WO2022178788A1 - 测距方法、装置、终端设备及存储介质 - Google Patents

测距方法、装置、终端设备及存储介质 Download PDF

Info

Publication number
WO2022178788A1
WO2022178788A1 PCT/CN2021/077980 CN2021077980W WO2022178788A1 WO 2022178788 A1 WO2022178788 A1 WO 2022178788A1 CN 2021077980 W CN2021077980 W CN 2021077980W WO 2022178788 A1 WO2022178788 A1 WO 2022178788A1
Authority
WO
WIPO (PCT)
Prior art keywords
ranging
amf
service request
identifier
observing
Prior art date
Application number
PCT/CN2021/077980
Other languages
English (en)
French (fr)
Inventor
洪伟
于磊
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to EP21927226.7A priority Critical patent/EP4300125A4/en
Priority to CN202180000566.2A priority patent/CN115918184A/zh
Priority to US18/546,122 priority patent/US20240125917A1/en
Priority to PCT/CN2021/077980 priority patent/WO2022178788A1/zh
Publication of WO2022178788A1 publication Critical patent/WO2022178788A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/023Services making use of location information using mutual or relative location information between multiple location based services [LBS] targets or of distance thresholds
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/74Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems
    • G01S13/76Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems wherein pulse-type signals are transmitted
    • G01S13/765Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems wherein pulse-type signals are transmitted with exchange of information between interrogator and responder
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/0205Details
    • G01S5/0221Receivers
    • G01S5/02213Receivers arranged in a network for determining the position of a transmitter
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/003Transmission of data between radar, sonar or lidar systems and remote stations
    • G01S7/006Transmission of data between radar, sonar or lidar systems and remote stations using shared front-end circuitry, e.g. antennas
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W12/00Security arrangements; Authentication; Protecting privacy or anonymity
    • H04W12/06Authentication
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present disclosure relates to the technical field of measurement, and in particular, to a ranging method, an apparatus, a terminal device and a storage medium.
  • the ranging technology mainly determines a distance parameter and/or a relative direction parameter between two nodes (for example, two UEs (User Equipment, terminal equipment)). And, with the continuous popularization of terminal equipment, the demand for distance measurement of terminal equipment is becoming stronger and stronger, and the application of ranging technology in various fields (such as smart home, smart factory, navigation, positioning, etc.) is also more and more extensive. . Therefore, a high-efficiency, high-precision, low-power consumption, and automated ranging method is urgently needed to improve user experience.
  • the ranging method, device, terminal device and storage medium proposed by the present disclosure are used to solve the problems of low efficiency, low precision, high power consumption and poor user experience of the ranging method in the related art.
  • the ranging terminal equipment UE receives a ranging service request sent by the ranging initiation UE, wherein the ranging service request includes an identifier and a ranging parameter;
  • the ranging UE determines a ranging role of the ranging UE according to the identifier, and the ranging role includes an observation UE or a target UE;
  • the ranging UE performs ranging according to the ranging parameter and the ranging role.
  • the ranging initiating UE sends a ranging service request to the ranging UE, wherein the ranging service request includes an identifier and a ranging parameter, wherein the ranging UE performs ranging according to the identifier and ranging parameter.
  • the second AMF receives a ranging service request sent by the ranging initiation UE, wherein the ranging service request includes an identifier and a ranging parameter;
  • the second AMF determines, according to the identifier, the first AMF corresponding to the ranging UE;
  • the second AMF sends the ranging service request to the ranging UE through the first AMF.
  • a receiving module configured to receive a ranging service request sent by a ranging initiation UE, wherein the ranging service request includes an identifier and a ranging parameter;
  • a processing module configured to determine a ranging role of the ranging UE according to the identifier in the ranging service request, where the ranging role includes an observing UE or a target UE;
  • the processing module is further configured to perform ranging according to the ranging parameters and ranging roles.
  • a sending module configured to send a ranging service request to the ranging UE, wherein the ranging service request includes an identifier and a ranging parameter, wherein the ranging UE performs ranging according to the identifier and the ranging parameter.
  • a receiving module configured to receive a ranging service request sent by a ranging initiation UE, wherein the ranging service request includes an identifier and a ranging parameter;
  • a processing module configured to determine a first AMF corresponding to the ranging UE according to the identifier, and send the ranging service request to the ranging UE through the first AMF.
  • a terminal device which includes: a transceiver; a memory; and a processor, respectively connected to the transceiver and the memory, and configured to be executable by executing a computer on the memory
  • the instruction controls the transceiver to send and receive wireless signals, and can implement the methods provided by the above-mentioned embodiments in one aspect and another aspect of the present disclosure.
  • a core network device proposed by an embodiment of another aspect of the present disclosure includes: a transceiver; a memory; and a processor, respectively connected to the transceiver and the memory, and configured to execute computer-executable instructions on the memory by executing computer-executable instructions on the memory. , which controls the transceiver to send and receive wireless signals, and can implement the method provided by the embodiments of another aspect of the present disclosure.
  • Another aspect of the present disclosure provides a computer storage medium, wherein the computer storage medium stores computer-executable instructions; after the computer-executable instructions are executed by a processor, the above method can be implemented.
  • the ranging terminal device UE can receive a ranging service request including an identifier and ranging parameters sent by the ranging initiating UE, and according to the ranging service request
  • the identifier in the ranging service request determines the ranging role of the ranging UE, and the ranging role includes the observing UE or the target UE, so that the ranging UE can perform ranging according to the ranging parameters and ranging roles .
  • two UEs to be ranging can be directly discovered, so that the ranging UE among the two UEs to be ranging can be automatically performed. Ranging improves the efficiency and accuracy of ranging, reduces power consumption, and improves user experience.
  • FIG. 1 is a schematic flowchart of a ranging method provided by an embodiment of the present disclosure
  • FIG. 2 is a schematic structural diagram of observing the relative positions of a UE and a target UE according to an embodiment of the present disclosure
  • FIG. 3 is an architectural diagram of a ranging service provided by an embodiment of the present disclosure
  • FIG. 4 is a schematic flowchart of a ranging method provided by another embodiment of the present disclosure.
  • FIG. 5 is a schematic flowchart of a ranging method provided by still another embodiment of the present disclosure.
  • FIG. 6 is a schematic flowchart of a ranging method provided by still another embodiment of the present disclosure.
  • FIG. 7 is a schematic flowchart of a ranging method provided by still another embodiment of the present disclosure.
  • FIG. 8 is a schematic flowchart of a ranging method provided by yet another embodiment of the present disclosure.
  • FIG. 9 is a schematic flowchart of a ranging method provided by still another embodiment of the present disclosure.
  • FIG. 10 is a schematic flowchart of a ranging method provided by still another embodiment of the present disclosure.
  • FIG. 11 is a schematic flowchart of a ranging method provided by yet another embodiment of the present disclosure.
  • FIG. 12 is a schematic flowchart of a ranging method provided by still another embodiment of the present disclosure.
  • FIG. 13 is a schematic flowchart of a ranging method provided by yet another embodiment of the present disclosure.
  • FIG. 14 is a schematic flowchart of a ranging method provided by yet another embodiment of the present disclosure.
  • 15 is a schematic flowchart of a ranging method provided by yet another embodiment of the present disclosure.
  • FIG. 16 is a schematic structural diagram of a ranging device provided by an embodiment of the present disclosure.
  • 17 is a schematic structural diagram of a distance measuring device provided by another embodiment of the present disclosure.
  • FIG. 18 is a schematic structural diagram of a ranging apparatus provided by an embodiment of the present disclosure.
  • FIG. 19 is a block diagram of a terminal device UE provided by an embodiment of the present disclosure.
  • first, second, third, etc. may be used in embodiments of the present disclosure to describe various pieces of information, such information should not be limited to these terms. These terms are only used to distinguish the same type of information from each other.
  • the first information may also be referred to as the second information, and similarly, the second information may also be referred to as the first information.
  • the words "if” and “if” as used herein can be interpreted as "at the time of” or "when” or "in response to determining.”
  • the ranging terminal device UE receives a ranging service request sent by the ranging initiation UE, wherein the ranging service request includes an identifier and a ranging parameter; the ranging UE
  • the ranging role of the ranging UE is determined according to the identifier in the ranging service request, where the ranging role includes an observing UE or a target UE, and the ranging UE performs ranging according to the ranging parameters and ranging role distance.
  • direct discovery can be performed between two UEs to be ranging, so that the ranging UE among the two UEs to be ranging can automatically Ranging improves the efficiency and accuracy of ranging, reduces power consumption, and improves user experience.
  • FIG. 1 is a schematic flowchart of a ranging method provided by an embodiment of the present disclosure, which is applied to a ranging UE. As shown in FIG. 1 , the ranging method may include the following steps:
  • Step 101 A ranging UE (User Equipment, terminal equipment) receives a ranging service request sent by a ranging initiating UE, wherein the ranging service request includes an identifier and a ranging parameter.
  • a ranging UE User Equipment, terminal equipment
  • a UE may be a device that provides voice and/or data connectivity to a user.
  • the UE can communicate with one or more core networks via a RAN (Radio Access Network), and the UE can be an IoT terminal, such as a sensor device, a mobile phone (or called a "cellular" phone) and an IoT-enabled terminal.
  • the computer of the terminal for example, may be a stationary, portable, pocket-sized, hand-held, computer-built-in or vehicle-mounted device.
  • a station For example, a station (Station, STA), a subscriber unit (subscriber unit), a subscriber station (subscriber station), a mobile station (mobile station), a mobile station (mobile), a remote station (remote station), an access point, a remote terminal ( remote terminal), access terminal, user terminal, or user agent.
  • the UE may also be a device of an unmanned aerial vehicle.
  • the UE may also be a vehicle-mounted device, for example, a trip computer with a wireless communication function, or a wireless terminal connected to an external trip computer.
  • the UE may also be a roadside device, for example, a streetlight, a signal light, or other roadside device having a wireless communication function.
  • the ranging parameters may include ranging content (such as the distance value between the observed UE and the target UE, the angle value, the direction from the target UE to the observed UE, etc.), the QoS (Quality of Service, quality of service) requirements, and the reporting period sex, etc.
  • the identifier of the ranging service request may include an identifier of an observing UE and an identifier of a target UE, where the observing UE may be a UE for performing ranging operations, and the observing UE is used to perform a ranging operation on the target UE. ranging.
  • the observing UE may perform ranging on the target UE based on the ranging parameter to generate a ranging result.
  • the identifier of the ranging service request may only include the identifier of the observing UE or the identifier of the target UE. For example, if the ranging service request is only sent to the observing UE, the identifier of the ranging service request may only include the identifier of the target UE, so that the observing UE can determine the target UE according to the identifier of the target UE.
  • FIG. 2 is a schematic structural diagram of observing the relative positions of a UE and a target UE according to an embodiment of the present disclosure.
  • the observing UE has a reference plane and a reference direction.
  • the direction from the target UE to the observing UE may be the direction from the connection between the observing UE and the target UE to the reference direction, that is, the direction A shown in FIG. 2 .
  • the direction from the target UE to the observation UE can be represented by the azimuth direction and the elevation direction of the target UE.
  • the azimuth direction of the target UE is pointing from the reference direction to the projection of the line from the observer UE to the target UE on the The angle formed between a line on the same plane as the reference direction normal to the zenith.
  • the target UE also has an elevation direction, and the elevation direction is a direction pointing from the horizontal plane to the connection line between the observation UE and the target UE.
  • the observing UE can realize the ranging of the target UE by measuring the distance between the target UE and the observing UE shown in FIG. 2 and the direction from the target UE to the observing UE. And, ranging services can be performed with or without 5G coverage.
  • the ranging initiating UE may be the observing UE. In another embodiment of the present disclosure, the ranging initiating UE may be the target UE. In yet another embodiment of the present disclosure, the ranging initiating UE may not be any one of the target UE and the observing UE.
  • FIG. 3 is an architectural diagram of a ranging service provided by an embodiment of the present disclosure.
  • the ranging service architecture includes an observing UE A, a target UE B, and a ranging initiating UE (not shown in the figure). ).
  • the observing UE A can perform ranging on the target UE B based on the ranging service request sent by the ranging initiating UE.
  • the interaction between the observing UE A and the target UE B can be realized based on the AMF (Access and Mobility Management Function) in the 3GPP control plane.
  • the interaction between the observing UE A and the ranging-initiating UE, and between the target UE B and the ranging-initiating UE can also be realized based on the AMF in the 3GPP control plane.
  • Step 102 the ranging UE determines the ranging role of the ranging UE according to the identifier in the ranging service request, and the ranging role includes the observing UE or the target UE.
  • the method for the ranging UE to determine the ranging role of the ranging UE according to the identifier in the ranging service request may include:
  • the ranging role of the ranging UE is determined as the observing UE; if the identity of the ranging UE is consistent with the identity of the target UE, the ranging role of the ranging UE is determined as the target UE.
  • Step 103 the ranging UE performs measurement according to the ranging parameter and the ranging role.
  • the ranging terminal equipment UE may receive a ranging service request including an identifier and ranging parameters sent by the ranging initiating UE, and determine the ranging UE according to the identifier in the ranging service request.
  • the ranging role so that the ranging UE can perform ranging based on ranging parameters and ranging roles. It can be seen from this that, in the embodiment of the present disclosure, based on the identifier in the ranging service request, two UEs to be ranging can be directly discovered, so that the ranging UE among the two UEs to be ranging can be automatically performed. Ranging improves the efficiency and accuracy of ranging, reduces power consumption, and improves user experience.
  • FIG. 4 is a schematic flowchart of a ranging method provided by another embodiment of the present disclosure, which is applied to a ranging UE. As shown in FIG. 4 , the method may include:
  • Step 401 Perform ranging service authentication on the ranging UE and the ranging initiating UE, wherein the ranging UE and the ranging initiating UE are different UEs, and there is a direct communication connection between the ranging UE and the ranging initiating UE.
  • performing ranging service authentication on the ranging UE and the ranging initiating UE may include authorizing the ranging service of the ranging UE and the ranging initiating UE, which may specifically include: Provisioning of UE's mutual discovery, privacy or ranging service policies or ranging parameters.
  • Step 402 The ranging UE receives a ranging service request sent by the ranging initiating UE, wherein the ranging service request includes an identifier and a ranging parameter.
  • the ranging initiating UE may discover the ranging UE by means of direct communication, and send a ranging service request to the ranging UE .
  • Step 403 the ranging UE determines that the ranging role of the ranging UE is the observing UE according to the identifier in the ranging service request.
  • the ranging UE is the observing UE, and the ranging initiating UE is the target UE.
  • the ranging UE is an observing UE, and the ranging initiating EU is not an observing UE and is not a target UE.
  • Step 404 the ranging UE determines the target UE according to the identifier of the target UE.
  • the ranging UE may broadcast the identity of the target UE, so that each UE receives the identity of the target UE and compares its own identity with the identity of the target UE.
  • the identifier of the target UE is consistent with the identifier of the target UE, a certain UE is determined as the target UE, and the target UE may feed back notification information to the ranging UE, so that the ranging UE determines the target UE based on the notification information.
  • Step 405 the ranging UE performs ranging on the target UE according to the ranging parameter.
  • the ranging UE may implement ranging on the target UE by determining the distance and angle between the ranging UE and the target UE, and the direction from the target UE to the ranging UE.
  • Step 406 the ranging UE generates a ranging result, and feeds back the ranging result to the ranging initiating UE.
  • the ranging UE may directly send the ranging result to the ranging initiating UE based on the communication connection between it and the ranging initiating UE.
  • the observing UE can directly receive the ranging service request including the identifier and ranging parameters sent by the ranging initiating UE, and determine the target UE according to the identifier in the ranging service request, so as to observe the ranging service request.
  • the UE can perform ranging on the target UE according to the ranging parameters to generate a ranging result, and feed back the ranging result to the ranging initiating UE. Therefore, in the embodiment of the present disclosure, the ranging service request and the ranging result can be directly exchanged between the observing UE and the ranging initiating UE, so that the ranging service can be started based on the interaction between the UEs.
  • the automation of the ranging method improves the efficiency and accuracy of ranging, reduces power consumption, and improves user experience.
  • FIG. 5 is a schematic flowchart of a ranging method provided by still another embodiment of the present disclosure, which is applied to a ranging UE. As shown in FIG. 5 , the method may include:
  • Step 501 Perform ranging service authentication on the ranging UE and the ranging initiating UE, wherein the ranging UE and the ranging initiating UE are different UEs, and there is a direct communication connection between the ranging UE and the ranging initiating UE.
  • Step 502 The ranging UE receives a ranging service request sent by the ranging initiating UE, wherein the ranging service request includes an identifier and a ranging parameter.
  • Step 503 the ranging UE determines the ranging role of the ranging UE as the target UE according to the identifier in the ranging service request.
  • the ranging UE is the target UE, and the ranging initiating UE is the observing UE. In another possible implementation form, the ranging UE is the target UE, and the ranging initiating EU is not the observing UE and not the target UE.
  • Step 504 the ranging UE determines the observing UE according to the identifier of the observing UE.
  • the ranging UE may broadcast the identifier of the observing UE, so that each UE receives the identifier of the observing UE, and compares its own identifier with the identifier of the observing UE.
  • the identifier of the UE is consistent with the identifier of the observing UE, a certain UE is determined to be the observing UE, and the observing UE may feed back notification information to the ranging UE, so that the ranging UE determines the observing UE based on the notification information.
  • Step 506 the ranging UE sends the ranging parameters to the observing UE, so that the observing UE performs ranging on the ranging UE according to the ranging parameters.
  • the ranging result is directly fed back to the ranging initiating UE.
  • the ranging result is fed back to the ranging UE, so that the ranging UE forwards the ranging result to the ranging initiation UE.
  • the target UE may receive a ranging service request including an identifier and ranging parameters sent by the ranging initiating UE, determine the observing UE according to the identifier in the ranging service request, and determine the ranging service request.
  • the parameters are sent to the observing UE, so that the observing UE performs ranging on the ranging UE according to the ranging parameters. Therefore, in the embodiment of the present disclosure, the ranging service request and the ranging result can be exchanged between the target UE and the ranging initiating UE, so that the ranging service can be started based on the interaction between the UEs, thus ensuring the ranging service.
  • the automation of the ranging method improves the efficiency and accuracy of ranging, reduces power consumption, and improves user experience.
  • FIG. 6 is a schematic flowchart of a ranging method provided by another embodiment of the present disclosure, which is applied to a ranging UE. As shown in FIG. 6 , the method may include:
  • Step 601 Perform ranging service authentication on the ranging UE and the ranging initiating UE, wherein the ranging UE and the ranging initiating UE are the same UE (ie, the ranging UE and the ranging initiating UE are co-located).
  • Step 602 the ranging UE generates a ranging service request, wherein the ranging service request includes an identifier and a ranging parameter.
  • Step 603 the ranging UE determines that the ranging role of the ranging UE is the observing UE according to the identifier in the ranging service request.
  • Step 604 the ranging UE determines the target UE according to the identifier of the target UE.
  • Step 605 the ranging UE performs ranging on the target UE according to the ranging parameter.
  • Step 606 the ranging UE generates a ranging result.
  • the observing UE can be used as the ranging initiating UE to perform ranging on the target UE to generate the ranging result.
  • the automation of the ranging method is ensured, the ranging efficiency and accuracy are improved, the power consumption is reduced, and the user experience is improved.
  • FIG. 7 is a schematic flowchart of a ranging method provided by another embodiment of the present disclosure, which is applied to a ranging UE. As shown in FIG. 7 , the method may include:
  • Step 701 Perform ranging service authentication on the ranging UE and the ranging initiating UE, wherein the ranging UE and the ranging initiating UE are the same UE.
  • Step 702 the ranging UE generates a ranging service request, wherein the ranging service request includes an identifier and a ranging parameter.
  • Step 703 the ranging UE determines the ranging role of the ranging UE as the target UE according to the identifier in the ranging service request.
  • Step 704 the ranging UE determines the observing UE according to the identifier of the observing UE.
  • Step 706 the ranging UE sends the ranging parameters to the observing UE, so that the observing UE performs ranging on the ranging UE according to the ranging parameters.
  • the ranging result is directly fed back to the ranging initiating UE.
  • the target UE can be used as a ranging initiating UE to perform ranging on the target UE to generate a ranging result.
  • the automation of the ranging method is ensured, the ranging efficiency and accuracy are improved, the power consumption is reduced, and the user experience is improved.
  • FIG. 8 is a schematic flowchart of a ranging method provided by another embodiment of the present disclosure, which is applied to a ranging UE. As shown in FIG. 8 , the method may include:
  • Step 801 Perform ranging service authentication on the ranging UE and the ranging initiating UE, wherein the ranging UE and the ranging initiating UE are different UEs, and the ranging UE and the ranging initiating UE cannot communicate directly.
  • Step 802 The ranging UE receives a ranging service request sent by the ranging initiating UE through a core network device serving the ranging UE.
  • the core network equipment may include AMF.
  • the method for the ranging UE to receive a ranging service request sent by the ranging initiating UE through a core network device serving the ranging UE may include: receiving a first AMF serving the ranging UE The sent ranging service request, wherein the ranging service request is sent by the ranging initiating UE to the first AMF through the second AMF serving the ranging initiating UE.
  • Step 803 the ranging UE determines that the ranging role of the ranging UE is the observing UE according to the identifier in the ranging service request.
  • Step 804 the ranging UE determines the target UE according to the identifier of the target UE.
  • Step 805 the ranging UE performs ranging on the target UE according to the ranging parameter.
  • Step 806 the ranging UE generates a ranging result, and feeds back the ranging result to the ranging initiating UE.
  • the method for the ranging UE to feed back the ranging result to the ranging initiating UE may include: sending the ranging result to the first AMF, so that the first AMF sends the testing result through the second AMF to the ranging initiating UE.
  • the observing UE can receive the ranging service request including the identifier and the ranging parameters sent by the ranging initiating UE through the core network device AMF serving the observing UE, and according to the ranging service request The identification of the target UE is determined, so that the observing UE can perform ranging on the target UE according to the ranging parameter to generate a ranging result, and feed back the ranging result to the ranging initiating UE.
  • the core network device AMF is substantially located in the 3GPP control plane.
  • the observing UE and the ranging initiating UE can realize the exchange of ranging service request and ranging result on the 3GPP control plane, that is, the starting of the ranging service can be realized based on the 3GPP control plane. It improves the automation of the ranging method, ensures low-latency ranging service and accuracy, reduces power consumption, and improves ranging efficiency.
  • FIG. 9 is a schematic flowchart of a ranging method provided by another embodiment of the present disclosure, which is applied to a ranging UE. As shown in FIG. 9 , the method may include:
  • Step 901 Perform ranging service authentication on the ranging UE and the ranging initiating UE, wherein the ranging UE and the ranging initiating UE are different UEs, and the ranging UE and the ranging initiating UE cannot communicate directly.
  • Step 902 The ranging UE receives a ranging service request sent by the ranging initiating UE through a core network device serving the ranging UE.
  • Step 903 the ranging UE determines the ranging role of the ranging UE as the target UE according to the identifier in the ranging service request.
  • Step 904 the ranging UE determines the observing UE according to the identifier of the observing UE.
  • Step 905 the ranging UE sends the ranging parameters to the observing UE, so that the observing UE performs ranging on the ranging UE according to the ranging parameters.
  • the ranging result may be directly fed back to the ranging initiating UE.
  • a ranging result is obtained after the observing UE performs ranging on the ranging UE, and the ranging result is sent to the ranging UE, so that the ranging UE sends the ranging result to the first AMF, The ranging result is forwarded by the first AMF to the ranging initiating UE through the second AMF.
  • the target UE can receive the ranging service request including the identifier and the ranging parameters sent by the ranging initiating UE through the core network device AMF serving the target UE, and according to the ranging service request The identifier of , determines the observing UE, so that the observing UE can perform ranging on the target UE according to the ranging parameter to generate the ranging result, and feed back the ranging result to the ranging initiating UE.
  • the core network device AMF is substantially located in the 3GPP control plane.
  • the target UE and the ranging initiating UE can realize the exchange of ranging service request and ranging result on the 3GPP control plane, that is, the starting of the ranging service can be realized based on the 3GPP control plane. It improves the automation of the ranging method, ensures low-latency ranging service and accuracy, reduces power consumption, and improves ranging efficiency.
  • FIG. 10 is a schematic flowchart of a ranging method provided by another embodiment of the present disclosure, which is applied to a ranging-initiating UE. As shown in FIG. 10 , the method may include:
  • Step 1001 the ranging initiating UE sends a ranging service request to the ranging UE, wherein the ranging service request includes an identifier and a ranging parameter, wherein the ranging UE performs ranging according to the identifier and the ranging parameter.
  • the identity of the ranging service request includes the identity of the observing UE and the identity of the target UE.
  • the method for the ranging initiating UE to send a ranging service request to the ranging UE may include: when there is direct communication between the ranging initiating UE and the ranging UE, the ranging initiating UE communicates directly with the ranging initiating UE. The ranging UE is discovered and a ranging service request is sent to the ranging UE.
  • the method for the ranging initiating UE to send a ranging service request to the ranging UE may include:
  • the second AMF serving the ranging-initiating UE queries the UDM (Unified Data Management) according to the identifier of the observed UE and the identifier of the target UE.
  • UDM Unified Data Management
  • the second AMF queries the AMF serving the observing UE, determines the observing UE as the ranging UE, determines the AMF serving the observing UE as the first AMF, and causes the ranging initiating UE to request the ranging service through the second AMF Forward to the first AMF, so that the first AMF forwards the ranging service request to the observing UE; if the second AMF queries the AMF serving the target UE, the target UE is determined as the ranging UE, and the The AMF is determined to be the first AMF, and causes the ranging initiating UE to forward the ranging service request to the first AMF through the second AMF, so that the first AMF forwards the ranging service request to the observing UE; if the second AMF queries the service The AMF serving the target UE and the AMF serving the observing UE, then any one of the target UE and the observing UE is determined as the ranging UE, and the AMF serving the ranging UE is determined as the first AMF (that is
  • the ranging application server may also receive a ranging result sent by the ranging UE.
  • the ranging initiating UE may send a ranging service request including an identifier and ranging parameters to the ranging UE, so that the ranging UE can perform ranging according to the identifier and ranging parameters. It can be seen from this that, in the embodiment of the present disclosure, based on the identifier in the ranging service request, two UEs to be ranging can be directly discovered, so that the ranging UE among the two UEs to be ranging can be automatically performed. Ranging improves the efficiency and accuracy of ranging, reduces power consumption, and improves user experience.
  • FIG. 11 is a schematic flowchart of a ranging method provided by another embodiment of the present disclosure, which is applied to a ranging-initiating UE. As shown in FIG. 11 , the method may include:
  • Step 1101 Perform ranging service authentication on the ranging UE and the ranging initiating UE, wherein the ranging UE is the observing UE, the ranging UE and the ranging initiating UE are different UEs, and the ranging UE and the ranging initiating UE are different. There is a direct communication link between them.
  • the ranging initiating UE may be the target UE. As another optional implementation form, the ranging initiating UE may not be the target UE.
  • Step 1102 the ranging initiating UE discovers the ranging UE by means of direct communication, and sends a ranging service request to the ranging UE.
  • Step 1103 the ranging initiating UE receives the ranging result.
  • the ranging initiating UE may send a ranging service request including an identifier and ranging parameters to the observing UE through direct communication, so that the observing UE can perform a ranging service according to the identifier and ranging parameters. distance. Therefore, in the embodiment of the present disclosure, the ranging service request and the ranging result can be directly exchanged between the observing UE and the ranging initiating UE, so that the ranging service can be started based on the interaction between the UEs.
  • the automation of the ranging method improves the efficiency and accuracy of ranging, reduces power consumption, and improves user experience.
  • FIG. 12 is a schematic flowchart of a ranging method provided by another embodiment of the present disclosure, which is applied to a ranging-initiating UE. As shown in FIG. 12 , the method may include:
  • Step 1201 Perform ranging service authentication on the ranging UE and the ranging initiating UE, wherein the ranging UE is the target UE, the ranging UE and the ranging initiating UE are different UEs, and the ranging UE and the ranging initiating UE are different. There is a direct communication link between them.
  • the ranging initiating UE may be the observing UE. As another optional implementation form, the ranging initiating UE may not be the observing UE.
  • Step 1202 the ranging initiating UE discovers the ranging UE by means of direct communication, and sends a ranging service request to the ranging UE.
  • Step 1203 the ranging initiation UE receives the ranging result.
  • the ranging initiating UE can send a ranging service request including an identifier and ranging parameters to the target UE through direct communication, so that the target UE can send ranging parameters to the target UE according to the identifier.
  • the ranging service request and the ranging result can be exchanged directly between the target UE and the ranging initiating UE, so that the ranging service can be started based on the interaction between the UEs.
  • the automation of the ranging method improves the efficiency and accuracy of ranging, reduces power consumption, and improves user experience.
  • FIG. 13 is a schematic flowchart of a ranging method provided by another embodiment of the present disclosure, which is applied to a ranging-initiating UE. As shown in FIG. 13 , the method may include:
  • Step 1301 Perform ranging service authentication on the ranging UE and the ranging initiating UE, wherein the ranging UE is the observing UE, the ranging UE and the ranging initiating UE are different UEs, and there is a difference between the ranging UE and the ranging initiating UE. Direct communication is not possible.
  • Step 1302 The ranging initiating UE sends a ranging service request to the second AMF serving the ranging initiating UE, so that the second AMF forwards the ranging service request to the ranging UE through the first AMF serving the ranging UE.
  • Step 1303 The ranging initiating UE receives the ranging result sent by the second AMF, where the ranging result is sent by the ranging UE to the second AMF through the first AMF.
  • the ranging initiating UE can send a ranging service request including an identifier and ranging parameters and receive ranging results to the observing UE through a core network device (ie, AMF in the 3GPP control plane). Therefore, in the embodiment of the present disclosure, the observing UE and the ranging initiating UE can realize the exchange of ranging service request and ranging result on the 3GPP control plane, that is, the starting of the ranging service can be realized based on the 3GPP control plane. It improves the automation of the ranging method, ensures low-latency ranging services, improves ranging efficiency and accuracy, reduces power consumption, and improves user experience.
  • FIG. 14 is a schematic flowchart of a ranging method provided by another embodiment of the present disclosure, which is applied to a ranging-initiating UE. As shown in FIG. 14 , the method may include:
  • Step 1401 Perform ranging service authentication on the ranging UE and the ranging initiating UE, wherein the ranging UE is the target UE, the ranging UE and the ranging initiating UE are different UEs, and the distance between the ranging UE and the ranging initiating UE is Direct communication is not possible.
  • Step 1402 The ranging initiating UE sends a ranging service request to the second AMF serving the ranging initiating UE, so that the second AMF sends the ranging service request to the ranging UE through the first AMF serving the ranging UE.
  • Step 1403 The ranging initiating UE receives the ranging result sent by the second AMF serving the ranging initiating UE, wherein the ranging result is sent by the ranging UE to the second AMF through the first AMF.
  • the ranging initiating UE can send a ranging service request including an identifier and ranging parameters to a target UE through a core network device (ie, AMF in the 3GPP control plane), and receive ranging results . Therefore, in the embodiment of the present disclosure, the target UE and the ranging initiating UE can realize the exchange of ranging service request and ranging result on the 3GPP control plane, that is, the starting of the ranging service can be realized based on the 3GPP control plane. It improves the automation of the ranging method, ensures low-latency ranging services, improves ranging efficiency and accuracy, reduces power consumption, and improves user experience.
  • a core network device ie, AMF in the 3GPP control plane
  • FIG. 15 is a schematic flowchart of a ranging method provided by another embodiment of the present disclosure, which is applied to the second AMF of a core network device serving ranging UEs. As shown in FIG. 15 , the method may include:
  • Step 1501 the second AMF receives a ranging service request sent by a ranging initiating UE, wherein the ranging service request includes an identifier and a ranging parameter.
  • Step 1502 the second AMF determines the first AMF corresponding to the ranging UE according to the identifier.
  • the method for the second AMF to determine the first AMF corresponding to the ranging UE according to the identifier may include:
  • the second AMF queries the UDM according to the identity of the observing UE and the identity of the target UE. If the second AMF queries the AMF serving the observing UE, the second AMF determines the observing UE as the ranging UE, and uses the AMF serving the observing UE as the AMF serving the observing UE.
  • the first AMF if the second AMF finds the AMF serving the target UE, the second AMF determines the target UE as the ranging UE, and uses the AMF serving the target UE as the first AMF; if the second AMF finds the AMF serving the target UE The AMF of the target UE and the AMF serving the observing UE, the second AMF determines either the target UE or the ranging UE as the ranging UE, and determines the AMF serving the ranging UE as the first AMF (that is, the serving UE). either the AMF for the observing UE or the AMF for the target UE).
  • Step 1503 the second AMF sends the ranging service request to the ranging UE through the first AMF.
  • the method further includes: the second AMF receives the ranging result sent by the ranging UE through the first AMF; the second AMF sends the ranging result to the ranging initiating UE.
  • the ranging service request including the identifier and the ranging parameter may be sent by the ranging initiating UE to the ranging UE through the AMF in the 3GPP control plane. Therefore, in the embodiment of the present disclosure, the ranging UE and the ranging initiating UE can implement the exchange of ranging service requests on the 3GPP control plane, that is, the ranging service can be started based on the 3GPP control plane, thus ensuring ranging
  • the automation of the method can ensure low-latency ranging services, improve ranging efficiency and accuracy, reduce power consumption, and improve user experience.
  • the ranging initiating UE and the ranging UE are No need to be in 5G coverage.
  • the ranging initiating UE and the ranging UE may be within the 5G coverage.
  • FIG. 16 is a schematic structural diagram of a ranging apparatus provided by an embodiment of the present disclosure. As shown in FIG. 16 , the ranging apparatus 1600 may include:
  • a receiving module 1601 configured to receive a ranging service request sent by a ranging initiating UE, wherein the ranging service request includes an identifier and a ranging parameter;
  • a processing module 1602 configured to determine the ranging role of the ranging UE according to the identifier in the ranging service request;
  • the processing module 1602 is further configured to perform ranging according to the ranging parameter and the ranging role.
  • the ranging apparatus provided by the embodiment of the present disclosure may be configured in any UE to perform the ranging method in any of the foregoing FIG. 1 , FIG. 4 to FIG. 9 .
  • the ranging terminal equipment UE can receive a ranging service request including an identifier and ranging parameters sent by the ranging initiating UE, and determine the ranging UE according to the identifier in the ranging service request.
  • the ranging role so that the ranging UE can perform ranging based on ranging parameters and ranging roles. It can be seen from this that, in the embodiment of the present disclosure, based on the identifier in the ranging service request, two UEs to be ranging can be directly discovered, so that the ranging UE among the two UEs to be ranging can be automatically performed. Ranging improves the efficiency and accuracy of ranging, reduces power consumption, and improves user experience.
  • the identifier includes an identifier of the observing UE and an identifier of the target UE, wherein the processing module 1602 is further configured to: if the identifier of the ranging UE is consistent with the identifier of the observing UE, determine the ranging UE The ranging role of the ranging UE is the observing UE; if the identifier of the ranging UE is consistent with the identifier of the target UE, the ranging role of the ranging UE is determined to be the target UE.
  • the processing module 1602 when the ranging UE determines that the ranging role is the observing UE, the processing module 1602 is further configured to: determine the target UE according to the identifier of the target UE; The target UE performs ranging.
  • the apparatus 1600 when the ranging UE determines that the ranging role is the observing UE, the apparatus 1600 is further configured to: send the ranging result to the ranging initiating UE.
  • the processing module 1602 when the ranging UE determines that the ranging role is the target UE, the processing module 1602 is further configured to: determine the observing UE according to the identifier of the observing UE; and send the ranging parameter To the observing UE, wherein the observing UE performs ranging on the ranging UE according to the ranging parameter.
  • the receiving module 1601 is further configured to: receive a ranging service request sent by the ranging initiating UE through a core network device serving the ranging UE.
  • the receiving module 1601 is further configured to: receive a ranging service request sent by the first access and mobility management function AMF serving the ranging UE.
  • the ranging initiating UE is an observing UE or a target UE.
  • FIG. 17 is a schematic structural diagram of a ranging apparatus provided by another embodiment of the present disclosure. As shown in FIG. 17 , the ranging apparatus 1700 may include:
  • the sending module 1701 is configured to send a ranging service request to the ranging UE, wherein the ranging service request includes an identifier and a ranging parameter, wherein the ranging UE performs ranging according to the identifier and the ranging parameter.
  • the ranging apparatus provided by the embodiment of the present disclosure may be configured in any UE to perform the ranging method in any of the foregoing FIG. 10 to FIG. 14 .
  • the ranging initiating UE may send a ranging service request including an identifier and ranging parameters to the ranging UE, so that the ranging UE can perform ranging according to the identifier and ranging parameters. It can be seen from this that, in the embodiment of the present disclosure, based on the identifier in the ranging service request, two UEs to be ranging can be directly discovered, so that the ranging UE among the two UEs to be ranging can be automatically performed. Ranging improves the efficiency and accuracy of ranging, reduces power consumption, and improves user experience.
  • the apparatus 1700 is further configured to: receive a ranging result sent by the ranging UE.
  • the identifier of the ranging service request includes the identifier of the observing UE and the identifier of the target UE.
  • the sending module 1701 is further configured to: discover the ranging UE by means of direct communication, and send a ranging service request to the ranging UE.
  • the apparatus is further configured to: receive a ranging result sent by a second AMF serving the ranging initiating UE, wherein the ranging result is sent by the ranging UE through the first AMF Sent to the second AMF.
  • the ranging initiating UE is an observing UE or a target UE.
  • FIG. 18 is a schematic structural diagram of a ranging apparatus provided by another embodiment of the present disclosure. As shown in FIG. 18 , the ranging apparatus 1800 may include:
  • a receiving module 1801 configured to receive a ranging service request sent by a ranging initiating UE, wherein the ranging service request includes an identifier and a ranging parameter;
  • the processing module 1802 is configured to determine the first AMF corresponding to the ranging UE according to the identifier, and send the ranging service request to the ranging UE through the first AMF.
  • the ranging initiation UE and the ranging UE can exchange ranging service requests on the 3GPP control plane through the ranging apparatus, that is, the ranging service can be started based on the 3GPP control plane. This ensures the automation of the ranging method and ensures low-latency ranging services, improves ranging efficiency and accuracy, reduces power consumption, and improves user experience.
  • the ranging apparatus is further configured to: receive the ranging result sent by the ranging UE through the first AMF; and send the ranging result to the ranging initiating UE.
  • the processing module 1802 is further configured to: if the AMF serving the observing UE is queried, take the AMF serving the observing UE as the first AMF; The AMF of the target UE, the AMF serving the target UE is taken as the first AMF; if the AMF serving the target UE and the AMF serving the observing UE are queried, the AMF serving either the observing UE or the target UE will be queried. as the first AMF.
  • the present disclosure also proposes a computer storage medium.
  • the computer storage medium provided by the embodiments of the present disclosure stores an executable program; after the executable program is executed by the processor, the ranging method provided by any of the foregoing technical solutions can be implemented, for example, as shown in FIG. 1 , FIG. 4 to FIG. 14 at least one of them.
  • the present disclosure also proposes a computer program product, including a computer program, which implements the aforementioned ranging method when executed by a processor.
  • the present disclosure also proposes a computer program, which, when executed by a processor, implements the ranging method described in FIG. 1 , FIG. 4 to FIG. 9 or FIGS. 10 to 14 of the present disclosure.
  • FIG. 19 is a block diagram of a terminal device UE1900 provided by an embodiment of the present disclosure.
  • the UE 1900 may be a mobile phone, a computer, a digital broadcast terminal device, a messaging device, a game console, a tablet device, a medical device, a fitness device, a personal digital assistant, and the like.
  • the UE 1900 may include at least one of the following components: a processing component 1902, a memory 1904, a power supply component 1906, a multimedia component 1908, an audio component 1910, an input/output (I/O) interface 1912, a sensor component 1914, and a communication component 1916.
  • a processing component 1902 may include at least one of the following components: a processing component 1902, a memory 1904, a power supply component 1906, a multimedia component 1908, an audio component 1910, an input/output (I/O) interface 1912, a sensor component 1914, and a communication component 1916.
  • the processing component 1902 generally controls the overall operations of the UE 1900, such as operations associated with display, phone calls, data communications, camera operations, and recording operations.
  • the processing component 1902 can include at least one processor 1920 to execute instructions to perform all or part of the steps of the methods described above. Additionally, processing component 1902 may include at least one module that facilitates interaction between processing component 1902 and other components. For example, processing component 1902 may include a multimedia module to facilitate interaction between multimedia component 1908 and processing component 1902.
  • Memory 1904 is configured to store various types of data to support operation at UE 1900. Examples of such data include instructions for any application or method operating on the UE 1900, contact data, phonebook data, messages, pictures, videos, etc.
  • Memory 1904 may be implemented by any type of volatile or non-volatile storage device or combination thereof, such as static random access memory (SRAM), electrically erasable programmable read only memory (EEPROM), erasable Programmable Read Only Memory (EPROM), Programmable Read Only Memory (PROM), Read Only Memory (ROM), Magnetic Memory, Flash Memory, Magnetic or Optical Disk.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read only memory
  • EPROM erasable Programmable Read Only Memory
  • PROM Programmable Read Only Memory
  • ROM Read Only Memory
  • Magnetic Memory Flash Memory
  • Magnetic or Optical Disk Magnetic Disk
  • Power component 1906 provides power to various components of UE 1900.
  • Power components 1906 may include a power management system, at least one power source, and other components associated with generating, managing, and distributing power to UE 1900.
  • Multimedia component 1908 includes screens that provide an output interface between the UE 1900 and the user.
  • the screen may include a liquid crystal display (LCD) and a touch panel (TP). If the screen includes a touch panel, the screen may be implemented as a touch screen to receive input signals from a user.
  • the touch panel includes at least one touch sensor to sense touch, swipe, and gestures on the touch panel. The touch sensor may not only sense the boundaries of a touch or swipe action, but also detect wake-up time and pressure associated with the touch or swipe action.
  • the multimedia component 1908 includes a front-facing camera and/or a rear-facing camera. When the UE 1900 is in an operation mode, such as a shooting mode or a video mode, the front camera and/or the rear camera can receive external multimedia data. Each of the front and rear cameras can be a fixed optical lens system or have focal length and optical zoom capability.
  • Audio component 1910 is configured to output and/or input audio signals.
  • the audio component 1910 includes a microphone (MIC) that is configured to receive external audio signals when the UE 1900 is in operating modes, such as call mode, recording mode, and voice recognition mode.
  • the received audio signal may be further stored in memory 1904 or transmitted via communication component 1916.
  • audio component 1910 also includes a speaker for outputting audio signals.
  • the I/O interface 1912 provides an interface between the processing component 1902 and peripheral interface modules, which may be keyboards, click wheels, buttons, and the like. These buttons may include, but are not limited to: home button, volume buttons, start button, and lock button.
  • Sensor assembly 1914 includes at least one sensor for providing various aspects of status assessment for UE 1900.
  • the sensor component 1914 can detect the on/off state of the device 1900, the relative positioning of components, such as the display and keypad of the UE 1900, the sensor component 1914 can also detect the position change of the UE 1900 or a component of the UE 1900, the user and the UE 1900. Presence or absence of UE 1900 contact, UE 1900 orientation or acceleration/deceleration and changes in UE 1900 temperature.
  • Sensor assembly 1914 may include a proximity sensor configured to detect the presence of nearby objects in the absence of any physical contact.
  • Sensor assembly 1914 may also include a light sensor, such as a CMOS or CCD image sensor, for use in imaging applications.
  • the sensor assembly 1914 may also include an acceleration sensor, a gyroscope sensor, a magnetic sensor, a pressure sensor, or a temperature sensor.
  • Communication component 1916 is configured to facilitate wired or wireless communication between UE 1900 and other devices.
  • the UE 1900 may access a wireless network based on a communication standard, such as WiFi, 2G or 3G, or a combination thereof.
  • the communication component 1916 receives broadcast signals or broadcast related information from an external broadcast management system via a broadcast channel.
  • the communication component 1916 also includes a near field communication (NFC) module to facilitate short-range communication.
  • NFC near field communication
  • the NFC module may be implemented based on radio frequency identification (RFID) technology, infrared data association (IrDA) technology, ultra-wideband (UWB) technology, Bluetooth (BT) technology and other technologies.
  • RFID radio frequency identification
  • IrDA infrared data association
  • UWB ultra-wideband
  • Bluetooth Bluetooth
  • the UE 1900 may be implemented by at least one Application Specific Integrated Circuit (ASIC), Digital Signal Processor (DSP), Digital Signal Processing Device (DSPD), Programmable Logic Device (PLD), Field Programmable Gate Array ( FPGA), controller, microcontroller, microprocessor or other electronic components implemented for performing the above method.
  • ASIC Application Specific Integrated Circuit
  • DSP Digital Signal Processor
  • DSPD Digital Signal Processing Device
  • PLD Programmable Logic Device
  • FPGA Field Programmable Gate Array
  • controller microcontroller, microprocessor or other electronic components implemented for performing the above method.
  • non-transitory computer-readable storage medium including instructions, such as a memory 1904 including instructions, which are executable by the processor 1920 of the UE 1900 to perform the above method.
  • the non-transitory computer-readable storage medium may be ROM, random access memory (RAM), CD-ROM, magnetic tape, floppy disk, optical data storage device, and the like.
  • the present disclosure also provides a core network device, comprising: a transceiver; a memory; a processor, respectively connected to the transceiver and the memory, and configured to be executable by executing a computer on the memory
  • the instruction controls the transceiver to send and receive wireless signals, and can implement the method described in FIG. 15 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种测距方法、装置、终端设备及存储介质,属于测量技术领域。其中,方法包括:测距终端设备UE接收测距发起UE发送的测距服务请求,其中,测距服务请求包括标识和测距参数(101);测距UE根据测距服务请求中的标识确定测距UE的测距角色,测距角色包括观察UE或目标UE(102);测距UE根据测距参数和测距角色进行测距(103)。通过该测距方法,基于测距服务请求中的标识可以使得待测距的两个UE之间直接发现,以使得待测距的两个UE之中的测距UE可以自动化的进行测距,提高了测距效率。

Description

测距方法、装置、终端设备及存储介质 技术领域
本公开涉及测量技术领域,尤其涉及一种测距方法、装置、终端设备及存储介质。
背景技术
测距技术主要是确定两个节点(例如两个UE(User Equipment,终端设备))之间的距离参数和/或相对方向参数。以及,随着终端设备的不断普及,对终端设备进行测距的需求越来越强烈,测距技术在各个领域(例如智能家居、智慧工厂、导航、定位等领域)的应用也越来越广泛。由此,亟需一种高效率、高精度、低功耗以及自动化的测距方法,以提升用户体验。
发明内容
本公开提出的测距方法、装置、终端设备及存储介质,用于解决相关技术中测距方法的效率低、精度低、功耗高、用户体验差的问题。
本公开一方面实施例提出的测距方法,包括:
测距终端设备UE接收测距发起UE发送的测距服务请求,其中,所述测距服务请求包括标识和测距参数;
所述测距UE根据所述标识确定所述测距UE的测距角色,所述测距角色包括观察UE或目标UE;
所述测距UE根据所述测距参数和测距角色进行测距。
本公开另一方面实施例提出的测距方法,包括:
测距发起UE向测距UE发送测距服务请求,其中,所述测距服务请求包括标识和测距参数,其中,所述测距UE根据所述标识和测距参数进行测距。
本公开又一方面实施例提出的测距方法,包括:
第二AMF接收测距发起UE发送的测距服务请求,其中,所述测距服务请求包括标识和测距参数;
所述第二AMF根据所述标识确定测距UE对应的第一AMF;
所述第二AMF将所述测距服务请求通过所述第一AMF发送至所述测距UE。
本公开再一方面实施例提出的测距装置,包括:
接收模块,用于接收测距发起UE发送的测距服务请求,其中,所述测距服务请求包括标识和测距参数;
处理模块,用于根据所述测距服务请求中的标识确定所述测距UE的测距角色,所述测距角色包括观察UE或目标UE;
所述处理模块还用于根据所述测距参数和测距角色进行测距。
本公开又一方面实施例提出的测距装置,包括:
发送模块,用于向测距UE发送测距服务请求,其中,所述测距服务请求包括标识和测距参数,其中,所述测距UE根据所述标识和测距参数进行测距。
本公开又一方面实施例提出的测距装置,包括:
接收模块,用于接收测距发起UE发送的测距服务请求,其中,所述测距服务请求包括标识和测距参数;
处理模块,用于根据所述标识确定测距UE对应的第一AMF,并将所述测距服务请求通过所述第一AMF发送至所述测距UE。
本公开再一方面实施例提出的一种终端设备,其中,包括:收发器;存储器;处理器,分别与所述收发器及所述存储器连接,配置为通过执行所述存储器上的计算机可执行指令,控制所述收发器的无线信号收发,并能够实现上述本公开一方面实施例和另一方面实施例提出的方法。
本公开又一方面实施例提出的一种核心网设备,包括:收发器;存储器;处理器,分别与所述收发器及所述存储器连接,配置为通过执行所述存储器上的计算机可执行指令,控制所述收发器的无线信号 收发,并能够实现本公开又一方面实施例提出的方法。
本公开又一方面实施例提出的计算机存储介质,其中,所述计算机存储介质存储有计算机可执行指令;所述计算机可执行指令被处理器执行后,能够实现上述的方法。
本公开实施例提供的测距方法、装置、终端设备及计算机存储介质,测距终端设备UE可以接收测距发起UE发送的包括有标识和测距参数的测距服务请求,并根据所述测距服务请求中的标识确定出所述测距UE的测距角色,所述测距角色包括观察UE或目标UE,以便所述测距UE能够根据所述测距参数和测距角色进行测距。由此可知,本公开实施例中基于测距服务请求中的标识可以使得待测距的两个UE之间直接发现,以使得待测距的两个UE之中的测距UE可以自动化的进行测距,提高了测距效率和精度、降低了功耗,且提升了用户体验。
本公开附加的方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本公开的实践了解到。
附图说明
本公开上述的和/或附加的方面和优点从下面结合附图对实施例的描述中将变得明显和容易理解,其中:
图1为本公开一个实施例所提供的一种测距方法的流程示意图;
图2为本公开一个实施例所提供的一种观察UE与目标UE相对位置的结构示意图;
图3为本公开一个实施例所提供的一种测距服务的架构图;
图4为本公开另一个实施例所提供的测距方法的流程示意图;
图5为本公开再一个实施例所提供的测距方法的流程示意图;
图6为本公开又一个实施例所提供的测距方法的流程示意图;
图7为本公开又一个实施例所提供的测距方法的流程示意图;
图8为本公开又一个实施例所提供的测距方法的流程示意图;
图9为本公开又一个实施例所提供的测距方法的流程示意图;
图10为本公开又一个实施例所提供的测距方法的流程示意图;
图11为本公开又一个实施例所提供的测距方法的流程示意图;
图12为本公开又一个实施例所提供的测距方法的流程示意图;
图13为本公开又一个实施例所提供的测距方法的流程示意图;
图14为本公开又一个实施例所提供的测距方法的流程示意图;
图15为本公开又一个实施例所提供的测距方法的流程示意图;
图16为本公开一个实施例所提供的测距装置的结构示意图;
图17为本公开另一个实施例所提供的测距装置的结构示意图;
图18为本公开一个实施例所提供的测距装置的结构示意图;
图19是本公开一个实施例所提供的一种终端设备UE的框图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本公开实施例相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本公开实施例的一些方面相一致的装置和方法的例子。
在本公开实施例使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本公开实施例。在本公开实施例和所附权利要求书中所使用的单数形式的“一种”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
应当理解,尽管在本公开实施例可能采用术语第一、第二、第三等来描述各种信息,但这些信息不 应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本公开实施例范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。取决于语境,如在此所使用的词语“如果”及“若”可以被解释成为“在……时”或“当……时”或“响应于确定”。
下面详细描述本公开的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的要素。下面通过参考附图描述的实施例是示例性的,旨在用于解释本公开,而不能理解为对本公开的限制。
在本公开实施例提供的测距方法之中,测距终端设备UE接收测距发起UE发送的测距服务请求,其中,所述测距服务请求包括标识和测距参数;所述测距UE根据所述测距服务请求中的标识确定所述测距UE的测距角色,所述测距角色包括观察UE或目标UE,所述测距UE根据所述测距参数和测距角色进行测距。由此可知,本公开实施例中基于测距服务请求中的标识可以使得待测距的两个UE之间进行直接发现,以使得待测距的两个UE之中的测距UE可以自动地进行测距,提高了测距效率和精度、降低了功耗,提升了用户体验。
下面参考附图对本公开提供的测距方法、装置、UE及存储介质进行详细描述。
图1为本公开实施例所提供的一种测距方法的流程示意图,应用于测距UE中,如图1所示,测距方法可以包括以下步骤:
步骤101,测距UE(User Equipment,终端设备)接收测距发起UE发送的测距服务请求,其中,测距服务请求包括标识和测距参数。
需要说明的是,本公开实施例的测距方法可以应用在任意的UE中。UE可以是指向用户提供语音和/或数据连通性的设备。UE可以经RAN(Radio Access Network,无线接入网)与一个或多个核心网进行通信,UE可以是物联网终端,如传感器设备、移动电话(或称为“蜂窝”电话)和具有物联网终端的计算机,例如,可以是固定式、便携式、袖珍式、手持式、计算机内置的或者车载的装置。例如,站(Station,STA)、订户单元(subscriber unit)、订户站(subscriber station),移动站(mobile station)、移动台(mobile)、远程站(remote station)、接入点、远程终端(remoteterminal)、接入终端(access terminal)、用户装置(user terminal)或用户代理(useragent)。或者,UE也可以是无人飞行器的设备。或者,UE也可以是车载设备,比如,可以是具有无线通信功能的行车电脑,或者是外接行车电脑的无线终端。或者,UE也可以是路边设备,比如,可以是具有无线通信功能的路灯、信号灯或者其它路边设备等。
其中,测距参数可以包括测距内容(例如观察UE与目标UE之间的距离值、角度值、目标UE到观察UE的方向等)、QoS(Quality of Service,服务质量)要求、以及报告周期性等。在本公开一个实施例之中,测距服务请求的标识可以包括观察UE的标识和目标UE的标识,其中,观察UE可以为用于执行测距操作的UE,观察UE用于对目标UE进行测距。在本公开的一个实施例之中,观察UE可以基于测距参数对目标UE进行测距以生成测距结果。当然在本公开的其他实施例之中,测距服务请求的标识可以仅包括观察UE的标识或目标UE的标识。例如,如果测距服务请求只发给观察UE,则测距服务请求的标识可以仅包括目标UE的标识,使得观察UE可以根据目标UE的标识确定目标UE。
作为一种示例,图2为本公开实施例所提供的一种观察UE与目标UE相对位置的结构示意图,如图2所示,观察UE具有参考平面和参考方向。以及,目标UE到观察UE的方向可以是从观察UE和目标UE的连线指向参考方向的方向,也即是,图2所示的方向A。其中,目标UE到观察UE的方向可以由目标UE的方位角方向和高程方向表示,参考图2可知,目标UE的方位角方向是从参考方向指向与从观察者UE到目标UE的线投影在与正交于天顶的参考方向相同的平面上的线之间形成的角度。以及,目标UE还具备仰角方向,仰角方向为从水平面指向观察UE与目标UE的连线的方向。
则观察UE通过测量图2所示的目标UE与观察UE之间的距离和目标UE到观察UE的方向即可实现对目标UE的测距。并且,测距服务无论有无5G覆盖都可以进行。
进一步地,在本公开的一个实施例中,测距发起UE可以为观察UE。在本公开的另一个实施例中,测距发起UE可以为目标UE。在本公开的再一个实施例中,测距发起UE可以不为目标UE和观察UE中的任一个。
以及,图3本公开实施例提供的一种测距服务的架构图,如图3所示,测距服务架构中包括有观察UE A、目标UE B以及测距发起UE(图中未示出)。其中,观察UE A可以基于测距发起UE所发送的测距服务请求对目标UE B进行测距。还需要说明的是,观察UE A与目标UE B之间可以基于3GPP控制平面中的AMF(Access and Mobility Management Function,接入与移动性管理功能)实现交互。同理的,观察UE A与测距发起UE之间、目标UE B与测距发起UE之间也可以基于3GPP控制平面中的AMF实现交互。
步骤102,测距UE根据测距服务请求中的标识确定测距UE的测距角色,测距角色包括观察UE或目标UE。
作为一种可能的实现形式,测距UE根据测距服务请求中的标识确定测距UE的测距角色的方法可以包括:
如果测距UE的标识与观察UE的标识一致,则确定测距UE的测距角色为观察UE;如果测距UE的标识与目标UE的标识一致,则确定测距UE的测距角色为目标UE。
步骤103,测距UE根据测距参数和测距角色进行测。
本公开实施例提供的测距方法,测距终端设备UE可以接收测距发起UE发送的包括有标识和测距参数的测距服务请求,并根据测距服务请求中的标识确定出测距UE的测距角色,以便测距UE能够根据测距参数和测距角色进行测距。由此可知,本公开实施例中基于测距服务请求中的标识可以使得待测距的两个UE之间直接发现,以使得待测距的两个UE之中的测距UE可以自动化的进行测距,提高了测距效率和精度、降低了功耗,且提升了用户体验。
图4为本公开另一个实施例所提供的测距方法的流程示意图,应用于测距UE中,如图4所示,方法可以包括:
步骤401,对测距UE和测距发起UE进行测距服务认证,其中,测距UE与测距发起UE为不同的UE,且测距UE与测距发起UE之间存在直接通信连接。
作为一种可能的实现形式,对测距UE和测距发起UE进行测距服务认证可以包括对测距UE和测距发起UE的测距服务进行授权,具体可以包括:待测距的两个UE的相互发现、隐私或者测距服务策略或者测距参数的规定。
步骤402,测距UE接收测距发起UE发送的测距服务请求,其中,测距服务请求包括标识和测距参数。
作为一种可能的实现形式,基于测距UE与测距发起UE之间存在直接通信连接,则测距发起UE可以使用直接通信的方式发现测距UE,并向测距UE发送测距服务请求。
步骤403,测距UE根据测距服务请求中的标识确定测距UE的测距角色为观察UE。
其中,一种可能的实现形式中,测距UE为观察UE,测距发起UE为目标UE。在另一种可能的实现形式中,测距UE为观察UE,测距发起EU不为观察UE且不为目标UE。
步骤404,测距UE根据目标UE的标识确定目标UE。
作为一种可能的实现形式,测距UE可以将目标UE的标识进行广播,以使得各个UE接收到目标UE的标识,并将其自身的标识与目标UE的标识进行比对,当某一UE的标识与目标UE的标识一致时,则确定某一UE为目标UE,目标UE可以向测距UE反馈一通知信息,以使得测距UE基于通知信息确定出目标UE。
步骤405,测距UE根据测距参数对目标UE进行测距。
作为一种可能的实现形式,测距UE可以通过确定测距UE与目标UE之间的距离、角度,以及目标UE到测距UE的方向来实现对目标UE的测距。
步骤406,测距UE生成测距结果,并向测距发起UE反馈测距结果。
作为一种可能的实现形式,测距UE可以基于其与测距发起UE之间的通信连接将测距结果直接发送至测距发起UE。
本公开实施例提供的测距方法,观察UE可以直接接收测距发起UE发送的包括有标识和测距参数 的测距服务请求,并根据测距服务请求中的标识确定出目标UE,以便观察UE能够根据测距参数对目标UE进行测距以生成测距结果,并向测距发起UE反馈测距结果。由此,本公开实施例中的观察UE和测距发起UE之间可以直接实现测距服务请求和测距结果的交换,从而基于UE之间的交互即可实现测距服务的启动,则确保了测距方法的自动化性,提高了测距效率和精度、降低了功耗,提升了用户体验。
图5为本公开再一个实施例所提供的测距方法的流程示意图,应用于测距UE中,如图5所示,方法可以包括:
步骤501,对测距UE和测距发起UE进行测距服务认证,其中,测距UE与测距发起UE为不同的UE,且测距UE与测距发起UE之间存在直接通信连接。
步骤502,测距UE接收测距发起UE发送的测距服务请求,其中,测距服务请求包括标识和测距参数。
步骤503,测距UE根据测距服务请求中的标识确定测距UE的测距角色为目标UE。
其中,一种可能的实现形式中,测距UE为目标UE,测距发起UE为观察UE。在另一种可能的实现形式中,测距UE为目标UE,测距发起EU不为观察UE且不为目标UE。
步骤504,测距UE根据观察UE的标识确定观察UE。
作为一种可能的实现形式,测距UE可以将观察UE的标识进行广播,以使得各个UE接收到观察UE的标识,并将其自身的标识与观察UE的标识进行比对,当某一UE的标识与观察UE的标识一致时,则确定某一UE为观察UE,观察UE可以向测距UE反馈一通知信息,以使得测距UE基于通知信息确定出观察UE。
步骤506,测距UE将测距参数发送至观察UE,以使观察UE根据测距参数对测距UE进行测距。
其中,在一种可能的实现形式中,观察UE完成对测距UE的测距生成测距结果之后,将测距结果直接反馈至测距发起UE。
在另一种可能的实现形式中,观察UE完成对测距UE的测距生成测距结果之后,将测距结果反馈至测距UE,以由测距UE将测距结果转发至测距发起UE。
本公开实施例提供的测距方法,目标UE可以接收测距发起UE发送的包括有标识和测距参数的测距服务请求,根据测距服务请求中的标识确定出观察UE,并将测距参数发送至观察UE,以使观察UE根据测距参数对测距UE进行测距。由此,本公开实施例中的目标UE和测距发起UE之间实现测距服务请求和测距结果的交换,从而基于UE之间的交互即可实现测距服务的启动,则确保了测距方法的自动化性,提高了测距效率和精度、降低了功耗,提升了用户体验。
图6为本公开又一个实施例所提供的测距方法的流程示意图,应用于测距UE中,如图6所示,方法可以包括:
步骤601,对测距UE和测距发起UE进行测距服务认证,其中,测距UE与测距发起UE为相同的UE(即测距UE与测距发起UE并置)。
步骤602,测距UE生成测距服务请求,其中,测距服务请求包括标识和测距参数。
步骤603,测距UE根据测距服务请求中的标识确定测距UE的测距角色为观察UE。
步骤604,测距UE根据目标UE的标识确定目标UE。
步骤605,测距UE根据测距参数对目标UE进行测距。
步骤606,测距UE生成测距结果。
本公开实施例提供的测距方法,观察UE可以作为测距发起UE来对目标UE进行测距以生成测距结果。从而确保了测距方法的自动化性,提高了测距效率和精度、降低了功耗,提升了用户体验。
图7为本公开又一个实施例所提供的测距方法的流程示意图,应用于测距UE中,如图7所示,方法可以包括:
步骤701,对测距UE和测距发起UE进行测距服务认证,其中,测距UE与测距发起UE为相同的UE。
步骤702,测距UE生成测距服务请求,其中,测距服务请求包括标识和测距参数。
步骤703,测距UE根据测距服务请求中的标识确定测距UE的测距角色为目标UE。
步骤704,测距UE根据观察UE的标识确定观察UE。
步骤706,测距UE将测距参数发送至观察UE,以使观察UE根据测距参数对测距UE进行测距。
其中,在一种可能的实现形式中,观察UE完成对测距UE的测距生成测距结果之后,将测距结果直接反馈至测距发起UE。
本公开实施例提供的测距方法,目标UE可以作为测距发起UE来对目标UE进行测距以生成测距结果。从而确保了测距方法的自动化性,提高了测距效率和精度、降低了功耗,提升了用户体验。
图8为本公开又一个实施例所提供的测距方法的流程示意图,应用于测距UE中,如图8所示,方法可以包括:
步骤801,对测距UE和测距发起UE进行测距服务认证,其中,测距UE与测距发起UE为不同的UE,且测距UE与测距发起UE之间无法直接通信。
步骤802,测距UE接收测距发起UE通过服务于测距UE的核心网设备发送的测距服务请求。
其中,核心网设备可以包括AMF。以及,在一种可能的实现形式中,测距UE接收测距发起UE通过服务于测距UE的核心网设备发送的测距服务请求的方法可以包括:接收服务于测距UE的第一AMF发送的测距服务请求,其中,测距服务请求由测距发起UE通过服务于测距发起UE的第二AMF发送至第一AMF。
步骤803,测距UE根据测距服务请求中的标识确定测距UE的测距角色为观察UE。
步骤804,测距UE根据目标UE的标识确定目标UE。
步骤805,测距UE根据测距参数对目标UE进行测距。
步骤806,测距UE生成测距结果,并向测距发起UE反馈测距结果。
其中,在一种可能的实现形式中,测距UE向测距发起UE反馈测距结果的方法可以包括:向第一AMF发送测距结果,以由第一AMF通过第二AMF将测试结果发送至测距发起UE。
本公开实施例提供的测距方法,观察UE可以通过服务于观察UE的核心网设备AMF接收测距发起UE发送的包括有标识和测距参数的测距服务请求,并根据测距服务请求中的标识确定出目标UE,以便观察UE能够根据测距参数对目标UE进行测距以生成测距结果,并向测距发起UE反馈测距结果。其中,参考图3可知,核心网设备AMF实质上是位于3GPP控制平面中。由此,本公开实施例中,观察UE和测距发起UE可以在3GPP控制平面实现测距服务请求和测距结果的交换,也即是可以基于3GPP控制平面实现测距服务的启动,则确保了测距方法的自动化性,且可以确保低延迟测距服务和精度、降低了功耗,提高了测距效率。
图9为本公开又一个实施例所提供的测距方法的流程示意图,应用于测距UE中,如图9所示,方法可以包括:
步骤901,对测距UE和测距发起UE进行测距服务认证,其中,测距UE与测距发起UE为不同的UE,且测距UE与测距发起UE之间无法直接通信。
步骤902,测距UE接收测距发起UE通过服务于测距UE的核心网设备发送的测距服务请求。
步骤903,测距UE根据测距服务请求中的标识确定测距UE的测距角色为目标UE。
步骤904,测距UE根据观察UE的标识确定观察UE。
步骤905,测距UE将测距参数发送至观察UE,以使观察UE根据测距参数对测距UE进行测距。
其中,在一种可能的实现形式中,观察UE对测距UE进行测距得到测距结果之后,可以将测距结果直接反馈至测距发起UE。
在另一种可能的实现形式中,观察UE对测距UE进行测距之后得到测距结果,将测距结果发送至 测距UE,以由测距UE将测距结果发送至第一AMF,由第一AMF将测距结果通过第二AMF转发至测距发起UE。
本公开实施例提供的测距方法,目标UE可以通过服务于目标UE的核心网设备AMF接收测距发起UE发送的包括有标识和测距参数的测距服务请求,并根据测距服务请求中的标识确定出观察UE,以便观察UE能够根据测距参数对目标UE进行测距以生成测距结果,并向测距发起UE反馈测距结果。其中,参考图3可知,核心网设备AMF实质上是位于3GPP控制平面中。由此,本公开实施例中,目标UE和测距发起UE可以在3GPP控制平面实现测距服务请求和测距结果的交换,也即是可以基于3GPP控制平面实现测距服务的启动,则确保了测距方法的自动化性,且可以确保低延迟测距服务和精度、降低了功耗,提高了测距效率。
图10为本公开又一个实施例所提供的测距方法的流程示意图,应用于测距发起UE中,如图10所示,方法可以包括:
步骤1001,测距发起UE向测距UE发送测距服务请求,其中,测距服务请求包括标识和测距参数,其中,测距UE根据标识和测距参数进行测距。测距服务请求的标识包括观察UE的标识和目标UE的标识。
作为一种可能的实现形式,测距发起UE向测距UE发送测距服务请求的方法可以包括:测距发起UE与测距UE之间存在直接通信时,测距发起UE通过直接通信的方式发现测距UE,并向测距UE发送测距服务请求。
作为另一种可能的实现形式,测距发起UE向测距UE发送测距服务请求的方法可以包括:
测距发起UE与测距UE之间无法直接通信,此时使得服务于测距发起UE的第二AMF根据观察UE的标识和目标UE的标识查询UDM(Unified Data Management,统一数据管理),如果第二AMF查询到服务于观察UE的AMF,则将观察UE确定为测距UE,将服务于观察UE的AMF确定为第一AMF,并使得测距发起UE通过第二AMF将测距服务请求转发至第一AMF,以由第一AMF将测距服务请求转发至观察UE;如果第二AMF查询到服务于目标UE的AMF,则将目标UE确定为测距UE,将服务于目标UE的AMF确定为第一AMF,并使得测距发起UE通过第二AMF将测距服务请求转发至第一AMF,以由第一AMF将测距服务请求转发至观察UE;如果第二AMF查询到服务于目标UE的AMF和服务于观察UE的AMF,则将目标UE和观察UE中的任一个确定为测距UE,并将服务于测距UE的AMF确定为第一AMF(即服务于观察UE的AMF和服务于目标UE的AMF之中的任意一个),并使得测距发起UE通过第二AMF将测距服务请求转发至第一AMF,以由第一AMF将测距服务请求转发至观察UE。
以及,在本公开的一个实施例之中,如果测距UE为观察UE,则测距应用服务器还可以接收测距UE发送的测距结果。
本公开实施例提供的测距方法,测距发起UE可以通过向测距UE发送包括有标识和测距参数的测距服务请求,以使得测距UE能够根据标识和测距参数进行测距。由此可知,本公开实施例中基于测距服务请求中的标识可以使得待测距的两个UE之间直接发现,以使得待测距的两个UE之中的测距UE可以自动化的进行测距,提高了测距效率和精度、降低了功耗,提升了用户体验。
图11为本公开又一个实施例所提供的测距方法的流程示意图,应用于测距发起UE中,如图11所示,方法可以包括:
步骤1101,对测距UE和测距发起UE进行测距服务认证,其中,测距UE为观察UE,测距UE与测距发起UE为不同的UE,且测距UE与测距发起UE之间存在直接通信连接。
作为一种可选的实现形式,测距发起UE可以为目标UE。作为另一种可选的实现形式,测距发起UE可以不为目标UE。
步骤1102,测距发起UE使用直接通信的方式发现测距UE,并向测距UE发送测距服务请求。
步骤1103,测距发起UE接收测距结果。
本公开实施例提供的测距方法,测距发起UE可以通过直接通信的方式向观察UE发送包括有标识和测距参数的测距服务请求,以使得观察UE能够根据标识和测距参数进行测距。由此,本公开实施例中的观察UE和测距发起UE之间可以直接实现测距服务请求和测距结果的交换,从而基于UE之间的交互即可实现测距服务的启动,则确保了测距方法的自动化性,提高了测距效率和精度、降低了功耗,提升了用户体验。
图12为本公开又一个实施例所提供的测距方法的流程示意图,应用于测距发起UE中,如图12所示,方法可以包括:
步骤1201,对测距UE和测距发起UE进行测距服务认证,其中,测距UE为目标UE,测距UE与测距发起UE为不同的UE,且测距UE与测距发起UE之间存在直接通信连接。
作为一种可选的实现形式,测距发起UE可以为观察UE。作为另一种可选的实现形式,测距发起UE可以不为观察UE。
步骤1202,测距发起UE使用直接通信的方式发现测距UE,并向测距UE发送测距服务请求。
步骤1203,测距发起UE接收测距结果。
本公开实施例提供的测距方法,测距发起UE可以通过直接通信的方式向目标UE发送包括有标识和测距参数的测距服务请求,以使得目标UE能够根据标识将测距参数发送至观察UE以进行测距。由此,本公开实施例中的目标UE和测距发起UE之间可以直接实现测距服务请求和测距结果的交换,从而基于UE之间的交互即可实现测距服务的启动,则确保了测距方法的自动化性,提高了测距效率和精度、降低了功耗,提升了用户体验。
图13为本公开又一个实施例所提供的测距方法的流程示意图,应用于测距发起UE中,如图13所示,方法可以包括:
步骤1301,对测距UE和测距发起UE进行测距服务认证,其中,测距UE为观察UE,测距UE与测距发起UE为不同的UE,测距UE与测距发起UE之间无法直接通信。
步骤1302,测距发起UE向服务于测距发起UE的第二AMF发送测距服务请求,以使得第二AMF通过服务于测距UE的第一AMF向测距UE转发测距服务请求。
步骤1303,测距发起UE接收第二AMF发送的测距结果,其中,测距结果由测距UE通过第一AMF向第二AMF发送。
本公开实施例提供的测距方法,测距发起UE可以通过核心网设备(即3GPP控制平面中的AMF)向观察UE发送包括有标识和测距参数的测距服务请求和接收测距结果。由此,本公开实施例中,观察UE和测距发起UE可以在3GPP控制平面实现测距服务请求和测距结果的交换,也即是可以基于3GPP控制平面实现测距服务的启动,则确保了测距方法的自动化性,且可以确保低延迟测距服务,提高了测距效率和精度、降低了功耗,提升了用户体验。
图14为本公开又一个实施例所提供的测距方法的流程示意图,应用于测距发起UE中,如图14所示,方法可以包括:
步骤1401,对测距UE和测距发起UE进行测距服务认证,其中,测距UE为目标UE,测距UE与测距发起UE为不同的UE,测距UE与测距发起UE之间无法直接通信。
步骤1402,测距发起UE向服务于测距发起UE的第二AMF发送测距服务请求,以使得第二AMF通过服务于测距UE的第一AMF向测距UE发送测距服务请求。
步骤1403,测距发起UE接收服务于测距发起UE的第二AMF发送的测距结果,其中,测距结果由测距UE通过第一AMF向第二AMF发送。
本公开实施例提供的测距方法,测距发起UE可以通过核心网设备(即3GPP控制平面中的AMF)向目标UE发送包括有标识和测距参数的测距服务请求,以及接收测距结果。由此,本公开实施例中,目标UE和测距发起UE可以在3GPP控制平面实现测距服务请求和测距结果的交换,也即是可以基于 3GPP控制平面实现测距服务的启动,则确保了测距方法的自动化性,且可以确保低延迟测距服务,提高了测距效率和精度、降低了功耗,提升了用户体验。
图15为本公开又一个实施例所提供的测距方法的流程示意图,应用于服务于测距UE的核心网设备第二AMF中,如图15所示,方法可以包括:
步骤1501,第二AMF接收测距发起UE发送的测距服务请求,其中,测距服务请求包括标识和测距参数。
步骤1502,第二AMF根据标识确定测距UE对应的第一AMF。
作为一种可选的实现方式,第二AMF根据标识确定测距UE对应的第一AMF的方法可以包括:
第二AMF根据观察UE的标识和目标UE的标识查询UDM,如果第二AMF查询到服务于观察UE的AMF,则第二AMF将观察UE确定为测距UE,将服务于观察UE的AMF作为第一AMF;如果第二AMF查询到服务于目标UE的AMF,则第二AMF将目标UE确定为测距UE,将服务于目标UE的AMF作为第一AMF;如果第二AMF查询到服务于目标UE的AMF和服务于观察UE的AMF,则第二AMF将目标UE和测距UE中的任一个确定为测距UE,并将服务于测距UE的AMF确定为第一AMF(即服务于观察UE的AMF和服务于目标UE的AMF之中的任意一个)。
步骤1503,第二AMF将测距服务请求通过第一AMF发送至测距UE。
以及,作为一种可选的实现方式,在步骤1503之后,方法还包括:第二AMF接收测距UE通过第一AMF发送的测距结果;第二AMF向测距发起UE发送测距结果。
本公开实施例提供的测距方法,测距发起UE可以通过3GPP控制平面中的AMF向测距UE发送的包括有标识和测距参数的测距服务请求。由此,本公开实施例中,测距UE和测距发起UE可以在3GPP控制平面实现测距服务请求的交换,也即是可以基于3GPP控制平面实现测距服务的启动,则确保了测距方法的自动化性,且可以确保低延迟测距服务,提高了测距效率和精度、降低了功耗,提升了用户体验。
以及,需要说明的是,作为一种可能的实现方式,上述图1、图4、图5、图6、图7、图11以及图12所示的方法中,测距发起UE与测距UE无需在5G覆盖范围内。
作为另一种可能的实现方式,上述图8、图9、图13以及与14所示的方法中,测距发起UE与测距UE可以在5G覆盖范围内。
图16为本公开一个实施例所提供的测距装置的结构示意图,如图16所示,测距装置1600可以包括:
接收模块1601,用于接收测距发起UE发送的测距服务请求,其中,测距服务请求包括标识和测距参数;
处理模块1602,用于根据测距服务请求中的标识确定测距UE的测距角色;
处理模块1602,还用于根据测距参数和测距角色进行测距。
其中,本公开实施例提供的测距装置,可以被配置在任意UE中,以执行前述图1、图4至图9任一的测距方法。
本公开实施例提供的测距装置,测距终端设备UE可以接收测距发起UE发送的包括有标识和测距参数的测距服务请求,并根据测距服务请求中的标识确定出测距UE的测距角色,以便测距UE能够根据测距参数和测距角色进行测距。由此可知,本公开实施例中基于测距服务请求中的标识可以使得待测距的两个UE之间直接发现,以使得待测距的两个UE之中的测距UE可以自动化的进行测距,提高了测距效率和精度、降低了功耗,提升了用户体验。
在本公开一种可能的实现形式中,标识包括观察UE的标识和目标UE的标识,其中,处理模块1602还用于:如果测距UE的标识与观察UE的标识一致,则确定测距UE的测距角色为观察UE;如果测距UE的标识与目标UE的标识一致,则确定测距UE的测距角色为目标UE。
进一步地,在本公开另一种可能的实现形式中,当测距UE确定测距角色为观察UE时,处理模块 1602还用于:根据目标UE的标识确定目标UE;并根据测距参数对目标UE进行测距。
进一步地,在本公开另一种可能的实现形式中,当测距UE确定测距角色为观察UE时,装置1600还用于:向测距发起UE发送测距结果。
进一步地,在本公开另一种可能的实现形式中,当测距UE确定测距角色为目标UE时,处理模块1602还用于:根据观察UE的标识确定观察UE;并将测距参数发送至观察UE,其中,观察UE根据测距参数对测距UE进行测距。
进一步地,在本公开另一种可能的实现形式中,接收模块1601还用于:接收测距发起UE通过服务于测距UE的核心网设备发送的测距服务请求。
进一步地,在本公开另一种可能的实现形式中,接收模块1601还用于:接收服务于测距UE的第一接入与移动性管理功能AMF发送的测距服务请求。
进一步地,在本公开另一种可能的实现形式中,测距发起UE为观察UE或目标UE。
需要说明的是,前述对图1或图4-图9任一所示的测距方法实施例的解释说明也适用于图16所示的测距装置1600,此处不再赘述。
图17为本公开另一个实施例所提供的测距装置的结构示意图,如图17所示,测距装置1700可以包括:
发送模块1701,用于向测距UE发送测距服务请求,其中,测距服务请求包括标识和测距参数,其中,测距UE根据标识和测距参数进行测距。
其中,本公开实施例提供的测距装置,可以被配置在任意UE中,以执行前述图10至图14任一的测距方法。
本公开实施例提供的测距装置,测距发起UE可以通过向测距UE发送包括有标识和测距参数的测距服务请求,以使得测距UE能够根据标识和测距参数进行测距。由此可知,本公开实施例中基于测距服务请求中的标识可以使得待测距的两个UE之间直接发现,以使得待测距的两个UE之中的测距UE可以自动化的进行测距,提高了测距效率和精度、降低了功耗,提升了用户体验。
在本公开一种可能的实现形式中,所述装置1700还用于:接收测距UE发送的测距结果。
进一步地,在本公开另一种可能的实现形式中,测距服务请求的标识包括观察UE的标识和目标UE的标识。
进一步地,在本公开另一种可能的实现形式中,发送模块1701还用于:使用直接通信的方式发现测距UE,并向测距UE发送测距服务请求。
进一步地,在本公开另一种可能的实现形式中,装置还用于:接收服务于测距发起UE的第二AMF发送的测距结果,其中,测距结果由测距UE通过第一AMF向第二AMF发送。
进一步地,在本公开另一种可能的实现形式中,测距发起UE为观察UE或目标UE。
需要说明的是,前述对图10-图14所示的测距方法实施例的解释说明也适用于图17的测距装置1700,此处不再赘述。
图18为本公开另一个实施例所提供的测距装置的结构示意图,如图18所示,测距装置1800可以包括:
接收模块1801,用于接收测距发起UE发送的测距服务请求,其中,测距服务请求包括标识和测距参数;
处理模块1802,用于根据标识确定测距UE对应的第一AMF,并将测距服务请求通过第一AMF发送至测距UE。
本公开实施例提供的测距装置,测距发起UE和测距UE可以通过测距装置在3GPP控制平面实现测距服务请求的交换,也即是可以基于3GPP控制平面实现测距服务的启动,则确保了测距方法的自动化性,且可以确保低延迟测距服务,提高了测距效率和精度、降低了功耗,提升了用户体验。
在本公开一种可能的实现形式中,测距装置还用于:接收测距UE通过第一AMF发送的测距结果; 并向测距发起UE发送测距结果。
进一步地,在本公开另一种可能的实现形式中,处理模块1802还用于:如果查询到服务于观察UE的AMF,则将服务于观察UE的AMF作为第一AMF;如果查询到服务于目标UE的AMF,则将服务于目标UE的AMF作为第一AMF;如果查询到服务于目标UE的AMF和服务于观察UE的AMF,则将服务于观察UE和目标UE之中任意一个的AMF作为第一AMF。
为了实现上述实施例,本公开还提出一种计算机存储介质。
本公开实施例提供的计算机存储介质,存储有可执行程序;所述可执行程序被处理器执行后,能够实现前述任意技术方案提供的测距方法,例如,如图1、图4至图14的至少其中之一。
为了实现上述实施例,本公开还提出一种计算机程序产品,包括计算机程序,所述计算机程序在被处理器执行时实现如前所述的测距方法。
此外,为了实现上述实施例,本公开还提出一种计算机程序,该程序被处理器执行时,以实现本公开图1、图4-图9或者图10至图14所述的测距方法。
图19是本公开一个实施例所提供的一种终端设备UE1900的框图。例如,UE1900可以是移动电话,计算机,数字广播终端设备,消息收发设备,游戏控制台,平板设备,医疗设备,健身设备,个人数字助理等。
参照图19,UE1900可以包括以下至少一个组件:处理组件1902,存储器1904,电源组件1906,多媒体组件1908,音频组件1910,输入/输出(I/O)的接口1912,传感器组件1914,以及通信组件1916。
处理组件1902通常控制UE1900的整体操作,诸如与显示,电话呼叫,数据通信,相机操作和记录操作相关联的操作。处理组件1902可以包括至少一个处理器1920来执行指令,以完成上述的方法的全部或部分步骤。此外,处理组件1902可以包括至少一个模块,便于处理组件1902和其他组件之间的交互。例如,处理组件1902可以包括多媒体模块,以方便多媒体组件1908和处理组件1902之间的交互。
存储器1904被配置为存储各种类型的数据以支持在UE1900的操作。这些数据的示例包括用于在UE1900上操作的任何应用程序或方法的指令,联系人数据,电话簿数据,消息,图片,视频等。存储器1904可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
电源组件1906为UE1900的各种组件提供电力。电源组件1906可以包括电源管理系统,至少一个电源,及其他与为UE1900生成、管理和分配电力相关联的组件。
多媒体组件1908包括在所述UE1900和用户之间的提供一个输出接口的屏幕。在一些实施例中,屏幕可以包括液晶显示器(LCD)和触摸面板(TP)。如果屏幕包括触摸面板,屏幕可以被实现为触摸屏,以接收来自用户的输入信号。触摸面板包括至少一个触摸传感器以感测触摸、滑动和触摸面板上的手势。所述触摸传感器可以不仅感测触摸或滑动动作的边界,而且还检测与所述触摸或滑动操作相关的唤醒时间和压力。在一些实施例中,多媒体组件1908包括一个前置摄像头和/或后置摄像头。当UE1900处于操作模式,如拍摄模式或视频模式时,前置摄像头和/或后置摄像头可以接收外部的多媒体数据。每个前置摄像头和后置摄像头可以是一个固定的光学透镜系统或具有焦距和光学变焦能力。
音频组件1910被配置为输出和/或输入音频信号。例如,音频组件1910包括一个麦克风(MIC),当UE1900处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克风被配置为接收外部音频信号。所接收的音频信号可以被进一步存储在存储器1904或经由通信组件1916发送。在一些实施例中,音频组件1910还包括一个扬声器,用于输出音频信号。
I/O接口1912为处理组件1902和外围接口模块之间提供接口,上述外围接口模块可以是键盘,点击轮,按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮和锁定按钮。
传感器组件1914包括至少一个传感器,用于为UE1900提供各个方面的状态评估。例如,传感器组件1914可以检测到设备1900的打开/关闭状态,组件的相对定位,例如所述组件为UE1900的显示 器和小键盘,传感器组件1914还可以检测UE1900或UE1900一个组件的位置改变,用户与UE1900接触的存在或不存在,UE1900方位或加速/减速和UE1900的温度变化。传感器组件1914可以包括接近传感器,被配置用来在没有任何的物理接触时检测附近物体的存在。传感器组件1914还可以包括光传感器,如CMOS或CCD图像传感器,用于在成像应用中使用。在一些实施例中,该传感器组件1914还可以包括加速度传感器,陀螺仪传感器,磁传感器,压力传感器或温度传感器。
通信组件1916被配置为便于UE1900和其他设备之间有线或无线方式的通信。UE1900可以接入基于通信标准的无线网络,如WiFi,2G或3G,或它们的组合。在一个示例性实施例中,通信组件1916经由广播信道接收来自外部广播管理系统的广播信号或广播相关信息。在一个示例性实施例中,所述通信组件1916还包括近场通信(NFC)模块,以促进短程通信。例如,在NFC模块可基于射频识别(RFID)技术,红外数据协会(IrDA)技术,超宽带(UWB)技术,蓝牙(BT)技术和其他技术来实现。
在示例性实施例中,UE1900可以被至少一个应用专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述方法。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的存储器1904,上述指令可由UE1900的处理器1920执行以完成上述方法。例如,所述非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
为了实现上述实施例,本公开还提供一种核心网设备,包括:收发器;存储器;处理器,分别与所述收发器及所述存储器连接,配置为通过执行所述存储器上的计算机可执行指令,控制所述收发器的无线信号收发,并能够实现图15所述的方法。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本发明的其它实施方案。本公开旨在涵盖本发明的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本发明的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由下面的权利要求指出。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利要求来限制。

Claims (23)

  1. 一种测距方法,其特征在于,所述方法包括:
    测距终端设备UE接收测距发起UE发送的测距服务请求,其中,所述测距服务请求包括标识和测距参数;
    所述测距UE根据所述标识确定所述测距UE的测距角色,所述测距角色包括观察UE或目标UE;
    所述测距UE根据所述测距参数和所述测距角色进行测距。
  2. 如权利要求1所述的方法,其特征在于,所述标识包括观察UE的标识和目标UE的标识,其中,所述测距UE根据所述测距服务请求中的标识确定所述测距UE的测距角色,包括:
    如果所述测距UE的标识与所述观察UE的标识一致,则所述测距UE确定所述测距UE的测距角色为观察UE;以及
    如果所述测距UE的标识与所述目标UE的标识一致,则所述测距UE确定所述测距UE的测距角色为目标UE。
  3. 如权利要求2所述的方法,其特征在于,当所述测距UE确定所述测距角色为观察UE时,所述测距UE根据所述测距参数和测距角色进行测距,包括:
    所述测距UE根据所述目标UE的标识确定目标UE;
    所述测距UE根据所述测距参数对所述目标UE进行测距。
  4. 如权利要求2所述的方法,其特征在于,当所述测距UE确定所述测距角色为观察UE时,还包括:
    所述测距UE向所述测距发起UE发送所述测距结果。
  5. 如权利要求2所述的方法,其特征在于,当所述测距UE确定所述测距角色为所述目标UE时,所述根据所述测距参数和测距角色进行测距,包括:
    所述测距UE根据所述观察UE的标识确定观察UE;
    所述测距UE将所述测距参数发送至所述观察UE,其中,所述观察UE根据所述测距参数对所述测距UE进行测距。
  6. 如权利要求1-5任一项所述的方法,其特征在于,所述测距UE接收测距发起UE发送的测距服务请求,包括:
    所述测距UE接收所述测距发起UE通过服务于所述测距UE的核心网设备发送的所述测距服务请求。
  7. 如权利要求6所述的方法,其特征在于,所述测距UE接收所述测距发起UE通过服务于所述测距UE的核心网设备发送的所述测距服务请求,包括:
    所述测距UE接收服务于所述测距UE的第一接入与移动性管理功能AMF发送的所述测距服务请求。
  8. 如权利要求1所述的方法,其特征在于,所述测距发起UE为所述观察UE或目标UE。
  9. 一种测距方法,其特征在于,所述方法包括:
    测距发起UE向测距UE发送测距服务请求,其中,所述测距服务请求包括标识和测距参数,其中,所述测距UE根据所述标识和测距参数进行测距。
  10. 如权利要求9所述的方法,其特征在于,还包括:
    所述测距发起UE接收所述测距UE发送的测距结果。
  11. 如权利要求10所述的方法,其特征在于,所述测距服务请求的标识包括观察UE的标识和目标UE的标识。
  12. 如权利要求9或10所述的测距方法,其特征在于,所述测距发起UE向测距UE发送测距服务请求,包括:
    测距发起UE使用直接通信的方式发现所述测距UE,并向所述测距UE发送所述测距服务请求。
  13. 如权利要求10所述的测距方法,其特征在于,所述测距发起UE接收所述测距UE发送的测距结果,包括:
    所述测距发起UE接收服务于所述测距发起UE的第二AMF发送的所述测距结果,其中,所述测距结果由所述测距UE通过所述第一AMF向所述第二AMF发送。
  14. 如权利要求9所述的方法,其特征在于,所述测距发起UE为所述观察UE或目标UE。
  15. 一种测距方法,其特征在于,包括:
    第二AMF接收测距发起UE发送的测距服务请求,其中,所述测距服务请求包括标识和测距参数;
    所述第二AMF根据所述标识确定测距UE对应的第一AMF;
    所述第二AMF将所述测距服务请求通过所述第一AMF发送至所述测距UE。
  16. 如权利要求15所述的方法,其特征在于,还包括:
    所述第二AMF接收所述测距UE通过所述第一AMF发送的测距结果;
    所述第二AMF向所述测距发起UE发送所述测距结果。
  17. 如权利要求15所述的方法,其特征在于,所述第二AMF根据所述标识确定测距UE对应的第一AMF,包括:
    如果所述第二AMF查询到服务于所述观察UE的AMF,则所述第二AMF将服务于所述观察UE的AMF作为所述第一AMF;
    如果所述第二AMF查询到服务于所述目标UE的AMF,则所述第二AMF将服务于所述目标UE的AMF作为所述第一AMF;
    如果所述第二AMF查询到服务于所述目标UE的AMF和服务于所述观察UE的AMF,则所述第二AMF将服务于所述观察UE和所述目标UE之中任意一个的AMF作为所述第一AMF。
  18. 一种测距装置,其特征在于,包括:
    接收模块,用于接收测距发起UE发送的测距服务请求,其中,所述测距服务请求包括标识和测距参数;
    处理模块,用于根据所述测距服务请求中的标识确定所述测距UE的测距角色,所述测距角色包括观察UE或目标UE;
    所述处理模块,还用于根据所述测距参数和测距角色进行测距。
  19. 一种测距装置,其特征在于,包括:
    发送模块,用于向测距UE发送测距服务请求,其中,所述测距服务请求包括标识和测距参数,其中,所述测距UE根据所述标识和测距参数进行测距。
  20. 一种测距装置,其特征在于,包括:
    接收模块,用于接收测距发起UE发送的测距服务请求,其中,所述测距服务请求包括标识和测距参数;
    处理模块,用于根据所述标识确定测距UE对应的第一AMF,并将所述测距服务请求通过所述第一AMF发送至所述测距UE。
  21. 一种终端设备,其特征在于,包括:收发器;存储器;处理器,分别与所述收发器及所述存储器连接,配置为通过执行所述存储器上的计算机可执行指令,控制所述收发器的无线信号收发,并能够实现权利要求1至8或9至14任一项所述的方法。
  22. 一种核心网设备,其特征在于,包括:收发器;存储器;处理器,分别与所述收发器及所述存储器连接,配置为通过执行所述存储器上的计算机可执行指令,控制所述收发器的无线信号收发,并能够实现权利要求15至17任一项所述的方法。
  23. 一种计算机存储介质,其中,所述计算机存储介质存储有计算机可执行指令;所述计算机可执行指令被处理器执行后,能够实现权利要求1至8或9至14或15至17任一项所述的方法。
PCT/CN2021/077980 2021-02-25 2021-02-25 测距方法、装置、终端设备及存储介质 WO2022178788A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP21927226.7A EP4300125A4 (en) 2021-02-25 2021-02-25 TELEMETRY METHOD AND APPARATUS AND USER EQUIPMENT AND STORAGE MEDIUM
CN202180000566.2A CN115918184A (zh) 2021-02-25 2021-02-25 测距方法、装置、终端设备及存储介质
US18/546,122 US20240125917A1 (en) 2021-02-25 2021-02-25 Ranging method and apparatus, and user equipment and storage medium
PCT/CN2021/077980 WO2022178788A1 (zh) 2021-02-25 2021-02-25 测距方法、装置、终端设备及存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/077980 WO2022178788A1 (zh) 2021-02-25 2021-02-25 测距方法、装置、终端设备及存储介质

Publications (1)

Publication Number Publication Date
WO2022178788A1 true WO2022178788A1 (zh) 2022-09-01

Family

ID=83047611

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/077980 WO2022178788A1 (zh) 2021-02-25 2021-02-25 测距方法、装置、终端设备及存储介质

Country Status (4)

Country Link
US (1) US20240125917A1 (zh)
EP (1) EP4300125A4 (zh)
CN (1) CN115918184A (zh)
WO (1) WO2022178788A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024065856A1 (zh) * 2022-09-30 2024-04-04 北京小米移动软件有限公司 定位方法及装置
WO2024065140A1 (zh) * 2022-09-26 2024-04-04 北京小米移动软件有限公司 一种用户设备ue的角色授权方法/装置/设备及存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106068034A (zh) * 2015-04-20 2016-11-02 苹果公司 邻近感知联网测距
WO2017105154A1 (ko) * 2015-12-17 2017-06-22 엘지전자 주식회사 무선 통신 시스템에서 nan 단말이 레인징 오퍼레이션을 수행하는 방법 및 장치
WO2017131849A1 (en) * 2016-01-25 2017-08-03 Intel IP Corporation Station (sta) and method for ranging in neighborhood awareness network (nan) communication
WO2018156862A1 (en) * 2017-02-27 2018-08-30 Qualcomm Incorporated Access point (ap) to access point (ap) ranging for passive locationing
CN109151796A (zh) * 2018-08-10 2019-01-04 Oppo广东移动通信有限公司 Nan设备寻找方法、相关设备以及计算机可读存储介质
CN112205008A (zh) * 2020-09-03 2021-01-08 北京小米移动软件有限公司 测距的方法、通信节点、通信设备及存储介质

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11882541B2 (en) * 2019-01-11 2024-01-23 Apple Inc. Systems and methods of providing new radio positioning

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106068034A (zh) * 2015-04-20 2016-11-02 苹果公司 邻近感知联网测距
WO2017105154A1 (ko) * 2015-12-17 2017-06-22 엘지전자 주식회사 무선 통신 시스템에서 nan 단말이 레인징 오퍼레이션을 수행하는 방법 및 장치
WO2017131849A1 (en) * 2016-01-25 2017-08-03 Intel IP Corporation Station (sta) and method for ranging in neighborhood awareness network (nan) communication
WO2018156862A1 (en) * 2017-02-27 2018-08-30 Qualcomm Incorporated Access point (ap) to access point (ap) ranging for passive locationing
CN109151796A (zh) * 2018-08-10 2019-01-04 Oppo广东移动通信有限公司 Nan设备寻找方法、相关设备以及计算机可读存储介质
CN112205008A (zh) * 2020-09-03 2021-01-08 北京小米移动软件有限公司 测距的方法、通信节点、通信设备及存储介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4300125A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024065140A1 (zh) * 2022-09-26 2024-04-04 北京小米移动软件有限公司 一种用户设备ue的角色授权方法/装置/设备及存储介质
WO2024065856A1 (zh) * 2022-09-30 2024-04-04 北京小米移动软件有限公司 定位方法及装置

Also Published As

Publication number Publication date
CN115918184A (zh) 2023-04-04
EP4300125A1 (en) 2024-01-03
US20240125917A1 (en) 2024-04-18
EP4300125A4 (en) 2024-01-10

Similar Documents

Publication Publication Date Title
WO2022141641A1 (zh) 默认波束的确定方法、装置、用户设备及网络设备
US11985620B2 (en) Network registration method and apparatus
US11805562B2 (en) User device pairing method and apparatus
US11221634B2 (en) Unmanned aerial vehicle control method and device, unmanned aerial vehicle and remote control device
CN105578391B (zh) 信息处理方法、装置、系统及终端设备
WO2022178788A1 (zh) 测距方法、装置、终端设备及存储介质
WO2022178789A1 (zh) 测距方法、装置、终端设备及存储介质
WO2022067766A1 (zh) 定位参考信号配置方法、配置装置及存储介质
WO2021243723A1 (zh) 位置确定方法、装置、通信设备及存储介质
WO2022205146A1 (zh) 波束恢复方法、装置、用户设备、网络侧设备及存储介质
WO2022056847A1 (zh) 终端的定位方法、装置、通信设备及存储介质
WO2023216116A1 (zh) 信息处理方法及装置、通信设备及存储介质
WO2022193191A1 (zh) 资源配置方法、装置、终端设备、接入网设备及存储介质
WO2022246652A1 (zh) 定位方法、装置、用户设备、基站、核心网设备及存储介质
WO2022233047A1 (zh) 小区测量方法、装置及存储介质
WO2022204998A1 (zh) 能力上报、信息配置方法及装置
WO2022151342A1 (zh) 一种上报方法、发送方法、装置、设备及存储介质
WO2022036610A1 (zh) 一种通信方法、通信装置及存储介质
WO2022052070A1 (zh) 连接控制方法、连接控制装置
WO2022178866A1 (zh) 测距方法、装置、终端设备及存储介质
WO2023225870A1 (zh) 一种传输跟踪信息的方法、装置及可读存储介质
WO2018184170A1 (zh) 实现物联网设备引导的方法、装置、设备及基站
WO2022222086A1 (zh) 信息传输方法、装置、用户设备、接入网设备、核心网及存储介质
WO2024020892A1 (zh) 信息处理方法、系统及装置、通信设备及存储介质
WO2023087329A1 (zh) 协作测距方法、装置、通信设备和存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21927226

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18546122

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202347063152

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2021927226

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021927226

Country of ref document: EP

Effective date: 20230925