WO2022180961A1 - 窒化物材料およびそれからなる圧電体並びにその圧電体を用いたmemsデバイス、トランジスタ、インバーター、トランスデューサー、sawデバイスおよび強誘電体メモリ - Google Patents

窒化物材料およびそれからなる圧電体並びにその圧電体を用いたmemsデバイス、トランジスタ、インバーター、トランスデューサー、sawデバイスおよび強誘電体メモリ Download PDF

Info

Publication number
WO2022180961A1
WO2022180961A1 PCT/JP2021/042898 JP2021042898W WO2022180961A1 WO 2022180961 A1 WO2022180961 A1 WO 2022180961A1 JP 2021042898 W JP2021042898 W JP 2021042898W WO 2022180961 A1 WO2022180961 A1 WO 2022180961A1
Authority
WO
WIPO (PCT)
Prior art keywords
nitride
thin film
piezoelectric thin
nitride material
piezoelectric
Prior art date
Application number
PCT/JP2021/042898
Other languages
English (en)
French (fr)
Inventor
スリ アユ アンガライニ
守人 秋山
雅人 上原
浩志 山田
研二 平田
Original Assignee
国立研究開発法人産業技術総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人産業技術総合研究所 filed Critical 国立研究開発法人産業技術総合研究所
Priority to KR1020237021492A priority Critical patent/KR20230111235A9/ko
Priority to US18/264,362 priority patent/US20240101423A1/en
Priority to EP21928055.9A priority patent/EP4273945A1/en
Priority to CN202180094141.2A priority patent/CN116897615A/zh
Publication of WO2022180961A1 publication Critical patent/WO2022180961A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/0602Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with two or more other elements chosen from metals, silicon or boron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/581Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on aluminium nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62222Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining ceramic coatings
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3464Sputtering using more than one target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5806Thermal treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B53/00Ferroelectric RAM [FeRAM] devices comprising ferroelectric memory capacitors
    • H10B53/30Ferroelectric RAM [FeRAM] devices comprising ferroelectric memory capacitors characterised by the memory core region
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/50Piezoelectric or electrostrictive devices having a stacked or multilayer structure
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/704Piezoelectric or electrostrictive devices based on piezoelectric or electrostrictive films or coatings
    • H10N30/706Piezoelectric or electrostrictive devices based on piezoelectric or electrostrictive films or coatings characterised by the underlying bases, e.g. substrates
    • H10N30/708Intermediate layers, e.g. barrier, adhesion or growth control buffer layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/853Ceramic compositions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3287Germanium oxides, germanates or oxide forming salts thereof, e.g. copper germanate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3293Tin oxides, stannates or oxide forming salts thereof, e.g. indium tin oxide [ITO]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/428Silicon
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02007Details of bulk acoustic wave devices
    • H03H9/02015Characteristics of piezoelectric layers, e.g. cutting angles
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02543Characteristics of substrate, e.g. cutting angles

Definitions

  • the present invention provides a nitride material to which scandium and at least one of carbon, silicon, germanium, and tin are added, a piezoelectric body made of the nitride material, and a MEMS device, transistor, inverter, transducer, and SAW using the piezoelectric body. It relates to devices and ferroelectric memories.
  • Aluminum nitride is used in high-frequency filters for mobile phones and the like because of its good acoustic wave propagation velocity, Q value (Quality factor), and frequency temperature characteristics.
  • the frequency band allocated for 5G in each country is several GHz. Therefore, by thinning the film thickness of the AlN piezoelectric thin film that constitutes the high frequency filter, the high frequency filter can vibrate in this frequency band.
  • this approach has already reached its limits.
  • Patent Document 1 An aluminum nitride piezoelectric thin film to which germanium (Ge) is added at a predetermined concentration has been proposed as a nitride material with reversed polarity (see Patent Document 1).
  • the aluminum nitride to which germanium is added has the problem that it does not have high piezoelectricity.
  • germanium-doped aluminum nitride is used to construct the above-mentioned two-layered nitride piezoelectric material, it is not possible to ensure a wide passband width, and it also exhibits high performance in terms of insertion loss and guaranteed attenuation.
  • a first aspect of the present invention for solving the above problems is a nitride material represented by the chemical formula ScXMYAl1 -X-YN , wherein M is C, Si, Ge and Sn.
  • the first aspect it is possible to provide a nitride material having piezoelectricity in which the polarization direction is nitrogen polarity.
  • a second aspect of the present invention resides in the nitride material according to the first aspect, wherein M is any one element of C, Si, Ge and Sn.
  • the nitride material according to any one of the first to third aspects is provided on a substrate, and at least one layer is formed between the nitride material and the substrate.
  • a nitride material characterized in that an intermediate layer is provided.
  • the crystallinity (crystallinity) of the nitride material is improved, it is possible to provide a nitride material whose polarization direction is nitrogen polarity and which has higher piezoelectricity.
  • the intermediate layer comprises aluminum nitride, gallium nitride, indium nitride, titanium nitride, scandium nitride, ytterbium nitride, molybdenum, tungsten, hafnium, titanium, ruthenium, ruthenium oxide, chromium, chromium nitride, and platinum. , gold, silver, copper, aluminum, tantalum, iridium, palladium and nickel.
  • the crystallinity (degree of crystallinity) of the nitride material is further improved, so that it is possible to provide a nitride material whose polarization direction is nitrogen polarity and which has higher piezoelectricity.
  • a sixth aspect of the present invention is a piezoelectric body made of the nitride material according to any one of the first to fifth aspects.
  • the sixth aspect it is possible to provide a piezoelectric body having a piezoelectric property in which the polarization direction is nitrogen polarity.
  • a seventh aspect of the present invention is any one of the first to fifth aspects on the surface of the scandium-containing nitride material represented by the chemical formula Sc Z Al 1-Z N (0 ⁇ Z ⁇ 0.4) 1.
  • a piezoelectric body comprising the nitride material according to claim 1.
  • the seventh aspect it is possible to provide a piezoelectric body that can vibrate at a high frequency and has high piezoelectricity.
  • a ninth aspect of the present invention is a MEMS device using the piezoelectric body according to any one of the sixth to eighth aspects.
  • MEMS device is not particularly limited as long as it is a micro-electromechanical system. mentioned.
  • a MEMS device can be provided.
  • a tenth aspect of the present invention resides in a transistor, inverter, transducer, SAW device or ferroelectric memory using the nitride material according to any one of the first to fifth aspects.
  • transducer refers to an element or device that converts a physical quantity carrying a signal into another kind of physical quantity that is convenient for transmission, processing, storage, recording, display, manipulation, and the like.
  • a “SAW device” refers to an electronic device to which a surface acoustic wave (SAW) is applied, such as an IDT-SAW device (Inter Digital Transducer-SAW device).
  • the tenth aspect it is possible to provide a transistor that can be operated at a higher speed than conventional transistors, has a low loss, and has a high output.
  • a transistor with a higher dielectric strength voltage and a lower loss than a conventional inverter it is possible to provide a ferroelectric memory with higher spontaneous polarization and higher storage performance than conventional ferroelectric memories.
  • a high frequency broadband transducer using nitride materials with different polarities it is possible to provide a SAW device that vibrates at a frequency higher than that of a general IDT-SAW device.
  • FIG. 13 is a table showing the composition and piezoelectric constant (d 33 ) of each piezoelectric thin film when Sn is used as the additive substance and the concentration of Sc is fixed at about 20 mol %.
  • FIG. 14 is a table showing the composition and piezoelectric constant (d 33 ) of each piezoelectric thin film when Sn is used as an additive substance and the concentration of Sc is fixed at about 30 mol %.
  • FIG. 15 is a graph showing the relationship between the Sn concentration and d33 in each piezoelectric thin film when Sn is used as the additive substance.
  • FIG. 16 is a graph showing the relationship between the Sn concentration and the Sc concentration at which the piezoelectric polarity is reversed in each piezoelectric thin film when Sn is used as the additive substance.
  • X is preferably greater than 0 and 0.35 or less, Y is greater than 0 and 0.2 or less, and X/Y is preferably 5 or less. is more preferably 0.03 or more.
  • M is only Ge
  • X is preferably greater than 0 and 0.35 or less
  • Y is greater than 0 and 0.2 or less
  • X/Y is preferably 5 or less.
  • /Y is more preferably 4 or less, and more preferably Y is 0.05 or more.
  • M is Sn only, X is preferably greater than 0 and 0.35 or less, Y is greater than 0 and 0.2 or less, and X/Y is preferably 5 or less. is more preferably 0.05 or more.
  • Such a piezoelectric thin film has nitrogen polarity in the polarization direction and has more stable piezoelectricity.
  • the nitride material having the structure described above since the main crystals constituting the nitride material are wurtzite crystals having nitrogen polarity, it is considered that the nitride material as a whole has nitrogen polarity. .
  • a high-frequency filter using these piezoelectric thin films 1 has a lower loss and can operate in a wider band than conventional high-frequency filters. As a result, the portable device can be made more compatible with high frequencies, made smaller, and reduced in power consumption.
  • the configuration of the high-frequency filter is not particularly limited, and can be manufactured with a known configuration, for example.
  • Multi-source simultaneous sputtering deposition system manufactured by Eiko Engineering Co., Ltd.
  • Scandium sputtering target material purity: 99.999%)
  • Silicon sputtering target material purity: 99.999%)
  • Aluminum sputtering target material purity: 99.999%)
  • Substrate heating temperature 200°C
  • a film formation experiment was performed after the pressure in the sputtering chamber was lowered to a high vacuum of 10 ⁇ 5 Pa or less by a vacuum pump.
  • the surface of the target was cleaned immediately after mounting the target and immediately before each film formation experiment.
  • FIG. 5 shows the relationship between the Si concentration and the piezoelectric constant (d 33 ) in each of the piezoelectric thin films shown in FIGS.
  • d33 if the value of d33 is positive (plus), it indicates that the polarization direction of the piezoelectric thin film is the aluminum polarity, and if the value of d33 is negative (minus), the piezoelectric thin film indicates that the polarization direction of is nitrogen polarity.
  • the Sc concentration (X) is greater than 0 and 0.35 (35 mol%) or less
  • the Si concentration (Y) is greater than 0 and 0.2 (20 mol%) or less
  • X/Y is 5 or less
  • the manufacturing method was the same as that for the nitride material using Si as an additive except that the following Ge sputtering target was used instead of the Si sputtering target material.
  • Ge sputtering target material purity: 99.999%)
  • FIG. 7 to 9 show the composition and d33 of each piezoelectric thin film thus obtained.
  • FIG. 7 shows the composition and d33 of each piezoelectric thin film when the Sc concentration is fixed at about 10 mol %
  • FIG. 8 shows the composition and d of each piezoelectric thin film when the Sc concentration is fixed at about 20 mol %.
  • 33 shows the composition and d 33 of each piezoelectric thin film when the concentration of Sc is fixed at about 30 mol %.
  • FIG. 10 shows the relationship between the Ge concentration and d33 in each of the piezoelectric thin films shown in FIGS. Further, in the same manner as in FIG. 6, the concentration of Ge and the concentration of Sc when d33 is 0 are determined from the graph shown in FIG. 10 by interpolation, extrapolation, or the like. Those results are shown in FIG.
  • FIG. 12 shows the composition and d 33 of each piezoelectric thin film when the Sc concentration is fixed at about 10 mol %
  • FIG. 13 shows the composition and d 33 of each piezoelectric thin film when the Sc concentration is fixed at about 20 mol %.
  • 33 shows the composition and d 33 of each piezoelectric thin film when the concentration of Sc is fixed at about 30 mol %.
  • FIG. 15 shows the relationship between the Sn concentration and d33 in each of the piezoelectric thin films shown in FIGS. Further, similar to FIG. 6, the concentration of Sn and the concentration of Sc when d33 is 0 are obtained from the graph shown in FIG. 15 by interpolation, extrapolation, or the like. Those results are shown in FIG.
  • the Sc concentration (X) is greater than 0 and 0.35 (35 mol%) or less, and the Sn concentration (Y) is greater than 0 and 0.2 (20 mol%) or less.
  • the piezoelectric body is constructed using only the nitride material according to the present invention, but the present invention is not limited to this.
  • a scandium-containing nitride material having aluminum polarity Sc Z Al 1-Z N (0 ⁇ Z ⁇ 0.4)
  • the second layer 20 to form a piezoelectric thin film (piezoelectric body) 100 composed of these two layers.
  • the second layer 20 may be formed below the first layer 1 .
  • the thickness of the first layer 1 and the thickness of the second layer 20 may be the same or different.
  • Such a piezoelectric thin film having a two-layer structure may be a piezoelectric thin film composed only of the piezoelectric thin film of Embodiment 1 or Sc Z Al 1-Z N (0 ⁇ Z ⁇ 0.4), it can vibrate at a higher frequency than a piezoelectric thin film. Needless to say, in order to vibrate the piezoelectric thin film, for example, it is necessary to attach an upper electrode to the upper surface of the piezoelectric thin film and a lower electrode to the lower surface of the piezoelectric thin film, and apply a voltage to these electrodes. (Embodiment 3)
  • the present invention is not limited to this.
  • two layers (third layer 30 and fourth layer 40) of similarly configured thin films are further formed on the thin film having the same configuration as that of the second embodiment to obtain a four-layer piezoelectric structure.
  • a thin film (piezoelectric body) 100A may be configured.
  • the first layer 1 is a nitride material with a polarization direction of nitrogen polarity
  • the second layer 20 is a scandium-containing nitride material with a polarization direction of aluminum polarity
  • the third layer 30 is a nitride material with a polarization direction of nitrogen polarity
  • the third layer 30 is a nitride material with a polarization direction of nitrogen polarity.
  • the four layers 40 may constitute a piezoelectric thin film 100A having a four-layer structure made of a scandium-containing nitride material whose polarization direction is aluminum polarity.
  • the stacking order is not particularly limited as long as the polarization directions of the nitride materials in contact are different.
  • the piezoelectric thin film 100A having such a four-layer structure is the same, the piezoelectric thin film, Sc Z Al 1-Z N (0 ⁇ Z ⁇ 0.4) or the piezoelectric thin film of the second embodiment, the frequency band that can be vibrated can be expanded to a wider range.
  • the material and thickness of the intermediate layer are not particularly limited as long as a piezoelectric thin film can be formed on the intermediate layer.
  • intermediate layers include aluminum nitride (AlN), gallium nitride (GaN), indium nitride (InN), titanium nitride (TiN), scandium nitride (ScN), ytterbium nitride (YbN), molybdenum (Mo), tungsten ( W), hafnium (Hf), titanium (Ti), ruthenium (Ru), ruthenium oxide ( RuO2 ), chromium (Cr), chromium nitride (CrN), platinum (Pt), gold (Au), silver (Ag) , copper (Cu), aluminum (Al), tantalum (Ta), iridium (Ir), palladium (Pd), nickel (Ni), etc., and have a thickness of 50 to 200 nm.
  • the crystallinity (degree of crystallinity) of the piezoelectric thin film is improved.
  • a piezoelectric thin film can be manufactured.
  • a piezoelectric thin film may be formed by laminating a large number of layers made of a nitride material having a polarization direction different from that of the nitride material that is in contact therewith.
  • Such a piezoelectric thin film can vibrate at a higher frequency than the piezoelectric thin film of the third embodiment, and can expand the frequency band of the vibrator to a wider range.
  • the nitride material (piezoelectric material) according to the present invention described above can be used for MEMS.
  • MEMS using a nitride material according to the present invention can vibrate at a high frequency, and by using a piezoelectric body with high piezoelectricity, portable equipment can be made more compatible with high frequencies, miniaturized, and power-saving. It is possible to provide a MEMS device that can contribute to For example, a known MEMS structure can be used.
  • the piezoelectric thin film using the nitride material according to the present invention has been described as an example, but the present invention is not limited to this.
  • nitride materials according to the present invention can also be applied in MEMS devices, transistors, inverters, transducers, SAW devices or ferroelectric memories.
  • a transistor using a nitride material according to the present invention can operate at a higher speed, has a lower loss, and has a higher output than a conventional transistor.
  • the inverter using the nitride material according to the present invention has a higher withstand voltage and a lower loss than conventional inverters.
  • the ferroelectric memory using the nitride material according to the present invention has higher spontaneous polarization and higher storage performance than conventional ferroelectric memories. Furthermore, it is possible to provide a high frequency broadband transducer using nitride materials with different polarities. Also, by configuring the IDT using piezoelectric bodies made of nitride materials with different polarities, it is possible to provide a SAW device that vibrates at a frequency higher than that of a general IDT-SAW device. For the configuration of such transistors, inverters, transducers, SAW devices, and ferroelectric memories, for example, known configurations can be used.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)
  • Physical Vapour Deposition (AREA)
  • Semiconductor Memories (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

【課題】窒素極性を有するスカンジウムを添加した窒化アルミニウムを提供することを目的とする。 【解決手段】化学式ScXMYAl1-X-YNで表される窒化物材料であって、Mは、C、Si、GeおよびSnの少なくとも1つ以上の元素であり、Xは、0より大きく、0.4以下で、Yは、0より大きく、0.2以下で、X/Yが5以下であることを特徴とする。この窒化物材料は、薄膜成長方向と逆の分極方向を有する窒素極性の分極方向の圧電性を有する。

Description

窒化物材料およびそれからなる圧電体並びにその圧電体を用いたMEMSデバイス、トランジスタ、インバーター、トランスデューサー、SAWデバイスおよび強誘電体メモリ
本発明は、スカンジウムと、炭素、ケイ素、ゲルマニウムおよびスズの少なくとも何れか1つと、を添加した窒化物材料およびそれからなる圧電体並びにその圧電体を用いたMEMSデバイス、トランジスタ、インバーター、トランスデューサー、SAWデバイスおよび強誘電体メモリに関するものである。
窒化アルミニウム(AlN)は、弾性波の伝搬速度、Q値(Quality factor)および周波数温度特性(Frequency temperature characteristics)の特性が良好であることから、携帯電話等の高周波フィルタに利用されている。
しかし、第5世代移動通信システム(5G)の運用が始まり、徐々に5Gのシステムが導入されつつある中、高周波フィルタの広帯域化、低損化およびQ値の向上が求められている。例えば、各国における5Gに割り当てられる周波数帯は数GHzである。そこで、高周波フィルタを構成するAlN圧電体薄膜の膜厚を薄くすることで、高周波フィルタがこの周波数帯で振動できるようにしていた。しかしながら、このような方法での対応は、すでに限界に達している。
一方、窒化物圧電体薄膜上に、極性を反転させた同窒化圧電体薄膜を積層した二層構造とすることで、同じ膜厚の窒化物圧電体薄膜と比較して、倍の周波数で振動可能な高周波フィルタが提案されている(非特許文献1参照)。
この極性を反転させた窒化物材料として、所定の濃度のゲルマニウム(Ge)を添加した窒化アルミニウム圧電体薄膜が提案されている(特許文献1参照)。
また、高周波フィルタに用いられる圧電体薄膜の圧電体材料としては、例えばスカンジウム(Sc)を添加した窒化アルミニウム(特許文献2参照)が提案されている。
特開2017-45749号公報 特開2009-10926号公報
Mizuno, t. et al. in 2017 19th International Conference on Solid―State Sensors, Actuators and Microsystems (TRANSDUCERS). 1891-1894
しかしながら、上述したゲルマニウムを添加した窒化アルミニウムでは、高い圧電性を有さないという問題点があった。その結果、ゲルマニウムを添加した窒化アルミニウムを用いて、上述した二層構造の窒化物圧電体を構成しても、広い通過帯域幅を確保できず、また挿入損失や保証減衰量でも高い性能を発揮できないことから5G用高周波フィルタとして使用することが難しいという問題点があった。
一方、スカンジウムを添加した窒化アルミニウムは、アルミニウム極性(Al polarity)を有するものしか得られていないという問題点があった。例えば、特許文献1の段落[0006]には、薄膜成長方向と逆の分極方向を有する窒素極性(N polarity)の圧電薄膜は得られていないと記載されており、アルミニウム極性とは逆の分極方向の極性(窒素極性)を有する、スカンジウムを添加した窒化アルミニウムは存在しないとされてきた。
その結果、スカンジウムを添加した窒化アルミニウムと、極性を反転させた同窒化圧電体薄膜を積層した二層構造の圧電体を作製できないという問題点があった。
本発明は上述した事情に鑑み、分極方向が窒素極性である、スカンジウムを添加した窒化アルミニウムおよびそれからなる圧電体、並びにその圧電体を用いたMEMSデバイス、トランジスタ、インバーター、トランスデューサー、SAWデバイスおよび強誘電体メモリを提供することを目的とする。
本発明の発明者は、上述した問題点に関して鋭意研究を続けた結果、以下のような画期的な窒化物材料およびそれからなる圧電体並びにその圧電体を用いたMEMSデバイス等を見出した。
上記課題を解決するための本発明の第1の態様は、化学式ScAl1-X-YNで表される窒化物材料であって、Mは、C、Si、GeおよびSnの少なくとも1つ以上の元素であり、Xは、0より大きく、0.4以下で、Yは、0より大きく、0.2以下で、X/Yが5以下であることを特徴とする窒化物材料にある。
かかる第1の態様では、分極方向が窒素極性の圧電性を有する窒化物材料を提供することができる。
本発明の第2の態様は、Mが、C、Si、GeおよびSnの何れか1つの元素であることを特徴とする第1の態様に記載の窒化物材料にある。
かかる第2の態様では、分極方向が窒素極性で、より高い圧電性を有する窒化物材料を提供することができる。
本発明の第3の態様は、Xは、0より大きく、0.35以下で、Yは、0より大きく、0.2以下で、X/Yが5以下であることを特徴とする第2の態様に記載の窒化物材料にある。
かかる第3の態様では、分極方向が窒素極性で、より高い圧電性を有する窒化物材料を提
本発明の第4の態様は、第1~第3の態様の何れか1つに記載の窒化物材料が基板上に設けられており、窒化物材料と基板との間に、少なくとも1層の中間層が設けられていることを特徴とする窒化物材料にある。
かかる第4の態様では、窒化物材料の結晶性(結晶化度)が向上するので、分極方向が窒素極性で、より高い圧電性を有する窒化物材料を提供することができる。
本発明の第5の態様は、中間層が、窒化アルミニウム、窒化ガリウム、窒化インジウム、窒化チタン、窒化スカンジウム、窒化イッテルビウム、モリブデン、タングステン、ハフニウム、チタン、ルテニウム、酸化ルテニウム、クロム、窒化クロム、白金、金、銀、銅、アルミニウム、タンタル、イリジウム、パラジウムおよびニッケルの少なくとも1つを含んでいることを特徴とする第4の態様に記載の窒化物材料にある。
かかる第5の態様では、窒化物材料の結晶性(結晶化度)がより向上するので、分極方向が窒素極性で、さらに高い圧電性を有する窒化物材料を提供することができる。
本発明の第6の態様は、第1~第5の態様の何れか1つに記載の窒化物材料からなる圧電体にある。
かかる第6の態様では、分極方向が窒素極性の圧電性を有する圧電体を提供することができる。
本発明の第7の態様は、化学式ScAl1-ZN(0<Z≦0.4)で表されるスカンジウム含有窒化物材料の表面上に、第1~第5の態様の何れか1つに記載の窒化物材料が設けられていることを特徴とする圧電体にある。
かかる第7の態様では、高い周波数で振動することができ、かつ高い圧電性を有する圧電体を提供することができる。
本発明の第8の態様は、第7の態様に記載の圧電体が、少なくとも2つ以上積層されていることを特徴とする圧電体にある。
かかる第8の態様では、より高い周波数で振動することができ、かつより高い圧電性を有する圧電体を提供することができる。
本発明の第9の態様は、第6~第8の態様の何れか1つに記載の圧電体を用いたMEMSデバイスにある。
ここで、「MEMSデバイス」とは、微小電気機械システムであれば特に限定されず、例えば、圧力センサ、加速度センサ、ジャイロセンサなどの物理センサやアクチュエータ、マイクロフォン、指紋認証センサ、振動発電機等が挙げられる。
かかる第9の態様では、高い周波数で振動することができ、かつ高い圧電性を有する圧電体を用いることにより、携帯用機器のさらなる高周波対応化、小型化および省電力化に寄与することができるMEMSデバイスを提供することができる。
本発明の第10の態様は、第1~第5の態様の何れか1つに記載の窒化物材料を用いたトランジスタ、インバーター、トランスデューサー、SAWデバイスまたは強誘電体メモリにある。
ここで、「トランスデューサー」とは、信号を担う物理量を、伝送、処理、記憶、記録、表示、操作等に都合のよい別種の物理量に変換する素子や装置をいい。また、「SAWデバイス」とは、弾性表面波(Surface Acoustic Wave:SAW)を応用した電子デバイスをいい、例えばIDT-SAWデバイス(Inter Digital Transducer-SAWデバイス)等が挙げられる。
かかる第10の態様では、従来のトランジスタと比較して高速で動作させることができ、かつ低損失、高出力なトランジスタを提供することができる。また、従来のインバーターに比べて絶縁耐圧が高く、低損失なトランジスタを提供することができる。さらに、従来の強誘電体メモリに比べて自発分極が高く、記憶性能が高い強誘電体メモリを提供することができる。また、極性が異なる窒化物材料を用いた高周波広帯域トランスデューサーを提供することができる。さらに、IDTを極性が異なる窒化物材料からなる圧電体を用いて構成することにより、一般的なIDT-SAWデバイスよりも高い周波数で振動するSAWデバイスを提供することができる。
図1は実施形態1に係る圧電体薄膜の概略断面図である。 図2は添加物質としてSiを用いた場合において、Scの濃度を約10mol%に固定した場合の各圧電体薄膜の組成と圧電定数(d33)を示す表である。 図3は添加物質としてSiを用いた場合において、Scの濃度を約20mol%に固定した場合の各圧電体薄膜の組成と圧電定数(d33)を示す表である。 図4は添加物質としてSiを用いた場合において、Scの濃度を約30mol%に固定した場合の各圧電体薄膜の組成と圧電定数(d33)を示す表である。 図5は添加物質としてSiを用いた場合の各圧電体薄膜におけるSiの濃度とd33との関係を示すグラフである。 図6は添加物質としてSiを用いた場合の各圧電体薄膜において、圧電極性が反転するSiの濃度とScの濃度との関係を示すグラフである。 図7は添加物質としてGeを用いた場合において、Scの濃度を約10mol%に固定した場合の各圧電体薄膜の組成と圧電定数(d33)を示す表である。 図8は添加物質としてGeを用いた場合において、Scの濃度を約20mol%に固定した場合の各圧電体薄膜の組成と圧電定数(d33)を示す表である。 図9は添加物質としてGeを用いた場合において、Scの濃度を約30mol%に固定した場合の各圧電体薄膜の組成と圧電定数(d33)を示す表である。 図10は添加物質としてGeを用いた場合の各圧電体薄膜におけるGeの濃度とd33との関係を示すグラフである。 図11は添加物質としてGeを用いた場合の各圧電体薄膜において、圧電極性が反転するGeの濃度とScの濃度との関係を示すグラフである。 図12は添加物質としてSnを用いた場合において、Scの濃度を約10mol%に固定した場合の各圧電体薄膜の組成と圧電定数(d33)を示す表である。 図13は添加物質としてSnを用いた場合において、Scの濃度を約20mol%に固定した場合の各圧電体薄膜の組成と圧電定数(d33)を示す表である。 図14は添加物質としてSnを用いた場合において、Scの濃度を約30mol%に固定した場合の各圧電体薄膜の組成と圧電定数(d33)を示す表である。 図15は添加物質としてSnを用いた場合の各圧電体薄膜におけるSnの濃度とd33との関係を示すグラフである。 図16は添加物質としてSnを用いた場合の各圧電体薄膜において、圧電極性が反転するSn濃度とSc濃度との関係を示すグラフである。 図17は添加物質として2種類の元素を用いた場合の組成と圧電定数(d33)を示す表である。 図18は実施形態2に係る圧電体薄膜の概略断面図である。 図19は実施形態3に係る圧電体薄膜の概略断面図である。
以下に添付図面を参照して、本発明に係る圧電体の薄膜に関する実施形態を説明する。なお、本発明は、以下の実施形態に限定されるものではなく、例えば、形状に制限はなく、薄膜状でなくてもよいのは言うまでもない。
(実施形態1)
図1は、本実施形態に係る圧電体薄膜の概略断面図である。この図に示すように、圧電体薄膜1は、基板10上に形成されている。圧電体薄膜1の厚さは特に限定されないが、0.1~30μmの範囲が好ましく、0.1~2μmの範囲が密着性に優れているので特に好ましい。
なお、基板10は、その表面上に圧電体薄膜1を形成できるものであれば、厚さや材質等は特に限定されない。基板10としては、例えば、シリコンおよびインコネル等の耐熱合金、ポリイミド等の樹脂フィルム等が挙げられる。
圧電体薄膜1は、化学式ScAl1-X-YNで表され、Mは、炭素(C)、ケイ素(Si)、ゲルマニウム(Ge)およびスズ(Sn)の少なくとも1つ以上の元素を示し、Xは、0より大きく、0.4以下で、Yは、0より大きく、0.2以下で、X/Yが5以下であることを特徴とする窒化物材料で構成されている。なお、Mが複数の元素からなる場合には、それらの合計のモル濃度がYとなるのは言うまでもなく、各元素の濃度は上記の範囲に含まれるのであれば特に限定されない。
このような圧電体薄膜1は、従来のスカンジウム(Sc)が添加(ドープ)された窒化アルミニウムとは異なり、分極方向が窒素極性(N polarity)の圧電性を有する。なお、Mは、炭素、ケイ素、ゲルマニウムまたはスズの何れか1種類の元素だけであってもよい。このような窒化物材料は、分極方向が窒素極性で、より高い圧電性を有する。
なお、MがSiのみの場合には、Xは、0より大きく、0.35以下で、Yは、0より大きく、0.2以下で、X/Yが5以下であることが好ましく、Yが0.03以上であることがより好ましい。また、MがGeのみの場合には、Xは、0より大きく、0.35以下で、Yは、0より大きく、0.2以下で、X/Yが5以下であることが好ましく、X/Yが4以下であることがより好ましく、加えてYが0.05以上であることが特に好ましい。さらに、MがSnのみの場合には、Xは、0より大きく、0.35以下で、Yは、0より大きく、0.2以下で、X/Yが5以下であることが好ましく、Yが0.05以上であることがより好ましい。このような圧電体薄膜は、分極方向が窒素極性で、より安定した圧電性を有する。
上述したような構成の窒化物材料であれば、その窒化物材料を構成する主な結晶が、窒素極性を有するウルツ型の結晶となるので、全体として窒素極性を有する窒化物材料になると考えられる。
そして、これらの圧電体薄膜1を用いた高周波フィルタは、従来の高周波フィルタと比較して、低損失であり、かつ広帯域で動作することができる。その結果、携帯用機器を、より高周波対応、小型化および省電力化することができる。なお、高周波フィルタの構成は特に限定されず、例えば公知の構成で製造することができる。
次に、本実施形態に係る圧電体薄膜1の製造方法について説明する。圧電体薄膜1は、一般的な圧電体薄膜と同様に、スパッタ法や蒸着法等の製造方法を用いて製造することができる。具体的には、例えば、窒素ガス(N)雰囲気下、または窒素ガス(N)およびアルゴンガス(Ar)混合雰囲気下(気体圧力1Pa以下)において、基板10(例えばシリコン(Si)基板)に、スカンジウムで構成されたターゲット、添加物質M(複数の元素からなる場合を含む)で構成されたターゲットおよびアルミニウム(Al)で構成されたターゲットを同時にスパッタ処理することにより製造することができる。なお、ターゲットとして、スカンジウム、Mおよびアルミニウムが所定の比率で含まれる合金を用いてもよい。
なお、基板と圧電体薄膜との間に、基板を構成する物質と圧電体薄膜を構成する物質とが含まれる層が形成されていてもよい。このような層は、例えば、基板上に圧電体薄膜を形成した後、それらに熱を加えることによって形成することができる。
<添加物質としてSiを用いた場合>
添加物質MとしてSiを用いた場合の本実施形態に係る窒化物材料(圧電体薄膜)の実施例について説明する。
次の装置およびスパッタリングターゲット等を用いて、比抵抗が0.02Ωcmのn型シリコン基板上に、厚さ0.4~1.5μmのスカンジウムとシリコン(M=Si)が添加された窒化アルミニウムの圧電体薄膜(ScSiAl1-X-YN)を作製した。
多元同時スパッタ成膜装置(エイコーエンジニアリング社製)
スカンジウムのスパッタリングターゲット材(純度:99.999%)
シリコンのスパッタリングターゲット材(純度:99.999%)
アルミニウムのスパッタリングターゲット材(純度:99.999%)
ガス:窒素(純度:99.99995%以上)とアルゴンガス(純度:99.9999%以上)の混合ガス(混合比(窒素:アルゴン) 30:70)
基板加熱温度:200℃
成膜実験は、スパッタチャンバー内の気圧を10-5Pa以下の高真空になるように真空ポンプで下げた後に行った。また、酸素等の不純物の混入をさけるため、ターゲット装着直後や各成膜実験の直前にターゲット表面の清浄処理を行った。
そして、得られた各圧電体薄膜の組成を図2~図4に示す。図2はScの濃度を約10mol%に固定した場合における各圧電体薄膜の組成と圧電定数(d33)を示し、図3はScの濃度を約20mol%に固定した場合における各圧電体薄膜の組成と圧電定数(d33)を示し、図4はScの濃度を約30mol%に固定した場合における各圧電体薄膜の組成と圧電定数(d33)を示す。
そして、図5には図2~図4に示す各圧電体薄膜におけるSi濃度と圧電定数(d33)との関係を示す。
なお、これらの図において、d33の値が正(プラス)であれば、圧電体薄膜の分極方向がアルミニウム極性であることを示し、d33の値が負(マイナス)であれば圧電体薄膜の分極方向が窒素極性であることを示す。
次に、図5のようなグラフから、d33が0となる場合のSiの濃度とScの濃度とを、内挿や外挿等により求めた。それらの結果を図6に示す。
この図から分かるように、Sc濃度(X)が、0より大きく、0.35(35mol%)以下で、Si濃度(Y)が、0より大きく、0.2(20mol%)以下で、かつX/Yが5以下である場合には、圧電体薄膜の分極方向が窒素極性になることが分かった。なお、この図における点線は、X/Y=5である。
<添加物質としてGeを用いた場合>
添加物質MとしてGeを用いた場合の本実施形態に係る窒化物材料(圧電体薄膜)の実施例について説明する。
製造方法については、Siのスパッタリングターゲット材の代わりに、次のGeのスパッタリングターゲットを用いたこと以外は、添加物質としてSiを用いた窒化物材料と同様にして作製した。
Geのスパッタリングターゲット材(純度:99.999%)
そして、得られた各圧電体薄膜の組成とd33を図7~図9に示す。図7はScの濃度を約10mol%に固定した場合における各圧電体薄膜の組成とd33を示し、図8はScの濃度を約20mol%に固定した場合における各圧電体薄膜の組成とd33を示し、図9はScの濃度を約30mol%に固定した場合における各圧電体薄膜の組成とd33を示す。
そして、図10に、図7~図9に示す各圧電体薄膜におけるGe濃度とd33との関係を示す。さらに、図6と同様にして、図10のようなグラフから、d33が0となる場合のGeの濃度とScの濃度とを、内挿や外挿等により求めた。それらの結果を図11に示す。
この図から分かるように、Scの濃度(X)は、0より大きく、0.35(35mol%)以下で、Geの濃度(Y)は、0より大きく、0.2(20mol%)以下で、かつX/Yが5以下である場合には、圧電体薄膜の分極方向が窒素極性になることが分かった。なお、この図における点線は、X/Y=5である。
<添加物質としてSnを用いた場合>
添加物質MとしてSnを用いた場合の本実施形態に係る窒化物材料(圧電体薄膜)の実施例について説明する。
製造方法については、Siのスパッタリングターゲット材の代わりに、次のSnのスパッタリングターゲットを用いたこと以外は、添加物質としてSiを用いた窒化物材料と同様にして作製した。
Snのスパッタリングターゲット材(純度:99.999%)
そして、得られた各圧電体薄膜の組成とd33を図12~図14に示す。図12はScの濃度を約10mol%に固定した場合における各圧電体薄膜の組成とd33を示し、図13はScの濃度を約20mol%に固定した場合における各圧電体薄膜の組成とd33を示し、図14はScの濃度を約30mol%に固定した場合における各圧電体薄膜の組成とd33を示す。
そして、図15に、図12~図14に示す各圧電体薄膜におけるSn濃度とd33との関係を示す。さらに、図6と同様にして、図15のようなグラフから、d33が0となる場合のSnの濃度とScの濃度とを、内挿や外挿等により求めた。それらの結果を図16に示す。
この図から分かるように、Scの濃度(X)は、0より大きく、0.35(35mol%)以下で、Snの濃度(Y)は、0より大きく、0.2(20mol%)以下で、かつX/Yが5以下である場合には、圧電体薄膜の分極方向が窒素極性になることが分かった。なお、この図における点線は、X/Y=5である。
<添加物質としてCを用いる場合>
添加物質MとしてCを用いる場合でも、Siのスパッタリングターゲット材の代わりに、Cのスパッタリングターゲットを用いたこと以外は、添加物質としてSiを用いた窒化物材料と同様にして作製することができる。
<添加物質として2種類の元素を用いた場合>
添加物質Mとして2種類の元素(SiC、SiSn)を用いた場合の本実施形態に係る窒化物材料(圧電体薄膜)の実施例について説明する。
製造方法については、Siのスパッタリングターゲット材の代わりに、次のSiCまたはSiSnのスパッタリングターゲットを用いたこと以外は、添加物質としてSiを用いた窒化物材料と同様にして作製した。
SiCのスパッタリングターゲット材(純度:99.999%)
SiSnのスパッタリングターゲット材(純度:99.999%)
そして、得られた各圧電体薄膜の組成とd33を図17に示す。この図から明らかなように、添加物質Mとして2種類の元素を用いても、圧電体薄膜の分極方向が窒素極性になることが分かった。
(実施形態2)
実施形態1では、本発明に係る窒化物材料のみを用いて圧電体を構成したが、本発明はこれに限定されない。例えば、図18に示すように、実施形態1の窒化物材料(第1層)上に、アルミニウム極性を有するスカンジウム含有窒化物材料(ScAl1-ZN(0<Z≦0.4)、第2層20)を形成し、これら二層からなる圧電体薄膜(圧電体)100を構成してもよい。なお、第2層20は、第1層1の下側に形成されてもよい。また、第1層1の厚さと、第2層20の厚さとは、同一であってもよいし、異なっていてもよい。
このような二層構造の圧電体薄膜は、厚さが同一であれば、上述した実施形態1の圧電体薄膜のみで構成された圧電体薄膜や、ScAl1-ZN(0<Z≦0.4)のみで構成された圧電体薄膜と比較して、より高い周波数で振動することができる。なお、この圧電体薄膜を振動させるには、例えば、この圧電体薄膜の上面に上部電極を取り付けると共に下面に下部電極を取り付けて、これらの電極に電圧を印加する必要があることは言うまでもない。
(実施形態3)
実施形態2では、分極方向が窒素極性である窒化物材料(第1層1)上に、分極方向がアルミニウム極性であるスカンジウム含有窒化物材料(第2層20)を形成して、二層構造の圧電体薄膜を構成したが、本発明はこれに限定されない。例えば、図19に示すように、実施形態2と同じ構成の薄膜上に、同様に構成された二層(第3層30および第4層40)の薄膜をさらに形成し、四層構造の圧電体薄膜(圧電体)100Aを構成してもよい。
すなわち、第1層1は分極方向が窒素極性の窒化物材料、第2層20は分極方向がアルミニウム極性のスカンジウム含有窒化物材料、第3層30は分極方向が窒素極性の窒化物材料、第4層40は分極方向がアルミニウム極性のスカンジウム含有窒化物材料からなる四層構造の圧電体薄膜100Aを構成してもよい。なお、接している窒化物材料の分極方向が異なるのであれば、積層順序は特に限定されない。
このような四層構造の圧電体薄膜100Aは、厚さが同一であれば、上述した実施形態1の圧電体薄膜のみで構成された圧電体薄膜、ScAl1-ZN(0<Z≦0.4)のみで構成された圧電体薄膜、または実施形態2の圧電体薄膜と比較して、振動させることができる周波数の帯域幅をより広範囲に拡張することができる。
なお、第1層と第2層との間に、第1層を構成する物質と第2層を構成する物質とが含まれる拡散層が形成されていてもよい。このような拡散層は、例えば、第1層上に第2層を形成した後、それらに熱を加えることによって形成することができる。
(実施形態4)
実施形態1では、基板上に直接圧電体薄膜を作製するようにしたが、本発明はこれに限定されない。例えば、基板と、圧電体薄膜との間に中間層を設けてもよい。中間層は、スパッタ等で作製することができる。
ここで、中間層としては、中間層上に圧電体薄膜を形成することができるものであればその材料や厚さ等は特に限定されない。中間層としては、例えば、窒化アルミニウム(AlN)、窒化ガリウム(GaN)、窒化インジウム(InN)、窒化チタン(TiN)、窒化スカンジウム(ScN)、窒化イッテルビウム(YbN)、モリブデン(Mo)、タングステン(W)、ハフニウム(Hf)、チタン(Ti)、ルテニウム(Ru)、酸化ルテニウム(RuO)、クロム(Cr)、窒化クロム(CrN)、白金(Pt)、金(Au)、銀(Ag)、銅(Cu)、アルミニウム(Al)、タンタル(Ta)、イリジウム(Ir)、パラジウム(Pd)およびニッケル(Ni)等で構成された厚さ50~200nmのものが挙げられる。
基板上に、このような中間層を設けることにより、圧電体薄膜の結晶性(結晶化度)が向上するので、実施形態1の圧電体薄膜と比較して、さらに高い圧電定数d33を有する圧電体薄膜を製造することができる。
(他の実施形態)
実施形態3の圧電体は四層構造となっていたが、本発明はこれに限定されない。接している窒化物材料と分極方向が異なる窒化物材料からなる層を、さらに多数積層して圧電体薄膜を構成してもよい。
このような圧電体薄膜は、実施形態3の圧電体薄膜と比較して、より高い周波数で振動することができ、かつ振動させることができる周波数の帯域幅をより広範囲に拡張することができる。
なお、例えば接している窒化物材料と分極方向が異なる窒化物材料からなる層を偶数層積層したものだけなく、奇数層積層した圧電体薄膜(例えば三層構造の圧電体薄膜)を構成してもよい。
また、上述した本発明に係る窒化物材料(圧電体)は、MEMSに用いることができる。本発明に係る窒化物材料を用いたMEMSは、高い周波数で振動することができ、かつ高い圧電性を有する圧電体を用いることにより、携帯用機器のさらなる高周波対応化、小型化および省電力化に寄与することができるMEMSデバイスを提供することができる。なお、MEMSの構成については、例えば公知のものを用いることができる。
さらに、実施形態1では、本発明に係る窒化物材料を用いた圧電体薄膜を例に挙げて説明したが、本発明はこれに限定されない。例えば、本発明に係る窒化物材料は、MEMSデバイス、トランジスタ、インバーター、トランデューサー、SAWデバイスまたは強誘電体メモリにも適用することができる。本発明に係る窒化物材料を用いたトランジスタは、従来のトランジスタと比較して高速で動作させることができ、かつ低損失、高出力なものとなる。また、本発明に係る窒化物材料を用いたインバーターは従来のインバーターに比べて絶縁耐圧が高く、低損失なものとなる。さらに、本発明に係る窒化物材料を用いた強誘電体メモリは、従来の強誘電体メモリに比べて自発分極が高く、記憶性能が高いものとなる。さらに、極性が異なる窒化物材料を用いた高周波広帯域トランスデューサーを提供することができる。また、IDTを極性が異なる窒化物材料からなる圧電体を用いて構成することにより、一般的なIDT-SAWデバイスより高い周波数で振動するSAWデバイスを提供することができる。なお、このようなトランジスタ、インバーター、トランデューサー、SAWデバイスや強誘電体メモリの構成は、例えば公知のものを用いることができる。
 1   圧電体薄膜(第1層)
 10  基板
 20  第2層
 30  第3層
 40  第4層
 100、100A 圧電体薄膜

Claims (10)

  1. 化学式ScAl1-X-YNで表される窒化物材料であって、
    Mは、C、Si、GeおよびSnの少なくとも1つ以上の元素であり、
    Xは、0より大きく、0.4以下で、
    Yは、0より大きく、0.2以下で、
    X/Yが5以下である
    ことを特徴とする窒化物材料。
  2. Mが、C、Si、GeおよびSnの何れか1つの元素であることを特徴とする請求項1に記載の窒化物材料。
  3. Xは、0より大きく、0.35以下で、
    Yは、0より大きく、0.2以下で、
    X/Yが5以下である
    ことを特徴とする請求項2に記載の窒化物材料。
  4. 請求項1~3の何れか1項に記載の窒化物材料が基板上に設けられており、
    前記窒化物材料と前記基板との間に、少なくとも1層の中間層が設けられていることを特徴とする窒化物材料。
  5. 前記中間層は、窒化アルミニウム、窒化ガリウム、窒化インジウム、窒化チタン、窒化スカンジウム、窒化イッテルビウム、モリブデン、タングステン、ハフニウム、チタン、ルテニウム、酸化ルテニウム、クロム、窒化クロム、白金、金、銀、銅、アルミニウム、タンタル、イリジウム、パラジウムおよびニッケルの少なくとも1つを含んでいることを特徴とする請求項4に記載の窒化物材料。
  6. 請求項1~5の何れか1項に記載の窒化物材料からなる圧電体。
  7. 化学式ScAl1-ZN(0<Z≦0.4)で表されるスカンジウム含有窒化物材料の表面上に、請求項1~5の何れか1項に記載の窒化物材料が設けられていることを特徴とする圧電体。
  8. 請求項7に記載の圧電体が、少なくとも2つ以上積層されていることを特徴とする圧電体。
  9. 請求項6~8の何れか1項に記載の圧電体を用いたMEMSデバイス。
  10. 請求項1~5の何れか1項に記載の窒化物材料を用いたトランジスタ、インバーター、トランスデューサー、SAWデバイスまたは強誘電体メモリ。

     
PCT/JP2021/042898 2021-02-24 2021-11-24 窒化物材料およびそれからなる圧電体並びにその圧電体を用いたmemsデバイス、トランジスタ、インバーター、トランスデューサー、sawデバイスおよび強誘電体メモリ WO2022180961A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020237021492A KR20230111235A9 (ko) 2021-02-24 2021-11-24 질화물 재료 및 그것으로 이루어지는 압전체 및 그 압전체를 이용한 mems 디바이스, 트랜지스터, 인버터, 트랜스듀서, saw 디바이스 및 강유전체 메모리
US18/264,362 US20240101423A1 (en) 2021-02-24 2021-11-24 Nitride material, piezoelectric body formed of same, and mems device, transistor, inverter, transducer, saw device, and ferroelectric memory using the piezoelectric body
EP21928055.9A EP4273945A1 (en) 2021-02-24 2021-11-24 Nitride mateiral, piezoelectric body formed of same, and mems device, transistor, inverter, transducer, saw device and ferroelectric memory, each of which uses said piezoelectric body
CN202180094141.2A CN116897615A (zh) 2021-02-24 2021-11-24 氮化物材料和由其构成的压电体以及使用该压电体的mems器件、晶体管、逆变器、换能器、saw器件和铁电存储器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021027147A JP2022128755A (ja) 2021-02-24 2021-02-24 窒化物材料およびそれからなる圧電体並びにその圧電体を用いたmemsデバイス、トランジスタ、インバーター、トランスデューサー、sawデバイスおよび強誘電体メモリ
JP2021-027147 2021-02-24

Publications (1)

Publication Number Publication Date
WO2022180961A1 true WO2022180961A1 (ja) 2022-09-01

Family

ID=83047919

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/042898 WO2022180961A1 (ja) 2021-02-24 2021-11-24 窒化物材料およびそれからなる圧電体並びにその圧電体を用いたmemsデバイス、トランジスタ、インバーター、トランスデューサー、sawデバイスおよび強誘電体メモリ

Country Status (6)

Country Link
US (1) US20240101423A1 (ja)
EP (1) EP4273945A1 (ja)
JP (1) JP2022128755A (ja)
KR (1) KR20230111235A9 (ja)
CN (1) CN116897615A (ja)
WO (1) WO2022180961A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102022213055A1 (de) 2022-12-05 2024-06-06 Robert Bosch Gesellschaft mit beschränkter Haftung Piezoelektrische Wandlervorrichtung

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009010926A (ja) 2007-05-31 2009-01-15 National Institute Of Advanced Industrial & Technology 圧電体薄膜、圧電体およびそれらの製造方法、ならびに当該圧電体薄膜を用いた圧電体共振子、アクチュエータ素子および物理センサー
JP2013128267A (ja) * 2011-11-18 2013-06-27 Murata Mfg Co Ltd 圧電薄膜共振子及び圧電薄膜の製造方法
JP2013148562A (ja) * 2012-01-23 2013-08-01 National Institute Of Advanced Industrial & Technology 圧電素子およびその製造方法、ならびに圧電センサ
JP2014236051A (ja) * 2013-05-31 2014-12-15 株式会社デンソー 圧電体薄膜及びその製造方法
JP2017045749A (ja) 2015-08-24 2017-03-02 株式会社村田製作所 窒化アルミニウム圧電薄膜及びその製造方法、並びに圧電材及び圧電部品及び窒化アルミニウム圧電薄膜の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009010926A (ja) 2007-05-31 2009-01-15 National Institute Of Advanced Industrial & Technology 圧電体薄膜、圧電体およびそれらの製造方法、ならびに当該圧電体薄膜を用いた圧電体共振子、アクチュエータ素子および物理センサー
JP2013128267A (ja) * 2011-11-18 2013-06-27 Murata Mfg Co Ltd 圧電薄膜共振子及び圧電薄膜の製造方法
JP2013148562A (ja) * 2012-01-23 2013-08-01 National Institute Of Advanced Industrial & Technology 圧電素子およびその製造方法、ならびに圧電センサ
JP2014236051A (ja) * 2013-05-31 2014-12-15 株式会社デンソー 圧電体薄膜及びその製造方法
JP2017045749A (ja) 2015-08-24 2017-03-02 株式会社村田製作所 窒化アルミニウム圧電薄膜及びその製造方法、並びに圧電材及び圧電部品及び窒化アルミニウム圧電薄膜の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MIZUNO, T ET AL.: "19th International Conference on Solid-State Sensors", ACTUATORS AND MICROSYSTEMS (TRANSDUCERS, 2017, pages 1891 - 1894

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102022213055A1 (de) 2022-12-05 2024-06-06 Robert Bosch Gesellschaft mit beschränkter Haftung Piezoelektrische Wandlervorrichtung

Also Published As

Publication number Publication date
JP2022128755A (ja) 2022-09-05
KR20230111235A9 (ko) 2024-03-25
US20240101423A1 (en) 2024-03-28
CN116897615A (zh) 2023-10-17
EP4273945A1 (en) 2023-11-08
KR20230111235A (ko) 2023-07-25

Similar Documents

Publication Publication Date Title
JP5190841B2 (ja) 圧電体薄膜、圧電体およびそれらの製造方法、ならびに当該圧電体薄膜を用いた圧電体共振子、アクチュエータ素子および物理センサー
US7758979B2 (en) Piezoelectric thin film, piezoelectric material, and fabrication method of piezoelectric thin film and piezoelectric material, and piezoelectric resonator, actuator element, and physical sensor using piezoelectric thin film
US6278342B1 (en) Balanced filter structure utilizing bulk acoustic wave resonators having different areas
CN100542022C (zh) 谐振器、滤波器以及谐振器的制造
WO2012114931A1 (ja) 可変容量素子及びチューナブルフィルタ
CN1716768A (zh) 压电薄膜谐振器和滤波器及其制造方法
WO2021077716A1 (zh) 体声波谐振器、滤波器及电子设备
WO2022180961A1 (ja) 窒化物材料およびそれからなる圧電体並びにその圧電体を用いたmemsデバイス、トランジスタ、インバーター、トランスデューサー、sawデバイスおよび強誘電体メモリ
WO2014087799A1 (ja) 圧電部材、弾性波装置及び圧電部材の製造方法
EP1503872B1 (en) Array of membrane ultrasound transducers
JP7329828B2 (ja) 窒化物圧電体およびそれを用いたmemsデバイス
JP2005136534A (ja) 薄膜バルク波共振器
JP4730126B2 (ja) バルク弾性波共振素子及び該製造方法並びにフィルタ回路
WO2020121796A1 (ja) 圧電体およびそれを用いたmemsデバイス
JP2006013839A (ja) 薄膜圧電共振器と薄膜圧電フィルタ
JP2008311873A (ja) フィルタ
JP3480561B2 (ja) 圧電/電歪素子
WO2020132999A1 (zh) 带有温度补偿层的谐振器、滤波器
TWI231647B (en) Device of a layered SAW SFIT filter
JP2024006648A (ja) 圧電素子ユニット及び共振器
JP2005210614A (ja) 薄膜バルク音響共振子の製造方法、圧電膜の形成方法および非反応性スパッタリング装置
CN118249774A (en) Bulk acoustic wave resonator and preparation method thereof
JP2014204214A (ja) 薄膜デバイスおよび薄膜デバイスの製造方法
JP2007082050A (ja) 圧電薄膜振動子及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21928055

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20237021492

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 18264362

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2021928055

Country of ref document: EP

Effective date: 20230801

WWE Wipo information: entry into national phase

Ref document number: 202180094141.2

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE