WO2022179315A1 - 电机、家用电器、园林工具及交通工具 - Google Patents

电机、家用电器、园林工具及交通工具 Download PDF

Info

Publication number
WO2022179315A1
WO2022179315A1 PCT/CN2022/070529 CN2022070529W WO2022179315A1 WO 2022179315 A1 WO2022179315 A1 WO 2022179315A1 CN 2022070529 W CN2022070529 W CN 2022070529W WO 2022179315 A1 WO2022179315 A1 WO 2022179315A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
magnetic steel
arc surface
motor
equivalent cylindrical
Prior art date
Application number
PCT/CN2022/070529
Other languages
English (en)
French (fr)
Inventor
刘旭初
李涛
高江明
Original Assignee
莱克电气股份有限公司
江苏莱克智能电器有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 莱克电气股份有限公司, 江苏莱克智能电器有限公司 filed Critical 莱克电气股份有限公司
Publication of WO2022179315A1 publication Critical patent/WO2022179315A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/14Stator cores with salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/14Stator cores with salient poles
    • H02K1/146Stator cores with salient poles consisting of a generally annular yoke with salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/16Stator cores with slots for windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/16Stator cores with slots for windings
    • H02K1/165Shape, form or location of the slots
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
    • H02K1/2766Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM] having a flux concentration effect
    • H02K1/2773Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM] having a flux concentration effect consisting of tangentially magnetized radial magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/28Means for mounting or fastening rotating magnetic parts on to, or to, the rotor structures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/02Details
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/02Details
    • H02K21/021Means for mechanical adjustment of the excitation flux
    • H02K21/028Means for mechanical adjustment of the excitation flux by modifying the magnetic circuit within the field or the armature, e.g. by using shunts, by adjusting the magnets position, by vectorial combination of field or armature sections
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/14Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures
    • H02K21/16Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures having annular armature cores with salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/24Casings; Enclosures; Supports specially adapted for suppression or reduction of noise or vibrations
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/03Machines characterised by numerical values, ranges, mathematical expressions or similar information

Definitions

  • the present invention relates to the technical field of motors, in particular to a motor, a household appliance, a garden tool and a vehicle.
  • Permanent magnet brushless motor is a relatively promising motor at present, and is widely used in various fields such as aerospace, national defense, industrial and agricultural production, and household appliances due to its relatively low price and high efficiency.
  • the built-in permanent magnet brushless motor has high structural strength, large salient-to-pole ratio, easy field weakening and speed expansion, and high field weakening operation efficiency.
  • many of the current permanent magnet brushless motors are not stable enough during operation, and generate large vibration and noise.
  • the present invention proposes a motor, which can run more smoothly, and can reduce vibration, so that the generated vibration noise is small.
  • the rotor includes a rotor shaft and a rotor iron core, the rotor shaft is connected with the rotor iron core, the motor outputs power through the rotor shaft, and the outer peripheral surface of the rotor iron core includes alternating distribution in the circumferential direction
  • the first cambered surface and the second cambered surface of the rotor core form a first equivalent cylindrical surface with the center of the rotor core as the first axis, the first cambered surface is tangent to the first equivalent cylindrical surface, and the The second arc surface is offset toward the center of the rotor core relative to the first equivalent cylindrical surface;
  • stator includes a stator iron core, the stator iron core is sleeved on the outside of the rotor iron core, the stator iron core includes a stator tooth part, and the end of the stator tooth part close to the rotor iron core
  • a pole piece is formed at the end of the pole piece, and the end of the pole piece close to the rotor core includes a first end face, a second end face and a third end face which are connected in sequence along the circumferential direction, and the first axis is used as the axis to form a second equivalent a cylindrical surface, the second end surface is tangent to the second equivalent cylindrical surface, and both the first end surface and the third end surface face away from the center of the rotor core relative to the second equivalent cylindrical surface direction offset;
  • the casing is located outside the rotor and the stator, the stator is fixedly connected with the casing, and the rotor shaft and the casing are connected by a bearing.
  • the diameter of the first equivalent cylindrical surface is D 1
  • the diameter of the second equivalent cylindrical surface is D 2
  • the mechanical air gap of the motor is ⁇
  • the second arc The offset distance of the surface relative to the first equivalent cylindrical surface is d
  • the radius of the first arc surface is R 4
  • the radius of the second arc surface is R 5
  • D 2 D 1 +2 ⁇
  • 0.1 D 1 ⁇ R 4 ⁇ 0.45D 1 0.5D 1 ⁇ R 5 ⁇ 0.9D 1 , 0 ⁇ d ⁇ 2 ⁇ .
  • the second end surface is a third arc surface that coincides with the second equivalent cylindrical surface, and the first end surface and the third end surface are corresponding to the second equivalent cylindrical surface cut plane.
  • first end surface and the third end surface are symmetrically distributed on both sides of the second end surface, and the circumferential end of the first end surface and the second equivalent cylindrical surface
  • the interval X 1 between them is in the range of 0 ⁇ X 1 ⁇ 0.6 mm.
  • the first end surface, the second end surface and the third end surface form a fourth arc surface, and the axis of the fourth arc surface is offset with respect to the first axis.
  • the radius R 6 of the fourth arc surface is in the range of 0 ⁇ R 6 ⁇ 0.825D 2 , and the end of the fourth arc surface in the circumferential direction and the second equivalent cylindrical surface The distance X 2 between them is in the range of 0 ⁇ X 2 ⁇ 0.6 mm.
  • a third equivalent cylindrical surface is formed with the first axis as an axis, a winding slot is formed between adjacent stator teeth, and the slot bottom wall of the winding slot is a fifth arc surface , the fifth arc surface includes the first segment of the fifth arc surface, the second segment of the fifth arc surface and the third segment of the fifth arc surface connected in sequence along the circumferential direction, the second segment of the fifth arc surface and the The third equivalent cylindrical surface is tangent, and the first segment of the fifth arc surface and the third segment of the fifth arc surface are both offset toward the center of the rotor core relative to the third equivalent cylindrical surface.
  • the diameter D 3 of the third equivalent cylindrical surface is in the range of 1.4D 1 ⁇ D 3 ⁇ 1.65D 1
  • the radius R 7 of the fifth arc surface is in the range of D 3 /8 ⁇ R 7 ⁇ D 3 /2.
  • the rotor core is provided with a plurality of sets of magnetic steel grooves distributed along the circumferential direction, the magnetic steel grooves include a first magnetic steel groove portion and a second magnetic steel groove portion, the first magnetic steel groove portion The magnetic steel slot portion and the second magnetic steel slot portion are arranged at an angle, and a rotor tooth portion is arranged between each of the first magnetic steel slot portion and the second magnetic steel slot portion, and the first magnetic steel slot portion is arranged at an angle. A first magnetic steel is clamped in the steel groove portion, and a second magnetic steel is clamped in the second magnetic steel groove portion.
  • the rotor core further includes a rotor yoke, the magnetic steel slot is located radially outside the rotor yoke, and the rotor yoke is provided with a magnetic steel facing the first magnetic steel.
  • a first preloading piece protruding from the slot portion and a second preloading piece protruding toward the second magnetic steel slot portion, and the outer end of the rotor core along the radial direction is provided with a groove towards the first magnetic steel
  • the boss protrudes from the sidewalls of the first magnetic steel slot and the second magnetic steel slot.
  • Household appliances including the above-mentioned motors.
  • a vehicle including the above-mentioned motor.
  • the outer peripheral surface of the rotor iron core of the rotor is set as the first arc surface and the second arc surface which are alternately distributed, and the second arc surface is offset inward to the center of the rotor iron core;
  • a first end face, a second end face and a third end face which are connected in sequence along the circumferential direction are arranged on the pole piece of the stator iron core.
  • the present invention also provides a household appliance. By applying the above-mentioned motor, the operation is more stable and the vibration and noise are smaller.
  • the present invention also provides a garden tool. By applying the above-mentioned motor, the operation is more stable and the vibration and noise are smaller.
  • the present invention also proposes a vehicle. By applying the above-mentioned motor, the operation is more stable and the vibration and noise are smaller.
  • FIG. 1 is a schematic structural diagram of a rotor core and a stator core in the prior art
  • FIG. 2 is a schematic cross-sectional view of a rotor iron core and a stator iron core in an embodiment of the present invention
  • Fig. 3 is the structural schematic diagram of the rotor core in Fig. 2;
  • FIG. 4 is a schematic cross-sectional view of the rotor core in FIG. 2;
  • Fig. 5 is the structural schematic diagram of the stator core in Fig. 2;
  • FIG. 6 is a schematic cross-sectional view of a stator core in an embodiment of the invention.
  • Fig. 7 is the partial enlarged view of A place in Fig. 6;
  • FIG. 8 is a schematic cross-sectional view of a stator core in another embodiment of the invention.
  • Fig. 9 is a partial enlarged view at B in Fig. 8;
  • Fig. 10 is a partial enlarged view at C in Fig. 6;
  • FIG. 11 is a waveform diagram of no-load cogging torque of the rotor core and stator core structures shown in FIG. 1;
  • FIG. 12 is a waveform diagram of no-load cogging torque of the structure of the rotor core and the stator core shown in FIG. 2;
  • FIG. 13 is a load torque waveform diagram of the rotor core and stator core structures shown in FIG. 1;
  • FIG. 14 is a load torque waveform diagram of the rotor core and stator core structures shown in FIG. 2;
  • FIG. 15 is a line back EMF waveform diagram of the structure of the rotor iron core and the stator iron core shown in FIG. 1;
  • FIG. 16 is a line back EMF waveform diagram of the structure of the rotor iron core and the stator iron core shown in FIG. 2;
  • FIG. 17 is a waveform diagram of the load line back EMF of the rotor core and stator core structures shown in FIG. 1;
  • FIG. 18 is a waveform diagram of the load line back electromotive force of the structure of the rotor iron core and the stator iron core shown in FIG. 2 .
  • a motor provided by an embodiment of the present invention includes a rotor, a stator, and a casing. 2 to 4, the rotor includes a rotor core 100 and a rotor shaft.
  • the rotor shaft is connected to the rotor core 100.
  • the rotor shaft can rotate synchronously with the rotor core 100.
  • the motor outputs power through the rotor shaft to drive the working parts to rotate.
  • the outer peripheral surface of the rotor iron core 100 includes a first arc surface 161 and a second arc surface 162 which are alternately distributed along the circumferential direction and have a smooth transition.
  • a first equivalent cylinder is formed with the center position of the rotor iron core 100 as the first axis O 1 .
  • all the first arc surfaces 161 are tangent to the first equivalent cylindrical surface 170 , and the second arc surfaces 162 are offset inward relative to the first equivalent cylindrical surface 170 .
  • the inward offset here refers to the offset in the direction close to the first axis shape O 1 .
  • the stator includes a stator core 200, the stator core 200 is sleeved on the outside of the rotor core 100, the stator core 200 includes a stator yoke 210 and a plurality of stator teeth 220, a plurality of The stator teeth 220 are distributed in the circumferential direction.
  • a pole piece 230 is formed on the end of the stator teeth 220 close to the rotor core 100 , and the end of the pole piece 230 includes a first end surface 231 , a second end surface 232 and a third end surface 233 distributed along the circumferential direction. One end of the second end surface 232 is connected to the second end surface 231 , and the other end is connected to the third end surface 233 .
  • a second equivalent cylindrical surface 250 is formed, the second end surface 232 is tangent to the second equivalent cylindrical surface 250, and the first end surface 231 and the third end surface 233 are both equivalent to the second equivalent cylindrical surface 250.
  • the cylindrical surface 250 is offset outward.
  • the outward deviation here refers to the deviation in the direction away from the first axis shape O 1 .
  • the outer casing is sleeved on the outside of the stator and the rotor, the stator and the casing are fixedly connected, and the rotor shaft and the casing are connected by a bearing to limit the position of the rotor shaft along the axial direction.
  • the end face of the pole piece 230 is equivalent to cutting material, and a part of the material is cut off at the two ends of the pole piece 230, so as to realize the outward deviation.
  • the second arc surface 162 is also equivalent to cutting material, and it can be regarded that a part of the material of the first arc surface 161 is cut to obtain the second arc surface 162 , thereby realizing the inward offset.
  • the offset here does not mean parallel offset, but both ends of the second arc surface 162 are smoothly connected to a first arc surface 161 , and the middle of the second arc surface 162 collapses inward.
  • a mechanical air gap is formed between the rotor teeth 120 and the pole shoe 230 , a first air gap is formed between the first arc surface 161 and the pole shoe 230 , and a second air gap is formed between the second arc surface 162 and the pole shoe 230 , If the first air gap satisfies the preset value of the minimum air gap value, the second air gap will be larger than the minimum air gap value, and the second air gap will be larger, which will lead to a larger magnetic resistance, which can reduce the flow rate from the rotor core 100 The amount of the magnetic circuit of the rotor iron core 100 flowing back to the stator iron core 200 reduces the magnetic leakage phenomenon of the rotor iron core 100 at the alternating magnetic poles and improves the utilization rate of the magnetic steel.
  • the cogging torque will make the motor produce vibration and noise, and the speed will fluctuate, which will make the motor unable to run smoothly, affect the performance of the motor, and also affect the low-speed performance of the motor in the speed control system and the high-precision positioning in the position control system. Comparing FIG. 11 and FIG. 12, it can be seen that when the rotor core 100 and the stator core 200 in the motor are designed according to the structure in the above embodiment, the cogging torque can be greatly reduced, so the vibration of the motor can be reduced, Thereby reducing vibration noise and making it run more smoothly.
  • torque represents the power of the motor to rotate. Torque fluctuations not only cause the motor body to vibrate, but also the parts directly or indirectly in contact with the motor will vibrate, which is not conducive to the smooth operation of the motor. Comparing FIG. 13 and FIG. 14 , it can be known that when the rotor core 100 and the stator core 200 in the motor are designed according to the structure of the above-mentioned embodiment, the waveform is smoother and the torque fluctuation is smaller. Therefore, the vibration of the motor can be reduced, thereby reducing vibration noise and making it run more smoothly.
  • the peak of the waveform of the line back EMF is a flat-top wave. It can be seen that the performance of the motor is greatly affected by harmonics, and the motor is subjected to large harmonic vibrations and harmonic losses. , When the controller vector controls the motor commutation, the vibration of the motor is large, and the corresponding vibration and noise are also large. In Figure 16, the peak of the waveform of the line back EMF is smoother, and the waveform tends to be sinusoidal. The performance of the motor is less affected by harmonics, and the harmonic vibration and harmonic loss are small. When the controller vector controls the motor commutation, the motor vibration is relatively small. Small, correspondingly, the vibration and noise are smaller, and the motor runs more smoothly.
  • the peak of the waveform of the back EMF of the load line is a flat top wave, which is greatly affected by harmonics.
  • the waveform of the back EMF of the load line has a smoother peak, and the waveform tends to be sinusoidal.
  • the performance of the motor is less affected by harmonics, and the harmonic vibration and harmonic loss are small.
  • the controller vector controls the motor to vibrate when the motor is commutated. Smaller, correspondingly, the vibration noise is smaller, and the motor runs more smoothly.
  • the cogging torque and torque fluctuation of the motor can be reduced, and the harmonic vibration and harmonic loss of the motor can be reduced. Small, thus reducing the vibration of the motor, making the vibration noise smaller, and the motor running more smoothly.
  • the diameter of the first equivalent cylindrical surface 170 is D 1
  • the diameter of the second equivalent cylindrical surface 250 is D 2
  • a mechanical air gap is formed between the rotor teeth 120 and the pole piece 230 .
  • the size of the gap is ⁇
  • D 2 D 1 +2 ⁇ .
  • the maximum distance that the second arc surface 162 is offset inward relative to the first equivalent cylindrical surface 170 is d
  • the radius of the first arc surface 161 is R 4
  • the radius of the second arc surface 162 is R 5 .
  • the above parameters satisfy the following relationships: 0.1D 1 ⁇ R 4 ⁇ 0.45D 1 , 0.5D 1 ⁇ R 5 ⁇ 0.9D 1 , 0 ⁇ d ⁇ 2 ⁇ .
  • the first arc surface 161 is formed with the second axis O 2 as the axis
  • the second arc surface 162 is formed with the third axis O 3 as the axis.
  • the second axis O 2 and the third axis O 3 are not coincident with the first axis O 1 .
  • the number of groups of the first arc surface 161 and the second arc surface 162 is the same as the number of the rotor teeth 120 .
  • the number of the rotor teeth 120 is six, and correspondingly, the number of the first arc surface 161 and the second arc surface 162 are both six.
  • the first arc surface 161 is located in the central area of the outer surface of the rotor tooth portion 120 in the circumferential direction, and the second arc surface 162 passes between two adjacent first arc surfaces 161 . Smooth transitions are connected.
  • the first arc surface 161 is located in the central area of the outer surface between two adjacent rotor teeth 120, and the second arc surface 161 passes between the two adjacent first arc surfaces 161.
  • the arc surfaces 162 are connected by a smooth transition.
  • the smooth transition between the first cambered surface 161 and the second cambered surface 162 can prevent the outer contour of the rotor iron core 100 from changing a large angle, and prevent the outer contour of the rotor iron core 100 from forming a large corner, thereby improving the magnetic flux leakage of the motor question.
  • the second end surface 232 is a third arc surface, and the second end surface 232 is equivalent to the second end surface 232
  • the cylindrical surfaces 250 are coincident and belong to a part of the second equivalent cylindrical surface 250 .
  • the first end surface 231 and the third end surface 233 are symmetrically distributed on both sides of the second end surface 232 .
  • the first end surface 231 and the third end surface 233 are both planes, and both are tangent to the second equivalent cylindrical surface 250 , that is, both are tangent to the second end surface 232 .
  • the distance X 1 between the circumferential end of the first end surface 231 and the second equivalent cylindrical surface 250 is in the range of 0 ⁇ X 1 ⁇ 0.6 mm.
  • the cogging torque and torque fluctuation are significantly reduced.
  • the first end surface 231, the second end surface 232 and the third end surface 233 form a fourth arc surface 234, and the fourth arc surface 234 is formed with the fourth axis O 4 as the axis Yes, the fourth axis O4 does not coincide with the first axis O1.
  • the middle area of the fourth arc surface 234 is tangent to the second equivalent cylindrical surface 250 , and the two end areas are offset outward with respect to the second equivalent cylindrical surface 250 . In this way, it is also possible to form the one shown in the drawings. Chamfered shape.
  • the radius R 6 of the fourth arc surface 234 is in the range of 0 ⁇ R 6 ⁇ 0.825D 2 , the end of the fourth arc surface 234 in the circumferential direction and the second equivalent cylindrical surface 250 The distance X 2 between them is in the range of 0 ⁇ X 2 ⁇ 0.6 mm.
  • the cogging torque and torque fluctuation are significantly reduced.
  • a third equivalent cylindrical surface 260 is formed with the first axis O 1 as the axis, a winding slot 240 is formed between every two adjacent stator teeth 220 , and the coil is wound around the stator teeth On the part 220, the winding slot 240 is used to accommodate the coil.
  • the slot bottom wall of the winding slot 240 is a fifth arc surface 241
  • the fifth arc surface 241 is formed with a fifth axis O 5 as an axis, and the fifth axis O 5 does not coincide with the first axis O 1 .
  • the fifth arc surface 241 is tangent to the third equivalent cylindrical surface 260 .
  • the fifth arc surface 241 includes the first segment 2411 of the fifth arc surface, the second segment 2412 of the fifth arc surface and the third segment of the fifth arc surface, the first segment 2411 of the fifth arc surface, and the third segment of the fifth arc surface
  • the segments are symmetrically connected to two ends of the second segment 2412 of the fifth arc surface, respectively.
  • the second segment 2412 of the fifth arc surface is tangent to the third equivalent cylindrical surface 260
  • the first segment 2411 of the fifth arc surface and the third segment of the fifth arc surface are inwardly close to the first relative to the third equivalent cylindrical surface 260 .
  • the direction of the axis O 1 is offset; it is understandable that the radius of the fifth arc surface 241 is smaller than the radius of the third equivalent cylindrical surface 260 , and the central position of the fifth arc surface 241 is linearly in line with the third equivalent cylindrical surface 260 cut.
  • the bottom wall of the winding slot is the third equivalent cylindrical surface 260 .
  • the slot bottom wall of this embodiment is arranged in this way, so that the magnetic path length L1 of the stator teeth 220 is smaller than the magnetic path length L2 in the structure of FIG. 1 , thereby reducing iron loss and improving motor efficiency.
  • the width W1 of the stator yoke portion 210 can also be made larger than the length W2 of the magnetic circuit in the structure of FIG.
  • the diameter D 3 of the third equivalent cylindrical surface 260 is in the range of 1.4D 1 ⁇ D 3 ⁇ 1.65D 1
  • the radius R 7 of the fifth arc surface 241 is in the range of D 3 /8 ⁇ R 7 ⁇ D 3 /2.
  • the rotor core 100 is provided with a plurality of sets of magnetic steel slots distributed along the circumferential direction, and each set of magnetic steel slots includes a first magnetic steel slot portion 131 and a second magnetic steel slot part 132, the first magnetic steel groove part 131 and the second magnetic steel groove part 132 are arranged at an angle, and the two are in a "V" shape.
  • Rotor teeth 120 The range of the angle W between the first magnetic steel groove portion 131 and the second magnetic steel groove portion 132 is 60° ⁇ W ⁇ 90°, for example, it can be set to 60°, 75°, or 90°. Compared with the arc-shaped magnetic steel groove in FIG.
  • the first magnetic steel groove portion 131 and the second magnetic steel groove portion 132 are approximately cuboid, with more regular shapes, lower processing difficulty, and less likely to occur during processing. fracture, can reduce the processing cost.
  • the magnetic steel slot may also be in a "U" shape, three magnetic steels are arranged in the magnetic steel slot, and the three magnetic steels are in a "U" shape as a whole.
  • the first magnetic steel 310 is clamped into the first magnetic steel groove portion 131
  • the second magnetic steel 320 is clamped into the second magnetic steel groove portion 132 , so that the clamping structure is easy to disassemble and assemble.
  • the first magnetic steel 310 and the second magnetic steel 320 have the same polarity, and after the installation is completed, the positions of the two are in a "V" shape.
  • the magnetic steel groove in this embodiment is a ferrite V-shaped groove, and the two magnetic steels are in a disconnected state, which can increase the magnetic flux generated by the magnetic steel in the limited space. , which helps to reduce the size of the motor, thereby reducing the cost.
  • after the first magnetic steel 310 and the second magnetic steel 320 are installed they are in contact with each other.
  • the first magnetic steel groove portion 131 and the second magnetic steel groove portion 132 are located radially outside the rotor yoke portion 110 , and the rotor yoke portion 110 is provided with the first preloading member 111 and the second magnetic steel groove portion 110 .
  • There are two preloading members 112 the first preloading member 111 protrudes toward the first magnetic steel groove portion 131
  • the second preloading member 112 protrudes toward the second magnetic steel groove portion 132 .
  • a boss 140 is also provided at the outer end of the rotor core 100 , and each first magnetic steel slot 131 shares a boss 140 with the second magnetic steel slot 132 in the adjacent magnetic steel slot.
  • the first preloading member 111 and the second preloading member 112 are elastic and can be elastically deformed to form elastic resistance to the first magnetic steel 310 and the second magnetic steel 320. Compared with the rigid resistance, the elastic resistance The holding can prevent the first magnetic steel 310 and the second magnetic steel 320 from being damaged, and it is easier to snap the first magnetic steel 310 and the second magnetic steel 320 during installation.
  • the boss 140 protrudes from the side walls of the first magnetic steel groove portion 131 and the second magnetic steel groove portion 132 .
  • the A second gap 152 exists between a magnetic steel 310 and the side wall of the first magnetic steel groove portion 131 .
  • a magnetic isolation bridge can be formed at the second gap 152, which can reduce magnetic flux leakage and increase the power density of the motor.
  • a first gap 151 exists between the first magnetic steel 310 and the rotor yoke 110, that is, on both sides of the first preload 131, and a magnetic isolation bridge can be formed at the first gap 151, which can reduce magnetic flux leakage and increase the The power density of the motor.
  • a household appliance is also included, and the household appliance includes the motor in any of the above embodiments, and the household appliance has the beneficial effects of the motor in any of the above embodiments.
  • the household appliance may be a washing machine, an electric fan, an air conditioner, and the like.
  • a garden tool is also included, the garden tool includes the motor in any of the above embodiments, and the garden tool has the beneficial effects of the motor in any of the above embodiments.
  • the garden tool may be a lawn mower or the like.
  • a vehicle is also included, the vehicle including the motor of any of the above embodiments, the vehicle having the beneficial effects of the motor of any of the above embodiments.
  • the vehicle may be an electric vehicle or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

本发明涉及电机、家用电器、园林工具及交通工具。电机包括:转子铁芯,转子铁芯的外周面包括沿周向交替分布的第一弧面与第二弧面,以转子铁芯的中心为第一轴线形成第一等效圆柱面,第一弧面与第一等效圆柱面相切,第二弧面相对于第一等效圆柱面朝转子铁芯的中心偏移;定子铁芯,定子铁芯套设于转子铁芯外部,极靴靠近转子铁芯的端部包括沿周向依次连接的第一端面、第二端面与第三端面,以第一轴线为轴线形成第二等效圆柱面,第二端面与第二等效圆柱面相切,第一端面与第三端面均相对于第二等效圆柱面朝远离转子铁芯的中心的方向偏移。该电机运行时能更加平稳,且能减小振动,使产生的振动噪音较小。

Description

电机、家用电器、园林工具及交通工具 技术领域
本发明涉及电机技术领域,特别是涉及一种电机、家用电器、园林工具及交通工具。
背景技术
永磁无刷电机是一种目前比较具有发展前景的电机,因其较为低廉的价格和较高的效率而被广泛应用航空航天、国防、工农业生产和家用电器活等各个领域。尤其是内嵌式永磁无刷电动机,结构强度高,凸极比大,易于弱磁扩速,同时弱磁运行效率高,非常适用于低速与高速交替运行的应用场合。然而,目前的许多永磁无刷电机在运行过程中不够平稳,产生的振动噪音较大。
发明内容
基于此,本发明提出一种电机,其运行时能更加平稳,且能减小振动,使产生的振动噪音较小。
电机,包括:
转子,所述转子包括转子轴与转子铁芯,所述转子轴与所述转子铁芯连接,所述电机通过所述转子轴输出动力,所述转子铁芯的外周面包括沿周向交替分布的第一弧面与第二弧面,以所述转子铁芯的中心为第一轴线形成第一等效圆柱面,所述第一弧面与所述第一等效圆柱面相切,所述第二弧面相对于所述第一等效圆柱面朝所述转子铁芯的中心偏移;
定子,所述定子包括定子铁芯,所述定子铁芯套设于所述转子铁芯的外部,所述定子铁芯包括定子齿部,所述定子齿部上靠近所述转子铁芯的端部形成极靴,所述极靴靠近所述转子铁芯的端部包括沿周向依次连接的第一端面、第二端面与第三端面,以所述第一轴线为轴线形成第二等效圆柱面,所述第二端面 与所述第二等效圆柱面相切,所述第一端面与所述第三端面均相对于所述第二等效圆柱面朝远离所述转子铁芯的中心的方向偏移;
外壳,所述外壳位于所述转子与所述定子的外部,所述定子与所述外壳固定连接,所述转子轴与所述外壳之间通过轴承连接。
在其中一个实施例中,所述第一等效圆柱面的直径为D 1,所述第二等效圆柱面的直径为D 2,所述电机的机械气隙为δ,所述第二弧面相对于所述第一等效圆柱面的偏移距离为d,所述第一弧面的半径为R 4,所述第二弧面的半径为R 5,D 2=D 1+2δ,0.1D 1≤R 4≤0.45D 1,0.5D 1≤R 5≤0.9D 1,0<d≤2δ。
在其中一个实施例中,d=δ,R 4=0.242D 1,R 5=0.583D 1
在其中一个实施例中,所述第二端面为与所述第二等效圆柱面重合的第三弧面,所述第一端面、所述第三端面为与所述第二等效圆柱面相切的平面。
在其中一个实施例中,所述第一端面与所述第三端面对称分布于所述第二端面的两侧,所述第一端面沿周向的端部与所述第二等效圆柱面之间的间距X 1的范围为0<X 1≤0.6mm。
在其中一个实施例中,所述第一端面、所述第二端面与所述第三端面形成第四弧面,所述第四弧面的轴线相对于所述第一轴线偏置。
在其中一个实施例中,所述第四弧面的半径R 6的范围为0<R 6<0.825D 2,所述第四弧面沿周向的端部与所述第二等效圆柱面之间的间距X 2的范围为0<X 2≤0.6mm。
在其中一个实施例中,以所述第一轴线为轴线形成第三等效圆柱面,相邻的所述定子齿部之间形成绕组槽,所述绕组槽的槽底壁为第五弧面,所述第五弧面包括沿周向依次连接的第五弧面第一段、第五弧面第二段与第五弧面第三段,所述第五弧面第二段与所述第三等效圆柱面相切,所述第五弧面第一段、 所述第五弧面第三段均相对于所述第三等效圆柱面朝所述转子铁芯的中心偏移。
在其中一个实施例中,所述第三等效圆柱面的直径D 3的范围为1.4D 1<D 3<1.65D 1,所述第五弧面的半径R 7的范围为D 3/8≤R 7<D 3/2。
在其中一个实施例中,所述转子铁芯上设有多组沿周向分布的磁钢槽,所述磁钢槽包括第一磁钢槽部与第二磁钢槽部,所述第一磁钢槽部与所述第二磁钢槽部成角度设置,每个所述第一磁钢槽部与所述第二磁钢槽部之间设有一个转子齿部,所述第一磁钢槽部内卡入有第一磁钢,所述第二磁钢槽部内卡入有第二磁钢。
在其中一个实施例中,所述转子铁芯还包括转子轭部,所述磁钢槽沿径向位于所述转子轭部的外侧,所述转子轭部上设有朝所述第一磁钢槽部凸出的第一预紧件与朝所述第二磁钢槽部凸出的第二预紧件,所述转子铁芯沿径向的外端设有朝所述第一磁钢槽部与相邻的所述磁钢槽的所述第二磁钢槽部凸出的凸台,所述第一磁钢的两端分别抵持于所述第一预紧件与所述凸台,所述第二磁钢的两端分别抵持于所述第二预紧件与所述凸台。
在其中一个实施例中,所述凸台凸出于所述第一磁钢槽与所述第二磁钢槽的侧壁。
家用电器,包括上述的电机。
园林工具,包括上述的电机。
交通工具,包括上述的电机。
上述电机,一方面,转子的转子铁芯的外周面设置为交替分布的第一弧面与第二弧面,且第二弧面朝内向转子铁芯的中心偏移;另一方面,定子的定子铁芯的极靴上设置沿周向依次连接的第一端面、第二端面与第三端面,第一端 面与第三端面均朝外向远离转子铁芯的中心的方向偏移。转子与定子通过上述的结构配合,可以减小电机的齿槽转矩与扭矩波动,从而减小电机的振动,使电机运行的更加平稳,并且,可以使振动噪音减小。
本发明还提出一种家用电器,通过应用上述电机,运行时更加平稳,振动噪音较小。本发明还提出一种园林工具,通过应用上述电机,运行时更加平稳,振动噪音较小。本发明还提出一种交通工具,通过应用上述电机,运行时更加平稳,振动噪音较小。
附图说明
图1为现有技术中的转子铁芯与定子铁芯的结构示意图;
图2为本发明一实施例中的转子铁芯与定子铁芯的截面示意图;
图3为图2中转子铁芯的结构示意图;
图4为图2中转子铁芯的截面示意图;
图5为图2中定子铁芯的结构示意图;
图6为发明一实施例中的定子铁芯的截面示意图;
图7为图6中A处的局部放大图;
图8为发明另一实施例中的定子铁芯的截面示意图;
图9为图8中B处的局部放大图;
图10为图6中C处的局部放大图;
图11为图1所示的转子铁芯与定子铁芯结构的空载齿槽转矩波形图;
图12为图2所示的转子铁芯与定子铁芯结构的空载齿槽转矩波形图;
图13为图1所示的转子铁芯与定子铁芯结构的负载扭矩波形图;
图14为图2所示的转子铁芯与定子铁芯结构的负载扭矩波形图;
图15为图1所示的转子铁芯与定子铁芯结构的线反电动势波形图;
图16为图2所示的转子铁芯与定子铁芯结构的线反电动势波形图;
图17为图1所示的转子铁芯与定子铁芯结构的负载线反电动势波形图;
图18为图2所示的转子铁芯与定子铁芯结构的负载线反电动势波形图。
具体实施方式
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图对本发明的具体实施方式做详细的说明。在下面的描述中阐述了很多具体细节以便于充分理解本发明。但是本发明能够以很多不同于在此描述的其它方式来实施,本领域技术人员可以在不违背本发明内涵的情况下做类似改进,因此本发明不受下面公开的具体实施例的限制。
本发明一实施例提供的电机包括转子、定子与外壳。参阅图2至图4,转子包括转子铁芯100与转子轴,转子轴与转子铁芯100连接,转子轴能够随转子铁芯100同步转动,电机通过转子轴输出动力,带动工作部件转动。转子铁芯100的外周面包括沿周向交替分布且圆滑过渡的第一弧面161与第二弧面162,以转子铁芯100的中心位置为第一轴线O 1形成一个第一等效圆柱面170,所有第一弧面161均与第一等效圆柱面170相切,第二弧面162相对于第一等效圆柱面170朝内偏移。此处的朝内偏移是指朝靠近第一轴线形O 1的方向偏移。
参阅图2、图5至图6,定子包括定子铁芯200,定子铁芯200套设于转子铁芯100的外部,定子铁芯200包括定子轭部210与多个定子齿部220,多个定子齿部220沿周向分布。定子齿部220上靠近转子铁芯100的端部形成极靴230,极靴230的端部包括沿周向分布的第一端面231、第二端面232与第三端面233。第二端面232的一端与第二端面231相连,另一端与第三端面233相连。以第一轴线O 1作为轴线,形成一个第二等效圆柱面250,第二端面232与第二等效圆柱面250相切,第一端面231与第三端面233均相对于第二等效圆柱面250朝外偏移。此处的朝外偏移是指朝远离第一轴线形O 1的方向偏移。
外壳套设于定子与转子的外部,定子与外壳固定连接,转子轴与外壳之间通过轴承连接,以对转子轴进行沿轴向的限位。
上述实施例中,极靴230的端面处相当于进行削减材料,将极靴230两端 位置处切除一部分材料,从而实现朝外偏移。转子铁芯100中,第二弧面162也相当于进行了削减材料,可以看作将第一弧面161切除一部分材料而得到第二弧面162,从而实现朝内偏移。需要说明的是,此处的偏移并非指平行偏移,而是第二弧面162的两端各与一个第一弧面161平滑连接,第二弧面162的中部朝内塌陷。转子齿部120与极靴230之间形成有机械气隙,第一弧面161与极靴230之间形成第一气隙,第二弧面162与极靴230之间形成第二气隙,若第一气隙满足最小气隙值的预设值,第二气隙将会比最小气隙值大,第二气隙较大,会导致磁阻较大,可以减少从转子铁芯100流到定子铁芯200再流回转子铁芯100的磁路的量,从而减少转子铁芯100在磁极交替处的漏磁现象,提高磁钢利用率。
参阅图11与图12,永磁无刷电机运行时,产生旋转磁场,旋转磁场产生的磁拉力将会对转子产生切向力和径向力,切向力主要驱动转子转动,径向力会使电机振动并发出较大的振动噪音。齿槽转矩反映的是转子对定子的径向磁拉力的大小,齿槽转矩越大,表明转子对定子的径向磁拉力越大。齿槽转矩会使电机产生振动和噪音,出现转速波动,使电机不能平稳运行,影响电机的性能,还会影响电机在速度控制系统中的低速性能和位置控制系统中的高精度定位。对比图11与图12可以得知,当电机中的转子铁芯100与定子铁芯200按照上述实施例中的结构设计时,齿槽转矩能够大幅减小,因此能够减小电机的振动,从而减小振动噪音,使其运行更加平稳。
参阅图13与图14,扭矩表征电机转动的力量大小,扭矩波动不仅引发电机本体振动,连带电机直接或间接接触的部件都会振动,不利于电机的平稳运行。对比图13与图14可以得知,当电机中的转子铁芯100与定子铁芯200按照上述实施例中的结构设计时,波形更加平缓,扭矩波动更小。因此,能够减小电机的振动,从而减小振动噪音,使其运行更加平稳。
参阅图15与图16,图15中,线反电动势的波形的波峰处为平顶波,可见,电机的性能受谐波影响较大,电机受到的谐波振动较大且谐波损耗较大,控制器矢量控制电机换向时,电机的振动较大,相应的,产生的振动噪音也较大。图16中,线反电动势的波形的波峰较圆滑,波形趋于正弦,电机的性能受谐波 影响较小,谐波振动和谐波损耗较小,控制器矢量控制电机换向时电机振动较小,相应的,振动噪音较小,电机运行更平稳。
参阅图17与图18,与前述类似,图17中,负载线反电动势的波形的波峰处为平顶波,受谐波影响较大。图18中,负载线反电动势的波形的波峰较圆滑,波形趋于正弦,电机的性能受谐波影响较小,谐波振动和谐波损耗较小,控制器矢量控制电机换向时电机振动较小,相应的,振动噪音较小,电机运行更平稳。
另外,试验证明,上述实施例中的转子铁芯100与定子铁芯200的厚度为20mm时,能够达到图1所示的结构在厚度为25mm时相同的输出功率,即体积更小但输出功率相同。由此可见,当电机的转子铁芯100与定子铁芯200按照上述结构设置时,功率密度更大。此外,虽然体积减小,但输出的反电势有效值与扭矩均与图1所示的结构相差不大,说明使用图2所示结构可以提高材料利用率,减少漏磁。
综上,本实施例中,当电机的转子铁芯100与定子铁芯200按照上述结构设置时,可以减小电机的齿槽转矩与扭矩波动,并使其谐波振动和谐波损耗较小,从而减小电机的振动,使振动噪音较小,电机运行更平稳。
参阅图2至图6,第一等效圆柱面170的直径为D 1,第二等效圆柱面250的直径为D 2,转子齿部120与极靴230之间形成有机械气隙,气隙的的尺寸为δ,D 2=D 1+2δ。第二弧面162相对于第一等效圆柱面170朝内偏移的最大距离为d,第一弧面161的半径为R 4,第二弧面162的半径为R 5。在一些实施例中,上述的各参数满足如下关系:0.1D 1≤R 4≤0.45D 1,0.5D 1≤R 5≤0.9D 1,0<d≤2δ。经过多次试验证明,当各参数满足上述关系后,电机的齿槽转矩与扭矩波动等减小幅度较大,能够更显著的减小电机的振动与振动噪音,使其运行更加平稳。
优选的,试验证明,当d=δ,R 4=0.242D 1,R 5=0.583D 1时,前述各个附图中的参数趋于最优解附近,电机的齿槽转矩与扭矩波动减小幅度较大,能够更显著的减小电机的振动与振动噪音,使其运行更加平稳。
参阅图2至图4,第一弧面161是以第二轴线O 2为轴形成的,第二弧面162是以第三轴线O 3为轴形成的。第二轴线O 2、第三轴线O 3均与第一轴线O 1不重合。 第一弧面161与第二弧面162的组数与转子齿部120的数量相同。例如,附图所示实施例中,转子齿部120的数量为6个,相应的,第一弧面161与第二弧面162的数量均为6个。第一弧面161与第二弧面162对应的圆心角分别为2α与2β,则α+β=30°。当前述的D 1、D 2、δ、R 4、R 5等发生变化时,α与β的具体数值会相应发生变化。附图所示的一个具体的实施例中,α=4°,β=26°。
附图所示的一个具体的实施例中,在周向上第一弧面161位于转子齿部120的外表面的中心区域,相邻的两个第一弧面161之间通过第二弧面162圆滑过渡相连。但实际上不限于此,因为转子是相对于定子一直转动的,因此,对于第一弧面161与第二弧面162在周向的具体位置无特定要求。例如,在另一个具体的实施例中,第一弧面161位于相邻的两个转子齿部120之间的外表面的中心区域,相邻的两个第一弧面161之间通过第二弧面162圆滑过渡相连。第一弧面161与第二弧面162圆滑过渡,可以避免转子铁芯100的外轮廓出现较大角度的突变,防止转子铁芯100的外轮廓形成较大的拐角,从而改善电机的漏磁问题。
参阅图2、图5至图7,在一些实施例中,定子铁芯200的极靴230的端部处,第二端面232为第三弧面,并且,第二端面232与第二等效圆柱面250重合,属于第二等效圆柱面250的一部分。沿周向,第一端面231、第三端面233对称分布于第二端面232的两侧。第一端面231、第三端面233均为平面,并且,二者均与第二等效圆柱面250相切,即二者均与第二端面232相切。如此,相当于将第二端面232两侧的位置切掉材料,以形成附图所示的削角形状。通过上述结构,可以减小齿槽转矩,削弱电枢反应,减小扭矩波动,从而减小振动噪音。
参阅图7,在一些实施例中,第一端面231沿周向的端部与第二等效圆柱面250之间的间距X 1的范围为0<X 1≤0.6mm。当在上述取值范围内偏移时,齿槽转矩与扭矩波动减小较为明显。
参阅图8与图9,在另一些实施例中,第一端面231、第二端面232与第三端面233形成第四弧面234,第四弧面234是以第四轴线O 4为轴形成的,第四轴 线O 4与第一轴线O 1不重合。在周向上,第四弧面234的中间区域与第二等效圆柱面250相切,两端区域相对于第二等效圆柱面250朝外偏移,如此,也可以形成附图所示的削角形状。通过上述结构,可以减小齿槽转矩,削弱电枢反应,减小扭矩波动,从而减小振动噪音。
参阅图9,在一些实施例中,第四弧面234的半径R 6的范围为0<R 6<0.825D 2,第四弧面234沿周向的端部与第二等效圆柱面250之间的间距X 2的范围为0<X 2≤0.6mm。当在上述取值范围内偏移时,齿槽转矩与扭矩波动减小较为明显。
参阅图5、图6与图10,以第一轴线O 1为轴形成第三等效圆柱面260,每两个相邻的定子齿部220之间形成有绕组槽240,线圈缠绕于定子齿部220上,绕组槽240用于容纳线圈。在一些实施例中,绕组槽240的槽底壁为第五弧面241,第五弧面241是以第五轴线O 5为轴形成的,第五轴线O 5与第一轴线O 1不重合。第五弧面241与第三等效圆柱面260相切。具体的,第五弧面241包括第五弧面第一段2411、第五弧面第二段2412与第五弧面第三段,第五弧面第一段2411、第五弧面第三段对称地分别与第五弧面第二段2412的两端相连。第五弧面第二段2412与第三等效圆柱面260相切,第五弧面第一段2411、第五弧面第三段均相对于第三等效圆柱面260朝内向靠近第一轴线O 1的方向偏移;可理解的是,第五弧面241的半径小于第三等效圆柱面260的半径,且第五弧面241的中部位置与第三等效圆柱面260线性相切。图1所示的结构中,绕组槽的槽底壁即为第三等效圆柱面260。本实施例的槽底壁如此设置可以使定子齿部220磁路长度L1小于图1结构中磁路长度L2,从而降低铁损,提高电机效率。还可以使定子轭部210宽度W1大于图1结构中磁路长度W2,从而降低磁密与铁损,提高电机效率。此外,由于第五弧面第一段2411、第五弧面第三段均朝内偏移,在绕线时,可以使线圈更易于缠绕至齿根处,能够提高绕线时的槽满率,减少空间浪费。在一些实施例中,第三等效圆柱面260的直径D 3的范围为1.4D 1<D 3<1.65D 1,第五弧面241的半径R 7的范围为D 3/8≤R 7<D 3/2。
参阅图2至图4,在一些实施例中,转子铁芯100上设有多组沿周向分布的磁钢槽,每组磁钢槽包括第一磁钢槽部131与第二磁钢槽部132,第一磁钢槽部 131与第二磁钢槽部132成角度设置,二者呈“V”形,第一磁钢槽部131与第二磁钢槽部132之间设有一个转子齿部120。第一磁钢槽部131与第二磁钢槽部132之间的角度W的范围为60°≤W≤90°,例如,可以设置为60°、75°或90°等。与图1中的弧形磁钢槽相比,本实施例中,第一磁钢槽部131与第二磁钢槽部132近似长方体,形状更加规则,加工难度更低,加工过程中不易发生断裂,能降低加工成本。或者,在另一些实施例中,磁钢槽也可以呈“U”形,磁钢槽内设置三个磁钢,三个磁钢整体呈“U”形。
第一磁钢310卡入第一磁钢槽部131内,第二磁钢320卡入第二磁钢槽部132内,卡接结构拆装较为方便。第一磁钢310与第二磁钢320极性相同,安装完成后,二者的位置呈“V”形。与图1中的弧形磁钢相比,本实施例中的方式磁钢槽是铁氧体V型槽,两个磁钢之间属于断开状态,可以增加有限空间内磁钢产生的磁通量,有助于减小电机体积,进而降低成本。在一个具体的实施例中,第一磁钢310与第二磁钢320安装后,二者之间接触。在另一个具体的实施例中,第一磁钢310与第二磁钢320安装后,二者之间有空隙。
具体的,在一些实施例中,第一磁钢槽部131与第二磁钢槽部132沿径向位于转子轭部110的外侧,转子轭部110上设有第一预紧件111与第二预紧件112,第一预紧件111朝第一磁钢槽部131内凸出,第二预紧件112朝第二磁钢槽部132内凸出。转子铁芯100的外端处还设有凸台140,每个第一磁钢槽部131与相邻的磁钢槽中的第二磁钢槽部132共用一个凸台140。第一磁钢310的两端分别抵持于第一预紧件111与凸台140,第二磁钢320的两端分别抵持于第二预紧件112与凸台140。安装完成后,第一磁钢310与第二磁钢320两端均被抵持固定,不易发生位置偏移,有效降低了第一磁钢310与第二磁钢320位移造成的不平衡量变化以及因此产生的振动噪音。优选的,第一预紧件111与第二预紧件112具有弹性,能够发生弹性变形,对第一磁钢310与第二磁钢320形成弹性抵持,与刚性抵持相比,弹性抵持可以避免将第一磁钢310与第二磁钢320损坏,且安装时更易于将第一磁钢310与第二磁钢320卡入。
优选的,凸台140凸出于第一磁钢槽部131与第二磁钢槽部132的侧壁。以第一磁钢310为例,与直接通过第一磁钢槽部131的侧壁将第一磁钢310抵 紧相比,通过凸台140与第一预紧件131抵紧安装时,第一磁钢310与第一磁钢槽部131的侧壁之间存在第二间隙152。第二间隙152处可以形成隔磁桥,能够减少漏磁,增大电机的功率密度。类似的,第一磁钢310与转子轭部110之间,即第一预紧件131的两侧存在第一间隙151,第一间隙151处可以形成隔磁桥,能够减少漏磁,增大电机的功率密度。
在一些实施例中,还包括家用电器,该家用电器包括上述任一实施例中的电机,该家用电器具有上述任一实施例中的电机的有益效果。例如,家用电器可以是洗衣机、电风扇、空调等。
在一些实施例中,还包括园林工具,该园林工具包括上述任一实施例中的电机,该园林工具具有上述任一实施例中的电机的有益效果。例如,园林工具可以是割草机等。
在一些实施例中,还包括交通工具,该交通工具包括上述任一实施例中的电机,该交通工具具有上述任一实施例中的电机的有益效果。例如,交通工具可以是电动车等。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (10)

  1. 电机,其特征在于,包括:
    转子,所述转子包括转子轴与转子铁芯,所述转子轴与所述转子铁芯连接,所述电机通过所述转子轴输出动力,所述转子铁芯的外周面包括沿周向交替分布的第一弧面与第二弧面,以所述转子铁芯的中心为第一轴线形成第一等效圆柱面,所述第一弧面与所述第一等效圆柱面相切,所述第二弧面相对于所述第一等效圆柱面朝所述转子铁芯的中心偏移;
    定子,所述定子包括定子铁芯,所述定子铁芯套设于所述转子铁芯的外部,所述定子铁芯包括定子齿部,所述定子齿部上靠近所述转子铁芯的端部形成极靴,所述极靴靠近所述转子铁芯的端部包括沿周向依次连接的第一端面、第二端面与第三端面,以所述第一轴线为轴线形成第二等效圆柱面,所述第二端面与所述第二等效圆柱面相切,所述第一端面与所述第三端面均相对于所述第二等效圆柱面朝远离所述转子铁芯的中心的方向偏移;
    外壳,所述定子与所述外壳固定连接,所述转子轴与所述外壳之间通过轴承连接。
  2. 根据权利要求1所述的电机,其特征在于,所述第一等效圆柱面的直径为D 1,所述第二等效圆柱面的直径为D 2,所述电机的机械气隙为δ,所述第二弧面相对于所述第一等效圆柱面的偏移距离为d,所述第一弧面的半径为R 4,所述第二弧面的半径为R 5,D 2=D 1+2δ,0.1D 1≤R 4≤0.45D 1,0.5D 1≤R 5≤0.9D 1,0<d≤2δ。
  3. 根据权利要求2所述的电机,其特征在于,d=δ,R 4=0.242D 1,R 5=0.583D 1
  4. 根据权利要求1所述的电机,其特征在于,所述第二端面为与所述第二等效圆柱面重合的第三弧面,所述第一端面、所述第三端面为与所述第二等效 圆柱面相切的平面。
  5. 根据权利要求4所述的电机,其特征在于,所述第一端面与所述第三端面对称分布于所述第二端面的两侧,所述第一端面沿周向的端部与所述第二等效圆柱面之间的间距X 1的范围为0<X 1≤0.6mm。
  6. 根据权利要求1所述的电机,其特征在于,所述第一端面、所述第二端面与所述第三端面形成第四弧面,所述第四弧面的轴线相对于所述第一轴线偏置。
  7. 根据权利要求6所述的电机,其特征在于,所述第四弧面的半径R 6的范围为0<R 6<0.825D 2,所述第四弧面沿周向的端部与所述第二等效圆柱面之间的间距X 2的范围为0<X 2≤0.6mm。
  8. 根据权利要求1所述的电机,其特征在于,以所述第一轴线为轴线形成第三等效圆柱面,相邻的所述定子齿部之间形成绕组槽,所述绕组槽的槽底壁为第五弧面,所述第五弧面包括沿周向依次连接的第五弧面第一段、第五弧面第二段与第五弧面第三段,所述第五弧面第二段与所述第三等效圆柱面相切,所述第五弧面第一段、所述第五弧面第三段均相对于所述第三等效圆柱面朝所述转子铁芯的中心偏移。
  9. 根据权利要求1所述的电机,其特征在于,所述转子铁芯上设有多组沿周向分布的磁钢槽,所述磁钢槽包括第一磁钢槽部与第二磁钢槽部,所述第一磁钢槽部与所述第二磁钢槽部成角度设置,每个所述第一磁钢槽部与所述第二磁钢槽部之间设有一个转子齿部,所述第一磁钢槽部内卡入有第一磁钢,所述第二磁钢槽部内卡入有第二磁钢。
  10. 家用电器、园林工具或交通工具,其特征在于,包括权利要求1至9中任一项所述的电机。
PCT/CN2022/070529 2021-02-25 2022-01-06 电机、家用电器、园林工具及交通工具 WO2022179315A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110211920.8 2021-02-25
CN202110211920.8A CN114977578B (zh) 2021-02-25 2021-02-25 电机、家用电器、园林工具及交通工具

Publications (1)

Publication Number Publication Date
WO2022179315A1 true WO2022179315A1 (zh) 2022-09-01

Family

ID=82973225

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/070529 WO2022179315A1 (zh) 2021-02-25 2022-01-06 电机、家用电器、园林工具及交通工具

Country Status (2)

Country Link
CN (1) CN114977578B (zh)
WO (1) WO2022179315A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103973004A (zh) * 2013-01-31 2014-08-06 艾默生环境优化技术(苏州)有限公司 永磁电机转子组件及相应的永磁电机
CN210167872U (zh) * 2019-08-26 2020-03-20 安徽美芝精密制造有限公司 转子、电机、压缩机及制冷设备
CN210246575U (zh) * 2019-08-26 2020-04-03 安徽美芝精密制造有限公司 电机、压缩机及制冷设备
CN111384791A (zh) * 2019-09-26 2020-07-07 广东威灵电机制造有限公司 电机和家用电器
CN215267832U (zh) * 2021-02-25 2021-12-21 莱克电气股份有限公司 电机、家用电器、园林工具及交通工具

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3852930B2 (ja) * 2003-02-27 2006-12-06 アイチエレック株式会社 永久磁石回転機
JP4452488B2 (ja) * 2003-12-03 2010-04-21 アイチエレック株式会社 永久磁石型電動機
CN107681798A (zh) * 2017-11-09 2018-02-09 广东威灵电机制造有限公司 电机

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103973004A (zh) * 2013-01-31 2014-08-06 艾默生环境优化技术(苏州)有限公司 永磁电机转子组件及相应的永磁电机
CN210167872U (zh) * 2019-08-26 2020-03-20 安徽美芝精密制造有限公司 转子、电机、压缩机及制冷设备
CN210246575U (zh) * 2019-08-26 2020-04-03 安徽美芝精密制造有限公司 电机、压缩机及制冷设备
CN111384791A (zh) * 2019-09-26 2020-07-07 广东威灵电机制造有限公司 电机和家用电器
CN215267832U (zh) * 2021-02-25 2021-12-21 莱克电气股份有限公司 电机、家用电器、园林工具及交通工具

Also Published As

Publication number Publication date
CN114977578B (zh) 2024-01-26
CN114977578A (zh) 2022-08-30

Similar Documents

Publication Publication Date Title
CN106877615B (zh) 电动机及搭载了该电动机的电气设备
JP6002617B2 (ja) 永久磁石同期機
CN111725923B (zh) 电机及家用电器
CN112953151B (zh) 一种多边形燕尾式拼接磁钢结构的外转子电机
CN113364155A (zh) 单相无刷直流电机和电器设备
CN112421924B (zh) 电机和家用电器
CN215267832U (zh) 电机、家用电器、园林工具及交通工具
WO2022179315A1 (zh) 电机、家用电器、园林工具及交通工具
CN210201572U (zh) 一种表贴式永磁同步电机的转子结构及转子组件
JP5510079B2 (ja) アキシャルギャップモータ
CN111064336A (zh) 一种4槽4极集中式绕组无刷直流水泵电机
CN113839490B (zh) 一种高效低噪音的电机及其应用
CN112968557B (zh) 电机转子、电机、汽车
CN214412555U (zh) 双永磁体内嵌式永磁同步电机结构
CN210167872U (zh) 转子、电机、压缩机及制冷设备
JP2006254621A (ja) 永久磁石型電動機
JP2013115836A (ja) ブラシレスモータ及び電動ポンプ
CN112688458A (zh) 一种大轴径内置式永磁电机的转子结构及其电机
CN110752682A (zh) 一种外转子永磁电机
CN116599255B (zh) 一种电机转子结构及高性能伺服电机
CN115632534B (zh) 一种直驱式双边永磁励磁型磁场调制电机
CN213213296U (zh) 电机、压缩机和家用电器
CN217240417U (zh) 无刷电机及电动工具
CN211209392U (zh) 单相无刷直流电机和电器设备
CN220273407U (zh) 一种永磁式转子组件及无刷电动机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22758681

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22758681

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 14.02.2024)