WO2022179328A1 - 无人车起步方法、装置、电子设备和计算机可读介质 - Google Patents

无人车起步方法、装置、电子设备和计算机可读介质 Download PDF

Info

Publication number
WO2022179328A1
WO2022179328A1 PCT/CN2022/071589 CN2022071589W WO2022179328A1 WO 2022179328 A1 WO2022179328 A1 WO 2022179328A1 CN 2022071589 W CN2022071589 W CN 2022071589W WO 2022179328 A1 WO2022179328 A1 WO 2022179328A1
Authority
WO
WIPO (PCT)
Prior art keywords
starting
mileage value
unmanned vehicle
guide line
target
Prior art date
Application number
PCT/CN2022/071589
Other languages
English (en)
French (fr)
Inventor
王浩然
张亮亮
Original Assignee
京东鲲鹏(江苏)科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东鲲鹏(江苏)科技有限公司 filed Critical 京东鲲鹏(江苏)科技有限公司
Priority to KR1020237030004A priority Critical patent/KR20230144560A/ko
Priority to EP22758694.8A priority patent/EP4286234A1/en
Priority to JP2023574746A priority patent/JP2024509000A/ja
Priority to US18/278,141 priority patent/US20240124027A1/en
Publication of WO2022179328A1 publication Critical patent/WO2022179328A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W60/00Drive control systems specially adapted for autonomous road vehicles
    • B60W60/001Planning or execution of driving tasks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/02Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to ambient conditions
    • B60W40/06Road conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W60/00Drive control systems specially adapted for autonomous road vehicles
    • B60W60/001Planning or execution of driving tasks
    • B60W60/0011Planning or execution of driving tasks involving control alternatives for a single driving scenario, e.g. planning several paths to avoid obstacles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W60/00Drive control systems specially adapted for autonomous road vehicles
    • B60W60/001Planning or execution of driving tasks
    • B60W60/0025Planning or execution of driving tasks specially adapted for specific operations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/34Route searching; Route guidance
    • G01C21/3407Route searching; Route guidance specially adapted for specific applications
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/20Control system inputs
    • G05D1/24Arrangements for determining position or orientation
    • G05D1/242Means based on the reflection of waves generated by the vehicle
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/20Control system inputs
    • G05D1/24Arrangements for determining position or orientation
    • G05D1/246Arrangements for determining position or orientation using environment maps, e.g. simultaneous localisation and mapping [SLAM]
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/60Intended control result
    • G05D1/617Safety or protection, e.g. defining protection zones around obstacles or avoiding hazards
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/60Intended control result
    • G05D1/617Safety or protection, e.g. defining protection zones around obstacles or avoiding hazards
    • G05D1/622Obstacle avoidance
    • G05D1/633Dynamic obstacles
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/60Intended control result
    • G05D1/646Following a predefined trajectory, e.g. a line marked on the floor or a flight path
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D3/00Control of position or direction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2420/00Indexing codes relating to the type of sensors based on the principle of their operation
    • B60W2420/40Photo, light or radio wave sensitive means, e.g. infrared sensors
    • B60W2420/408Radar; Laser, e.g. lidar
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2530/00Input parameters relating to vehicle conditions or values, not covered by groups B60W2510/00 or B60W2520/00
    • B60W2530/13Mileage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D2107/00Specific environments of the controlled vehicles
    • G05D2107/10Outdoor regulated spaces
    • G05D2107/13Spaces reserved for vehicle traffic, e.g. roads, regulated airspace or regulated waters
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D2109/00Types of controlled vehicles
    • G05D2109/10Land vehicles

Definitions

  • Embodiments of the present disclosure relate to the field of computer technology, for example, to a starting method, apparatus, electronic device, and computer-readable medium for an unmanned vehicle.
  • Unmanned vehicles need to start in residential areas, office buildings, shopping malls and other scenes where there are many vehicles and pedestrians, and the environment is more complex. There are often no lane lines in these scenarios, and it is necessary to guide the unmanned vehicle to the reference starting position of the lane line so that the unmanned vehicle can operate normally.
  • a common starting method is to preset a reference starting position, so that the unmanned vehicle travels to the reference starting position.
  • Some embodiments of the present disclosure propose an unmanned vehicle starting method, apparatus, electronic device and computer-readable medium to solve one or more of the technical problems mentioned in the above background art section.
  • some embodiments of the present disclosure provide a method for starting an unmanned vehicle, the method comprising: in response to the completion of the task of the unmanned vehicle at the current node, determining the occupancy status information of the reference starting position on the guide line, wherein , the above-mentioned guide line is the preset driving route of the above-mentioned unmanned vehicle from the current node to the next node, the above-mentioned reference starting position is the position where the above-mentioned unmanned vehicle reaches the above-mentioned guide line from the current position, and the above-mentioned occupancy state information is the occupied state or the unmanned state.
  • Occupied state in response to determining that the above-mentioned occupancy state information is an occupied state, project the current position of the above-mentioned unmanned vehicle on the above-mentioned guide line to determine the initial mileage value of the above-mentioned current position on the above-mentioned guide line; determine that the above-mentioned reference starting position is in the above-mentioned The reference starting mileage value on the guide line; based on the above-mentioned reference starting mileage value and the above-mentioned initial mileage value, a sequence of target starting points is generated.
  • some embodiments of the present disclosure provide a device for starting an unmanned vehicle, the device comprising: a first determining unit configured to, in response to the completion of the task of the unmanned vehicle at the current node, determine a reference starting on a guide line
  • the occupancy status information of the location wherein the above-mentioned guide line is the preset driving route of the above-mentioned unmanned vehicle from the current node to the next node, the above-mentioned reference starting position is the position where the above-mentioned unmanned vehicle reaches the above-mentioned guide line from the current position, and the above-mentioned occupation
  • the state information is an occupied state or an unoccupied state;
  • the projection unit is configured to, in response to determining that the occupied state information is an occupied state, project the current position of the above-mentioned unmanned vehicle to the above-mentioned guide line, so as to determine that the above-mentioned current position is on the above-mentioned guide line.
  • the second determining unit is configured to determine the reference starting mileage value of the above-mentioned reference starting position on the above-mentioned guide line; the generating unit is configured to generate the target based on the above-mentioned reference starting mileage value and the above-mentioned initial mileage value Starting point sequence.
  • embodiments of the present disclosure provide an electronic device, comprising: at least one processor; and a storage device configured to store at least one program, and when the at least one program is executed by the at least one processor, the at least one processor The method described in the first aspect above is implemented.
  • embodiments of the present disclosure provide a computer-readable medium on which a computer program is stored, wherein the program implements the method described in the first aspect when the program is executed by a processor.
  • FIG. 1 is a schematic diagram of an application scenario of a method for starting an unmanned vehicle according to some embodiments of the present disclosure
  • FIG. 2 is a flowchart of some embodiments of a method for starting an unmanned vehicle according to the present disclosure
  • FIG. 3 is a flowchart of other embodiments of the method for starting an unmanned vehicle according to the present disclosure
  • FIG. 4 is a flow chart of still other embodiments of the unmanned vehicle starting method according to the present disclosure.
  • FIG. 5 is a schematic structural diagram of some embodiments of an unmanned vehicle starting device according to the present disclosure.
  • FIG. 6 is a schematic structural diagram of an electronic device suitable for implementing some embodiments of the present disclosure.
  • a reference starting position is preset to make the unmanned vehicle drive to the reference starting position.
  • the unmanned vehicle will not be able to enter the starting position normally, and the starting position needs to be manually reselected, which reduces the operating efficiency of the unmanned vehicle.
  • some embodiments of the present disclosure provide a starting method and device for an unmanned vehicle, which can dynamically generate a target starting point, so that the unmanned vehicle can enter the starting position normally, and the operation efficiency of the unmanned vehicle is improved.
  • FIG. 1 is a schematic diagram of an application scenario of a method for starting an unmanned vehicle according to some embodiments of the present disclosure.
  • the application scenario of FIG. 1 includes an unmanned vehicle 101 , a guide line 102 , a reference starting position 103 , a projected position 104 of the unmanned vehicle 101 on the guide line 102 , and a target starting point sequence 105 .
  • the map system can be invoked to locate the current position of the unmanned vehicle 101 .
  • the unmanned vehicle 101 can call a device such as a radar or a wireless sensor to sense whether the reference starting position 103 is occupied by an obstacle.
  • the unmanned vehicle 101 performs dynamic planning in combination with the data in the map system and the data sensed by the wireless sensor, so that the unmanned vehicle 101 can drive to the starting position.
  • the occupancy status information of the reference starting position 103 on the guide line 102 can be determined by the radar or camera on the unmanned vehicle 101 .
  • the above-mentioned guide line 102 is the preset driving route of the above-mentioned unmanned vehicle 101 from the current node to the next node
  • the above-mentioned reference starting position 103 is the position where the above-mentioned unmanned vehicle reaches the above-mentioned guide line 102 from the current position
  • the above-mentioned occupancy status information either occupied or unoccupied.
  • the reference starting position 103 may be a point where the unmanned vehicle 101 coincides with the center of the front of the unmanned vehicle when starting.
  • the current position may refer to the center point of the front of the unmanned vehicle 101 .
  • the initial mileage value may refer to the distance value between the projected position 104 and the starting point 105 on the guide line 102 .
  • the reference start distance value of the reference start position 103 on the guide line 102 is determined.
  • the reference starting distance value may refer to the distance value between the reference starting position 103 and the starting point 105 on the guide line 102 .
  • the unmanned vehicle 101 may generate a target starting point sequence 106 based on the above-mentioned reference starting mileage value and the above-mentioned initial mileage value. In this way, when the reference starting position 103 is occupied and no manual intervention is required, the starting position can be re-selected according to the actual situation near the reference starting position 103 .
  • the unmanned vehicle starting method includes the following steps:
  • Step 201 in response to the completion of the task of the unmanned vehicle at the current node, determine the occupancy status information of the reference starting position on the guide line.
  • the executing subject of the unmanned vehicle starting method may be the unmanned vehicle 101 as shown in FIG. 1 , or may be an unmanned vehicle dispatching device (eg, computing device) or the like.
  • the unmanned vehicle 101 is used as the main body of execution.
  • the above-mentioned unmanned vehicle can detect the occupancy status information of the reference starting position on the guide line through a device such as a radar or a wireless sensor.
  • the above-mentioned guide line is a preset driving route of the above-mentioned unmanned vehicle from the current node to the next node, and may also refer to a preset guide track.
  • the reference starting position is the position at which the unmanned vehicle reaches the guide line from the current position.
  • the above-mentioned occupied state information is an occupied state or an unoccupied state.
  • the reference starting position may be the point where the unmanned vehicle coincides with the center of the front of the unmanned vehicle when starting, or it may be set according to actual needs.
  • Step 202 in response to determining that the occupied state information is the occupied state, project the current position of the unmanned vehicle on the guide line to determine the initial mileage value of the current position on the guide line.
  • the unmanned vehicle in response to determining that the occupancy state information is an occupied state, may project the current position of the unmanned vehicle on the guide line to determine the initial mileage value of the current position on the guide line.
  • the above-mentioned unmanned vehicle can scan the guide line by radar to vertically project the position of the unmanned vehicle on the guide line. Thereby, the projected position of the unmanned vehicle on the above-mentioned guide line can be obtained.
  • the current position of the unmanned vehicle can be regarded as a point, that is, the center point of the unmanned vehicle.
  • the above-mentioned unmanned vehicle may determine the distance between the projected position and the starting point of the guide line as the initial mileage value.
  • the initial mileage value may be 7 meters.
  • Step 203 Determine the reference starting mileage value of the reference starting position on the guide line.
  • the above-mentioned unmanned vehicle can detect the distance from the reference starting position to the starting point of the guide line through radar.
  • the distance from the reference starting position to the starting point of the guide line can be determined as the reference starting mileage value.
  • the reference starting distance value may be 10 meters.
  • Step 204 based on the reference starting mileage value and the initial mileage value, generate a sequence of target starting points.
  • the above-mentioned unmanned vehicle can detect, through radar, the width of the road on both sides of the guide line where the reference starting position is located. Then, on both sides of the road, a starting width can be taken every preset width.
  • the preset width may be the body width of the unmanned vehicle, or may be set according to actual needs.
  • the reference starting distance value and the starting width can be combined to generate starting point coordinates as the target starting point.
  • the sum of half of the difference between the reference starting mileage value and the initial mileage value and the initial mileage value is determined as a new reference starting mileage value, and a new target starting point is determined again.
  • the obtained target starting points are sorted according to the reference starting mileage value from large to small, and then the target starting points with the same reference starting mileage value are prioritized according to the priority of the target starting point on the left side of the road than the target starting point on the right side of the road.
  • Points are sorted by priority. Among them, the smaller the starting width, the higher the priority.
  • the above-mentioned unmanned vehicle can detect that the width of the road on both sides of the guide line where the reference starting position is located is 5 meters.
  • the body width of the unmanned vehicle can be 1 meter, that is, 4 starting widths can be taken on both sides of the road.
  • the 4 starting widths on the left side of the road could be "1, 2, 3, 4".
  • the 4 starting widths on the right side of the road can be "1, 2, 3, 4".
  • the reference start distance value "10" and the left start width "1" may be combined to generate the start point coordinates as the left side target start point (10, 1).
  • the left target starting point group ⁇ (10, 1); (10, 2); (10, 3); (10, 4) ⁇ can be obtained.
  • the right target starting point group ⁇ (10, 1); (10, 2); (10, 3); (10, 4) ⁇ can be obtained.
  • half “1.5” of the difference between the reference starting mileage value "10" and the initial mileage value "7” and the sum "8.5” of the initial mileage value "7” are determined as a new reference starting mileage value.
  • the second group of left target starting point groups ⁇ (8.5, 1); (8.5, 2); (8.5, 3); (8.5, 4) ⁇ can be obtained.
  • the second set of right target starting point groups ⁇ (8.5, 1); (8.5, 2); (8.5, 3); (8.5, 4) ⁇ can be obtained.
  • left target starting point group ⁇ (10, 1); (10, 2); (10, 3); (10, 4) ⁇ ;Right target starting point group ⁇ (10,1);(10,2);(10,3);(10,4) ⁇ ;Left target starting point group ⁇ (8.5,1);(8.5,2) ); (8.5, 3); (8.5, 4) ⁇ ; right target starting point group ⁇ (8.5, 1); (8.5, 2); (8.5, 3); (8.5, 4) ⁇ .
  • a target starting point can be dynamically generated, so that the unmanned vehicle can enter the starting position normally, and the operation efficiency of the unmanned vehicle is improved.
  • the reason for the low operating efficiency of the unmanned vehicle is: when the reference starting position is occupied, the unmanned vehicle will not be able to enter the starting position normally, and the starting position needs to be manually reselected, which reduces the operation of the unmanned vehicle. efficiency.
  • the starting method of an unmanned vehicle according to some embodiments of the present disclosure can firstly guide the occupancy state information of the online reference starting position.
  • the target starting point needs to be dynamically generated.
  • the occupancy state information is an occupied state
  • project the current position of the unmanned vehicle on the guide line to determine the initial mileage value of the current position on the guide line.
  • the reference start distance value of the reference start position on the guide line is determined.
  • data support can be provided for the subsequent generation of target starting points.
  • a target starting point sequence is generated based on the above-mentioned reference starting mileage value and the above-mentioned initial mileage value.
  • the unmanned vehicle starting method includes the following steps:
  • Step 301 in response to the completion of the task of the unmanned vehicle at the current node, determine the occupancy status information of the reference starting position on the guide line.
  • Step 302 in response to determining that the occupied state information is the occupied state, project the current position of the unmanned vehicle on the guide line to determine the initial mileage value of the current position on the guide line.
  • Step 303 Determine the reference starting mileage value of the reference starting position on the guide line.
  • steps 301-303 for the specific implementation of steps 301-303 and the technical effects brought about, reference may be made to steps 201-203 in those embodiments corresponding to FIG. 2, and details are not repeated here.
  • Step 304 for the reference starting mileage value, execute processing steps.
  • the unmanned vehicle may perform the following processing steps for the above-mentioned reference starting mileage value:
  • the first step is to obtain location information corresponding to the above-mentioned reference starting mileage value.
  • the position information includes a left road width corresponding to the guiding line and a right road width corresponding to the guiding line.
  • the unmanned vehicle can be detected by radar or obtained from the map system, the location information corresponding to the above-mentioned reference starting mileage value.
  • the second step based on the above-mentioned left road width and the above-mentioned reference starting mileage value, at least one left-side candidate starting point is generated through a preset threshold.
  • the preset threshold may be the body width of the unmanned vehicle.
  • the unmanned vehicle can take a starting width at each preset threshold on the left road, and then combine the reference starting mileage value and the starting width to generate an alternative starting point on the left.
  • the unmanned vehicle can take a starting width at each preset threshold on the right road, and then combine the reference starting mileage value and the starting width to generate an alternative starting point on the right.
  • the at least one target starting point on the left side and the at least one candidate starting point on the right side are combined to obtain a candidate starting point group.
  • the fifth step is to determine whether the difference between the above-mentioned reference starting mileage value and the above-mentioned initial mileage value satisfies a preset condition.
  • the preset condition may be "the difference between the above-mentioned reference starting mileage value and the above-mentioned initial mileage value is greater than or equal to the body length of the unmanned vehicle".
  • an alternative starting mileage value is generated based on the aforementioned reference starting mileage value and the aforementioned initial mileage value.
  • the sixth step above may include the following sub-steps:
  • an initial starting mileage value is generated based on the above-mentioned reference starting mileage value and the above-mentioned initial mileage value.
  • the ratio of the difference between the above-mentioned reference starting mileage value and the above-mentioned initial mileage value and the preset value may be used as the initial starting mileage value.
  • the preset value can be a number set according to actual needs.
  • the initial starting mileage value and the sum of the initial starting mileage value are determined as the candidate starting mileage value.
  • the above-mentioned alternative starting mileage value is determined as the reference starting mileage value, and the above-mentioned processing steps are performed again.
  • Step 305 according to a preset arrangement instruction, perform arranging processing on each candidate starting point in the obtained candidate starting point group to generate a target starting point sequence.
  • the unmanned vehicle may perform arranging processing on each candidate starting point in the obtained candidate starting point group according to a preset arrangement instruction to generate a target starting point sequence.
  • the arrangement instruction may be: the larger the reference starting mileage value, the higher the priority; for the candidate starting points with the same reference starting mileage value, the smaller the starting width, the higher the priority; for the candidate starting points with the same starting width , the priority of the left alternative starting point is higher than that of the right alternative starting point.
  • the process 300 in some embodiments corresponding to FIG. compared with the description of some embodiments corresponding to FIG. 2, the process 300 in some embodiments corresponding to FIG. Each candidate starting point is arranged for processing. Therefore, the target starting point can be better recommended for the unmanned vehicle to start. In addition, by restricting the generation of target starting points, the generated target starting points can be better optimized.
  • the unmanned vehicle starting method includes the following steps:
  • Step 401 in response to the completion of the task of the unmanned vehicle at the current node, determine the occupancy status information of the reference starting position on the guide line.
  • Step 402 in response to determining that the occupied state information is the occupied state, project the current position of the unmanned vehicle on the guide line to determine the initial mileage value of the current position on the guide line.
  • Step 403 Determine the reference starting mileage value of the reference starting position on the guide line.
  • Step 404 based on the reference starting mileage value and the initial mileage value, generate a sequence of target starting points.
  • steps 401-404 for the specific implementation of steps 401-404 and the technical effects brought about, reference may be made to steps 201-204 in those embodiments corresponding to FIG. 2, and details are not repeated here.
  • Step 405 select the target starting point from the sequence of target starting points as the target starting position.
  • the unmanned vehicle 101 may select the target starting point with the highest priority from the above-mentioned target starting point sequence as the target starting position.
  • the unmanned vehicle 101 may perform the following steps for each target starting point in the above-mentioned sequence of target starting points:
  • the first step is to determine the occupancy status information of the target starting point.
  • the unmanned vehicle can determine the occupancy status information of the target starting point through radar detection, camera shooting, or unmanned sensors.
  • the above-mentioned target starting point is determined as a target starting position.
  • the unmanned vehicle detects that the occupied state information of the target starting point is an unoccupied state, and the above-mentioned target starting point can be determined as the target starting position.
  • Step 406 generating a driving trajectory according to the current position and the target starting position.
  • the unmanned vehicle can plan the driving trajectory from the current position to the target starting position through various methods (simulated annealing algorithm, artificial potential field method, fuzzy logic algorithm, tabu search algorithm, visual space method, etc.).
  • Step 407 control the unmanned vehicle to travel according to the travel trajectory.
  • the unmanned vehicle may control the vehicle body to drive to the target starting position according to the above-mentioned driving trajectory.
  • Step 408 in response to the distance of the unmanned vehicle from the target starting position meeting the first target condition and the driving direction of the unmanned vehicle meeting the second target condition, generate the target starting point sequence again.
  • the unmanned vehicle in response to the distance of the unmanned vehicle from the target starting position meeting the first target condition and the driving direction of the unmanned vehicle meeting the second target condition, the unmanned vehicle may regenerate the target starting point sequence to Meet the start-up needs of unmanned vehicles.
  • the first target condition may be "the distance between the above-mentioned unmanned vehicle and the above-mentioned target starting position is less than or equal to a preset distance".
  • the setting of the preset distance is not limited.
  • the second target condition may be "the angle between the driving direction of the unmanned vehicle and the guide line is greater than or equal to a preset angle".
  • the setting of the preset angle can be set according to the body length and body width of the unmanned vehicle.
  • the process 400 in some embodiments corresponding to FIG. 4 can regenerate the target starting point when the unmanned vehicle cannot normally drive to the target starting position sequence. Therefore, the target starting point can be dynamically generated, so that the unmanned vehicle can enter the starting position normally, and the operation efficiency of the unmanned vehicle is improved.
  • the present disclosure provides some embodiments of an unmanned vehicle starting device, these device embodiments correspond to those method embodiments shown in FIG. 2 , the device Specifically, it can be applied to various electronic devices.
  • the device 500 for starting an unmanned vehicle in some embodiments includes: a first determining unit 501 is configured to, in response to the completion of the task of the unmanned vehicle at the current node, determine the occupancy status information of the reference starting position on the guide line , wherein the guide line is the preset driving route of the unmanned vehicle from the current node to the next node, the reference starting position is the position where the unmanned vehicle reaches the guide line from the current position, and the occupancy state information is the occupied state or an unoccupied state; the projection unit 502 is configured to, in response to determining that the occupied state information is an occupied state, project the current position of the unmanned vehicle to the above-mentioned guide line, so as to determine the initial mileage value of the above-mentioned current position on the above-mentioned guide line The second determining unit 503 is configured to determine the reference starting mileage value of the above-mentioned reference starting position on the above-mentioned guide line; the generating unit 504 is configured
  • the generating unit 504 is specifically configured to: for the above-mentioned reference starting mileage value, perform the following processing steps: acquiring position information corresponding to the above-mentioned reference starting mileage value, wherein the above-mentioned position information includes: The left-side road width corresponding to the above-mentioned guide line and the right-side road width corresponding to the above-mentioned guide line; based on the above-mentioned left-side road width and the above-mentioned reference starting mileage value, at least one left-side alternative starting point is generated by a preset threshold; The side road width and the above-mentioned reference starting mileage value are used to generate at least one right-side alternative starting point through the above-mentioned preset threshold; Selecting a starting point group; determining whether the difference between the above-mentioned reference starting mileage value and the above-mentioned initial mileage value satisfies a preset condition; in response to satisfying, generating an alternative starting mileage
  • the generating unit 504 is specifically configured to: perform arranging processing on each candidate starting point in the obtained candidate starting point group according to a preset arranging instruction to generate Target starting point sequence.
  • the generating unit 504 is specifically configured to: generate an initial starting mileage value based on the above-mentioned reference starting mileage value and the above-mentioned initial mileage value; The sum is determined as the alternative starting mileage value.
  • the unmanned vehicle starting device 500 further includes: a selection unit configured to select a target starting point from the above-mentioned sequence of target starting points as a target starting position.
  • the selection unit is specifically configured to: for each target starting point in the above-mentioned target starting point sequence, perform the following steps: determine the occupancy status information of the above-mentioned target starting point; It is determined that the above-mentioned occupied state information is an unoccupied state, and the above-mentioned target starting point is determined as a target starting position.
  • the unmanned vehicle starting device 500 further includes: a trajectory generating unit, configured to generate a driving trajectory according to the above-mentioned current position and the above-mentioned target starting position; a control unit, configured to control The above-mentioned unmanned vehicle travels according to the above-mentioned driving trajectory; the generating target starting point sequence unit is configured to satisfy the first target condition in response to the distance of the above-mentioned unmanned vehicle from the above-mentioned target starting position and the driving direction of the above-mentioned unmanned vehicle satisfies the second. target condition, and generate the target starting point sequence again.
  • the units recorded in the apparatus 500 correspond to the respective steps in the method described with reference to FIG. 2 . Therefore, the operations, features and beneficial effects described above with respect to the method are also applicable to the apparatus 500 and the units included therein, and details are not described herein again.
  • FIG. 6 there is shown a schematic structural diagram of an electronic device (eg, computing device 101 in FIG. 1 ) 600 suitable for implementing some embodiments of the present disclosure.
  • Electronic devices in some embodiments of the present disclosure may include, but are not limited to, such as mobile phones, notebook computers, digital broadcast receivers, PDAs (personal digital assistants), PADs (tablets), PMPs (portable multimedia players), vehicle-mounted terminals Mobile terminals such as in-vehicle navigation terminals, etc., and stationary terminals such as digital TVs, desktop computers, and the like.
  • the electronic device shown in FIG. 6 is only an example, and should not impose any limitation on the function and scope of use of the embodiments of the present disclosure.
  • an electronic device 600 may include a processing device (eg, a central processing unit, a graphics processor, etc.) 601 that may be loaded into random access according to a program stored in a read only memory (ROM) 602 or from a storage device 608 Various appropriate actions and processes are executed by the programs in the memory (RAM) 603 . In the RAM 603, various programs and data required for the operation of the electronic device 600 are also stored.
  • the processing device 601 , the ROM 602 , and the RAM 603 are connected to each other through a bus 604 .
  • An input/output (I/O) interface 605 is also connected to bus 604 .
  • I/O interface 605 input devices 606 including, for example, a touch screen, touchpad, keyboard, mouse, camera, microphone, accelerometer, gyroscope, etc.; including, for example, a liquid crystal display (LCD), speakers, vibration An output device 607 of a computer, etc.; a storage device 608 including, for example, a magnetic tape, a hard disk, etc.; and a communication device 609.
  • Communication means 609 may allow electronic device 600 to communicate wirelessly or by wire with other devices to exchange data. While FIG. 6 shows electronic device 600 having various means, it should be understood that not all of the illustrated means are required to be implemented or provided. More or fewer devices may alternatively be implemented or provided. Each block shown in FIG. 6 may represent one device, or may represent multiple devices as required.
  • the processes described above with reference to the flowcharts may be implemented as computer software programs.
  • some embodiments of the present disclosure include a computer program product comprising a computer program carried on a computer-readable medium, the computer program containing program code for performing the method illustrated in the flowchart.
  • the computer program may be downloaded and installed from the network via the communication device 609 , or from the storage device 608 , or from the ROM 602 .
  • the processing device 601 the above-mentioned functions defined in the methods of some embodiments of the present disclosure are performed.
  • the computer-readable medium described in some embodiments of the present disclosure may be a computer-readable signal medium or a computer-readable storage medium, or any combination of the above two.
  • the computer-readable storage medium can be, for example, but not limited to, an electrical, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus or device, or a combination of any of the above. More specific examples of computer readable storage media may include, but are not limited to, electrical connections with one or more wires, portable computer disks, hard disks, random access memory (RAM), read only memory (ROM), erasable Programmable read only memory (EPROM or flash memory), fiber optics, portable compact disk read only memory (CD-ROM), optical storage devices, magnetic storage devices, or any suitable combination of the foregoing.
  • a computer-readable storage medium can be any tangible medium that contains or stores a program that can be used by or in conjunction with an instruction execution system, apparatus, or device.
  • a computer-readable signal medium may include a data signal propagated in baseband or as part of a carrier wave, carrying computer-readable program code therein. Such propagated data signals may take a variety of forms, including but not limited to electromagnetic signals, optical signals, or any suitable combination of the foregoing.
  • a computer-readable signal medium can also be any computer-readable medium other than a computer-readable storage medium that can transmit, propagate, or transport the program for use by or in connection with the instruction execution system, apparatus, or device .
  • Program code embodied on a computer readable medium may be transmitted using any suitable medium including, but not limited to, electrical wire, optical fiber cable, RF (radio frequency), etc., or any suitable combination of the foregoing.
  • the client and server can use any currently known or future developed network protocol such as HTTP (HyperText Transfer Protocol) to communicate, and can communicate with digital data in any form or medium Communication (eg, a communication network) interconnects.
  • HTTP HyperText Transfer Protocol
  • Examples of communication networks include local area networks (“LAN”), wide area networks (“WAN”), the Internet (eg, the Internet), and peer-to-peer networks (eg, ad hoc peer-to-peer networks), as well as any currently known or future development network of.
  • the above-mentioned computer-readable medium may be included in the above-mentioned electronic device; or may exist alone without being assembled into the electronic device.
  • the above-mentioned computer-readable medium carries at least one program, and when the above-mentioned at least one program is executed by the electronic device, the electronic device: in response to the completion of the task of the above-mentioned unmanned vehicle at the current node, determine the occupation of the reference starting position on the guide line Status information, wherein the above-mentioned guide line is the preset driving route of the above-mentioned unmanned vehicle from the current node to the next node, the above-mentioned reference starting position is the position where the above-mentioned unmanned vehicle reaches the above-mentioned guide line from the current position, and the above-mentioned occupation status information is Occupied state or unoccupied state; in response to determining that the above-mentioned occupancy state information is an occupied state, project the current position of the above-menti
  • Computer program code for carrying out operations of some embodiments of the present disclosure may be written in one or more programming languages, including object-oriented programming languages—such as Java, Smalltalk, C++, or a combination thereof, Also included are conventional procedural programming languages - such as the "C" language or similar programming languages.
  • the program code may execute entirely on the user's computer, partly on the user's computer, as a stand-alone software package, partly on the user's computer and partly on a remote computer, or entirely on the remote computer or server.
  • the remote computer may be connected to the user's computer through any kind of network, including a local area network (LAN) or a wide area network (WAN), or may be connected to an external computer (eg, using an Internet service provider to via Internet connection).
  • LAN local area network
  • WAN wide area network
  • each block in the flowchart or block diagrams may represent a module, segment, or portion of code that contains at least one configurable function for implementing the specified logical function. Execute the instruction.
  • the functions noted in the blocks may occur out of the order noted in the figures. For example, two blocks shown in succession may, in fact, be executed substantially concurrently, or the blocks may sometimes be executed in the reverse order, depending upon the functionality involved.
  • each block of the block diagrams and/or flowchart illustrations, and combinations of blocks in the block diagrams and/or flowchart illustrations can be implemented in dedicated hardware-based systems that perform the specified functions or operations , or can be implemented in a combination of dedicated hardware and computer instructions.
  • the units described in some embodiments of the present disclosure may be implemented by means of software, and may also be implemented by means of hardware.
  • the described unit may also be provided in the processor, for example, it may be described as: a processor includes a first determination unit, a projection unit, a second determination unit and a generation unit. Wherein, the names of these units do not constitute a limitation of the unit itself under certain circumstances.
  • the projection unit can also be described as "in response to determining that the above-mentioned occupancy state information is an occupancy state, the current position of the above-mentioned unmanned vehicle is Projected to the above-mentioned guide line to determine the unit of the initial mileage value of the above-mentioned current position on the above-mentioned guide line".
  • exemplary types of hardware logic components include: Field Programmable Gate Arrays (FPGAs), Application Specific Integrated Circuits (ASICs), Application Specific Standard Products (ASSPs), Systems on Chips (SOCs), Complex Programmable Logical Devices (CPLDs) and more.
  • FPGAs Field Programmable Gate Arrays
  • ASICs Application Specific Integrated Circuits
  • ASSPs Application Specific Standard Products
  • SOCs Systems on Chips
  • CPLDs Complex Programmable Logical Devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Mathematical Physics (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Traffic Control Systems (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)

Abstract

无人车(101)起步方法、装置(500)、电子设备(600)和计算机可读介质。无人车(101)起步方法包括:响应于无人车(101)在当前节点的任务完成,确定引导线(102)上基准起步位置(103)的占用状态信息,其中,引导线(102)为无人车(101)从当前节点到下一节点的预设行驶路线,基准起步位置(103)为无人车(101)从当前位置到达引导线(102)的位置,占用状态信息为占用状态或未占用状态;响应于确定占用状态信息为占用状态,将无人车(101)的当前位置投影至引导线(102),以确定当前位置在引导线(102)上的初始里程值;确定基准起步位置(103)在引导线(102)上的基准起步里程值;基于基准起步里程值和初始里程值,生成目标起步点序列(106)。

Description

无人车起步方法、装置、电子设备和计算机可读介质
相关申请的交叉引用
本申请要求了申请日为2021年02月24日,申请号为202110206772.0、发明名称为“无人车起步方法、装置、电子设备和计算机可读介质”的中国专利申请的优先权,其全部内容作为整体并入本申请中。
技术领域
本公开的实施例涉及计算机技术领域,例如涉及无人车起步方法、装置、电子设备和计算机可读介质。
背景技术
无人车需要在居民小区、写字楼、商场门口等车辆和行人较多,环境较为复杂的场景下起步。这些场景中往往没有车道线,需要将无人车引导至车道线的基准起步位置以使得无人车进行正常运行。目前,常用的起步方式是预先设置一个基准起步位置,以使得无人车行驶到基准起步位置。
发明内容
本公开的内容部分用于以简要的形式介绍构思,这些构思将在后面的具体实施方式部分被详细描述。本公开的内容部分并不旨在标识要求保护的技术方案的关键特征或必要特征,也不旨在用于限制所要求的保护的技术方案的范围。
本公开的一些实施例提出了无人车起步方法、装置、电子设备和计算机可读介质,来解决以上背景技术部分提到的技术问题中的一项或多项。
第一方面,本公开的一些实施例提供了一种无人车起步方法,该 方法包括:响应于上述无人车在当前节点的任务完成,确定引导线上基准起步位置的占用状态信息,其中,上述引导线为上述无人车从当前节点到下一节点的预设行驶路线,上述基准起步位置为上述无人车从当前位置到达上述引导线的位置,上述占用状态信息为占用状态或未占用状态;响应于确定上述占用状态信息为占用状态,将上述无人车的当前位置投影至上述引导线,以确定上述当前位置在上述引导线上的初始里程值;确定上述基准起步位置在上述引导线上的基准起步里程值;基于上述基准起步里程值和上述初始里程值,生成目标起步点序列。
第二方面,本公开的一些实施例提供了一种无人车起步装置,装置包括:第一确定单元,被配置成响应于上述无人车在当前节点的任务完成,确定引导线上基准起步位置的占用状态信息,其中,上述引导线为上述无人车从当前节点到下一节点的预设行驶路线,上述基准起步位置为上述无人车从当前位置到达上述引导线的位置,上述占用状态信息为占用状态或未占用状态;投影单元,被配置成响应于确定上述占用状态信息为占用状态,将上述无人车的当前位置投影至上述引导线,以确定上述当前位置在上述引导线上的初始里程值;第二确定单元,被配置成确定上述基准起步位置在上述引导线上的基准起步里程值;生成单元,被配置成基于上述基准起步里程值和上述初始里程值,生成目标起步点序列。
第三方面,本公开的实施例提供了一种电子设备,包括:至少一个处理器;存储装置,设置为存储有至少一个程序,当至少一个程序被至少一个处理器执行,使得至少一个处理器实现上述第一方面所描述的方法。
第四方面,本公开的实施例提供了一种计算机可读介质,其上存储有计算机程序,其中,程序被处理器执行时实现上述第一方面所描述的方法。
附图说明
结合附图并参考以下具体实施方式,本公开各实施例的上述和其他特征、优点及方面将变得更加明显。贯穿附图中,相同或相似的附图标记表示相同或相似的元素。应当理解附图是示意性的,元件和元素不一定按照比例绘制。
图1是本公开的一些实施例的无人车起步方法的一个应用场景的示意图;
图2是根据本公开的无人车起步方法的一些实施例的流程图;
图3是根据本公开的无人车起步方法的另一些实施例的流程图;
图4是根据本公开的无人车起步方法的又一些实施例的流程图;
图5是根据本公开的无人车起步装置的一些实施例的结构示意图;
图6是适于用来实现本公开的一些实施例的电子设备的结构示意图。
具体实施方式
下面将参照附图更详细地描述本公开的实施例。虽然附图中显示了本公开的某些实施例,然而应当理解的是,本公开可以通过各种形式来实现,而且不应该被解释为限于这里阐述的实施例。相反,提供这些实施例是为了更加透彻和完整地理解本公开。应当理解的是,本公开的附图及实施例仅用于示例性作用,并非用于限制本公开的保护范围。
另外还需要说明的是,为了便于描述,附图中仅示出了与有关发明相关的部分。在不冲突的情况下,本公开中的实施例及实施例中的特征可以相互组合。
需要注意,本公开中提及的“第一”、“第二”等概念仅用于对不同的装置、模块或单元进行区分,并非用于限定这些装置、模块或单元所执行的功能的顺序或者相互依存关系。
需要注意,本公开中提及的“一个”、“多个”的修饰是示意性而非限制性的,本领域技术人员应当理解,除非在上下文另有明确指出,否则应该理解为“一个或多个”。
本公开实施方式中的多个装置之间所交互的消息或者信息的名称仅用于说明性的目的,而并不是用于对这些消息或信息的范围进行限制。
相关的无人机起步方式,例如预先设置一个基准起步位置以使得无人车行驶到基准起步位置。通常会存在以下技术问题:当基准起步位置被占据时,无人车将无法正常进入起步位置,需要通过人工重新选取起步位置,降低了无人车的运行效率。
为了解决以上所阐述的问题,本公开一些实施例提供了无人车起步方法和装置,可以动态生成目标起步点,便于无人车正常进入起步位置,提高了无人车的运行效率。
下面将参考附图并结合实施例来详细说明本公开。
图1是根据本公开一些实施例的无人车起步方法的一个应用场景的示意图。
在图1的应用场景中,包括无人车101、引导线102、基准起步位置103、无人车101在上述引导线102上的投影位置104和目标起步点序列105。首先,在无人车101接收到任务时,可以调用地图系统,以定位当前无人车101的位置。然后,无人车101可以调用雷达或者无线传感器等设备以感知基准起步位置103是否被障碍物占据。最后,无人车101结合地图系统中的数据和无线传感器感知的数据进行动态规划,以使得无人车101能够行驶到起步位置。
实践中,首先,响应于上述无人车101在当前节点的任务完成,可以通过无人车101上的雷达或摄像头等设备确定引导线102上基准起步位置103的占用状态信息。其中,上述引导线102为上述无人车101从当前节点到下一节点的预设行驶路线,上述基准起步位置103为上述无人车从当前位置到达上述引导线102的位置,上述占用状态信息为占用状态或未占用状态。这里,基准起步位置103可以是无人车101在起步时与无人车车头中心重合的点。这里,当前位置可以是指无人车101车头的中心点。其次,响应于确定上述占用状态信息为占用状态,无人车101可以通过雷达等设备将当前位置投影至上述引 导线102上,以得到无人车101在上述引导线102上的投影位置104。从而,确定上述当前位置在上述引导线102上的初始里程值。这里,初始里程值可以是指投影位置104与引导线102上起点105的距离值。然后,确定上述基准起步位置103在上述引导线102上的基准起步里程值。这里,基准起步里程值可以是指基准起步位置103与引导线102上起点105的距离值。最后,无人车101可以基于上述基准起步里程值和上述初始里程值,生成目标起步点序列106。由此,实现了基准起步位置103被占用且无需人工干预的情况下,根据基准起步位置103附近的实际情况重新选择起步位置。
继续参考图2,示出了根据本公开的无人车起步方法的一些实施例的流程200。该无人车起步方法,包括以下步骤:
步骤201,响应于无人车在当前节点的任务完成,确定引导线上基准起步位置的占用状态信息。
在一些实施例中,无人车起步方法的执行主体可以是如图1所示的无人车101,也可以是无人车调度设备(例如,计算设备)等等。这里,以无人车101为执行主体。响应于上述无人车在当前节点的任务完成,上述无人车可以通过雷达或无线传感器等设备检测引导线上基准起步位置的占用状态信息。其中,上述引导线为上述无人车从当前节点到下一节点的预设行驶路线,也可以是指预先设置的引导轨道。这里,上述基准起步位置为上述无人车从当前位置到达上述引导线的位置。这里,上述占用状态信息为占用状态或未占用状态。这里,基准起步位置可以是无人车在起步时与无人车车头中心重合的点,也可以根据实际需求进行设定。
步骤202,响应于确定占用状态信息为占用状态,将无人车的当前位置投影至引导线,以确定当前位置在引导线上的初始里程值。
在一些实施例中,响应于确定上述占用状态信息为占用状态,上述无人车可以将无人车的当前位置投影至上述引导线,以确定上述当前位置在上述引导线上的初始里程值。实践中,首先,上述无人车可以通过雷达扫描引导线以将无人车的位置垂直投影至引导线上。由此, 可以得到无人车在上述引导线上的投影位置。这里,可以把无人车的当前位置看作一个点,即,无人车的中心点。然后,上述无人车可以将投影位置与引导线的起点的距离确定为初始里程值。例如,初始里程值可以为7米。
步骤203,确定基准起步位置在引导线上的基准起步里程值。
在一些实施例中,上述无人车可以通过雷达探测基准起步位置距引导线的起点的距离。从而,可以将基准起步位置距引导线的起点的距离确定为基准起步里程值。例如,基准起步里程值可以是为10米。
步骤204,基于基准起步里程值和初始里程值,生成目标起步点序列。
在一些实施例中,首先,上述无人车可以通过雷达探测基准起步位置所在的引导线两侧的道路宽度。然后,在道路两侧,可以每隔预设宽度取一个起步宽度。这里,预设宽度可以是无人车的车身宽度,也可以根据实际需求进行设定。再然后,可以将基准起步里程值和起步宽度进行组合以生成起步点坐标作为目标起步点。接着,再将上述基准起步里程值和上述初始里程值的差值的一半与上述初始里程值的和确定为新的基准起步里程值,再次确定新的目标起步点。最后,将所得到的目标起步点按照基准起步里程值从大到小进行排序,再将同一基准起步里程值的目标起步点按照道路左侧的目标起步点的优先级大于道路右侧的目标起步点的优先级进行排序。其中,起步宽度越小,优先级越高。
作为示例,首先,上述无人车可以探测到基准起步位置所在的引导线两侧的道路宽度均为5米。无人车的车身宽度可以是1米,即可以在道路两侧分别取4个起步宽度。例如,道路左侧的4个起步宽度可以是“1,2,3,4”。道路右侧的4个起步宽度可以是“1,2,3,4”。然后,可以将基准起步里程值“10”和左侧起步宽度“1”进行组合以生成起步点坐标作为左侧目标起步点(10,1)。从而,可以得到左侧目标起步点组{(10,1);(10,2);(10,3);(10,4)}。可以得到右侧目标起步点组{(10,1);(10,2);(10,3);(10,4)}。接着,将基准起步里程值“10”和上述初始里程值“7”的差值的一半“1.5” 与上述初始里程值“7”的和“8.5”确定为新的基准起步里程值。由此,可以得到第二组左侧目标起步点组{(8.5,1);(8.5,2);(8.5,3);(8.5,4)}。可以得到第二组右侧目标起步点组{(8.5,1);(8.5,2);(8.5,3);(8.5,4)}。最后,对所得到的目标起步点组进行排序,得到目标起步点序列:左侧目标起步点组{(10,1);(10,2);(10,3);(10,4)};右侧目标起步点组{(10,1);(10,2);(10,3);(10,4)};左侧目标起步点组{(8.5,1);(8.5,2);(8.5,3);(8.5,4)};右侧目标起步点组{(8.5,1);(8.5,2);(8.5,3);(8.5,4)}。
本公开的上述各个实施例具有如下有益效果:通过本公开的一些实施例的无人车起步方法,可以动态生成目标起步点,便于无人车正常进入起步位置,提高了无人车的运行效率。具体来说,造成无人车的运行效率不高的原因在于:当基准起步位置被占据时,无人车将无法正常进入起步位置,需要通过人工重新选取起步位置,降低了无人车的运行效率。基于此,本公开的一些实施例的无人车起步方法,首先,可以引导线上基准起步位置的占用状态信息。由此,可以确定是否需要动态生成目标起步点。其次,响应于确定上述占用状态信息为占用状态,将上述无人车的当前位置投影至上述引导线,以确定上述当前位置在上述引导线上的初始里程值。然后,确定上述基准起步位置在上述引导线上的基准起步里程值。由此,可以为后续生成目标起步点提供了数据支撑。最后,基于上述基准起步里程值和上述初始里程值,生成目标起步点序列。由此,解决了当基准起步位置被占据时,无人车将无法正常进入起步位置的问题。从而,可以动态生成目标起步点,便于无人车正常进入起步位置,提高了无人车的运行效率。
参考图3,示出了根据本公开的无人车起步方法的另一些实施例。该无人车起步方法,包括以下步骤:
步骤301,响应于无人车在当前节点的任务完成,确定引导线上基准起步位置的占用状态信息。
步骤302,响应于确定占用状态信息为占用状态,将无人车的当前位置投影至引导线,以确定当前位置在引导线上的初始里程值。
步骤303,确定基准起步位置在引导线上的基准起步里程值。
在一些实施例中,步骤301-303的具体实现及所带来的技术效果可以参考图2对应的那些实施例中的步骤201-203,在此不再赘述。
步骤304,对于基准起步里程值,执行处理步骤。
在一些实施例中,无人车可以对于上述基准起步里程值,执行如下处理步骤:
第一步,获取对应上述基准起步里程值的位置信息。其中,上述位置信息包括对应上述引导线的左侧路宽和对应上述引导线的右侧路宽。这里,无人车可以通过雷达探测或者从地图系统中获取到对应上述基准起步里程值的位置信息。
第二步,基于上述左侧路宽和上述基准起步里程值,通过预设阈值生成至少一个左侧备选起步点。这里,预设阈值可以是无人车的车身宽度。实践中,无人车可以在左侧道路每间隔预设阈值取一个起步宽度,再将基准起步里程值和起步宽度进行组合,以生成左侧备选起步点。
第三步,基于上述右侧路宽和上述基准起步里程值,通过上述预设阈值生成至少一个右侧备选起步点。实践中,无人车可以在右侧道路每间隔预设阈值取一个起步宽度,再将基准起步里程值和起步宽度进行组合,以生成右侧备选起步点。
第四步,将上述至少一个左侧目标起步点和上述至少一个右侧备选起步点进行合并处理,得到备选起步点组。
第五步,确定上述基准起步里程值和上述初始里程值的差值是否满足预设条件。这里,预设条件可以是“上述基准起步里程值和上述初始里程值的差值大于等于无人车的车身长度”。
第六步,响应于满足,基于上述基准起步里程值和上述初始里程值,生成备选起步里程值。
实践中,上述第六步可以包括以下子步骤:
第一子步骤,基于上述基准起步里程值和上述初始里程值,生成初始起步里程值。实践中,可以将上述基准起步里程值与上述初始里程值的差值与预设数值的比值作为初始起步里程值。这里,预设数值 可以是根据实际需求设置的数字。
第二子步骤,将上述初始起步里程值和上述初始里程值的和确定为备选起步里程值。
第七步,将上述备选起步里程值确定为基准起步里程值,再次执行上述处理步骤。
步骤305,根据预先设置的排列指令,对所得到的备选起步点组中的各个备选起步点进行排列处理,以生成目标起步点序列。
在一些实施例中,无人车可以根据预先设置的排列指令,对所得到的备选起步点组中的各个备选起步点进行排列处理,以生成目标起步点序列。这里,排列指令可以是:基准起步里程值越大,优先级越高;对于基准起步里程值相同的备选起步点,起步宽度越小,优先级越高;对于起步宽度相同的备选起步点,左侧备选起步点的优先级大于右侧备选起步点的优先级。
从图3可以看出,与图2对应的一些实施例的描述相比,图3对应的一些实施例中的流程300可以根据预先设置的排列指令,对所得到的备选起步点组中的各个备选起步点进行排列处理。由此,可以更好地推荐目标起步点以供无人车进行起步。此外,通过条件限制目标起步点的生成,可以更好优化生成的目标起步点。
参考图4,示出了根据本公开的无人车起步方法的又一些实施例。该无人车起步方法,包括以下步骤:
步骤401,响应于无人车在当前节点的任务完成,确定引导线上基准起步位置的占用状态信息。
步骤402,响应于确定占用状态信息为占用状态,将无人车的当前位置投影至引导线,以确定当前位置在引导线上的初始里程值。
步骤403,确定基准起步位置在引导线上的基准起步里程值。
步骤404,基于基准起步里程值和初始里程值,生成目标起步点序列。
在一些实施例中,步骤401-404的具体实现及所带来的技术效果可以参考图2对应的那些实施例中的步骤201-204,在此不再赘述。
步骤405,从目标起步点序列中选择目标起步点作为目标起步位置。
在一些实施例中,无人车101可以从上述目标起步点序列中选择优先级最高的目标起步点作为目标起步位置。
在一些实施例的一些可选的实现方式中,无人车101可以对于上述目标起步点序列中的每个目标起步点,执行如下步骤:
第一步,确定上述目标起步点的占用状态信息。实践中,无人车可以通过雷达探测、摄像头拍摄或者是无人传感器等方式确定上述目标起步点的占用状态信息。
第二步,响应于确定上述占用状态信息为未占用状态,将上述目标起步点确定为目标起步位置。实践中,无人车检测到目标起步点的占用状态信息为未占用状态,可以将上述目标起步点确定为目标起步位置。
步骤406,根据当前位置和目标起步位置,生成行驶轨迹。
在一些实施例中,无人车可以通过多种方法(模拟退火算法、人工势场法、模糊逻辑算法、禁忌搜索算法、可视图空间法等)规划从当前位置到目标起步位置的行驶轨迹。
步骤407,控制无人车按照行驶轨迹进行行驶。
在一些实施例中,无人车可以按照上述行驶轨迹控制车体行驶到目标起步位置。
步骤408,响应于无人车距目标起步位置的距离满足第一目标条件以及无人车的行驶方向满足第二目标条件,再次生成目标起步点序列。
在一些实施例中,响应于上述无人车距上述目标起步位置的距离满足第一目标条件以及上述无人车的行驶方向满足第二目标条件,无人车可以重新生成目标起步点序列,以满足无人车的起步需求。这里,第一目标条件可以是“上述无人车距上述目标起步位置的距离小于等于预设距离”。这里,对预设距离的设定,不作限制。这里,第二目标条件可以是“无人车的行驶方向与引导线的夹角大于等于预设角度”。这里,预设角度的设定可以是根据无人车的车身长度和车身宽度进行 设定。
从图4可以看出,与图2对应的一些实施例的描述相比,图4对应的一些实施例中的流程400可以在无人车无法正常行驶到目标起步位置时,重新生成目标起步点序列。从而,可以动态生成目标起步点,便于无人车正常进入起步位置,提高了无人车的运行效率。
参考图5,作为对上述各图所示方法的实现,本公开提供了一种无人车起步装置的一些实施例,这些装置实施例与图2所示的那些方法实施例相对应,该装置具体可以应用于各种电子设备中。
如图5所示,一些实施例的无人车起步装置500包括:第一确定单元501被配置成响应于上述无人车在当前节点的任务完成,确定引导线上基准起步位置的占用状态信息,其中,上述引导线为上述无人车从当前节点到下一节点的预设行驶路线,上述基准起步位置为上述无人车从当前位置到达上述引导线的位置,上述占用状态信息为占用状态或未占用状态;投影单元502被配置成响应于确定上述占用状态信息为占用状态,将上述无人车的当前位置投影至上述引导线,以确定上述当前位置在上述引导线上的初始里程值;第二确定单元503被配置成确定上述基准起步位置在上述引导线上的基准起步里程值;生成单元504被配置成基于上述基准起步里程值和上述初始里程值,生成目标起步点序列。
在一些实施例的一些可选的实现方式中,生成单元504被具体配置成:对于上述基准起步里程值,执行如下处理步骤:获取对应上述基准起步里程值的位置信息,其中,上述位置信息包括对应上述引导线的左侧路宽和对应上述引导线的右侧路宽;基于上述左侧路宽和上述基准起步里程值,通过预设阈值生成至少一个左侧备选起步点;基于上述右侧路宽和上述基准起步里程值,通过上述预设阈值生成至少一个右侧备选起步点;将上述至少一个左侧目标起步点和上述至少一个右侧备选起步点进行合并处理,得到备选起步点组;确定上述基准起步里程值和上述初始里程值的差值是否满足预设条件;响应于满足,基于上述基准起步里程值和上述初始里程值,生成备选起步里程值; 将上述备选起步里程值确定为基准起步里程值,再次执行上述处理步骤。
在一些实施例的一些可选的实现方式中,生成单元504被具体配置成:根据预先设置的排列指令,对所得到的备选起步点组中的各个备选起步点进行排列处理,以生成目标起步点序列。
在一些实施例的一些可选的实现方式中,生成单元504被具体配置成:基于上述基准起步里程值和上述初始里程值,生成初始起步里程值;将上述初始起步里程值和上述初始里程值的和确定为备选起步里程值。
在一些实施例的一些可选的实现方式中,无人车起步装置500还包括:选择单元,被配置成从上述目标起步点序列中选择目标起步点作为目标起步位置。
在一些实施例的一些可选的实现方式中,选择单元被具体配置成:对于上述目标起步点序列中的每个目标起步点,执行如下步骤:确定上述目标起步点的占用状态信息;响应于确定上述占用状态信息为未占用状态,将上述目标起步点确定为目标起步位置。
在一些实施例的一些可选的实现方式中,无人车起步装置500还包括:轨迹生成单元,被配置成根据上述当前位置和上述目标起步位置,生成行驶轨迹;控制单元,被配置成控制上述无人车按照上述行驶轨迹进行行驶;生成目标起步点序列单元,被配置成响应于上述无人车距上述目标起步位置的距离满足第一目标条件以及上述无人车的行驶方向满足第二目标条件,再次生成目标起步点序列。
可以理解的是,该装置500中记载的诸单元与参考图2描述的方法中的各个步骤相对应。由此,上文针对方法描述的操作、特征以及产生的有益效果同样适用于装置500及其中包含的单元,在此不再赘述。
参考图6,其示出了适于用来实现本公开的一些实施例的电子设备(例如图1中的计算设备101)600的结构示意图。本公开的一些实施例中的电子设备可以包括但不限于诸如移动电话、笔记本电脑、数 字广播接收器、PDA(个人数字助理)、PAD(平板电脑)、PMP(便携式多媒体播放器)、车载终端(例如车载导航终端)等等的移动终端以及诸如数字TV、台式计算机等等的固定终端。图6示出的电子设备仅仅是一个示例,不应对本公开的实施例的功能和使用范围带来任何限制。
如图6所示,电子设备600可以包括处理装置(例如中央处理器、图形处理器等)601,其可以根据存储在只读存储器(ROM)602中的程序或者从存储装置608加载到随机访问存储器(RAM)603中的程序而执行各种适当的动作和处理。在RAM 603中,还存储有电子设备600操作所需的各种程序和数据。处理装置601、ROM602以及RAM603通过总线604彼此相连。输入/输出(I/O)接口605也连接至总线604。
通常,以下装置可以连接至I/O接口605:包括例如触摸屏、触摸板、键盘、鼠标、摄像头、麦克风、加速度计、陀螺仪等的输入装置606;包括例如液晶显示器(LCD)、扬声器、振动器等的输出装置607;包括例如磁带、硬盘等的存储装置608;以及通信装置609。通信装置609可以允许电子设备600与其他设备进行无线或有线通信以交换数据。虽然图6示出了具有各种装置的电子设备600,但是应理解的是,并不要求实施或具备所有示出的装置。可以替代地实施或具备更多或更少的装置。图6中示出的每个方框可以代表一个装置,也可以根据需要代表多个装置。
特别地,根据本公开的一些实施例,上文参考流程图描述的过程可以被实现为计算机软件程序。例如,本公开的一些实施例包括一种计算机程序产品,其包括承载在计算机可读介质上的计算机程序,该计算机程序包含用于执行流程图所示的方法的程序代码。在这样的一些实施例中,该计算机程序可以通过通信装置609从网络上被下载和安装,或者从存储装置608被安装,或者从ROM602被安装。在该计算机程序被处理装置601执行时,执行本公开的一些实施例的方法中限定的上述功能。
需要说明的是,本公开的一些实施例中记载的计算机可读介质可 以是计算机可读信号介质或者计算机可读存储介质或者是上述两者的任意组合。计算机可读存储介质例如可以是——但不限于——电、磁、光、电磁、红外线、或半导体的系统、装置或器件,或者任意以上的组合。计算机可读存储介质的更具体的例子可以包括但不限于:具有一个或多个导线的电连接、便携式计算机磁盘、硬盘、随机访问存储器(RAM)、只读存储器(ROM)、可擦式可编程只读存储器(EPROM或闪存)、光纤、便携式紧凑磁盘只读存储器(CD-ROM)、光存储器件、磁存储器件、或者上述的任意合适的组合。在本公开的一些实施例中,计算机可读存储介质可以是任何包含或存储程序的有形介质,该程序可以被指令执行系统、装置或者器件使用或者与其结合使用。而在本公开的一些实施例中,计算机可读信号介质可以包括在基带中或者作为载波一部分传播的数据信号,其中承载了计算机可读的程序代码。这种传播的数据信号可以采用多种形式,包括但不限于电磁信号、光信号或上述的任意合适的组合。计算机可读信号介质还可以是计算机可读存储介质以外的任何计算机可读介质,该计算机可读信号介质可以发送、传播或者传输用于由指令执行系统、装置或者器件使用或者与其结合使用的程序。计算机可读介质上包含的程序代码可以用任何适当的介质传输,包括但不限于:电线、光缆、RF(射频)等等,或者上述的任意合适的组合。
在一些实施方式中,客户端、服务器可以利用诸如HTTP(HyperText Transfer Protocol,超文本传输协议)之类的任何当前已知或未来研发的网络协议进行通信,并且可以与任意形式或介质的数字数据通信(例如,通信网络)互连。通信网络的示例包括局域网(“LAN”),广域网(“WAN”),网际网(例如,互联网)以及端对端网络(例如,ad hoc端对端网络),以及任何当前已知或未来研发的网络。
上述计算机可读介质可以是上述电子设备中所包含的;也可以是单独存在,而未装配入该电子设备中。上述计算机可读介质承载有至少一个程序,当上述至少一个程序被该电子设备执行时,使得该电子设备:响应于上述无人车在当前节点的任务完成,确定引导线上基准 起步位置的占用状态信息,其中,上述引导线为上述无人车从当前节点到下一节点的预设行驶路线,上述基准起步位置为上述无人车从当前位置到达上述引导线的位置,上述占用状态信息为占用状态或未占用状态;响应于确定上述占用状态信息为占用状态,将上述无人车的当前位置投影至上述引导线,以确定上述当前位置在上述引导线上的初始里程值;确定上述基准起步位置在上述引导线上的基准起步里程值;基于上述基准起步里程值和上述初始里程值,生成目标起步点序列。
可以以一种或多种程序设计语言或其组合来编写用于执行本公开的一些实施例的操作的计算机程序代码,上述程序设计语言包括面向对象的程序设计语言—诸如Java、Smalltalk、C++,还包括常规的过程式程序设计语言—诸如“C”语言或类似的程序设计语言。程序代码可以完全地在用户计算机上执行、部分地在用户计算机上执行、作为一个独立的软件包执行、部分在用户计算机上部分在远程计算机上执行、或者完全在远程计算机或服务器上执行。在涉及远程计算机的情形中,远程计算机可以通过任意种类的网络——包括局域网(LAN)或广域网(WAN)——连接到用户计算机,或者,可以连接到外部计算机(例如利用因特网服务提供商来通过因特网连接)。
附图中的流程图和框图,图示了按照本公开各种实施例的系统、方法和计算机程序产品的可能实现的体系架构、功能和操作。在这点上,流程图或框图中的每个方框可以代表一个模块、程序段、或代码的一部分,该模块、程序段、或代码的一部分包含至少一个用于实现规定的逻辑功能的可执行指令。也应当注意,在有些作为替换的实现中,方框中所标注的功能也可以以不同于附图中所标注的顺序发生。例如,两个接连地表示的方框实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这依所涉及的功能而定。也要注意的是,框图和/或流程图中的每个方框、以及框图和/或流程图中的方框的组合,可以用执行规定的功能或操作的专用的基于硬件的系统来实现,或者可以用专用硬件与计算机指令的组合来实现。
描述于本公开的一些实施例中的单元可以通过软件的方式实现, 也可以通过硬件的方式来实现。所描述的单元也可以设置在处理器中,例如,可以描述为:一种处理器包括第一确定单元、投影单元、第二确定单元和生成单元。其中,这些单元的名称在某种情况下并不构成对该单元本身的限定,例如,投影单元还可以被描述为“响应于确定上述占用状态信息为占用状态,将上述无人车的当前位置投影至上述引导线,以确定上述当前位置在上述引导线上的初始里程值的单元”。
本文中以上描述的功能可以至少部分地由至少一个硬件逻辑部件来执行。例如,非限制性地,可以使用的示范类型的硬件逻辑部件包括:现场可编程门阵列(FPGA)、专用集成电路(ASIC)、专用标准产品(ASSP)、片上系统(SOC)、复杂可编程逻辑设备(CPLD)等等。
以上描述仅为本公开的一些较佳实施例以及对所运用技术原理的说明。本领域技术人员应当理解,本公开的实施例中所涉及的发明范围,并不限于上述技术特征的特定组合而成的技术方案,同时也应涵盖在不脱离上述发明构思的情况下,由上述技术特征或其等同特征进行任意组合而形成的其它技术方案。例如上述特征与本公开的实施例中公开的(但不限于)具有类似功能的技术特征进行互相替换而形成的技术方案。

Claims (10)

  1. 一种无人车起步方法,应用于无人车,包括:
    响应于所述无人车在当前节点的任务完成,确定引导线上基准起步位置的占用状态信息,其中,所述引导线为所述无人车从当前节点到下一节点的预设行驶路线,所述基准起步位置为所述无人车从当前位置到达所述引导线的位置,所述占用状态信息为占用状态或未占用状态;
    响应于确定所述占用状态信息为占用状态,将所述无人车的当前位置投影至所述引导线,以确定所述当前位置在所述引导线上的初始里程值;
    确定所述基准起步位置在所述引导线上的基准起步里程值;
    基于所述基准起步里程值和所述初始里程值,生成目标起步点序列。
  2. 根据权利要求1所述的方法,其中,所述基于所述基准起步里程值和所述初始里程值,生成目标起步点序列,包括:
    对于所述基准起步里程值,执行如下处理步骤:
    获取对应所述基准起步里程值的位置信息,其中,所述位置信息包括对应所述引导线的左侧路宽和对应所述引导线的右侧路宽;
    基于所述左侧路宽和所述基准起步里程值,通过预设阈值生成至少一个左侧备选起步点;
    基于所述右侧路宽和所述基准起步里程值,通过所述预设阈值生成至少一个右侧备选起步点;
    将所述至少一个左侧目标起步点和所述至少一个右侧备选起步点进行合并处理,得到备选起步点组;
    确定所述基准起步里程值和所述初始里程值的差值是否满足预设条件;
    响应于满足,基于所述基准起步里程值和所述初始里程值,生成备选起步里程值;
    将所述备选起步里程值确定为基准起步里程值,再次执行所述处理步骤。
  3. 根据权利2所述的方法,其中,所述基于所述基准起步里程值和所述初始里程值,生成目标起步点序列,还包括:
    根据预先设置的排列指令,对所得到的备选起步点组中的各个备选起步点进行排列处理,以生成目标起步点序列。
  4. 根据权利要求2或3所述的方法,其中,所述基于所述基准起步里程值和所述初始里程值,生成备选起步里程值,包括:
    基于所述基准起步里程值和所述初始里程值,生成初始起步里程值;
    将所述初始起步里程值和所述初始里程值的和确定为备选起步里程值。
  5. 根据权利要求1-4之一所述的方法,其中,所述方法还包括:
    从所述目标起步点序列中选择目标起步点作为目标起步位置。
  6. 根据权利要求5所述的方法,其中,所述从所述目标起步点序列中选择目标起步点作为目标起步位置,包括:
    对于所述目标起步点序列中的每个目标起步点,执行如下步骤:
    确定所述目标起步点的占用状态信息;
    响应于确定所述占用状态信息为未占用状态,将所述目标起步点确定为目标起步位置。
  7. 根据权利要求5或6所述的方法,其中,所述方法还包括:
    根据所述当前位置和所述目标起步位置,生成行驶轨迹;
    控制所述无人车按照所述行驶轨迹进行行驶;
    响应于所述无人车距所述目标起步位置的距离满足第一目标条件以及所述无人车的行驶方向满足第二目标条件,再次生成目标起步点 序列。
  8. 一种无人车起步装置,应用于无人车,包括:
    第一确定单元,被配置成响应于所述无人车在当前节点的任务完成,确定引导线上基准起步位置的占用状态信息,其中,所述引导线为所述无人车从当前节点到下一节点的预设行驶路线,所述基准起步位置为所述无人车从当前位置到达所述引导线的位置,所述占用状态信息为占用状态或未占用状态;
    投影单元,被配置成响应于确定所述占用状态信息为占用状态,将所述无人车的当前位置投影至所述引导线,以确定所述当前位置在所述引导线上的初始里程值;
    第二确定单元,被配置成确定所述基准起步位置在所述引导线上的基准起步里程值;
    生成单元,被配置成基于所述基准起步里程值和所述初始里程值,生成目标起步点序列。
  9. 一种电子设备,包括:
    至少一个处理器;
    存储装置,其上存储有至少一个程序;
    雷达,被配置成监测物体;
    当所述至少一个程序被所述至少一个处理器执行,使得所述至少一个处理器实现如权利要求1-7中任一所述的无人车起步方法。
  10. 一种计算机可读介质,所述计算机可读介质上存储有计算机程序,其中,所述程序被处理器执行时实现如权利要求1-7中任一所述的无人车起步方法。
PCT/CN2022/071589 2021-02-24 2022-01-12 无人车起步方法、装置、电子设备和计算机可读介质 WO2022179328A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020237030004A KR20230144560A (ko) 2021-02-24 2022-01-12 무인 차량 시동 방법, 장치, 전자 장치 및 컴퓨터 판독 가능한 매체
EP22758694.8A EP4286234A1 (en) 2021-02-24 2022-01-12 Method and apparatus for starting unmanned vehicle, electronic device, and computer-readable medium
JP2023574746A JP2024509000A (ja) 2021-02-24 2022-01-12 無人車両の始動方法、装置、電子機器およびコンピュータ読み取り可能媒体
US18/278,141 US20240124027A1 (en) 2021-02-24 2022-01-12 Method and apparatus for starting unmanned vehicle, electronic device, and computer-readable medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110206772.0A CN112918487B (zh) 2021-02-24 2021-02-24 无人车起步方法、装置、电子设备和计算机可读介质
CN202110206772.0 2021-02-24

Publications (1)

Publication Number Publication Date
WO2022179328A1 true WO2022179328A1 (zh) 2022-09-01

Family

ID=76171607

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/071589 WO2022179328A1 (zh) 2021-02-24 2022-01-12 无人车起步方法、装置、电子设备和计算机可读介质

Country Status (6)

Country Link
US (1) US20240124027A1 (zh)
EP (1) EP4286234A1 (zh)
JP (1) JP2024509000A (zh)
KR (1) KR20230144560A (zh)
CN (1) CN112918487B (zh)
WO (1) WO2022179328A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112918487B (zh) * 2021-02-24 2022-04-12 京东鲲鹏(江苏)科技有限公司 无人车起步方法、装置、电子设备和计算机可读介质
CN113670323B (zh) * 2021-08-17 2024-05-17 京东鲲鹏(江苏)科技有限公司 一种目标区域的确定方法、装置、设备和介质
CN114013442A (zh) * 2021-10-27 2022-02-08 株式会社Iat 一种车辆的起步方法、装置以及系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017111552A (ja) * 2015-12-15 2017-06-22 株式会社リコー 自動走行装置及びプログラム
CN108256664A (zh) * 2016-12-29 2018-07-06 中移(杭州)信息技术有限公司 一种路径的确定方法和装置
CN109724612A (zh) * 2019-01-14 2019-05-07 浙江大华技术股份有限公司 一种基于拓扑地图的agv路径规划方法及设备
CN110220528A (zh) * 2019-06-10 2019-09-10 福州大学 一种基于a星算法的自动驾驶无人车双向动态路径规划方法
CN112918487A (zh) * 2021-02-24 2021-06-08 京东鲲鹏(江苏)科技有限公司 无人车起步方法、装置、电子设备和计算机可读介质

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108088455A (zh) * 2017-12-14 2018-05-29 山东中图软件技术有限公司 一种导航方法
US10884422B2 (en) * 2018-04-16 2021-01-05 Baidu Usa Llc Method for generating trajectories for autonomous driving vehicles (ADVS)
CN111339802B (zh) * 2018-12-19 2024-04-19 长沙智能驾驶研究院有限公司 实时相对地图的生成方法及装置、电子设备和存储介质
CN109583151B (zh) * 2019-02-20 2023-07-21 阿波罗智能技术(北京)有限公司 车辆的行驶轨迹预测方法及装置
US11086322B2 (en) * 2019-03-19 2021-08-10 Gm Cruise Holdings Llc Identifying a route for an autonomous vehicle between an origin and destination location

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017111552A (ja) * 2015-12-15 2017-06-22 株式会社リコー 自動走行装置及びプログラム
CN108256664A (zh) * 2016-12-29 2018-07-06 中移(杭州)信息技术有限公司 一种路径的确定方法和装置
CN109724612A (zh) * 2019-01-14 2019-05-07 浙江大华技术股份有限公司 一种基于拓扑地图的agv路径规划方法及设备
CN110220528A (zh) * 2019-06-10 2019-09-10 福州大学 一种基于a星算法的自动驾驶无人车双向动态路径规划方法
CN112918487A (zh) * 2021-02-24 2021-06-08 京东鲲鹏(江苏)科技有限公司 无人车起步方法、装置、电子设备和计算机可读介质

Also Published As

Publication number Publication date
US20240124027A1 (en) 2024-04-18
KR20230144560A (ko) 2023-10-16
CN112918487A (zh) 2021-06-08
CN112918487B (zh) 2022-04-12
JP2024509000A (ja) 2024-02-28
EP4286234A1 (en) 2023-12-06

Similar Documents

Publication Publication Date Title
WO2022179328A1 (zh) 无人车起步方法、装置、电子设备和计算机可读介质
JP6559792B2 (ja) オーダーペアリングのシステム及び方法
CN112590813B (zh) 自动驾驶车辆信息生成方法、装置、电子设备和介质
CN113033925B (zh) 用于控制自动驾驶车辆行驶、装置、电子设备和介质
CN115817463B (zh) 车辆避障方法、装置、电子设备和计算机可读介质
CN110956128A (zh) 生成车道线图像的方法、装置、电子设备和介质
CN113205300B (zh) 配送车辆调度方法、装置、电子设备和计算机可读介质
CN112649011B (zh) 车辆避障方法、装置、设备和计算机可读介质
CN116088537B (zh) 车辆避障方法、装置、电子设备和计算机可读介质
CN115808929B (zh) 车辆仿真避障方法、装置、电子设备和计算机可读介质
WO2023226819A1 (zh) 数据匹配方法、装置、可读介质及电子设备
WO2023072070A1 (zh) 显示控制方法、装置和电子设备
CN115061386B (zh) 智能驾驶的自动化仿真测试系统及相关设备
CN112598897B (zh) 交通参与者行为检测方法、装置、电子设备和介质
CN110796144B (zh) 车牌检测方法、装置、设备及存储介质
CN116258435A (zh) 物流信息展示方法、装置、设备、存储介质及产品
CN113050643B (zh) 无人车路径规划方法、装置、电子设备和计算机可读介质
CN113804196A (zh) 无人车路径规划方法及相关设备
CN115310728B (zh) 泊车路线生成方法、装置、设备和计算机可读介质
CN111242746A (zh) 房源信息展示方法、装置、终端及存储介质
CN115908143B (zh) 车辆跨层泊车方法、装置、电子设备和计算机可读介质
CN115876493B (zh) 用于自动驾驶的测试场景生成方法、装置、设备和介质
CN114359673B (zh) 基于度量学习的小样本烟雾检测方法、装置和设备
CN116580583B (zh) 车辆调度信息生成方法、装置、设备和计算机可读介质
CN116878533A (zh) 路线规划方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22758694

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18278141

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2023574746

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2022758694

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20237030004

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020237030004

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022758694

Country of ref document: EP

Effective date: 20230830