WO2022177026A1 - Flexible polyether urethane foam and urethane mask - Google Patents

Flexible polyether urethane foam and urethane mask Download PDF

Info

Publication number
WO2022177026A1
WO2022177026A1 PCT/JP2022/007340 JP2022007340W WO2022177026A1 WO 2022177026 A1 WO2022177026 A1 WO 2022177026A1 JP 2022007340 W JP2022007340 W JP 2022007340W WO 2022177026 A1 WO2022177026 A1 WO 2022177026A1
Authority
WO
WIPO (PCT)
Prior art keywords
urethane foam
flexible
polyether urethane
flexible polyether
mask
Prior art date
Application number
PCT/JP2022/007340
Other languages
French (fr)
Japanese (ja)
Inventor
拓朗 北村
良幸 岩崎
Original Assignee
株式会社イノアックコーポレーション
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社イノアックコーポレーション filed Critical 株式会社イノアックコーポレーション
Priority to JP2023500973A priority Critical patent/JPWO2022177026A1/ja
Publication of WO2022177026A1 publication Critical patent/WO2022177026A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A41WEARING APPAREL
    • A41DOUTERWEAR; PROTECTIVE GARMENTS; ACCESSORIES
    • A41D13/00Professional, industrial or sporting protective garments, e.g. surgeons' gowns or garments protecting against blows or punches
    • A41D13/05Professional, industrial or sporting protective garments, e.g. surgeons' gowns or garments protecting against blows or punches protecting only a particular body part
    • A41D13/11Protective face masks, e.g. for surgical use, or for use in foul atmospheres
    • AHUMAN NECESSITIES
    • A41WEARING APPAREL
    • A41DOUTERWEAR; PROTECTIVE GARMENTS; ACCESSORIES
    • A41D31/00Materials specially adapted for outerwear
    • AHUMAN NECESSITIES
    • A41WEARING APPAREL
    • A41DOUTERWEAR; PROTECTIVE GARMENTS; ACCESSORIES
    • A41D31/00Materials specially adapted for outerwear
    • A41D31/04Materials specially adapted for outerwear characterised by special function or use
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62BDEVICES, APPARATUS OR METHODS FOR LIFE-SAVING
    • A62B18/00Breathing masks or helmets, e.g. affording protection against chemical agents or for use at high altitudes or incorporating a pump or compressor for reducing the inhalation effort
    • A62B18/02Masks
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2101/00Manufacture of cellular products

Definitions

  • the present invention relates to heat-sealable soft polyether urethane foam and urethane masks.
  • a urethane mask has been proposed that covers part of the face, including the mouth and nostrils, and is made of soft urethane foam.
  • Flexible urethane foams include flexible polyether urethane foams and flexible polyester urethane foams.
  • Flexible polyether urethane foam has poor heat-sealing properties and is difficult to hydrolyze.
  • Flexible polyester foams have excellent heat-sealing properties and are susceptible to hydrolysis.
  • Heat-sealing is a type of thermal fusion bonding, and is a method of bonding (adhering) overlapping soft urethane foams together by heat-pressing them with a hot plate or the like.
  • urethane mask As a conventional urethane mask, there is one in which the left and right halves of the mask are formed of soft polyester urethane foam, respectively, and the left and right halves of the mask are joined and integrated by heat sealing at the center side (Patent Document 1). Soft polyester urethane foam used for urethane masks is subjected to film removal (cell film removal) treatment to ensure air permeability.
  • soft polyester urethane foam is easily hydrolyzed, it is easily deteriorated by washing and the like, and has a problem of poor durability.
  • the film-removing treatment on the soft polyester urethane foam increases the cost.
  • an odor remains in the soft polyester urethane foam depending on the film removal treatment.
  • the present invention has been made in view of the above points, and provides a flexible polyether urethane foam that has heat sealability, is resistant to hydrolysis, is less likely to deteriorate due to washing and has high durability, and its flexible polyether urethane foam.
  • the first means is a soft polyether urethane characterized by having an elongation (JIS K6400-5 compliant) of 100% or more, a density (JIS K7222 compliant) of 10 to 150 kg/m3 , and heat sealability. is a form.
  • the second means is a urethane mask comprising the flexible polyether urethane foam of the first means.
  • the flexible polyether urethane foam of the present invention may be a laminate in which at least one of a fiber layer, a flexible polyurethane foam and a fabric layer is laminated.
  • a first substrate that is the flexible polyether urethane foam of the present invention a fiber layer (intermediate fiber layer) laminated on one side of the first substrate or the second substrate, and the A fiber layer (intermediate fiber layer) and a second substrate that is a flexible polyurethane foam laminated (first substrate/fiber layer/second substrate).
  • a second variant includes a fabric layer as the second substrate.
  • a fiber layer is laminated on one side of the flexible polyether urethane foam of the present invention.
  • this third variant is the absence of the second substrate.
  • a fourth variation is the flexible polyether urethane foam of the present invention laminated on one side with a flexible polyurethane foam or fabric layer.
  • the fibrous layer is preferably composed of nanofibers.
  • As the flexible polyurethane foam a flexible polyurethane foam having an open-cell structure is preferred.
  • Heat-sealing of a laminate in which at least one of a fiber layer, a flexible polyurethane foam and a cloth layer is laminated on one side of the flexible polyether urethane foam of the present invention is performed, for example, on a planned joining portion of the flexible polyether urethane foam of the present invention. can be done in a stacked state.
  • the second base material has heat-sealing properties, the second base material side may be overlapped and joined, or the first base material and the second base material may be joined.
  • the flexible polyether urethane foam of the present invention has heat-sealing properties, it can be joined by heat-sealing like polyester urethane foam, and is suitable for applications requiring joining. Furthermore, the polyether urethane foam of the present invention has an elongation (according to JIS K6400-5) of 100% or more and a density (according to JIS K7222) of 10 to 150 kg/m 3 , and is suitable as a member of a urethane mask. Suitable for urethane masks that require heat sealing.
  • the flexible polyether urethane foam of the present invention is less susceptible to hydrolysis than polyester urethane foam, it is less likely to be deteriorated by washing and has high durability, so that it can be used for a urethane mask and repeatedly washed.
  • FIG. 10 is a perspective view showing a partially cutaway laminate of Modified Mode 1 of the present invention.
  • 1 is a first table showing the composition, physical properties, etc. of Comparative Examples and Examples.
  • Fig. 2 is a second table showing formulations, physical properties, etc. of each example.
  • the flexible polyether urethane foam of the present invention has an elongation (according to JIS K6400-5) of 100% or more, preferably 200% or more, and more preferably 300% or more. There is no particular upper limit. Practically, it is preferable if it is 700% or less. When the elongation is 100% or more, for example, when used as a mask, it can be easily adhered to the face and can reduce the oppressive feeling.
  • the flexible polyether urethane foam of the present invention has a density (according to JIS K7222) of 10 to 150 kg/m 3 , preferably 20 to 130 kg/m 3 , more preferably 25 to 115 kg/m 3 . It is preferably 30 to 100 kg/m 3 . If the density is low, the strength of the flexible polyether urethane foam may be lowered. On the other hand, when the density is high, elongation of the flexible polyether urethane foam may be deteriorated.
  • the flexible polyether urethane foam of the present invention has heat sealability.
  • the heat-sealing property of the flexible polyether urethane foam of the present invention is 100 kPa or more, preferably 200 kPa or more, more preferably 500 kPa or more as a result of the heat seal strength test shown below.
  • the heat seal strength test two test pieces each having a length of 100 mm, a width of 30 mm, and a thickness of 10 mm were superimposed, and a range of 20 mm from one end was sandwiched between hot plates of 180 ° C., and the pressure was 1.3 megapascals (MPa) for 30 minutes.
  • the other end sides of the two test pieces are opened 180 degrees and pulled in opposite directions at a tensile speed of 500 mm / min, and the strength at which the two test pieces peel is the heat seal strength. do.
  • the flexible polyether urethane foam of the present invention has air permeability (in accordance with JIS L1096A method) of preferably 5 cm 3 /cm 2 /sec or more, more preferably 10 cm 3 /cm, from the viewpoint of suffocation when wearing a mask. 2 /sec or more, more preferably 15 cm 3 /cm 2 /sec or more. Since the flexible polyether urethane foam of the present invention has good air permeability, it can reduce the feeling of suffocation when used as a mask.
  • the flexible polyether urethane foam of the present invention is foamed from a composition of raw materials for producing polyurethane foam containing a polyol, a polyisocyanate, a catalyst and a blowing agent.
  • Slab foaming is preferable for the foaming of the flexible polyether urethane foam of the present invention.
  • Slab foaming is a method in which a composition of raw materials for producing polyurethane foam is mixed, discharged onto a belt conveyor, and foamed at room temperature under atmospheric pressure.
  • the foam-formed flexible polyether urethane foam is made into a sheet having a predetermined thickness by squeezing. After that, the sheet is punched into a predetermined shape, and the predetermined portions of the predetermined shape are joined by heat sealing (melt adhesion) to form a predetermined article.
  • FIG. 1 A punched body 10A shown in (1-A) of FIG. 1 is formed by punching a sheet of flexible polyether urethane foam of the present invention into a mask shape.
  • Reference numeral 13 is an ear hook opening.
  • the punched body 10A is folded left and right at a central portion 15, which is the center of the left and right of the face, and heat-sealed along the central portion 15 with a predetermined width to form the mask 10, as shown in FIG. 1(1-B). It is formed.
  • a hatched portion indicated by reference numeral 16 is a heat-sealed portion.
  • the heat-sealed portion 16 of the central portion 15 is heat-sealed so that when the mask 10 is used with the mask 10 spread laterally, the central portion 15 bulges outward to form a three-dimensional shape corresponding to the swelling of the nose. be done.
  • the mask formed from the flexible polyether urethane foam of the present invention is not limited to the form of the mask shown in FIG.
  • a heat-sealed portion that is wider than necessary may be cut.
  • a heat-sealed portion with a width of 2-5 mm may be cut along the outwardly bulging curved shape.
  • the mask 10 may be formed by heat sealing with a predetermined width.
  • the curved shape portion becomes a mask positioned at the central portion 15 .
  • Polyols include polyether polyols.
  • Polyether polyols include both diols and polyether polyols other than diols.
  • diols examples include polyether polyols having 2 functional groups obtained by addition polymerization of alkylene oxides such as ethylene oxide (EO) and propylene oxide (PO) to dihydric alcohols such as propylene glycol and ethylene glycol.
  • the molecular weight of the diol is preferably 500-6000, more preferably 800-5000, still more preferably 1500-4500.
  • the hydroxyl value (OHV) of the diol is preferably 18-250 mgKOH/g, more preferably 22-140 mgKOH/g, and even more preferably 24-70 mgKOH/g. When the molecular weight or hydroxyl value (OHV) of the diol is within the above range, the heat sealability of the flexible polyether urethane foam becomes better.
  • the diol is not limited to one type, and multiple types may be used in combination.
  • the amount of the diol compounded is preferably 5 to 80 parts by weight, preferably 10 to 75 parts by weight, further 30 to 75 parts by weight, and 40 to 75 parts by weight based on 100 parts by weight of the polyol, from the viewpoint of elongation and heat sealability. is preferred.
  • polyether polyols other than diols include trihydric or higher polyhydric alcohols such as glycerin, trimethylolpropane and pentaerythritol, amines such as ethylenediamine and aromatic diamines, and ethylene oxide (EO) and propylene oxide (PO).
  • polyether polyols having 3 or more functional groups obtained by addition polymerization of alkylene oxide preferably have a hydroxyl value (OHV) of 20 to 200 mgKOH/g, a functional group number of 3 to 5, and a molecular weight of 1,000 to 7,000.
  • the hydroxyl value (OHV) of the polyether polyol other than the diol is more preferably 24-150 mgKOH/g, further preferably 28-100 mgKOH/g.
  • the molecular weight of the polyether polyol other than the diol is more preferably 1400-6000, more preferably 1800-5000.
  • Polyether polyols other than diols are not limited to one type, and multiple types may be used in combination.
  • the polyol may contain a polymer polyol together with the polyether polyol. By containing the polymer polyol, the heat sealability of the flexible polyether urethane foam can be further improved.
  • the polymer polyol is preferably 5 parts by weight or more, more preferably 10 parts by weight or more, and further preferably 20 parts by weight or more in 100 parts by weight of the polyol.
  • the upper limit of the blending amount when blending the polymer polyol is not particularly limited, but from the viewpoint of elongation and air permeability, it is preferably 70 parts by weight or less, more preferably 60 parts by weight or less per 100 parts by weight of the polyol.
  • Polymer polyols are polyols in which polymer particles generated by radical polymerization (graft polymerization) of monomers such as acrylonitrile and styrene are dispersed in polyether polyols, and those commonly used in the production of flexible polyurethane foams are used. can.
  • the polymer polyol preferably has a hydroxyl value (OHV) of 20-140 mgKOH/g, a functional group number of 3-5, and a molecular weight of 1000-7000.
  • the hydroxyl value (OHV) of the polymer polyol is more preferably 22-70 mgKOH/g, more preferably 24-50 mgKOH/g.
  • the molecular weight of the polymer polyol is more preferably 1800-7000, more preferably 2600-6000.
  • polyisocyanates aliphatic, alicyclic or aromatic polyisocyanates having two or more isocyanate groups, mixtures thereof, and modified polyisocyanates obtained by modifying them can be used.
  • aliphatic polyisocyanates include hexamethylene diisocyanate, isophorone diisocyanate, and dicyclohexamethane diisocyanate.
  • aromatic polyisocyanates include toluene diisocyanate (TDI), diphenylmethane diisocyanate (MDI), naphthalene diisocyanate, xyloxy Examples include diisocyanate, polymeric MDI (crude MDI), and the like. In addition, other prepolymers can also be used.
  • the isocyanate index is 90 or more, preferably 95-125, more preferably 100-120.
  • the isocyanate index is a value obtained by dividing the number of moles of isocyanate groups in isocyanate by the total number of moles of active hydrogen groups such as hydroxyl groups in polyol and multiplying it by 100. Calculated.
  • a known urethanization catalyst can be used in combination.
  • amine catalysts such as triethylamine, triethylenediamine, diethanolamine, dimethylaminomorpholine, N-ethylmorpholine and tetramethylguanidine; tin catalysts such as stannus octoate and dibutyltin dilaurate; phenylmercuric propionate and lead octoate.
  • metal catalysts also called organometallic catalysts
  • the amount of amine catalyst is preferably 0.1 to 2 parts by weight with respect to 100 parts by weight of polyol.
  • the amount of metal catalyst is preferably 0 to 0.5 parts by weight.
  • water As the blowing agent, water, CFC alternatives, or hydrocarbons such as pentane can be used alone or in combination.
  • carbon dioxide gas is generated during the reaction between polyol and polyisocyanate, and the carbon dioxide gas causes foaming.
  • the amount of water as a foaming agent is preferably 0.1 to 6 parts by weight, more preferably 0.8 to 5 parts by weight, even more preferably 1.2 to 4 parts by weight, based on 100 parts by weight of the polyol.
  • the composition may optionally contain other auxiliary agents and additives.
  • foam stabilizers, colorants, antioxidants, antibacterial agents, ultraviolet absorbers, and the like may be blended.
  • a known foam stabilizer for flexible polyether urethane foam can be used. Examples thereof include silicone-based foam stabilizers, fluorine-containing compound-based foam stabilizers, and known surfactants.
  • the coloring agent is appropriately blended according to the color required for the flexible polyether urethane foam.
  • Modified mode 1 The laminate 100 of Modification Mode 1 shown in FIG. made up of the body.
  • the first base material 110 is the flexible polyether urethane foam of the present invention
  • the second base material 210 is an open-cell flexible polyurethane foam (PUR).
  • a flexible polyurethane foam with an open-cell structure has excellent elongation and strength, provides a high open area ratio, and can improve air permeability. good breathability can be ensured.
  • a film-removed flexible slab polyurethane foam can be used as the open-cell flexible polyurethane foam.
  • the film-removed flexible slab polyurethane foam is obtained by subjecting a flexible slab polyurethane foam to a known film-removing treatment to remove the cell film.
  • the film-removing treatment includes a method of removing the cell membranes of the flexible slab polyurethane foam with a solvent, a method of removing the cell membranes by explosion, and the like.
  • Flexible slab polyurethane foam is formed by slab foaming in which a polyurethane foaming raw material is discharged onto a conveyor belt and continuously foamed.
  • the number of cells (JIS K6400-1) of the open-cell flexible polyurethane foam is preferably 40 to 110/25 mm. When the number of cells is small, the air permeability is increased, but the strength is decreased. Conversely, when the number of cells is increased, the air permeability is decreased, but the strength is increased.
  • the density of the open-celled flexible polyurethane foam (JIS K7222) is preferably 10 to 150 kg/m 3 , more preferably 20 to 125 kg/m 3 , still more preferably 30 to 100 kg/m 3 . When the density is low, the flexibility and lightness are increased, but the strength is decreased. Conversely, when the density is high, the flexibility and lightness are inferior, but the strength is increased.
  • the thicknesses of the first base material 110 and the second base material 210 may each be in the range of 0.5 to 2.5 mm. More preferably, the thickness of the first base material 110 is 1.3 to 2.5 mm, and the thickness of the second base material 210 is, for example, 0.5 to 2.5 mm, preferably 0.5 to 2.5 mm. 1.5 mm. Furthermore, it is preferable that the thickness of the laminated first base material 110 and the second base material 210 is 4.0 mm or less. If the thicknesses of the first base material 110 and the second base material 210 are too thin, the strength will be lowered, and conversely, if they are too thick, the flexibility and air permeability will be poor.
  • the thickness of the first substrate 110 on which the intermediate fiber layer 310 is formed on one side is larger than the thickness of the second substrate 210 to facilitate the formation of the intermediate fiber layer 310 .
  • the thicker side for example the first base material 110
  • the thinner side for example, the second base material.
  • 210 is preferably on the suction side (face side). It is preferable to inhale and remove particulates and the like from the thicker side, eg, the first substrate 110 , and then aspirate from the thinner side, eg, the second substrate 210 , with the nose of the face.
  • the thickness of the first base material 110 may be thinner than that of the second base material 210 .
  • the intermediate fiber layer 310 is composed of nanofibers and formed on one side of the first base material 110 (the side facing the second base material 210). Formation of nanofibers can be performed by an electrospinning method. At this time, the polymer solution is sprayed directly onto one side of the first base material 110 from a nozzle to form an intermediate fibrous layer 310 of nanofibers in a web shape in a state of being adhered to one side of the first base material 110 .
  • the electrospinning method uses an apparatus consisting of a DC high voltage power source, an infusion pump, a stainless needle syringe, and a metal collector. A polymer solution is injected from the tip nozzle of the needle syringe. The nozzle and the metal collector are oppositely charged, and when the polymer solution is injected from the syringe, the nanofiber fibers are deposited and form a layer on the first substrate 110 placed on the collector.
  • the material of nanofibers may be any material that can form nanofibers by electrospinning, such as polystyrene, polycarbonate, poly(meth)acrylate, polyvinyl chloride, polyethylene terephthalate, nylon-6,6, and nylon-4,6.
  • Thermoplastic resins such as polyurethane, polyvinyl alcohol, polylactic acid, polycaprolactone, polyethylene glycol, polyethylene-vinyl acetate copolymer, polyethylene-vinyl alcohol copolymer, polyethylene oxide, biodegradable polymers such as collagen, poly Acrylonitrile, polyamide, polyaniline, paraamide, polyvinyl acetate, acetyl cellulose (acetate) and the like can be mentioned.
  • polyurethane is a particularly preferable material because it has good adhesion to one side of the first base material 110 and has good elongation when nanofibers are formed by spraying.
  • the intermediate fiber layer 310 made of polyurethane nanofibers has good followability to the elongation of the first base material 110 and the second base material 210, and when the laminate 100 is used as a constituent member of the mask, the mask easily fits on the face. .
  • the diameter of the nanofiber may be a diameter defined as a nanofiber, specifically, 1 nanometer (nm) to 1 micrometer ( ⁇ m), preferably 10 nanometers (nm) to 0.8 Micrometers ( ⁇ m), more preferably 10 nanometers (nm) to 0.5 micrometers ( ⁇ m), and even more preferably 10 nanometers (nm) to 100 nanometers (nm). If the diameter of the nanofibers is too small, viruses may pass through between the nanofibers of the intermediate fiber layer 310. Conversely, if the diameter of the nanofibers is too large, the air permeability of the intermediate fiber layer 310 is reduced. . A more preferred diameter is between 10 nanometers (nm) and 100 nanometers (nm).
  • the basis weight of the intermediate fiber layer 310 made of nanofibers is not limited, it is preferably 0.10 to 0.80 g/m 2 . If the weight per unit area is reduced, the space between the nanofibers becomes large, and viruses may pass between the nanofibers. become.
  • a long sheet of soft polyether urethane foam for the first base material BASF thermoplastic polyurethane pellets are dissolved in a solvent on it, and a urethane nanofiber nonwoven fabric (intermediate fiber layer) is formed by electrospinning. Laminated spinning. The fiber diameter is adjusted to a predetermined wire diameter by adjusting the distance between the spinning nozzle and the long sheet, the discharge amount of the nanofiber raw material discharged from the nozzle, and the voltage. An intermediate fiber layer of spun urethane nanofibers is entwined with the elongated sheet of flexible polyether urethane foam. A long sheet is wound on a roll, and the roll is mounted on a flame welding device.
  • a polyester soft urethane foam is used as the second base material, and a roll of the second base material is attached.
  • the laminate 100 is obtained by laminating and conveying the roll of the urethane nanofiber nonwoven fabric (intermediate fiber layer) of the roll of the first base material while irradiating the second base material with a flame.
  • a flexible polyurethane foam soft polyester foam
  • a fabric layer may be used as the substrate to form the intermediate fiber layer (nanofiber nonwoven fabric).
  • Modification 2 is a laminate comprising a first substrate of flexible polyether urethane foam of the present invention, an intermediate fiber layer, and a second substrate of cloth layer.
  • the cloth layer is composed of a sheet of cloth made from fibers or threads.
  • the intermediate fiber layer is made of nanofibers similar to the intermediate fiber layer 310 of the first variant.
  • the fabric layer can be knitted, woven, non-woven, or made of felt.
  • the fibers constituting the cloth those composed of chemical fibers such as polyethylene, polypropylene, nylon, urethane, and rayon, and those composed of natural fibers such as cotton and wool can be used. Polyester fibers are preferable from the standpoint of durability because they are less susceptible to discoloration due to ultraviolet rays. If the cloth has a low hygroscopicity, it is convenient for washing and drying the laminate of Modified Mode 2. Also, since cloth made of cotton or rayon has water absorption properties, it may be used when moisture absorption and moisture retention properties are required for the laminate of modified mode 2.
  • the fabric may be an antimicrobial fabric having antimicrobial properties such as by antimicrobial treatment.
  • the cloth may be one in which surface fibers are raised.
  • the cloth it is possible to use fabrics that are structurally stretchable depending on how they are woven or knitted, or so-called stretch fabrics that are stretchable by using elastic fibers that have stretchability.
  • stretchable plain weave, twill weave, and jacquard weave are preferred.
  • warp knitting, weft knitting, and others can be used. Warp knitting includes tricot, double raschel, etc., and weft knitting includes circular knitting and jersey knitting. be done. Knitted fabrics are preferred because they are more stretchable than woven fabrics and non-woven fabrics.
  • the web may be formed by any of a dry method, a spunbond method, a meltblown method, an airlaid method, and the like. From the viewpoint of the efficiency of capturing fine foreign matter such as bacteria, a nonwoven fabric by a meltblown method (meltblown nonwoven fabric) or a nonwoven fabric by a spunbond method (spunbond nonwoven fabric) is preferable.
  • the nonwoven fabric may be formed by a chemical bond method, a thermal bond method, a needle punch method, a hydroentanglement method (spunlace), or the like. A hydroentanglement method and a needle punch method are preferable.
  • the elongation rate of the cloth is 50% to 500%.
  • the stretchability of the soft polyether urethane foam, which is the first base material is less likely to be hindered by the fabric layer, and the stretchability of the laminate can be improved.
  • the laminate is used as a mask, it stretches appropriately following the movement of the mouth and the like, and can reduce the burden of wearing.
  • the ear hooking portion of the mask is formed from the laminate of Modified Mode 2, the ear hooking portion is less likely to break and the burden on the ear can be reduced.
  • the air permeability of the fabric is preferably 10 cm 3 /(cm 2 ⁇ sec) or more, more preferably 15 cm 3 /(cm 2 ⁇ sec) or more, and 20 cm 3 /(cm 2 ⁇ sec) or more. More preferably, it is particularly preferably 25 cm 3 /(cm 2 ⁇ sec) or more.
  • the air permeability of the cloth is preferably set to 150 cm 3 /(cm 2 ⁇ sec) or less in relation to the efficiency of trapping foreign matter. A fabric having air permeability within the above range can ensure good foreign matter trapping efficiency and appropriate air permeability.
  • the layered product of Modified Mode 2 when used for a mask, it is possible to ensure adequate breathability, so that it is possible to reduce the feeling of suffocation and to obtain a good wearing feeling. Further, if the fabric has an air permeability within the above range, when the laminate of Modified Mode 2 is used for a mask, good foreign matter collection efficiency can be obtained. As described above, it is preferable to use a fabric having air permeability within the above range, because it is possible to achieve both ease of breathing and good foreign matter collection efficiency. In the laminate of Modified Mode 2, even if the air permeability of the fabric layer is increased, the intermediate fiber layer can ensure the efficiency of collecting foreign matter. may be set.
  • the thickness of the fabric layer is preferably 0.1 mm to 0.4 mm. As the cloth layer becomes thicker, the efficiency of trapping foreign matter improves, but the pressure loss of the air passing through the cloth layer increases (the air permeability decreases). The thinner the cloth layer, the lower the efficiency of trapping foreign matter, but the lower the pressure loss of the air passing through itself (the higher the air permeability).
  • the thickness of the fabric layer is within the above-described range, the laminate of Modified Mode 2 can obtain appropriate breathability. Moreover, when the thickness of the fabric layer is within the above range, the bulkiness of the laminate of Modified Mode 2 can be suppressed.
  • the intermediate fiber layer is preferably made of nano-sized fibers (nanofibers) from the viewpoint of foreign matter collection efficiency.
  • the fiber diameter of the fibers is preferably 10 nm to 800 nm, more preferably 10 nm to 500 nm, even more preferably 10 nm to 100 nm, from the viewpoint of collecting finer foreign matter.
  • the fiber diameter of the fiber is within the above range, it is possible to secure the trapping of foreign substances and appropriate air permeability.
  • the fibers constituting the intermediate fiber layer have a smaller fiber diameter than the fibers and threads constituting the fabric layer. By doing so, the cloth layer can be made relatively strong, and the fiber layer can collect microscopic foreign substances such as bacteria that are difficult to collect with the cloth layer.
  • thermoplastic fluororesins such as polyvinylidene fluoride, polystyrene, polycarbonate, poly(meth)acrylate, polyvinyl chloride, polyethylene terephthalate, nylon-6,6, and nylon-4,6.
  • thermoplastic resins such as polyurethane, polyvinyl alcohol, polylactic acid, polycaprolactone, polyethylene glycol, polyethylene-vinyl acetate copolymer, polyethylene-vinyl alcohol copolymer, polyethylene oxide, biodegradable polymers such as collagen, polyacrylonitrile , polyamide, polyaniline, paraamide, polyvinyl acetate, acetylcellulose (acetate) and the like.
  • Polyurethane fibers are preferable because they have good adhesion to the flexible polyether urethane foam of the first base material and have good elongation. When the stretchability of the intermediate fiber layer is good, the soft polyether urethane foam of the first base material and the fabric layer follow the stretchability well. .
  • the air permeability of the intermediate fiber layer is preferably 10 cm 3 /(cm 2 ⁇ sec) or more, more preferably 15 cm 3 /(cm 2 ⁇ sec) or more, and more preferably 20 cm 3 /(cm 2 ⁇ sec) or more. It is more preferable if there is, and it is particularly preferable if it is 25 cm 3 /(cm 2 ⁇ sec) or more.
  • the air permeability of the intermediate fiber layer is preferably set to 150 cm 3 /(cm 2 ⁇ sec) or less in relation to the foreign matter collection efficiency.
  • the fiber diameter of the fibers is within the above range, the foreign matter trapping efficiency and air permeability can be ensured in the laminate of Modified Mode 2.
  • the laminate of Modified Mode 2 provides good foreign matter trapping efficiency.
  • the intermediate fiber layer supplements the foreign matter collection efficiency that cannot be obtained with the flexible polyether urethane foam of the first base material without impairing the soft polyether urethane foam such as flexibility and elongation. , good foreign matter collection efficiency in the laminate of Modified Mode 2 can be obtained.
  • the fiber basis weight of the intermediate fiber layer is preferably 0.10 g/m 2 to 10 g/m 2 , more preferably 0.10 g/m 2 to 5 g/m 2 . By doing so, it is possible to ensure the efficiency of trapping foreign matter and the air permeability of the intermediate fiber layer. It is also possible to set the basis weight of the fibers of the intermediate fiber layer according to the difference in objects to be collected for foreign matter and the fiber diameter of the fiber layer. For example, it can be 0.5 to 10 g/m 2 , 0.5 to 5 g/m 2 , 1 to 3 g/m 2 for intermediate fiber layers having a large fiber diameter.
  • intermediate fiber layers with a small fiber diameter it is 0.1 to 1.0 g/m 2 , 0.1 to 0.8 g/m 2 , 0.1 to 0.6 g/m 2 . be able to. In this case, it is effective for collecting small-sized foreign substances such as bacteria and viruses.
  • the intermediate fiber layer can be formed, for example, by electrospinning.
  • electrospinning For example, as described above, using the soft polyether urethane foam as the first base material as a base material, a polymer solution is sprayed on one surface of the base material by an electrospinning method, and fibers are sprayed, and fine fibers are gradually stacked to form an intermediate fiber layer. It is formed.
  • the intermediate fiber layer is laminated by entangling and bonding the fibers to the flexible polyether urethane foam.
  • the intermediate fiber layer may be formed using a flexible polyurethane foam (soft polyester foam) or a fabric layer as the base material.
  • Lamination of flexible polyether urethane foam and other materials includes, for example, frame lamination and adhesion using hot-melt adhesives.
  • Other materials include flexible polyurethane foam (soft polyester foam) and fabric layers.
  • a roll coater or spray coating is used to sandwich an adhesive layer such as a hot-melt adhesive or apply an adhesive to bond soft polyether urethane foam and other materials. can be pasted together.
  • a non-woven hot-melt sheet may be used, or a fibrous hot-melt adhesive may be applied.
  • compositions for producing polyurethane foams having formulations in the comparative examples and examples shown in FIGS. A urethane foam was produced.
  • the urethane foams of Comparative Examples and Examples were not subjected to film removal treatment.
  • Diol 1 Diol 1; polyether polyol, molecular weight: 1000, functional group number 2, hydroxyl value 108 to 116 mgKOH/g, product name: Actcole D1000, manufactured by Mitsui Chemicals, Inc. Diol 2; polyether polyol, molecular weight: 2000, functional group number 2, Hydroxyl value 54-58 mgKOH/g, Product name: Actcole D2000, Mitsui Chemicals Diol 3; Polyether polyol, Molecular weight: 4000, Number of functional groups 2, Hydroxyl value 26-30 mgKOH/g, Product name: Actcole D4000, Mitsui Chemicals manufactured by Dow Toray Co., Ltd.
  • ⁇ Foam stabilizer silicone foam stabilizer, product name: SZ1136, Dow Toray Co., Ltd.
  • ⁇ Amine catalyst N-ethylmorpholine, product name: Kaorizer No. 22, manufactured by Kao Corporation ⁇ Tin catalyst; stannous octoate, product name: MRH110, manufactured by Johoku Chemical Industry ⁇ Blowing agent; water ⁇ Isocyanate; product name: Cosmonate T-80 / T-65, manufactured by Tosoh
  • the physical properties of the produced polyurethane foam are density (JIS K7222 compliant), tensile strength (JIS K 6400-5K compliant), elongation (JIS K6400-5 compliant), heat seal strength (adhesive strength), air permeability (JIS L1096A compliant ) was measured and the odor was confirmed.
  • the heat seal strength was measured by stacking two test pieces each having a length of 100 mm, a width of 30 mm, and a thickness of 10 mm. Heat-sealed by pressurizing at 3 MPa (megapascal) for 30 seconds, then using an autograph (manufactured by Shimadzu Corporation), gripping a range of 20 mm from the other end of the two test pieces with a gripper, 180 It was opened twice and pulled in opposite directions at a tensile speed of 500 mm/min, and the strength at which the two test pieces peeled off was measured and taken as the heat seal strength. A sensory test was performed to confirm the odor. The subjects were asked to smell the odor, and the presence or absence of the odor was sensorily evaluated.
  • the measurement results of the heat seal strength were judged according to the following criteria.
  • the heat-sealing strength was judged as " ⁇ " when less than 100 kPa, " ⁇ " when less than 100 to 500 kPa, and " ⁇ ” when 500 kPa or more.
  • the measurement results and determination results are shown in FIG.
  • Comparative Example A comparative example is an example in which a polyether polyol other than a diol is used alone as a polyol.
  • the comparative example has a density of 52.5 kg/m 3 , a tensile strength of 64.1 kPa, an elongation of 98.6%, a heat seal strength of no sealability (no adhesion), air permeability of 12.0 cm 3 /cm 2 /sec, and odor. None, and the heat seal strength judgment was "x".
  • Examples 1 to 5 are examples in which the polyol is composed of a polyether polyol other than a diol and diol 2 (molecular weight 2000), and the mixing ratio of diol 2 (molecular weight 2000) in the polyol is varied.
  • Example 1 is an example in which the blending amount of diol 2 (molecular weight: 2000) was 10.0 parts by weight.
  • Example 1 has a density of 53.0 kg/m 3 , tensile strength of 73.0 kPa, elongation of 135.0%, heat seal strength of 389.0 kPa, air permeability of 21.0 cm 3 /cm 2 /sec, no odor, and heat seal strength. The judgment was "0".
  • Example 2 is an example in which the blending amount of diol 2 (molecular weight: 2000) is 20.0 parts by weight.
  • Example 2 has a density of 53.4 kg/m 3 , tensile strength of 78.8 kPa, elongation of 164.9%, heat seal strength of 473.0 kPa, air permeability of 39.0 cm 3 /cm 2 /sec, no odor, and heat seal strength. The judgment was "0".
  • Example 3 is an example in which the blending amount of diol 2 (molecular weight: 2000) was 30.0 parts by weight.
  • Example 3 has a density of 52.6 kg/m 3 , tensile strength of 77.5 kPa, elongation of 209.5%, heat seal strength of 573.8 kPa, air permeability of 94.0 cm 3 /cm 2 /sec, no odor, and heat seal strength. The judgment was " ⁇ ".
  • Example 4 is an example in which the blending amount of diol 2 (molecular weight: 2000) was 50.0 parts by weight.
  • Example 4 has a density of 52.4 kg/m 3 , tensile strength of 100.1 kPa, elongation of 305.5%, heat seal strength of 791.6 kPa, air permeability of 122.0 cm 3 /cm 2 /sec, no odor, and heat seal strength. The judgment was " ⁇ ".
  • Example 5 is an example in which the blending amount of diol 2 (molecular weight: 2000) was 70.0 parts by weight.
  • Example 5 has a density of 52.3 kg/m 3 , tensile strength of 105.5 kPa, elongation of 511.0%, heat seal strength of 854.1 kPa, air permeability of 147.0 cm 3 /cm 2 /sec, no odor, and heat seal strength. The judgment was " ⁇ ".
  • Example 6 is an example in which the polyether polyol other than the diol in Example 4 was reduced from 50.0 parts by weight to 20.0 parts by weight, and 30.0 parts by weight of polymer polyol was blended instead.
  • Example 6 has a density of 29.8 kg/m 3 , tensile strength of 124.0 kPa, elongation of 261.0%, heat seal strength of 1517.1 kPa, air permeability of 120.0 cm 3 /cm 2 /sec, no odor, and heat seal strength. The judgment was " ⁇ ".
  • Examples 7 to 9 are examples in which the polyol is composed of a polyether polyol other than a diol and diol 3 (molecular weight 4000), and the mixing ratio of diol 3 (molecular weight 4000) in the polyol is varied.
  • Example 7 is an example in which the blending amount of diol 3 (molecular weight 4000) was 10.0 parts by weight.
  • Example 7 has a density of 51.7 kg/m 3 , tensile strength of 76.3 kPa, elongation of 152.9%, heat seal strength of 550.7 kPa, air permeability of 33.9 cm 3 /cm 2 /sec, no odor, and heat seal strength. The judgment was " ⁇ ".
  • Example 8 is an example in which the blending amount of Diol 3 (molecular weight 4000) was 30.0 parts by weight.
  • Example 8 has a density of 52.4 kg/m 3 , tensile strength of 74.1 kPa, elongation of 175.0%, heat seal strength of 667.8 kPa, air permeability of 78.5 cm 3 /cm 2 /sec, no odor, and heat seal strength. The judgment was " ⁇ ".
  • Example 9 is an example in which the amount of diol 3 (molecular weight: 4000) was changed to 70.0 parts by weight.
  • Example 9 has a density of 62.1 kg/m 3 , tensile strength of 66.8 kPa, elongation of 244.7%, heat seal strength of 627.5 kPa, air permeability of 46.1 cm 3 /cm 2 /sec, no odor, and heat seal strength. The judgment was " ⁇ ".
  • Examples 10 and 11 are examples in which the polyol is composed of a polyether polyol other than a diol and diol 1 (molecular weight 1000), and the mixing ratio of diol 1 (molecular weight 1000) in the polyol is varied.
  • Example 10 is an example in which 10.0 parts by weight of diol 1 (molecular weight: 1000) was blended.
  • Example 10 has a density of 49.8 kg/m 3 , tensile strength of 71.6 kPa, elongation of 152.2%, heat seal strength of 540.1 kPa, air permeability of 13.8 cm 3 /cm 2 /sec, no odor, and heat seal strength. The judgment was " ⁇ ".
  • Example 11 is an example in which 30.0 parts by weight of diol 1 (molecular weight: 1000) was added.
  • Example 11 has a density of 49.6 kg/m 3 , tensile strength of 84.7 kPa, elongation of 215.5%, heat seal strength of 740.1 kPa, air permeability of 9.2 cm 3 /cm 2 /sec, no odor, and heat seal strength. The judgment was " ⁇ ".
  • Examples 12 to 15 are examples in which polymer polyol was blended with polyol and the blending ratio was varied.
  • Example 12 In Example 12, 30.0 parts by weight of polyether polyol other than diol, 10.0 parts by weight of polymer polyol, and 60.0 parts by weight of diol 2 (molecular weight: 2000) were added. For example.
  • Example 12 has a density of 55.2 kg/m 3 , tensile strength of 115.5 kPa, elongation of 241.4%, heat seal strength of 798.0 kPa, air permeability of 24.7 cm 3 /cm 2 /sec, no odor, and heat seal strength. The judgment was " ⁇ ".
  • Example 13 In Example 13, 20.0 parts by weight of polyether polyol other than diol, 30.0 parts by weight of polymer polyol, and 50.0 parts by weight of diol 2 (molecular weight: 2000) were mixed. For example. Example 13 has a density of 54.8 kg/m 3 , tensile strength of 150.7 kPa, elongation of 236.6%, heat seal strength of 1066.2 kPa, air permeability of 41.9 cm 3 /cm 2 /sec, no odor, and heat seal strength. The judgment was " ⁇ ".
  • Example 14 is an example in which the blending amount of polyether polyol other than diol is 0 parts by weight, the blending amount of polymer polyol is 50.0 parts by weight, and the blending amount of diol 2 (molecular weight: 2000) is 50.0 parts by weight. be.
  • Example 14 has a density of 53.9 kg/m 3 , tensile strength of 168.0 kPa, elongation of 205.6%, heat seal strength of 1055.9 kPa, air permeability of 53.6 cm 3 /cm 2 /sec, no odor, and heat seal strength. The judgment was " ⁇ ".
  • Example 15 is an example in which the blending amount of polyether polyol other than diol is 0 parts by weight, the blending amount of polymer polyol is 70.0 parts by weight, and the blending amount of diol 2 (molecular weight: 2000) is 30.0 parts by weight. be.
  • Example 15 has a density of 55.2 kg/m 3 , tensile strength of 166.4 kPa, elongation of 103.5%, heat seal strength of 1156.8 kPa, air permeability of 6.4 cm 3 /cm 2 /sec, no odor, and heat seal strength. The judgment was " ⁇ ".
  • the heat seal strength of the flexible polyether urethane foam was increased by blending the polymer polyol. Furthermore, by increasing the proportion of the polymer polyol in the polyol, the heat seal strength can be further increased.
  • the flexible polyether urethane foam of the present invention has heat-sealing properties, and is suitable for applications that require bonding (adhesion) by heat-sealing.
  • the flexible polyether urethane foam of the present invention has an elongation (JIS K6400-5 compliant) of 100% or more and a density (JIS K7222 compliant) of 10 to 150 kg / m 3 , so it is a member of a urethane mask that requires elongation.
  • the flexible polyether urethane foam of the present invention is less susceptible to hydrolysis than polyester urethane foam, it is less likely to be deteriorated by washing and has high durability, so that it can be used for a urethane mask and repeatedly washed. It should be noted that the present invention is not limited to the embodiments, and can be modified without departing from the gist of the invention.
  • the flexible polyether urethane foam of the present invention is suitable for urethane masks.

Abstract

The purpose of the present invention is to provide flexible polyether urethane foam which is heat-sealable, is less apt to hydrolyze, is less apt to be deteriorated by laundering, etc., has high durability, and is suitable for urethane masks. The flexible polyether urethane foam is one formed from a composition of starting materials for polyurethane foam production. The flexible polyether urethane foam has an elongation (in accordance with JIS K6400-5) of 100% or higher and a density (in accordance with JIS K7222) of 10-150 kg/m3 and is heat-sealable.

Description

軟質ポリエーテルウレタンフォームとウレタンマスクSoft polyether urethane foam and urethane mask
 本発明は、ヒートシール性を有する軟質ポリエーテルウレタンフォームとウレタンマスクに関する。 The present invention relates to heat-sealable soft polyether urethane foam and urethane masks.
 口および鼻孔を含む顔面の一部を覆うマスクを、軟質ウレタンフォームで形成したウレタンマスクが提案されている。 A urethane mask has been proposed that covers part of the face, including the mouth and nostrils, and is made of soft urethane foam.
 軟質ウレタンフォームには、軟質ポリエーテルウレタンフォームと軟質ポリエステルウレタンフォームがある。
 軟質ポリエーテルウレタンフォームは、ヒートシール性に劣り、加水分解し難い性質がある。
 軟質ポリエステルフォームは、ヒートシール性に優れ、加水分解し易い性質がある。
 ヒートシールは、熱融着の一種であり、軟質ウレタンフォームを重ねて熱板などで加熱圧着することにより、重ねた軟質ウレタンフォーム同士を接合(接着)する方法である。
Flexible urethane foams include flexible polyether urethane foams and flexible polyester urethane foams.
Flexible polyether urethane foam has poor heat-sealing properties and is difficult to hydrolyze.
Flexible polyester foams have excellent heat-sealing properties and are susceptible to hydrolysis.
Heat-sealing is a type of thermal fusion bonding, and is a method of bonding (adhering) overlapping soft urethane foams together by heat-pressing them with a hot plate or the like.
 従来のウレタンマスクとして、マスクの左右半体がそれぞれ軟質ポリエステルウレタンフォームで形成され、マスクの左右半体が中央側でヒートシールにより接合されて一体化されたものがある(特許文献1)。
 また、ウレタンマスクに使用される軟質ポリエステルウレタンフォームは、通気性を確保するための除膜(セル膜除去)処理が施されたものが使用されている。
As a conventional urethane mask, there is one in which the left and right halves of the mask are formed of soft polyester urethane foam, respectively, and the left and right halves of the mask are joined and integrated by heat sealing at the center side (Patent Document 1).
Soft polyester urethane foam used for urethane masks is subjected to film removal (cell film removal) treatment to ensure air permeability.
特開2015-3275号公報JP 2015-3275 A
 しかし、軟質ポリエステルウレタンフォームは、加水分解しやすいため、洗濯などによって劣化しやすく、耐久性に劣る問題がある。
 また、軟質ポリエステルウレタンフォームに除膜処理を施すにはコストが嵩む問題がある。さらに、除膜処理によっては臭気が軟質ポリエステルウレタンフォームに残る問題がある。
However, since soft polyester urethane foam is easily hydrolyzed, it is easily deteriorated by washing and the like, and has a problem of poor durability.
In addition, there is a problem that the film-removing treatment on the soft polyester urethane foam increases the cost. Furthermore, there is a problem that an odor remains in the soft polyester urethane foam depending on the film removal treatment.
 なお、従来の軟質ポリエーテルウレタンフォームは、加水分解し難い反面、ヒートシール性に劣るため、ヒートシールが必要とされる用途には適していなかった。 Although conventional flexible polyether urethane foam is difficult to hydrolyze, it is not suitable for applications that require heat sealing because it is inferior in heat sealing properties.
 本発明は前記の点に鑑みなされたものであって、ヒートシール性を有し、加水分解し難く、洗濯などによる劣化が少なく耐久性が高い軟質ポリエーテルウレタンフォームと、その軟質ポリエーテルウルタンフォームで形成されたウレタンマスクの提供を目的とする。 The present invention has been made in view of the above points, and provides a flexible polyether urethane foam that has heat sealability, is resistant to hydrolysis, is less likely to deteriorate due to washing and has high durability, and its flexible polyether urethane foam. To provide a urethane mask formed by
 第1の手段は、伸び(JIS K6400-5準拠)が100%以上、密度(JIS K7222準拠)が10~150kg/mであって、ヒートシール性を有することを特徴とする軟質ポリエーテルウレタンフォームである。 The first means is a soft polyether urethane characterized by having an elongation (JIS K6400-5 compliant) of 100% or more, a density (JIS K7222 compliant) of 10 to 150 kg/m3 , and heat sealability. is a form.
 第2の手段は、第1の手段の軟質ポリエーテルウレタンフォームを備えるウレタンマスクである。 The second means is a urethane mask comprising the flexible polyether urethane foam of the first means.
 第1の手段及び第2の手段において、本発明の軟質ポリエーテルウレタンフォームは、繊維層、軟質ポリウレタンフォーム、布層の少なくとも一が積層された積層体であってもよい。
 例えば、第1の変形態様として、本発明の軟質ポリエーテルウレタンフォームである第1基材と、第1基材または第2基材の片面に積層された繊維層(中間繊維層)と、該繊維層(中間繊維層)に積層された軟質ポリウレタンフォームである第2基材とで構成されたもの(第1基材/繊維層/第2基材が挙げられる。
 第2の変形態様として、第2基材を布層としたものが挙げられる。
 第3の変形態様として、本発明の軟質ポリエーテルウレタンフォームの片面に繊維層が積層されたものが挙げられる。第1の変形態様または第2の変形態様との関係では、第2基材がない場合がこの第3態様となる。
 第4の変形態様として、本発明の軟質ポリエーテルウレタンフォームの片面に軟質ポリウレタンフォームまたは布層が積層されたものが挙げられる。
 繊維層としては、ナノファイバーで構成されたものが好ましい。軟質ポリウレタンフォームとしては、連続気泡構造の軟質ポリウレタンフォームが好ましい。
 本発明の軟質ポリエーテルウレタンフォームの片面に、繊維層、軟質ポリウレタンフォーム、布層の少なくとも一が積層されている積層体のヒートシールは、例えば、本発明の軟質ポリエーテルウレタンフォームの接合予定部を重ねた状態で行うことができる。また、第2基材がヒートシール性を有する場合には、第2基材側を重ね合わせて接合してもよく、また、第1基材と第2基材とを接合してもよい。
In the first means and the second means, the flexible polyether urethane foam of the present invention may be a laminate in which at least one of a fiber layer, a flexible polyurethane foam and a fabric layer is laminated.
For example, as a first modification, a first substrate that is the flexible polyether urethane foam of the present invention, a fiber layer (intermediate fiber layer) laminated on one side of the first substrate or the second substrate, and the A fiber layer (intermediate fiber layer) and a second substrate that is a flexible polyurethane foam laminated (first substrate/fiber layer/second substrate).
A second variant includes a fabric layer as the second substrate.
As a third modification, a fiber layer is laminated on one side of the flexible polyether urethane foam of the present invention. In relation to the first variant or the second variant, this third variant is the absence of the second substrate.
A fourth variation is the flexible polyether urethane foam of the present invention laminated on one side with a flexible polyurethane foam or fabric layer.
The fibrous layer is preferably composed of nanofibers. As the flexible polyurethane foam, a flexible polyurethane foam having an open-cell structure is preferred.
Heat-sealing of a laminate in which at least one of a fiber layer, a flexible polyurethane foam and a cloth layer is laminated on one side of the flexible polyether urethane foam of the present invention is performed, for example, on a planned joining portion of the flexible polyether urethane foam of the present invention. can be done in a stacked state. Moreover, when the second base material has heat-sealing properties, the second base material side may be overlapped and joined, or the first base material and the second base material may be joined.
 本発明の軟質ポリエーテルウレタンフォームは、ヒートシール性を有するため、ポリエステルウレタンフォームのようにヒートシールで接合することができ、接合が必要な用途に好適である。
 さらに、本発明のポリエーテルウレタンフォームは、伸び(JIS K6400-5準拠)が100%以上、密度(JIS K7222準拠)が10~150kg/mであって、ウレタンマスクの部材として好適であり、ヒートシールが必要とされるウレタンマスクに好適である。
 さらに、本発明の軟質ポリエーテルウレタンフォームは、ポリエステルウレタンフォームよりも加水分解し難いため、洗濯などによる劣化が少なく耐久性が高いことから、ウレタンマスクに使用して繰り返し洗濯することができる。
Since the flexible polyether urethane foam of the present invention has heat-sealing properties, it can be joined by heat-sealing like polyester urethane foam, and is suitable for applications requiring joining.
Furthermore, the polyether urethane foam of the present invention has an elongation (according to JIS K6400-5) of 100% or more and a density (according to JIS K7222) of 10 to 150 kg/m 3 , and is suitable as a member of a urethane mask. Suitable for urethane masks that require heat sealing.
Furthermore, since the flexible polyether urethane foam of the present invention is less susceptible to hydrolysis than polyester urethane foam, it is less likely to be deteriorated by washing and has high durability, so that it can be used for a urethane mask and repeatedly washed.
本発明の一実施形態のマスクを示す斜視図である。It is a perspective view showing a mask of one embodiment of the present invention. 本発明の変形態様1の積層体を一部切り欠いて示す斜視図である。FIG. 10 is a perspective view showing a partially cutaway laminate of Modified Mode 1 of the present invention. 比較例と各実施例の配合及び物性等を示す第1の表である。1 is a first table showing the composition, physical properties, etc. of Comparative Examples and Examples. 各実施例の配合及び物性等を示す第2の表である。Fig. 2 is a second table showing formulations, physical properties, etc. of each example.
 以下、本発明の軟質ポリエーテルウレタンフォームの実施形態について説明する。 An embodiment of the flexible polyether urethane foam of the present invention will be described below.
 本発明の軟質ポリエーテルウレタンフォームは、伸び(JIS K6400-5準拠)が100%以上であり、好ましくは200%以上であり、より好ましくは300%以上である。上限は特に制限がない。実用上、700%以下であれば好ましい。伸びが100%以上であることにより、例えばマスクに使用された場合に顔面に密着しやすく、かつ圧迫感を低減させることができる。 The flexible polyether urethane foam of the present invention has an elongation (according to JIS K6400-5) of 100% or more, preferably 200% or more, and more preferably 300% or more. There is no particular upper limit. Practically, it is preferable if it is 700% or less. When the elongation is 100% or more, for example, when used as a mask, it can be easily adhered to the face and can reduce the oppressive feeling.
 本発明の軟質ポリエーテルウレタンフォームは、密度(JIS K7222準拠)が10~150kg/mであり、好ましくは20~130kg/mであり、より好ましくは25~115kg/mであり、さらに好ましくは30~100kg/mである。密度が低くなると軟質ポリエーテルウレタンフォームの強度が低下する場合がある。一方、密度が高くなると軟質ポリエーテルウレタンフォームの伸びが悪くなる場合がある。 The flexible polyether urethane foam of the present invention has a density (according to JIS K7222) of 10 to 150 kg/m 3 , preferably 20 to 130 kg/m 3 , more preferably 25 to 115 kg/m 3 . It is preferably 30 to 100 kg/m 3 . If the density is low, the strength of the flexible polyether urethane foam may be lowered. On the other hand, when the density is high, elongation of the flexible polyether urethane foam may be deteriorated.
 本発明の軟質ポリエーテルウレタンフォームは、ヒートシール性を有する。本発明の軟質ポリエーテルウレタンフォームのヒートシール性は、以下に示すヒートシール強度試験の結果が100kPa以上であり、好ましくは200kPa以上であり、より好ましくは500kPa以上である。
 ヒートシール強度試験は、長さ100mm×幅30mm×厚み10mmからなる2つの試験片を重ね、その一端から20mmの範囲を180℃の熱板で挟んで圧力1.3メガパスカル(MPa)で30秒間加圧することによりヒートシールした後、前記2つの試験片の他端側を180度開いて引張速度500mm/minで互いに反対方向へ引張り、前記2つの試験片が剥離する強度をヒートシール強度とする。
The flexible polyether urethane foam of the present invention has heat sealability. The heat-sealing property of the flexible polyether urethane foam of the present invention is 100 kPa or more, preferably 200 kPa or more, more preferably 500 kPa or more as a result of the heat seal strength test shown below.
In the heat seal strength test, two test pieces each having a length of 100 mm, a width of 30 mm, and a thickness of 10 mm were superimposed, and a range of 20 mm from one end was sandwiched between hot plates of 180 ° C., and the pressure was 1.3 megapascals (MPa) for 30 minutes. After heat-sealing by applying pressure for 2 seconds, the other end sides of the two test pieces are opened 180 degrees and pulled in opposite directions at a tensile speed of 500 mm / min, and the strength at which the two test pieces peel is the heat seal strength. do.
 本発明の軟質ポリエーテルウレタンフォームは、通気性(JIS L1096A法準拠)が、マスク装着時の息苦しさの観点で、好ましくは5cm/cm/sec以上であり、より好ましくは10cm/cm/sec以上であり、さらに好ましくは15cm/cm/sec以上である。本発明の軟質ポリエーテルウレタンフォームは通気性が良好なため、マスクとして使用した場合に息苦しさを低減することができる。 The flexible polyether urethane foam of the present invention has air permeability (in accordance with JIS L1096A method) of preferably 5 cm 3 /cm 2 /sec or more, more preferably 10 cm 3 /cm, from the viewpoint of suffocation when wearing a mask. 2 /sec or more, more preferably 15 cm 3 /cm 2 /sec or more. Since the flexible polyether urethane foam of the present invention has good air permeability, it can reduce the feeling of suffocation when used as a mask.
 本発明の軟質ポリエーテルウレタンフォームは、ポリオール、ポリイソシアネート、触媒及び発泡剤を含むポリウレタンフォーム製造用原料の組成物から発泡形成されたものである。 The flexible polyether urethane foam of the present invention is foamed from a composition of raw materials for producing polyurethane foam containing a polyol, a polyisocyanate, a catalyst and a blowing agent.
 本発明の軟質ポリエーテルウレタンフォームの発泡は、スラブ発泡が好ましい。スラブ発泡は、ポリウレタンフォーム製造用原料の組成物を混合させてベルトコンベア上に吐出し、大気圧下、常温で発泡させる方法である。発泡形成した軟質ポリエーテルウレタンフォームは、スキ加工によって所定厚みのシートにされる。その後、そのシートに対する打ち抜き加工によって所定形状にされ、さらに所定形状の所定部がヒートシール(溶融接着)によって接合されて所定の物品にされる。 Slab foaming is preferable for the foaming of the flexible polyether urethane foam of the present invention. Slab foaming is a method in which a composition of raw materials for producing polyurethane foam is mixed, discharged onto a belt conveyor, and foamed at room temperature under atmospheric pressure. The foam-formed flexible polyether urethane foam is made into a sheet having a predetermined thickness by squeezing. After that, the sheet is punched into a predetermined shape, and the predetermined portions of the predetermined shape are joined by heat sealing (melt adhesion) to form a predetermined article.
 本発明の軟質ポリエーテルウレタンフォームからマスクを形成する場合の一実施形態を図1に示す。
 図1の(1-A)に示す打ち抜き体10Aは、本発明の軟質ポリエーテルウレタンフォームのシートからマスク形状に打ち抜き形成されたものである。符号13は、耳掛け用の開口部である。
 打ち抜き体10Aは、顔の左右中心となる中央部15で左右が折り重ねられ、図1の(1-B)に示すように、中央部15に沿って所定幅でヒートシールされてマスク10が形成される。符号16で示す斜線線部分はヒートシール部分である。
 中央部15のヒートシール部分16は、マスク10が左右に拡げられて使用される際に、中央部15が外方へ膨らんで鼻の盛り上がりに対応した立体形状となるようにヒートシール範囲が決められる。なお、本発明の軟質ポリエーテルウレタンフォームから形成されるマスクは、図1に示すマスクの形態に限られない。
 必要以上に幅が広いヒートシール部分は、カットされてもよい。外方へ膨らんだ湾曲形状部に沿って、2~5mmの幅のヒートシール部分となるように、カットされてもよい。また、一端側に耳掛け部としての開口部を有し、他端側に外方へ膨らんだ湾曲形状部を有する2枚のマスク半体を重ね合わせ、湾曲形状部に沿って2~5mmの所定幅でヒートシールされて、マスク10が形成されてもよい。湾曲形状部が中央部15に位置するマスクとなる。
One embodiment of forming a mask from the flexible polyether urethane foam of the present invention is shown in FIG.
A punched body 10A shown in (1-A) of FIG. 1 is formed by punching a sheet of flexible polyether urethane foam of the present invention into a mask shape. Reference numeral 13 is an ear hook opening.
The punched body 10A is folded left and right at a central portion 15, which is the center of the left and right of the face, and heat-sealed along the central portion 15 with a predetermined width to form the mask 10, as shown in FIG. 1(1-B). It is formed. A hatched portion indicated by reference numeral 16 is a heat-sealed portion.
The heat-sealed portion 16 of the central portion 15 is heat-sealed so that when the mask 10 is used with the mask 10 spread laterally, the central portion 15 bulges outward to form a three-dimensional shape corresponding to the swelling of the nose. be done. In addition, the mask formed from the flexible polyether urethane foam of the present invention is not limited to the form of the mask shown in FIG.
A heat-sealed portion that is wider than necessary may be cut. A heat-sealed portion with a width of 2-5 mm may be cut along the outwardly bulging curved shape. In addition, two mask halves having an opening as an ear hook on one end side and a curved shape portion bulging outward on the other end side are superimposed, and a 2 to 5 mm gap along the curved shape portion is placed. The mask 10 may be formed by heat sealing with a predetermined width. The curved shape portion becomes a mask positioned at the central portion 15 .
 本発明の軟質ポリエーテルウレタンフォームの製造に使用される組成物に含まれるポリオール、ポリイソシアネート、触媒及び発泡剤について説明する。
 ポリオールは、ポリエーテルポリオールが含まれる。ポリエーテルポリオールには、ジオールとジオール以外のポリエーテルポリオールの両方が含まれる。
The polyol, polyisocyanate, catalyst and blowing agent contained in the composition used for producing the flexible polyether urethane foam of the present invention are explained.
Polyols include polyether polyols. Polyether polyols include both diols and polyether polyols other than diols.
 ジオールとしては、プロピレングリコール、エチレングリコールなどの2価のアルコールに、エチレンオキサイド(EO)やプロピレンオキサイド(PO)等のアルキレンオキサイドを付加重合させた官能基数2のポリエーテルポリオールが挙げられる。
 ジオールの分子量は500~6000が好ましく、より好ましくは800~5000、さらに好ましくは1500~4500である。ジオールの水酸基価(OHV)は、18~250mgKOH/gが好ましく、22~140mgKOH/gがより好ましく、24~70mgKOH/gがさらに好ましい。ジオールの分子量又は水酸基価(OHV)が前記範囲にあることにより、軟質ポリエーテルウレタンフォームのヒートシール性がより良好なものになる。
 ジオールは、一種類に限られず、複数種類を併用してもよい。ジオールの配合量は、伸び、ヒートシール性の観点で、ポリオール100重量部中に5~80重量部が好ましく、10~75重量部が好ましく、さらに、30~75重量部、40~75重量部が好ましい。
Examples of diols include polyether polyols having 2 functional groups obtained by addition polymerization of alkylene oxides such as ethylene oxide (EO) and propylene oxide (PO) to dihydric alcohols such as propylene glycol and ethylene glycol.
The molecular weight of the diol is preferably 500-6000, more preferably 800-5000, still more preferably 1500-4500. The hydroxyl value (OHV) of the diol is preferably 18-250 mgKOH/g, more preferably 22-140 mgKOH/g, and even more preferably 24-70 mgKOH/g. When the molecular weight or hydroxyl value (OHV) of the diol is within the above range, the heat sealability of the flexible polyether urethane foam becomes better.
The diol is not limited to one type, and multiple types may be used in combination. The amount of the diol compounded is preferably 5 to 80 parts by weight, preferably 10 to 75 parts by weight, further 30 to 75 parts by weight, and 40 to 75 parts by weight based on 100 parts by weight of the polyol, from the viewpoint of elongation and heat sealability. is preferred.
 ジオール以外のポリエーテルポリオールとしては、グリセリン、トリメチロールプロパン、ペンタエリスリトール等の3価以上の多価アルコールや、エチレンジアミン、芳香族ジアミン等のアミンにエチレンオキサイド(EO)あるいはプロピレンオキサイド(PO)等のアルキレンオキサイドを付加重合させた、官能基数3以上のポリエーテルポリオールが挙げられる。
 ジオール以外のポリエーテルポリオールは、水酸基価(OHV)が20~200mgKOH/g、官能基数が3~5、分子量が1000~7000であるのが好ましい。ジオール以外のポリエーテルポリオールの水酸基価(OHV)は、24~150mgKOH/gがより好ましく、28~100mgKOH/gがさらに好ましい。ジオール以外のポリエーテルポリオールの分子量は、1400~6000がより好ましく、1800~5000がさらに好ましい。ジオール以外のポリエーテルポリオールは、一種類に限られず、複数種類を併用してもよい。
 なお、ポリオールには、ポリエーテルポリオールと共にポリマーポリオールを含んでいてもよい。ポリマーポリオールを含むことにより、軟質ポリエーテルウレタンフォームのヒートシール性をさらに向上させることができる。ヒートシール性を向上させる観点で、ポリマーポリオールは、ポリオール100重量部中に5重量部以上が好ましく、10重量部以上がより好ましく、さらに20重量部以上が好ましい。ポリマーポリオールを配合する場合の配合量の上限は、特に限定されないが、伸び、通気性の観点で、ポリオール100重量部中に70重量部以下が好ましく、さらに60重量部以下が好ましい。
Examples of polyether polyols other than diols include trihydric or higher polyhydric alcohols such as glycerin, trimethylolpropane and pentaerythritol, amines such as ethylenediamine and aromatic diamines, and ethylene oxide (EO) and propylene oxide (PO). Examples thereof include polyether polyols having 3 or more functional groups obtained by addition polymerization of alkylene oxide.
Polyether polyols other than diols preferably have a hydroxyl value (OHV) of 20 to 200 mgKOH/g, a functional group number of 3 to 5, and a molecular weight of 1,000 to 7,000. The hydroxyl value (OHV) of the polyether polyol other than the diol is more preferably 24-150 mgKOH/g, further preferably 28-100 mgKOH/g. The molecular weight of the polyether polyol other than the diol is more preferably 1400-6000, more preferably 1800-5000. Polyether polyols other than diols are not limited to one type, and multiple types may be used in combination.
In addition, the polyol may contain a polymer polyol together with the polyether polyol. By containing the polymer polyol, the heat sealability of the flexible polyether urethane foam can be further improved. From the viewpoint of improving the heat sealability, the polymer polyol is preferably 5 parts by weight or more, more preferably 10 parts by weight or more, and further preferably 20 parts by weight or more in 100 parts by weight of the polyol. The upper limit of the blending amount when blending the polymer polyol is not particularly limited, but from the viewpoint of elongation and air permeability, it is preferably 70 parts by weight or less, more preferably 60 parts by weight or less per 100 parts by weight of the polyol.
 ポリマーポリオールは、ポリエーテルポリオール中で、アクリロニトリルやスチレン等のモノマーをラジカル重合(グラフト重合)し、生成するポリマー粒子が分散しているポリオールであり、軟質ポリウレタンフォームの製造に通常使用するものが使用できる。ポリマーポリオールは、水酸基価(OHV)が20~140mgKOH/g、官能基数が3~5、分子量が1000~7000であるのが好ましい。ポリマーポリオールの水酸基価(OHV)は、22~70mgKOH/gがより好ましく、24~50mgKOH/gがさらに好ましい。ポリマーポリオールの分子量は、1800~7000がより好ましく、2600~6000がさらに好ましい。 Polymer polyols are polyols in which polymer particles generated by radical polymerization (graft polymerization) of monomers such as acrylonitrile and styrene are dispersed in polyether polyols, and those commonly used in the production of flexible polyurethane foams are used. can. The polymer polyol preferably has a hydroxyl value (OHV) of 20-140 mgKOH/g, a functional group number of 3-5, and a molecular weight of 1000-7000. The hydroxyl value (OHV) of the polymer polyol is more preferably 22-70 mgKOH/g, more preferably 24-50 mgKOH/g. The molecular weight of the polymer polyol is more preferably 1800-7000, more preferably 2600-6000.
 ポリイソシアネートは、イソシアネート基を2以上有する脂肪族系、脂環式系または芳香族系ポリイソシアネート、それらの混合物、およびそれらを変性して得られる変性ポリイソシアネートを使用することができる。脂肪族系ポリイソシアネートとしては、ヘキサメチレンジイソシアネート、イソホロンジイソシアネート、ジシクロヘキサメタンジイソシアネート等を挙げることができ、芳香族ポリイソシアネートとしては、トルエンジイソシアネート(TDI)、ジフェニルメタンジイソシアネート(MDI)、ナフタレンジイソシアネート、キシリレンジイソシアネート、ポリメリックMDI(クルードMDI)等を挙げることができる。なお、その他プレポリマーも使用することができる。 As polyisocyanates, aliphatic, alicyclic or aromatic polyisocyanates having two or more isocyanate groups, mixtures thereof, and modified polyisocyanates obtained by modifying them can be used. Examples of aliphatic polyisocyanates include hexamethylene diisocyanate, isophorone diisocyanate, and dicyclohexamethane diisocyanate. Examples of aromatic polyisocyanates include toluene diisocyanate (TDI), diphenylmethane diisocyanate (MDI), naphthalene diisocyanate, xyloxy Examples include diisocyanate, polymeric MDI (crude MDI), and the like. In addition, other prepolymers can also be used.
 イソシアネートインデックス(INDEX)は、90以上であり、95~125が好ましく、より好ましくは100~120である。イソシアネートインデックスは、イソシアネートにおけるイソシアネート基のモル数をポリオールの水酸基などの活性水素基の合計モル数で割った値に100を掛けた値であり、[イソシアネートのNCO当量/活性水素当量×100]で計算される。 The isocyanate index (INDEX) is 90 or more, preferably 95-125, more preferably 100-120. The isocyanate index is a value obtained by dividing the number of moles of isocyanate groups in isocyanate by the total number of moles of active hydrogen groups such as hydroxyl groups in polyol and multiplying it by 100. Calculated.
 触媒としては、公知のウレタン化触媒を併用することができる。例えば、トリエチルアミン、トリエチレンジアミン、ジエタノールアミン、ジメチルアミノモルフォリン、N-エチルモルホリン、テトラメチルグアニジン等のアミン触媒や、スタナスオクトエートやジブチルチンジラウレート等のスズ触媒やフェニル水銀プロピオン酸塩あるいはオクテン酸鉛等の金属触媒(有機金属触媒とも称される。)を挙げることができ、アミン触媒と金属触媒の何れか一方のみ、あるいは両者の併用でもよい。アミン触媒の量は、ポリオール100重量部に対して0.1~2重量部が好ましい。金属触媒の量は、0~0.5重量部が好ましい。 As a catalyst, a known urethanization catalyst can be used in combination. For example, amine catalysts such as triethylamine, triethylenediamine, diethanolamine, dimethylaminomorpholine, N-ethylmorpholine and tetramethylguanidine; tin catalysts such as stannus octoate and dibutyltin dilaurate; phenylmercuric propionate and lead octoate. metal catalysts (also called organometallic catalysts) such as amine catalysts and metal catalysts, or both may be used in combination. The amount of amine catalyst is preferably 0.1 to 2 parts by weight with respect to 100 parts by weight of polyol. The amount of metal catalyst is preferably 0 to 0.5 parts by weight.
 発泡剤としては、水、代替フロンあるいはペンタンなどの炭化水素を、単独または組み合わせて使用できる。水の場合は、ポリオールとポリイソシアネートの反応時に炭酸ガスを発生し、その炭酸ガスによって発泡がなされる。発泡剤としての水の量は、ポリオール100重量部に対して0.1~6重量部が好ましく、0.8~5重量部がより好ましく、1.2~4重量部がさらに好ましい。 As the blowing agent, water, CFC alternatives, or hydrocarbons such as pentane can be used alone or in combination. In the case of water, carbon dioxide gas is generated during the reaction between polyol and polyisocyanate, and the carbon dioxide gas causes foaming. The amount of water as a foaming agent is preferably 0.1 to 6 parts by weight, more preferably 0.8 to 5 parts by weight, even more preferably 1.2 to 4 parts by weight, based on 100 parts by weight of the polyol.
 組成物には、その他の助剤や添加剤を適宜配合してもよい。例えば、整泡剤、着色剤、酸化防止剤、抗菌剤、紫外線吸収剤等を配合してもよい。
 整泡剤は、軟質ポリエーテルウレタンフォーム用として公知のものを使用することができる。例えば、シリコーン系整泡剤、含フッ素化合物系整泡剤および公知の界面活性剤を挙げることができる。
 着色剤は、軟質ポリエーテルウレタンフォームに求められる色に応じたものが適宜配合される。
The composition may optionally contain other auxiliary agents and additives. For example, foam stabilizers, colorants, antioxidants, antibacterial agents, ultraviolet absorbers, and the like may be blended.
A known foam stabilizer for flexible polyether urethane foam can be used. Examples thereof include silicone-based foam stabilizers, fluorine-containing compound-based foam stabilizers, and known surfactants.
The coloring agent is appropriately blended according to the color required for the flexible polyether urethane foam.
 以下、変形態様について具体的に説明する。
 ・変形態様1
 図2に示す変形態様1の積層体100は、第1基材110と、第2基材210と、第1基材110及び第2基材210の間に位置する中間繊維層310との積層体で構成されている。
The modified modes will be specifically described below.
Modified mode 1
The laminate 100 of Modification Mode 1 shown in FIG. made up of the body.
 第1基材110は、本発明の軟質ポリエーテルウレタンフォーム、第2基材210は、連続気泡構造の軟質ポリウレタンフォーム(PUR)である。連続気泡構造の軟質ポリウレタンフォームは、伸び及び強度に優れ、かつ高い開口率が得られ、通気性を高めることができるため、マスクに使用した場合、マスクを顔面にフィットさせることができ、かつ良好な通気性を確保することができる。連続気泡構造の軟質ポリウレタンフォームにはエーテル系とポリエステル系が存在するが、良好な伸びが得られる観点では、ポリエステル系が好ましい。 The first base material 110 is the flexible polyether urethane foam of the present invention, and the second base material 210 is an open-cell flexible polyurethane foam (PUR). A flexible polyurethane foam with an open-cell structure has excellent elongation and strength, provides a high open area ratio, and can improve air permeability. good breathability can be ensured. There are ether-based and polyester-based flexible polyurethane foams having an open-cell structure, and polyester-based foams are preferred from the viewpoint of obtaining good elongation.
 また、連続気泡構造の軟質ポリウレタンフォームは、除膜された軟質スラブポリウレタンフォームを用いることもできる。除膜された軟質スラブポリウレタンフォームは、軟質スラブポリウレタンフォームに対して公知の除膜処理を施してセル膜を除去したものである。除膜処理としては、軟質スラブポリウレタンフォームのセル膜を溶剤で除去する方法、あるいは爆発によりセル膜を除去する方法などがある。また、軟質スラブポリウレタンフォームは、コンベアベルト上にポリウレタン発泡原料を吐出して連続的に発泡させるスラブ発泡により形成されたものである。 In addition, as the open-cell flexible polyurethane foam, a film-removed flexible slab polyurethane foam can be used. The film-removed flexible slab polyurethane foam is obtained by subjecting a flexible slab polyurethane foam to a known film-removing treatment to remove the cell film. The film-removing treatment includes a method of removing the cell membranes of the flexible slab polyurethane foam with a solvent, a method of removing the cell membranes by explosion, and the like. Flexible slab polyurethane foam is formed by slab foaming in which a polyurethane foaming raw material is discharged onto a conveyor belt and continuously foamed.
 連続気泡構造の軟質ポリウレタンフォームのセル数(JIS K6400-1)は、40~110個/25mmが好ましい。セル数が小になると、通気性が大になる反面、強度が低下するようになり、逆にセル数が大になると、通気性が低下する反面、強度が増大するようになる。また、連続気泡構造の軟質ポリウレタンフォームの密度(JIS K7222)は、10~150kg/mが好ましく、20~125kg/mがより好ましく、30~100kg/mがさらに好ましい。密度が低くなると、柔軟性及び軽量性が増加する反面、強度が低下するようになり、逆に密度が高くなると、柔軟性及び軽量性に劣るようになる反面、強度が増大するようになる。 The number of cells (JIS K6400-1) of the open-cell flexible polyurethane foam is preferably 40 to 110/25 mm. When the number of cells is small, the air permeability is increased, but the strength is decreased. Conversely, when the number of cells is increased, the air permeability is decreased, but the strength is increased. The density of the open-celled flexible polyurethane foam (JIS K7222) is preferably 10 to 150 kg/m 3 , more preferably 20 to 125 kg/m 3 , still more preferably 30 to 100 kg/m 3 . When the density is low, the flexibility and lightness are increased, but the strength is decreased. Conversely, when the density is high, the flexibility and lightness are inferior, but the strength is increased.
 また、第1基材110と第2基材210の厚みは、それぞれ0.5~2.5mmの範囲であればよい。より好ましくは、第1基材110の厚みは、1.3~2.5mm、第2基材210の厚みは、例えば、0.5~2.5mmの厚みであり、好ましくは0.5~1.5mmである。さらに、第1基材110と第2基材210を積層した厚みは4.0mm以下であることが好ましい。第1基材110と第2基材210の厚みが薄過ぎると強度が低下し、逆に厚過ぎると柔軟性及び通気性に劣るようになる。さらに、例えば、中間繊維層310が片面に形成される第1基材110の厚みを第2基材210の厚みよりも大にして中間繊維層310の形成を容易にするのが好ましい。なお、第1基材110と第2基材210の厚みが異なる場合、厚みの大きい側、例えば、第1基材110を吸入側(外側)とし、厚みの薄い側、例えば、第2基材210を吸引側(顔面側)とするのが好ましい。厚みの大きい側、例えば、第1基材110から微粒子等を吸い込み、除去した後、厚みの薄い側、例えば、第2基材210から顔面の鼻で吸引するのが好ましい。また、第1基材110を第2基材210より厚みを薄くしてもよい。 Also, the thicknesses of the first base material 110 and the second base material 210 may each be in the range of 0.5 to 2.5 mm. More preferably, the thickness of the first base material 110 is 1.3 to 2.5 mm, and the thickness of the second base material 210 is, for example, 0.5 to 2.5 mm, preferably 0.5 to 2.5 mm. 1.5 mm. Furthermore, it is preferable that the thickness of the laminated first base material 110 and the second base material 210 is 4.0 mm or less. If the thicknesses of the first base material 110 and the second base material 210 are too thin, the strength will be lowered, and conversely, if they are too thick, the flexibility and air permeability will be poor. Further, for example, it is preferable to make the thickness of the first substrate 110 on which the intermediate fiber layer 310 is formed on one side larger than the thickness of the second substrate 210 to facilitate the formation of the intermediate fiber layer 310 . When the first base material 110 and the second base material 210 have different thicknesses, the thicker side, for example the first base material 110, is taken as the suction side (outer side), and the thinner side, for example, the second base material. 210 is preferably on the suction side (face side). It is preferable to inhale and remove particulates and the like from the thicker side, eg, the first substrate 110 , and then aspirate from the thinner side, eg, the second substrate 210 , with the nose of the face. Also, the thickness of the first base material 110 may be thinner than that of the second base material 210 .
 中間繊維層310は、ナノファイバーで構成され、第1基材110の片面(第2基材210と対向する面)に形成されている。ナノファイバーの形成は、電界紡糸法により行うことができる。その際、ポリマー溶液をノズルから第1基材110の片面に直接噴霧し、蛛の巣状をしたナノファイバーの中間繊維層310を、第1基材110の片面に接着した状態で形成する。前記電解紡糸法では直流高電圧電源とインフュージョンポンプ、ステンレスニードルシリンジ、及び金属コレクタからなる装置を使用する。ニードルシリンジの先端ノズルからは、ポリマー溶液を噴射する。ノズルと金属コレクタは対極に帯電しており、ポリマー溶液をシリンジから噴射すると、コレクタ上に置かれた第1基材110上に、ナノファイバー繊維が堆積、層を形成する。 The intermediate fiber layer 310 is composed of nanofibers and formed on one side of the first base material 110 (the side facing the second base material 210). Formation of nanofibers can be performed by an electrospinning method. At this time, the polymer solution is sprayed directly onto one side of the first base material 110 from a nozzle to form an intermediate fibrous layer 310 of nanofibers in a web shape in a state of being adhered to one side of the first base material 110 . The electrospinning method uses an apparatus consisting of a DC high voltage power source, an infusion pump, a stainless needle syringe, and a metal collector. A polymer solution is injected from the tip nozzle of the needle syringe. The nozzle and the metal collector are oppositely charged, and when the polymer solution is injected from the syringe, the nanofiber fibers are deposited and form a layer on the first substrate 110 placed on the collector.
 ナノファイバーの材質は、電解紡糸法でナノファイバーを形成できるものであれよく、例えば、ポリスチレン、ポリカーボネート、ポリ(メタ)アクリレート、ポリ塩化ビニル、ポリエチレンテレフタレート、ナイロン-6,6,ナイロン-4,6のような熱可塑性樹脂、ポリウレタン、ポリビニルアルコール、ポリ乳酸、ポリカプロラクトン、ポリエチレングリコール、ポリエチレン-酢酸ビニル共重合体、ポリエチレン-ビニルアルコール共重合体、ポリエチレンオキサイド、コラーゲンのような生分解性ポリマー、ポリアクリロニトリル、ポリアミド、ポリアニリン、パラアミド、ポリ酢酸ビニル、アセチルセルロース(アセテート)等を挙げることができる。特にポリウレタンは、ナノファイバーを吹付形成する際に第1基材110の片面との接着性がよく、伸びもよいため、特に好ましい材質である。ポリウレタンナノファイバーで構成した中間繊維層310は、第1基材110及び第2基材210の伸びに対する追従性がよく、積層体100をマスクの構成部材とした場合にマスクが顔面にフィットし易い。 The material of nanofibers may be any material that can form nanofibers by electrospinning, such as polystyrene, polycarbonate, poly(meth)acrylate, polyvinyl chloride, polyethylene terephthalate, nylon-6,6, and nylon-4,6. Thermoplastic resins such as polyurethane, polyvinyl alcohol, polylactic acid, polycaprolactone, polyethylene glycol, polyethylene-vinyl acetate copolymer, polyethylene-vinyl alcohol copolymer, polyethylene oxide, biodegradable polymers such as collagen, poly Acrylonitrile, polyamide, polyaniline, paraamide, polyvinyl acetate, acetyl cellulose (acetate) and the like can be mentioned. In particular, polyurethane is a particularly preferable material because it has good adhesion to one side of the first base material 110 and has good elongation when nanofibers are formed by spraying. The intermediate fiber layer 310 made of polyurethane nanofibers has good followability to the elongation of the first base material 110 and the second base material 210, and when the laminate 100 is used as a constituent member of the mask, the mask easily fits on the face. .
 ナノファイバーの径は、ナノファイバーの定義とされる径であればよく、具体的には、1ナノメートル(nm)から1マイクロメートル(μm)、好ましくは10ナノメートル(nm)から0.8マイクロメートル(μm)、より好ましくは10ナノメートル(nm)から0.5マイクロメートル(μm)、さらに好ましくは10ナノメートル(nm)から100ナノメートル(nm)となる。なお、ナノファイバーの径が小過ぎると中間繊維層310のナノファイバー間をウィルスが通過する虞があり、逆にナノファイバーの径が大過ぎると中間繊維層310の通気性が低下するようになる。より好ましい径は10ナノメートル(nm)~100ナノメートル(nm)である。 The diameter of the nanofiber may be a diameter defined as a nanofiber, specifically, 1 nanometer (nm) to 1 micrometer (μm), preferably 10 nanometers (nm) to 0.8 Micrometers (μm), more preferably 10 nanometers (nm) to 0.5 micrometers (μm), and even more preferably 10 nanometers (nm) to 100 nanometers (nm). If the diameter of the nanofibers is too small, viruses may pass through between the nanofibers of the intermediate fiber layer 310. Conversely, if the diameter of the nanofibers is too large, the air permeability of the intermediate fiber layer 310 is reduced. . A more preferred diameter is between 10 nanometers (nm) and 100 nanometers (nm).
 ナノファイバーからなる中間繊維層310の目付量は限定されないが、0.10~0.80g/mが好ましい。目付量を小にするとナノファイバーの間隔が大になってナノファイバー間をウィルスが通過する虞があり、逆に目付量を大にするとナノファイバーの間隔が小になって通気性が低下するようになる。 Although the basis weight of the intermediate fiber layer 310 made of nanofibers is not limited, it is preferably 0.10 to 0.80 g/m 2 . If the weight per unit area is reduced, the space between the nanofibers becomes large, and viruses may pass between the nanofibers. become.
 積層体100の製造例を次に示す。第1基材用の軟質ポリエーテルウレタンフォームの長尺シートを使用し、その上にBASF社製熱可塑性ポリウレタンペレットを溶剤に溶解し、電解紡糸法によりウレタン製ナノファイバー不織布(中間繊維層)を積層紡糸する。繊維径は、紡糸用ノズルと長尺シートまでの距離および、ノズルから吐出されるナノファイバー原料の吐出量と電圧によって、所定の線径になるよう調節する。紡糸されたウレタン製ナノファイバーの中間繊維層は、前記軟質ポリエーテルウレタンフォームの長尺シートに絡み付いている。長尺シートをロールに巻き取り、火炎熔着装置に、前記ロールを装着する。第2基材として、ポリエステル系の軟質ウレタンフォームを用い、第2基材のロールを装着する。第2基材に火炎を照射しながら、第1基材の前記ロールのウレタン製ナノファイバー不織布(中間繊維層)のロールを積層搬送することで、前記積層体100が得られる。第1基材の軟質ポリエーテルウレタンフォームに代えて、軟質ポリウレタンフォーム(軟質ポリエステルフォーム)や、布層を基材として、中間繊維層(ナノファイバー不織布)を作成してもよい。 An example of manufacturing the laminate 100 is shown below. Using a long sheet of soft polyether urethane foam for the first base material, BASF thermoplastic polyurethane pellets are dissolved in a solvent on it, and a urethane nanofiber nonwoven fabric (intermediate fiber layer) is formed by electrospinning. Laminated spinning. The fiber diameter is adjusted to a predetermined wire diameter by adjusting the distance between the spinning nozzle and the long sheet, the discharge amount of the nanofiber raw material discharged from the nozzle, and the voltage. An intermediate fiber layer of spun urethane nanofibers is entwined with the elongated sheet of flexible polyether urethane foam. A long sheet is wound on a roll, and the roll is mounted on a flame welding device. A polyester soft urethane foam is used as the second base material, and a roll of the second base material is attached. The laminate 100 is obtained by laminating and conveying the roll of the urethane nanofiber nonwoven fabric (intermediate fiber layer) of the roll of the first base material while irradiating the second base material with a flame. Instead of the flexible polyether urethane foam of the first substrate, a flexible polyurethane foam (soft polyester foam) or a fabric layer may be used as the substrate to form the intermediate fiber layer (nanofiber nonwoven fabric).
 ・変形態様2
 変形態様2として、変形態様1の第2基材210を布層とした積層体(図示せず)について説明する。
 変形態様2は、本発明の軟質ポリエーテルウレタンフォームの第1基材と、中間繊維層と、布層の第2基材とで構成される積層体である。布層は、繊維または糸をシート状に加工した布で構成されている。中間繊維層は、変形態様1の中間繊維層310と同様のナノファイバーで形成されている。
・Modification mode 2
As Modified Mode 2, a laminate (not shown) in which the second substrate 210 of Modified Mode 1 is used as a fabric layer will be described.
Modification 2 is a laminate comprising a first substrate of flexible polyether urethane foam of the present invention, an intermediate fiber layer, and a second substrate of cloth layer. The cloth layer is composed of a sheet of cloth made from fibers or threads. The intermediate fiber layer is made of nanofibers similar to the intermediate fiber layer 310 of the first variant.
 布層は、編物、織物、不織布、またはフェルトなどの布を使用できる。布を構成する繊維としては、ポリエチレンやポリプロピレンやナイロンやウレタンやレーヨン等の化学繊維で構成されたものや、綿やウール等の天然繊維で構成されたものを使用できる。ポリエステル繊維は、紫外線による変色が少ないので耐久性の点から好ましい。布は、吸湿性が少ないものであると、変形態様2の積層体を洗濯するときや乾燥するときに都合がよい。また、綿やレーヨンからなる布は、吸水性があるので、変形態様2の積層体に吸湿や保湿性を求める場合に採用すればよい。布は、抗菌処理等によって抗菌性を有する抗菌性布地であってもよい。布は、表面の繊維を起毛させたものであってもよい。 The fabric layer can be knitted, woven, non-woven, or made of felt. As the fibers constituting the cloth, those composed of chemical fibers such as polyethylene, polypropylene, nylon, urethane, and rayon, and those composed of natural fibers such as cotton and wool can be used. Polyester fibers are preferable from the standpoint of durability because they are less susceptible to discoloration due to ultraviolet rays. If the cloth has a low hygroscopicity, it is convenient for washing and drying the laminate of Modified Mode 2. Also, since cloth made of cotton or rayon has water absorption properties, it may be used when moisture absorption and moisture retention properties are required for the laminate of modified mode 2. The fabric may be an antimicrobial fabric having antimicrobial properties such as by antimicrobial treatment. The cloth may be one in which surface fibers are raised.
 布は、織り方や編み方によって構造的に伸縮性を有しているものや、伸縮性を有する弾性繊維を用いることで伸縮性を有する所謂ストレッチ生地などを使用できる。布が織物である場合、伸縮性を有する平織、綾織り、ジャガード織りが好ましい。布が編物である場合、経編や横編やその他を使用可能であり、経編であれば、例えばトリコット、ダブルラッセルなどを挙げられ、横編であれば、丸編みや天竺編み等を挙げられる。編物は、織物や不織布よりも伸縮性に優れていることから好ましい。 As for the cloth, it is possible to use fabrics that are structurally stretchable depending on how they are woven or knitted, or so-called stretch fabrics that are stretchable by using elastic fibers that have stretchability. When the cloth is a woven fabric, stretchable plain weave, twill weave, and jacquard weave are preferred. When the cloth is knitted, warp knitting, weft knitting, and others can be used. Warp knitting includes tricot, double raschel, etc., and weft knitting includes circular knitting and jersey knitting. be done. Knitted fabrics are preferred because they are more stretchable than woven fabrics and non-woven fabrics.
 布が不織布である場合、ウエブを、乾式法、スパンボンド法、メルトブローン法、エアレイド法などの何れで形成したものであってもよい。細菌のような微細な異物の捕集効率の観点から、メルトブローン法による不織布(メルトブローン不織布)やスパンボンド法による不織布(スパンボンド不織布)が好ましい。また、不織布は、ウエブの繊維結合方法が、ケミカルボンド法、サーマルボンド法、ニードルパンチ法、水流交絡法(スパンレース)などの何れであってもよいが、マスク用途の積層体としてはVOCが少ない水流交絡法やニードルパンチ法が好ましい。 When the cloth is a nonwoven fabric, the web may be formed by any of a dry method, a spunbond method, a meltblown method, an airlaid method, and the like. From the viewpoint of the efficiency of capturing fine foreign matter such as bacteria, a nonwoven fabric by a meltblown method (meltblown nonwoven fabric) or a nonwoven fabric by a spunbond method (spunbond nonwoven fabric) is preferable. In addition, the nonwoven fabric may be formed by a chemical bond method, a thermal bond method, a needle punch method, a hydroentanglement method (spunlace), or the like. A hydroentanglement method and a needle punch method are preferable.
 布の伸び率(JIS K6400-5:2004ダンベル2号型)が、50%~500%であると好ましい。前述した伸び率の布であると、第1基材である軟質ポリエーテルウレタンフォームの伸縮性を、布層で妨げ難く、積層体の伸縮性を向上できる。積層体をマスクに用いた場合、口などの動きに追従して適度に伸びて、着用時の負担を軽減できる。また、変形態様2の積層体でマスクの耳掛け部を形成した場合、耳掛け部が切れ難くなると共に、耳への負担を軽減できる。なお、第1基材である軟質ポリエーテルウレタンフォームよりも伸び率が低い布を用いると、第1基材である軟質ポリエーテルウレタンフォームの過剰な伸びを抑えて軟質ポリエーテルウレタンフォームの塑性変形を防止でき、積層体を丈夫にできるので好ましい。 It is preferable that the elongation rate of the cloth (JIS K6400-5:2004 dumbbell No. 2 type) is 50% to 500%. When the fabric has the aforementioned elongation rate, the stretchability of the soft polyether urethane foam, which is the first base material, is less likely to be hindered by the fabric layer, and the stretchability of the laminate can be improved. When the laminate is used as a mask, it stretches appropriately following the movement of the mouth and the like, and can reduce the burden of wearing. In addition, when the ear hooking portion of the mask is formed from the laminate of Modified Mode 2, the ear hooking portion is less likely to break and the burden on the ear can be reduced. If a cloth having a lower elongation rate than the soft polyether urethane foam that is the first base material is used, excessive elongation of the soft polyether urethane foam that is the first base material is suppressed, resulting in plastic deformation of the soft polyether urethane foam. It is preferable because it is possible to prevent this and make the laminate strong.
 布の通気性が、10cm/(cm・sec)以上であると好ましく、15cm/(cm・sec)以上であるとより好ましく、20cm/(cm・sec)以上であると更に好ましく、25cm/(cm・sec)以上であると特に好ましい。なお、布の通気性は、異物捕集効率との関係で150cm/(cm・sec)以下に設定することが好ましい。通気性が前記範囲にある布であると、良好な異物捕集効率および適度な通気性を確保できる。そして、変形態様2の積層体をマスクに用いた場合、適度な通気性を確保できるので息苦しさを軽減でき、良好な装着感が得られる。また、通気性が前記範囲にある布であると、変形態様2の積層体をマスクに用いた場合、良好な異物捕集効率を得られる。このように、通気性が前記範囲にある布であると、呼吸し易さと異物の良好な捕集効率を両立できるので好ましい。変形態様2の積層体は、布層の通気性を大きくしても中間繊維層によって異物捕集効率を確保できることから、柔軟性や伸びや意匠性などの機能を通気性よりも優先して布を設定してもよい。 The air permeability of the fabric is preferably 10 cm 3 /(cm 2 ·sec) or more, more preferably 15 cm 3 /(cm 2 ·sec) or more, and 20 cm 3 /(cm 2 ·sec) or more. More preferably, it is particularly preferably 25 cm 3 /(cm 2 ·sec) or more. The air permeability of the cloth is preferably set to 150 cm 3 /(cm 2 ·sec) or less in relation to the efficiency of trapping foreign matter. A fabric having air permeability within the above range can ensure good foreign matter trapping efficiency and appropriate air permeability. And when the layered product of Modified Mode 2 is used for a mask, it is possible to ensure adequate breathability, so that it is possible to reduce the feeling of suffocation and to obtain a good wearing feeling. Further, if the fabric has an air permeability within the above range, when the laminate of Modified Mode 2 is used for a mask, good foreign matter collection efficiency can be obtained. As described above, it is preferable to use a fabric having air permeability within the above range, because it is possible to achieve both ease of breathing and good foreign matter collection efficiency. In the laminate of Modified Mode 2, even if the air permeability of the fabric layer is increased, the intermediate fiber layer can ensure the efficiency of collecting foreign matter. may be set.
 布層の厚さが、0.1mm~0.4mmであると好ましい。布層は、厚くなるほど、異物捕集効率が向上するが、自身を通過する空気の圧力損失が大きくなる(通気性が小さくなる)。布層は、薄くなるほど、異物捕集効率が低下するが、自身を通過する空気の圧力損失が小さくなる(通気性が大きくなる)。変形態様2の積層体は、布層の厚さが前述の範囲にあると、適度な通気性が得られる。また、布層の厚みが前記範囲にあると、変形態様2の積層体の嵩張りを抑えることができる。 The thickness of the fabric layer is preferably 0.1 mm to 0.4 mm. As the cloth layer becomes thicker, the efficiency of trapping foreign matter improves, but the pressure loss of the air passing through the cloth layer increases (the air permeability decreases). The thinner the cloth layer, the lower the efficiency of trapping foreign matter, but the lower the pressure loss of the air passing through itself (the higher the air permeability). When the thickness of the fabric layer is within the above-described range, the laminate of Modified Mode 2 can obtain appropriate breathability. Moreover, when the thickness of the fabric layer is within the above range, the bulkiness of the laminate of Modified Mode 2 can be suppressed.
 中間繊維層は、異物捕集効率の観点から、ナノサイズの繊維(ナノファイバー)が好ましい。また、繊維の繊維径は、より細かい異物の捕集の観点からは、10nm~800nmであると好ましく、10nm~500nmであるとより好ましく、10nm~100nmであると更に好ましい。繊維の繊維径が前記範囲にあると、異物の捕集と適度な通気性とを確保できる。中間繊維層を構成する繊維の繊維径を、布層を構成する繊維や糸よりも小さくすることが好ましい。このようにすることで、布層を比較的丈夫にでき、布層で捕集が難しい細菌等の微細な異物を繊維層で捕集可能である。 The intermediate fiber layer is preferably made of nano-sized fibers (nanofibers) from the viewpoint of foreign matter collection efficiency. The fiber diameter of the fibers is preferably 10 nm to 800 nm, more preferably 10 nm to 500 nm, even more preferably 10 nm to 100 nm, from the viewpoint of collecting finer foreign matter. When the fiber diameter of the fiber is within the above range, it is possible to secure the trapping of foreign substances and appropriate air permeability. It is preferable that the fibers constituting the intermediate fiber layer have a smaller fiber diameter than the fibers and threads constituting the fabric layer. By doing so, the cloth layer can be made relatively strong, and the fiber layer can collect microscopic foreign substances such as bacteria that are difficult to collect with the cloth layer.
 中間繊維層の繊維の材質は、例えば、ポリフッ化ビニリデン等の熱可塑性フッ素樹脂、ポリスチレン、ポリカーボネート、ポリ(メタ)アクリレート、ポリ塩化ビニル、ポリエチレンテレフタレート、ナイロン-6,6,ナイロン-4,6のような熱可塑性樹脂、ポリウレタン、ポリビニルアルコール、ポリ乳酸、ポリカプロラクトン、ポリエチレングリコール、ポリエチレン-酢酸ビニル共重合体、ポリエチレン-ビニルアルコール共重合体、ポリエチレンオキサイド、コラーゲンのような生分解性ポリマー、ポリアクリロニトリル、ポリアミド、ポリアニリン、パラアミド、ポリ酢酸ビニル、アセチルセルロース(アセテート)等を挙げられる。ポリウレタン繊維は、第1基材の軟質ポリエーテルウレタンフォームとの接着性がよく、伸びもよいので好ましい。中間繊維層の伸びがよいと、第1基材の軟質ポリエーテルウレタンフォームおよび布層の伸びに対する追従性がよくなり、例えば変形態様2の積層体をマスクとした場合、顔面にフィットし易くなる。 Materials of fibers of the intermediate fiber layer include, for example, thermoplastic fluororesins such as polyvinylidene fluoride, polystyrene, polycarbonate, poly(meth)acrylate, polyvinyl chloride, polyethylene terephthalate, nylon-6,6, and nylon-4,6. thermoplastic resins such as polyurethane, polyvinyl alcohol, polylactic acid, polycaprolactone, polyethylene glycol, polyethylene-vinyl acetate copolymer, polyethylene-vinyl alcohol copolymer, polyethylene oxide, biodegradable polymers such as collagen, polyacrylonitrile , polyamide, polyaniline, paraamide, polyvinyl acetate, acetylcellulose (acetate) and the like. Polyurethane fibers are preferable because they have good adhesion to the flexible polyether urethane foam of the first base material and have good elongation. When the stretchability of the intermediate fiber layer is good, the soft polyether urethane foam of the first base material and the fabric layer follow the stretchability well. .
 中間繊維層の通気性が、10cm/(cm・sec)以上であると好ましく、15cm/(cm・sec)以上であるとより好ましく、20cm/(cm・sec)以上であると更に好ましく、25cm/(cm・sec)以上であると特に好ましい。なお、中間繊維層の通気性は、異物の捕集効率との関係で150cm/(cm・sec)以下に設定することが好ましい。繊維の繊維径が前記範囲にあると、変形態様2の積層体において異物捕集効率および通気性を確保できる。変形態様2の積層体をマスクに用いた場合、適度な通気により息苦しさを軽減でき、良好な装着感が得られる。また、変形態様2の積層体によって良好な異物捕集効率が得られる。 The air permeability of the intermediate fiber layer is preferably 10 cm 3 /(cm 2 ·sec) or more, more preferably 15 cm 3 /(cm 2 ·sec) or more, and more preferably 20 cm 3 /(cm 2 ·sec) or more. It is more preferable if there is, and it is particularly preferable if it is 25 cm 3 /(cm 2 ·sec) or more. Note that the air permeability of the intermediate fiber layer is preferably set to 150 cm 3 /(cm 2 ·sec) or less in relation to the foreign matter collection efficiency. When the fiber diameter of the fibers is within the above range, the foreign matter trapping efficiency and air permeability can be ensured in the laminate of Modified Mode 2. When the layered product of modified mode 2 is used for a mask, it is possible to reduce suffocation due to appropriate ventilation, and a good feeling of wearing can be obtained. In addition, the laminate of Modified Mode 2 provides good foreign matter trapping efficiency.
 中間繊維層の通気性を、第1基材の軟質ポリエーテルウレタンフォームよりも低く設定することが好ましい。このようにすることで、柔軟性や伸びなどの軟質ポリエーテルウレタンフォームの良さを損なうことなく、第1基材の軟質ポリエーテルウレタンフォームで得られない異物捕集効率を中間繊維層で補って、変形態様2の積層体における良好な異物捕集効率が得られる。また、中間繊維層の通気性を、布層よりも低く設定することが好ましい。このようにすることで、柔軟性や伸びなどの布層の良さを損なうことなく、布層で得られない異物捕集効率を中間繊維層で補って、変形態様2の積層体における良好な異物捕集効率が得られる。 It is preferable to set the air permeability of the intermediate fiber layer lower than that of the flexible polyether urethane foam of the first base material. By doing so, the intermediate fiber layer supplements the foreign matter collection efficiency that cannot be obtained with the flexible polyether urethane foam of the first base material without impairing the soft polyether urethane foam such as flexibility and elongation. , good foreign matter collection efficiency in the laminate of Modified Mode 2 can be obtained. Moreover, it is preferable to set the air permeability of the intermediate fiber layer to be lower than that of the cloth layer. By doing so, the intermediate fiber layer compensates for the foreign matter collection efficiency that cannot be obtained with the fabric layer without impairing the goodness of the fabric layer such as flexibility and elongation, so that the laminate of the modified mode 2 has good foreign matter. Collection efficiency is obtained.
 中間繊維層の繊維の目付量は、0.10g/m~10g/mであると好ましく、0.10g/m~5g/mであるとより好ましい。このようにすることで、中間繊維層による異物捕集効率および通気性を確保できる。異物捕集の対象物の違いや、繊維層の繊維径により、この中間繊維層の繊維の目付量を設定することもできる。例えば、中間繊維層の繊維径の大きなものに対しては、0.5~10g/m、0.5~5g/m、1~3g/mとすることができる。また、中間繊維層の繊維径の小さなものに対しては、0.1~1.0g/m、0.1~0.8g/m、0.1~0.6g/mとすることができる。この場合、細菌やウィルス等の小さなサイズの異物を捕集する場合に有効である。 The fiber basis weight of the intermediate fiber layer is preferably 0.10 g/m 2 to 10 g/m 2 , more preferably 0.10 g/m 2 to 5 g/m 2 . By doing so, it is possible to ensure the efficiency of trapping foreign matter and the air permeability of the intermediate fiber layer. It is also possible to set the basis weight of the fibers of the intermediate fiber layer according to the difference in objects to be collected for foreign matter and the fiber diameter of the fiber layer. For example, it can be 0.5 to 10 g/m 2 , 0.5 to 5 g/m 2 , 1 to 3 g/m 2 for intermediate fiber layers having a large fiber diameter. For intermediate fiber layers with a small fiber diameter, it is 0.1 to 1.0 g/m 2 , 0.1 to 0.8 g/m 2 , 0.1 to 0.6 g/m 2 . be able to. In this case, it is effective for collecting small-sized foreign substances such as bacteria and viruses.
 中間繊維層は、例えば、電界紡糸法によって形成することができる。
 例えば、前記のように第1基材の軟質ポリエーテルウレタンフォームを基材として、その一面に、電界紡糸法によってポリマー溶液を噴射し、繊維を吹き付け、微細な繊維が次第に積み重なって中間繊維層が形成される。中間繊維層は、繊維が軟質ポリエーテルウレタンフォームに絡みついて接合し、積層される。
 中間繊維層は、第1基材の軟質ポリエーテルウレタンフォームに代えて、軟質ポリウレタンフォーム(軟質ポリエステルフォーム)や、布層を基材として、作成されたものを用いてもよい。
The intermediate fiber layer can be formed, for example, by electrospinning.
For example, as described above, using the soft polyether urethane foam as the first base material as a base material, a polymer solution is sprayed on one surface of the base material by an electrospinning method, and fibers are sprayed, and fine fibers are gradually stacked to form an intermediate fiber layer. It is formed. The intermediate fiber layer is laminated by entangling and bonding the fibers to the flexible polyether urethane foam.
Instead of the flexible polyether urethane foam of the first base material, the intermediate fiber layer may be formed using a flexible polyurethane foam (soft polyester foam) or a fabric layer as the base material.
 軟質ポリエーテルウレタンフォームと、他の素材との積層は、例えば、フレームラミネーションや、ホットメルト接着剤による接着などが挙げられる。他の素材とは、軟質ポリウレタンフォーム(軟質ポリエステルフォーム)や、布層が挙げられる。ホットメルト接着剤を用いた接着方法としては、ロールコーターやスプレー塗布により、ホットメルト接着剤等の接着剤層を挟んであるいは接着剤を塗布して、軟質ポリエーテルウレタンフォームと、他の素材とを貼り合わせることができる。この場合、不織布状ホットメルトシートを用いてもよく、繊維状ホットメルト接着剤を塗布してもよい。 Lamination of flexible polyether urethane foam and other materials includes, for example, frame lamination and adhesion using hot-melt adhesives. Other materials include flexible polyurethane foam (soft polyester foam) and fabric layers. As an adhesion method using a hot-melt adhesive, a roll coater or spray coating is used to sandwich an adhesive layer such as a hot-melt adhesive or apply an adhesive to bond soft polyether urethane foam and other materials. can be pasted together. In this case, a non-woven hot-melt sheet may be used, or a fibrous hot-melt adhesive may be applied.
 以下の成分を用いて図3及び図4に示す比較例及び各実施例における配合のポリウレタンフォーム製造用組成物を作製し、作製したポリウレタンフォーム製造用組成物を混合し、発泡させて軟質ポリエーテルウレタンフォームを作製した。なお、比較例及び各実施例の何れのウレタンフォームも、除膜処理を施さなかった。 Using the following components, compositions for producing polyurethane foams having formulations in the comparative examples and examples shown in FIGS. A urethane foam was produced. The urethane foams of Comparative Examples and Examples were not subjected to film removal treatment.
 ・ジオール以外のポリエーテルポリオール;アルキレンオキサイド付加ポリエーテルポリオール、分子量:3000、官能基数3、水酸基価56mgKOH/g、品名:GP3050N、三洋化成工業社製
 ・ポリマーポリオール;分子量:5000、官能基数3、水酸基価32mgKOH/g、品名:エクセノール941(グリセリンにプロピレンオキシドを付加重合したポリエーテルポリオール60質量%にスチレン:アクリロニトリルの質量比が8:2の混合物40質量%をグラフト重合し、分散させたもの、固形分40%)
 ・ジオール1;ポリエーテルポリオール、分子量:1000、官能基数2、水酸基価108~116mgKOH/g、品名:アクトコールD1000、三井化学社製
 ・ジオール2;ポリエーテルポリオール、分子量:2000、官能基数2、水酸基価54~58mgKOH/g、品名:アクトコールD2000、三井化学社製
 ・ジオール3;ポリエーテルポリオール、分子量:4000、官能基数2、水酸基価26~30mgKOH/g、品名:アクトコールD4000、三井化学社製
 ・整泡剤;シリコーン整泡剤、品名:SZ1136、ダウ東レ社製
 ・アミン触媒;N-エチルモルホリン、品名:カオーライザーNo.22、花王社製
 ・錫触媒;スタナスオクトエート、品名:MRH110、城北化学工業社製
 ・発泡剤;水
 ・イソシアネート;品名:コスモネートT-80/T-65、東ソー社製
Polyether polyol other than diol; alkylene oxide-added polyether polyol, molecular weight: 3000, number of functional groups: 3, hydroxyl value: 56 mgKOH/g, product name: GP3050N, manufactured by Sanyo Chemical Industries, Ltd. Polymer polyol; molecular weight: 5000, number of functional groups: 3, Hydroxyl value 32 mgKOH/g, product name: EXCENOL 941 (polyether polyol obtained by addition polymerization of propylene oxide to glycerin, 40% by mass of a mixture of styrene:acrylonitrile with a mass ratio of 8:2, graft-polymerized and dispersed. , solid content 40%)
Diol 1; polyether polyol, molecular weight: 1000, functional group number 2, hydroxyl value 108 to 116 mgKOH/g, product name: Actcole D1000, manufactured by Mitsui Chemicals, Inc. Diol 2; polyether polyol, molecular weight: 2000, functional group number 2, Hydroxyl value 54-58 mgKOH/g, Product name: Actcole D2000, Mitsui Chemicals Diol 3; Polyether polyol, Molecular weight: 4000, Number of functional groups 2, Hydroxyl value 26-30 mgKOH/g, Product name: Actcole D4000, Mitsui Chemicals manufactured by Dow Toray Co., Ltd. ・Foam stabilizer: silicone foam stabilizer, product name: SZ1136, Dow Toray Co., Ltd. ・Amine catalyst: N-ethylmorpholine, product name: Kaorizer No. 22, manufactured by Kao Corporation ・Tin catalyst; stannous octoate, product name: MRH110, manufactured by Johoku Chemical Industry ・Blowing agent; water ・Isocyanate; product name: Cosmonate T-80 / T-65, manufactured by Tosoh
 作製したポリウレタンフォームの物性として、密度(JIS K7222準拠)、引張強度(JIS K 6400-5K準拠)、伸び(JIS K6400-5準拠)、ヒートシール強度(接着強度)、通気性(JIS L1096A法準拠)の測定と臭気の確認を行った。 The physical properties of the produced polyurethane foam are density (JIS K7222 compliant), tensile strength (JIS K 6400-5K compliant), elongation (JIS K6400-5 compliant), heat seal strength (adhesive strength), air permeability (JIS L1096A compliant ) was measured and the odor was confirmed.
 ヒートシール強度の測定は、長さ100mm×幅30mm×厚み10mmからなる2つの試験片を重ね、その一端から20mmの範囲(30×20mmの部分)を180℃の熱板で挟んで圧力1.3MPa(メガパスカル)で30秒間加圧することによりヒートシールし、その後、オートグラフ (島津製作所製)を用い、2つの試験片の他端側端部から20mmの範囲をつかみ具によって把持し、180度開いて引張速度500mm/minで互いに反対方向へ引張り、2つの試験片が剥離する強度を測定し、ヒートシール強度とした。
 臭気の確認は、官能試験で行った。においを嗅いでもらい、においがあるかないかを官能的に評価した。
The heat seal strength was measured by stacking two test pieces each having a length of 100 mm, a width of 30 mm, and a thickness of 10 mm. Heat-sealed by pressurizing at 3 MPa (megapascal) for 30 seconds, then using an autograph (manufactured by Shimadzu Corporation), gripping a range of 20 mm from the other end of the two test pieces with a gripper, 180 It was opened twice and pulled in opposite directions at a tensile speed of 500 mm/min, and the strength at which the two test pieces peeled off was measured and taken as the heat seal strength.
A sensory test was performed to confirm the odor. The subjects were asked to smell the odor, and the presence or absence of the odor was sensorily evaluated.
 ヒートシール強度の測定結果について、次の基準で判定を行った。
 ヒートシール強度判定は、100kPa未満の場合「×」100~500kPa未満の場合「〇」、500kPa以上の場合「◎」とした。
 測定結果及び判定結果は図3に示す。
The measurement results of the heat seal strength were judged according to the following criteria.
The heat-sealing strength was judged as "×" when less than 100 kPa, "◯" when less than 100 to 500 kPa, and "⊚" when 500 kPa or more.
The measurement results and determination results are shown in FIG.
 比較例と各実施例の結果について以下に示す。
 ・比較例
 比較例は、ポリオールをジオール以外のポリエーテルポリオール単独使用とした例である。
 比較例は、密度52.5kg/m、引張強度64.1kPa、伸び98.6%、ヒートシール強度はシール性なし(接着せず)、通気性12.0cm/cm/sec、臭気なし、であり、ヒートシール強度判定「×」であった。
The results of Comparative Examples and Examples are shown below.
・Comparative Example A comparative example is an example in which a polyether polyol other than a diol is used alone as a polyol.
The comparative example has a density of 52.5 kg/m 3 , a tensile strength of 64.1 kPa, an elongation of 98.6%, a heat seal strength of no sealability (no adhesion), air permeability of 12.0 cm 3 /cm 2 /sec, and odor. None, and the heat seal strength judgment was "x".
 実施例1~5は、ポリオールをジオール以外のポリエーテルポリオールと、ジオール2(分子量2000)とで構成し、ポリオール中のジオール2(分子量2000)の配合割合を変化させた例である。 Examples 1 to 5 are examples in which the polyol is composed of a polyether polyol other than a diol and diol 2 (molecular weight 2000), and the mixing ratio of diol 2 (molecular weight 2000) in the polyol is varied.
 ・実施例1
 実施例1はジオール2(分子量2000)の配合量を10.0重量部にした例である。
 実施例1は、密度53.0kg/m、引張強度73.0kPa、伸び135.0%、ヒートシール強度389.0kPa、通気性21.0cm/cm/sec、臭気なし、ヒートシール強度判定「〇」であった。
・Example 1
Example 1 is an example in which the blending amount of diol 2 (molecular weight: 2000) was 10.0 parts by weight.
Example 1 has a density of 53.0 kg/m 3 , tensile strength of 73.0 kPa, elongation of 135.0%, heat seal strength of 389.0 kPa, air permeability of 21.0 cm 3 /cm 2 /sec, no odor, and heat seal strength. The judgment was "0".
 ・実施例2
 実施例2はジオール2(分子量2000)の配合量を20.0重量部にした例である。
 実施例2は、密度53.4kg/m、引張強度78.8kPa、伸び164.9%、ヒートシール強度473.0kPa、通気性39.0cm/cm/sec、臭気なし、ヒートシール強度判定「〇」であった。
・Example 2
Example 2 is an example in which the blending amount of diol 2 (molecular weight: 2000) is 20.0 parts by weight.
Example 2 has a density of 53.4 kg/m 3 , tensile strength of 78.8 kPa, elongation of 164.9%, heat seal strength of 473.0 kPa, air permeability of 39.0 cm 3 /cm 2 /sec, no odor, and heat seal strength. The judgment was "0".
 ・実施例3
 実施例3はジオール2(分子量2000)の配合量を30.0重量部にした例である。
 実施例3は、密度52.6kg/m、引張強度77.5kPa、伸び209.5%、ヒートシール強度573.8kPa、通気性94.0cm/cm/sec、臭気なし、ヒートシール強度判定「◎」であった。
・Example 3
Example 3 is an example in which the blending amount of diol 2 (molecular weight: 2000) was 30.0 parts by weight.
Example 3 has a density of 52.6 kg/m 3 , tensile strength of 77.5 kPa, elongation of 209.5%, heat seal strength of 573.8 kPa, air permeability of 94.0 cm 3 /cm 2 /sec, no odor, and heat seal strength. The judgment was "⊚".
 ・実施例4
 実施例4はジオール2(分子量2000)の配合量を50.0重量部にした例である。
 実施例4は、密度52.4kg/m、引張強度100.1kPa、伸び305.5%、ヒートシール強度791.6kPa、通気性122.0cm/cm/sec、臭気なし、ヒートシール強度判定「◎」であった。
・Example 4
Example 4 is an example in which the blending amount of diol 2 (molecular weight: 2000) was 50.0 parts by weight.
Example 4 has a density of 52.4 kg/m 3 , tensile strength of 100.1 kPa, elongation of 305.5%, heat seal strength of 791.6 kPa, air permeability of 122.0 cm 3 /cm 2 /sec, no odor, and heat seal strength. The judgment was "⊚".
 ・実施例5
 実施例5はジオール2(分子量2000)の配合量を70.0重量部にした例である。
 実施例5は、密度52.3kg/m、引張強度105.5kPa、伸び511.0%、ヒートシール強度854.1kPa、通気性147.0cm/cm/sec、臭気なし、ヒートシール強度判定「◎」であった。
・Example 5
Example 5 is an example in which the blending amount of diol 2 (molecular weight: 2000) was 70.0 parts by weight.
Example 5 has a density of 52.3 kg/m 3 , tensile strength of 105.5 kPa, elongation of 511.0%, heat seal strength of 854.1 kPa, air permeability of 147.0 cm 3 /cm 2 /sec, no odor, and heat seal strength. The judgment was "⊚".
 ・実施例6
 実施例6は、実施例4におけるジオール以外のポリエーテルポリオールを50.0重量部から20.0重量部に減らし、代わりにポリマーポリオールを30.0重量部配合した例である。
 実施例6は、密度29.8kg/m、引張強度124.0kPa、伸び261.0%、ヒートシール強度1517.1kPa、通気性120.0cm/cm/sec、臭気なし、ヒートシール強度判定「◎」であった。
・Example 6
Example 6 is an example in which the polyether polyol other than the diol in Example 4 was reduced from 50.0 parts by weight to 20.0 parts by weight, and 30.0 parts by weight of polymer polyol was blended instead.
Example 6 has a density of 29.8 kg/m 3 , tensile strength of 124.0 kPa, elongation of 261.0%, heat seal strength of 1517.1 kPa, air permeability of 120.0 cm 3 /cm 2 /sec, no odor, and heat seal strength. The judgment was "⊚".
 実施例7~9は、ポリオールをジオール以外のポリエーテルポリオールと、ジオール3(分子量4000)とで構成し、ポリオール中のジオール3(分子量4000)の配合割合を変化させた例である。 Examples 7 to 9 are examples in which the polyol is composed of a polyether polyol other than a diol and diol 3 (molecular weight 4000), and the mixing ratio of diol 3 (molecular weight 4000) in the polyol is varied.
 ・実施例7
 実施例7は、ジオール3(分子量4000)の配合量を10.0重量部にした例である。
 実施例7は、密度51.7kg/m、引張強度76.3kPa、伸び152.9%、ヒートシール強度550.7kPa、通気性33.9cm/cm/sec、臭気なし、ヒートシール強度判定「◎」であった。
・Example 7
Example 7 is an example in which the blending amount of diol 3 (molecular weight 4000) was 10.0 parts by weight.
Example 7 has a density of 51.7 kg/m 3 , tensile strength of 76.3 kPa, elongation of 152.9%, heat seal strength of 550.7 kPa, air permeability of 33.9 cm 3 /cm 2 /sec, no odor, and heat seal strength. The judgment was "⊚".
 ・実施例8
 実施例8は、ジオール3(分子量4000)の配合量を30.0重量部にした例である。
 実施例8は、密度52.4kg/m、引張強度74.1kPa、伸び175.0%、ヒートシール強度667.8kPa、通気性78.5cm/cm/sec、臭気なし、ヒートシール強度判定「◎」であった。
・Example 8
Example 8 is an example in which the blending amount of Diol 3 (molecular weight 4000) was 30.0 parts by weight.
Example 8 has a density of 52.4 kg/m 3 , tensile strength of 74.1 kPa, elongation of 175.0%, heat seal strength of 667.8 kPa, air permeability of 78.5 cm 3 /cm 2 /sec, no odor, and heat seal strength. The judgment was "⊚".
 ・実施例9
 実施例9は、ジオール3(分子量4000)の配合量を70.0重量部にした例である。
 実施例9は、密度62.1kg/m、引張強度66.8kPa、伸び244.7%、ヒートシール強度627.5kPa、通気性46.1cm/cm/sec、臭気なし、ヒートシール強度判定「◎」であった。
・Example 9
Example 9 is an example in which the amount of diol 3 (molecular weight: 4000) was changed to 70.0 parts by weight.
Example 9 has a density of 62.1 kg/m 3 , tensile strength of 66.8 kPa, elongation of 244.7%, heat seal strength of 627.5 kPa, air permeability of 46.1 cm 3 /cm 2 /sec, no odor, and heat seal strength. The judgment was "⊚".
 実施例10~11は、ポリオールをジオール以外のポリエーテルポリオールと、ジオール1(分子量1000)とで構成し、ポリオール中のジオール1(分子量1000)の配合割合を変化させた例である。 Examples 10 and 11 are examples in which the polyol is composed of a polyether polyol other than a diol and diol 1 (molecular weight 1000), and the mixing ratio of diol 1 (molecular weight 1000) in the polyol is varied.
 ・実施例10
 実施例10は、ジオール1(分子量1000)の配合量を10.0重量部配合した例である。
 実施例10は、密度49.8kg/m、引張強度71.6kPa、伸び152.2%、ヒートシール強度540.1kPa、通気性13.8cm/cm/sec、臭気なし、ヒートシール強度判定「◎」であった。
 ・実施例11
 実施例11は、ジオール1(分子量1000)の配合量を30.0重量部配合した例である。
 実施例11は、密度49.6kg/m、引張強度84.7kPa、伸び215.5%、ヒートシール強度740.1kPa、通気性9.2cm/cm/sec、臭気なし、ヒートシール強度判定「◎」であった。
・Example 10
Example 10 is an example in which 10.0 parts by weight of diol 1 (molecular weight: 1000) was blended.
Example 10 has a density of 49.8 kg/m 3 , tensile strength of 71.6 kPa, elongation of 152.2%, heat seal strength of 540.1 kPa, air permeability of 13.8 cm 3 /cm 2 /sec, no odor, and heat seal strength. The judgment was "⊚".
・Example 11
Example 11 is an example in which 30.0 parts by weight of diol 1 (molecular weight: 1000) was added.
Example 11 has a density of 49.6 kg/m 3 , tensile strength of 84.7 kPa, elongation of 215.5%, heat seal strength of 740.1 kPa, air permeability of 9.2 cm 3 /cm 2 /sec, no odor, and heat seal strength. The judgment was "⊚".
 実施例12~15は、ポリオールにポリマーポリオールを配合し、その配合割合を変化させた例である。 Examples 12 to 15 are examples in which polymer polyol was blended with polyol and the blending ratio was varied.
 ・実施例12
 実施例12は、ジオール以外のポリエーテルポリオールの配合量を30.0重量部、ポリマーポリオールの配合量を10.0重量部、ジオール2(分子量2000)の配合量を60.0重量部配合した例である。
 実施例12は、密度55.2kg/m、引張強度115.5kPa、伸び241.4%、ヒートシール強度798.0kPa、通気性24.7cm/cm/sec、臭気なし、ヒートシール強度判定「◎」であった。
・Example 12
In Example 12, 30.0 parts by weight of polyether polyol other than diol, 10.0 parts by weight of polymer polyol, and 60.0 parts by weight of diol 2 (molecular weight: 2000) were added. For example.
Example 12 has a density of 55.2 kg/m 3 , tensile strength of 115.5 kPa, elongation of 241.4%, heat seal strength of 798.0 kPa, air permeability of 24.7 cm 3 /cm 2 /sec, no odor, and heat seal strength. The judgment was "⊚".
 ・実施例13
 実施例13は、ジオール以外のポリエーテルポリオールの配合量を20.0重量部、ポリマーポリオールの配合量を30.0重量部、ジオール2(分子量2000)の配合量を50.0重量部配合した例である。
 実施例13は、密度54.8kg/m、引張強度150.7kPa、伸び236.6%、ヒートシール強度1066.2kPa、通気性41.9cm/cm/sec、臭気なし、ヒートシール強度判定「◎」であった。
・Example 13
In Example 13, 20.0 parts by weight of polyether polyol other than diol, 30.0 parts by weight of polymer polyol, and 50.0 parts by weight of diol 2 (molecular weight: 2000) were mixed. For example.
Example 13 has a density of 54.8 kg/m 3 , tensile strength of 150.7 kPa, elongation of 236.6%, heat seal strength of 1066.2 kPa, air permeability of 41.9 cm 3 /cm 2 /sec, no odor, and heat seal strength. The judgment was "⊚".
 ・実施例14
 実施例14は、ジオール以外のポリエーテルポリオールの配合量を0重量部、ポリマーポリオールの配合量を50.0重量部、ジオール2(分子量2000)の配合量を50.0重量部配合した例である。
 実施例14は、密度53.9kg/m、引張強度168.0kPa、伸び205.6%、ヒートシール強度1055.9kPa、通気性53.6cm/cm/sec、臭気なし、ヒートシール強度判定「◎」であった。
・Example 14
Example 14 is an example in which the blending amount of polyether polyol other than diol is 0 parts by weight, the blending amount of polymer polyol is 50.0 parts by weight, and the blending amount of diol 2 (molecular weight: 2000) is 50.0 parts by weight. be.
Example 14 has a density of 53.9 kg/m 3 , tensile strength of 168.0 kPa, elongation of 205.6%, heat seal strength of 1055.9 kPa, air permeability of 53.6 cm 3 /cm 2 /sec, no odor, and heat seal strength. The judgment was "⊚".
 ・実施例15
 実施例15は、ジオール以外のポリエーテルポリオールの配合量を0重量部、ポリマーポリオールの配合量を70.0重量部、ジオール2(分子量2000)の配合量を30.0重量部配合した例である。
 実施例15は、密度55.2kg/m、引張強度166.4kPa、伸び103.5%、ヒートシール強度1156.8kPa、通気性6.4cm/cm/sec、臭気なし、ヒートシール強度判定「◎」であった。
・Example 15
Example 15 is an example in which the blending amount of polyether polyol other than diol is 0 parts by weight, the blending amount of polymer polyol is 70.0 parts by weight, and the blending amount of diol 2 (molecular weight: 2000) is 30.0 parts by weight. be.
Example 15 has a density of 55.2 kg/m 3 , tensile strength of 166.4 kPa, elongation of 103.5%, heat seal strength of 1156.8 kPa, air permeability of 6.4 cm 3 /cm 2 /sec, no odor, and heat seal strength. The judgment was "⊚".
 上記のように、実施例6と実施例12~15は、ポリマーポリオールを配合したことによって、軟質ポリエーテルウレタンフォームのヒートシール強度が高くなった。さらにポリオール中のポリマーポリオールの配合割合を高くすることによって、ヒートシール強度をより高めることができる。 As described above, in Examples 6 and 12 to 15, the heat seal strength of the flexible polyether urethane foam was increased by blending the polymer polyol. Furthermore, by increasing the proportion of the polymer polyol in the polyol, the heat seal strength can be further increased.
 このように、本発明の軟質ポリエーテルウレタンフォームは、ヒートシール性を有するため、ヒートシールによる接合(接着)が必要な用途に好適である。
 また、本発明の軟質ポリエーテルウレタンフォームは、伸び(JIS K6400-5準拠)が100%以上、密度(JIS K7222準拠)が10~150kg/mであるため、伸びが求められるウレタンマスクの部材として好適である。
 さらに、本発明の軟質ポリエーテルウレタンフォームは、ポリエステルウレタンフォームよりも加水分解し難いため、洗濯などによる劣化が少なく耐久性が高いことから、ウレタンマスクに使用して繰り返し洗濯することができる。
 なお、本発明は実施例に限定されるものではなく、発明の趣旨を逸脱しない範囲で変更可能である。
As described above, the flexible polyether urethane foam of the present invention has heat-sealing properties, and is suitable for applications that require bonding (adhesion) by heat-sealing.
In addition, the flexible polyether urethane foam of the present invention has an elongation (JIS K6400-5 compliant) of 100% or more and a density (JIS K7222 compliant) of 10 to 150 kg / m 3 , so it is a member of a urethane mask that requires elongation. It is suitable as
Furthermore, since the flexible polyether urethane foam of the present invention is less susceptible to hydrolysis than polyester urethane foam, it is less likely to be deteriorated by washing and has high durability, so that it can be used for a urethane mask and repeatedly washed.
It should be noted that the present invention is not limited to the embodiments, and can be modified without departing from the gist of the invention.
 本発明の軟質ポリエーテルウレタンフォームは、ウレタンマスクに好適である。 The flexible polyether urethane foam of the present invention is suitable for urethane masks.
 10 マスク
 13 耳掛け用開口部
 15 中央部
 16 ヒートシール部分
REFERENCE SIGNS LIST 10 mask 13 ear hook opening 15 central portion 16 heat seal portion

Claims (6)

  1.  伸び(JIS K6400-5準拠)が100%以上、密度(JIS K7222準拠)が10~150kg/mであって、ヒートシール性を有することを特徴とする軟質ポリエーテルウレタンフォーム。 A flexible polyether urethane foam characterized by having an elongation (according to JIS K6400-5) of 100% or more, a density (according to JIS K7222) of 10 to 150 kg/m 3 , and heat sealability.
  2.  以下に示すヒートシール強度試験の結果が100kPa以上であることを特徴とする請求項1に記載の軟質ポリエーテルウレタンフォーム。
     ヒートシール強度試験は、長さ100mm×幅30mm×厚み10mmからなる2つの試験片を重ね、その一端から20mmの範囲を180℃の熱板で挟んで圧力1.3MPaで30秒間加圧することによりヒートシールした後、前記2つの試験片の他端側を180度開いて引張速度500mm/minで互いに反対方向へ引張り、前記2つの試験片が剥離する強度をヒートシール強度とする。
    2. The flexible polyether urethane foam according to claim 1, which has a result of 100 kPa or more in a heat seal strength test shown below.
    The heat seal strength test was performed by stacking two test pieces each having a length of 100 mm, a width of 30 mm, and a thickness of 10 mm, sandwiching the range of 20 mm from one end with hot plates of 180°C and applying pressure of 1.3 MPa for 30 seconds. After heat-sealing, the other ends of the two test pieces are opened 180 degrees and pulled in mutually opposite directions at a tensile speed of 500 mm/min.
  3.  通気性(JIS L1096A法準拠)が5cm/cm/sec以上であることを特徴とする請求項1または2に記載の軟質ポリエーテルウレタンフォーム。 3. The flexible polyether urethane foam according to claim 1 or 2, wherein the air permeability (in accordance with JIS L1096A method) is 5 cm3 / cm2 /sec or more.
  4.  前記軟質ポリエーテルウレタンフォームは、ポリオールとポリイソシアネートと触媒及び発泡剤を含むポリウレタンフォーム製造用原料の組成物から形成されたものであり、
     前記ポリオールには、ポリエーテルポリオールが含まれ、
     前記ポリエーテルポリオールとして、ジオールとジオール以外のポリエーテルポリオールとが含まれていることを特徴とする請求項1から3の何れか一項に記載の軟質ポリエーテルウレタンフォーム。
    The flexible polyether urethane foam is formed from a composition of raw materials for producing polyurethane foam containing a polyol, a polyisocyanate, a catalyst and a blowing agent,
    Said polyols include polyether polyols,
    4. The flexible polyether urethane foam according to any one of claims 1 to 3, wherein the polyether polyol includes a diol and a polyether polyol other than the diol.
  5.  請求項1から4の何れか一項に記載の軟質ポリエーテルウレタンフォームを備えるウレタンマスク。 A urethane mask comprising the flexible polyether urethane foam according to any one of claims 1 to 4.
  6.  請求項1から4の何れか一項に記載の軟質ポリエーテルウレタンフォームに繊維層、軟質ポリウレタンフォーム、布層の少なくとも一が積層された積層体を備えるウレタンマスク。 A urethane mask comprising a laminate in which at least one of a fiber layer, a flexible polyurethane foam, and a cloth layer is laminated on the flexible polyether urethane foam according to any one of claims 1 to 4.
PCT/JP2022/007340 2021-02-22 2022-02-22 Flexible polyether urethane foam and urethane mask WO2022177026A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023500973A JPWO2022177026A1 (en) 2021-02-22 2022-02-22

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2021025962 2021-02-22
JP2021-025962 2021-02-22
JP2021-108988 2021-06-30
JP2021108988 2021-06-30

Publications (1)

Publication Number Publication Date
WO2022177026A1 true WO2022177026A1 (en) 2022-08-25

Family

ID=82932276

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/007340 WO2022177026A1 (en) 2021-02-22 2022-02-22 Flexible polyether urethane foam and urethane mask

Country Status (2)

Country Link
JP (1) JPWO2022177026A1 (en)
WO (1) WO2022177026A1 (en)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4195629A (en) * 1970-10-23 1980-04-01 Halbrand, Inc. Face mask
JPH0431419A (en) * 1990-05-28 1992-02-03 Asahi Glass Co Ltd Production of flexible polyurethane foam
JPH07149854A (en) * 1993-11-30 1995-06-13 Dainippon Ink & Chem Inc Composition for polyurethane foam
JPH09151234A (en) * 1995-11-30 1997-06-10 Takeda Chem Ind Ltd Urethane foam and its production
JP2001002749A (en) * 1999-06-22 2001-01-09 Nippon Polyurethane Ind Co Ltd Flexible polyurethane slab foam and its production
JP2002065878A (en) * 2000-08-24 2002-03-05 Inoac Corp String for mask
JP2002322236A (en) * 2001-04-26 2002-11-08 Nippon Polyurethane Ind Co Ltd Method for producing soft polyurethane slab foam
JP2010014841A (en) * 2008-07-02 2010-01-21 Kurabo Ind Ltd Sound-absorbing material
JP2011092559A (en) * 2009-10-30 2011-05-12 Inoac Corp Mask
JP2011121998A (en) * 2009-12-08 2011-06-23 Bridgestone Corp Polyurethane foam for frame lamination
JP2011184502A (en) * 2010-03-05 2011-09-22 Bridgestone Corp Polyurethane foam and method for producing polyurethane foam
JP2018016904A (en) * 2016-07-28 2018-02-01 株式会社イノアックコーポレーション Virus removing filter and mask using the same

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4195629A (en) * 1970-10-23 1980-04-01 Halbrand, Inc. Face mask
JPH0431419A (en) * 1990-05-28 1992-02-03 Asahi Glass Co Ltd Production of flexible polyurethane foam
JPH07149854A (en) * 1993-11-30 1995-06-13 Dainippon Ink & Chem Inc Composition for polyurethane foam
JPH09151234A (en) * 1995-11-30 1997-06-10 Takeda Chem Ind Ltd Urethane foam and its production
JP2001002749A (en) * 1999-06-22 2001-01-09 Nippon Polyurethane Ind Co Ltd Flexible polyurethane slab foam and its production
JP2002065878A (en) * 2000-08-24 2002-03-05 Inoac Corp String for mask
JP2002322236A (en) * 2001-04-26 2002-11-08 Nippon Polyurethane Ind Co Ltd Method for producing soft polyurethane slab foam
JP2010014841A (en) * 2008-07-02 2010-01-21 Kurabo Ind Ltd Sound-absorbing material
JP2011092559A (en) * 2009-10-30 2011-05-12 Inoac Corp Mask
JP2011121998A (en) * 2009-12-08 2011-06-23 Bridgestone Corp Polyurethane foam for frame lamination
JP2011184502A (en) * 2010-03-05 2011-09-22 Bridgestone Corp Polyurethane foam and method for producing polyurethane foam
JP2018016904A (en) * 2016-07-28 2018-02-01 株式会社イノアックコーポレーション Virus removing filter and mask using the same

Also Published As

Publication number Publication date
JPWO2022177026A1 (en) 2022-08-25

Similar Documents

Publication Publication Date Title
KR101340201B1 (en) Layered nonwoven fabric
US20080038982A1 (en) Nonwoven laminates and process for producing the same
EP2022879A1 (en) Non-woven fabric laminate and method for production thereof
US20040126579A1 (en) Multicomponent fiber incorporating thermoset and thermoplastic polymers
US20200018001A1 (en) Laminated nonwoven fabric sheet
JP2018016904A (en) Virus removing filter and mask using the same
WO2022177026A1 (en) Flexible polyether urethane foam and urethane mask
KR101972808B1 (en) Spunlace Nonwoven Fabric Sheet For Mask Pack With A Layered Structure And Method For Manufacturing The Same
KR20170120821A (en) Nanofiber composite fiber having excellent adhesive ability between substrate and nanofiber nonwoven and a separator containing thereof
KR20170120818A (en) Nanofiber composite fiber having excellent adhesive ability between substrate and nanofiber nonwoven and a separator containing thereof
JP2013141782A (en) Laminate having hook-and-loop fastener, and method for producing the laminate
JP2002315607A (en) Female material of hook and loop fastener
JPH0130945B2 (en)
JPS6411457B2 (en)
JPH09188951A (en) Nonwoven elastic fabric of polyurethane
JPH08108504A (en) Humidity permeable sheet and absorptive article using the same
JP2002004161A (en) Highly elastic nonwoven fabric and method for producing the same
WO2023073944A1 (en) Filter, method for manufacturing filter, and mask
JPH0976386A (en) Moisture-permeable sheet, manufacture thereof and absorptive article using it
KR102599732B1 (en) Stretchable multi-layered nonwoven web
JP4774900B2 (en) Elastic nonwoven fabric and article using the same
JP3541969B2 (en) Bed mat
KR102566091B1 (en) Humid controllable multi-layered non-woven sheet and face mask using thereof
JP3585003B2 (en) Bed mat and its manufacturing method
KR102599166B1 (en) Manufacturing method of multi-functional non-woven fabric and multi-functional non-woven fabric prepared therefrom

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22756343

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023500973

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22756343

Country of ref document: EP

Kind code of ref document: A1