WO2022181115A1 - Betaine group-containing organosilicon compound, molded product thereof and method for producing said compound - Google Patents

Betaine group-containing organosilicon compound, molded product thereof and method for producing said compound Download PDF

Info

Publication number
WO2022181115A1
WO2022181115A1 PCT/JP2022/001444 JP2022001444W WO2022181115A1 WO 2022181115 A1 WO2022181115 A1 WO 2022181115A1 JP 2022001444 W JP2022001444 W JP 2022001444W WO 2022181115 A1 WO2022181115 A1 WO 2022181115A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
film
tetraalkoxysilane
betaine
hydrolyzate
Prior art date
Application number
PCT/JP2022/001444
Other languages
French (fr)
Japanese (ja)
Inventor
寿夫 黒崎
朋香 伊藤
剛 松野
敏哉 上野
Original Assignee
日本精化株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本精化株式会社 filed Critical 日本精化株式会社
Priority to JP2022518919A priority Critical patent/JP7182750B1/en
Publication of WO2022181115A1 publication Critical patent/WO2022181115A1/en
Priority to JP2022163895A priority patent/JP7411757B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/18Compounds having one or more C—Si linkages as well as one or more C—O—Si linkages
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • C09D183/08Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen, and oxygen

Definitions

  • the present invention relates to an organosilicon compound having a betaine structure, a molded article thereof, and a method for producing the same.
  • a betaine compound is an amphoteric compound having a positively charged site and a negatively charged site at positions that are not adjacent to each other in the same molecule, and is an electrically neutral compound as a whole molecule.
  • positively charged sites include quaternary amines, sulfonium, and phosphonium, and examples of negatively charged sites include carboxyl groups and sulfo groups.
  • Patent Document 1 discloses a carbobetaine-based silicon compound having a quaternary amine as a positive charge site and a carboxyl group as a negative charge site
  • Patent Document 2 discloses a quaternary amine as a positive charge site
  • a sulfobetaine-based silicon compound having a sulfo group as a negatively charged site is disclosed.
  • Organosilicon compounds having hydrolyzable functional groups are also used in coating compositions that are applied to the surfaces of substrates such as those made of glass or resin. Therefore, the organosilicon compound having a betaine structure can control the hydrophilicity of the coating composition, and is expected to impart high functionality to various substrate surfaces.
  • the betaine-based silicon compounds disclosed in Patent Documents 1 and 2 can impart hydrophilicity, antistatic properties, antifouling properties, biocompatibility, etc. to the surface of substrates, but their antifogging properties are insufficient. rice field. Moreover, since these silicon compounds are deliquescent and hydrolyzable, it has been difficult to synthesize and isolate a silicon compound having a hydrophilic group that can be expected to have higher performance.
  • betaine-based organosilicon compounds with improved bonding functions to substrates and anti-fogging functions
  • trialkoxylsilyl compounds exhibit bonding functions to substrates such as those made of glass or resin.
  • a betaine in which both a group and a betaine structure that exerts the function of imparting hydrophilicity, antistatic properties, antifouling properties, biocompatibility, and, in particular, antifogging properties to the surface of a substrate are bonded with a specific spacer.
  • the betaine group-containing trialkoxysilane compound and the hydrolyzate thereof of the present invention comprise a trialkoxysilane having a tertiary amine, a halogenated alkylsulfonate and a cyclic sultone compound, or a carboxyl group precursor such as a halogenated alkylcarboxylate.
  • Electrophiles can be synthesized in solvents such as acetone, acetonitrile, ethanol, methanol, 2-propanol, tetrahydrofuran, dimethylformamide, water, and the like.
  • the betaine group-containing trialkoxysilane compound of the present invention has higher bonding properties to substrates and anti-fogging properties than conventional ones, and the betaine group-containing trialkoxysilane compound can be obtained in a solid form.
  • the hydrolyzate of the betaine group-containing trialkoxysilane compound of the present invention is particularly excellent in bonding properties to substrates and antifogging properties.
  • R 1 , R 2 and R 3 are independently C 1 -C 3 alkyl groups, or together with the ):
  • Y is -NH-, -O- or -S-
  • Z is
  • R 4 and R 5 are independently C 1 -C 3 alkyl groups or formula (8):
  • R 7 and R 8 are independently C 1 -C 3 alkyl groups, h and i are independently any integers from 1 to 4, j is from 1 to 3 wherein h, i and R 7 may be different, and A is —SO 3 — or —COO — (poly)betaine represented by group, R 6 is a C 1 -C 4 sulfoalkyl group or a C 1 -C 4 carboxylalkyl group, However, the case where R 4 and R 5 are both C 1 -C 3 alkyl groups is excluded. ;or, (B) X, R 4 , R 5 and the quaternized nitrogen atom to which they are attached are taken together to form Formula (9):
  • An imidazolinium group-containing group represented by R 6 is a C 1 -C 4 sulfoalkyl group or a C 1 -C 4 carboxylalkyl group. ;or, (C) X is the formula (10):
  • R 4 and R 5 are independently C 1 to It is a C 3 alkyl group or a (poly)betaine group represented by formula (8), and R 6 is a C 1 -C 4 sulfoalkyl group or a C 1 -C 4 carboxylalkyl group.
  • R 6 is a C 1 -C 4 sulfoalkyl group or a C 1 -C 4 carboxylalkyl group.
  • ⁇ and a hydrolyzate thereof are provided.
  • the term "(poly)betaine group” includes both a betaine group and a polybetaine group, and the term “polybetaine group” refers to a group having a plurality of betaine moieties.
  • the betaine group may be a sulfobetaine group or a carbobetaine group.
  • betaine group-containing trialkoxysilane compound represented by formula (1) and its hydrolyzate are Formula (11):
  • R 9 , R 10 , R 11 , R 12 and R 13 are independently C 1 -C 3 alkyl groups, p and q are independently any of 1-4 is an integer, r 1 is an integer of 2 or 3, r 2 is any integer of 1 to 3, and a plurality of p, q and R 12 may each be different A (poly)betaine group-containing trialkoxysilane compound (A) and a hydrolyzate thereof, wherein A is —SO 3 — or —COO — ; or Formula (13):
  • R 14 and R 15 are independently C 1 -C 3 alkyl groups, u and v are independently any integers from 1 to 4, and w is from 1 to 4 and A is —SO 3 — or —COO — ), and a hydrolyzate thereof.
  • betaine group-containing trialkoxysilane compound represented by formula (1) and hydrolysates thereof include the following compounds 1 to 11 and hydrolysates thereof.
  • hydrolyzate of the betaine group-containing trialkoxysilane compound represented by formula (1) include compounds 12 and 13 below.
  • Compounds 1 to 5 and 9 to 13 belong to the group of (poly)betaine group-containing trialkoxysilane compounds (A) represented by formula (11) or formula (12) and hydrolysates thereof, and compound 6 and 7 and its hydrolyzate belong to the group of the imidazolinium-based betaine group-containing trialkoxysilane compound (B) represented by formula (13) and its hydrolyzate, respectively, and compound 8 and its hydrolyzate belongs to the group of phenoxy betaine group-containing trialkoxysilane compounds (C) represented by formula (14) and hydrolysates thereof.
  • the present invention provides a production method for obtaining a betaine group-containing trialkoxysilane compound represented by formula (1) and a hydrolyzate thereof.
  • the method for producing the betaine group-containing trialkoxysilane compound represented by formula (1) and the hydrolyzate thereof are not limited, but representative production methods will be described.
  • the betaine group-containing trialkoxysilane compound represented by formula (1) is represented by formula (15):
  • R 1 to R 6 and X are the same as defined in formulas (1) to (10), and E is an electrophile having a sulfo group precursor or a carboxyl group precursor.
  • E is an electrophile having a sulfo group precursor or a carboxyl group precursor. It can be synthesized by a sulfobetaylation reaction or a carbobetaylation reaction according to the represented reaction formula.
  • a trialkoxysilane having a tertiary amine may be a commercially available product, or may be synthesized by a known method using a commercially available product as a starting material.
  • the electrophiles (E) having a sulfo group precursor or a carboxyl group precursor used herein include halogenated alkylsulfonates, cyclic sultone compounds, and halogenated alkylcarboxylates. More preferred are 1,3-propanesultone and 1,4-butanesultone, and sodium chloroacetate.
  • the electrophile is 1-fold relative to the tertiary amine. to 2 equivalents are used, and the mixture is stirred in an inert solvent under cooling to heating, preferably between room temperature and the reflux temperature of the solvent, usually for 1 hour to 1 week.
  • a solvent that sufficiently dissolves the reactants can be used and is selected from the group consisting of acetone, acetonitrile, ethanol, methanol, 2-propanol, tetrahydrofuran, dimethylformamide, water, and the like. can be carried out in the reaction solvent used.
  • acetone, acetonitrile, and dimethylformamide are preferable, and acetonitrile or dimethylformamide is more preferable from the viewpoint of improving the yield in the sulfobetaination reaction or carbobetaination reaction.
  • Purification includes known methods such as column chromatography, salt exchange with ion exchange resin, reverse phase fractionation, distillation, and recrystallization. Purification by a crystallization method from an appropriate organic solvent is more preferred.
  • the betaine group contained in the betaine group-containing trialkoxysilane compound and its hydrolyzate of the present invention imparts hydrophilicity, antistatic properties, antifouling properties, and biocompatibility to the surface of substrates such as those made of glass or resin. , has an action mechanism of reducing light scattering and imparting an anti-fogging action by turning fine condensation water droplets into a water film.
  • the betaine group-containing trialkoxysilane compound and its hydrolyzate of the present invention can be expected to have improved hydrophilicity and antifogging properties as compared to known compounds.
  • the betaine group-containing trialkoxysilane compound and its hydrolyzate of the present invention can increase bonding points with the substrate surface and form a hydrophilic surface for the purpose of making the substrate surface a high-performance anti-fogging surface.
  • a silicon-containing compound can be used in combination.
  • the silicon-containing compound mentioned here means a tetraalkoxysilane-based compound. silica sol and the like.
  • Preferred are tetraalkoxysilanes having an alkoxy group having 1 to 3 carbon atoms and partially hydrolyzed oligomers of the tetraalkoxysilanes. More preferred are tetraethoxysilane and a methylsilicate oligomer which is a partially hydrolyzed oligomer of the tetraalkoxysilane.
  • the present invention provides an antifogging coating composition containing the betaine group-containing trialkoxysilane compound of the present invention and a hydrolyzate thereof.
  • the alkoxysilane groups of the betaine group-containing trialkoxysilane compound of the present invention are easily partially or wholly hydrolyzed by water molecules present in the coating composition or on the surface of the substrate to form a hydrolyzate having a silanol group. It forms a covalent bond through subsequent dehydration condensation with oxygen functional groups present on the surface of the substrate, and bonds to the substrate.
  • the silatranyl group is one form of alkoxysilane group, and is partially or completely hydrolyzed in the coating composition under suitable temperature conditions in the presence of a suitable acid or base to obtain a hydrolyzate having a silanol group. is formed, followed by dehydration condensation with oxygen functional groups present on the substrate surface to form covalent bonds.
  • an alkoxysilane group other than a silatranyl group can also be actively hydrolyzed in a solution containing an acid or a base, similarly to the silatranyl group.
  • the number of hydrogen bonds due to silanol groups increases, so that the affinity with the substrate surface is improved, and the number of bonds per unit area of the substrate surface of the betaine group-containing organosilicon compound can be increased.
  • the hydrolyzate having the silanol group exists as a single substance or as a condensate of two or more. Not only simple substances, but also these condensates form covalent bonds through dehydration condensation with oxygen functional groups present on the substrate surface, and bind to the substrate.
  • the antifogging coating composition of the present invention further comprises a tetraalkoxysilane compound selected from the group consisting of a tetraalkoxysilane having an alkoxy group having 1 to 3 carbon atoms and a solvent-dispersed organosilica sol of the tetraalkoxysilane. can contain.
  • a tetraalkoxysilane compound selected from the group consisting of a tetraalkoxysilane having an alkoxy group having 1 to 3 carbon atoms and a solvent-dispersed organosilica sol of the tetraalkoxysilane. can contain.
  • the tetraalkoxysilanes are readily partially or totally hydrolyzed by water molecules present in the coating composition or on the surface of the substrate to form a hydrolyzate having silanol groups.
  • two or more, for example, 2 to 6 hydrolyzates are condensed to form a hydrolyzed oligomer having a silanol group, followed by dehydration condensation with oxygen functional groups present on the substrate surface to form a covalent bond. Form and bond to the substrate.
  • the hydrolyzate or condensate of the hydrolyzate of the betaine group-containing trialkoxysilane compound and the hydrolyzate or hydrolyzate of the tetraalkoxysilane form a condensate.
  • the condensate also forms a covalent bond through dehydration condensation with an oxygen functional group present on the substrate surface and bonds to the substrate.
  • the solvent used for forming a covalent bond by reacting the betaine group-containing trialkoxysilane compound of the present invention and its hydrolyzate with the substrate surface is the betaine group-containing trialkoxysilane compound of the present invention and its hydrolyzate.
  • Sufficiently soluble solvents can be used and include, for example, acetone, acetonitrile, methanol, ethanol, 2-propanol, tetrahydrofuran, PGME (propylene glycol monomethyl ether), water, and mixtures thereof.
  • Preferred are methanol/water mixtures, ethanol/water mixtures, 2-propanol/water mixtures, and PGME/water mixtures.
  • the ratio of these mixed liquids can be set arbitrarily.
  • the hydrophilic, antistatic, antifouling, and biological A coating composition is prepared that can impart compatibility or anti-fogging properties.
  • the concentration of the betaine group-containing trialkoxysilane compound of the present invention and the hydrolyzate thereof in the coating composition can be arbitrarily set at a concentration of 0.1 to 1000 mmol/L, preferably 1 to 100 mmol/L. and more preferably 5 mmol/L.
  • An acid or base catalyst can be added to the coating composition to facilitate hydrolysis of the alkoxysilane.
  • Examples of acid catalysts include organic carboxylic acids, organic sulfonic acids, hydrogen chloride, sulfuric acid, nitric acid, phosphoric acid and the like, preferably acetic acid.
  • Examples of basic catalysts include an aqueous ammonia solution, organic amines, sodium hydroxide, potassium hydroxide, etc.
  • Preferred examples include an aqueous triethylamine solution, an aqueous triethanolamine solution, and an aqueous ammonia solution.
  • the alkoxysilane groups or silatranyl groups of the betaine group-containing trialkoxysilane compound of the present invention are partially or completely hydrolyzed by water molecules present on the coating composition or substrate to form silanol groups.
  • Formation of covalent bonds by dehydration condensation between the generated silanol groups and oxygen functional groups present on the surface of the substrate includes methods such as immersion, spray coating, flow coating, spin coating, and vapor deposition, preferably by immersion. are carried out at temperatures between 0°C and 80°C. In addition to the above operation, the reaction can be accelerated by drying at a temperature of 0° C. to 130° C. for 1 minute to 1 day.
  • Substrates on which silanol groups are present on the surface are suitable as substrates to be subjected to antifogging treatment using the antifogging coating composition of the present invention.
  • Examples include soda lime glass, lead glass, and borosilicate glass.
  • a substrate made of glass such as The substrate may be previously chemically, physically or electrochemically treated by a known method for improving reactivity with silanol groups. Further, it may be a material other than glass, or a substrate that has been chemically, physically or electrochemically treated by a known method for improving reactivity with silanol groups. Examples of such materials include synthetic resins such as polyethylene, polypropylene, polycarbonate, polyurethane, polystyrene, ABS, polyvinyl chloride, phenol resin, epoxy resin, and polyacetal.
  • the present invention provides an antifogging coating film having a first film containing the antifogging coating composition of the present invention.
  • the present invention provides an antifogging coating film having, in addition to the first film, a second film containing a tetraalkoxysilane having an alkoxy group having 1 to 3 carbon atoms or a partially hydrolyzed oligomer of the tetraalkoxysilane. I will provide a.
  • the antifogging coating film including the first film and the second film, part or all of the alkoxysilane group or silatranyl group of the betaine group-containing trialkoxysilane compound contained in the first film a hydrolyzate, or a condensate of said partial or complete hydrolyzate; a partially hydrolyzed oligomer of said tetraalkoxysilane; or a partial or complete hydrolysis of the alkoxysilane group or silatranyl group of said betaine group-containing trialkoxysilane compound
  • the present invention in a fifth aspect, comprises a substrate and an anti-fogging coating film formed on the surface of the substrate, wherein the anti-fogging coating film comprises the anti-fogging coating composition of the present invention.
  • An anti-fog treated substrate is provided having a first coating.
  • a partial or complete hydrolyzate of the alkoxysilane group or silatranyl group of the betaine group-containing trialkoxysilane compound contained in the first film or the partial or complete hydrolyzate a partially hydrolyzed oligomer of the tetraalkoxysilane; or a partial or complete hydrolyzate of the alkoxysilane group or silatranyl group of the betaine group-containing trialkoxysilane compound and the partially hydrolyzed tetraalkoxysilane.
  • the first membrane is directly bonded to the substrate surface by condensation of the condensate with the oligomer and the silanol groups on the substrate surface.
  • the antifogging treated base material of the present invention further comprises a second film containing a tetraalkoxysilane having an alkoxy group having 1 to 3 carbon atoms or a partially hydrolyzed oligomer of the tetraalkoxysilane.
  • a partial or complete hydrolyzate of the alkoxysilane group or silatranyl group of the betaine group-containing trialkoxysilane compound contained in the first film or a condensate of the partial or complete hydrolyzate; a partially hydrolyzed oligomer of silane; or a condensate of a partial or complete hydrolyzate of the alkoxysilane group or silatranyl group of the betaine group-containing trialkoxysilane compound and the partially hydrolyzed oligomer of tetraalkoxysilane;
  • the tetraalkoxysilane contained in the second film is bonded to the first film and the second film by condensation with the partially hydrolyzed oligomer of the tetraalkoxysilane contained in the second film.
  • the second membrane is directly attached to the substrate surface by condensation of partially hydrolyzed oligomers of and silanol groups on the substrate surface.
  • the present invention provides, in a sixth aspect, a method for producing an anti-fogging treated substrate comprising a substrate and an anti-fogging coating film formed on the surface of the substrate, wherein to form a first film.
  • part of the alkoxysilane group or silatranyl group of the betaine group-containing trialkoxysilane compound contained in the first film or a wholly hydrolyzate, or a condensate of said partial or wholly hydrolyzate; said partially hydrolyzed oligomer of said tetraalkoxysilane;
  • the condensation of the fully hydrolyzate, the partially hydrolyzed oligomer of the tetraalkoxysilane, and the condensation of the silanol groups on the substrate surface directly bonds the first membrane to the substrate surface.
  • an alkoxy group having 1 to 3 carbon atoms is added to the surface of the substrate before the step of forming the first film.
  • forming a second film by depositing a composition containing a tetraalkoxysilane or a partially hydrolyzed oligomer of the tetraalkoxysilane, wherein the step of forming the second film includes: In the step of forming the first film by directly bonding the second film to the substrate surface by condensation of the contained partially hydrolyzed oligomer of tetraalkoxysilane and the silanol groups on the substrate surface, A partial or complete hydrolyzate of the alkoxysilane group or silatranyl group of the betaine group-containing trialkoxysilane compound contained in the first film, or a condensate of the partial or complete hydrolyzate; a hydrolyzed oligomer; or a condensate of a partial
  • the surface of the substrate can be made anti-fogging.
  • the betaine group-containing trialkoxysilane compound of the present invention undergoes partial or complete hydrolysis by water molecules present in the antifogging coating composition or on the substrate surface to form a hydrolyzate having silanol groups, This silanol group is covalently bonded, for example, by dehydration condensation with oxygen functional groups present on the surface of a substrate made of glass or resin.
  • the number of betaine group-containing trialkoxysilane compounds bonded per unit area of the substrate surface is increased. It is necessary to let In order to increase the number of betaine group-containing trialkoxysilane compounds to be bonded, it is conceivable to increase the number of silanol groups present on the substrate surface, that is, the number of bonding points.
  • the present inventors have confirmed that anti-fogging properties are improved by using the betaine group-containing trialkoxysilane compound of the present invention when tetraalkoxysilane is applied on the substrate surface in advance. This is because the tetraalkoxysilane undergoes partial or complete hydrolysis easily by surrounding water molecules and the like, and then two or more, for example, 2 to 6 hydrolysates are condensed to form a silanol. It was speculated that the reason was the increased number of attachment points by producing hydrolyzed oligomers with groups.
  • the surface of the base material can be improved without previously applying the tetraalkoxysilane to the surface of the base material. It was demonstrated that anti-fogging and antifouling properties can be improved while maintaining hydrophilicity. In particular, the antifogging property could be greatly improved.
  • a betaine group-containing trialkoxysilane compound and a tetraalkoxysilane are used in combination, first, a thin film of tetraalkoxysilane is formed on the surface of a substrate, and then a betaine group-containing trialkoxysilane compound is formed thereon.
  • a stepwise method of applying an anti-fog coating composition containing a silane compound; and a batch method of applying an anti-fog coating composition containing a tetraalkoxysilane together with a trialkoxysilane compound containing a betaine group to a substrate surface. is mentioned.
  • the betaine group-containing trialkoxysilane compounds 1 to 12 of the present invention were synthesized according to the following synthesis scheme.
  • 1 H-NMR was measured in each deuterated solvent at a measurement frequency of 300 MHz
  • 13 C-NMR was measured in each deuterated solvent at a measurement frequency of 75 MHz. ⁇ values (ppm) are shown.
  • mass spectrometry was measured with an electrospray ionization mass spectrometer (ESI-MS), and positive ions [M + H] + protonated to the main molecule (M) or positive ions [M + Na ] + detected value.
  • ESI-MS electrospray ionization mass spectrometer
  • Amination reaction A mixture of (3-bromopropyl)trimethoxysilane (93.2 g), N,N,N'-trimethylethylenediamine (39.6 g) and tetrahydrofuran (120 ml) was stirred at room temperature for 2 days. The reaction mixture was stirred at 70° C. for 2 days. After cooling to room temperature, 5 mol/L sodium methoxide-methanol solution (73.7 g) was added and stirred for 30 minutes. The insoluble matter was filtered off, and the filtrate was concentrated under reduced pressure.
  • Triethanolamine (2.95 g) was added to the reaction mixture, and the mixture was further stirred at 110°C for 1 day. The reaction mixture was allowed to cool to room temperature and then concentrated under reduced pressure. [3-(2,8,9-Trioxa-5-aza-1-silabicyclo[3.3.3]undecane-1-yl)propoxy]phenyl ⁇ -N,N-dimethylmethanamine (180 mg) was colorless. Obtained as an oil. MASS: ESI-MS [M+H] + 367.
  • a glass slide (Slide glass S1225, manufactured by Matsunami Glass Industry Co., Ltd.) was immersed in 10% sodium lauryl sulfate aqueous solution, purified water, and acetone in that order, ultrasonically treated at room temperature for 10 minutes each, and then further immersed in a 15% sodium hydroxide aqueous solution. Then, the surface of the slide glass was activated by ultrasonic treatment at 50°C for 30 minutes.
  • the slide glass was immersed in antifogging coating composition 1 overnight at room temperature. After removing the slide glass, it was immersed in ethanol and sonicated for 10 minutes at room temperature. After drying with nitrogen gas, heat treatment was performed at 80° C. for 1 hour. After standing to cool, the slide glass was washed with tap water for 30 seconds and then dried with nitrogen gas to obtain anti-fogging treated glass 1.
  • Anti-fogging treated glass 2 was obtained by treating in the same manner as in Example 1 except that the slide glass was immersed in anti-fogging coating composition 2 at 60° C. for 4 hours.
  • Antifogging coating composition 3 was obtained by preparing a solution of L and adding 2 vol% of acetic acid thereto.
  • Anti-fogging treated glass 3 was obtained by treating in the same manner as in Example 1 except that the slide glass was immersed in anti-fogging coating composition 3 at 60° C. for 4 hours.
  • Antifogging coating composition 5 was obtained by doing so.
  • Anti-fogging treated glass 5 was obtained by treating in the same manner as in Example 1 except that the slide glass was immersed in anti-fogging coating composition 5 at 60° C. for 4 hours.
  • An antifogging coating composition 6 was obtained by adding
  • An anti-fogging treated glass 6 was obtained by treating in the same manner as in Example 1 except that the slide glass was immersed in the anti-fogging coating composition 6 at 60° C. for 4 hours.
  • Anti-fogging treated glass 7 was obtained by treating in the same manner as in Example 1 except that the slide glass was immersed in anti-fogging coating composition 7 at 60° C. for 4 hours.
  • Anti-fogging treated glass 8 was obtained by the same treatment as in Example 1 except that the slide glass was immersed in anti-fogging coating composition 8 at 60° C. for 4 hours.
  • An anti-fogging treated glass 10 was obtained by treating in the same manner as in Example 1 except that the slide glass was immersed in the anti-fogging coating composition 10 at 60° C. for 4 hours.
  • a slide glass (Slide glass S1225 manufactured by Matsunami Glass Industry Co., Ltd.) was immersed in 10% sodium lauryl sulfate aqueous solution, purified water, and acetone in that order, and ultrasonically treated at room temperature for 10 minutes each. The slide glass surface was activated by immersion at room temperature for 20 minutes.
  • This glass slide was dip-coated with anti-fogging coating composition 13 at room temperature and allowed to dry at room temperature while the glass slide was removed. After the dried slide glass was washed with tap water for 30 seconds, it was dried with nitrogen gas to obtain anti-fogging treated glass 13 .
  • this antifogging coating composition 14 it was confirmed from the results of HPLC analysis that compound 11 was completely hydrolyzed and converted to compound 13.
  • An anti-fogging treated glass 14 was obtained by treating in the same manner as in Example 1 except that the slide glass was immersed in the anti-fogging coating composition 14 at 60° C. for 4 hours.
  • Table 1 shows the results of water contact angle measurement, antifogging property test, and antifouling property test on the antifogging treated glasses 1 to 17 obtained in Examples 1 to 14 and Comparative Examples 1 to 3, respectively.
  • the compound of the present invention is a highly hydrophilic betaine-based organosilicon compound, but can be obtained in the form of powder and imparts anti-fogging and anti-fouling properties to substrates.
  • compounds 1, 3, 11, 12 and 13 were found to impart superior antifogging properties to substrates as compared to conventionally known betaine organosilicon compounds.
  • an antifogging treated base material superior to that obtained by using the compound of the present invention alone can be produced.
  • Compounds 12 and 13 in which all the trialkoxysilyl groups were hydrolyzed exhibited excellent antifogging properties even when no silicon-containing compound was used.
  • it was confirmed that by using the compound of the present invention it is possible to form a film exhibiting excellent anti-fogging properties by treatment at room temperature for a short period of time without performing a high-temperature, long-term immersion reaction. rice field.
  • a betaine-based organosilicon compound in powder form that has higher bonding properties to substrates and anti-fogging properties than conventional ones, so that coating compositions with improved anti-fogging properties can be produced at high production rates.
  • a coating film with improved antifogging properties can be formed at room temperature in a short period of time.
  • the compound of the present invention can be used for general window glass, glass for high places and narrow places such as skyscrapers, glass for cold places such as refrigerated and freezer showcases, glass for hot and humid environments such as sauna rooms, glass for mobile devices, automobiles, etc.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Paints Or Removers (AREA)
  • Silicon Polymers (AREA)

Abstract

Provided is a betaine-based organosilicon compound having improved anti-fogging function, antifouling function and binding to a substrate made of glass, resin or similar. More specifically, in the present invention, a trialkoxylsylil group and a betaine structure are bonded via a spacer having a specific structure to synthesize a betaine group-containing trialkoxysilane compound and a hydrolysate thereof. Also provided is a molded product using said compound and having excellent anti-fogging and antifouling functions.

Description

ベタイン基含有有機ケイ素化合物およびその成形物と製造方法Organosilicon compound containing betaine group, molded article thereof and production method
 本発明は、ベタイン構造を有する有機ケイ素化合物、およびその成形物と製造方法に関する。 The present invention relates to an organosilicon compound having a betaine structure, a molded article thereof, and a method for producing the same.
 ベタイン化合物は、同一分子内の互いに隣り合わない位置に正電荷部位と負電荷部位とを有する両イオン性化合物であって、分子全体としては電気的に中性な化合物である。正電荷部位としては、4級アミン、スルホニウム、ホスホニウムなどが挙げられ、負電荷部位としては、カルボキシル基、スルホ基などが挙げられる。
 例えば、特許文献1には、正電荷部位として4級アミンと、負電荷部位としてカルボキシル基とを有するカルボベタイン系ケイ素化合物が開示され、特許文献2には、正電荷部位として4級アミンと、負電荷部位としてスルホ基とを有するスルホベタイン系ケイ素化合物が開示されている。
A betaine compound is an amphoteric compound having a positively charged site and a negatively charged site at positions that are not adjacent to each other in the same molecule, and is an electrically neutral compound as a whole molecule. Examples of positively charged sites include quaternary amines, sulfonium, and phosphonium, and examples of negatively charged sites include carboxyl groups and sulfo groups.
For example, Patent Document 1 discloses a carbobetaine-based silicon compound having a quaternary amine as a positive charge site and a carboxyl group as a negative charge site, and Patent Document 2 discloses a quaternary amine as a positive charge site, A sulfobetaine-based silicon compound having a sulfo group as a negatively charged site is disclosed.
 これらのようなベタイン構造を有する化合物は、高い親水性を示し、両性界面活性剤の機能を有し、例えば、シャンプー、ボディソープ、台所洗剤などにも使用されている。また、加水分解可能な官能基をもつ有機ケイ素化合物は、ガラス製や樹脂製などの基材表面に適用するコーティング組成物に使用されている。よって、ベタイン構造を有する有機ケイ素化合物は、コーティング組成物の親水性を制御することができるので、様々な基材表面に高い機能を付与することが期待される。 Compounds with a betaine structure such as these exhibit high hydrophilicity and have the function of amphoteric surfactants, and are also used, for example, in shampoos, body soaps, and kitchen detergents. Organosilicon compounds having hydrolyzable functional groups are also used in coating compositions that are applied to the surfaces of substrates such as those made of glass or resin. Therefore, the organosilicon compound having a betaine structure can control the hydrophilicity of the coating composition, and is expected to impart high functionality to various substrate surfaces.
国際公開第2016/167097号WO2016/167097 特開2018-62500号公報Japanese Patent Application Laid-Open No. 2018-62500 特開平7-101965号公報JP-A-7-101965
 特許文献1および2に開示されるベタイン系ケイ素化合物は、基材表面に親水性、帯電防止性、防汚性、生体適合性などを付与することができるが、防曇性が不十分であった。また、これらケイ素化合物は潮解性・加水分解性を有するため、より高性能が期待できる親水性基を有するケイ素化合物を合成・単離することは困難であった。 The betaine-based silicon compounds disclosed in Patent Documents 1 and 2 can impart hydrophilicity, antistatic properties, antifouling properties, biocompatibility, etc. to the surface of substrates, but their antifogging properties are insufficient. rice field. Moreover, since these silicon compounds are deliquescent and hydrolyzable, it has been difficult to synthesize and isolate a silicon compound having a hydrophilic group that can be expected to have higher performance.
 そこで、本発明者らは、基材への結合機能および防曇付与機能が向上したベタイン系有機ケイ素化合物について鋭意検討し、ガラス製や樹脂製などの基材に対する結合機能を発揮するトリアルコキシルシリル基、および、基材表面に親水性、帯電防止性、防汚性、生体適合性に加えて、特に、防曇性の付与機能を発揮するベタイン構造の双方を特定のスペーサーで結合されたベタイン基含有トリアルコキシシラン化合物およびその加水分解物の合成に成功した。
 本発明のベタイン基含有トリアルコキシシラン化合物およびその加水分解物は、3級アミンを有するトリアルコキシシランと、ハロゲン化アルキルスルホン酸塩および環状スルトン化合物、またはハロゲン化アルキルカルボン酸塩などのカルボキシル基前駆体を有する求電子剤とを、アセトン、アセトニトリル、エタノール、メタノール、2-プロパノール、テトラヒドロフラン、ジメチルホルムアミド、水などの溶媒中で合成することができる。
Therefore, the present inventors have made intensive studies on betaine-based organosilicon compounds with improved bonding functions to substrates and anti-fogging functions, and trialkoxylsilyl compounds exhibit bonding functions to substrates such as those made of glass or resin. A betaine in which both a group and a betaine structure that exerts the function of imparting hydrophilicity, antistatic properties, antifouling properties, biocompatibility, and, in particular, antifogging properties to the surface of a substrate are bonded with a specific spacer. We succeeded in synthesizing group-containing trialkoxysilane compounds and their hydrolysates.
The betaine group-containing trialkoxysilane compound and the hydrolyzate thereof of the present invention comprise a trialkoxysilane having a tertiary amine, a halogenated alkylsulfonate and a cyclic sultone compound, or a carboxyl group precursor such as a halogenated alkylcarboxylate. Electrophiles can be synthesized in solvents such as acetone, acetonitrile, ethanol, methanol, 2-propanol, tetrahydrofuran, dimethylformamide, water, and the like.
 本発明のベタイン基含有トリアルコキシシラン化合物は、従来よりも基材への結合特性および防曇付与特性が高く、かつ、ベタイン基含有トリアルコキシシラン化合物を固体形態で得ることができる。また、本発明のベタイン基含有トリアルコキシシラン化合物の加水分解物は、基材への結合特性および防曇付与特性が、特に優れている。 The betaine group-containing trialkoxysilane compound of the present invention has higher bonding properties to substrates and anti-fogging properties than conventional ones, and the betaine group-containing trialkoxysilane compound can be obtained in a solid form. In addition, the hydrolyzate of the betaine group-containing trialkoxysilane compound of the present invention is particularly excellent in bonding properties to substrates and antifogging properties.
 本発明は、第1の局面において、式(1): In a first aspect of the present invention, the formula (1):
Figure JPOXMLDOC01-appb-C000018
{式中、R、RおよびRは、独立して、C~Cアルキル基であるか、または、それらが各々結合する-O-Si-と一緒になって、式(2):
Figure JPOXMLDOC01-appb-C000018
{wherein R 1 , R 2 and R 3 are independently C 1 -C 3 alkyl groups, or together with the ):
Figure JPOXMLDOC01-appb-C000019
で表されるシラトラニル基を形成し、
(A)
 Xは、式(3):
Figure JPOXMLDOC01-appb-C000019
to form a silatranyl group represented by
(A)
X is the formula (3):
Figure JPOXMLDOC01-appb-C000020
(式中、aは2~18のいずれかの整数を示す。)で表されるアルキレン基であるか、または、式(4):
Figure JPOXMLDOC01-appb-C000020
(Wherein, a represents any integer from 2 to 18.) is an alkylene group represented by the formula (4):
Figure JPOXMLDOC01-appb-C000021
(式中、bおよびcは、独立して、2~4のいずれかの整数を示す。)で表されるカルバマートアルキレン基であるか、または、式(5):
Figure JPOXMLDOC01-appb-C000021
(Wherein, b and c independently represent any integer of 2 to 4), or a carbamate alkylene group represented by formula (5):
Figure JPOXMLDOC01-appb-C000022
(式中、bおよびcは、独立して、2~4のいずれかの整数を示す。)で表されるウレア含有アルキレン基であるか、または、式(6):
Figure JPOXMLDOC01-appb-C000022
(Wherein, b and c independently represent any integer from 2 to 4), or a urea-containing alkylene group represented by formula (6):
Figure JPOXMLDOC01-appb-C000023
(式中、dは1~10のいずれかの整数を示し、eは2~4のいずれかの整数を示す。)で表されるポリエチレンオキシアルキレン基であるか、または、式(7):
Figure JPOXMLDOC01-appb-C000023
(Wherein, d represents an integer of 1 to 10, and e represents an integer of 2 to 4.) or a polyethyleneoxyalkylene group represented by formula (7):
Figure JPOXMLDOC01-appb-C000024
(式中、fおよびgは、独立して、2~4のいずれかの整数を示し、Yは、-NH-、-O-または-S-であり、Zは、
Figure JPOXMLDOC01-appb-C000024
(Wherein, f and g independently represent an integer of 2 to 4, Y is -NH-, -O- or -S-, and Z is
Figure JPOXMLDOC01-appb-C000025

からなる群から選択されるいずれかの基である。)で表される置換基であって、
  RおよびRは、独立して、C~Cアルキル基または式(8):
Figure JPOXMLDOC01-appb-C000025

Any group selected from the group consisting of ) is a substituent represented by
R 4 and R 5 are independently C 1 -C 3 alkyl groups or formula (8):
Figure JPOXMLDOC01-appb-C000026
(式中、RおよびRは、独立して、C~Cアルキル基であり、hおよびiは、独立して、1~4のいずれかの整数であり、jは1~3のいずれかの整数であり、ここに、複数のh、iおよびRは、それぞれ、異なっていてもよく、Aは-SO または-COOである)で表される(ポリ)ベタイン基、
 Rは、C~Cスルホアルキル基またはC~Cカルボキシルアルキル基であり、
 ただし、RおよびRが同時にC~Cアルキル基である場合を除く。;または、
(B)
 X、R、Rおよびそれらが結合する第4級化窒素原子は、一緒になって、式(9):
Figure JPOXMLDOC01-appb-C000026
(wherein R 7 and R 8 are independently C 1 -C 3 alkyl groups, h and i are independently any integers from 1 to 4, j is from 1 to 3 wherein h, i and R 7 may be different, and A is —SO 3 or —COO (poly)betaine represented by group,
R 6 is a C 1 -C 4 sulfoalkyl group or a C 1 -C 4 carboxylalkyl group,
However, the case where R 4 and R 5 are both C 1 -C 3 alkyl groups is excluded. ;or,
(B)
X, R 4 , R 5 and the quaternized nitrogen atom to which they are attached are taken together to form Formula (9):
Figure JPOXMLDOC01-appb-C000027
(式中、kは2~4のいずれかの整数である。)で表されるイミダゾリニウム基含有基であり、
 Rは、C~Cスルホアルキル基またはC~Cカルボキシルアルキル基である。;または、
(C)
 Xは、式(10):
Figure JPOXMLDOC01-appb-C000027
(Wherein, k is an integer of 2 to 4.) An imidazolinium group-containing group represented by
R 6 is a C 1 -C 4 sulfoalkyl group or a C 1 -C 4 carboxylalkyl group. ;or,
(C)
X is the formula (10):
Figure JPOXMLDOC01-appb-C000028
(式中、mおよびnは、独立して、1~4のいずれかの整数である。)で表されるフェノキシ基含有基であり、RおよびRは、独立して、C~Cアルキル基または式(8)で表される(ポリ)ベタイン基であり、Rは、C~Cスルホアルキル基またはC~Cカルボキシルアルキル基である。}で表されるベタイン基含有トリアルコキシシラン化合物およびその加水分解物を提供する。
 なお、「(ポリ)ベタイン基」なる用語は、ベタイン基およびポリベタイン基の双方を包含し、「ポリベタイン基」とは、複数のベタイン部分を有する基をいう。本発明において、ベタイン基は、スルホベタイン基であっても、カルボベタイン基であってもよい。
Figure JPOXMLDOC01-appb-C000028
(Wherein, m and n are independently any integers of 1 to 4.) is a phenoxy group-containing group represented by R 4 and R 5 are independently C 1 to It is a C 3 alkyl group or a (poly)betaine group represented by formula (8), and R 6 is a C 1 -C 4 sulfoalkyl group or a C 1 -C 4 carboxylalkyl group. } and a hydrolyzate thereof are provided.
The term "(poly)betaine group" includes both a betaine group and a polybetaine group, and the term "polybetaine group" refers to a group having a plurality of betaine moieties. In the present invention, the betaine group may be a sulfobetaine group or a carbobetaine group.
 本発明において、式(1)で表されるベタイン基含有トリアルコキシシラン化合物およびその加水分解物は、
式(11):
In the present invention, the betaine group-containing trialkoxysilane compound represented by formula (1) and its hydrolyzate are
Formula (11):
Figure JPOXMLDOC01-appb-C000029
もしくは式(12):
Figure JPOXMLDOC01-appb-C000029
or formula (12):
Figure JPOXMLDOC01-appb-C000030
(式中、R、R10、R11、R12およびR13は、独立して、C~Cアルキル基であり、pおよびqは、独立して、1~4のいずれかの整数であり、rは、2または3の整数であり、rは、1~3のいずれかの整数であり、ここに、複数のp、qおよびR12は、それぞれ、異なっていてもよく、Aは-SO または-COOである)で表される、(ポリ)ベタイン基含有トリアルコキシシラン化合物(A)およびその加水分解物;または
 式(13):
Figure JPOXMLDOC01-appb-C000030
(wherein R 9 , R 10 , R 11 , R 12 and R 13 are independently C 1 -C 3 alkyl groups, p and q are independently any of 1-4 is an integer, r 1 is an integer of 2 or 3, r 2 is any integer of 1 to 3, and a plurality of p, q and R 12 may each be different A (poly)betaine group-containing trialkoxysilane compound (A) and a hydrolyzate thereof, wherein A is —SO 3 or —COO ; or Formula (13):
Figure JPOXMLDOC01-appb-C000031
(式中、sおよびtは、独立して、1~4のいずれかの整数であり、Aは-SO または-COOである)で表される、イミダゾリニウム系ベタイン基含有トリアルコキシシラン化合物(B)およびその加水分解物;または
式(14):
Figure JPOXMLDOC01-appb-C000031
(Wherein, s and t are independently any integers from 1 to 4, and A is -SO 3 - or -COO- ) . Alkoxysilane compound (B) and its hydrolyzate; or formula (14):
Figure JPOXMLDOC01-appb-C000032
(式中、R14およびR15は、独立して、C~Cアルキル基であり、uおよびvは、独立して、1~4のいずれかの整数であり、wは1~4のいずれかの整数であり、Aは-SO または-COOである)で表される、フェノキシ系ベタイン基含有トリアルコキシシラン化合物(C)およびその加水分解物である。
Figure JPOXMLDOC01-appb-C000032
(wherein R 14 and R 15 are independently C 1 -C 3 alkyl groups, u and v are independently any integers from 1 to 4, and w is from 1 to 4 and A is —SO 3 or —COO ), and a hydrolyzate thereof.
 式(1)で表されるベタイン基含有トリアルコキシシラン化合物およびその加水分解物として、具体的には、以下の化合物1~11およびその加水分解物が挙げられる。 Specific examples of the betaine group-containing trialkoxysilane compound represented by formula (1) and hydrolysates thereof include the following compounds 1 to 11 and hydrolysates thereof.
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000033
 式(1)で表されるベタイン基含有トリアルコキシシラン化合物の加水分解物として、具体的には、以下の化合物12および13が挙げられる。 Specific examples of the hydrolyzate of the betaine group-containing trialkoxysilane compound represented by formula (1) include compounds 12 and 13 below.
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000034
 化合物1~5および9~13は、それぞれ、式(11)または式(12)で表される(ポリ)ベタイン基含有トリアルコキシシラン化合物(A)およびその加水分解物の群に属し、化合物6および7およびその加水分解物は、それぞれ、式(13)で表されるイミダゾリニウム系ベタイン基含有トリアルコキシシラン化合物(B)およびその加水分解物の群に属し、化合物8およびその加水分解物は、式(14)で表されるフェノキシ系ベタイン基含有トリアルコキシシラン化合物(C)およびその加水分解物の群に属する。 Compounds 1 to 5 and 9 to 13 belong to the group of (poly)betaine group-containing trialkoxysilane compounds (A) represented by formula (11) or formula (12) and hydrolysates thereof, and compound 6 and 7 and its hydrolyzate belong to the group of the imidazolinium-based betaine group-containing trialkoxysilane compound (B) represented by formula (13) and its hydrolyzate, respectively, and compound 8 and its hydrolyzate belongs to the group of phenoxy betaine group-containing trialkoxysilane compounds (C) represented by formula (14) and hydrolysates thereof.
 本発明は、第2の局面において、式(1)で表されるベタイン基含有トリアルコキシシラン化合物およびその加水分解物を得るための製造方法を提供する。 In the second aspect, the present invention provides a production method for obtaining a betaine group-containing trialkoxysilane compound represented by formula (1) and a hydrolyzate thereof.
 本発明において、式(1)で表されるベタイン基含有トリアルコキシシラン化合物およびその加水分解物の製造方法は限定されないが、代表的な製造方法を説明する。
 本発明において、式(1)で表されるベタイン基含有トリアルコキシシラン化合物を、式(15):
In the present invention, the method for producing the betaine group-containing trialkoxysilane compound represented by formula (1) and the hydrolyzate thereof are not limited, but representative production methods will be described.
In the present invention, the betaine group-containing trialkoxysilane compound represented by formula (1) is represented by formula (15):
Figure JPOXMLDOC01-appb-C000035
(式中、R~RおよびXは、式(1)~式(10)における定義と同一であり、Eはスルホ基前駆体またはカルボキシル基前駆体を有する求電子剤である。)で表される反応式に従うスルホベタイン化反応またはカルボベタイン化反応によって合成することができる。
Figure JPOXMLDOC01-appb-C000035
(Wherein, R 1 to R 6 and X are the same as defined in formulas (1) to (10), and E is an electrophile having a sulfo group precursor or a carboxyl group precursor.) It can be synthesized by a sulfobetaylation reaction or a carbobetaylation reaction according to the represented reaction formula.
 3級アミンを有するトリアルコキシシランは市販品であってよく、または、市販品を原料として用いる公知の方法によって合成してもよい。
 ここで用いるスルホ基前駆体またはカルボキシル基前駆体を有する求電子剤(E)とは、ハロゲン化アルキルスルホン酸塩および環状スルトン化合物、およびハロゲン化アルキルカルボン酸塩が挙げられる。より好ましくは1,3-プロパンスルトンおよび1,4-ブタンスルトン、およびクロロ酢酸ナトリウムである。
A trialkoxysilane having a tertiary amine may be a commercially available product, or may be synthesized by a known method using a commercially available product as a starting material.
The electrophiles (E) having a sulfo group precursor or a carboxyl group precursor used herein include halogenated alkylsulfonates, cyclic sultone compounds, and halogenated alkylcarboxylates. More preferred are 1,3-propanesultone and 1,4-butanesultone, and sodium chloroacetate.
 3級アミンを有するトリアルコキシシランとスルホ基前駆体またはカルボキシル基前駆体を有する求電子剤(E)とのスルホベタイン化反応またはカルボベタイン化反応では、求電子剤を3級アミンに対して1から2当量を用い、これらの混合物を不活性な溶媒中、冷却下から加熱下、好ましくは室温から溶媒還流温度の間で、通常1時間から1週間撹拌する。
 前記スルホベタイン化反応またはカルボベタイン化反応において、反応物質を十分に溶解する溶媒を用いることができ、アセトン、アセトニトリル、エタノール、メタノール、2-プロパノール、テトラヒドロフラン、ジメチルホルムアミドおよび水等からなる群から選択される反応溶媒中で実施できる。本発明においては、アセトン、アセトニトリル、およびジメチルホルムアミドが好ましく、スルホベタイン化反応またはカルボベタイン化反応における収率を向上させる観点で、アセトニトリルまたはジメチルホルムアミドがより好ましい。
In the sulfobetaination reaction or carbobetaination reaction between a trialkoxysilane having a tertiary amine and an electrophile (E) having a sulfo group precursor or a carboxyl group precursor, the electrophile is 1-fold relative to the tertiary amine. to 2 equivalents are used, and the mixture is stirred in an inert solvent under cooling to heating, preferably between room temperature and the reflux temperature of the solvent, usually for 1 hour to 1 week.
In the sulfobetaylation reaction or carbobetaylation reaction, a solvent that sufficiently dissolves the reactants can be used and is selected from the group consisting of acetone, acetonitrile, ethanol, methanol, 2-propanol, tetrahydrofuran, dimethylformamide, water, and the like. can be carried out in the reaction solvent used. In the present invention, acetone, acetonitrile, and dimethylformamide are preferable, and acetonitrile or dimethylformamide is more preferable from the viewpoint of improving the yield in the sulfobetaination reaction or carbobetaination reaction.
 精製はカラムクロマトグラフィー、イオン交換樹脂による塩交換、逆相分取、蒸留、再結晶法等公知の方法が挙げられる。より好ましくは適切な有機溶媒中からの結晶法による精製が挙げられる。 Purification includes known methods such as column chromatography, salt exchange with ion exchange resin, reverse phase fractionation, distillation, and recrystallization. Purification by a crystallization method from an appropriate organic solvent is more preferred.
 本発明のベタイン基含有トリアルコキシシラン化合物およびその加水分解物が有するベタイン基は、ガラス製や樹脂製などの基材表面に親水性、帯電防止性、防汚性、生体適合性を付与すると共に、微細な結露水滴を水膜化することにより光の散乱を低減して防曇作用を付与する作用機序を有する。本発明のベタイン基含有トリアルコキシシラン化合物およびその加水分解物は公知の化合物よりも親水性・防曇性の向上が期待できる。 The betaine group contained in the betaine group-containing trialkoxysilane compound and its hydrolyzate of the present invention imparts hydrophilicity, antistatic properties, antifouling properties, and biocompatibility to the surface of substrates such as those made of glass or resin. , has an action mechanism of reducing light scattering and imparting an anti-fogging action by turning fine condensation water droplets into a water film. The betaine group-containing trialkoxysilane compound and its hydrolyzate of the present invention can be expected to have improved hydrophilicity and antifogging properties as compared to known compounds.
 本発明のベタイン基含有トリアルコキシシラン化合物およびその加水分解物は、基材表面を高性能な防曇性表面とする目的のために、基材表面との結合点増加や親水性表面を形成できるケイ素含有化合物を併用することができる。ここで挙げるケイ素含有化合物とは、テトラアルコキシシラン系化合物を意味し、具体的には、炭素数1~3のアルコキシ基を有するテトラアルコキシシランならびに前記テトラアルコキシシランの部分加水分解オリゴマーまたは溶媒分散オルガノシリカゾルなどが挙げられる。好ましくは、炭素数1~3のアルコキシ基を有するテトラアルコキシシラン、および前記テトラアルコキシシランの部分加水分解オリゴマーである。より好ましくは、テトラエトキシシラン、前記テトラアルコキシシランの部分加水分解オリゴマーであるメチルシリケートオリゴマーが挙げられる。 The betaine group-containing trialkoxysilane compound and its hydrolyzate of the present invention can increase bonding points with the substrate surface and form a hydrophilic surface for the purpose of making the substrate surface a high-performance anti-fogging surface. A silicon-containing compound can be used in combination. The silicon-containing compound mentioned here means a tetraalkoxysilane-based compound. silica sol and the like. Preferred are tetraalkoxysilanes having an alkoxy group having 1 to 3 carbon atoms and partially hydrolyzed oligomers of the tetraalkoxysilanes. More preferred are tetraethoxysilane and a methylsilicate oligomer which is a partially hydrolyzed oligomer of the tetraalkoxysilane.
 したがって、本発明は、第3の局面において、本発明のベタイン基含有トリアルコキシシラン化合物およびその加水分解物を含有する防曇性コーティング組成物を提供する。 Accordingly, in a third aspect, the present invention provides an antifogging coating composition containing the betaine group-containing trialkoxysilane compound of the present invention and a hydrolyzate thereof.
 本発明のベタイン基含有トリアルコキシシラン化合物が有するアルコキシシラン基はコーティング組成物中または基材表面に存在する水分子により容易に一部または全部加水分解を受けて、シラノール基を有する加水分解物を生成し、続く基材表面に存在する酸素官能基との脱水縮合により共有結合を形成し、基材に結合する。また、シラトラニル基はアルコキシシラン基の一形態であり、適切な酸または塩基の存在下、適切な温度条件下のコーティング組成物中で一部または全部加水分解して、シラノール基を有する加水分解物を生成し、続く基材表面に存在する酸素官能基との脱水縮合により共有結合を形成する。シラトラニル基以外のアルコキシシラン基について、シラトラニル基と同様、酸または塩基を含む溶液中で積極的に加水分解させることもできる。かかる場合、シラノール基による水素結合の数が増加することとなるので、基材表面との親和性が向上し、ベタイン基含有有機ケイ素化合物の基材表面単位面積当たりの結合数を増加させることができる。
 なお、コーティング組成物中、前記シラノール基を有する加水分解物は、単体または2以上の縮合体とし存在する。単体のみならず、これらの縮合体も、基材表面に存在する酸素官能基との脱水縮合により共有結合を形成し、基材に結合する。
The alkoxysilane groups of the betaine group-containing trialkoxysilane compound of the present invention are easily partially or wholly hydrolyzed by water molecules present in the coating composition or on the surface of the substrate to form a hydrolyzate having a silanol group. It forms a covalent bond through subsequent dehydration condensation with oxygen functional groups present on the surface of the substrate, and bonds to the substrate. In addition, the silatranyl group is one form of alkoxysilane group, and is partially or completely hydrolyzed in the coating composition under suitable temperature conditions in the presence of a suitable acid or base to obtain a hydrolyzate having a silanol group. is formed, followed by dehydration condensation with oxygen functional groups present on the substrate surface to form covalent bonds. An alkoxysilane group other than a silatranyl group can also be actively hydrolyzed in a solution containing an acid or a base, similarly to the silatranyl group. In such a case, the number of hydrogen bonds due to silanol groups increases, so that the affinity with the substrate surface is improved, and the number of bonds per unit area of the substrate surface of the betaine group-containing organosilicon compound can be increased. can.
In addition, in the coating composition, the hydrolyzate having the silanol group exists as a single substance or as a condensate of two or more. Not only simple substances, but also these condensates form covalent bonds through dehydration condensation with oxygen functional groups present on the substrate surface, and bind to the substrate.
 本発明の防曇性コーティング組成物は、さらに、炭素数1~3のアルコキシ基を有するテトラアルコキシシラン、および前記テトラアルコキシシランの溶媒分散オルガノシリカゾルからなる群から選択されるテトラアルコキシシラン系化合物を含有することができる。
 前記テトラアルコキシシランはコーティング組成物中または基材表面に存在する水分子により容易に一部または全部加水分解を受けて、シラノール基を有する加水分解物を生成する。さらに、2個以上、例えば、2~6個の加水分解物が縮合して、シラノール基を有する加水分解オリゴマーを生成し、続く基材表面に存在する酸素官能基との脱水縮合により共有結合を形成し、基材に結合する。
 なお、コーティング組成物中、前記ベタイン基含有トリアルコキシシラン化合物の加水分解物または加水分解物の縮合体と、前記テトラアルコキシシランの加水分解物または加水分解オリゴマーとは縮合体を形成し、これらの縮合体も、基材表面に存在する酸素官能基との脱水縮合により共有結合を形成し、基材に結合する。
The antifogging coating composition of the present invention further comprises a tetraalkoxysilane compound selected from the group consisting of a tetraalkoxysilane having an alkoxy group having 1 to 3 carbon atoms and a solvent-dispersed organosilica sol of the tetraalkoxysilane. can contain.
The tetraalkoxysilanes are readily partially or totally hydrolyzed by water molecules present in the coating composition or on the surface of the substrate to form a hydrolyzate having silanol groups. Furthermore, two or more, for example, 2 to 6 hydrolyzates are condensed to form a hydrolyzed oligomer having a silanol group, followed by dehydration condensation with oxygen functional groups present on the substrate surface to form a covalent bond. Form and bond to the substrate.
In the coating composition, the hydrolyzate or condensate of the hydrolyzate of the betaine group-containing trialkoxysilane compound and the hydrolyzate or hydrolyzate of the tetraalkoxysilane form a condensate. The condensate also forms a covalent bond through dehydration condensation with an oxygen functional group present on the substrate surface and bonds to the substrate.
 本発明のベタイン基含有トリアルコキシシラン化合物およびその加水分解物を基材表面と反応させて共有結合を形成するときに用いる溶媒は、本発明のベタイン基含有トリアルコキシシラン化合物およびその加水分解物を十分に溶解する溶媒を用いることができ、例えば、アセトン、アセトニトリル、メタノール、エタノール、2-プロパノール、テトラヒドロフラン、PGME(プロピレングリコールモノメチルエーテル)、水等およびそれらの混合物が挙げられる。好ましくは、メタノール/水混合液、エタノール/水混合液、2-プロパノール/水混合液、PGME/水混合液が挙げられる。これら混合液の比率は任意に設定できる。 The solvent used for forming a covalent bond by reacting the betaine group-containing trialkoxysilane compound of the present invention and its hydrolyzate with the substrate surface is the betaine group-containing trialkoxysilane compound of the present invention and its hydrolyzate. Sufficiently soluble solvents can be used and include, for example, acetone, acetonitrile, methanol, ethanol, 2-propanol, tetrahydrofuran, PGME (propylene glycol monomethyl ether), water, and mixtures thereof. Preferred are methanol/water mixtures, ethanol/water mixtures, 2-propanol/water mixtures, and PGME/water mixtures. The ratio of these mixed liquids can be set arbitrarily.
 前記したいずれかの溶媒に本発明のベタイン基含有トリアルコキシシラン化合物およびその加水分解物を溶解して、ガラス製や樹脂製などの基材表面に親水性、帯電防止性、防汚性、生体適合性または防曇性を付与することができるコーティング組成物を調製する。前記コーティング組成物中の本発明のベタイン基含有トリアルコキシシラン化合物およびその加水分解物の濃度は、0.1~1000 mmol/Lの濃度で任意に設定することができ、好ましくは1~100 mmol/Lの濃度であり、より好ましくは、5 mmol/Lである。
 アルコキシシランの加水分解を促進するために、酸触媒または塩基触媒をコーティング組成物に添加することができる。酸触媒としては有機カルボン酸、有機スルホン酸、塩化水素、硫酸、硝酸、リン酸等が挙げられ、好ましくは、酢酸が挙げられる。塩基触媒としてはアンモニア水溶液、有機アミン、水酸化ナトリウム、水酸化カリウム等が挙げられ、好ましくは、トリエチルアミン水溶液、トリエタノールアミン水溶液、アンモニア水溶液が挙げられる。
 本発明のベタイン基含有トリアルコキシシラン化合物が有するアルコキシシラン基またはシラトラニル基は、コーティング組成物または基材上に存在する水分子により一部または全部加水分解して、シラノール基を生成する。生成したシラノール基と、基材表面に存在する酸素官能基との脱水縮合による共有結合の形成は、浸漬、スプレーコート、フローコート、スピンコート、蒸着等の方法が挙げられ、好ましくは、浸漬での反応を0℃から80℃の温度で行う。上記操作に加えて、0℃から130℃の温度で1分間から1日間乾燥することで反応を促進することができる。
By dissolving the betaine group-containing trialkoxysilane compound of the present invention and its hydrolyzate in any of the solvents described above, the hydrophilic, antistatic, antifouling, and biological A coating composition is prepared that can impart compatibility or anti-fogging properties. The concentration of the betaine group-containing trialkoxysilane compound of the present invention and the hydrolyzate thereof in the coating composition can be arbitrarily set at a concentration of 0.1 to 1000 mmol/L, preferably 1 to 100 mmol/L. and more preferably 5 mmol/L.
An acid or base catalyst can be added to the coating composition to facilitate hydrolysis of the alkoxysilane. Examples of acid catalysts include organic carboxylic acids, organic sulfonic acids, hydrogen chloride, sulfuric acid, nitric acid, phosphoric acid and the like, preferably acetic acid. Examples of basic catalysts include an aqueous ammonia solution, organic amines, sodium hydroxide, potassium hydroxide, etc. Preferred examples include an aqueous triethylamine solution, an aqueous triethanolamine solution, and an aqueous ammonia solution.
The alkoxysilane groups or silatranyl groups of the betaine group-containing trialkoxysilane compound of the present invention are partially or completely hydrolyzed by water molecules present on the coating composition or substrate to form silanol groups. Formation of covalent bonds by dehydration condensation between the generated silanol groups and oxygen functional groups present on the surface of the substrate includes methods such as immersion, spray coating, flow coating, spin coating, and vapor deposition, preferably by immersion. are carried out at temperatures between 0°C and 80°C. In addition to the above operation, the reaction can be accelerated by drying at a temperature of 0° C. to 130° C. for 1 minute to 1 day.
 本発明の防曇性コーティング組成物を用いて防曇処理を行う対象とする基材として、表面上にシラノール基が存在するものが適しており、例えば、ソーダ石灰ガラス、鉛ガラス、硼珪酸ガラスのようなガラス製の基材が挙げられる。事前にシラノール基との反応性を向上させる公知の方法で化学的処理、物理的処理または電気化学的処理された基材でもよい。さらに、ガラス以外の素材でも、シラノール基との反応性を向上させる公知の方法で化学的処理、物理的処理または電気化学的処理された基材でもよい。そのような材質としては、例えば、ポリエチレン、ポリプロピレン、ポリカーボネート、ポリウレタン、ポリスチレン、ABS、ポリ塩化ビニル、フェノール樹脂、エポキシ樹脂、ポリアセタールのような合成樹脂が挙げられる。 Substrates on which silanol groups are present on the surface are suitable as substrates to be subjected to antifogging treatment using the antifogging coating composition of the present invention. Examples include soda lime glass, lead glass, and borosilicate glass. A substrate made of glass such as The substrate may be previously chemically, physically or electrochemically treated by a known method for improving reactivity with silanol groups. Further, it may be a material other than glass, or a substrate that has been chemically, physically or electrochemically treated by a known method for improving reactivity with silanol groups. Examples of such materials include synthetic resins such as polyethylene, polypropylene, polycarbonate, polyurethane, polystyrene, ABS, polyvinyl chloride, phenol resin, epoxy resin, and polyacetal.
 本発明は、第4の局面において、本発明の防曇性コーティング組成物を含む第1の膜を有する防曇性コーティング膜を提供する。
 本発明は、第1の膜に加えて、さらに、炭素数1~3のアルコキシ基を有するテトラアルコキシシランまたは前記テトラアルコキシシランの部分加水分解オリゴマーを含む第2の膜を有する防曇性コーティング膜を提供する。このように第1の膜および第2の膜を含む防曇性コーティング膜においては、前記第1の膜に含まれる、ベタイン基含有トリアルコキシシラン化合物のアルコキシシラン基もしくはシラトラニル基の一部もしくは全部加水分解物、もしくは前記一部もしくは全部加水分解物の縮合体;前記テトラアルコキシシランの部分加水分解オリゴマー;または、前記ベタイン基含有トリアルコキシシラン化合物のアルコキシシラン基もしくはシラトラニル基の一部もしくは全部加水分解物と、前記テトラアルコキシシランの部分加水分解オリゴマーとの縮合体と、前記第2の膜に含まれる前記テトラアルコキシシランの部分加水分解オリゴマーとの縮合によって、前記第1の膜と前記第2の膜とが結合している。
In a fourth aspect, the present invention provides an antifogging coating film having a first film containing the antifogging coating composition of the present invention.
The present invention provides an antifogging coating film having, in addition to the first film, a second film containing a tetraalkoxysilane having an alkoxy group having 1 to 3 carbon atoms or a partially hydrolyzed oligomer of the tetraalkoxysilane. I will provide a. In the antifogging coating film including the first film and the second film, part or all of the alkoxysilane group or silatranyl group of the betaine group-containing trialkoxysilane compound contained in the first film a hydrolyzate, or a condensate of said partial or complete hydrolyzate; a partially hydrolyzed oligomer of said tetraalkoxysilane; or a partial or complete hydrolysis of the alkoxysilane group or silatranyl group of said betaine group-containing trialkoxysilane compound By condensation of the decomposed product, the condensate of the partially hydrolyzed oligomer of tetraalkoxysilane, and the partially hydrolyzed oligomer of tetraalkoxysilane contained in the second film, the first film and the second film are formed. is bound to the membrane of
 本発明は、第5の局面において、基材および前記基材の表面上に形成された防曇性コーティング膜を含み、前記防曇性コーティング膜が、本発明の防曇性コーティング組成物を含む第1の膜を有する、防曇処理基材を提供する。 The present invention, in a fifth aspect, comprises a substrate and an anti-fogging coating film formed on the surface of the substrate, wherein the anti-fogging coating film comprises the anti-fogging coating composition of the present invention. An anti-fog treated substrate is provided having a first coating.
 本発明の防曇処理基材において、前記第1の膜に含まれる、ベタイン基含有トリアルコキシシラン化合物のアルコキシシラン基もしくはシラトラニル基の一部もしくは全部加水分解物、もしくは前記一部もしくは全部加水分解物の縮合体;前記テトラアルコキシシランの部分加水分解オリゴマー;または、前記ベタイン基含有トリアルコキシシラン化合物のアルコキシシラン基もしくはシラトラニル基の一部もしくは全部加水分解物と、前記テトラアルコキシシランの部分加水分解オリゴマーとの縮合体と、基材表面上のシラノール基との縮合によって、前記第1の膜が基材表面に直接結合している。 In the antifogging treated substrate of the present invention, a partial or complete hydrolyzate of the alkoxysilane group or silatranyl group of the betaine group-containing trialkoxysilane compound contained in the first film, or the partial or complete hydrolyzate a partially hydrolyzed oligomer of the tetraalkoxysilane; or a partial or complete hydrolyzate of the alkoxysilane group or silatranyl group of the betaine group-containing trialkoxysilane compound and the partially hydrolyzed tetraalkoxysilane. The first membrane is directly bonded to the substrate surface by condensation of the condensate with the oligomer and the silanol groups on the substrate surface.
 また、本発明の防曇処理基材において、別の態様では、さらに、炭素数1~3のアルコキシ基を有するテトラアルコキシシランまたは前記テトラアルコキシシランの部分加水分解オリゴマーを含む第2の膜を有し、前記第1の膜に含まれる、ベタイン基含有トリアルコキシシラン化合物のアルコキシシラン基もしくはシラトラニル基の一部もしくは全部加水分解物、もしくは前記一部もしくは全部加水分解物の縮合体;前記テトラアルコキシシランの部分加水分解オリゴマー;または、前記ベタイン基含有トリアルコキシシラン化合物のアルコキシシラン基もしくはシラトラニル基の一部もしくは全部加水分解物と、前記テトラアルコキシシランの部分加水分解オリゴマーとの縮合体と、前記第2の膜に含まれる前記テトラアルコキシシランの部分加水分解オリゴマーとの縮合によって、前記第1の膜と前記第2の膜とが結合し、前記第2の膜に含まれる、前記テトラアルコキシシランの部分加水分解オリゴマーと、基材表面上のシラノール基との縮合によって、前記第2の膜が基材表面に直接結合している。 In another aspect, the antifogging treated base material of the present invention further comprises a second film containing a tetraalkoxysilane having an alkoxy group having 1 to 3 carbon atoms or a partially hydrolyzed oligomer of the tetraalkoxysilane. and a partial or complete hydrolyzate of the alkoxysilane group or silatranyl group of the betaine group-containing trialkoxysilane compound contained in the first film, or a condensate of the partial or complete hydrolyzate; a partially hydrolyzed oligomer of silane; or a condensate of a partial or complete hydrolyzate of the alkoxysilane group or silatranyl group of the betaine group-containing trialkoxysilane compound and the partially hydrolyzed oligomer of tetraalkoxysilane; The tetraalkoxysilane contained in the second film is bonded to the first film and the second film by condensation with the partially hydrolyzed oligomer of the tetraalkoxysilane contained in the second film. The second membrane is directly attached to the substrate surface by condensation of partially hydrolyzed oligomers of and silanol groups on the substrate surface.
 本発明は、第6の局面において、基材および前記基材の表面上に形成された防曇性コーティング膜を含む防曇処理基材の製造方法であって、前記基材表面に、本発明の防曇性コーティング組成物を付着させて、第1の膜を形成する工程を含む、製造方法を提供する。 The present invention provides, in a sixth aspect, a method for producing an anti-fogging treated substrate comprising a substrate and an anti-fogging coating film formed on the surface of the substrate, wherein to form a first film.
 本発明の防曇処理基材の製造方法において、前記第1の膜を形成する工程において、前記第1の膜に含まれる、ベタイン基含有トリアルコキシシラン化合物のアルコキシシラン基もしくはシラトラニル基の一部もしくは全部加水分解物、もしくは前記一部もしくは全部加水分解物の縮合体;前記テトラアルコキシシランの部分加水分解オリゴマー;または、前記ベタイン基含有トリアルコキシシラン化合物のアルコキシシラン基もしくはシラトラニル基の一部もしくは全部加水分解物と、前記テトラアルコキシシランの部分加水分解オリゴマーとの縮合体と、基材表面上のシラノール基との縮合によって、前記第1の膜を基材表面に直接結合させる。 In the method for producing an antifogging treated substrate of the present invention, in the step of forming the first film, part of the alkoxysilane group or silatranyl group of the betaine group-containing trialkoxysilane compound contained in the first film. or a wholly hydrolyzate, or a condensate of said partial or wholly hydrolyzate; said partially hydrolyzed oligomer of said tetraalkoxysilane; The condensation of the fully hydrolyzate, the partially hydrolyzed oligomer of the tetraalkoxysilane, and the condensation of the silanol groups on the substrate surface directly bonds the first membrane to the substrate surface.
 また、本発明の防曇処理基材の製造方法において、別の態様では、前記第1の膜を形成する工程の前に、前記基材の表面上に、炭素数1~3のアルコキシ基を有するテトラアルコキシシランまたは前記テトラアルコキシシランの部分加水分解オリゴマーを含む組成物を付着させて第2の膜を形成する工程を含み、前記第2の膜を形成する工程において、前記第2の膜に含まれるテトラアルコキシシランの部分加水分解オリゴマーと、基材表面上のシラノール基との縮合によって、前記第2の膜を基材表面に直接結合させ、前記第1の膜を形成する工程において、前記第1の膜に含まれる、ベタイン基含有トリアルコキシシラン化合物のアルコキシシラン基もしくはシラトラニル基の一部もしくは全部加水分解物、もしくは前記一部もしくは全部加水分解物の縮合体;前記テトラアルコキシシランの部分加水分解オリゴマー;または、前記ベタイン基含有トリアルコキシシラン化合物のアルコキシシラン基もしくはシラトラニル基の一部もしくは全部加水分解物と、前記テトラアルコキシシランの部分加水分解オリゴマーとの縮合体と、前記第2の膜に含まれる前記テトラアルコキシシランの部分加水分解オリゴマーとの縮合によって、前記第1の膜と前記第2の膜とを結合させる。 In another aspect of the method for producing an antifogging treated substrate of the present invention, an alkoxy group having 1 to 3 carbon atoms is added to the surface of the substrate before the step of forming the first film. forming a second film by depositing a composition containing a tetraalkoxysilane or a partially hydrolyzed oligomer of the tetraalkoxysilane, wherein the step of forming the second film includes: In the step of forming the first film by directly bonding the second film to the substrate surface by condensation of the contained partially hydrolyzed oligomer of tetraalkoxysilane and the silanol groups on the substrate surface, A partial or complete hydrolyzate of the alkoxysilane group or silatranyl group of the betaine group-containing trialkoxysilane compound contained in the first film, or a condensate of the partial or complete hydrolyzate; a hydrolyzed oligomer; or a condensate of a partial or complete hydrolyzate of the alkoxysilane group or silatranyl group of the betaine group-containing trialkoxysilane compound and the partially hydrolyzed oligomer of the tetraalkoxysilane; The first film and the second film are bonded by condensation with the partially hydrolyzed oligomer of the tetraalkoxysilane contained in the film.
 本発明のベタイン基含有トリアルコキシシラン化合物を基材に付着させることによって、基材表面を防曇性表面にすることができる。
 本発明のベタイン基含有トリアルコキシシラン化合物は、防曇性コーティング組成物中または基材表面に存在する水分子により、一部または全部加水分解を受けてシラノール基を有する加水分解物を形成し、このシラノール基が、例えば、ガラス製や樹脂製などの基材の表面に存在する酸素官能基との脱水縮合により共有結合する。
 本発明のベタイン基含有トリアルコキシシラン化合物を用いて、基材表面の防曇性を向上させるためには、基材表面の単位面積あたりに結合する前記ベタイン基含有トリアルコキシシラン化合物の個数を増大させることが必要である。前記ベタイン基含有トリアルコキシシラン化合物が結合する個数を増大させるためには、基材表面に存在するシラノール基の個数、すなわち、結合点の数を増大させることが考えられる。
By attaching the betaine group-containing trialkoxysilane compound of the present invention to a substrate, the surface of the substrate can be made anti-fogging.
The betaine group-containing trialkoxysilane compound of the present invention undergoes partial or complete hydrolysis by water molecules present in the antifogging coating composition or on the substrate surface to form a hydrolyzate having silanol groups, This silanol group is covalently bonded, for example, by dehydration condensation with oxygen functional groups present on the surface of a substrate made of glass or resin.
In order to improve the antifogging property of the substrate surface using the betaine group-containing trialkoxysilane compound of the present invention, the number of betaine group-containing trialkoxysilane compounds bonded per unit area of the substrate surface is increased. It is necessary to let In order to increase the number of betaine group-containing trialkoxysilane compounds to be bonded, it is conceivable to increase the number of silanol groups present on the substrate surface, that is, the number of bonding points.
 本発明者らは、基材表面上にテトラアルコキシシランを予め塗布すると、本発明のベタイン基含有トリアルコキシシラン化合物を用いて、防曇性が向上することを確認した。これは、テトラアルコキシシランが周囲に存在する水分子などにより容易に一部または全部加水分解を受けて、次に、2個以上、例えば、2~6個の加水分解物が縮合して、シラノール基を有する加水分解オリゴマーを生成することによって結合点の数が増大したことが理由であると推測した。このとき、基材表面に二次元的に結合点の数を増やすのみならず、オリゴマーの立体構造から、基材から垂直方向に三次元的にも結合点の数を増やすことができると考えられる。
 基材表面の結合点を二次元的に増大させるだけでは、本発明のベタイン基含有トリアルコキシシラン化合物同士の立体障害などの影響により、基材表面の単位面積あたりにその化合物が結合する個数に制限があるが、テトラアルコキシシランを導入すれば、三次元的に結合点を増大させることができ、その結果、基材表面の単位面積あたりに結合する本発明のベタイン基含有トリアルコキシシラン化合物の個数を大きく増大することができた。
The present inventors have confirmed that anti-fogging properties are improved by using the betaine group-containing trialkoxysilane compound of the present invention when tetraalkoxysilane is applied on the substrate surface in advance. This is because the tetraalkoxysilane undergoes partial or complete hydrolysis easily by surrounding water molecules and the like, and then two or more, for example, 2 to 6 hydrolysates are condensed to form a silanol. It was speculated that the reason was the increased number of attachment points by producing hydrolyzed oligomers with groups. At this time, it is thought that not only the number of bonding points on the substrate surface can be increased two-dimensionally, but also the number of bonding points can be increased three-dimensionally in the direction perpendicular to the substrate from the steric structure of the oligomer. .
If only two-dimensionally increasing the bonding points on the base material surface, the number of compounds bonded per unit area of the base material surface will be affected by the effects of steric hindrance between the betaine group-containing trialkoxysilane compounds of the present invention. Although there are limitations, if a tetraalkoxysilane is introduced, it is possible to three-dimensionally increase the bonding points, and as a result, the betaine group-containing trialkoxysilane compound of the present invention that bonds per unit area of the base material surface. We were able to greatly increase the number.
 さらに、驚くべきことに、ベタイン基含有トリアルコキシシラン化合物と、テトラアルコキシシランとが共存する防曇性コーティング組成物を用いれば、予め、基材表面にテトラアルコキシシランを適用することなく、表面の親水性を維持したまま、防曇性および防汚性が向上できることを実証した。特に、防曇性を大きく向上することができた。 Furthermore, surprisingly, when an anti-fogging coating composition in which a betaine group-containing trialkoxysilane compound and a tetraalkoxysilane coexist is used, the surface of the base material can be improved without previously applying the tetraalkoxysilane to the surface of the base material. It was demonstrated that anti-fogging and antifouling properties can be improved while maintaining hydrophilicity. In particular, the antifogging property could be greatly improved.
 このように、本発明において、ベタイン基含有トリアルコキシシラン化合物と、テトラアルコキシシランとを併用する場合、まず、テトラアルコキシシランの薄膜を基材表面に形成し、その上に、ベタイン基含有トリアルコキシシラン化合物を含有する防曇性コーティング組成物を塗布する段階的方法;および、ベタイン基含有トリアルコキシシラン化合物と共にテトラアルコキシシランを含有する防曇性コーティング組成物を基材表面に塗布する一括的方法が挙げられる。 Thus, in the present invention, when a betaine group-containing trialkoxysilane compound and a tetraalkoxysilane are used in combination, first, a thin film of tetraalkoxysilane is formed on the surface of a substrate, and then a betaine group-containing trialkoxysilane compound is formed thereon. A stepwise method of applying an anti-fog coating composition containing a silane compound; and a batch method of applying an anti-fog coating composition containing a tetraalkoxysilane together with a trialkoxysilane compound containing a betaine group to a substrate surface. is mentioned.
 以下の合成スキームに従って、本発明のベタイン基含有トリアルコキシシラン化合物1~12を合成した。
 なお、合成例において、1H-NMRは、各重水素化溶媒中、測定周波数300 MHzで測定し、13C-NMRは、各重水素化溶媒中、測定周波数75 MHzで測定し、ケミカルシフトδ値(ppm)を示した。また、質量分析は、エレクトロスプレーイオン化質量分析装置(ESI-MS)で測定し、主分子(M)にプロトンが付加した正イオン[M+H]+またはナトリウムが付加した正イオン[M+Na]+の検出値を示した。
The betaine group-containing trialkoxysilane compounds 1 to 12 of the present invention were synthesized according to the following synthesis scheme.
In the synthesis examples, 1 H-NMR was measured in each deuterated solvent at a measurement frequency of 300 MHz, and 13 C-NMR was measured in each deuterated solvent at a measurement frequency of 75 MHz. δ values (ppm) are shown. In addition, mass spectrometry was measured with an electrospray ionization mass spectrometer (ESI-MS), and positive ions [M + H] + protonated to the main molecule (M) or positive ions [M + Na ] + detected value.
<合成例1>
11,11-ジメトキシ-4,4,7-トリメチル-7-(3-スルホナトプロピル)-12-オキサ-4,7-ジアザ-11-シラトリデカン-4,7-ジイウム-1-スルホナートの合成
 以下のスキームに従って、スルホベタイン基含有トリアルコキシシラン化合物1を合成した。
<Synthesis Example 1>
Synthesis of 11,11-dimethoxy-4,4,7-trimethyl-7-(3-sulfonatopropyl)-12-oxa-4,7-diaza-11-silatridecane-4,7-diium-1-sulfonate A sulfobetaine group-containing trialkoxysilane compound 1 was synthesized according to the following scheme.
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000036
アミノ化反応:
 (3-ブロモプロピル)トリメトキシシラン (93.2 g)、N,N,N’-トリメチルエチレンジアミン (39.6 g)、テトラヒドロフラン (120 ml)の混合物を室温で2日間撹拌した。反応混合物を70℃で2日間撹拌した。室温まで放冷後、5 mol/L ナトリウムメトキシド-メタノール溶液 (73.7 g) を加え30分間撹拌した。不溶物を濾別し濾液を減圧下濃縮した。残渣を減圧下蒸留精製 (0.2 mmHg, 68 - 74℃)することにより、N,N,N’-トリメチル-N’-[3-(トリメトキシシリル)プロピル]エタン-1,2-ジアミン (34.2 g)を無色油状物として得た。
1H-NMR(CDCl3): δ = 0.19-0.36 (2H, m), 1.16-2.53 (2H, m), 1.91 (9H, s), 1.97-2.21 (6H, m), 3.23 (9H, m).
Amination reaction:
A mixture of (3-bromopropyl)trimethoxysilane (93.2 g), N,N,N'-trimethylethylenediamine (39.6 g) and tetrahydrofuran (120 ml) was stirred at room temperature for 2 days. The reaction mixture was stirred at 70° C. for 2 days. After cooling to room temperature, 5 mol/L sodium methoxide-methanol solution (73.7 g) was added and stirred for 30 minutes. The insoluble matter was filtered off, and the filtrate was concentrated under reduced pressure. N,N,N'-trimethyl-N'-[3-(trimethoxysilyl)propyl]ethane-1,2-diamine (34.2 g) was obtained as a colorless oil.
1 H-NMR(CDCl 3 ): δ = 0.19-0.36 (2H, m), 1.16-2.53 (2H, m), 1.91 (9H, s), 1.97-2.21 (6H, m), 3.23 (9H, m ).
スルホベタイン化反応:
 N,N,N’-トリメチル-N’-[3-(トリメトキシシリル)プロピル]エタン-1,2-ジアミン (10.9 g)、1,3-プロパンスルトン (15.1 g)、アセトニトリル (100 ml)の混合物を室温で1.5時間撹拌した。反応混合物を加熱還流下で2日間撹拌した。室温まで放冷後、不溶物を濾取しアセトニトリルおよびアセトンで洗浄した。得られた固体を減圧下乾燥することにより、11,11-ジメトキシ-4,4,7-トリメチル-7-(3-スルホナトプロピル)-12-オキサ-4,7-ジアザ-11-シラトリデカン-4,7-ジイウム-1-スルホナート(化合物1) (18.6 g)を無色固体として得た。
1H-NMR(D2O): δ = 0.56-0.89 (2H, m), 1.74-2.02 (2H, m), 2.11-2.40 (4H, m), 2.85-3.11 (4H, m), 3.11-3.77 (25H, m), 3.37 (3H, s).
MASS: ESI-MS [M+H]+ 509.
Sulfobetaylation reaction:
N,N,N'-trimethyl-N'-[3-(trimethoxysilyl)propyl]ethane-1,2-diamine (10.9 g), 1,3-propanesultone (15.1 g), acetonitrile (100 ml) The mixture was stirred at room temperature for 1.5 hours. The reaction mixture was heated under reflux and stirred for 2 days. After allowing to cool to room temperature, the insoluble matter was collected by filtration and washed with acetonitrile and acetone. By drying the obtained solid under reduced pressure, 11,11-dimethoxy-4,4,7-trimethyl-7-(3-sulfonatopropyl)-12-oxa-4,7-diaza-11-silatridecane -4,7-diium-1-sulfonate (compound 1) (18.6 g) was obtained as a colorless solid.
1 H-NMR(D 2 O): δ = 0.56-0.89 (2H, m), 1.74-2.02 (2H, m), 2.11-2.40 (4H, m), 2.85-3.11 (4H, m), 3.11- 3.77 (25H, m), 3.37 (3H, s).
MASS: ESI-MS [M+H] + 509.
<合成例2>
11,11-ジエトキシ-4,4,7-トリメチル-7-(3-スルホナトプロピル)-12-オキサ-4,7-ジアザ-11-シラテトラデカン-4,7-ジイウム-1-スルホナートの合成
 以下のスキームに従って、アミノ化反応において(3-ブロモプロピル)トリメトキシシランを(3-ブロモプロピル)トリエトキシシランとする以外は、合成例1と同様にして、スルホベタイン基含有トリアルコキシシラン化合物2を合成できる。
<Synthesis Example 2>
Synthesis of 11,11-diethoxy-4,4,7-trimethyl-7-(3-sulfonatopropyl)-12-oxa-4,7-diaza-11-silatetradecane-4,7-diium-1-sulfonate According to the following scheme, the sulfobetaine group-containing trialkoxysilane compound 2 was prepared in the same manner as in Synthesis Example 1, except that (3-bromopropyl)triethoxysilane was used in the amination reaction instead of (3-bromopropyl)triethoxysilane. can be synthesized.
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000037
<合成例3>
4-[3-(2,8,9-トリオキサ-5-アザ-1-シラビシクロ[3.3.3]ウンデカン-1-イル)プロピル]-4,7,7-トリメチル-4,7-ジアザデカン-4,7-ジイウム-1,10-ジスルホナートの合成
 以下のスキームに従って、スルホベタイン基含有トリアルコキシシラン化合物3を合成した。
<Synthesis Example 3>
4-[3-(2,8,9-trioxa-5-aza-1-silabicyclo[3.3.3]undecane-1-yl)propyl]-4,7,7-trimethyl-4,7-diazadecane Synthesis of -4,7-diium-1,10-disulfonate A sulfobetaine group-containing trialkoxysilane compound 3 was synthesized according to the following scheme.
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000038
アミノ化反応:
 1-(3-ブロモプロピル)-2,8,9-トリオキサ-5-アザ-1-シラビシクロ[3.3.3]ウンデカン (3.0 g)、N,N,N’-トリメチルエチレンジアミン (1.14g)、テトラヒドロフラン (20 ml)の混合物を加熱還流下で一晩撹拌した。室温まで放冷後、5 mol/L ナトリウムメトキシド-メタノール溶液 (2.0 ml)を加え30分間撹拌した。減圧下濃縮し残渣をシリカゲルカラムクロマトグラフィー(関東化学シリカゲル60(球状)NH2、酢酸エチル/メタノール)で精製することにより、N-[3-(2,8,9-トリオキサ-5-アザ-1-シラビシクロ[3.3.3]ウンデカン-1-イル)プロピル]-N,N’,N’-トリメチルエタン-1,2-ジアミン (900 mg)を無色油状物として得た。
MASS: ESI-MS [M+H]+ 318.
Amination reaction:
1-(3-bromopropyl)-2,8,9-trioxa-5-aza-1-silabicyclo[3.3.3]undecane (3.0 g), N,N,N'-trimethylethylenediamine (1.14g) , tetrahydrofuran (20 ml) was stirred overnight under reflux. After cooling to room temperature, 5 mol/L sodium methoxide-methanol solution (2.0 ml) was added and stirred for 30 minutes. After concentration under reduced pressure, the residue was purified by silica gel column chromatography (Kanto Kagaku silica gel 60 (spherical) NH 2 , ethyl acetate/methanol) to give N-[3-(2,8,9-trioxa-5-aza- 1-Silabicyclo[3.3.3]undecane-1-yl)propyl]-N,N',N'-trimethylethane-1,2-diamine (900 mg) was obtained as a colorless oil.
MASS: ESI-MS [M+H] + 318.
スルホベタイン化反応:
 合成例1と同様に、N-[3-(2,8,9-トリオキサ-5-アザ-1-シラビシクロ[3.3.3]ウンデカン-1-イル)プロピル]-N,N’,N’-トリメチルエタン-1,2-ジアミン (880 mg)を用い、4-[3-(2,8,9-トリオキサ-5-アザ-1-シラビシクロ[3.3.3]ウンデカン-1-イル)プロピル]-4,7,7-トリメチル-4,7-ジアザデカン-4,7-ジイウム-1,10-ジスルホナート(化合物3) (1.12 g)を無色固体として得た。
1H-NMR(D2O): δ = 0.19-0.31 (2H, m), 1.70-1.85 (2H, m), 2.16-2.37 (4H, m), 2.91-3.09 (10H, m), 3.19 (3H, s), 3.28 (6H, s), 3.28-3.73 (6H, m), 3.80 (6H, t, J = 5.3 Hz), 3.86-4.06 (4H, m).
MASS: 562.
Sulfobetaylation reaction:
In the same manner as in Synthesis Example 1, N-[3-(2,8,9-trioxa-5-aza-1-silabicyclo[3.3.3]undecane-1-yl)propyl]-N,N',N 4-[3-(2,8,9-Trioxa-5-aza-1-silabicyclo[3.3.3]undecane-1-yl using '-trimethylethane-1,2-diamine (880 mg) ) propyl]-4,7,7-trimethyl-4,7-diazadecane-4,7-diium-1,10-disulfonate (compound 3) (1.12 g) was obtained as a colorless solid.
1 H-NMR(D 2 O): δ = 0.19-0.31 (2H, m), 1.70-1.85 (2H, m), 2.16-2.37 (4H, m), 2.91-3.09 (10H, m), 3.19 ( 3H, s), 3.28 (6H, s), 3.28-3.73 (6H, m), 3.80 (6H, t, J = 5.3 Hz), 3.86-4.06 (4H, m).
MASS: 562.
<合成例4>
4-{[3-(2,8,9-トリオキサ-5-アザ-1-シラビシクロ[3.3.3]ウンデカン-1-イル)プロピル]-N,N-ジメチルアンモニオ}ブタン-1-スルホナートの合成
 以下のスキームに従って、スルホベタイン基含有トリアルコキシシラン化合物4を合成した。
<Synthesis Example 4>
4-{[3-(2,8,9-trioxa-5-aza-1-silabicyclo[3.3.3]undecane-1-yl)propyl]-N,N-dimethylammonio}butane-1- Synthesis of Sulfonate A sulfobetaine group-containing trialkoxysilane compound 4 was synthesized according to the following scheme.
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000039
スルホベタイン化反応:
 3-(2,8,9-トリオキサ-5-アザ-1-シラビシクロ[3.3.3]ウンデカン-1-イル)-N,N-ジメチルプロパン-1-アミン (1.00 g)、1,4-ブタンスルトン (1.72 g)、アセトン (12.8 ml)の混合物を60℃で1日間撹拌した。室温まで放冷後、不溶物を濾取しアセトンで洗浄した。得られた固体を減圧下乾燥することにより、4-{[3-(2,8,9-トリオキサ-5-アザ-1-シラビシクロ[3.3.3]ウンデカン-1-イル)プロピル]-N,N-ジメチルアンモニオ}ブタン-1-スルホナート(化合物4) (1.13 g)を無色固体として得た。
1H-NMR(D2O): δ = 0.16-0.29 (2H, m), 1.65-1.98 (6H, m), 2.86-3.10 (2H, m), 3.00 (6H, t, J = 5.8 Hz), 3.02 (6H, s), 3.15-3.35 (4H, m), 3.79 (6H, t, J = 5.8 Hz).
MASS: ESI-MS [M+H]+ 397.
Sulfobetaylation reaction:
3-(2,8,9-trioxa-5-aza-1-silabicyclo[3.3.3]undecane-1-yl)-N,N-dimethylpropan-1-amine (1.00 g), 1,4 - A mixture of butanesultone (1.72 g) and acetone (12.8 ml) was stirred at 60°C for 1 day. After allowing to cool to room temperature, the insoluble matter was collected by filtration and washed with acetone. By drying the obtained solid under reduced pressure, 4-{[3-(2,8,9-trioxa-5-aza-1-sylabicyclo[3.3.3]undecane-1-yl)propyl]- N,N-dimethylammonio}butane-1-sulfonate (compound 4) (1.13 g) was obtained as a colorless solid.
1 H-NMR(D 2 O): δ = 0.16-0.29 (2H, m), 1.65-1.98 (6H, m), 2.86-3.10 (2H, m), 3.00 (6H, t, J = 5.8 Hz) , 3.02 (6H, s), 3.15-3.35 (4H, m), 3.79 (6H, t, J = 5.8 Hz).
MASS: ESI-MS [M+H] + 397.
<合成例5>
3-{[11-(2,8,9-トリオキサ-5-アザ-1-シラビシクロ[3.3.3]ウンデカン-1-イル)ウンデカン]-N,N-ジメチルアンモニオ}プロパン-1-スルホナートの合成
 以下のスキームに従って、スルホベタイン基含有トリアルコキシシラン化合物5を合成した。
<Synthesis Example 5>
3-{[11-(2,8,9-trioxa-5-aza-1-silabicyclo[3.3.3]undecane-1-yl)undecane]-N,N-dimethylammonio}propane-1- Synthesis of Sulfonate A sulfobetaine group-containing trialkoxysilane compound 5 was synthesized according to the following scheme.
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000040
シラトラニル化反応に続くアミノ化反応:
 水酸化カリウム (0.10 g)、トリエタノールアミン (1.56 g)、エタノール (15 ml)の混合物を加熱還流下で撹拌しながら反応混合物に(11-ブロモウンデシル)トリメトキシシラン (3.73 g)、エタノール (6 ml)溶液を加え加熱還流下で1時間撹拌した。反応混合物を室温まで放冷後減圧下濃縮し、残渣をシリカゲルカラムクロマトグラフィー(酢酸エチル/ヘプタン)で精製することにより、無色固体 (1.62 g)を得た。この無色固体 (1.62g)、2 mol/L ジメチルアミン-テトラヒドロフラン溶液 (17 ml) の混合物を80℃で一晩撹拌した。室温まで放冷後、5 mol/L ナトリウムメトキシド-メタノール溶液 (2.0 ml)を加え30分間撹拌した。減圧下濃縮し残渣をシリカゲルカラムクロマトグラフィー(酢酸エチル/ヘプタン)で精製することにより、11-(2,8,9-トリオキサ-5-アザ-1-シラビシクロ[3.3.3]ウンデカン-1-イル)-N,N-ジメチルウンデカン-1-アミン (820 mg)を無色固体として得た。
1H-NMR(DMSO-d6): δ = 0.07-0.21 (2H, m), 1.09-1.45 (18H, m), 2.08 (6H, s), 2.11-2.19 (2H, m), 2.68-2.82 (6H, m), 3.51-3.63 (6H, m).
Silatranylation reaction followed by amination reaction:
A mixture of potassium hydroxide (0.10 g), triethanolamine (1.56 g) and ethanol (15 ml) was heated under reflux while stirring (11-bromoundecyl)trimethoxysilane (3.73 g) and ethanol. (6 ml) of the solution was added and the mixture was stirred under reflux with heating for 1 hour. The reaction mixture was allowed to cool to room temperature, concentrated under reduced pressure, and the residue was purified by silica gel column chromatography (ethyl acetate/heptane) to give a colorless solid (1.62 g). A mixture of this colorless solid (1.62 g) and a 2 mol/L dimethylamine-tetrahydrofuran solution (17 ml) was stirred at 80° C. overnight. After cooling to room temperature, 5 mol/L sodium methoxide-methanol solution (2.0 ml) was added and stirred for 30 minutes. After concentration under reduced pressure, the residue was purified by silica gel column chromatography (ethyl acetate/heptane) to give 11-(2,8,9-trioxa-5-aza-1-silabicyclo[3.3.3]undecane-1. -yl)-N,N-dimethylundecane-1-amine (820 mg) was obtained as a colorless solid.
1 H-NMR(DMSO-d 6 ): δ = 0.07-0.21 (2H, m), 1.09-1.45 (18H, m), 2.08 (6H, s), 2.11-2.19 (2H, m), 2.68-2.82 (6H, m), 3.51-3.63 (6H, m).
スルホベタイン化反応:
 合成例4と同様に、11-(2,8,9-トリオキサ-5-アザ-1-シラビシクロ[3.3.3]ウンデカン-1-イル)-N,N-ジメチルウンデカン-1-アミン (820 mg)を用い、3-{[11-(2,8,9-トリオキサ-5-アザ-1-シラビシクロ[3.3.3]ウンデカン-1-イル)ウンデカン]-N,N-ジメチルアンモニオ}プロパン-1-スルホナート(化合物5) (832 mg)を無色固体として得た。
1H-NMR(D2O): δ = 0.22-0.33 (2H, m), 1.19-1.41 (16H, m), 1.69-1.83 (2H, m), 2.15-2.27 (2H, m), 2.86-3.02 (8H, m), 3.08 (6H, s), 3.26-3.36 (2H, m), 3.40-3.51 (2H, m), 3.70-3.80 (6H, m).
MASS: ESI-MS [M+H]+ 495.
Sulfobetaylation reaction:
In the same manner as in Synthesis Example 4, 11-(2,8,9-trioxa-5-aza-1-silabicyclo[3.3.3]undecane-1-yl)-N,N-dimethylundecane-1-amine ( 820 mg), 3-{[11-(2,8,9-trioxa-5-aza-1-sylabicyclo[3.3.3]undecane-1-yl)undecane]-N,N-dimethylammonium O}propane-1-sulfonate (compound 5) (832 mg) was obtained as a colorless solid.
1 H-NMR(D 2 O): δ = 0.22-0.33 (2H, m), 1.19-1.41 (16H, m), 1.69-1.83 (2H, m), 2.15-2.27 (2H, m), 2.86- 3.02 (8H, m), 3.08 (6H, s), 3.26-3.36 (2H, m), 3.40-3.51 (2H, m), 3.70-3.80 (6H, m).
MASS: ESI-MS [M+H] + 495.
<合成例6>
3-{1-[3-(2,8,9-トリオキサ-5-アザ-1-シラビシクロ[3.3.3]ウンデカン-1-イル)プロピル]-4,5-ジヒドロ-1H-イミダゾール-3-イウム-3-イル}プロパン-1-スルホナートの合成
 以下のスキームに従って、スルホベタイン基含有トリアルコキシシラン化合物6を合成した。
<Synthesis Example 6>
3-{1-[3-(2,8,9-trioxa-5-aza-1-silabicyclo[3.3.3]undecane-1-yl)propyl]-4,5-dihydro-1H-imidazole- Synthesis of 3-ium-3-yl}propane-1-sulfonate A sulfobetaine group-containing trialkoxysilane compound 6 was synthesized according to the following scheme.
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000041
スルホベタイン化反応:
 1-[3-(4,5-ジヒドロ-1H-イミダゾール-1-イル)プロピル]-2,8,9-トリオキサ-5-アザ-1-シラビシクロ[3.3.3]ウンデカン (1.0 g)、1,3-プロパンスルトン (0.45 ml)、アセトン (10 ml)の混合物を室温で5日間撹拌した。不溶物を濾取しアセトンで洗浄した。得られた固体を減圧下乾燥することにより、3-{1-[3-(2,8,9-トリオキサ-5-アザ-1-シラビシクロ[3.3.3]ウンデカン-1-イル)プロピル]-4,5-ジヒドロ-1H-イミダゾール-3-イウム-3-イル}プロパン-1-スルホナート(化合物6) (1.38 g) を無色固体として得た。
1H-NMR(D2O): δ = 0.13-0.31 (2H, m), 1.54-1.71 (2H, m), 1.99-2.17 (2H, m) 2.94 (2H, t, J = 7.5 Hz), 2.99 (6H, t, J = 5.9 Hz), 3.38 (2H, t, J = 6.8 Hz), 3.61 (2H, t, J = 6.8 Hz), 3.78 (2H, t, J = 5.9 Hz), 3.94 (4H, s), 8.10 (1H, s).
MASS: ESI-MS [M+H]+ 408.
Sulfobetaylation reaction:
1-[3-(4,5-dihydro-1H-imidazol-1-yl)propyl]-2,8,9-trioxa-5-aza-1-silabicyclo[3.3.3]undecane (1.0 g) , 1,3-propanesultone (0.45 ml) and acetone (10 ml) was stirred at room temperature for 5 days. The insoluble matter was collected by filtration and washed with acetone. The resulting solid was dried under reduced pressure to give 3-{1-[3-(2,8,9-trioxa-5-aza-1-sylabicyclo[3.3.3]undecane-1-yl)propyl ]-4,5-dihydro-1H-imidazol-3-ium-3-yl}propane-1-sulfonate (compound 6) (1.38 g) was obtained as a colorless solid.
1 H-NMR(D 2 O): δ = 0.13-0.31 (2H, m), 1.54-1.71 (2H, m), 1.99-2.17 (2H, m) 2.94 (2H, t, J = 7.5 Hz), 2.99 (6H, t, J = 5.9 Hz), 3.38 (2H, t, J = 6.8 Hz), 3.61 (2H, t, J = 6.8 Hz), 3.78 (2H, t, J = 5.9 Hz), 3.94 ( 4H, s), 8.10 (1H, s).
MASS: ESI-MS [M+H] + 408.
<合成例7>
4-{1-[3-(2,8,9-トリオキサ-5-アザ-1-シラビシクロ[3.3.3]ウンデカン-1-イル)プロピル]-4,5-ジヒドロ-1H-イミダゾール-3-イウム-3-イル}ブタン-1-スルホナートの合成
 以下のスキームに従って、スルホベタイン基含有トリアルコキシシラン化合物7を合成した。
<Synthesis Example 7>
4-{1-[3-(2,8,9-trioxa-5-aza-1-silabicyclo[3.3.3]undecane-1-yl)propyl]-4,5-dihydro-1H-imidazole- Synthesis of 3-ium-3-yl}butane-1-sulfonate A sulfobetaine group-containing trialkoxysilane compound 7 was synthesized according to the following scheme.
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000042
スルホベタイン化反応:
 合成例4と同様に、1-[3-(4,5-ジヒドロ-1H-イミダゾール-1-イル)プロピル]-2,8,9-トリオキサ-5-アザ-1-シラビシクロ[3.3.3]ウンデカン (1.0 g)を用い、4-{1-[3-(2,8,9-トリオキサ-5-アザ-1-シラビシクロ[3.3.3]ウンデカン-1-イル)プロピル]-4,5-ジヒドロ-1H-イミダゾール-3-イウム-3-イル}ブタン-1-スルホナート(化合物7) (1.18 g)を無色固体として得た。
1H-NMR(D2O): δ = 0.13-0.28 (2H, m), 1.53-1.69 (2H, m), 1.69-1.88 (4H, m), 2.83-3.06 (2H, m), 2.99 (6H, t, J = 5.7 Hz), 3.36 (2H, t, J = 6.8 Hz), 3.44-3.55 (2H, m), 3.77 (6H, t, J = 5.7 Hz), 3.92 (4H, s), 8.09 (1H, s).
MASS: ESI-MS [M+H]+ 422.
Sulfobetaylation reaction:
In the same manner as in Synthesis Example 4, 1-[3-(4,5-dihydro-1H-imidazol-1-yl)propyl]-2,8,9-trioxa-5-aza-1-silabicyclo[3.3. 3] Using undecane (1.0 g), 4-{1-[3-(2,8,9-trioxa-5-aza-1-silabicyclo[3.3.3]undecane-1-yl)propyl]- 4,5-dihydro-1H-imidazol-3-ium-3-yl}butane-1-sulfonate (compound 7) (1.18 g) was obtained as a colorless solid.
1 H-NMR(D 2 O): δ = 0.13-0.28 (2H, m), 1.53-1.69 (2H, m), 1.69-1.88 (4H, m), 2.83-3.06 (2H, m), 2.99 ( 6H, t, J = 5.7 Hz), 3.36 (2H, t, J = 6.8 Hz), 3.44-3.55 (2H, m), 3.77 (6H, t, J = 5.7 Hz), 3.92 (4H, s), 8.09 (1H, s).
MASS: ESI-MS [M+H] + 422.
<合成例8>
3-({4-[3-(2,8,9-トリオキサ-5-アザ-1-シラビシクロ[3.3.3]ウンデカン-1-イル)プロポキシ]ベンジル}ジメチルアンモニオ)プロパン-1-スルホナートの合成
 以下のスキームに従って、スルホベタイン基含有トリアルコキシシラン化合物8を合成した。
<Synthesis Example 8>
3-({4-[3-(2,8,9-trioxa-5-aza-1-silabicyclo[3.3.3]undecane-1-yl)propoxy]benzyl}dimethylammonio)propane-1- Synthesis of Sulfonate A sulfobetaine group-containing trialkoxysilane compound 8 was synthesized according to the following scheme.
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000043
ヒドロシリル化に続くシラトラニル化反応:
 1-[4-(アリルオキシ)フェニル]-N,N-ジメチルメタンアミン (1.00 g)、トリメトキシシラン (1.44 g)、[1,3-ビス[2,6-ビス(1-メチルエチル)フェニル]-1,3-ジヒドロ-2H-イミダゾール-2-イリデン][1,3-ビス(η-エテニル)-1,1,3,3-テトラメチルジシロキサン]白金 (80 mg)、トルエン (33 ml)の混合物を80℃で2日間撹拌した。反応混合物にトリエタノールアミン (2.95 g)を加え、さらに110℃で1日間撹拌した。反応混合物を室温まで放冷後減圧下濃縮し、残渣をシリカゲルカラムクロマトグラフィー(関東化学シリカゲル60(球状)NH2, 酢酸エチル/ヘプタン)で精製することにより、前駆体となる1-{4-[3-(2,8,9-トリオキサ-5-アザ-1-シラビシクロ[3.3.3]ウンデカン-1-イル)プロポキシ]フェニル}-N,N-ジメチルメタンアミン (180 mg)を無色油状物として得た。
MASS: ESI-MS [M+H]+ 367.
Hydrosilylation followed by silatranylation reaction:
1-[4-(allyloxy)phenyl]-N,N-dimethylmethanamine (1.00 g), trimethoxysilane (1.44 g), [1,3-bis[2,6-bis(1-methylethyl)phenyl ]-1,3-dihydro-2H-imidazol-2-ylidene][1,3-bis(η 2 -ethenyl)-1,1,3,3-tetramethyldisiloxane]platinum (80 mg), toluene ( 33 ml) of the mixture was stirred at 80° C. for 2 days. Triethanolamine (2.95 g) was added to the reaction mixture, and the mixture was further stirred at 110°C for 1 day. The reaction mixture was allowed to cool to room temperature and then concentrated under reduced pressure. [3-(2,8,9-Trioxa-5-aza-1-silabicyclo[3.3.3]undecane-1-yl)propoxy]phenyl}-N,N-dimethylmethanamine (180 mg) was colorless. Obtained as an oil.
MASS: ESI-MS [M+H] + 367.
スルホベタイン化反応:
 合成例6と同様に、1-{4-[3-(2,8,9-トリオキサ-5-アザ-1-シラビシクロ[3.3.3]ウンデカン-1-イル)プロポキシ]フェニル}-N,N-ジメチルメタンアミン (180 mg)を用い、3-({4-[3-(2,8,9-トリオキサ-5-アザ-1-シラビシクロ[3.3.3]ウンデカン-1-イル)プロポキシ]ベンジル}ジメチルアンモニオ)プロパン-1-スルホナート(化合物8) (108 mg)を無色固体として得た。
1H-NMR(D2O): δ = 0.28-0.44 (2H, m), 1.67-1.85 (2H, m), 2.22-2.40 (2H, m), 2.83-3.11 (2H, m), 2.98 (6H, t, J = 5.7 Hz), 3.03 (6H, s), 3.36-3.49 (2H, m), 3.77 (6H, t, J = 5.7 Hz), 4.03 (2H, t, J = 6.9 Hz), 4.47 (2H, s), 7.09 (2H, d, J = 8.4 Hz), 7.48 (2H, d, J = 8.4 Hz).
MASS: ESI-MS [M+H]+ 489.
Sulfobetaylation reaction:
In the same manner as in Synthesis Example 6, 1-{4-[3-(2,8,9-trioxa-5-aza-1-sylabicyclo[3.3.3]undecane-1-yl)propoxy]phenyl}-N 3-({4-[3-(2,8,9-trioxa-5-aza-1-silabicyclo[3.3.3]undecane-1-yl ) Propoxy]benzyl}dimethylammonio)propane-1-sulfonate (compound 8) (108 mg) was obtained as a colorless solid.
1 H-NMR(D 2 O): δ = 0.28-0.44 (2H, m), 1.67-1.85 (2H, m), 2.22-2.40 (2H, m), 2.83-3.11 (2H, m), 2.98 ( 6H, t, J = 5.7 Hz), 3.03 (6H, s), 3.36-3.49 (2H, m), 3.77 (6H, t, J = 5.7 Hz), 4.03 (2H, t, J = 6.9 Hz), 4.47 (2H, s), 7.09 (2H, d, J = 8.4 Hz), 7.48 (2H, d, J = 8.4 Hz).
MASS: ESI-MS [M+H] + 489.
<合成例9>
2-[3-(2,8,9-トリオキサ-5-アザ-1-シラビシクロ[3.3.3]ウンデカン-1-イル)プロピル]-2,5,5-トリメチル-2,5-ジアザヘキサン-2,5-ジイウム-1,6-ジカルボキシラートの合成
 以下のスキームに従って、カルボベタイン基含有トリアルコキシシラン化合物9を合成した。
<Synthesis Example 9>
2-[3-(2,8,9-trioxa-5-aza-1-silabicyclo[3.3.3]undecane-1-yl)propyl]-2,5,5-trimethyl-2,5-diazahexane Synthesis of 2,5-diium-1,6-dicarboxylate A carbobetaine group-containing trialkoxysilane compound 9 was synthesized according to the following scheme.
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000044
カルボベタイン化反応:
 N-[3-(2,8,9-トリオキサ-5-アザ-1-シラビシクロ[3.3.3]ウンデカン-1-イル)プロピル]-N,N’,N’-トリメチルエタン-1,2-ジアミン (1.07 g)、クロロ酢酸ナトリウム (1.18 g)、ヨウ化リチウム (1.35 g)、N,N-ジメチルホルムアミド (10 mL)の混合物を85℃で1日間撹拌した。室温まで放冷後、不溶物を濾別し濾液を減圧下濃縮した。残渣をシリカゲルカラムクロマトグラフィー(関東化学シリカゲル60(球状)NH2、酢酸エチル/メタノール)で精製することにより、2-[3-(2,8,9-トリオキサ-5-アザ-1-シラビシクロ[3.3.3]ウンデカン-1-イル)プロピル]-2,5,5-トリメチル-2,5-ジアザヘキサン-2,5-ジイウム-1,6-ジカルボキシラート(化合物9) (250 mg)を無色固体として得た。
1H-NMR(D2O): δ = 0.25-0.23 (2H, m), 1.79-1.77 (2H, m), 3.00 (6H, t, J = 5.9 Hz), 3.22 (3H, s), 3.50-3.28 (10H, m), 3.79 (6H, t, J = 6.0 Hz), 3.91 (2H, s), 3.97 (2H, s), 4.21-4.16 (4H, m)
MASS: ESI-MS [M+Na]+ 456.
Carbobetaylation reaction:
N-[3-(2,8,9-trioxa-5-aza-1-silabicyclo[3.3.3]undecane-1-yl)propyl]-N,N',N'-trimethylethane-1, A mixture of 2-diamine (1.07 g), sodium chloroacetate (1.18 g), lithium iodide (1.35 g) and N,N-dimethylformamide (10 mL) was stirred at 85°C for 1 day. After allowing to cool to room temperature, the insoluble matter was filtered off and the filtrate was concentrated under reduced pressure. The residue was purified by silica gel column chromatography (Kanto Kagaku silica gel 60 (spherical) NH 2 , ethyl acetate/methanol) to give 2-[3-(2,8,9-trioxa-5-aza-1-silabicyclo[ 3.3.3]Undecane-1-yl)propyl]-2,5,5-trimethyl-2,5-diazahexane-2,5-diium-1,6-dicarboxylate (compound 9) (250 mg) was obtained as a colorless solid.
1 H-NMR(D 2 O): δ = 0.25-0.23 (2H, m), 1.79-1.77 (2H, m), 3.00 (6H, t, J = 5.9 Hz), 3.22 (3H, s), 3.50 -3.28 (10H, m), 3.79 (6H, t, J = 6.0Hz), 3.91 (2H, s), 3.97 (2H, s), 4.21-4.16 (4H, m)
MASS: ESI-MS [M+Na] + 456.
<合成例10>
5-[3-(2,8,9-トリオキサ-5-アザ-1-シラビシクロ[3.3.3]ウンデカン-1-イル)プロピル]-2,2,5-トリメチル-8-スルホナト-2,5-ジアザオクタン-2,5-ジイウム-1-カルボキシラートの合成
 以下のスキームに従って、スルホベタイン基およびカルボベタイン基含有トリアルコキシシラン化合物10を合成した。
<Synthesis Example 10>
5-[3-(2,8,9-trioxa-5-aza-1-silabicyclo[3.3.3]undecane-1-yl)propyl]-2,2,5-trimethyl-8-sulfonato-2 Synthesis of ,5-diazaoctane-2,5-diium-1-carboxylate A sulfobetaine group- and carbobetaine group-containing trialkoxysilane compound 10 was synthesized according to the following scheme.
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000045
カルボベタイン化反応:
 N-[3-(2,8,9-トリオキサ-5-アザ-1-シラビシクロ[3.3.3]ウンデカン-1-イル)プロピル]-N,N’,N’-トリメチルエタン-1,2-ジアミン (1.05 g)、クロロ酢酸ナトリウム (385 mg)、ヨウ化リチウム (443 mg)、N,N-ジメチルホルムアミド(10 mL)の混合物を85℃で1日間撹拌した。室温まで放冷後、不溶物を濾別し濾液を減圧下濃縮した。残渣をシリカゲルカラムクロマトグラフィー(関東化学シリカゲル60(球状)NH2、酢酸エチル/メタノール)で精製することにより、[(2-{[3-(2,8,9-トリオキサ-5-アザ-1-シラビシクロ[3.3.3]ウンデカン-1-イル)プロピル]メチルアミノ}エチル)ジメチルアンモニオ]アセテート(780 mg)を無色固体として得た。
1H-NMR(D2O): δ = 0.23-0.18 (2H, m), 1.49-1.44 (2H, m), 2.26 (3H, s), 2.42-2.38 (2H, m), 2.86-2.82 (2H, m), 2.97 (6H, t, J = 6.0 Hz), 3.24 (6H, s), 3.73-3.68 (2H, m), 3.77 (6H, t, J = 6.0 Hz), 3.89 (2H, s)
Carbobetaylation reaction:
N-[3-(2,8,9-trioxa-5-aza-1-silabicyclo[3.3.3]undecane-1-yl)propyl]-N,N',N'-trimethylethane-1, A mixture of 2-diamine (1.05 g), sodium chloroacetate (385 mg), lithium iodide (443 mg) and N,N-dimethylformamide (10 mL) was stirred at 85°C for 1 day. After allowing to cool to room temperature, the insoluble matter was filtered off and the filtrate was concentrated under reduced pressure. [(2-{[3-(2,8,9 - trioxa-5-aza-1 -silabicyclo[3.3.3]undecane-1-yl)propyl]methylamino}ethyl)dimethylammonio]acetate (780 mg) was obtained as a colorless solid.
1 H-NMR(D 2 O): δ = 0.23-0.18 (2H, m), 1.49-1.44 (2H, m), 2.26 (3H, s), 2.42-2.38 (2H, m), 2.86-2.82 ( 2H, m), 2.97 (6H, t, J = 6.0 Hz), 3.24 (6H, s), 3.73-3.68 (2H, m), 3.77 (6H, t, J = 6.0 Hz), 3.89 (2H, s )
スルホベタイン化反応:
 [(2-{[3-(2,8,9-トリオキサ-5-アザ-1-シラビシクロ[3.3.3]ウンデカン-1-イル)プロピル]メチルアミノ}エチル)ジメチルアンモニオ]アセテート (780 mg)、1,3-プロパンスルトン (280 mg)、アセトニトリル (15 ml)の混合物を50℃で1日間撹拌した。室温まで放冷後、減圧下濃縮し残渣をシリカゲルカラムクロマトグラフィー(関東化学シリカゲル60(球状)NH2、酢酸エチル/メタノール)で精製することにより、5-[3-(2,8,9-トリオキサ-5-アザ-1-シラビシクロ[3.3.3]ウンデカン-1-イル)プロピル]-2,2,5-トリメチル-8-スルホナト-2,5-ジアザオクタン-2,5-ジイウム-1-カルボキシラート (化合物10)(250 mg)を無色固体として得た。
1H-NMR(D2O): δ = 0.27-0.25 (2H, m), 1.84-1.73 (2H, m), 2.25 (2H, m), 3.01 (8H, m), 3.16 (3H, s), 3.35-3.32 (8H, m), 3.56-3.52 (2H, m), 3.84-3.80 (8H, m), 3.99 (2H, s), 4.28-4.24 (2H, m)
MASS: ESI-MS [M+Na]+ 520.
Sulfobetaylation reaction:
[(2-{[3-(2,8,9-trioxa-5-aza-1-silabicyclo[3.3.3]undecane-1-yl)propyl]methylamino}ethyl)dimethylammonio]acetate ( 780 mg), 1,3-propanesultone (280 mg) and acetonitrile (15 ml) was stirred at 50° C. for 1 day. After allowing to cool to room temperature, the mixture was concentrated under reduced pressure, and the residue was purified by silica gel column chromatography (Kanto Kagaku silica gel 60 (spherical) NH 2 , ethyl acetate/methanol) to give 5-[3-(2,8,9- Trioxa-5-aza-1-silabicyclo[3.3.3]undecane-1-yl)propyl]-2,2,5-trimethyl-8-sulfonato-2,5-diazaoctane-2,5-diium-1 -carboxylate (compound 10) (250 mg) was obtained as a colorless solid.
1 H-NMR(D 2 O): δ = 0.27-0.25 (2H, m), 1.84-1.73 (2H, m), 2.25 (2H, m), 3.01 (8H, m), 3.16 (3H, s) , 3.35-3.32 (8H, m), 3.56-3.52 (2H, m), 3.84-3.80 (8H, m), 3.99 (2H, s), 4.28-4.24 (2H, m)
MASS: ESI-MS [M+Na] + 520.
<合成例11>
4-[3-(2,8,9-トリオキサ-5-アザ-1-シラビシクロ[3.3.3]ウンデカン-1-イル)プロピル]-4,7,10,10-テトラメチル-7-(3-スルホナトプロピル)-4,7,10-トリアザトリデカン-4,7,10-トリイウム-1,13-ジスルホナートの合成
 以下のスキームに従って、スルホベタイン基含有トリアルコキシシラン化合物11を合成した。
<Synthesis Example 11>
4-[3-(2,8,9-trioxa-5-aza-1-silabicyclo[3.3.3]undecane-1-yl)propyl]-4,7,10,10-tetramethyl-7- Synthesis of (3-sulfonatopropyl)-4,7,10-triazatridecane-4,7,10-triium-1,13-disulfonate Synthesis of sulfobetaine group-containing trialkoxysilane compound 11 according to the following scheme did.
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000046
アミノ化反応:
 1-(3-ブロモプロピル)-2,8,9-トリオキサ-5-アザ-1-シラビシクロ[3.3.3]ウンデカン (4.78 g)、N,N,N’,3-テトラメチル-3-アザペンタン-1,5-ジアミン(2.57 g)、テトラヒドロフラン (20 ml)の混合物を加熱還流下で一晩撹拌した。室温まで放冷後、5 mol/L ナトリウムメトキシド-メタノール溶液 (3.2 ml)を加え30分間撹拌した。減圧下濃縮し残渣をシリカゲルカラムクロマトグラフィー(関東化学シリカゲル60(球状)NH2、酢酸エチル/メタノール)で精製することにより、N-[3-(2,8,9-トリオキサ-5-アザ-1-シラビシクロ[3.3.3]ウンデカン-1-イル)プロピル]-N,N’,N ’,3-テトラメチル-3-アザペンタン-1,5-ジアミン (840 mg)を無色油状物として得た。
1H-NMR(CDCl3): δ = 0.31-0.37 (2H, m), 1.51-1.61 (2H, m), 2.23-2.26 (11H, m), 2.32-2.50 (11H, m), 2.77-2.81 (6H, m), 3.73-3.77 (6H, m).
Amination reaction:
1-(3-bromopropyl)-2,8,9-trioxa-5-aza-1-silabicyclo[3.3.3]undecane (4.78 g), N,N,N',3-tetramethyl-3 A mixture of -azapentane-1,5-diamine (2.57 g) and tetrahydrofuran (20 ml) was heated under reflux and stirred overnight. After cooling to room temperature, 5 mol/L sodium methoxide-methanol solution (3.2 ml) was added and stirred for 30 minutes. After concentration under reduced pressure, the residue was purified by silica gel column chromatography (Kanto Kagaku silica gel 60 (spherical) NH 2 , ethyl acetate/methanol) to give N-[3-(2,8,9-trioxa-5-aza- 1-Silabicyclo[3.3.3]undecane-1-yl)propyl]-N,N',N',3-tetramethyl-3-azapentane-1,5-diamine (840 mg) as a colorless oil. Obtained.
1 H-NMR(CDCl 3 ): δ = 0.31-0.37 (2H, m), 1.51-1.61 (2H, m), 2.23-2.26 (11H, m), 2.32-2.50 (11H, m), 2.77-2.81 (6H, m), 3.73-3.77 (6H, m).
スルホベタイン化反応:
N-[3-(2,8,9-トリオキサ-5-アザ-1-シラビシクロ[3.3.3]ウンデカン-1-イル)プロピル]-N,N’,N’,3-テトラメチル-3-アザペンタン-1,5-ジアミン (400 mg)、1,3-プロパンスルトン (430 mg)、メタノール (5 ml)の混合物を70℃で5時間撹拌した。室温まで放冷後、酢酸エチルを加えると白色固体が析出した。析出物を濾取しアセトニトリルおよび酢酸エチルで洗浄した。得られた固体をメタノールに溶かし、酢酸エチルを加えると白色固体が析出した。析出物を濾取し酢酸エチルおよびアセトニトリルで洗浄した。得られた固体を減圧下乾燥することにより、4-[3-(2,8,9-トリオキサ-5-アザ-1-シラビシクロ[3.3.3]ウンデカン-1-イル)プロピル]-4,7,10,10-テトラメチル-7-(3-スルホナトプロピル)-4,7,10-トリアザトリデカン-4,7,10-トリイウム-1,13-ジスルホナート(化合物11) (400 mg)を無色固体として得た。
1H-NMR(D2O): δ = 0.64-069 (2H, m), 1.87-2.23 (8H, m), 2.89-3.00 (8H, m), 3.13 (3H, s), 3.18 (6H, s), 3.26-3.70 (25H, m), 3.92-3.95 (4H, m).
Sulfobetaylation reaction:
N-[3-(2,8,9-trioxa-5-aza-1-silabicyclo[3.3.3]undecane-1-yl)propyl]-N,N',N',3-tetramethyl- A mixture of 3-azapentane-1,5-diamine (400 mg), 1,3-propanesultone (430 mg) and methanol (5 ml) was stirred at 70°C for 5 hours. After allowing to cool to room temperature, ethyl acetate was added to precipitate a white solid. The precipitate was collected by filtration and washed with acetonitrile and ethyl acetate. The resulting solid was dissolved in methanol, and ethyl acetate was added to precipitate a white solid. The precipitate was collected by filtration and washed with ethyl acetate and acetonitrile. The resulting solid was dried under reduced pressure to give 4-[3-(2,8,9-trioxa-5-aza-1-sylabicyclo[3.3.3]undecane-1-yl)propyl]-4 ,7,10,10-tetramethyl-7-(3-sulfonatopropyl)-4,7,10-triazatridecane-4,7,10-triium-1,13-disulfonate (compound 11) (400 mg) was obtained as a colorless solid.
1 H-NMR(D 2 O): δ = 0.64-069 (2H, m), 1.87-2.23 (8H, m), 2.89-3.00 (8H, m), 3.13 (3H, s), 3.18 (6H, s), 3.26-3.70 (25H, m), 3.92-3.95 (4H, m).
<合成例12>
4-(3-トリヒドロキシシリルプロピル)-4,7,7-トリメチル-4,7-ジアザデカン-4,7-ジイウム-1,10-ジスルホナートの合成
 以下のスキームに従って、スルホベタイン基含有トリヒドロキシシラン化合物12を合成した。
<Synthesis Example 12>
Synthesis of 4-(3-trihydroxysilylpropyl)-4,7,7-trimethyl-4,7-diazadecane-4,7-diium-1,10-disulfonate. Compound 12 was synthesized.
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000047
 エタノール:精製水=7:3 (v/v)の混合溶液に化合物3を溶解して、5 mmol/Lの溶液を調整し、これに0.1 vol%のトリエチルアミンを添加した。この混合物を50℃で2日間静置し、生じた油状沈殿物をエタノールでデカンテーションを2回繰り返すことで得られた固体を減圧下乾燥することにより、4-(3-トリヒドロキシシリルプロピル)-4,7,7-トリメチル-4,7-ジアザデカン-4,7-ジイウム-1,10-ジスルホナート(化合物12)を無色固体として得た。
1H-NMR(D2O): δ = 0.79-0.60 (2H, m), 1.98-1.87 (2H, m), 2.34-2.21 (4H, m), 3.02 (4H, t, J = 6.6 Hz), 3.23 (3H, s), 3.28 (6H, s), 3.47 (2H, t, J = 7.9 Hz), 3.63 (4H, t, J = 6.6 Hz), 3.97 (4H, s)
13C-NMR(D2O): 10.76, 19.51, 20.63, 20.98, 49.50, 49.55, 51.42, 53.97, 56.11, 60.16, 63.30, 66.29, 67.33
MASS: ESI-MS [M+H]+ 467.
Compound 3 was dissolved in a mixed solution of ethanol:purified water=7:3 (v/v) to prepare a 5 mmol/L solution, to which 0.1 vol% triethylamine was added. This mixture was allowed to stand at 50° C. for 2 days, and the resulting oily precipitate was decanted twice with ethanol. The resulting solid was dried under reduced pressure to give 4-(3-trihydroxysilylpropyl) -4,7,7-trimethyl-4,7-diazadecane-4,7-diium-1,10-disulfonate (compound 12) was obtained as a colorless solid.
1 H-NMR(D 2 O): δ = 0.79-0.60 (2H, m), 1.98-1.87 (2H, m), 2.34-2.21 (4H, m), 3.02 (4H, t, J = 6.6 Hz) , 3.23 (3H, s), 3.28 (6H, s), 3.47 (2H, t, J = 7.9 Hz), 3.63 (4H, t, J = 6.6 Hz), 3.97 (4H, s)
13C -NMR (D2O): 10.76, 19.51 , 20.63, 20.98, 49.50, 49.55, 51.42, 53.97, 56.11, 60.16, 63.30, 66.29, 67.33
MASS: ESI-MS [M+H] + 467.
[実施例1]
 エタノール:精製水=6:4(v/v)の混合溶媒にスルホベタイン基含有トリアルコキシシラン化合物1を溶解して、5 mmol/Lの防曇性コーティング組成物1を得た。
 スライドガラス(松浪硝子工業製、スライドグラスS1225)を10%ラウリル硫酸ナトリウム水溶液、精製水、アセトンの順番でそれぞれ浸漬し室温で10分間ずつ超音波処理した後、さらに15%水酸化ナトリウム水溶液に浸漬し50℃で30分間超音波処理することでスライドガラス表面を活性化させた。
 このスライドガラスを防曇性コーティング組成物1に室温で終夜浸漬した。スライドガラスを取り出した後、エタノールに浸漬し室温で10分間超音波処理した。窒素ガスで乾燥後、80℃で1時間加熱処理した。放冷後、スライドガラスを水道水で30秒洗浄後、窒素ガスで乾燥させることによって、防曇処理ガラス1を得た。
[Example 1]
A 5 mmol/L antifogging coating composition 1 was obtained by dissolving the sulfobetaine group-containing trialkoxysilane compound 1 in a mixed solvent of ethanol:purified water=6:4 (v/v).
A glass slide (Slide glass S1225, manufactured by Matsunami Glass Industry Co., Ltd.) was immersed in 10% sodium lauryl sulfate aqueous solution, purified water, and acetone in that order, ultrasonically treated at room temperature for 10 minutes each, and then further immersed in a 15% sodium hydroxide aqueous solution. Then, the surface of the slide glass was activated by ultrasonic treatment at 50°C for 30 minutes.
The slide glass was immersed in antifogging coating composition 1 overnight at room temperature. After removing the slide glass, it was immersed in ethanol and sonicated for 10 minutes at room temperature. After drying with nitrogen gas, heat treatment was performed at 80° C. for 1 hour. After standing to cool, the slide glass was washed with tap water for 30 seconds and then dried with nitrogen gas to obtain anti-fogging treated glass 1.
[実施例2]
 エタノール:精製水=7:3(v/v)の混合溶媒にスルホベタイン基含有トリアルコキシシラン化合物3を溶解して、5 mmol/Lの溶液を調製し、これに2 vol%の酢酸を添加して防曇性コーティング組成物2を得た。
 スライドガラスを防曇性コーティング組成物2に60℃で4時間浸漬した以外は、実施例1と同様に処理することによって、防曇処理ガラス2を得た。
[Example 2]
Dissolve sulfobetaine group-containing trialkoxysilane compound 3 in a mixed solvent of ethanol: purified water = 7:3 (v/v) to prepare a 5 mmol/L solution, and add 2 vol% acetic acid to this. to obtain an antifogging coating composition 2.
Anti-fogging treated glass 2 was obtained by treating in the same manner as in Example 1 except that the slide glass was immersed in anti-fogging coating composition 2 at 60° C. for 4 hours.
[実施例3]
 エタノール:精製水=9:1(v/v)の混合溶媒にスルホベタイン基含有トリアルコキシシラン化合物3およびテトラエトキシシランを溶解して、化合物3が5 mmol/L、テトラエトキシシランが1 mmol/Lの溶液を調製し、これに2 vol%の酢酸を添加することで防曇性コーティング組成物3を得た。
 スライドガラスを防曇性コーティング組成物3に60℃で4時間浸漬した以外は、実施例1と同様に処理することによって、防曇処理ガラス3を得た。
[Example 3]
Dissolve the sulfobetaine group-containing trialkoxysilane compound 3 and tetraethoxysilane in a mixed solvent of ethanol:purified water=9:1 (v/v) to give 5 mmol/L of compound 3 and 1 mmol/L of tetraethoxysilane. Antifogging coating composition 3 was obtained by preparing a solution of L and adding 2 vol% of acetic acid thereto.
Anti-fogging treated glass 3 was obtained by treating in the same manner as in Example 1 except that the slide glass was immersed in anti-fogging coating composition 3 at 60° C. for 4 hours.
[実施例4]
 2-プロパノール:精製水=9:1(v/v)の混合溶媒にスルホベタイン基含有トリアルコキシシラン化合物4を溶解して、5 mmol/Lの溶液を調製し、これに2 vol%の酢酸を添加することで防曇性コーティング組成物4を得た。
 スライドガラスを防曇性コーティング組成物4に60℃で4時間浸漬した以外は、実施例1と同様に処理することによって、防曇処理ガラス4を得た。
[Example 4]
2-propanol: Purified water = 9: 1 (v / v) sulfobetaine group-containing trialkoxysilane compound 4 was dissolved in a mixed solvent to prepare a 5 mmol / L solution, 2 vol% of acetic acid was added to this An anti-fogging coating composition 4 was obtained by adding
Anti-fogging treated glass 4 was obtained by the same treatment as in Example 1 except that the slide glass was immersed in anti-fogging coating composition 4 at 60° C. for 4 hours.
[実施例5]
 エタノール:精製水=9:1(v/v)の混合溶媒にスルホベタイン基含有トリアルコキシシラン化合物5を溶解して、5 mmol/Lの溶液を調製し、これに2 vol%の酢酸を添加することで防曇性コーティング組成物5を得た。
 スライドガラスを防曇性コーティング組成物5に60℃で4時間浸漬した以外は、実施例1と同様に処理することによって、防曇処理ガラス5を得た。
[Example 5]
Dissolve the sulfobetaine group-containing trialkoxysilane compound 5 in a mixed solvent of ethanol: purified water = 9:1 (v/v) to prepare a 5 mmol/L solution, and add 2 vol% acetic acid to it. Antifogging coating composition 5 was obtained by doing so.
Anti-fogging treated glass 5 was obtained by treating in the same manner as in Example 1 except that the slide glass was immersed in anti-fogging coating composition 5 at 60° C. for 4 hours.
[実施例6]
 2-プロパノール:精製水=9:1(v/v)の混合溶媒にスルホベタイン基含有トリアルコキシシラン化合物6を溶解して、5 mmol/Lの溶液を調製し、これに2 vol%の酢酸を添加することで防曇性コーティング組成物6を得た。
 スライドガラスを防曇性コーティング組成物6に60℃で4時間浸漬した以外は、実施例1と同様に処理することによって、防曇処理ガラス6を得た。
[Example 6]
2-propanol: purified water = 9: 1 (v / v) sulfobetaine group-containing trialkoxysilane compound 6 was dissolved to prepare a 5 mmol / L solution, to which 2 vol% acetic acid An antifogging coating composition 6 was obtained by adding
An anti-fogging treated glass 6 was obtained by treating in the same manner as in Example 1 except that the slide glass was immersed in the anti-fogging coating composition 6 at 60° C. for 4 hours.
[実施例7]
 2-プロパノール:精製水=9:1(v/v)の混合溶媒にスルホベタイン基含有トリアルコキシシラン化合物7を溶解して、5 mmol/Lの溶液を調製し、これに2 vol%の酢酸を添加することで防曇性コーティング組成物7を得た。
 スライドガラスを防曇性コーティング組成物7に60℃で4時間浸漬した以外は、実施例1と同様に処理することによって、防曇処理ガラス7を得た。
[Example 7]
2-propanol: purified water = 9: 1 (v / v) sulfobetaine group-containing trialkoxysilane compound 7 was dissolved to prepare a 5 mmol / L solution, 2 vol% of acetic acid was added to this was added to obtain an antifogging coating composition 7.
Anti-fogging treated glass 7 was obtained by treating in the same manner as in Example 1 except that the slide glass was immersed in anti-fogging coating composition 7 at 60° C. for 4 hours.
[実施例8]
 エタノール:精製水=9:1(v/v)の混合溶媒にスルホベタイン基含有トリアルコキシシラン化合物8を溶解して、5 mmol/Lの溶液を調製し、これに2 vol%の酢酸を添加することで防曇性コーティング組成物8を得た。
 スライドガラスを防曇性コーティング組成物8に60℃で4時間浸漬した以外は、実施例1と同様に処理することによって、防曇処理ガラス8を得た。
[Example 8]
Dissolve the sulfobetaine group-containing trialkoxysilane compound 8 in a mixed solvent of ethanol: purified water = 9:1 (v/v) to prepare a 5 mmol/L solution, and add 2 vol% acetic acid to it. By doing so, an antifogging coating composition 8 was obtained.
Anti-fogging treated glass 8 was obtained by the same treatment as in Example 1 except that the slide glass was immersed in anti-fogging coating composition 8 at 60° C. for 4 hours.
[実施例9]
 エタノール:精製水=7:3(v/v)の混合溶媒にカルボベタイン基含有トリアルコキシシラン化合物9を溶解して、5 mmol/Lの溶液を調製し、これに2 vol%の酢酸を添加して防曇性コーティング組成物9を得た。
 スライドガラスを防曇性コーティング組成物9に60℃で4時間浸漬した以外は、実施例1と同様に処理することによって、防曇処理ガラス9を得た。
[Example 9]
A carbobetaine group-containing trialkoxysilane compound 9 was dissolved in a mixed solvent of ethanol: purified water = 7:3 (v/v) to prepare a 5 mmol/L solution, to which 2 vol% acetic acid was added. An antifogging coating composition 9 was obtained.
An anti-fogging treated glass 9 was obtained by treating in the same manner as in Example 1 except that the slide glass was immersed in the anti-fogging coating composition 9 at 60° C. for 4 hours.
[実施例10]
 エタノール:精製水=7:3(v/v)の混合溶媒にスルホベタイン基およびカルボベタイン基含有トリアルコキシシラン化合物10を溶解して、5 mmol/Lの溶液を調製し、これに2 vol%の酢酸を添加して防曇性コーティング組成物10を得た。
 スライドガラスを防曇性コーティング組成物10に60℃で4時間浸漬した以外は、実施例1と同様に処理することによって、防曇処理ガラス10を得た。
[Example 10]
A sulfobetaine group- and carbobetaine group-containing trialkoxysilane compound 10 was dissolved in a mixed solvent of ethanol: purified water = 7:3 (v/v) to prepare a 5 mmol/L solution, and 2 vol% of acetic acid was added to obtain an antifogging coating composition 10.
An anti-fogging treated glass 10 was obtained by treating in the same manner as in Example 1 except that the slide glass was immersed in the anti-fogging coating composition 10 at 60° C. for 4 hours.
[実施例11]
 エタノール:精製水=7:3(v/v)の混合溶媒にスルホベタイン基含有トリアルコキシシラン化合物11を溶解して、5 mmol/Lの溶液を調製し、これに2 vol%の酢酸を添加して防曇性コーティング組成物11を得た。
 スライドガラスを防曇性コーティング組成物11に60℃で4時間浸漬した以外は、実施例1と同様に処理することによって、防曇処理ガラス11を得た。
[Example 11]
Dissolve sulfobetaine group-containing trialkoxysilane compound 11 in a mixed solvent of ethanol:purified water = 7:3 (v/v) to prepare a 5 mmol/L solution, to which 2 vol% acetic acid is added. An anti-fogging coating composition 11 was obtained.
An anti-fogging treated glass 11 was obtained by treating in the same manner as in Example 1 except that the slide glass was immersed in the anti-fogging coating composition 11 at 60° C. for 4 hours.
[実施例12] 
 エタノール:精製水=7:3(v/v)の混合溶媒に化合物3を溶解して、5 mmol/Lの溶液を調整し、これに0.03 vol%のリン酸を添加して、室温で1週間静置することで防曇性コーティング組成物12を得た。この防曇性コーティング組成物12中ではHPLC分析の結果から化合物3は完全に加水分解し、化合物12に変換されていることを確認した。
 スライドガラスを防曇性コーティング組成物12に60℃で4時間浸漬した以外は、実施例1と同様に処理することによって、防曇処理ガラス12を得た。
[Example 12]
Ethanol: Dissolve compound 3 in a mixed solvent of purified water = 7:3 (v/v) to prepare a 5 mmol/L solution, add 0.03 vol% phosphoric acid, and dissolve at room temperature for 1 An anti-fogging coating composition 12 was obtained by standing still for a week. In this antifogging coating composition 12, it was confirmed from the results of HPLC analysis that compound 3 was completely hydrolyzed and converted to compound 12.
An anti-fogging treated glass 12 was obtained by treating in the same manner as in Example 1 except that the slide glass was immersed in the anti-fogging coating composition 12 at 60° C. for 4 hours.
[実施例13]
 PGME:精製水=4:6(v/v)の混合溶媒にスルホベタイン基含有トリアルコキシシラン化合物3を溶解して、5 mmol/Lの溶液を調整し、これにトリエチルアミンを2 mol/Lになるように添加して防曇性コーティング組成物13を得た。
 スライドガラス(松浪硝子工業製、スライドグラスS1225)を10%ラウリル硫酸ナトリウム水溶液、精製水、アセトンの順番でそれぞれ浸漬し、室温で10分間ずつ超音波処理した後、さらに1%水酸化ナトリウム水溶液に室温で20分間浸漬することでスライドガラス表面を活性化させた。
 このスライドガラスを防曇性コーティング組成物13に室温でディップコートし、スライドガラスを取り出したまま室温で乾燥させた。乾燥したスライドガラスを水道水で30秒洗浄後、窒素ガスで乾燥させることによって、防曇処理ガラス13を得た。
[Example 13]
The sulfobetaine group-containing trialkoxysilane compound 3 was dissolved in a mixed solvent of PGME: purified water = 4:6 (v/v) to prepare a 5 mmol/L solution, and triethylamine was added to 2 mol/L. was added to obtain an antifogging coating composition 13.
A slide glass (Slide glass S1225 manufactured by Matsunami Glass Industry Co., Ltd.) was immersed in 10% sodium lauryl sulfate aqueous solution, purified water, and acetone in that order, and ultrasonically treated at room temperature for 10 minutes each. The slide glass surface was activated by immersion at room temperature for 20 minutes.
This glass slide was dip-coated with anti-fogging coating composition 13 at room temperature and allowed to dry at room temperature while the glass slide was removed. After the dried slide glass was washed with tap water for 30 seconds, it was dried with nitrogen gas to obtain anti-fogging treated glass 13 .
[実施例14]
 エタノール:精製水=7:3(v/v)の混合溶媒にスルホベタイン基含有トリアルコキシシラン化合物11を溶解して、5 mmol/Lの溶液を調製し、これに2 vol%の酢酸を添加して室温で1週間静置することで防曇性コーティング組成物14を得た。この防曇性コーティング組成物14中ではHPLC分析の結果から化合物11は完全に加水分解し、化合物13に変換されていることを確認した。
 スライドガラスを防曇性コーティング組成物14に60℃で4時間浸漬した以外は、実施例1と同様に処理することによって、防曇処理ガラス14を得た。
[Example 14]
Dissolve sulfobetaine group-containing trialkoxysilane compound 11 in a mixed solvent of ethanol:purified water = 7:3 (v/v) to prepare a 5 mmol/L solution, to which 2 vol% acetic acid is added. and left at room temperature for 1 week to obtain an antifogging coating composition 14. In this antifogging coating composition 14, it was confirmed from the results of HPLC analysis that compound 11 was completely hydrolyzed and converted to compound 13.
An anti-fogging treated glass 14 was obtained by treating in the same manner as in Example 1 except that the slide glass was immersed in the anti-fogging coating composition 14 at 60° C. for 4 hours.
[比較例1]
 エタノール:精製水=99.8:0.2(v/v)の混合溶媒に8,8-ジメトキシ-4,4-ジメチル-9-オキサ-4-アザ-8-シラデカン-4-イウム-1-スルホナートを溶解して、5 mmol/Lの防曇性コーティング組成物15を得た。
 このスライドガラスを防曇性コーティング組成物15に浸漬した以外は、実施例1と同様に処理することによって、防曇処理ガラス15を得た。
[Comparative Example 1]
Dissolve 8,8-dimethoxy-4,4-dimethyl-9-oxa-4-aza-8-siladecane-4-ium-1-sulfonate in a mixed solvent of ethanol:purified water=99.8:0.2 (v/v). As a result, a 5 mmol/L antifogging coating composition 15 was obtained.
An anti-fogging treated glass 15 was obtained by treating in the same manner as in Example 1 except that this slide glass was immersed in the anti-fogging coating composition 15 .
[比較例2]
 エタノール:精製水=9:1(v/v)の混合溶媒に3-{[3-(2,8,9-トリオキサ-5-アザ-1-シラビシクロ[3.3.3]ウンデカン-1-イル)プロピル]ジメチルアンモニオ}プロパン-1-スルホナートを溶解して、5 mmol/Lの溶液を調製し、これに2 vol%の酢酸を添加することによって防曇性コーティング組成物16を得た。
 このスライドガラスを防曇性コーティング組成物14に60℃で4時間浸漬した以外は、実施例1と同様に処理することによって、防曇処理ガラス16を得た。
[Comparative Example 2]
3-{[3-(2,8,9-trioxa-5-aza-1-sylabicyclo[3.3.3]undecane-1- yl)propyl]dimethylammonio}propane-1-sulfonate was dissolved to prepare a 5 mmol/L solution, to which 2 vol% acetic acid was added to obtain an antifogging coating composition 16. .
An anti-fogging treated glass 16 was obtained in the same manner as in Example 1 except that this slide glass was immersed in the anti-fogging coating composition 14 at 60° C. for 4 hours.
[比較例3]
 エチレングリコール(超脱水)に化合物1を溶解して、5 mmol/Lの防曇性コーティング組成物17を得た。
 スライドガラスを防曇性コーティング組成物17に室温で終夜浸漬した以外は、実施例1と同様に処理することによって、防曇処理ガラス17を得た。
[Comparative Example 3]
Compound 1 was dissolved in ethylene glycol (super dehydrated) to obtain 5 mmol/L anti-fogging coating composition 17.
Anti-fog treated glass 17 was obtained by processing in the same manner as in Example 1, except that the slide glass was immersed in anti-fog coating composition 17 overnight at room temperature.
 実施例1~14および比較例1~3のそれぞれで得られた防曇処理ガラス1~17に対して、水接触角の測定、防曇性試験および防汚性試験を行った結果を表1にまとめた。 Table 1 shows the results of water contact angle measurement, antifogging property test, and antifouling property test on the antifogging treated glasses 1 to 17 obtained in Examples 1 to 14 and Comparative Examples 1 to 3, respectively. Summarized in
Figure JPOXMLDOC01-appb-T000048
Figure JPOXMLDOC01-appb-T000048
[水接触角の測定]
 協和界面化学製DMs-401(精製水滴量1.0 μL、滴下測定時間1000 ms)を用いて、1サンプルについて3か所測定し平均値を記載した。
[Measurement of water contact angle]
Using DMs-401 manufactured by Kyowa Interface Science Co., Ltd. (purified water drop amount: 1.0 μL, dropping measurement time: 1000 ms), measurements were taken at three locations for one sample, and the average value was recorded.
[防曇性試験]
 防曇処理基材に50℃の蒸気を30秒間あて水膜の状態を目視で観察し、以下の基準で判定した。
  S:水膜の状態が蒸気をあてた直後から均一のもの
  A:水膜の状態が蒸気をあてた直後はムラがあるが30秒後には均一のもの
  B:30秒後の水膜の状態にムラがあるもの
  C:曇っているもの
[Anti-fogging test]
Steam at 50°C was applied to the antifogging treated substrate for 30 seconds, and the state of the water film was visually observed and judged according to the following criteria.
S: The condition of the water film is uniform immediately after the steam is applied. A: The condition of the water film is uneven immediately after the steam is applied, but it is uniform after 30 seconds. B: The condition of the water film after 30 seconds. C: Cloudy
[防汚性試験]
 ゼブラ製の油性マーカー「マッキー極細」(黒、品番MO-120-MC-BK)でマークし、その上に水滴を垂らして1分間放置後、キムワイプでの拭き取りを行い、以下の基準で判定した。
  A:1分以内にマークが浮いたもの
  B:1分間で浮かなかったが拭き取ると消えたもの
  C:拭き取っても消えなかったもの
[Anti-fouling test]
A mark was made with a zebra oil-based marker "McKee Extra Fine" (black, product number MO-120-MC-BK), a drop of water was dropped on the mark, left for 1 minute, then wiped off with a Kimwipe, and judged according to the following criteria. .
A: The mark appeared within 1 minute B: The mark did not appear after 1 minute but disappeared after wiping off C: The mark did not disappear even after wiping off
 以上の結果から、本発明化合物は高い親水性を有するベタイン系有機ケイ素化合物でありながら粉体形状で取得する事ができ基材に対して防曇性・防汚性を付与することが明らかとなった。特に、化合物1、3、11、12および13は従来知られているベタイン系有機ケイ素化合物よりも基材に対して優れた防曇性を付与することが明らかとなった。さらにケイ素含有化合物を併用することにより、本発明化合物を単体で用いるよりも優れた防曇処理基材を作成できることが明らかとなった。特にトリアルコキシシリル基がすべて加水分解された化合物12および13では、ケイ素含有化合物を併用しない場合でも、優れた防曇性を発揮した。
 さらに、本発明化合物を用いれば、浸漬での反応を高温かつ長時間行わなくても、室温にて短時間の処理で、優れた防曇性を発揮する膜形成が可能であることが確認された。
From the above results, it is clear that the compound of the present invention is a highly hydrophilic betaine-based organosilicon compound, but can be obtained in the form of powder and imparts anti-fogging and anti-fouling properties to substrates. became. In particular, compounds 1, 3, 11, 12 and 13 were found to impart superior antifogging properties to substrates as compared to conventionally known betaine organosilicon compounds. Furthermore, it was found that by using a silicon-containing compound in combination, an antifogging treated base material superior to that obtained by using the compound of the present invention alone can be produced. In particular, Compounds 12 and 13 in which all the trialkoxysilyl groups were hydrolyzed exhibited excellent antifogging properties even when no silicon-containing compound was used.
Furthermore, it was confirmed that by using the compound of the present invention, it is possible to form a film exhibiting excellent anti-fogging properties by treatment at room temperature for a short period of time without performing a high-temperature, long-term immersion reaction. rice field.
 本発明によれば、従来よりも基材への結合特性および防曇付与特性が高いベタイン系有機ケイ素化合物を粉状形態で得ることができるので、防曇性が向上したコーティング組成物を高い生産性で製造することができる。また、室温かつ短時間で防曇性が向上したコーティング膜を形成することができる。本発明の化合物は、一般的な窓ガラスや高層ビル等の高所および狭所用ガラス、冷蔵および冷凍ショーケース等の冷所ガラス、サウナ室等の高温多湿環境用ガラス、モバイル機器用ガラス、自動車フロントガラス、サイドガラスおよびリアガラス、浴室および洗面化粧台用ミラー、自動車およびバイク等のサイドミラー、道路の反射ミラー、手鏡、歯科用ミラー、ソーラーパネル、屋外ディスプレイ、眼鏡、サングラス、スマートグラス、監視カメラ等のレンズ等に好適に用いることができる。 According to the present invention, it is possible to obtain a betaine-based organosilicon compound in powder form that has higher bonding properties to substrates and anti-fogging properties than conventional ones, so that coating compositions with improved anti-fogging properties can be produced at high production rates. can be manufactured with In addition, a coating film with improved antifogging properties can be formed at room temperature in a short period of time. The compound of the present invention can be used for general window glass, glass for high places and narrow places such as skyscrapers, glass for cold places such as refrigerated and freezer showcases, glass for hot and humid environments such as sauna rooms, glass for mobile devices, automobiles, etc. Windshields, side and rear windows, mirrors for bathrooms and vanities, side mirrors for cars and motorcycles, road mirrors, hand mirrors, dental mirrors, solar panels, outdoor displays, eyeglasses, sunglasses, smart glasses, surveillance cameras, etc. It can be suitably used for a lens or the like.

Claims (13)

  1.  式(1):
    Figure JPOXMLDOC01-appb-C000001
    {式中、R、RおよびRは、独立して、C~Cアルキル基であるか、または、それらが各々結合する-O-Si-と一緒になって、式(2):
    Figure JPOXMLDOC01-appb-C000002
    で表されるシラトラニル基を形成し、
    (A)
     Xは、式(3):
    Figure JPOXMLDOC01-appb-C000003
    (式中、aは2~18のいずれかの整数を示す。)で表されるアルキレン基であるか、または、式(4):
    Figure JPOXMLDOC01-appb-C000004
    (式中、bおよびcは、独立して、2~4のいずれかの整数を示す。)で表されるカルバマートアルキレン基であるか、または、式(5):
    Figure JPOXMLDOC01-appb-C000005
    (式中、bおよびcは、独立して、2~4のいずれかの整数を示す。)で表されるウレア含有アルキレン基であるか、または、式(6):
    Figure JPOXMLDOC01-appb-C000006
    (式中、dは1~10のいずれかの整数を示し、eは2~4のいずれかの整数を示す。)で表されるポリエチレンオキシアルキレン基であるか、または、式(7):
    Figure JPOXMLDOC01-appb-C000007
    (式中、fおよびgは、独立して、2~4のいずれかの整数を示し、Yは、-NH-、-O-または-S-であり、Zは、
    Figure JPOXMLDOC01-appb-C000008
    からなる群から選択されるいずれかの基である。)で表される置換基であって、
      RおよびRは、独立して、C~Cアルキル基または式(8):
    Figure JPOXMLDOC01-appb-C000009
    (式中、RおよびRは、独立して、C~Cアルキル基であり、hおよびiは、独立して、1~4のいずれかの整数であり、jは1~3のいずれかの整数であり、ここに、複数のh、iおよびRは、それぞれ、異なっていてもよく、Aは-SO または-COOである)で表される(ポリ)ベタイン基、
     Rは、C~Cスルホアルキル基またはC~Cカルボキシルアルキル基であり、
     ただし、RおよびRが同時にC~Cアルキル基である場合を除く。;または、
    (B)
     X、R、Rおよびそれらが結合する第4級化窒素原子は、一緒になって、式(9):
    Figure JPOXMLDOC01-appb-C000010
    (式中、kは2~4のいずれかの整数である。)で表されるイミダゾリニウム基含有基であり、
     Rは、C~Cスルホアルキル基またはC~Cカルボキシルアルキル基である。;または、
    (C)
     Xは、式(10):
    Figure JPOXMLDOC01-appb-C000011
    (式中、mおよびnは、独立して、1~4のいずれかの整数である。)で表されるフェノキシ基含有基であり、RおよびRは、独立して、C~Cアルキル基または式(8)で表される(ポリ)ベタイン基であり、Rは、C~Cスルホアルキル基またはC~Cカルボキシルアルキル基である。}で表されるベタイン基含有トリアルコキシシラン化合物およびその加水分解物。
    Formula (1):
    Figure JPOXMLDOC01-appb-C000001
    {wherein R 1 , R 2 and R 3 are independently C 1 -C 3 alkyl groups, or together with the ):
    Figure JPOXMLDOC01-appb-C000002
    to form a silatranyl group represented by
    (A)
    X is the formula (3):
    Figure JPOXMLDOC01-appb-C000003
    (Wherein, a represents any integer from 2 to 18.) is an alkylene group represented by the formula (4):
    Figure JPOXMLDOC01-appb-C000004
    (Wherein, b and c independently represent any integer of 2 to 4), or a carbamate alkylene group represented by formula (5):
    Figure JPOXMLDOC01-appb-C000005
    (Wherein, b and c independently represent any integer from 2 to 4), or a urea-containing alkylene group represented by formula (6):
    Figure JPOXMLDOC01-appb-C000006
    (Wherein, d represents an integer of 1 to 10, and e represents an integer of 2 to 4.) or a polyethyleneoxyalkylene group represented by formula (7):
    Figure JPOXMLDOC01-appb-C000007
    (Wherein, f and g independently represent an integer of 2 to 4, Y is -NH-, -O- or -S-, and Z is
    Figure JPOXMLDOC01-appb-C000008
    Any group selected from the group consisting of ) is a substituent represented by
    R 4 and R 5 are independently C 1 -C 3 alkyl groups or formula (8):
    Figure JPOXMLDOC01-appb-C000009
    (wherein R 7 and R 8 are independently C 1 -C 3 alkyl groups, h and i are independently any integers from 1 to 4, j is from 1 to 3 wherein h, i and R 7 may be different, and A is —SO 3 or —COO (poly)betaine represented by group,
    R 6 is a C 1 -C 4 sulfoalkyl group or a C 1 -C 4 carboxylalkyl group,
    However, the case where R 4 and R 5 are both C 1 -C 3 alkyl groups is excluded. ;or,
    (B)
    X, R 4 , R 5 and the quaternized nitrogen atom to which they are attached are taken together to form Formula (9):
    Figure JPOXMLDOC01-appb-C000010
    (Wherein, k is an integer of 2 to 4.) An imidazolinium group-containing group represented by
    R 6 is a C 1 -C 4 sulfoalkyl group or a C 1 -C 4 carboxylalkyl group. ;or,
    (C)
    X is the formula (10):
    Figure JPOXMLDOC01-appb-C000011
    (Wherein, m and n are independently any integers of 1 to 4.) is a phenoxy group-containing group represented by R 4 and R 5 are independently C 1 to It is a C 3 alkyl group or a (poly)betaine group represented by formula (8), and R 6 is a C 1 -C 4 sulfoalkyl group or a C 1 -C 4 carboxylalkyl group. } and a betaine group-containing trialkoxysilane compound and a hydrolyzate thereof.
  2.  式(11):
    Figure JPOXMLDOC01-appb-C000012
    もしくは式(12):
    Figure JPOXMLDOC01-appb-C000013
    (式中、R、R10、R11、R12およびR13は、独立して、C~Cアルキル基であり、pおよびqは、独立して、1~4のいずれかの整数であり、rは、2または3の整数であり、rは、1~3のいずれかの整数であり、ここに、複数のp、qおよびR12は、それぞれ、異なっていてもよく、Aは-SO または-COOである)で表される、(ポリ)ベタイン基含有トリアルコキシシラン化合物(A)およびその加水分解物;または式(13):
    Figure JPOXMLDOC01-appb-C000014
    (式中、sおよびtは、独立して、1~4のいずれかの整数であり、Aは-SO または-COOである)で表される、イミダゾリニウム系ベタイン基含有トリアルコキシシラン化合物(B)およびその加水分解物;または式(14):
    Figure JPOXMLDOC01-appb-C000015
    (式中、R14およびR15は、独立して、C~Cアルキル基であり、uおよびvは、独立して、1~4のいずれかの整数であり、wは1~4のいずれかの整数であり、Aは-SO または-COOである)で表される、フェノキシ系ベタイン基含有トリアルコキシシラン化合物(C)およびその加水分解物である、請求項1に記載のベタイン基含有トリアルコキシシラン化合物およびその加水分解物。
    Formula (11):
    Figure JPOXMLDOC01-appb-C000012
    or formula (12):
    Figure JPOXMLDOC01-appb-C000013
    (wherein R 9 , R 10 , R 11 , R 12 and R 13 are independently C 1 -C 3 alkyl groups, p and q are independently any of 1-4 is an integer, r 1 is an integer of 2 or 3, r 2 is any integer of 1 to 3, and a plurality of p, q and R 12 may each be different A (poly)betaine group-containing trialkoxysilane compound (A) and a hydrolyzate thereof, wherein A is —SO 3 or —COO ; or formula (13):
    Figure JPOXMLDOC01-appb-C000014
    (Wherein, s and t are independently any integers from 1 to 4, and A is -SO 3 - or -COO- ) . Alkoxysilane compound (B) and its hydrolyzate; or formula (14):
    Figure JPOXMLDOC01-appb-C000015
    (wherein R 14 and R 15 are independently C 1 -C 3 alkyl groups, u and v are independently any integers from 1 to 4, and w is from 1 to 4 and A is —SO 3 or —COO . The betaine group-containing trialkoxysilane compound and its hydrolyzate as described.
  3.  以下の化合物1~11のいずれかである請求項1に記載のベタイン基含有トリアルコキシシラン化合物およびその加水分解物。
    Figure JPOXMLDOC01-appb-C000016
    The betaine group-containing trialkoxysilane compound and its hydrolyzate according to claim 1, which are any one of compounds 1 to 11 below.
    Figure JPOXMLDOC01-appb-C000016
  4.  以下の化合物12および13である、請求項3に記載のベタイン基含有トリアルコキシシラン化合物の加水分解物。
    Figure JPOXMLDOC01-appb-C000017
    4. The hydrolyzate of a betaine group-containing trialkoxysilane compound according to claim 3, which is compounds 12 and 13 below.
    Figure JPOXMLDOC01-appb-C000017
  5.  請求項1~3のいずれかに記載のベタイン基含有トリアルコキシシラン化合物およびその加水分解物を含有する防曇性コーティング組成物。 An antifogging coating composition containing the betaine group-containing trialkoxysilane compound according to any one of claims 1 to 3 and a hydrolyzate thereof.
  6.  前記加水分解物の縮合体を更に含む、請求項5に記載の防曇性コーティング組成物。 The antifogging coating composition according to claim 5, further comprising a condensate of said hydrolyzate.
  7.  さらに、炭素数1~3のアルコキシ基を有するテトラアルコキシシラン、および前記テトラアルコキシシランの溶媒分散オルガノシリカゾルからなる群から選択されるテトラアルコキシシラン系化合物を含有する、請求項5に記載の防曇性コーティング組成物。 The antifogging according to claim 5, further comprising a tetraalkoxysilane-based compound selected from the group consisting of a tetraalkoxysilane having an alkoxy group with 1 to 3 carbon atoms and a solvent-dispersed organosilica sol of the tetraalkoxysilane. adhesive coating composition.
  8.  基材および前記基材の表面上に形成された防曇性コーティング膜を含み、前記防曇性コーティング膜が、請求項5~7のいずれかに記載の防曇性コーティング組成物を含む第1の膜を有する、防曇処理基材。 A first comprising a substrate and an anti-fogging coating film formed on the surface of the substrate, wherein the anti-fogging coating film comprises the anti-fogging coating composition according to any one of claims 5 to 7 An anti-fog treated substrate having a film of
  9.  前記第1の膜に含まれる、ベタイン基含有トリアルコキシシラン化合物のアルコキシシラン基もしくはシラトラニル基の一部もしくは全部加水分解物、もしくは前記一部もしくは全部加水分解物の縮合体;前記テトラアルコキシシランの部分加水分解オリゴマー;または、前記ベタイン基含有トリアルコキシシラン化合物のアルコキシシラン基もしくはシラトラニル基の一部もしくは全部加水分解物と、前記テトラアルコキシシランの部分加水分解オリゴマーとの縮合体と、基材表面上のシラノール基との縮合によって、前記第1の膜が基材表面に直接結合している、請求項8に記載の防曇処理基材。 A partial or complete hydrolyzate of the alkoxysilane group or silatranyl group of the betaine group-containing trialkoxysilane compound contained in the first film, or a condensate of the partial or complete hydrolyzate; a partially hydrolyzed oligomer; or a condensate of a partial or complete hydrolyzate of the alkoxysilane group or silatranyl group of the betaine group-containing trialkoxysilane compound and the partially hydrolyzed oligomer of the tetraalkoxysilane; and a substrate surface. 9. The anti-fog treated substrate of claim 8, wherein the first membrane is directly attached to the substrate surface by condensation with silanol groups thereon.
  10.  さらに、炭素数1~3のアルコキシ基を有するテトラアルコキシシランまたは前記テトラアルコキシシランの部分加水分解オリゴマーを含む第2の膜を有し、前記第1の膜に含まれる、ベタイン基含有トリアルコキシシラン化合物のアルコキシシラン基もしくはシラトラニル基の一部もしくは全部加水分解物、もしくは前記一部もしくは全部加水分解物の縮合体;前記テトラアルコキシシランの部分加水分解オリゴマー;または、前記ベタイン基含有トリアルコキシシラン化合物のアルコキシシラン基もしくはシラトラニル基の一部もしくは全部加水分解物と、前記テトラアルコキシシランの部分加水分解オリゴマーとの縮合体と、前記第2の膜に含まれる前記テトラアルコキシシランの部分加水分解オリゴマーとの縮合によって、前記第1の膜と前記第2の膜とが結合し、前記第2の膜に含まれる、前記テトラアルコキシシランの部分加水分解オリゴマーと、基材表面上のシラノール基との縮合によって、前記第2の膜が基材表面に直接結合している、請求項8に記載の防曇処理基材。 Furthermore, a betaine group-containing trialkoxysilane contained in the first film has a second film containing a tetraalkoxysilane having an alkoxy group having 1 to 3 carbon atoms or a partially hydrolyzed oligomer of the tetraalkoxysilane. A partial or complete hydrolyzate of the alkoxysilane group or silatranyl group of the compound, or a condensate of the partial or complete hydrolyzate; a partially hydrolyzed oligomer of the tetraalkoxysilane; or the betaine group-containing trialkoxysilane compound. a condensate of a partial or complete hydrolyzate of the alkoxysilane group or silatranyl group of and the partially hydrolyzed oligomer of the tetraalkoxysilane; and the partially hydrolyzed oligomer of the tetraalkoxysilane contained in the second film. The first film and the second film are bonded by the condensation of the condensation of the partially hydrolyzed oligomer of the tetraalkoxysilane contained in the second film and the silanol groups on the substrate surface. 9. The anti-fog treated substrate of claim 8, wherein the second film is directly bonded to the substrate surface by.
  11.  基材および前記基材の表面上に形成された防曇性コーティング膜を含む防曇処理基材の製造方法であって、
      前記基材表面に、請求項5~7のいずれかに記載の防曇性コーティング組成物を付着させて、第1の膜を形成する工程
    を含む、製造方法。
    A method for producing an antifogging treated substrate comprising a substrate and an antifogging coating film formed on the surface of the substrate,
    A manufacturing method comprising the step of applying the antifogging coating composition according to any one of claims 5 to 7 to the substrate surface to form a first film.
  12.  前記第1の膜を形成する工程において、前記第1の膜に含まれる、ベタイン基含有トリアルコキシシラン化合物のアルコキシシラン基もしくはシラトラニル基の一部もしくは全部加水分解物、もしくは前記一部もしくは全部加水分解物の縮合体;前記テトラアルコキシシランの部分加水分解オリゴマー;または、前記ベタイン基含有トリアルコキシシラン化合物のアルコキシシラン基もしくはシラトラニル基の一部もしくは全部加水分解物と、前記テトラアルコキシシランの部分加水分解オリゴマーとの縮合体と、基材表面上のシラノール基との縮合によって、前記第1の膜を基材表面に直接結合させる、請求項11に記載の製造方法。 In the step of forming the first film, a partial or complete hydrolyzate of the alkoxysilane group or silatranyl group of the betaine group-containing trialkoxysilane compound contained in the first film, or the partial or complete hydrolyzate A condensate of a decomposition product; a partially hydrolyzed oligomer of the tetraalkoxysilane; or a partial or complete hydrolyzate of the alkoxysilane group or silatranyl group of the betaine group-containing trialkoxysilane compound, and the partial hydrolysis of the tetraalkoxysilane. 12. The manufacturing method according to claim 11, wherein the first membrane is directly bonded to the substrate surface by condensation of the condensate with the degraded oligomer and the silanol groups on the substrate surface.
  13.  前記第1の膜を形成する工程の前に、前記基材の表面上に、炭素数1~3のアルコキシ基を有するテトラアルコキシシランまたは前記テトラアルコキシシランの部分加水分解オリゴマーを含む組成物を付着させて第2の膜を形成する工程を含み、
      前記第2の膜を形成する工程において、前記第2の膜に含まれるテトラアルコキシシランの部分加水分解オリゴマーと、基材表面上のシラノール基との縮合によって、前記第2の膜を基材表面に直接結合させ、
      前記第1の膜を形成する工程において、前記第1の膜に含まれる、ベタイン基含有トリアルコキシシラン化合物のアルコキシシラン基もしくはシラトラニル基の一部もしくは全部加水分解物、もしくは前記一部もしくは全部加水分解物の縮合体;前記テトラアルコキシシランの部分加水分解オリゴマー;または、前記ベタイン基含有トリアルコキシシラン化合物のアルコキシシラン基もしくはシラトラニル基の一部もしくは全部加水分解物と、前記テトラアルコキシシランの部分加水分解オリゴマーとの縮合体と、前記第2の膜に含まれる前記テトラアルコキシシランの部分加水分解オリゴマーとの縮合によって、前記第1の膜と前記第2の膜とを結合させる、請求項11に記載の製造方法。
    Before the step of forming the first film, a composition containing a tetraalkoxysilane having an alkoxy group having 1 to 3 carbon atoms or a partially hydrolyzed oligomer of the tetraalkoxysilane is attached to the surface of the substrate. forming a second film by allowing
    In the step of forming the second film, condensation of partially hydrolyzed oligomers of tetraalkoxysilane contained in the second film and silanol groups on the substrate surface causes the second film to form on the substrate surface. by binding directly to
    In the step of forming the first film, a partial or complete hydrolyzate of the alkoxysilane group or silatranyl group of the betaine group-containing trialkoxysilane compound contained in the first film, or the partial or complete hydrolyzate A condensate of a decomposition product; a partially hydrolyzed oligomer of the tetraalkoxysilane; or a partial or complete hydrolyzate of the alkoxysilane group or silatranyl group of the betaine group-containing trialkoxysilane compound, and the partial hydrolysis of the tetraalkoxysilane. 12. The method according to claim 11, wherein the first film and the second film are bonded by condensation of a condensate with a decomposed oligomer and a partially hydrolyzed oligomer of the tetraalkoxysilane contained in the second film. Method of manufacture as described.
PCT/JP2022/001444 2021-02-26 2022-01-17 Betaine group-containing organosilicon compound, molded product thereof and method for producing said compound WO2022181115A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022518919A JP7182750B1 (en) 2021-02-26 2022-01-17 Organosilicon compound containing betaine group, molded article thereof and production method
JP2022163895A JP7411757B2 (en) 2021-02-26 2022-10-12 Betaine group-containing organosilicon compound, its molded product, and manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PCT/JP2021/007482 WO2022180817A1 (en) 2021-02-26 2021-02-26 Sulfobetaine group-containing organosilicon compound and method for producing same
JPPCT/JP2021/007482 2021-02-26

Publications (1)

Publication Number Publication Date
WO2022181115A1 true WO2022181115A1 (en) 2022-09-01

Family

ID=83048902

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2021/007482 WO2022180817A1 (en) 2021-02-26 2021-02-26 Sulfobetaine group-containing organosilicon compound and method for producing same
PCT/JP2022/001444 WO2022181115A1 (en) 2021-02-26 2022-01-17 Betaine group-containing organosilicon compound, molded product thereof and method for producing said compound

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/007482 WO2022180817A1 (en) 2021-02-26 2021-02-26 Sulfobetaine group-containing organosilicon compound and method for producing same

Country Status (3)

Country Link
JP (2) JP7182750B1 (en)
TW (1) TW202246290A (en)
WO (2) WO2022180817A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022180817A1 (en) 2021-02-26 2022-09-01 日本精化株式会社 Sulfobetaine group-containing organosilicon compound and method for producing same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013514875A (en) * 2009-12-17 2013-05-02 スリーエム イノベイティブ プロパティズ カンパニー Sulfonate functional coatings and methods
WO2016167097A1 (en) * 2015-04-15 2016-10-20 株式会社Kri Betaine silicon compound, method for producing same, hydrophilic coating liquid composition, and coating film
WO2018230514A1 (en) * 2017-06-14 2018-12-20 日産化学株式会社 Hydrophilic-coating-film forming composition and hydrophilic coating film using same
US20200010489A1 (en) * 2018-07-05 2020-01-09 National Central University Zwitterionic silatrane-based material and antifouling substrate containing same
US20200048283A1 (en) * 2018-08-07 2020-02-13 National Central University Composition for substrate surface modification and method using the same
US20200239768A1 (en) * 2019-01-30 2020-07-30 Kist Europe Forschungsgesellschaft Mbh Sensors comprising mesoporous silica particles
CN113512058A (en) * 2021-08-10 2021-10-19 中国科学院深圳先进技术研究院 Zwitterionic liquid silane coupling agent, synthetic method and application thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1321616A (en) * 1969-10-27 1973-06-27 Dow Corning Ltd Organosilicon compounds and process
JP4480981B2 (en) * 2003-10-28 2010-06-16 株式会社ネオス Water-soluble metalworking fluid composition
US20070282044A1 (en) * 2006-05-31 2007-12-06 Robert John Cavanaugh Concentrated fluoropolymer dispersions stabilized with anionic polyelectrolyte dispersing agents
JP2009235130A (en) * 2008-03-25 2009-10-15 Fujifilm Corp Composition for forming hydrophilic film, and hydrophilic member
WO2022180817A1 (en) 2021-02-26 2022-09-01 日本精化株式会社 Sulfobetaine group-containing organosilicon compound and method for producing same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013514875A (en) * 2009-12-17 2013-05-02 スリーエム イノベイティブ プロパティズ カンパニー Sulfonate functional coatings and methods
WO2016167097A1 (en) * 2015-04-15 2016-10-20 株式会社Kri Betaine silicon compound, method for producing same, hydrophilic coating liquid composition, and coating film
WO2018230514A1 (en) * 2017-06-14 2018-12-20 日産化学株式会社 Hydrophilic-coating-film forming composition and hydrophilic coating film using same
US20200010489A1 (en) * 2018-07-05 2020-01-09 National Central University Zwitterionic silatrane-based material and antifouling substrate containing same
US20200048283A1 (en) * 2018-08-07 2020-02-13 National Central University Composition for substrate surface modification and method using the same
US20200239768A1 (en) * 2019-01-30 2020-07-30 Kist Europe Forschungsgesellschaft Mbh Sensors comprising mesoporous silica particles
CN113512058A (en) * 2021-08-10 2021-10-19 中国科学院深圳先进技术研究院 Zwitterionic liquid silane coupling agent, synthetic method and application thereof

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CHAKRABARTY TINA, SHAHI VINOD K.: "(3-glycidoxypropyl) Trimethoxy silane induced switchable zwitterionic membrane with high protein capture and separation properties", JOURNAL OF MEMBRANE SCIENCE, ELSEVIER BV, NL, vol. 444, 1 October 2013 (2013-10-01), NL , pages 77 - 86, XP055961289, ISSN: 0376-7388, DOI: 10.1016/j.memsci.2013.05.018 *
DATABASE REGISTRY 21 September 2016 (2016-09-21), ANONYMOUS : "-INDEX NAME NOT YET ASSIGNED", XP055961299, retrieved from STN Database accession no. 1997324-97-6 *
HUANG CHUN-JEN, ZHENG YA-YUN: "Controlled Silanization Using Functional Silatrane for Thin and Homogeneous Antifouling Coatings", LANGMUIR, AMERICAN CHEMICAL SOCIETY, US, vol. 35, no. 5, 5 February 2019 (2019-02-05), US , pages 1662 - 1671, XP055961292, ISSN: 0743-7463, DOI: 10.1021/acs.langmuir.8b01981 *

Also Published As

Publication number Publication date
TW202246290A (en) 2022-12-01
JP7182750B1 (en) 2022-12-02
JP2023002630A (en) 2023-01-10
JP7411757B2 (en) 2024-01-11
WO2022180817A1 (en) 2022-09-01
JPWO2022181115A1 (en) 2022-09-01

Similar Documents

Publication Publication Date Title
WO2017073437A1 (en) Antifouling film, antifouling film forming composition, antifouling film laminate, and production method for antifouling film laminate
CN101501045A (en) Antireflective article
JP5835116B2 (en) Organosilicon compound having amino group and protected hydroxyl group and method for producing the same
TW201546122A (en) Method for producing surface-modified substrate, method for producing conjugate, novel hydrosilane compound, surface treatment agent, surface treatment agent kit, and surface-modified substrate
JP7411757B2 (en) Betaine group-containing organosilicon compound, its molded product, and manufacturing method
KR20140044381A (en) (meta)allylsilane compound, silane coupling agent thereof, and functional material using same
PT2944640T (en) Urea-containing silanes, process for preparation thereof and use thereof
JP5540750B2 (en) Cyclic silazane compound and method for producing the same
JP3849872B2 (en) Amino group-containing silanol compound aqueous solution, use thereof, and production method thereof
JP2011102267A (en) Organosilicon compound having amino group and method for preparing the same
US20170210912A1 (en) Hydrophilic oil repellent and production method of same, surface coating material, coating film, resin composition, oil-water separation filter material, and porous body
EP2935403B1 (en) Reactive polyoxazolines having a perfluorinated group
KR20140004749A (en) Substituted aromatic compound, hydrogelation agent, hydrogel, and method for gelating aqueous sample
CN104220448B (en) The method preparing the silane of (methyl) acrylamido sense by the reaction of amino and acrylic anhydride
JPWO2008041772A1 (en) Method for producing powder of cage silsesquioxane compound
EP3663304B1 (en) Surface treatment agent and surface treatment method using the same
JP5879012B1 (en) Hydrophilic oil-repellent composite and method for producing the same, surface coating material, coating film, resin composition, oil-water separation filter medium
JP2005015738A (en) Method of producing silsesquioxane derivative having functional group and silsesquioxane derivative
US6489499B1 (en) Siloxane modified carboxylic acid substituted amines and salts thereof
KR20190075180A (en) Organosilicon compounds having amino acid moieties, and process for preparation thereof
JP5601270B2 (en) Silazane compound having fluoroalkyl group and method for producing the same
EP0392509B1 (en) 3-(2-Oxo-1-pyrrolidinyl)-propyl-silanes and method for preparing the silane compounds
KR20020017707A (en) Coating components for preventing steam and the coating goods obtained from them
KR101869982B1 (en) Nanoimprint-mold release agent, surface treatment method, and nanoimprint mold
JP2011051926A (en) Organosilicon compound having protected hydroxy group and method for producing the same

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022518919

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22759158

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22759158

Country of ref document: EP

Kind code of ref document: A1