion of the first joint portion 113 on the one Za side in the Z direction is connected to the end portion of the second joint portion 122 on the other Zb side in the Z direction. In addition, although both are directly joined in this embodiment, they are not limited to this example, and may be indirectly joined via an intermediate member such as a metal plate or a plated layer.
 第1接合部113のZ方向における厚さd1は、第2接合部122のZ方向における厚さd2よりも厚い(図1参照)。d1>d2により、第1接合部113の剛性が向上する。そのため、作動媒体2の気化により筐体1の内圧が高くなったとき、第1接合部113が変形しつつ第2接合部122から離れることを抑制できる。従って、第1接合部113及び第2接合部122間の接合強度を向上できる。 The thickness d1 in the Z direction of the first joint 113 is thicker than the thickness d2 in the Z direction of the second joint 122 (see FIG. 1). Due to d1>d2, the rigidity of the first joint portion 113 is improved. Therefore, when the internal pressure of the housing 1 increases due to the vaporization of the working medium 2 , it is possible to prevent the first joint portion 113 from deforming and separating from the second joint portion 122 . Therefore, the joint strength between the first joint portion 113 and the second joint portion 122 can be improved.
 接合部分13は、Z方向から見て環状である。前述の如く、筐体1は、接合部分13を有する。接合部分13において、第1プレート部11の外縁部が第2プレート部12に接合される。接合部分13を一繋がりの環状とすることにより、Z方向から見て、環状の接合部分13よりも内側に内部空間10を形成できる。また、第1接合部113及び第2接合部122の接合部分が一繋がりの環状ではない構成と比べて、内部空間10を確実に密閉できる。 The joint portion 13 has an annular shape when viewed from the Z direction. As mentioned above, the housing 1 has a joint portion 13 . The outer edge of the first plate portion 11 is joined to the second plate portion 12 at the joining portion 13 . By forming the connecting portion 13 into a continuous annular shape, the internal space 10 can be formed inside the annular connecting portion 13 when viewed from the Z direction. In addition, the internal space 10 can be reliably sealed, compared to a configuration in which the joint portions of the first joint portion 113 and the second joint portion 122 are not connected to each other in an annular shape.
 第1接合部113及び第2接合部122の接合手段は、特に限定されない。たとえば、接合手段は、熱と圧力を加えて接合する方法、拡散接合、ろう材を用いた接合などのいずれかであってもよい。なお、接合部分13は、封止部を含んでいてもよい。封止部は、たとえば、熱伝導部材100の製造過程において、作動媒体2を筐体1内に注入するための注入口を溶接などによって封止した箇所である。 The joining means of the first joining portion 113 and the second joining portion 122 are not particularly limited. For example, the joining means may be a method of joining by applying heat and pressure, diffusion joining, joining using brazing material, or the like. Note that the joint portion 13 may include a sealing portion. The sealed portion is, for example, a portion where an injection port for injecting the working medium 2 into the housing 1 is sealed by welding or the like in the manufacturing process of the heat conducting member 100 .
 次に、柱部14は、内部空間10に配置される。前述の如く、筐体1は、柱部14を有する。柱部14は、第1プレート部11及び第2プレート部12のうちの一方から延びる。柱部14の配置により、Z方向における筐体1の強度を向上できる。たとえば、本実施形態では、柱部14は、第1板部111のZ方向一方Zaを向く端面からZ方向に延びる。柱部14の先端(ここではZ方向一方Za側の端部)は、ウィック構造体3に接する。なお、柱部14は、本実施形態の例示に限定されない。たとえば、少なくとも一部の柱部14は、第2板部121のZ方向他方Zbを向く端面から延びてもよい。また、柱部14が延びる方向は、Z方向から傾いてもよい。また、第1板部111から延びる柱部14の先端は、第2板部121に接してよく、さらに第2板部121のZ方向他方Zbを向く端面に接続されてもよい。また、第2板部121から延びる柱部14の先端は、第1板部111に接してよく、さらに第1板部111のZ方向一方Zaを向く端面に接続されてもよい。 Next, the pillar portion 14 is arranged in the internal space 10 . As described above, the housing 1 has the pillars 14 . The post 14 extends from one of the first plate portion 11 and the second plate portion 12 . By arranging the pillars 14, the strength of the housing 1 in the Z direction can be improved. For example, in the present embodiment, the column portion 14 extends in the Z direction from the end surface of the first plate portion 111 facing the one Z direction Za. The tip of the pillar 14 (here, the end on one Za side in the Z direction) is in contact with the wick structure 3 . In addition, the column portion 14 is not limited to the example of the present embodiment. For example, at least a portion of the column portion 14 may extend from the end surface of the second plate portion 121 facing the other Zb in the Z direction. Also, the direction in which the columnar portion 14 extends may be inclined from the Z direction. Also, the tip of the column portion 14 extending from the first plate portion 111 may be in contact with the second plate portion 121 and may be connected to the end surface of the second plate portion 121 facing the other Z direction Zb. Further, the tip of the column portion 14 extending from the second plate portion 121 may be in contact with the first plate portion 111, and may be connected to the end surface of the first plate portion 111 facing the Z-direction one side Za.
 また、少なくとも一部の柱部14は、中実の部材であってもよいし、多孔質体であってもよい。たとえば、中実な部材は金属柱であってよいし、多孔質体は金属粉末の焼結体であってよい。なお、「中実」な部材は、いわゆるソリッドな部材であることを意味し、中身が密に詰まっており、多孔質でない。たとえば、「中実」な部材は、内部に空洞がない部材であってもよいし、単数または複数の巨視的な空洞を内部に有する部材であってもよい。中実な部材の内部には、気体又は液体の作動媒体2は進入しない。 In addition, at least a part of the column portion 14 may be a solid member or a porous body. For example, the solid member may be a metal column, and the porous body may be a sintered body of metal powder. A "solid" member means a so-called solid member, which is densely packed and not porous. For example, a "solid" member may be a member having no internal cavities or a member having one or more macroscopic cavities therein. No gaseous or liquid working medium 2 enters the interior of the solid member.
  <1-1-2.ウィック構造体>
 次に、ウィック構造体3を説明する。前述の如く、熱伝導部材100は、内部空間10に収容されるウィック構造体3をさらに備える。ウィック構造体3は、毛細管構造を有する。ウィック構造体3の内部には、液化した作動媒体2が浸透可能である。ウィック構造体3は、本実施形態では金属粉末の焼結体のような多孔質体である。但し、この例示に限定されず、ウィック構造体3は、たとえば、メッシュ形状であってもよい。或いは、ウィック構造体3の少なくとも一部は、筐体1の一部であってもよく、たとえば第2板部121のZ方向他方Zbを向く端面に配置された複数の溝を含んでいてもよい。また、ウィック構造体3の材料は、本実施形態では銅である。但し、この例示に限定されず、他の金属又は合金、炭素繊維、セラミックが採用されてもよい。
<1-1-2. Wick structure>
Next, the wick structure 3 will be described. As described above, the heat-conducting member 100 further includes the wick structure 3 housed in the internal space 10 . The wick structure 3 has a capillary structure. The interior of the wick structure 3 is permeable to the liquefied working medium 2 . The wick structure 3 is a porous body such as a sintered body of metal powder in this embodiment. However, it is not limited to this illustration, and the wick structure 3 may be mesh-shaped, for example. Alternatively, at least a portion of the wick structure 3 may be a portion of the housing 1, and may include, for example, a plurality of grooves arranged on the end face of the second plate portion 121 facing the other Zb in the Z direction. good. Moreover, the material of the wick structure 3 is copper in this embodiment. However, it is not limited to this illustration, and other metals or alloys, carbon fibers, and ceramics may be employed.
 ウィック構造体3は、第2板部121のZ方向他方Zbを向く端面に配置され、Z方向と垂直な方向に広がる。液体状態の作動媒体2は、毛細管現象によってウィック構造体3に浸透する。従って、ウィック構造体3内において、作動媒体2をより早く移動させることができる。たとえば、ウィック構造体3のZ方向一方Zbを向く端面から第2板部121のZ方向一方Zaを向く端面に向けて、作動媒体2をより早く移動させることができる。また、Z方向と垂直な方向において、作動媒体2をより早く移動させることができる。 The wick structure 3 is arranged on the end surface of the second plate portion 121 facing the other Zb in the Z direction, and extends in a direction perpendicular to the Z direction. The working medium 2 in liquid state penetrates the wick structure 3 by capillary action. Therefore, the working medium 2 can be moved faster within the wick structure 3 . For example, the working medium 2 can be moved more quickly from the end surface of the wick structure 3 facing the one Z direction Zb toward the end surface of the second plate portion 121 facing the one Z direction Za. In addition, the working medium 2 can be moved faster in the direction perpendicular to the Z direction.
 なお、ウィック構造体3は、本実施形態の例示に限定されない。たとえば、ウィック構造体3は、第1板部111のZ方向一方Zaを向く端面、及び、第2板部121のZ方向他方Zbを向く端面のうちの少なくともどちらかに配置できる。 It should be noted that the wick structure 3 is not limited to the example of this embodiment. For example, the wick structure 3 can be arranged on at least one of the end face of the first plate portion 111 facing one Z direction Za and the end face of the second plate portion 121 facing the other Z direction Zb.
  <1-1-3.ヒートシンク>
 次に、ヒートシンク4は、本実施形態では第2板部121のZ方向一方Zaを向く端面に取り付けられる。ヒートシンク4は、たとえばAl,Cuなどの金属材料を用いて形成される。ヒートシンク4は、熱伝導部材100から伝達される熱を冷却装置200の内部を流れる流体fに放散する。
<1-1-3. Heat sink>
Next, in this embodiment, the heat sink 4 is attached to the end surface of the second plate portion 121 facing the one Z direction Za. Heat sink 4 is made of a metal material such as Al or Cu. The heat sink 4 dissipates the heat transferred from the heat conducting member 100 to the fluid f flowing inside the cooling device 200 .
 好ましくは、Z方向と垂直な方向において、ヒートシンク4のZ方向他方Zb側の端部の外縁部(図3のSe及び図4のE参照)は、ウィック構造体3よりも外側に配置され、詳細にはウィック構造体3のZ方向一方Zaを向く端面の外縁部(図3のSf及び図4のF参照)よりも外側に配置される。こうすれば、ウィック構造体3内部の作動媒体2から第2板部121に放散された熱を効率良くヒートシンク4に伝達できる。従って、熱伝導部材100の熱伝導効率を向上できる。 Preferably, in a direction perpendicular to the Z direction, the outer edge of the end of the heat sink 4 on the other Zb side in the Z direction (see Se in FIG. 3 and E in FIG. 4) is arranged outside the wick structure 3, Specifically, it is arranged outside the outer edge of the end surface of the wick structure 3 facing one Z direction Za (see Sf in FIG. 3 and F in FIG. 4). In this way, heat radiated from the working medium 2 inside the wick structure 3 to the second plate portion 121 can be efficiently transferred to the heat sink 4 . Therefore, the heat conduction efficiency of the heat conduction member 100 can be improved.
 なお、この例示に限定されず、ヒートシンク4のZ方向他方Zb側の端部の外縁部(図3のSe及び図4のE参照)の少なくとも一部は、Z方向と垂直な方向においてウィック構造体3のZ方向一方Zaを向く端面の外縁部(図3のSf及び図4のF参照)よりも内側に配置されてもよい。或いは、ヒートシンク4のZ方向他方Zb側の端部の外縁部(図3のSe及び図4のE参照)の少なくとも一部は、Z方向から見て、ウィック構造体3のZ方向一方Zaを向く端面の外縁部(図3のSf及び図4のF参照)と重なってもよい。こうすれば、ヒートシンンク4のZ方向と垂直な方向におけるサイズをより小さくすることができる。従って、ヒートシンンク4を有する熱伝導部材100をよりコンパクトにすることができる。 Note that at least a part of the outer edge of the end of the heat sink 4 on the other Zb side in the Z direction (see Se in FIG. 3 and E in FIG. 4) has a wick structure in the direction perpendicular to the Z direction. It may be arranged inside the outer edge of the end face facing one Za in the Z direction of the body 3 (see Sf in FIG. 3 and F in FIG. 4). Alternatively, at least part of the outer edge portion of the end portion of the heat sink 4 on the other Zb side in the Z direction (see Se in FIG. 3 and E in FIG. It may overlap with the outer edge of the facing end face (see Sf in FIG. 3 and F in FIG. 4). In this way, the size of the heat sink 4 in the direction perpendicular to the Z direction can be made smaller. Therefore, the heat conducting member 100 having the heat sink 4 can be made more compact.
 ヒートシンク4は、基体41と、フィン42と、を備える。基体41は、Z方向と垂直な方向に広がる板状であり、本実施形態ではZ方向から見て矩形である。基体41は、熱伝導部材100のZ方向一方Za側の端部に配置される。基体41のZ方向他方Zbを向く端面は、第2板部121のZ方向一方Zaを向く端面に接する。なお、基体41は、直接に接してもよいし、高い熱伝導性を有する部材を介して間接的に接してもよい。後者において、たとえば、基体41は、熱源の場合と同様に、熱伝導シート、放熱グリスなどを介して間接的に接してもよい。フィン42は、基体41からZ方向一方Zaに突出する。本実施形態では、フィン42は、Z方向から見て、筐体1の長手方向(たとえばX方向)に延びる板状であり、短手方向(たとえばY方向)に複数並ぶ。 The heat sink 4 includes a base 41 and fins 42 . The base 41 has a plate-like shape extending in a direction perpendicular to the Z direction, and is rectangular when viewed from the Z direction in this embodiment. The base 41 is arranged at the end of the heat conducting member 100 on one Za side in the Z direction. The end surface of the base 41 facing the Z direction Zb contacts the end surface of the second plate portion 121 facing the Z direction Za. The substrate 41 may be in direct contact, or may be in indirect contact via a member having high thermal conductivity. In the latter, for example, the substrate 41 may be in indirect contact via a heat conductive sheet, heat dissipation grease, or the like, as in the case of the heat source. The fins 42 protrude from the base 41 in one Z-direction Za. In the present embodiment, the fins 42 are plate-shaped and extend in the longitudinal direction (for example, the X direction) of the housing 1 when viewed from the Z direction, and a plurality of fins 42 are arranged in the short direction (for example, the Y direction).
 但し、ヒートシンク4は、上述の例示に限定されない。たとえば、ヒートシンク4は、冷却装置200の構成要素であってもよい。つまり、冷却装置200がヒートシンク4を有してもよい。また、フィン42は、柱状であってよく、Z方向と垂直な方向に二次元的に配列してもよい。たとえば、柱状のフィン42は、X方向に配列するとともに、Y方向に配列してもよい。また、フィン42は、単数であってもよい。また、フィン42は、熱伝導部材100から突出してもよい。つまり、基体41は、省略されてもよい。この際、フィン42は、熱伝導部材100(特に第2板部121)とは別の部材であって、熱伝導部材100のZ方向一方Zaを向く端面に固定されてもよい。或いは、フィン42は、熱伝導部材100の一部であってもよい。たとえば、フィン42と第2板部121とは、同一の部材の異なる一部であってもよい。また、フィン42は、第2板部121のZ方向一方Zaにおける端部においてその一部が切り起された切り起し部であってもよい。 However, the heat sink 4 is not limited to the above examples. For example, heat sink 4 may be a component of cooling device 200 . That is, the cooling device 200 may have the heat sink 4 . Further, the fins 42 may be columnar and may be arranged two-dimensionally in a direction perpendicular to the Z direction. For example, the columnar fins 42 may be arranged both in the X direction and in the Y direction. Also, the number of fins 42 may be singular. Also, the fins 42 may protrude from the heat conducting member 100 . That is, the base 41 may be omitted. At this time, the fin 42 may be a member different from the heat conducting member 100 (especially the second plate portion 121) and fixed to the end surface of the heat conducting member 100 facing the one Z direction Za. Alternatively, fins 42 may be part of heat conducting member 100 . For example, the fins 42 and the second plate portion 121 may be different parts of the same member. Further, the fin 42 may be a cut-and-raised portion obtained by cutting and raising a part of the end portion of the second plate portion 121 in the one Z direction Za.
 <1-2.冷却装置>
 次に、冷却装置200は、箱体220と、流体流路Pfと、を有する(図1及び図2参照)。
<1-2. Cooling device>
Next, the cooling device 200 has a box 220 and a fluid flow path Pf (see FIGS. 1 and 2).
 箱体220は、有蓋筒状であり、Z方向他方Zbに開口する。箱体220は、流体fが流れる流体流路Pfを内部に有する。本実施形態では図1に示すように、流体流路Pfにおいて、流体fはX方向に流れる。箱体220は、第2板部121のZ方向一方Zaを向く端面に配置されて、ヒートシンク4を覆う。つまり、ヒートシンク4は、流体流路Pf内に配置される。箱体220のZ方向他方Zb側の端部は、ネジ止めなどの手段により、Oリングなどのシール部材(図示省略)を挟んで基体41に固定される。但し、この例示に限定されず、箱体220の固定手段は、たとえば溶接、接着などであってもよい。なお、前述の如く、基体41が省略される場合、箱体220のZ方向他方Zb側の端部は、熱伝導部材100のZ方向一方Zaを向く端面において同様に固定される。 The box 220 has a lidded tubular shape and opens in the other Z direction Zb. The box 220 has therein a fluid channel Pf through which the fluid f flows. In this embodiment, as shown in FIG. 1, the fluid f flows in the X direction in the fluid flow path Pf. The box 220 is arranged on the end surface of the second plate portion 121 facing the Z-direction one Za, and covers the heat sink 4 . That is, the heat sink 4 is arranged inside the fluid flow path Pf. The end of the box 220 on the other Zb side in the Z direction is fixed to the base 41 by a means such as screwing with a sealing member (not shown) such as an O-ring interposed therebetween. However, the means for fixing the box 220 is not limited to this example, and may be welding, adhesion, or the like. As described above, when the base 41 is omitted, the end of the box 220 on the other Zb side in the Z direction is similarly fixed to the end face of the heat conducting member 100 facing the one Za in the Z direction.
 箱体220は、流体fが流入する流入口221と、流体fが流出する流出口222と、を有する(図1参照)。なお、流体fは、本発明の「冷媒」の一例である。本実施形態では、流入口221は、箱体220のX方向の一方側に配置される。流出口222は、箱体220のX方向の他方側に配置される。流入口221及び流出口222は流体fを循環させるポンプ(図示省略)、及び、流体fを冷却するラジエータ(図示省略)などに接続される。ポンプの駆動により、流体fは、流体流路Pf、ラジェータ、及びポンプを循環する。流体fは、箱体220の流入口221から流体流路Pf内に流入できる。流体流路Pf内において、流体fは、ヒートシンク4のフィン42に接する。流体fは、箱体220の流出口222から流体流路Pfの外部に流出できる。 The box 220 has an inlet 221 through which the fluid f flows and an outlet 222 through which the fluid f flows out (see FIG. 1). In addition, the fluid f is an example of the "refrigerant" of this invention. In this embodiment, the inlet 221 is arranged on one side of the box 220 in the X direction. The outflow port 222 is arranged on the other side of the box 220 in the X direction. The inflow port 221 and the outflow port 222 are connected to a pump (not shown) for circulating the fluid f, a radiator (not shown) for cooling the fluid f, and the like. Driving the pump causes the fluid f to circulate through the fluid flow path Pf, the radiator, and the pump. The fluid f can flow into the fluid channel Pf from the inlet 221 of the box 220 . Inside the fluid flow path Pf, the fluid f contacts the fins 42 of the heat sink 4 . The fluid f can flow out of the fluid channel Pf from the outlet 222 of the box 220 .
 箱体220の内部に流体fを流すことにより、ヒートシンク4は流体fに放熱できるので、ヒートシンク4の放熱効率を向上できる。さらに、ヒートシンク4から熱伝達された流体fを流出口222からは箱体220の外部に流出させるとともに、流入口221から新たな流体fを箱体220の内部に流入させることにより、熱伝達されていない流体fをヒートシンク4の近傍に供給し続けることができる。従って、ヒートシンク4の放熱効率をさらに向上できる。 By flowing the fluid f inside the box 220, the heat sink 4 can radiate heat to the fluid f, so the heat radiation efficiency of the heat sink 4 can be improved. Further, the fluid f heat-transferred from the heat sink 4 is caused to flow out of the box 220 through the outlet 222, and a new fluid f is caused to flow into the box 220 through the inlet 221, whereby the heat is transferred. It is possible to continue to supply the fluid f in the vicinity of the heat sink 4 . Therefore, the heat radiation efficiency of the heat sink 4 can be further improved.
 流体fは、冷媒であり、本実施形態では水である。但し、この例示に限定されず、流体fは、たとえば、エチレングリコール又はプロピレングリコールなどの不凍液などの液体であってもよい。或いは、流体fは、空気などの気体であってもよい。従って、熱交換装置500は、熱源を冷却するコールドプレートとして使用できる。  The fluid f is a coolant, which is water in this embodiment. However, the fluid f is not limited to this example, and may be a liquid such as an antifreeze liquid such as ethylene glycol or propylene glycol. Alternatively, the fluid f may be gas such as air. Therefore, the heat exchange device 500 can be used as a cold plate to cool the heat source.
 流体fが流体流路Pf内を流れる間、熱源から熱伝導部材100によりヒートシンク4に伝達された熱は、ヒートシンク4から流体fに放出され、特にフィン42から放出される。熱伝達された流体fは、流出口222から流出し、ラジェータにて冷却された後に流体流路Pfに戻る。つまり、流入口221から流体流路Pfには、冷却された流体fが流入する。このような熱伝達及び流体循環のサイクルにより、熱交換装置500は、熱源を冷却できる。 While the fluid f flows through the fluid flow path Pf, the heat transferred from the heat source to the heat sink 4 by the heat conducting member 100 is radiated from the heat sink 4 to the fluid f, particularly from the fins 42 . The heat-transferred fluid f flows out from the outlet 222, is cooled by the radiator, and then returns to the fluid flow path Pf. That is, the cooled fluid f flows from the inlet 221 into the fluid flow path Pf. Through such cycles of heat transfer and fluid circulation, the heat exchange device 500 can cool the heat source.
 なお、このほか、冷却装置200は、箱体220を熱伝導部材100以外の物体に取り付けるための部材、箱体220の外表面の面積を増加させるための部材などを有してもよい。 In addition, the cooling device 200 may have a member for attaching the box 220 to an object other than the heat conducting member 100, a member for increasing the area of the outer surface of the box 220, and the like.
 また、本実施形態の例示に限定されず、箱体200のZ方向他方Zb側の端部は、第2接合部122のZ方向一方Zaを向く端面に固定されてもよいし、第1接合部113及び第2接合部122のうちの少なくともいずれかのZ方向と垂直な方向における外側面に固定されてもよい。こうすれば、流体流路Pfをより広くして、熱伝導部材100が流体fと接する領域を増加させることができる。従って、冷却装置200による熱伝導部材100の冷却効率をさらに向上できる。 Further, the end portion of the box 200 on the other Z direction Zb side may be fixed to the end face of the second joint portion 122 facing the Z direction one Za, or the first joint It may be fixed to the outer surface of at least one of the portion 113 and the second joint portion 122 in the direction perpendicular to the Z direction. This makes it possible to widen the fluid flow path Pf and increase the area where the heat conducting member 100 is in contact with the fluid f. Therefore, the cooling efficiency of the heat transfer member 100 by the cooling device 200 can be further improved.
<2.その他>
 以上、本開示の実施形態を説明した。なお、本発明の範囲は上述の実施形態に限定されない。本発明は、発明の主旨を逸脱しない範囲で上述の実施形態に種々の変更を加えて実施することができる。また、上述の実施形態で説明した事項は、矛盾が生じない範囲で適宜任意に組み合わせることができる。
<2. Others>
The embodiments of the present disclosure have been described above. It should be noted that the scope of the present invention is not limited to the above-described embodiments. The present invention can be implemented by adding various modifications to the above-described embodiments without departing from the gist of the invention. In addition, the matters described in the above-described embodiments can be appropriately and arbitrarily combined as long as there is no contradiction.
 本開示は、熱源の冷却に利用することができる。 The present disclosure can be used for cooling heat sources.
 100・・・熱伝導部材、1・・・筐体、10・・・内部空間、11・・・第1プレート部、111・・・第1板部、112・・・側壁部、113・・・第1接合部、12・・・第2プレート部、121・・・第2板部、113・・・第2接合部、13・・・接合部分、14・・・柱部、2・・・作動媒体、3・・・ウィック構造体、4・・・ヒートシンク、41・・・基体、42・・・フィン、200・・・冷却装置、220・・・箱体、221・・・流入口、222・・・流出口、500・・・熱交換装置、f・・・流体

 
DESCRIPTION OF SYMBOLS 100... Thermally-conductive member, 1... Housing, 10... Internal space, 11... First plate portion, 111... First plate portion, 112... Side wall portion, 113... 1st joint portion 12 Second plate portion 121 Second plate portion 113 Second joint portion 13 Joint portion 14 Column portion 2 working medium 3 wick structure 4 heat sink 41 base 42 fin 200 cooling device 220 box 221 inlet , 222... outlet, 500... heat exchange device, f... fluid

Claims (11)

  1.  筐体と、作動媒体と、ヒートシンクと、を備え、
     前記筐体は、
      第1方向において対向して配置される第1プレート部及び第2プレート部と、
      前記作動媒体が収容された内部空間と、
    を有し、
      前記第1プレート部は、
       前記第1方向と垂直な第2方向に広がる第1板部と、
       前記第1板部の前記第2方向における端部から前記第2プレート部に向かって延びる側面部と、
    を有し、
      前記第2プレート部は、前記第2方向に広がって、前記第1板部よりも第1方向の一方に配置される第2板部を有し、
      前記内部空間は、前記第1方向における前記第1板部及び第2板部間の空間であって、
      前記第1板部の前記第1方向における厚さは、前記第2板部の前記第1方向における厚さよりも厚く、
     前記第2板部の前記第1方向の一方を向く端面には、前記ヒートシンクが配置される、熱伝導部材。
    comprising a housing, a working medium and a heat sink;
    The housing is
    a first plate portion and a second plate portion arranged to face each other in the first direction;
    an internal space containing the working medium;
    has
    The first plate portion is
    a first plate extending in a second direction perpendicular to the first direction;
    a side portion extending from an end portion of the first plate portion in the second direction toward the second plate portion;
    has
    the second plate portion has a second plate portion that spreads in the second direction and is arranged on one side of the first direction relative to the first plate portion;
    The internal space is a space between the first plate portion and the second plate portion in the first direction,
    The thickness of the first plate portion in the first direction is thicker than the thickness of the second plate portion in the first direction,
    A thermally conductive member, wherein the heat sink is disposed on an end surface of the second plate portion facing one of the first directions.
  2.  前記第2方向において、前記側面部の外側面における前記第1方向の一方側の端部は、前記第1方向の他方側の端部よりも外側に配置される、請求項1に記載の熱伝導部材。 2. The heat according to claim 1, wherein in the second direction, an end on one side in the first direction of the outer surface of the side surface portion is arranged outside an end on the other side in the first direction. conduction member.
  3.  前記第2方向において、前記側面部の内側面における前記第1方向の一方側の端部は、前記側面部の外側面における前記第1方向の他方側の端部よりも内側に配置される、請求項1又は請求項2に記載の熱伝導部材。 In the second direction, one end in the first direction on the inner surface of the side surface is arranged inside the end on the other side in the first direction on the outer surface of the side surface. The heat transfer member according to claim 1 or 2.
  4.  前記第1プレート部は、前記側面部の第1方向の一方側の端部から前記筐体の外部に向かう前記第2方向の外方に広がる第1接合部をさらに有し、
     前記第2プレート部は、前記第2板部の第2方向における端部から前記第2方向の外方に広がる第2接合部をさらに有し、
      前記第1接合部の前記第1方向の一方側の端部は、前記第2接合部の前記第1方向の他方側の端部に接続され、
     前記第1接合部の前記第1方向における厚さは、前記第2接合部の前記第2方向における厚さよりも厚い、請求項1から請求項3のいずれか1項に記載の熱伝導部材。
    The first plate portion further includes a first joint portion extending outward in the second direction from one end of the side portion in the first direction toward the outside of the housing,
    the second plate portion further includes a second joint portion extending outward in the second direction from an end portion in the second direction of the second plate portion;
    an end of the first joint on one side in the first direction is connected to an end of the second joint on the other side in the first direction;
    The thermally conductive member according to any one of claims 1 to 3, wherein the thickness of the first joint portion in the first direction is thicker than the thickness of the second joint portion in the second direction.
  5.  前記第1板部の前記第1方向における厚さは、前記第1接合部及び前記第2接合部の第1方向におけるそれぞれの厚さよりも厚い、請求項4に記載の熱伝導部材。 5. The thermally conductive member according to claim 4, wherein the thickness of the first plate portion in the first direction is greater than the thickness of each of the first joint portion and the second joint portion in the first direction.
  6.  前記第1板部の前記第2方向における幅は、前記第2板部の前記第2方向における幅よりも狭く、請求項1から請求項5のいずれか1項に記載の熱伝導部材。 The heat conduction member according to any one of claims 1 to 5, wherein the width of the first plate portion in the second direction is narrower than the width of the second plate portion in the second direction.
  7.  前記第1板部の前記第1方向の一方を向く端面の面積は、前記第2板部の前記第1方向の他方を向く端面の面積よりも狭い、請求項1から請求項6のいずれか1項に記載の熱伝導部材。 7. The area of the end surface of the first plate portion facing one of the first directions is smaller than the area of the end surface of the second plate portion facing the other first direction. 2. The thermally conductive member according to item 1.
  8.  前記筐体は、前記内部空間に配置される柱部をさらに有し、
      前記柱部は、前記第1プレート部及び前記第2プレート部のうちの一方から延びる、請求項1から請求項7のいずれか1項に記載の熱伝導部材。
    The housing further has a pillar portion arranged in the internal space,
    8. A heat conducting member according to any one of the preceding claims, wherein the post extends from one of the first plate portion and the second plate portion.
  9.  前記内部空間に収容されるウィック構造体をさらに有し、前記ウィック構造体は、前記第2板部の前記第1方向の他方を向く端面に配置され、前記第1方向と垂直な方向に広がる請求項1から請求項8のいずれか1項に記載の熱伝導部材。 It further has a wick structure housed in the internal space, the wick structure is arranged on the end surface of the second plate portion facing the other of the first direction and spreads in a direction perpendicular to the first direction. The heat transfer member according to any one of claims 1 to 8.
  10.  前記筐体は、前記第1方向から見て環状の接合部をさらに有し、
      前記接合部において、前記第1プレート部の外縁部が前記第2プレート部に接合される、請求項1から請求項9のいずれか1項に記載の熱伝導部材。
    The housing further has an annular joint when viewed from the first direction,
    10. The heat conducting member according to any one of claims 1 to 9, wherein the outer edge of the first plate portion is joined to the second plate portion at the joining portion.
  11.  請求項1から請求項10のいずれか1項に記載の熱伝導部材と、
     前記熱伝導部材を冷却する冷却装置と、
    を備え、
     前記冷却装置は、前記第2板部の前記第1方向の一方を向く端面に配置されて、前記ヒートシンクを覆う箱体を有し、
     前記箱体は、冷媒が流入する流入口と、前記冷媒が流出する流出口と、を有する、熱交換装置。

     
    a heat conducting member according to any one of claims 1 to 10;
    a cooling device that cools the heat conducting member;
    with
    The cooling device has a box body disposed on the end surface of the second plate portion facing one of the first directions and covering the heat sink,
    The heat exchange device, wherein the box has an inlet through which a coolant flows in and an outlet through which the coolant flows out.

PCT/JP2022/007359 2021-02-25 2022-02-22 Thermally conductive member and heat exchange device WO2022181630A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280007801.3A CN116648594A (en) 2021-02-25 2022-02-22 Heat conduction member and heat exchange device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-028543 2021-02-25
JP2021028543 2021-02-25

Publications (1)

Publication Number Publication Date
WO2022181630A1 true WO2022181630A1 (en) 2022-09-01

Family

ID=83048204

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/007359 WO2022181630A1 (en) 2021-02-25 2022-02-22 Thermally conductive member and heat exchange device

Country Status (2)

Country Link
CN (1) CN116648594A (en)
WO (1) WO2022181630A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10209355A (en) * 1996-11-25 1998-08-07 Denso Corp Boiling cooler
JP2002022378A (en) * 2000-07-06 2002-01-23 Showa Denko Kk Heat pipe
US20170268828A1 (en) * 2016-03-21 2017-09-21 Taiwan Microloops Corp. Liquid-cooling heat dissipating apparatus and heat dissipating structure thereof
JP2018189349A (en) * 2017-04-28 2018-11-29 株式会社村田製作所 Vapor chamber
US20190033006A1 (en) * 2017-07-28 2019-01-31 Dana Canada Corporation Ultra Thin Heat Exchangers For Thermal Management
KR20200107543A (en) * 2019-03-08 2020-09-16 엘지전자 주식회사 Heat dissipation module

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10209355A (en) * 1996-11-25 1998-08-07 Denso Corp Boiling cooler
JP2002022378A (en) * 2000-07-06 2002-01-23 Showa Denko Kk Heat pipe
US20170268828A1 (en) * 2016-03-21 2017-09-21 Taiwan Microloops Corp. Liquid-cooling heat dissipating apparatus and heat dissipating structure thereof
JP2018189349A (en) * 2017-04-28 2018-11-29 株式会社村田製作所 Vapor chamber
US20190033006A1 (en) * 2017-07-28 2019-01-31 Dana Canada Corporation Ultra Thin Heat Exchangers For Thermal Management
KR20200107543A (en) * 2019-03-08 2020-09-16 엘지전자 주식회사 Heat dissipation module

Also Published As

Publication number Publication date
CN116648594A (en) 2023-08-25

Similar Documents

Publication Publication Date Title
CN107567248B (en) Liquid cooling heat radiator
TWI484890B (en) Heat dissipation unit with mounting structure
JP5343574B2 (en) Brazing method of heat sink
CN106558563B (en) Power module and vehicle with same
JP5926928B2 (en) Power semiconductor module cooling device
US20180066897A1 (en) Vapor chamber and upper casing member thereof
JP2016015441A (en) Semiconductor device
US11112186B2 (en) Heat pipe heatsink with internal structural support plate
JP2013254787A (en) Heat exchanger and manufacturing method of the same
JP2008171936A (en) Cooling structure
JP2008282969A (en) Cooler and electronic instrument
JP2010016254A (en) Semiconductor device
TWI726806B (en) Water-cooling heat dissipation device and manufacturing method thereof
WO2022181630A1 (en) Thermally conductive member and heat exchange device
WO2022181631A1 (en) Thermally conductive member and heat exchange device
WO2022181629A1 (en) Thermally conductive member and heat exchange device
WO2022181632A1 (en) Thermally conductive member and heat exchange device
JP2011069552A (en) Heat exchanger
CN114096795A (en) Heat transfer system and electrical or optical component
JP2005116578A (en) Heat dissipation structure
JP3093441B2 (en) Heat sink for high power electronic equipment
CN216014193U (en) Cooling device
CN215578520U (en) Heat dissipation member and cooling device
WO2022025258A1 (en) Heat conduction member
JP2003083688A (en) Plate heat-pipe integrated with fin and its manufacturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22759665

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280007801.3

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22759665

Country of ref document: EP

Kind code of ref document: A1