WO2022181132A1 - 体重推定システム、及び、体重推定方法 - Google Patents
体重推定システム、及び、体重推定方法 Download PDFInfo
- Publication number
- WO2022181132A1 WO2022181132A1 PCT/JP2022/002008 JP2022002008W WO2022181132A1 WO 2022181132 A1 WO2022181132 A1 WO 2022181132A1 JP 2022002008 W JP2022002008 W JP 2022002008W WO 2022181132 A1 WO2022181132 A1 WO 2022181132A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- weight
- estimation
- pig
- livestock
- unit
- Prior art date
Links
- 230000037396 body weight Effects 0.000 title claims abstract description 67
- 238000000034 method Methods 0.000 title claims description 32
- 244000144972 livestock Species 0.000 claims abstract description 52
- 238000003384 imaging method Methods 0.000 claims abstract description 16
- 238000009395 breeding Methods 0.000 claims description 26
- 230000001488 breeding effect Effects 0.000 claims description 26
- 239000000284 extract Substances 0.000 claims description 25
- 238000012937 correction Methods 0.000 claims description 21
- 230000005484 gravity Effects 0.000 claims description 11
- 230000007704 transition Effects 0.000 claims description 7
- 230000000384 rearing effect Effects 0.000 abstract 2
- 241000282887 Suidae Species 0.000 description 66
- 238000004891 communication Methods 0.000 description 29
- 238000010586 diagram Methods 0.000 description 25
- 230000010365 information processing Effects 0.000 description 22
- 238000000605 extraction Methods 0.000 description 10
- 238000001514 detection method Methods 0.000 description 9
- 239000000470 constituent Substances 0.000 description 6
- 230000001419 dependent effect Effects 0.000 description 6
- 230000008569 process Effects 0.000 description 5
- 241001465754 Metazoa Species 0.000 description 4
- 230000009471 action Effects 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 238000004364 calculation method Methods 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000001914 filtration Methods 0.000 description 3
- 230000002123 temporal effect Effects 0.000 description 3
- 210000001217 buttock Anatomy 0.000 description 2
- 238000004590 computer program Methods 0.000 description 2
- 238000005401 electroluminescence Methods 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 241000283690 Bos taurus Species 0.000 description 1
- 241000283086 Equidae Species 0.000 description 1
- 241000287828 Gallus gallus Species 0.000 description 1
- 241001494479 Pecora Species 0.000 description 1
- 235000013330 chicken meat Nutrition 0.000 description 1
- 238000013135 deep learning Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 235000013372 meat Nutrition 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 238000009400 out breeding Methods 0.000 description 1
- 244000144977 poultry Species 0.000 description 1
- 235000013594 poultry meat Nutrition 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q50/00—Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
- G06Q50/02—Agriculture; Fishing; Forestry; Mining
Definitions
- the present invention relates to a body weight estimation system and a body weight estimation method.
- Patent Literature 1 discloses a weight output system that estimates the weight of a pig based on an image of a pig located in an imaging area.
- the present invention provides a weight estimation system and a weight estimation method that can easily and accurately estimate the weight of livestock without human intervention.
- a body weight estimation system includes an acquisition unit that acquires a plurality of images of a domestic animal located in a breeding area, which are captured by an imaging device; an estimation unit for extracting an estimation image used for estimation and estimating the weight of the livestock based on the size of the livestock reflected in the extracted estimation image; the estimated weight; and the breeding area. and an output unit that outputs estimated information associated with the identification information of.
- a weight estimation method includes an obtaining step of obtaining a plurality of images of livestock located in a breeding area, which are photographed by a photographing device; an estimation step of extracting an estimation image used for estimation and estimating the weight of the domestic animal based on the size of the domestic animal reflected in the extracted estimation image; the estimated weight; and the breeding area. and an output step of outputting the estimated information associated with the identification information of.
- a weight estimation method is a program for causing a computer to execute the weight estimation method.
- the weight estimation system, weight estimation method and program of the present invention can easily and accurately estimate the weight of livestock without human intervention.
- FIG. 1 is a diagram showing a schematic configuration of a body weight estimation system according to an embodiment.
- FIG. 2 is a flow chart showing an example of the operation of the body weight estimation system according to the embodiment.
- FIG. 3 is a diagram for explaining operations from extraction of an estimation image to calculation of the size of a pig.
- FIG. 4 is a diagram showing an example of detection of an individual pig in an image and extraction of the contour of the detected pig.
- FIG. 5 is a diagram showing an example of extraction of an estimated image.
- FIG. 6 is a diagram showing an example of pig weight estimation.
- FIG. 7 is a diagram showing an example of estimation information.
- FIG. 8 is a flow chart of an output operation of estimated information.
- FIG. 1 is a diagram showing a schematic configuration of a body weight estimation system according to an embodiment.
- FIG. 2 is a flow chart showing an example of the operation of the body weight estimation system according to the embodiment.
- FIG. 3 is a diagram for explaining operations from extraction of an estimation
- FIG. 9 is a diagram showing an example of an image showing transitions in estimated body weight in a specific pig enclosure in tabular form.
- FIG. 10 is a diagram showing an example of an image graphically showing temporal transitions of estimated body weights of pigs in a plurality of pig bunds.
- FIG. 11 is a flow chart of the scheduled shipping date notification operation.
- FIG. 12 is a diagram showing an example of a screen for notifying the scheduled shipping date.
- FIG. 13 is a flow chart of the growth state determination operation.
- FIG. 14 is a diagram showing an example of a notification screen of the determination result of the growing state of pigs.
- FIG. 15 is a diagram showing data used to calculate correction coefficients in Experimental Example 1.
- FIG. 16 is a diagram showing the results of Experimental Example 1.
- FIG. 16 is a diagram showing the results of Experimental Example 1.
- each figure is a schematic diagram and is not necessarily strictly illustrated. Moreover, in each figure, the same code
- FIG. 1 is a block diagram showing the functional configuration of the body weight estimation system according to the embodiment.
- the livestock is a pig and the breeding area is a piggery in a barn.
- a piggery is a plurality of partitioned areas configured in a livestock barn (specifically, a piggery), and is a breeding area for raising pigs in units of several dozen.
- the weight estimation system 100 is a system capable of estimating the weight of the pig 80 in the pig farm 70 based on the image inside the pig farm 70 captured by the imaging device 10 .
- a breeder or the like of the pig 80 can easily grasp the weight of the pig 80 by using the weight estimation system 100 .
- the body weight estimation system 100 includes, for example, multiple imaging devices 10 and an information processing device 20 .
- a server device 30 and a mobile terminal 40 are also illustrated.
- the weight estimation system 100 may include a server device 30 and a mobile terminal 40, as in the example of FIG.
- the photographing device 10 is, for example, a camera that is attached to the ceiling of the pigs' bunch 70 and photographs at least part of the inside of the pigs' bunch 70 from above.
- one photographing device 10 is provided for each of the plurality of pigs' bunches 70 , but at least one photographing device 10 may be provided for one pig's bunch 70 . or more may be provided.
- the photographing device 10 is implemented by, for example, a lens and an image sensor.
- the photographing device 10 is specifically a general camera used for purposes such as monitoring, but may be a fisheye camera or the like.
- the information processing device 20 extracts an estimation image used for estimating the weight of the pig 80 from a plurality of images captured by the imaging device 10, and based on the size of the pig 80 shown in the estimation image, It is a device for estimating the weight per pig (in other words, one body) of a pig 80 located in the .
- the information processing device 20 displays estimated information in which the estimated weight of the pig 80 and the identification information of the pig enclosure 70 are associated with each other.
- the information processing device 20 is, for example, a stationary information terminal such as a personal computer.
- the information processing device 20 includes an operation reception unit 21 , a display unit 22 , a first communication unit 23 , an information processing unit 24 , a second communication unit 25 and a storage unit 26 .
- the operation accepting unit 21 accepts an operation by a breeder or the like (in other words, a user).
- the operation reception unit 21 is implemented by, for example, an input device such as a keyboard or mouse, but may be implemented by a touch panel or the like.
- the display unit 22 displays an image showing the weight estimation result.
- the display unit 22 is realized by a display panel such as a liquid crystal panel or an organic EL (Electro Luminescence) panel.
- the first communication unit 23 is a communication circuit (communication module) for the information processing device 20 to communicate with the multiple imaging devices 10 via the local communication network.
- the first communication unit 23 for example, acquires an image (in other words, image data or image information) captured by the imaging device 10 and outputs the acquired image to the information processing unit 24 .
- Communication performed by the first communication unit 23 may be wired communication or wireless communication.
- the communication standard for communication performed by the first communication unit 23 is not particularly limited either.
- the information processing unit 24 acquires a plurality of images from each of the photographing devices 10 in the plurality of pig houses 70 acquired via the first communication unit 23, and converts the images for estimation extracted from the acquired images into Based on this, the weight per pig 80 in each pig pen 70 is estimated, and the estimated weight is output in association with the identification information of the pig pen 70 in which the pig 80 is located.
- the information processing section 24 is implemented by, for example, a microcomputer, but may be implemented by a processor.
- the information processing unit 24 includes an acquisition unit 24a, an estimation unit 24b, a notification unit 24c, a determination unit 24d, and an output unit 24f. Functions of the acquisition unit 24a, the estimation unit 24b, the notification unit 24c, the determination unit 24d, and the output unit 24f will be described later in the description of the operation and method.
- the second communication unit 25 is a communication circuit (communication module) for the information processing device 20 to communicate with other devices through the wide area communication network 50 such as the Internet.
- the second communication unit 25 transmits notification information regarding the estimated weight calculated by the information processing unit 24 to the server device 30 or the mobile terminal 40, for example. If such notification information is sent to the mobile terminal 40 owned by the breeder, the breeder can receive a notification regarding the estimated weight of the pig 80 in the pig pen 70 . Note that the notification information may be transmitted to the mobile terminal 40 via the server device 30 .
- the communication performed by the second communication unit 25 may be wired communication or wireless communication.
- the communication standard of communication performed by the second communication unit 25 is not particularly limited either.
- the storage unit 26 is a storage device that stores a program executed by the information processing unit 24 for information processing and various types of information used for the information processing.
- the storage unit 26 is specifically realized by a semiconductor memory.
- the server device 30 is a server (cloud server) used when the weight estimation system 100 is realized as a client-server system with the information processing device 20 as a client.
- the mobile terminal 40 is a mobile information terminal such as a smartphone or a tablet terminal operated by a breeder or the like.
- the mobile terminal 40 is used by the breeder or the like to receive notifications related to the estimated weight of the pig 80 .
- FIG. 2 is a flowchart showing an example of the operation of body weight estimation system 100 according to the embodiment. Here, the operation of estimating the weight of pig 80 by body weight estimation system 100 will be described.
- the weight estimation system 100 estimates the weight of the pig 80 reared in each of a plurality of pig pens 70 as in the example of FIG. The operation of estimating the weight of the pig 80 being raised will be described.
- the acquisition unit 24a of the information processing device 20 acquires a plurality of images of livestock (for example, the pig 80) located in the breeding area (for example, the pig farm 70) photographed by the photographing device 10 (S101). More specifically, the acquisition unit 24a acquires a plurality of images (more specifically, images of images information).
- the photographing device 10 may constantly photograph images, may start photographing images based on a command from the information processing device 20, or may photograph a plurality of images at regular time intervals within a prescribed period of time. You can take pictures. Further, each image is provided with identification information indicating which pig farm 70 the image belongs to (that is, identification information of the pig farm 70). For example, the MAC (Media Access Control) address of the photographing device 10 is used as the identification information of the pigsty 70 . In the following steps S102 and S103, for convenience of explanation, one image will be processed. performed for
- the estimation unit 24b extracts images for estimation from the plurality of images acquired in step S101 (S102).
- the estimation image is an image used for estimating the weight of the livestock (pig 80).
- the estimating unit 24b extracts an image in which the degree of matching between the outline shape of the pig 80 and a predetermined outline shape is equal to or greater than a threshold from the plurality of images as an image for estimation.
- the estimating unit 24b has a trained model (not shown) that detects the pig 80 in each of the plurality of images and extracts the outline of the detected pig 80 .
- the estimation unit 24b extracts an estimation image from a plurality of images based on the outline of the pig 80 extracted by the learned model.
- FIG. 3 is a diagram for explaining operations from extraction of an estimation image to calculation of the size of the pig 80.
- step S102 the estimating unit 24b detects an individual pig 80 in the image acquired in step S101 (eg, (a) of FIG. 3).
- the estimating unit 24b uses object detection technology based on deep learning such as Mask-RCNN, for example. Extract image regions.
- the estimation unit 24b extracts an image region including the entire body (from the head to the buttocks) of the pig 80 by filtering.
- an image area showing only a part of the body of the pig 80 is excluded. For example, in (a) of FIG. 3, seven pigs 80 are shown in the image, but only part of the body is shown in four of them. In this case, as shown in (b) of FIG. Do not extract image regions where only part of the body of a person is visible.
- step S102 if two or more pigs overlap and are recognized as one area, such an area is not extracted. For example, by setting an upper limit on the size of the image area, one area in which two or more pigs overlap can be excluded from the target area.
- the estimation unit 24b extracts the outline of the pig 80 included in the extracted image area.
- a contour extraction method will be described later.
- the estimating unit 24b compares, for example, the contours of the pig 80 in the teacher data from among the extracted contours of the pig 80, and selects contours with a high matching level (see (d) in FIG. 3).
- the teacher data is measured data in which the outline of the pig 80 and the measured weight of the pig 80 are associated with each other, and is stored in a database (not shown).
- the database may be provided in the estimation unit 24b or may be provided in the storage unit 26.
- the estimation unit 24b extracts an image containing the contour of the pig 80 with a high matching level from the plurality of images as an estimation image ((d) in FIG. 3).
- the estimation unit 24b estimates the weight of the livestock (pig 80) based on the size of the livestock (pig 80) shown in the estimation image extracted in step S102 (S103). For example, the estimating unit 24b calculates the weight of the pig 80 using parameters including the coordinates of the center of gravity of the contour of the pig 80 in the estimation image and the lengths of the long and short axes passing through the center of gravity (for example, Hu moment). presume. Specifically, the estimation unit 24b calculates parameters from the shape of the extracted contour.
- the Hu moment is a quantity that is invariant to translation, scale, and rotation obtained by computing an image, and is a quantity that depends only on the shape, so it is used to determine the similarity of shapes. More specifically, as shown in (d) of FIG.
- the estimation unit 24b calculates the coordinates of the center of gravity (in other words, the position of the center of gravity in the image) from the contour shape of the pig 80,
- the length L of the major axis (also referred to as the main axis) and the length D of the minor axis (also referred to as the secondary axis) are calculated.
- the lengths of the major axis and the minor axis are the lengths expressed in pixels on the image, but a specific length on the image (e.g., a feeder or known dimensions of a slatted floor, etc.) ) as a reference, and may be expressed as a relative size.
- the estimating unit 24b derives a correction coefficient k for estimating the weight of the pig 80 located in the pig bunch 70 for each of the plurality of pig bunches 70 based on the database described above, and The weight of the pig 80 is estimated using the parameters calculated for each of the pigs 80 and the correction coefficient k.
- the correction coefficient k is empirically or experimentally determined based on measured data showing the relationship between volume and measured body weight. A method of estimating body weight will be described later.
- the processes in steps S102 and S103 are performed on each of the multiple images acquired in step S101.
- the output unit 24f outputs estimated information in which the weight of the pig 80 estimated by the estimation unit 24b in step S103 is associated with the identification information of the pig pen 70 where the pig 80 is located. (S104).
- the weight of the pig 80 to be output may be the average value of the weights of the pigs 80 in each of the pig bunds 70 .
- the estimation unit 24b stores the estimation information in the storage unit 26 (not shown). At this time, the estimation information may be stored in the storage unit 26 in association with the date and time (at least the date) when the image was captured by the image capturing device 10 .
- the estimated information is associated with the average value of the weights of the pigs 80 in each of the pig bunches 70 (estimated body weight in the figure) and the identification information of the pig bunch 70.
- This data is associated with the date and time.
- the identification information of the pigsty 70 is added to the image acquired in step S101.
- the date and time is the shooting date and time of the image.
- the weight estimation system 100 can extract estimation images from a plurality of images showing a plurality of pigs 80, and estimate the weight of each pig 80 in the pig enclosure 70 from the extracted estimation images. can.
- the weight estimating system 100 does not need to gather a plurality of pigs 80 located in the pig pen 70 at a predetermined place to take an image, and does not identify individual pigs 80 by ear markings or identification tags. Therefore, the weight estimation system 100 can estimate the weight of the pig 80 relatively easily. It can be said that the weight estimation system 100 is well suited for an all-in-all-out breeding method in which pigs are put into the pig pen 70 all at once, and then all pigs are shipped at once.
- FIG. 4 is a diagram showing an example of detection of an individual pig 80 in an image and extraction of the outline of the detected pig 80.
- FIG. 5 is a diagram showing an example of extraction of an estimated image.
- the estimating unit 24b detects all the pigs 80 appearing in each of the plurality of images acquired by the acquiring unit 24a using, for example, the object detection technology described above, and detects the pigs 80.
- An image region including the entire body of the pig 80 is extracted from all the pigs 80 that have been collected. For example, as shown in FIG. 4, the estimating unit 24b extracts image regions of all pigs 80 appearing in the image shown in FIG. 4(a) and the image shown in FIG. 4(b). , an image region including the entire body (from the head to the buttocks) of the pig 80 is extracted by filtering. Then, the estimation unit 24b calculates the detection level of the pig 80 included in the extracted image area (more specifically, the likelihood that the detected object is a pig).
- the estimating unit 24b extracts the contour of the pig 80 depending on the image region (hereinafter also referred to as region-dependent contour). For example, as shown in FIGS. 4(b) and 4(c), the estimation unit 24b detects the region-dependent contour ( ) is extracted.
- the estimation unit 24b corrects the region-dependent contour to a contour that follows the original shape of the pig. For example, as shown in (c) of FIG. 4, the estimating unit 24b expands the region-dependent contours in the directions of the arrows, respectively, so that the contours (thick solid lines in the drawing) along the original shape of the pig are drawn. corrected to Further, for example, as shown in (d) of FIG. 4, the estimation unit 24b calculates the region-dependent contour (shaded region in the figure) of the pig 80 (detection level: 0.910) detected in the image. outer circumference) is extracted and the region-dependent contours are expanded in the directions of a plurality of arrows to correct the contours (thick solid lines in the figure) along the original shape of the pig. This is also called a contour after correction.
- the estimating unit 24b extracts the post-correction contour as the contour of the pig 80 included in the image area. Calculate the detection level again. Then, the estimating unit 24b extracts the outline of the pig 80 (also referred to as the matching target outline) to be matched with the teacher data by filtering under a predetermined condition.
- the predetermined conditions are, for example, (i) the recalculated detection level of the pig 80 is greater than a predetermined value (eg, 0.970), and (ii) the shape of the contour of the pig 80 after correction is an ellipse. It is the shape.
- FIG. 6 is a diagram showing an example of estimating the weight of the pig 80. As shown in FIG.
- the estimating unit 24b calculates the correction coefficient k from the measured data in which the sizes of the pigs 80 and the measured weights of the pigs 80 are associated with each of the pigs 1 to N for N pigs.
- the weight of the pig 80 is estimated using the correction coefficient k and parameters.
- the correction factor k is a factor that converts the volume of the pig 80 (expressed in pixels, for example) to its weight.
- the parameters are the length of the minor axis D and the major axis L through the center of gravity.
- the correction coefficient k is empirically or experimentally determined based on measured data showing the relationship between volume and measured body weight.
- the weight estimation system 100 can output estimated information in which the estimated weight of the pig 80 for each pig pen 70 and the date are associated with each other, and can present the estimated information to the breeder or the like.
- the estimated weight output operation of the weight estimation system 100 will be described below.
- FIG. 8 is a flow chart of an estimated weight output operation.
- the estimating unit 24b estimates the weight of the livestock (pig 80) from each of a plurality of estimation images captured on different dates by the imaging device 10 (S201). Next, the estimating unit 24b associates the estimated weight of the livestock (pig 80) with the identification information of the breeding area (pig pen 70) with the date and stores the estimated information in the storage unit 26. (S202).
- the estimating unit 24b causes the display unit 22 to display pigs for each pig bunt 70 in accordance with the received operation.
- An image showing the estimated weight of 80 is displayed.
- the acquisition unit 24a acquires from the operation reception unit 21 a signal indicating a user's instruction to display the estimated information associated with the date on the display unit 22, the acquisition unit 24a stores the signal from the storage unit 26 in association with the date. read the estimated information, and output the read estimated information (more specifically, the estimated information associated with the date) to the output unit 24f (S203).
- the display unit 22 displays, for example, an image showing changes in the estimated weight of the pig 80 in the specific pig farm 70 in the form of a table, based on the estimated information output from the output unit 24f.
- FIG. 9 is a diagram showing an example of an image showing changes in estimated body weight in a specific pig enclosure 70 in tabular form.
- the estimated body weight for that day is, for example, the representative value (specifically, the average value or the median value) of the estimated body weights calculated multiple times. .
- the display unit 22 may display an image showing the temporal transition of the estimated weight of the pigs 80 in the plurality of pig bunds 70 by graphs.
- FIG. 10 is a diagram showing an example of an image graphically showing the temporal transition of the estimated weight of pigs 80 in a plurality of pig bunds 70. As shown in FIG.
- the weight estimation system 100 can present the estimated weight of the pig 80 to the breeder or the like. By grasping the estimated weight, the breeder or the like can predict the timing of shipment of the pig 80 and control the amount of feed. In other words, the body weight estimation system 100 can assist a breeder or the like in breeding the pig 80 .
- the weight estimation system 100 further includes a notification unit 24c that notifies the breeder (user) of notification information.
- the weight estimation system 100 predicts the date on which the pig 80 will have a weight suitable for shipping for each pig bund 70 based on the above estimation information, and the predicted date on which the pig 80 will have a weight suitable for shipping. (hereinafter also referred to as the scheduled shipping date) can be notified in advance to the breeder or the like.
- FIG. 11 is a flow chart of the scheduled shipping date notification operation.
- the estimating unit 24b refers to the estimated information stored in the storage unit 26 in association with the date (not shown), and based on the change in body weight over time (in other words, the change in fattening days of pigs).
- the scheduled shipping date of the livestock (pig 80) (in other words, the date when the estimated weight reaches within a predetermined range) is estimated (S301).
- the estimation unit 24b can predict the scheduled shipping date by calculating an approximated curve or approximated straight line of the estimated body weight over time data determined by the estimated information referred to.
- the predetermined range is, for example, a range of 110 kg or more and 120 kg or less, but is not particularly limited.
- the notification unit 24c notifies the breeder or the like of notification information in which the scheduled shipping date of the livestock (pig 80) estimated in step S301 and the identification information of the breeding area (pig pen 70) are associated with each other. (S302). Specifically, the notification unit 24 c transmits notification information for notifying the breeder or the like of the scheduled shipping date of the pig 80 for each pig house 70 to the mobile terminal 40 via the second communication unit 25 . As a result, a notification screen as shown in FIG. 11 is displayed on the mobile terminal 40 .
- FIG. 11 is a diagram showing an example of a screen for notifying the scheduled shipping date.
- the scheduled shipping date of the pig 80 may be notified by push. Further, the scheduled shipping date of the pig 80 may be displayed on the display unit 22 of the information processing device 20 based on the operation of the breeder or the like.
- the body weight estimation system 100 can notify the scheduled shipping date of the pig 80 for each pig farm 70 based on the time transition of the estimated weight in each of the plurality of pig farms 70 .
- the body weight estimation system 100 further includes a determination unit 24d that determines the growth state of livestock (pigs 80) in a plurality of breeding areas (pigs 70). Thereby, the body weight estimation system 100 determines whether the growing condition of the pigs 80 in the pig bunds 70 is good or bad by comparing the estimated body weights corresponding to the pig bunds 70 based on the above estimation information. Then, the judgment result can be presented to the breeder or the like (user).
- the growth state determination operation of the weight estimation system 100 will be described below.
- FIG. 12 is a flow chart of the growth state determination operation.
- the determination unit 24d refers to the estimated information stored in the storage unit 26 (not shown), and compares the estimated weights of the plurality of livestock (pigs 80) corresponding to the plurality of pig bunches 70 ( S401), the growth state of the livestock (pigs 80) in each of the plurality of breeding areas (pigs 70) is determined (S402). For example, the determination unit 24d compares the average value of the estimated weights of the pigs 80 in the plurality of pig bunds 70 with the estimated weight of the pigs 80 in each of the plurality of pig bunds 70, and determines that the estimated weight is greater than the average value by a predetermined value.
- a small pig bunch 70 is determined to be a pig bunch 70 in which the growing condition of the pig 80 is poor.
- the output unit 24f outputs growth information indicating the growth state (that is, the determination result of step S402) (S403). Specifically, the output unit 24f outputs notification information (so-called growth information) for notifying the breeder or the like of the pig bund 70 in which the pig 80 has been determined to be in poor growth condition by the determination unit 24d in step S402. Output to the mobile terminal 40 via the second communication unit 25 . As a result, a notification screen as shown in FIG. 14 is displayed on the mobile terminal 40 .
- FIG. 14 is a diagram showing an example of a notification screen of the determination result of the growing state of the pig 80.
- the determination result of the growth state may be notified by push notification. Further, the determination result of the growth state may be displayed on the display unit 22 of the information processing device 20 based on the operation of the breeder or the like.
- the body weight estimation system 100 can notify the breeder or the like of the pig bund 70 in which the pig 80 has been determined to be in poor growth condition.
- the breeder or the like can investigate the cause of the poor growth condition of the pig 80 in the pig pen 70 and improve the growth condition of the pig 80 in the pig pen 70 .
- the pig bund 70 in which the pig 80 is in a good growing condition is determined instead of the pig bunch 70 in which the pig 80 is in a poor growing condition, or in addition to the pig bund 70 in which the pig 80 is in a poor growing condition.
- the determination unit 24d compares the average value of the estimated body weights of the plurality of pig bunches 70 with the estimated body weight of each of the plurality of pig bunches 70, and selects the pig bunch 70 having an estimated body weight greater than the average value by a predetermined value or more. 80 can be determined to be pig bunch 70 in good growth condition.
- the breeder or the like will investigate the cause of the good growing state and follow the pig farm 70 in which the pig 80 is in a good growing state.
- the growing condition of the pigs 80 in the other pig bunch 70 can be improved.
- Weight estimation system 100 may be implemented as a client-server system. In this case, part or all of the processing described as being performed by the information processing device 20 in the above embodiment may be performed by the server device 30 .
- Experimental Example 1 Next, Experimental Example 1 will be described.
- the body weight estimation system 100 was used to estimate the body weights of a plurality of pigs 80 in the pig house 70 .
- image data (1,080,000 frames) captured for 10 hours is used to perform individual detection of the pig 80 and outline extraction of the pig 80, and the extracted Parameters were calculated from the shape of the contour.
- the correction coefficient k was calculated from the measured data (see FIG. 15) in which the parameters and the measured weights were associated with each other, and the weights of the four pigs were estimated using the calculated correction coefficient k.
- FIG. 15 is a diagram showing data used for calculating correction coefficients in Experimental Example 1.
- FIG. 15 from the measured data in which the measured weights of the seven pigs 80 and the parameters (the length of the long axis and the short axis passing through the center of gravity in the image for estimation) are associated with each other, the weight is estimated. A correction coefficient k was calculated. Individual pigs 80 corresponding to the shaded portions shown in FIG. 15 are the pigs 80 (four pigs 80) whose weight is to be estimated.
- FIG. 16 is a diagram showing the results of Experimental Example 1.
- FIG. 16 the difference between the measured values and the estimated values for the four pigs 80 was within ⁇ 4%. Therefore, it was confirmed that the weight estimation system 100 can automatically and accurately estimate the weight of the pig 80 without the need for a person to directly measure the weight of the pig.
- the body weight estimation system 100 includes the acquisition unit 24a that acquires a plurality of images of the pig 80 located in the pig enclosure 70 captured by the imaging device 10, and the pig from the acquired images.
- a pig 80 is an example of livestock, and a pig enclosure 70 is an example of a breeding area.
- Such a weight estimation system 100 can estimate the weight of each pig 80 in the pig farm 70 based on the estimation images extracted from a plurality of images. Therefore, the weight estimation system 100 can easily and accurately estimate the weight of the pig 80 without human intervention.
- the estimating unit 24b extracts, as an image for estimation, an image in which the degree of matching between the contour shape of the pig 80 and a predetermined contour shape is equal to or greater than a threshold from the plurality of images.
- Such a weight estimation system 100 can relatively easily estimate the weight of the pig 80 by, for example, extracting an image containing a contour shape that has a high degree of matching with a predetermined contour shape as an estimation image. .
- the weight estimation system 100 can appropriately extract an estimation image from which the weight of the pig 80 can be estimated when a predetermined contour shape is associated with the measured weight, so that the weight of the pig 80 can be estimated. be able to.
- the estimating unit 24b calculates parameters including the coordinates of the center of gravity of the outline of the pig 80 in the extracted estimation image and the lengths of the major and minor axes passing through the center of gravity, and uses the calculated parameters as to estimate the weight of the pig 80.
- Such a weight estimation system 100 can estimate the weight of the pig 80 based on the calculated parameters.
- the estimating unit 24b includes a trained model (not shown), the trained model detects the pig 80 in each of the plurality of images, extracts the outline of the detected pig 80, and the estimating unit 24b , an estimation image is extracted from a plurality of images based on the outline of the pig 80 extracted by the trained model.
- Such a weight estimation system 100 can estimate the weight of the pig 80 based on the outline of the pig 80 detected and extracted by the learned model. Moreover, the body weight estimation system 100 can efficiently extract an extraction image from a plurality of images by using a trained model, so that the body weight of the pig 80 can be estimated.
- the weight estimation system 100 further includes a database (not shown) in which the outline shape of the pig 80 and the measured weight of the pig 80 are linked and stored. Extract the image for estimation.
- Such a body weight estimation system 100 compares the measured data in which the contour shape of the pig 80 and the measured weight of the pig 80 stored in the database are linked with the contour shape of the pig 80 shown in the image, An image containing contours that have a high degree of matching with the data can be extracted as an estimation image.
- the estimating unit 24b derives a correction coefficient k for estimating the weight of the pig 80 located in the pig bunch 70 for each of the plurality of pig bunches 70 based on a database (not shown), The weight of the pig 80 is estimated using the parameters and the correction factor k.
- Such a weight estimation system 100 estimates the weight of the pig 80 using the correction coefficient k and parameters (for example, lengths of major and minor axes passing through the center of gravity of the outline of the pig 80 in the estimation image). can be done.
- the estimating unit 24b estimates the weight of the pig 80 from each of a plurality of estimation images captured on different dates by the imaging device 10, and the estimated weight of the pig 80 and the identification information of the pig farm 70.
- the date is associated with the estimated information associated with and stored in the storage unit 26, and the output unit 24f outputs the stored estimated information associated with the date.
- Such a body weight estimation system 100 can manage changes in the estimated body weight of pigs 80 for each pig bund 70 .
- the weight estimation system 100 further includes a notification unit 24c that notifies the user of notification information, and the estimation unit 24b is determined by the weight included in the estimated information stored in the storage unit 26 in association with the date. , based on the change in body weight over time, the estimated shipping date of the pig 80 in the pig enclosure 70 is estimated, and the notification unit 24 c associates the estimated shipping date of the pig 80 with the identification information of the pig enclosure 70 . Notifies the user of the notification information received.
- Such a weight estimation system 100 can notify the scheduled shipping date of the pig 80 for each pig farm 70.
- the weight is the average value of the weights of the multiple pigs 80 in each of the multiple pig bunches 70 .
- Such a weight estimation system 100 can estimate the individual weights of a plurality of pigs 80 appearing in an image and average them to estimate the weight of the pigs 80 in each of the plurality of pig bunds 70 .
- the body weight estimation system 100 further includes a determination unit 24d that determines the growth state of the pigs 80 in the pig bunches 70 by comparing the weights of the pigs 80 corresponding to the pig bunches 70.
- the output unit 24f outputs growth information indicating the growth state determined by the determination unit 24d.
- Such a weight estimation system 100 can determine the growth state of the pig 80 based on the relative relationship between the plurality of estimated weights corresponding to the plurality of pig bunds 70.
- the weight estimation method executed by a computer such as the weight estimation system 100 includes an acquisition step of acquiring a plurality of images of the pig 80 located in the pig pen 70 captured by the imaging device 10; an estimation step of extracting an estimation image used for estimating the weight of the pig 80 from a plurality of images and estimating the weight of the pig 80 based on the size of the pig 80 shown in the extracted estimation image; an output step of outputting estimated information in which the body weight and the identification information of the pigsty 70 are associated.
- Such a weight estimation method can estimate the weight of each pig 80 in the pig enclosure 70 based on the estimation images extracted from a plurality of images. Therefore, the weight estimation method can estimate the weight of pig 80 .
- the weight estimation system manages the weight of pigs in the pig enclosure, but it may also manage the weight of livestock other than pigs.
- Livestock is, for example, animals such as pigs, cows, sheep, and horses, but may also be poultry such as chickens.
- processing executed by a specific processing unit may be executed by another processing unit.
- order of multiple processes may be changed, and multiple processes may be executed in parallel.
- each component may be realized by executing a software program suitable for each component.
- Each component may be realized by reading and executing a software program recorded in a recording medium such as a hard disk or a semiconductor memory by a program execution unit such as a CPU or processor.
- each component may be realized by hardware.
- a component such as a controller may be a circuit (or integrated circuit). These circuits may form one circuit as a whole, or may be separate circuits. These circuits may be general-purpose circuits or dedicated circuits.
- the present invention may be realized as a weight estimation method executed by a computer such as a weight estimation system, or as a program for causing a computer to execute the weight estimation method.
- a computer such as a weight estimation system
- a program for causing a computer to execute the weight estimation method may be implemented as a computer-readable non-transitory recording medium on which is recorded.
- the body weight estimation system is implemented by a plurality of devices, but it may be implemented as a single device.
- the components included in the body weight estimation system described in the above embodiments may be distributed to the multiple devices in any way.
Landscapes
- Business, Economics & Management (AREA)
- Engineering & Computer Science (AREA)
- Human Resources & Organizations (AREA)
- Marketing (AREA)
- Marine Sciences & Fisheries (AREA)
- Mining & Mineral Resources (AREA)
- Agronomy & Crop Science (AREA)
- Health & Medical Sciences (AREA)
- Economics (AREA)
- General Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Husbandry (AREA)
- Primary Health Care (AREA)
- Strategic Management (AREA)
- Tourism & Hospitality (AREA)
- Physics & Mathematics (AREA)
- General Business, Economics & Management (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Image Analysis (AREA)
Abstract
体重推定システム(100)は、撮影装置(10)によって撮影された、飼育エリア内に位置する家畜が映る複数の画像を取得する取得部(24a)と、取得された複数の画像から家畜の体重推定に使用する推定用画像を抽出し、抽出された推定用画像に映る家畜の大きさに基づいて、家畜の体重を推定する推定部(24b)と、推定された体重と、飼育エリアの識別情報とが対応付けられた推定情報を出力する出力部(24f)と、を備える。
Description
本発明は、体重推定システム、及び、体重推定方法に関する。
豚などの家畜の飼育を支援するための様々な技術が提案されている。例えば、体重計による豚の体重の測定に代わる方法として、特許文献1には、撮影エリアに位置する豚の画像に基づいて体重を推定する体重出力システムが開示されている。
一般に、食肉用の豚の販売においては、出荷時の体重が軽すぎても重すぎても価格が下がる。このため、出荷時の価格が最大となるように豚の体重を管理する仕組みが求められる。特許文献1に記載の方法で豚の体重を管理する場合、常に動く豚に対して、当該豚を所定の場所に位置させて画像を撮影する必要がある。つまり、豚の体重を管理するのに手間がかかる。
本発明は、人の手を介することなく、手軽にかつ精度良く家畜の体重を推定することができる体重推定システム、及び、体重推定方法を提供する。
本発明の一態様に係る体重推定システムは、撮影装置によって撮影された、飼育エリア内に位置する家畜が映る複数の画像を取得する取得部と、取得された前記複数の画像から前記家畜の体重推定に使用する推定用画像を抽出し、抽出された前記推定用画像に映る前記家畜の大きさに基づいて、前記家畜の体重を推定する推定部と、推定された前記体重と、前記飼育エリアの識別情報とが対応付けられた推定情報を出力する出力部と、を備える。
本発明の一態様に係る体重推定方法は、撮影装置によって撮影された、飼育エリア内に位置する家畜が映る複数の画像を取得する取得ステップと、取得された前記複数の画像から前記家畜の体重推定に使用する推定用画像を抽出し、抽出された前記推定用画像に映る前記家畜の大きさに基づいて、前記家畜の体重を推定する推定ステップと、推定された前記体重と、前記飼育エリアの識別情報とが対応付けられた推定情報を出力する出力ステップと、を含む。
本発明の一態様に係る体重推定方法は、前記体重推定方法をコンピュータに実行させるためのプログラムである。
本発明の体重推定システム、体重推定方法及びプログラムは、人の手を介することなく、手軽にかつ精度良く家畜の体重を推定することができる。
以下、実施の形態について、図面を参照しながら説明する。なお、以下で説明する実施の形態は、いずれも包括的又は具体的な例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置位置及び接続形態、などは、一例であり、本発明を限定する主旨ではない。また、以下の実施の形態における構成要素のうち、独立請求項に記載されていない構成要素については、任意の構成要素として説明される。
なお、各図は模式図であり、必ずしも厳密に図示されたものではない。また、各図において、実質的に同一の構成に対しては同一の符号を付しており、重複する説明は省略又は簡略化される場合がある。
(実施の形態)
[構成]
以下、実施の形態に係る体重推定システムについて図面を参照しながら説明する。まず、実施の形態に係る体重推定システムの構成について説明する。図1は、実施の形態に係る体重推定システムの機能構成を示すブロック図である。本実施の形態では、家畜が豚であり、飼育エリアが畜舎内の豚房である例を説明する。豚房は、畜舎(具体的には、豚舎)の中に構成される複数の区画された領域であり、数十頭単位で豚を飼育するための飼育エリアである。
[構成]
以下、実施の形態に係る体重推定システムについて図面を参照しながら説明する。まず、実施の形態に係る体重推定システムの構成について説明する。図1は、実施の形態に係る体重推定システムの機能構成を示すブロック図である。本実施の形態では、家畜が豚であり、飼育エリアが畜舎内の豚房である例を説明する。豚房は、畜舎(具体的には、豚舎)の中に構成される複数の区画された領域であり、数十頭単位で豚を飼育するための飼育エリアである。
図1に示されるように、体重推定システム100は、撮影装置10によって撮影される豚房70内の画像に基づいて、豚房70内の豚80の体重を推定することができるシステムである。豚80の飼育者等は、体重推定システム100を利用することで豚80の体重を容易に把握することができる。図1に示されるように、体重推定システム100は、例えば、複数の撮影装置10と、情報処理装置20とを備える。また、図1では、サーバ装置30及び携帯端末40も図示されている。図1の例のように、体重推定システム100は、サーバ装置30及び携帯端末40を備えてもよい。
撮影装置10は、例えば、豚房70の天井に取り付けられ、豚房70内の少なくとも一部を上方から撮影するカメラである。図1の例では、撮影装置10は、複数の豚房70に1つずつ設けられているが、1つの豚房70に対して少なくとも1つ設けられればよく、1つの豚房70に2つ以上設けられてもよい。撮影装置10は、例えば、レンズ、及び、イメージセンサなどによって実現される。撮影装置10は、具体的には、監視などの用途に用いられる一般的なカメラであるが、魚眼カメラなどであってもよい。
情報処理装置20は、撮影装置10によって撮影された複数の画像から豚80の体重推定に使用する推定用画像を抽出し、推定用画像に映る豚80の大きさに基づいて、豚房70内に位置する豚80の1頭(言い換えれば、1体)あたりの体重を推定する装置である。情報処理装置20は、推定した豚80の体重と、豚房70の識別情報とが対応付けられた推定情報を表示する。情報処理装置20は、例えば、パーソナルコンピュータなどの据え置き型の情報端末である。情報処理装置20は、操作受付部21と、表示部22と、第一通信部23と、情報処理部24と、第二通信部25と、記憶部26とを備える。
操作受付部21は、飼育者等(言い換えれば、ユーザ)の操作を受け付ける。操作受付部21は、例えば、キーボード又はマウスなどの入力デバイスによって実現されるが、タッチパネルなどによって実現されてもよい。
表示部22は、体重の推定結果を示す画像を表示する。表示部22は、液晶パネル又は有機EL(Electro Luminescence)パネルなどの表示パネルによって実現される。
第一通信部23は、情報処理装置20が局所通信ネットワークを介して複数の撮影装置10と通信を行うための通信回路(通信モジュール)である。第一通信部23は、例えば、撮影装置10によって撮影された画像(言い換えれば、画像データ又は画像情報)を取得し、取得した画像を情報処理部24に出力する。第一通信部23によって行われる通信は、有線通信であってもよいし、無線通信であってもよい。第一通信部23によって行われる通信の通信規格についても特に限定されない。
情報処理部24は、第一通信部23を介して取得した複数の豚房70内の撮影装置10から、それぞれ、複数の画像を取得し、取得した複数の画像から抽出された推定用画像に基づいて各豚房70における豚80の1頭あたりの体重を推定し、推定した体重を豚80が位置する豚房70の識別情報と対応付けて出力する。情報処理部24は、例えば、マイクロコンピュータによって実現されるが、プロセッサによって実現されてもよい。情報処理部24は、具体的には、取得部24aと、推定部24bと、通知部24cと、判定部24dと、出力部24fとを備える。取得部24a、推定部24b、通知部24c、判定部24d、及び、出力部24fの機能については動作及び方法の説明で後述する。
第二通信部25は、情報処理装置20がインターネットなどの広域通信ネットワーク50を通じて他の装置と通信を行うための通信回路(通信モジュール)である。第二通信部25は、例えば、情報処理部24によって算出された推定体重に関する通知情報をサーバ装置30又は携帯端末40に送信する。飼育者が所有する携帯端末40にこのような通知情報が送信されれば、飼育者は、豚房70内の豚80の推定体重に関する通知を受けることができる。なお、通知情報は、サーバ装置30経由で携帯端末40に送信されてもよい。第二通信部25によって行われる通信は、有線通信であってもよいし、無線通信であってもよい。第二通信部25によって行われる通信の通信規格についても特に限定されない。
記憶部26は、情報処理部24が情報処理を行うために実行するプログラム、及び、情報処理に用いられる各種情報が記憶される記憶装置である。記憶部26は、具体的には、半導体メモリによって実現される。
サーバ装置30は、体重推定システム100が情報処理装置20をクライアントとしたクライアントサーバシステムとして実現される場合に利用されるサーバ(クラウドサーバ)である。
携帯端末40は、飼育者等によって操作される、スマートフォン又はタブレット端末などの携帯型の情報端末である。携帯端末40は、飼育者等が、豚80の推定体重に関連する通知を受けるために使用される。
[動作:体重の推定]
次に、体重推定システム100が家畜の体重を推定する動作の一例について説明する。図2は、実施の形態に係る体重推定システム100の動作の一例を示すフローチャートである。ここでは、体重推定システム100が豚80の体重を推定する動作について説明する。
次に、体重推定システム100が家畜の体重を推定する動作の一例について説明する。図2は、実施の形態に係る体重推定システム100の動作の一例を示すフローチャートである。ここでは、体重推定システム100が豚80の体重を推定する動作について説明する。
なお、体重推定システム100は、図1の例のように、複数の豚房70のそれぞれで飼育されている豚80の体重を推定するが、以下では、説明の便宜上、1つの豚房70で飼育されている豚80の体重を推定する動作について説明する。
まず、情報処理装置20の取得部24aは、撮影装置10によって撮影された、飼育エリア(例えば、豚房70)内に位置する家畜(例えば、豚80)が映る複数の画像を取得する(S101)。より具体的には、取得部24aは、第一通信部23を介して豚房70に設置された撮影装置10から当該撮影装置10によって撮影された複数の画像(より詳細には、画像の画像情報)を取得する。
なお、撮影装置10は、常時画像を撮影してもよいし、情報処理装置20からの指令に基づいて画像の撮影を開始してもよいし、所定時間内に一定時間間隔で複数の画像を撮影してもよい。また、各画像には、どの豚房70内の画像であるかを示す識別情報(つまり、豚房70の識別情報)が付与されている。例えば、撮影装置10のMAC(Media Access Control)アドレスなどが豚房70の識別情報として使用される。以下のステップS102及びステップS103では、説明の便宜上、1つの画像を処理対象として説明が行われるが、ステップS102及びステップS103の処理は、実際には、ステップS101で取得された複数の画像のそれぞれに対して行われる。
次に、推定部24bは、ステップS101で取得された複数の画像から推定用画像を抽出する(S102)。推定用画像は、家畜(豚80)の体重を推定するために使用される画像である。推定部24bは、具体的には、複数の画像から豚80の輪郭形状と、所定の輪郭形状との一致度が閾値以上である画像を推定用画像として抽出する。例えば、推定部24bは、学習済みモデル(不図示)を備え、学習済みモデルは、複数の画像のそれぞれにおける豚80を検出し、検出した豚80の輪郭を抽出する。また、推定部24bは、学習済みモデルにより抽出された豚80の輪郭に基づいて、複数の画像から推定用画像を抽出する。以下、ステップS102の処理について、図2に加え、図3を参照しながらより具体的に説明する。図3は、推定用画像の抽出から豚80の大きさの算出までの動作を説明するための図である。
ステップS102では、推定部24bは、ステップS101で取得された画像(例えば、図3の(a))内の豚80の個体を検出する。このとき、推定部24bは、例えば、Mask-RCNNなどの深層学習による物体検知技術を利用して、取得部24aにより取得された画像(図3の(a)参照)に映る全ての豚80の画像領域を抽出する。そして、推定部24bは、豚80の体の全体(頭からお尻まで)が含まれる画像領域をフィルタリング処理により抽出する。このとき、豚80の体の一部のみしか映っていない画像領域は除外される。例えば、図3の(a)には、画像に7頭の豚80が映っているが、このうちの4頭は、体の一部のみしか映っていない。この場合、図3の(b)に示されるように、推定部24bは、豚80の体の全体が映っており、かつ、豚80の1頭分に相当する画像領域を抽出し、豚80の体の一部のみが映っている画像領域を抽出しない。
また、図3に示されていないが、ステップS102では、2体以上の豚が重なって1つの領域であるように認識されるような場合、このような領域も抽出されない。例えば、画像領域の大きさに上限値を設けることで、2体以上の豚が重なった1つの領域を対象領域から除外することができる。
続いて、図3の(c)に示されるように、推定部24bは、抽出した画像領域に含まれる豚80の輪郭を抽出する。輪郭の抽出方法については、後述する。推定部24bは、抽出した複数の豚80の輪郭のうち、例えば、教師データにおける豚80の輪郭と比較し、マッチングレベルの高い輪郭を選択する(図3の(d)参照)。教師データは、豚80の輪郭と豚80の実測体重とが対応付けられた実測データであり、データベース(不図示)に格納されている。データベースは、推定部24bが備えてもよく、記憶部26が備えてもよい。
推定部24bは、複数の画像からマッチングレベルの高い豚80の輪郭を含む画像を推定用画像(図3の(d))として抽出する。
次に、推定部24bは、ステップS102で抽出した推定用画像に映る家畜(豚80)の大きさに基づいて、家畜(豚80)の体重を推定する(S103)。例えば、推定部24bは、推定用画像における豚80の輪郭の重心の座標、並びに、重心を通る長軸及び短軸の長さを含むパラメータ(例えば、Huモーメント)を用いて豚80の体重を推定する。具体的には、推定部24bは、抽出した輪郭の形状からパラメータを算出する。Huモーメントは、画像を演算することで得られる平行移動、スケール、及び、回転に対して不変な量であり、形状のみによる量であるため、形状の類似度の判定に用いられる。より具体的には、図3の(d)に示されるように、推定部24bは、豚80の輪郭形状から重心の座標(言い換えると、画像における重心の位置)を算出し、重心を通り交差する長軸(主軸ともいう)の長さL及び短軸(副軸ともいう)の長さDを算出する。ここで、長軸及び短軸の長さは、画像上のピクセル単位で表される長さであるが、画像上の特定の長さ(例えば、給餌器、または、スノコ床などの既知の寸法)を基準にして、相対的な大きさで表してもよい。
また、例えば、推定部24bは、上述のデータベースに基づいて、複数の豚房70のそれぞれについて、当該豚房70内に位置する豚80の体重を推定するための補正係数kを導出し、豚80のそれぞれについて算出したパラメータと、補正係数kとを用いて、豚80の体重を推定する。補正係数kは、体積と、体重の実測値との関係を示す実測データなどに基づいて、経験的又は実験的に定められる。体重の推定方法については、後述する。
上述のようにステップS102及びステップS103の処理は、ステップS101で取得された複数の画像のそれぞれに対して行われる。ステップS103の処理の後、出力部24fは、ステップS103で推定部24bによって推定された豚80の体重と、豚80が位置する豚房70の識別情報とが対応付けられた推定情報を出力する(S104)。このとき、出力される豚80の体重は、複数の豚房70のそれぞれにおける複数の豚80の体重の平均値であってもよい。推定部24bは、推定情報を記憶部26に格納する(不図示)。このとき、推定情報は、撮影装置10によって撮影された日時(少なくとも日付)を対応付けて記憶部26に格納されてもよい。図7は、推定情報の一例を示す図である。図7に示されるように、推定情報は、複数の豚房70のそれぞれにおける複数の豚80の体重の平均値と(図中の推定体重)と、豚房70の識別情報とが対応付けられたデータであり、さらに、日時が対応付けられている。上述のように、豚房70の識別情報はステップS101で取得される画像に付与されている。また、日時は、画像の撮影日時である。推定体重が日時と対応付けられることにより、記憶部26は、複数の豚房70のそれぞれにおける推定体重の時間推移を管理しているといえる。
このように、体重推定システム100は、複数の豚80が映る複数の画像から推定用画像を抽出し、抽出した推定用画像から豚房70における豚80の1頭あたりの体重を推定することができる。体重推定システム100は、豚房70内に位置する複数の豚80を所定の場所に集めて画像を撮影する必要がなく、耳刻又は識別タグなどによって豚80の個体を識別することはしない。したがって、体重推定システム100は、比較的容易に豚80の体重を推定することができる。体重推定システム100は、豚を一斉に豚房70に入れて飼育した後、一斉に出荷する、オールインオールアウトの飼育方式に相性がよいといえる。
[豚の検出方法、及び、検出された豚の輪郭の抽出方法]
続いて、豚80の検出方法、及び、検出された豚80の輪郭の抽出方法について、図4及び図5を参照しながら説明する。図4は、画像中の豚80の個体検知、及び、検知された豚80の輪郭抽出の例を示す図である。図5は、推定画像の抽出の例を示す図である。
続いて、豚80の検出方法、及び、検出された豚80の輪郭の抽出方法について、図4及び図5を参照しながら説明する。図4は、画像中の豚80の個体検知、及び、検知された豚80の輪郭抽出の例を示す図である。図5は、推定画像の抽出の例を示す図である。
(1)豚の検出方法
推定部24bは、例えば、上述の物体検知技術を利用して、取得部24aにより取得された複数の画像のそれぞれについて、画像に映る全ての豚80を検出し、検出した全ての豚80の中から豚80の体の全体を含む画像領域を抽出する。例えば、図4に示されるように、推定部24bは、図4の(a)に示される画像、及び、図4の(b)に示される画像に映る全ての豚80の画像領域を抽出し、豚80の体の全体(頭からお尻まで)が含まれる画像領域をフィルタリング処理により抽出する。そして、推定部24bは、抽出した画像領域に含まれる豚80の検出レベル(より詳細には、検出された物体が豚である尤度)を算出する。
推定部24bは、例えば、上述の物体検知技術を利用して、取得部24aにより取得された複数の画像のそれぞれについて、画像に映る全ての豚80を検出し、検出した全ての豚80の中から豚80の体の全体を含む画像領域を抽出する。例えば、図4に示されるように、推定部24bは、図4の(a)に示される画像、及び、図4の(b)に示される画像に映る全ての豚80の画像領域を抽出し、豚80の体の全体(頭からお尻まで)が含まれる画像領域をフィルタリング処理により抽出する。そして、推定部24bは、抽出した画像領域に含まれる豚80の検出レベル(より詳細には、検出された物体が豚である尤度)を算出する。
(2)検出された豚の輪郭の抽出方法
まず、推定部24bは、画像領域に依存した豚80の輪郭(以下、領域依存の輪郭ともいう)を抽出する。例えば、図4の(b)及び図4の(c)に示されるように、推定部24bは、画像内で検出された豚80(検出レベル:0.969)の領域依存の輪郭(図中の網掛け領域の外周)を抽出する。
まず、推定部24bは、画像領域に依存した豚80の輪郭(以下、領域依存の輪郭ともいう)を抽出する。例えば、図4の(b)及び図4の(c)に示されるように、推定部24bは、画像内で検出された豚80(検出レベル:0.969)の領域依存の輪郭(図中の網掛け領域の外周)を抽出する。
続いて、推定部24bは、領域依存の輪郭を豚本来の形状に沿った輪郭に補正する。例えば、図4の(c)に示されるように、推定部24bは、領域依存の輪郭を複数の矢印の方向にそれぞれ広げることにより、豚本来の形状に沿った輪郭(図中の太い実線)に補正する。また、例えば、図4の(d)に示されるように、推定部24bは、画像内で検出された豚80(検出レベル:0.910)の領域依存の輪郭(図中の網掛け領域の外周)を抽出し、領域依存の輪郭を複数の矢印方向にそれぞれ広げることにより、豚本来の形状に沿った輪郭(図中の太い実線)に補正する。これを補正後の輪郭ともいう。
続いて、図5の(a)及び図5の(b)に示されるように、推定部24bは、画像領域に含まれる豚80の輪郭として、補正後の輪郭を抽出した後、豚80の検出レベルを再び算出する。そして、推定部24bは、所定の条件でフィルタリングすることにより、教師データと輪郭のマッチングを行う豚80の輪郭(マッチング対象輪郭ともいう)を抽出する。所定の条件は、例えば、(i)再び算出された豚80の検出レベルが所定の値(例えば、0.970)よりも大きく、かつ、(ii)補正後の豚80の輪郭の形状が楕円形である、である。
[体重の推定方法]
続いて、豚80の体重の推定方法について、図6を参照しながら説明する。図6は、豚80の体重の推定の例を示す図である。
続いて、豚80の体重の推定方法について、図6を参照しながら説明する。図6は、豚80の体重の推定の例を示す図である。
図6に示されるように、推定部24bは、豚1から豚NのN頭について豚80の大きさと豚80の実測体重とが対応付けられた実測データから補正係数kを算出し、算出した補正係数kと、パラメータとを用いて、豚80の体重を推定する。補正係数kは、豚80の体積(例えば、ピクセル数で表される)を体重に変換する係数である。パラメータは、重心を通る短軸D及び長軸Lの長さである。具体的には、推定部24bは、画像領域の数n(nは自然数)を豚80の数とみなし、補正係数kを用いて、豚80の1頭あたりの推定体重Mを、計算式M=k×D2×Lにしたがって算出する。補正係数kは、体積と、体重の実測値との関係を示す実測データなどに基づいて、経験的又は実験的に定められる。
[動作:推定情報の出力]
体重推定システム100は、豚房70ごとの豚80の推定体重と日付とが対応付けられた推定情報を出力し、飼育者等に提示することができる。以下、体重推定システム100の、推定体重の出力動作について説明する。図8は、推定体重の出力動作のフローチャートである。
体重推定システム100は、豚房70ごとの豚80の推定体重と日付とが対応付けられた推定情報を出力し、飼育者等に提示することができる。以下、体重推定システム100の、推定体重の出力動作について説明する。図8は、推定体重の出力動作のフローチャートである。
推定部24bは、撮影装置10によって撮影された日付が異なる複数の推定用画像のそれぞれから家畜(豚80)の体重を推定する(S201)。次に、推定部24bは、推定された家畜(豚80)の体重と、飼育エリア(豚房70)の識別情報とが対応付けられた推定情報に、日付を対応付けて記憶部26に格納する(S202)。
図示していないが、操作受付部21が飼育者等(いわゆる、ユーザ)の所定の操作を受け付けると、推定部24bは、受け付けられた操作に応じて、表示部22に豚房70ごとの豚80の推定体重を示す画像を表示させる。具体的には、取得部24aは、操作受付部21から日付と対応付けられた推定情報を表示部22に表示させるユーザの指示を示す信号を取得すると、記憶部26から日付と対応付けて格納された推定情報を読み出し、読み出した推定情報(より詳細には、日付と対応付けられた推定情報)を出力部24fに出力させる(S203)。
表示部22は、出力部24fから出力された推定情報に基づいて、例えば、特定の豚房70における豚80の推定体重の推移を表によって示す画像を表示する。図9は、特定の豚房70における推定体重の推移を表で示す画像の一例を示す図である。なお、1日に複数回推定体重が算出される場合、その1日の推定体重は、例えば、複数回算出された推定体重の代表値(具体的には、平均値又は中央値など)である。
また、表示部22は、複数の豚房70における豚80の推定体重の時間推移をグラフによって示す画像を表示してもよい。図10は、複数の豚房70における豚80の推定体重の時間推移をグラフで示す画像の一例を示す図である。
このように、体重推定システム100は、豚80の推定体重を飼育者等に提示することができる。飼育者等は、推定体重を把握することで、豚80の出荷のタイミングを予想したり、餌の量をコントロールしたりすることができる。つまり、体重推定システム100は、飼育者等の豚80の飼育を支援することができる。
[動作:出荷予定日の通知]
体重推定システム100は、さらに、飼育者等(ユーザ)に通知情報を通知する通知部24cを備える。これにより、体重推定システム100は、上述の推定情報に基づいて、豚房70ごとに豚80が出荷に適した体重になる日付を予測し、予測した豚80が出荷に適した体重になる日付(以下、出荷予定日とも記載される)を事前に飼育者等に通知することができる。以下、体重推定システム100の、出荷予定日の通知動作について説明する。図11は、出荷予定日の通知動作のフローチャートである。
体重推定システム100は、さらに、飼育者等(ユーザ)に通知情報を通知する通知部24cを備える。これにより、体重推定システム100は、上述の推定情報に基づいて、豚房70ごとに豚80が出荷に適した体重になる日付を予測し、予測した豚80が出荷に適した体重になる日付(以下、出荷予定日とも記載される)を事前に飼育者等に通知することができる。以下、体重推定システム100の、出荷予定日の通知動作について説明する。図11は、出荷予定日の通知動作のフローチャートである。
まず、推定部24bは、記憶部26に日付と対応付けて格納された推定情報を参照し(不図示)、体重の時間推移(言い換えると、豚の肥育の日令ごとの推移)に基づいて、複数の豚房70のそれぞれについて、家畜(豚80)の出荷予定日(言い換えれば、推定体重が所定範囲内に到達する日付)を推定する(S301)。例えば、推定部24bは、参照した推定情報によって定まる推定体重の時間推移データを用いて、当該データの近似曲線又は近似直線を算出することにより、出荷予定日を予測することができる。なお、所定範囲は、例えば、110kg以上120kg以下の範囲などであるが、特に限定されない。
次に、通知部24cは、ステップS301で推定された家畜(豚80)の出荷予定日と、飼育エリア(豚房70)の識別情報とが対応付けられた通知情報を飼育者等に通知する(S302)。具体的には、通知部24cは、豚房70ごとの豚80の出荷予定日を飼育者等に通知するための通知情報を、第二通信部25を介して携帯端末40に送信する。この結果、携帯端末40には、図11のような通知画面が表示される。図11は、出荷予定日の通知画面の一例を示す図である。なお、豚の80の出荷予定日は、プッシュ通知されてもよい。また、豚80の出荷予定日は、飼育者等の操作に基づいて、情報処理装置20の表示部22に表示されてもよい。
このように、体重推定システム100は、複数の豚房70のそれぞれにおける推定体重の時間推移に基づいて、豚80の出荷予定日を豚房70ごとに通知することができる。
[動作:豚の成育状態の判定]
体重推定システム100は、さらに、複数の飼育エリア(豚房70)における家畜(豚80)の生育状態を判定する判定部24dを備える。これにより、体重推定システム100は、上述の推定情報に基づいて、複数の豚房70に対応する複数の推定体重を比較することにより、複数の豚房70における豚80の成育状態の良否を判定し、判定結果を飼育者等(ユーザ)に提示することができる。以下、体重推定システム100の、成育状態の判定動作について説明する。図12は、成育状態の判定動作のフローチャートである。
体重推定システム100は、さらに、複数の飼育エリア(豚房70)における家畜(豚80)の生育状態を判定する判定部24dを備える。これにより、体重推定システム100は、上述の推定情報に基づいて、複数の豚房70に対応する複数の推定体重を比較することにより、複数の豚房70における豚80の成育状態の良否を判定し、判定結果を飼育者等(ユーザ)に提示することができる。以下、体重推定システム100の、成育状態の判定動作について説明する。図12は、成育状態の判定動作のフローチャートである。
まず、判定部24dは、記憶部26に記憶された推定情報を参照し(不図示)、複数の豚房70に対応する複数の家畜(豚80)の推定体重を相互に比較することにより(S401)、複数の飼育エリア(豚房70)のそれぞれにおける家畜(豚80)の成育状態を判定する(S402)。例えば、判定部24dは、複数の豚房70における豚80の推定体重の平均値と、複数の豚房70それぞれにおける豚80の推定体重とを比較し、平均値よりも所定値以上推定体重が少ない豚房70を豚80の成育状態が悪い豚房70であると判定する。
次に、出力部24fは、生育状態を示す生育情報(つまり、ステップS402の判定結果)を出力する(S403)。具体的には、出力部24fは、ステップS402で判定部24dによって豚80の成育状態が悪いと判定された豚房70を飼育者等に通知するための通知情報(いわゆる、生育情報)を、第二通信部25を介して携帯端末40に出力する。この結果、携帯端末40には、図14のような通知画面が表示される。図14は、豚80の成育状態の判定結果の通知画面の一例を示す図である。なお、成育状態の判定結果(つまり、生育情報)は、プッシュ通知されてもよい。また、成育状態の判定結果は、飼育者等の操作に基づいて、情報処理装置20の表示部22に表示されてもよい。
このように、体重推定システム100は、豚80の成育状態が悪いと判定された豚房70を飼育者等に通知することができる。飼育者等は、当該豚房70において豚80の成育状態が悪い原因を追究し、当該豚房70における豚80の成育状態の改善を図ることができる。
なお、ステップS402においては、豚80の成育状態が悪い豚房70に代えて、又は、豚80の成育状態が悪い豚房70に加えて、豚80の成育状態が良い豚房70が判定されてもよい。例えば、判定部24dは、複数の豚房70における推定体重の平均値と、複数の豚房70それぞれにおける推定体重とを比較し、平均値よりも所定値以上推定体重が多い豚房70を豚80の成育状態が良い豚房70であると判定することができる。
豚80の成育状態が良いと判定された豚房70が飼育者等に通知されれば、飼育者等は、成育状態が良い原因を追究し、豚80の成育状態が良い豚房70にならって他の豚房70における豚80の成育状態の改善を図ることができる。
[変形例1]
体重推定システム100は、クライアントサーバシステムとして実現されてもよい。この場合、上記実施の形態において情報処理装置20によって行われると説明された処理の一部又は全部がサーバ装置30によって行われてもよい。
体重推定システム100は、クライアントサーバシステムとして実現されてもよい。この場合、上記実施の形態において情報処理装置20によって行われると説明された処理の一部又は全部がサーバ装置30によって行われてもよい。
[実験例1]
続いて、実験例1について説明する。実験例1では、体重推定システム100を用いて、豚房70内の複数の豚80の体重を推定した。
続いて、実験例1について説明する。実験例1では、体重推定システム100を用いて、豚房70内の複数の豚80の体重を推定した。
具体的には、3種類の白豚、黒豚、斑豚について、10時間撮影した画像データ(108万フレーム)を用いて、豚80の個体検出と豚80の輪郭抽出とを行い、抽出された輪郭の形状からパラメータを算出した。そして、パラメータと実測体重とを対応付けた実測データ(図15参照)から補正係数kを算出し、算出した補正係数kを用いて、4体の豚の体重を推定した。
図15は、実験例1で補正係数の算出に使用したデータを示す図である。図15に示されるように、7頭の豚80の実測体重と、パラメータ(推定用画像における重心を通る長軸及び短軸の長さ)とを対応付けた実測データから、体重推定に使用する補正係数kを算出した。図15に示される網掛け部分に対応する豚80の個体は、体重を推定する豚80(4体の豚80)である。
図16は、実験例1の結果を示す図である。図16に示されるように、4体の豚80の実測値と推定値との差分は、±4%以内であった。したがって、体重推定システム100によれば、人が直接豚の体重を測定しなくても、自動的に、かつ、精度よく豚80の体重を推定することができることが確認された。
[効果等]
以上説明したように、体重推定システム100は、撮影装置10によって撮影された、豚房70内に位置する豚80が映る複数の画像を取得する取得部24aと、取得された複数の画像から豚80の体重推定に使用する推定用画像を抽出し、抽出された推定用画像に映る豚80の大きさに基づいて、豚80の体重を推定する推定部24bと、推定された体重と、豚房70の識別情報とが対応付けられた推定情報を出力する出力部24fと、を備える。豚80は、家畜の一例であり、豚房70は、飼育エリアの一例である。
以上説明したように、体重推定システム100は、撮影装置10によって撮影された、豚房70内に位置する豚80が映る複数の画像を取得する取得部24aと、取得された複数の画像から豚80の体重推定に使用する推定用画像を抽出し、抽出された推定用画像に映る豚80の大きさに基づいて、豚80の体重を推定する推定部24bと、推定された体重と、豚房70の識別情報とが対応付けられた推定情報を出力する出力部24fと、を備える。豚80は、家畜の一例であり、豚房70は、飼育エリアの一例である。
このような体重推定システム100は、複数の画像から抽出された推定用画像に基づいて、豚房70における豚80の1体あたりの体重を推定することができる。したがって、体重推定システム100は、人の手を介することなく、手軽にかつ精度良く豚80の体重を推定することができる。
また、例えば、推定部24bは、複数の画像から豚80の輪郭形状と、所定の輪郭形状との一致度が閾値以上である画像を推定用画像として抽出する。
このような体重推定システム100は、例えば、所定の輪郭形状との一致度が高い輪郭形状を含む画像を推定用画像として抽出することにより、比較的容易に豚80の体重を推定することができる。例えば、体重推定システム100は、所定の輪郭形状が実測体重と対応付けられている場合、豚80の体重を推定できる推定用画像を適切に抽出することができるため、豚80の体重を推定することができる。
また、例えば、推定部24bは、抽出された推定用画像における豚80の輪郭の重心の座標、並びに、重心を通る長軸及び短軸の長さを含むパラメータを算出し、算出されたパラメータを用いて豚80の体重を推定する。
このような体重推定システム100は、算出されたパラメータに基づいて豚80の体重を推定することができる。
また、例えば、推定部24bは、学習済みモデル(不図示)を備え、学習済みモデルは、複数の画像のそれぞれにおける豚80を検出し、検出した豚80の輪郭を抽出し、推定部24bは、学習済みモデルにより抽出された豚80の輪郭に基づいて、複数の画像から推定用画像を抽出する。
このような体重推定システム100は、学習済みモデルにより検出され、かつ、抽出された豚80の輪郭に基づいて、豚80の体重を推定することができる。また、体重推定システム100は、学習済みモデルを用いることにより、複数の画像から効率的に抽出用画像を抽出することができるため、豚80の体重を推定することができる。
また、例えば、体重推定システム100は、さらに、豚80の輪郭形状と豚80の実測体重とが紐付けられて格納されたデータベース(不図示)を備え、推定部24bは、データベースに基づいて、推定用画像を抽出する。
このような体重推定システム100は、データベースに格納された豚80の輪郭形状と豚80の実測体重とが紐付けられた実測データと、画像に映る豚80の輪郭形状とを比較して、実測データと一致度の高い輪郭を含む画像を推定用画像として抽出することができる。
また、例えば、推定部24bは、データベース(不図示)に基づいて、複数の豚房70のそれぞれについて、豚房70内に位置する豚80の体重を推定するための補正係数kを導出し、パラメータと、補正係数kとを用いて、豚80の体重を推定する。
このような体重推定システム100は、補正係数k及びパラメータ(例えば、推定用画像における豚80の輪郭の重心を通る長軸及び短軸の長さ)を用いて、豚80の体重を推定することができる。
また、例えば、推定部24bは、撮影装置10によって撮影された日付が異なる複数の推定用画像のそれぞれから豚80の体重を推定し、推定された豚80の体重と、豚房70の識別情報とが対応付けられた推定情報に、日付を対応付けて記憶部26に格納させ、出力部24fは、日付と対応付けて格納された推定情報を出力する。
このような体重推定システム100は、豚80の推定体重の推移を豚房70ごとに管理することができる。
また、例えば、体重推定システム100は、さらに、ユーザに通知情報を通知する通知部24cを備え、推定部24bは、記憶部26に日付と対応付けて格納された推定情報に含まれる体重によって定まる、体重の時間推移に基づいて、豚房70内の豚80の出荷予定日を推定し、通知部24cは、推定された豚80の出荷予定日と豚房70の識別情報とが対応付けられた通知情報をユーザに通知する。
このような体重推定システム100は、豚80の出荷予定日を豚房70ごとに通知することができる。
また、例えば、体重は、複数の豚房70のそれぞれにおける複数の豚80の体重の平均値である。
このような体重推定システム100は、画像に映る複数の豚80の個別体重を推定し、これを平均することで、複数の豚房70のそれぞれにおける豚80の体重を推定することができる。
また、例えば、体重推定システム100は、さらに、複数の豚房70に対応する複数の豚80の体重を比較することにより、複数の豚房70における豚80の生育状態を判定する判定部24dを備え、出力部24fは、判定部24dにより判定された生育状態を示す生育情報を出力する。
このような体重推定システム100は、複数の豚房70に対応する複数の推定体重の相対的な関係に基づいて豚80の成育状態を判定することができる。
また、体重推定システム100などのコンピュータによって実行される体重推定方法は、撮影装置10によって撮影された、豚房70内に位置する豚80が映る複数の画像を取得する取得ステップと、取得された複数の画像から豚80の体重推定に使用する推定用画像を抽出し、抽出された推定用画像に映る豚80の大きさに基づいて、豚80の体重を推定する推定ステップと、推定された体重と、豚房70の識別情報とが対応付けられた推定情報を出力する出力ステップと、を含む。
このような体重推定方法は、複数の画像から抽出された推定用画像に基づいて、豚房70における豚80の1体あたりの体重を推定することができる。したがって、体重推定方法は、豚80の体重を推定することができる。
(その他の実施の形態)
以上、実施の形態について説明したが、本発明は、上記実施の形態に限定されるものではない。
以上、実施の形態について説明したが、本発明は、上記実施の形態に限定されるものではない。
例えば、上記実施の形態では、体重推定システムは、豚房内の豚の体重を管理したが、豚以外の家畜の体重を管理してもよい。家畜は、例えば、豚、牛、羊、馬などの有諦類であるが、鶏などの家禽であってもよい。
また、上記実施の形態において、特定の処理部が実行する処理を別の処理部が実行してもよい。また、複数の処理の順序が変更されてもよいし、複数の処理が並行して実行されてもよい。
また、上記実施の形態において、各構成要素は、各構成要素に適したソフトウェアプログラムを実行することによって実現されてもよい。各構成要素は、CPU又はプロセッサなどのプログラム実行部が、ハードディスク又は半導体メモリなどの記録媒体に記録されたソフトウェアプログラムを読み出して実行することによって実現されてもよい。
また、各構成要素は、ハードウェアによって実現されてもよい。例えば、制御部などの構成要素は、回路(又は集積回路)でもよい。これらの回路は、全体として1つの回路を構成してもよいし、それぞれ別々の回路でもよい。また、これらの回路は、それぞれ、汎用的な回路でもよいし、専用の回路でもよい。
また、本発明の全般的又は具体的な態様は、システム、装置、方法、集積回路、コンピュータプログラム又はコンピュータ読み取り可能なCD-ROMなどの記録媒体で実現されてもよい。また、システム、装置、方法、集積回路、コンピュータプログラム及び記録媒体の任意な組み合わせで実現されてもよい。
例えば、本発明は、体重推定システムなどのコンピュータによって実行される体重推定方法として実現されてもよいし、体重推定方法をコンピュータに実行させるためのプログラムとして実現されてもよいし、このようなプログラムが記録されたコンピュータ読み取り可能な非一時的な記録媒体として実現されてもよい。
また、上記実施の形態では、体重推定システムは、複数の装置によって実現されたが、単一の装置として実現されてもよい。体重推定システムが複数の装置によって実現される場合、上記実施の形態で説明された体重推定システムが備える構成要素は、複数の装置にどのように振り分けられてもよい。
その他、各実施の形態に対して当業者が思いつく各種変形を施して得られる形態、又は、本発明の趣旨を逸脱しない範囲で各実施の形態における構成要素及び機能を任意に組み合わせることで実現される形態も本発明に含まれる。
10 撮影装置
21 操作受付部
24a 取得部
24b 推定部
24c 通知部
24d 判定部
24f 出力部
26 記憶部
80 豚
100 体重推定システム
21 操作受付部
24a 取得部
24b 推定部
24c 通知部
24d 判定部
24f 出力部
26 記憶部
80 豚
100 体重推定システム
Claims (12)
- 撮影装置によって撮影された、飼育エリア内に位置する家畜が映る複数の画像を取得する取得部と、
取得された前記複数の画像から前記家畜の体重推定に使用する推定用画像を抽出し、抽出された前記推定用画像に映る前記家畜の大きさに基づいて、前記家畜の体重を推定する推定部と、
推定された前記体重と、前記飼育エリアの識別情報とが対応付けられた推定情報を出力する出力部と、
を備える、
体重推定システム。 - 前記推定部は、前記複数の画像から前記家畜の輪郭形状と、所定の輪郭形状との一致度が閾値以上である画像を前記推定用画像として抽出する、
請求項1に記載の体重推定システム。 - 前記推定部は、
抽出された前記推定用画像における前記家畜の輪郭の重心の座標、並びに、前記重心を通る長軸及び短軸の長さを含むパラメータを算出し、
算出された前記パラメータを用いて前記家畜の体重を推定する、
請求項1又は2に記載の体重推定システム。 - 前記推定部は、学習済みモデルを備え、
前記学習済みモデルは、前記複数の画像のそれぞれにおける前記家畜を検出し、検出した前記家畜の輪郭を抽出し、
前記推定部は、前記学習済みモデルにより抽出された前記家畜の輪郭に基づいて、前記複数の画像から前記推定用画像を抽出する、
請求項3に記載の体重推定システム。 - 前記体重推定システムは、さらに、家畜の輪郭形状と前記家畜の実測体重とが紐付けられて格納されたデータベースを備え、
前記推定部は、前記データベースに基づいて、前記推定用画像を抽出する、
請求項3又は4に記載の体重推定システム。 - 前記推定部は、前記データベースに基づいて、複数の前記飼育エリアのそれぞれについて、前記飼育エリア内に位置する前記家畜の体重を推定するための補正係数を導出し、
前記パラメータと、前記補正係数とを用いて、前記家畜の体重を推定する、
請求項5に記載の体重推定システム。 - 前記推定部は、
前記撮影装置によって撮影された日付が異なる複数の前記推定用画像のそれぞれから前記家畜の体重を推定し、
推定された前記家畜の体重と、前記飼育エリアの識別情報とが対応付けられた推定情報に、日付を対応付けて記憶部に格納させ、
前記出力部は、日付と対応付けて格納された前記推定情報を出力する、
請求項1~6のいずれか1項に記載の体重推定システム。 - 前記体重推定システムは、さらに、ユーザに通知情報を通知する通知部を備え、
前記推定部は、前記記憶部に日付と対応付けて格納された前記推定情報に含まれる前記体重によって定まる、前記体重の時間推移に基づいて、前記飼育エリア内の前記家畜の出荷予定日を推定し、
前記通知部は、推定された前記家畜の出荷予定日と前記飼育エリアの識別情報とが対応付けられた通知情報を前記ユーザに通知する、
請求項7に記載の体重推定システム。 - 前記体重は、複数の前記飼育エリアのそれぞれにおける複数の前記家畜の前記体重の平均値である、
請求項7又は8に記載の体重推定システム。 - 前記体重推定システムは、さらに、複数の前記飼育エリアに対応する複数の前記家畜の体重を比較することにより、複数の前記飼育エリアにおける家畜の生育状態を判定する判定部を備え、
前記出力部は、前記判定部により判定された前記生育状態を示す生育情報を出力する、
請求項1~9のいずれか1項に記載の体重推定システム。 - 撮影装置によって撮影された、飼育エリア内に位置する家畜が映る複数の画像を取得する取得ステップと、
取得された前記複数の画像から前記家畜の体重推定に使用する推定用画像を抽出し、抽出された前記推定用画像に映る前記家畜の大きさに基づいて、前記家畜の体重を推定する推定ステップと、
推定された前記体重と、前記飼育エリアの識別情報とが対応付けられた推定情報を出力する出力ステップと、
を含む、
体重推定方法。 - 請求項11に記載の体重推定方法をコンピュータに実行させるための、
プログラム。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021-029313 | 2021-02-25 | ||
JP2021029313 | 2021-02-25 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022181132A1 true WO2022181132A1 (ja) | 2022-09-01 |
Family
ID=83048887
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/002008 WO2022181132A1 (ja) | 2021-02-25 | 2022-01-20 | 体重推定システム、及び、体重推定方法 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2022181132A1 (ja) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003250382A (ja) * | 2002-02-25 | 2003-09-09 | Matsushita Electric Works Ltd | 水棲生物の成育状態監視方法及びその装置 |
JP2019045304A (ja) * | 2017-09-01 | 2019-03-22 | Nttテクノクロス株式会社 | 体重出力装置、体重出力方法及びプログラム |
JP2019205375A (ja) * | 2018-05-29 | 2019-12-05 | Necソリューションイノベータ株式会社 | 家畜の出荷判定表示装置、出荷判定表示方法、プログラム、および記録媒体 |
WO2020044869A1 (ja) * | 2018-08-30 | 2020-03-05 | パナソニックIpマネジメント株式会社 | 動物情報管理システム、及び、動物情報管理方法 |
JP6781440B1 (ja) * | 2020-02-27 | 2020-11-04 | 株式会社Eco‐Pork | 畜産情報管理システム、畜産情報管理サーバ、畜産情報管理方法、及び畜産情報管理プログラム |
-
2022
- 2022-01-20 WO PCT/JP2022/002008 patent/WO2022181132A1/ja active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003250382A (ja) * | 2002-02-25 | 2003-09-09 | Matsushita Electric Works Ltd | 水棲生物の成育状態監視方法及びその装置 |
JP2019045304A (ja) * | 2017-09-01 | 2019-03-22 | Nttテクノクロス株式会社 | 体重出力装置、体重出力方法及びプログラム |
JP2019205375A (ja) * | 2018-05-29 | 2019-12-05 | Necソリューションイノベータ株式会社 | 家畜の出荷判定表示装置、出荷判定表示方法、プログラム、および記録媒体 |
WO2020044869A1 (ja) * | 2018-08-30 | 2020-03-05 | パナソニックIpマネジメント株式会社 | 動物情報管理システム、及び、動物情報管理方法 |
JP6781440B1 (ja) * | 2020-02-27 | 2020-11-04 | 株式会社Eco‐Pork | 畜産情報管理システム、畜産情報管理サーバ、畜産情報管理方法、及び畜産情報管理プログラム |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021014906A1 (ja) | 体重推定システム、体重推定方法、及び、プログラム | |
Ott et al. | Automated video analysis of pig activity at pen level highly correlates to human observations of behavioural activities | |
US10475211B2 (en) | Method, information processing apparatus and non-transitory computer-readable storage medium | |
JP7517729B2 (ja) | 家畜の出荷判定表示装置、出荷判定表示方法、プログラム、および記録媒体 | |
US11910784B2 (en) | Animal visual identification, tracking, monitoring and assessment systems and methods thereof | |
JP2019024482A (ja) | 情報処理システム、情報処理装置、およびプログラム | |
JP7108941B2 (ja) | 動物情報管理システム、及び、動物情報管理方法 | |
JP2023015924A (ja) | 生産管理システム、生産管理方法及びプログラム | |
CN111310596A (zh) | 一种动物患病状态监测系统及方法 | |
JP7108886B2 (ja) | 養鶏システム、養鶏方法、及び、プログラム | |
KR20210031091A (ko) | 가축 활동량 모니터링 및 건강 예찰 시스템 및 방법 | |
JP2020156393A (ja) | 行動検出プログラム、行動検出方法及び行動検出システム | |
CN109086696B (zh) | 一种异常行为检测方法、装置、电子设备及存储介质 | |
WO2023041904A1 (en) | Systems and methods for the automated monitoring of animal physiological conditions and for the prediction of animal phenotypes and health outcomes | |
Doornweerd et al. | Passive radio frequency identification and video tracking for the determination of location and movement of broilers | |
JP2020080791A (ja) | 養鶏システム、養鶏方法、プログラム、及び、畜産システム | |
WO2022181132A1 (ja) | 体重推定システム、及び、体重推定方法 | |
JP7129675B2 (ja) | 養鶏システム、養鶏方法、及び、プログラム | |
WO2022181131A1 (ja) | 体重推定システム、及び、体重推定方法 | |
JP4482398B2 (ja) | サーモグラフによる死亡率自動判定方法および死亡率自動判定装置 | |
CN114724067A (zh) | 一种养殖场饲料监控方法、装置、电子设备及存储介质 | |
CN116963595A (zh) | 猪饲养辅助装置、猪饲养辅助方法以及猪饲养辅助程序 | |
US20220354091A1 (en) | Animal information management system and animal information management method | |
WO2021241085A1 (ja) | 家畜管理システム、及び、家畜管理方法 | |
TW202201328A (zh) | 牲畜異常監測系統、方法、電腦程式產品及電腦可讀取紀錄媒體 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22759175 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 22759175 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |