WO2022176892A1 - 飛翔体対処システム、監視地上センター、対処地上センター、通信ルート探索装置、飛翔経路予測装置及び対処アセット選択装置 - Google Patents

飛翔体対処システム、監視地上センター、対処地上センター、通信ルート探索装置、飛翔経路予測装置及び対処アセット選択装置 Download PDF

Info

Publication number
WO2022176892A1
WO2022176892A1 PCT/JP2022/006104 JP2022006104W WO2022176892A1 WO 2022176892 A1 WO2022176892 A1 WO 2022176892A1 JP 2022006104 W JP2022006104 W JP 2022006104W WO 2022176892 A1 WO2022176892 A1 WO 2022176892A1
Authority
WO
WIPO (PCT)
Prior art keywords
satellite
information
monitoring
communication
flying object
Prior art date
Application number
PCT/JP2022/006104
Other languages
English (en)
French (fr)
Inventor
久幸 迎
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2023500885A priority Critical patent/JPWO2022176892A1/ja
Priority to US18/276,043 priority patent/US20240109674A1/en
Publication of WO2022176892A1 publication Critical patent/WO2022176892A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/10Artificial satellites; Systems of such satellites; Interplanetary vehicles
    • B64G1/1021Earth observation satellites
    • B64G1/1028Earth observation satellites using optical means for mapping, surveying or detection, e.g. of intelligence
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/10Artificial satellites; Systems of such satellites; Interplanetary vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/10Artificial satellites; Systems of such satellites; Interplanetary vehicles
    • B64G1/1007Communications satellites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/10Artificial satellites; Systems of such satellites; Interplanetary vehicles
    • B64G1/1085Swarms and constellations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/22Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
    • B64G1/66Arrangements or adaptations of apparatus or instruments, not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G3/00Observing or tracking cosmonautic vehicles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41HARMOUR; ARMOURED TURRETS; ARMOURED OR ARMED VEHICLES; MEANS OF ATTACK OR DEFENCE, e.g. CAMOUFLAGE, IN GENERAL
    • F41H11/00Defence installations; Defence devices
    • F41H11/02Anti-aircraft or anti-guided missile or anti-torpedo defence installations or systems

Definitions

  • the present disclosure relates to a flying object response system, a surveillance ground center, a response ground center, a communication route search device, a flight path prediction device, and a response asset selection device.
  • satellite-based monitoring is expected, such as launch detection, flight path tracking, and landing position prediction.
  • infrared detection of temperature rise due to atmospheric friction when the flying object enters the atmosphere is considered promising.
  • monitoring from a constellation of low earth orbit satellites is considered promising.
  • Patent Document 1 discloses a monitoring satellite for comprehensively monitoring a specific latitude area within the global surface of the earth with a small number of satellites orbiting in low earth orbit.
  • LEO satellites In surveillance from low earth orbit, compared to surveillance from geostationary orbit, the distance from the satellite to the flying object is shorter. Therefore, it becomes possible to improve the detection performance by infrared rays.
  • LEO satellites require a huge number of satellites for constant monitoring and maintenance of communication lines, and unlike geostationary satellites that appear to be almost fixed with respect to the earth-fixed coordinate system, the flight position of LEO satellites changes every moment. Therefore, a monitoring device equipped with an infrared monitoring device, the configuration of the communication satellite constellation, and the data transmission method are issues.
  • the present disclosure utilizes a surveillance system having a constellation of surveillance satellites equipped with surveillance devices and a satellite information transmission system forming a communication network with a constellation of communication satellites to detect projectile launches and prepare projectile information for a response system.
  • the object is to provide a flying object countermeasure system that transmits in real time.
  • a flying object countermeasure system includes: a surveillance system comprising a plurality of surveillance satellites comprising a surveillance device and a communication device; and a surveillance ground center transmitting commands to the plurality of surveillance satellites; a communication system comprising: a plurality of communication satellites having communication devices; and a communication ground center for transmitting commands to a group of communication satellites, which is a group of the plurality of communication satellites; a countermeasure system located on land, at sea, and/or in the air and comprising countermeasure assets for countering projectiles; with The monitoring system includes: transmitting flying object information generated by monitoring the flying object to the countermeasure system via the communication system; The monitoring ground center comprises: ID of the surveillance satellite scheduled to transmit the flying object information; Scheduled transmission time information indicating a scheduled transmission time of the flying object information; position information indicating the position of the monitoring satellite having the ID at the scheduled transmission time; ID of another surveillance satellite scheduled to receive the flying object information; scheduled reception time information indicating a scheduled reception time for receiving the flying object information; position
  • the flying object countermeasure system According to the flying object countermeasure system according to the present disclosure, it is possible to transmit flying object information to the countermeasure system in near-real time.
  • Fig. 10 is a diagram of the first embodiment, showing a configuration example of a flying object countermeasure system 1000;
  • Fig. 2 is a diagram of the first embodiment, showing a configuration example of a satellite constellation forming system 600;
  • Fig. 10 is a diagram of the first embodiment, showing an example of the configuration of a satellite 620 of the satellite constellation forming system 600;
  • FIG. 4 is another diagram of the first embodiment showing an example of the configuration of the satellite 620 of the satellite constellation forming system 600;
  • FIG. 10 is a diagram of the first embodiment showing an example of a satellite constellation 610 having a plurality of orbital planes that intersect in non-polar regions;
  • FIG. 10 is a diagram of the first embodiment, showing information transmitted from a monitoring ground center 311 to a communication ground center 321;
  • Fig. 10 is a diagram of the first embodiment, showing information transmitted from a monitoring ground center 311 to a communication ground center 321;
  • Fig. 10 is a diagram of the first embodiment, showing information transmitted from a monitoring ground center 311 to a communication ground center 321;
  • Fig. 10 is a diagram of the first embodiment, showing information transmitted from a monitoring ground center 311 to a communication ground center 321;
  • Fig. 10 is a diagram of the first embodiment, showing information transmitted from a monitoring ground center 311 to a communication ground center 321;
  • FIG. 10 is a diagram of the first embodiment and shows the flight path prediction device 490 of the coping system 330;
  • FIG. 10 is a diagram of the first embodiment and shows the flight path prediction device 490 of the coping system 330;
  • FIG. 10 is a diagram of the first embodiment and shows the flight path prediction device 490
  • FIG. 10 is a diagram of the first embodiment, in which the countermeasure system 330 has a plurality of countermeasure assets;
  • Fig. 10 is a diagram of the first embodiment, showing information transmitted from a monitoring ground center 311 to a communication ground center 321;
  • Fig. 10 is a diagram of the first embodiment, showing information transmitted from a monitoring ground center 311 to a communication ground center 321;
  • FIG. 10 is a diagram of the first embodiment and shows processing of a communication route searching device 470;
  • FIG. 10 is a diagram of the first embodiment and shows processing of a communication route searching device 470;
  • FIG. 10 is a diagram of the first embodiment and shows processing of a communication route searching device 470;
  • Fig. 10 is a diagram of the first embodiment, showing processing of the flight path prediction device 490;
  • Fig. 10 is a diagram of the first embodiment, showing processing of the flight path prediction device 490;
  • unit may be read as “circuit”, “process”, “procedure”, “process” or “circuitry” as appropriate.
  • FIG. 1 shows a configuration example of a flying object countermeasure system 1000 .
  • the flying object countermeasure system 1000 includes a monitoring system 310 , a communication system 320 and a countermeasure system 330 .
  • Surveillance system 310 includes a plurality of surveillance satellites 100 with monitoring and communication equipment.
  • Communication system 320 includes a plurality of communication satellites 200 with communication equipment.
  • Response system 330 includes land, sea, and air response assets 332 that respond to vehicle 520 .
  • the flying object countermeasure system 1000 transmits the flying object information generated by the monitoring system 310 monitoring the flying object 520 to the countermeasure system 330 via the communication system 320 .
  • the monitoring system 310 also has multiple monitoring satellites 100 equipped with infrared monitoring devices.
  • the monitoring system 310 detects the plume of the flying object 520 at the time of launch and the flying object 520 whose temperature rises as it flies as high-temperature objects. Then, the monitoring system 310 transmits time information and position information regarding the flying object 520 as flying object information.
  • the surveillance satellite 100 uses the infrared monitoring device to detect the plume of the flying object 520 at launch and the flying object 520 rising in temperature and flying as high-temperature objects.
  • the monitoring system 310 then transmits the flying object information including the time information and position information regarding the flying object 520 to the countermeasure system 330 via the communication system 320 .
  • the flying object countermeasure system 1000 includes a monitoring system 310 comprising a plurality of monitoring satellites 100 each having a monitoring device and a communication device, a monitoring ground center 311 transmitting commands to the group of monitoring satellites, and a plurality of monitoring satellites each having a communication device.
  • a communications satellite 200 a communications system 320 having a communications ground center 321 that transmits commands to the constellation of communications satellites, and a response system 330 that includes land, sea, and air response assets 32 that respond to a vehicle 520 .
  • the flying object information generated by monitoring the flying object 520 by the monitoring system 310 is transmitted to the countermeasure system 330 via the communication system 320 .
  • the monitoring ground center 311 (1) ID of the surveillance satellite scheduled to transmit the flying object information; (2) Scheduled transmission time information indicating scheduled transmission time indicating scheduled transmission time of projectile information; (3) Position information indicating the position of the monitoring satellite having the ID of (1) above at the scheduled transmission time; (4) ID of the surveillance satellite scheduled to receive the flying object information; (5) scheduled reception time information indicating the scheduled time for receiving the projectile information; (6) Position information indicating the position of "another monitoring satellite" at the scheduled reception time; (7) location information of the response asset 332; is transmitted to the communication ground center 321. As shown in FIG.
  • the communication ground center 321 has a communication route searching device 470 for searching for a communication route for satellite information.
  • the communication route search device 470 the communication ground center 321 generates an instruction command based on the notification information including the above (1) to (7) transmitted from the monitoring ground center 311, and the communication system 320 and transmits the generated command to a constellation of communication satellites.
  • Satellite constellation forming system 600 is sometimes referred to simply as a satellite constellation.
  • FIG. 2 is a configuration example of a satellite constellation forming system 600.
  • FIG. Satellite constellation forming system 600 comprises a computer. Although FIG. 2 shows the configuration of one computer, a computer is actually installed in each satellite 620 of the plurality of satellites that make up the satellite constellation 610 and in each of the ground facilities 700 that communicate with the satellites 620. be done. The satellites 620 of the plurality of satellites and the computers provided in the ground equipment 700 communicating with the satellites 620 work together to realize the functions of the satellite constellation forming system 600 . An example of the configuration of a computer that implements the functions of satellite constellation forming system 600 will be described below.
  • the satellite constellation forming system 600 includes satellites 620 and ground facilities 700 .
  • Satellite 620 comprises a communication device 622 that communicates with communication device 950 of ground facility 700 .
  • a communication device 622 is illustrated from among the components provided by satellite 620 .
  • the satellite constellation forming system 600 comprises a processor 910 and other hardware such as a memory 921 , a secondary storage device 922 , an input interface 930 , an output interface 940 and a communication device 950 .
  • the processor 910 is connected to other hardware via signal lines and controls these other hardware.
  • the satellite constellation forming system 600 includes a satellite constellation forming section 911 as a functional element. Functions of the satellite constellation forming unit 911 are realized by hardware or software. A satellite constellation forming unit 911 controls formation of the satellite constellation 610 while communicating with the satellite 620 .
  • FIG. 3 is an example configuration of satellite 620 of satellite constellation forming system 600 .
  • the satellite 620 comprises a satellite control device 621 , a communication device 622 , a propulsion device 623 , an attitude control device 624 and a power supply device 625 .
  • the satellite control device 621, the communication device 622, the propulsion device 623, the attitude control device 624, and the power supply device 625 will be described in FIG.
  • Satellite 620 in FIG. 3 is an example of communications satellite 200 with communications device 622 .
  • the satellite control device 621 is a computer that controls the propulsion device 623 and the attitude control device 624, and includes a processing circuit. Specifically, the satellite control device 621 controls the propulsion device 623 and the attitude control device 624 according to various commands transmitted from the ground equipment 700 .
  • the communication device 622 is a device that communicates with the ground facility 700 . Alternatively, communication device 622 is a device that communicates with satellites 620 before and after in the same orbital plane, or satellites 620 in adjacent orbital planes. Specifically, the communication device 622 transmits various data related to its own satellite to the ground equipment 700 or other satellites 620 . The communication device 622 also receives various commands transmitted from the ground equipment 700 .
  • the propulsion device 623 is a device that provides thrust to the satellite 620 and changes the speed of the satellite 620 .
  • the attitude control device 624 is a device for controlling attitude elements such as the attitude of the satellite 620, the angular velocity of the satellite 620, and the line of sight. Attitude controller 624 changes each attitude element in a desired direction. Alternatively, attitude controller 624 maintains each attitude element in the desired orientation.
  • Attitude control device 624 includes an attitude sensor, an actuator, and a controller.
  • Attitude sensors are devices such as gyroscopes, earth sensors, sun sensors, star trackers, thrusters and magnetic sensors.
  • Actuators are devices such as attitude control thrusters, momentum wheels, reaction wheels and control moment gyros.
  • the controller controls the actuators according to measurement data from the attitude sensor or various commands from the ground equipment 700 .
  • the power supply 625 includes equipment such as a solar cell, a battery, and a power controller, and supplies power to each equipment mounted on the satellite 620 .
  • the processing circuitry may be dedicated hardware or a processor executing a program stored in memory. In the processing circuit, some functions may be implemented in dedicated hardware and the remaining functions may be implemented in software or firmware. That is, processing circuitry can be implemented in hardware, software, firmware, or a combination thereof.
  • Dedicated hardware is specifically a single circuit, multiple circuits, programmed processors, parallel programmed processors, ASICs, FPGAs, or combinations thereof.
  • ASICs are Application Specific Integrated It is an abbreviation for Circuit.
  • FPGA is an abbreviation for Field Programmable Gate Array.
  • FIG. 4 is another example of the configuration of satellites 620 of satellite constellation forming system 600 .
  • Satellite 620 in FIG. 4 includes monitoring device 626 in addition to the configuration in FIG.
  • Monitoring device 626 is a device that monitors an object.
  • the monitoring device 626 is a device for monitoring or observing an object such as a space object, a flying object, or a moving object on land, sea, and air.
  • the monitoring device 36 is also called an observation device.
  • the monitoring device 626 is an infrared monitoring device that uses infrared rays to detect an increase in temperature due to atmospheric friction when a flying object enters the atmosphere. Monitoring device 626 senses the temperature of the plume or body of the projectile at launch.
  • monitoring device 626 may be a lightwave or radio wave information gathering device.
  • the monitoring device 626 may be a device that detects objects with an optical system.
  • a monitoring device 626 takes an image of an object flying at an altitude different from the orbital altitude of the observation satellite with an optical system.
  • monitoring device 626 may be a visible optical sensor.
  • Satellite 620 in FIG. 4 is an example of surveillance satellite 100 that includes surveillance device 626 and communication device 622 .
  • Surveillance satellite 100 may include multiple monitors 626 .
  • the monitoring satellite 100 may be equipped with multiple types of monitoring devices.
  • Satellite constellation 610 formed by satellite constellation forming system 600 will be described. Satellite constellation 610 is formed by ground facility 700 controlling satellites 620 .
  • FIG. 5 is a diagram showing an example of a satellite constellation 610 having multiple orbital planes that intersect outside the polar regions. Monitoring system 310 and communication system 320 are formed as satellite constellation 610 . In satellite constellation 610 of FIG. 5, the orbit is an inclined orbit.
  • Surveillance system 310 includes a plurality of surveillance satellites 100 equipped with infrared monitors.
  • the body 520 is detected as a high temperature target, and the detection time when the infrared monitoring device detects the high temperature target, the position information indicating the position of the surveillance satellite 100 equipped with the infrared monitoring device, and the position information indicating the position of the flying object.
  • Information including at least one of position information is transmitted as flying object information.
  • a plurality of communication satellites 00 provided in the communication system 320 are cross-linked with on-board communication devices to form a communication network.
  • the communication ground center 321 searches for the shortest communication route for information transmission using the communication route search device 470, and transmits the information to the communication satellites 200 that constitute the searched communication route. Send orders.
  • FIG. 7 is a diagram showing information transmitted from the monitoring ground center 311 to the communication ground center 321.
  • the surveillance ground center 311 acquires the launch detection information transmitted by the surveillance satellite A via the communication satellite 200 .
  • the monitoring ground center 311 based on the launch detection information, to the communication ground center 321, (1) ID of surveillance satellite A, (2) launch detection time indicating launch detection time of launch detection; (3) Information including position information indicating the position of surveillance satellite A is transmitted as information on the sending side of the flying object information.
  • the communication ground center 321 sends information including the launch detection time of the flying object 520 and position information indicating the positions of at least one of the flying object and the surveillance satellite A to the handling ground center 331. Transmit as side projectile information.
  • the communication ground center 321 finds the shortest route of the communication network formed by the communication satellite group from the position coordinates where the surveillance satellite A issued the flying object information to the position coordinates of the response asset 332.
  • a search is carried out, an information transmission command is transmitted to the group of communication satellites on the shortest route communication path, and position information indicating the launch detection time of the flying object and the position of the surveillance satellite A is sent to the countermeasure ground center 331.
  • Information including at least one of the position information indicating the launch point position of the flying object is transmitted as the flying object information.
  • FIG. 8 is a diagram showing information transmitted from the monitoring ground center 311 to the communication ground center 321.
  • the monitoring ground center 311 sends (1) the ID of the monitoring satellite A to the communication ground center 321; (2) launch detection time of the projectile; (3) Position information indicating the position of surveillance satellite A at the launch detection time; is transmitted as information on the transmitting side of the projectile information on the monitoring center side, (4) the ID of a group of surveillance satellites flying around surveillance satellite A; (5) the time when the successor satellite, which is a surveillance satellite included in the surveillance satellite constellation, is scheduled to receive the sender information; (6) Location information indicating the location where the successor satellite is scheduled to receive the transmitting side information, It is transmitted as information on the receiving side of the projectile information on the monitoring center side.
  • the monitoring ground center 311 transmits the flying object information via the communication system 320 to the group of monitoring satellites flying around the monitoring satellite A after launching the flying object.
  • the monitoring ground center 311 After the monitoring device satellite B (peripheral satellite) detects the high temperature target, the monitoring ground center 311 sends the following to the monitoring ground center 311: (1) ID of surveillance satellite B, (2) Detection time when surveillance satellite B detects a high temperature target, (3) position information indicating the position of surveillance satellite B at this detection time; is transmitted as information on the transmitting side of the projectile information on the monitoring center side, (4) Transmitting the position information of the countermeasure asset 332 as receiving side information of the flying object information on the monitoring center side.
  • the communication ground center 321 uses the communication route search device 470 to search for the shortest route of the communication network of communication satellites from the position coordinates indicated by the position information of the monitoring satellite B to the position coordinates of the countermeasure system 330. Sends information transmission commands to communication satellites in the communication path of the route.
  • FIG. 9 is a diagram showing information transmitted from the monitoring ground center 311 to the communication ground center 321.
  • Monitoring ground center 311 for communication ground center 321 (1) ID of surveillance satellite B, (2) Detection time of high temperature object by monitoring satellite B, (3) position information indicating the position of surveillance satellite B at the detection time; is transmitted as information on the transmitting side of the projectile information on the monitoring center side, (4) ID of a group of surveillance satellites flying around surveillance satellite B; (5) the time when the successor satellite, which is a surveillance satellite included in the surveillance satellite group, is scheduled to receive the sender information; and (6) position information indicating the location where the successor satellite is expected to receive the sender information is transmitted as information on the receiving side of the flying object information on the monitoring center side.
  • the communication ground center 321 transmits the monitoring center side flying object information to the monitoring satellite group flying in the vicinity of the monitoring satellite B via the communication satellite of the communication system 320 .
  • the monitoring ground center 311 instructs the communication ground center 321 to (1) ID of surveillance satellite C, (2) Detection time of high temperature object by monitoring satellite C, (3) position information indicating the position of the monitoring satellite C at the detection time; is transmitted as information on the transmitting side of the projectile information on the monitoring center side, (4) location information indicating the location of the response asset 332; is transmitted as information on the receiving side of the flying object information on the monitoring center side.
  • the communication ground center 321 uses the communication route search device 470 to search for the shortest route of the communication network from the position coordinates of the monitoring satellite C to the position coordinates of the response asset 332, and finds the group of communication satellites on the communication route of the shortest route. send an information transmission command to The detection time of the high-temperature object by the monitoring satellite, the position coordinates indicating the position of the monitoring satellite C at the detection time, and the brightness information based on the detection by the monitoring satellite C are transmitted to the countermeasure system as flying object information.
  • FIG. 10 shows information transmitted from the monitoring ground center 311 to the communication ground center 321.
  • the monitoring ground center 311, to the communication ground center 321, (1) ID of surveillance satellite N; (2) the detection time of the high temperature target by the monitoring satellite N; (3) position information indicating the position of the surveillance satellite N at the detection time; is transmitted as information on the transmitting side of the projectile information on the monitoring center side, (4) the ID of the satellite group flying around the monitoring satellite N; (5) the time when the successor satellite, which is a surveillance satellite included in the surveillance satellite constellation, is scheduled to receive the sender information; (6) location information indicating the location where the successor satellite is scheduled to receive the transmitting side information; is transmitted as information on the receiving side of the flying object information on the monitoring center side.
  • the communication ground center 321 transmits the monitoring center side flying object information to the monitoring satellite group flying in the vicinity of the monitoring satellite N via the communication satellite of the satellite information transmission system.
  • the monitoring ground center 311 instructs the communication ground center 321 to (1) ID of surveillance satellite N+1 (2) Detection time of high temperature target by monitoring satellite N+1, (3) position information indicating the position of the monitoring satellite N+1 at the detection time; is transmitted as information on the sending side of the flying object information, (4) location information of the response asset 332; is transmitted as information on the receiving side of the flying object information on the monitoring center side.
  • the communication ground center 321 uses the communication route search device 470 to search for the shortest route of the communication network from the position coordinates of the monitoring satellite N+1 to the position coordinates of the response asset 332, and finds the communication satellite group on the communication route of the shortest route.
  • FIG. 11 is a diagram showing the flight path prediction device 490 of the coping system 330.
  • Response system 330 includes multiple response assets 332 and response ground center 331 .
  • the ground center 331 is provided with a flight path prediction device 490.
  • the flight path prediction device 490 generates flight path prediction information composed of future time and position information based on the transition of the time-series position information of the flying object information. Generate.
  • FIG. 12 is a diagram in which the handling system 330 has multiple handling assets.
  • Response system 330 includes multiple response assets 332 and response ground center 331 .
  • a service ground center 331 comprises a service asset selector 333 .
  • the handling asset selection device 333 is connected to the handling asset 332 via a communication line 334 . Based on the flight path prediction information generated by the flight path prediction device 490, the response asset selection device 333 selects the response asset 332 located near the position coordinates where the flying object is predicted to pass or reach, and issues a response action command. Send a signal.
  • the flight path prediction device 490 of the countermeasure system 330 detects the high-temperature target after the launch detection information is transmitted by the surveillance satellite A. Based on the position coordinates of the surveillance satellites B, C, N, and N+1, may be configured to generate flight path prediction information by predicting the moving direction of the .
  • the response asset selection device 333 selects a response asset 332 located near the flight path prediction information generated by the flight path prediction device 490 from among the plurality of response assets 332 having different position coordinates.
  • Response ground center 331 transmits projectile information and response action commands to response asset 332 .
  • FIG. 13 is a diagram showing information transmitted from the monitoring ground center 311 to the communication ground center 321.
  • the handling system 330 has multiple handling ground centers 331 with different position coordinates.
  • the monitoring ground center 311, to the communication ground center 321, (1) ID of surveillance satellite A, (2) the detection time when the surveillance satellite A detected the launch of the flying object; (3) position information indicating the position of the surveillance satellite A at the detection time; is transmitted as information on the sending side of the flying object information, (4) IDs of all coping assets 332; (5) Countermeasure Time when the ground center 331 should receive the flying object information on the monitoring center side, (6) location information indicating the location of the handling ground center 331; is transmitted as receiving side information of the flying object information on the monitoring center side.
  • the communication ground center 321 transmits the flying object information detected by the surveillance satellite A to all the countermeasure ground centers 331 .
  • FIG. 14 is a diagram showing information transmitted from the monitoring ground center 311 to the communication ground center 321.
  • Monitoring ground center 311 for communication ground center 321 (1) the ID of the handling ground center 331 located near the flight path prediction information generated by the flight path prediction device 490; (2) Reception time at which the ground center 331 should receive the flying object information; (3) Countermeasure Transmit position information indicating the position of the ground center as information on the receiving side of the flying object information.
  • the communication ground center 321 transmits the flying object information to the handling ground center 331 .
  • FIG. 15 shows a communication route search device 470 that the communication ground center 321 has. Please refer to FIG. Communication route searching device 470 (1) start time of communication, (2) position coordinates; and (3) the position coordinates of the other party to whom the projectile information is to be transmitted; is the input condition. Communication route searching device 470 Searches for the optimum route by connecting satellite IDs that transmit flying object information, and communicates a list listing a series of satellite IDs and the predicted time when the satellite will transmit the flying object information to the next satellite, and communicates to the corresponding communication satellite group. The output is a command that gives instructions.
  • Communication route searching device 470 (1) Prediction error of actual trajectory with respect to planned trajectory of communication satellite flight position, (2) Predicted time error passing through specific position coordinates, (3) delays due to information transmission; (4) satellite travel distance associated with prediction error and delay time; (5) Relative position change of nearby passing satellites due to satellite movement, are included in the route search analysis target, and the optimum route for transmitting the flying object information in the shortest time is searched.
  • FIG. 16 shows a communication route search device 470 that the communication ground center 321 has.
  • the communication route search device 470 uses the launch detection signal of the surveillance satellite as a communication start command, (1) the position coordinates of the surveillance satellite that emitted the launch detection signal; (2) the position coordinates where the projectile launch was detected; (3) and the field of view change range of the monitoring satellite are used as input conditions.
  • the communication route search device 470 searches for an optimum route by connecting satellite IDs that transmit flying object information, and lists a series of satellite IDs and forecast times when the satellite will transmit the flying object information to the next satellite.
  • a command that gives a communication command to the communication satellite constellation is defined as a product.
  • the communication route search device 470 searches for a nearby passing monitoring satellite ID that can monitor the vicinity of the projectile launch point including changes in the field of view, and sets the projectile information transmission time, the monitoring satellite ID, and the projectile information to the monitoring ID. Optimal route search is carried out until transmission.
  • FIG. 17 shows a communication route search device 470 that the communication ground center 321 has. See FIG.
  • the communication route search device 470 uses the launch detection signal of the surveillance satellite as a communication start command, (1) the position coordinates of the surveillance satellite that emitted the launch detection signal; (2) the position coordinates where the projectile launch was detected; (3) the range of change in the field of view of the surveillance satellite; (4) and the position coordinates of the monitoring satellite that emitted the high temperature detection signal among the nearby passing monitoring satellites that transmitted the flying object information in the past, (5) position coordinates where the high-temperature object is detected; (6)
  • the field of view change range of the monitoring satellite is used as an input condition.
  • the communication route search device 470 searches for an optimum route by connecting satellite IDs that transmit flying object information, and lists a series of satellite IDs and forecast times when the satellite will transmit the flying object information to the next satellite. , a command that gives a communication command to the communication satellite constellation is defined as a product.
  • the communication route searching device 470 searches for a nearby passing monitoring satellite ID that can monitor the vicinity of the high-temperature object detection position, including changing the field of view, and sets the flying object information transmission time, the monitoring satellite ID, and the flying object information to the monitoring ID. Optimal route search is carried out until the transmission of
  • FIG. 18 shows the processing of the flight path prediction device 490.
  • the monitoring satellite 100 equipped with a plurality of monitoring devices detects a significant high-temperature object, it sends the detected time information, the monitoring satellite ID, and the monitoring device to the coping ground center 331 via the communication system 320.
  • the ID and monitoring data are transmitted as flying object information.
  • the flight path prediction device 490 provided in the countermeasure ground center 331 derives the position information of the monitoring satellite with the ID at the detection time in the flying object information, the traveling direction, and the line-of-sight direction of the monitoring device with the ID.
  • a line-of-sight vector pointing to a hot object is derived by extracting the target brightness.
  • FIG. 19 shows the processing of the flight path prediction device 490. See FIG.
  • the flight path prediction device 490 provided in the countermeasure ground center 331 arranges the line-of-sight vectors of high-temperature objects derived from the flying object information from multiple monitoring satellites in chronological order in the earth-fixed coordinate system, and calculates the time of the flying object based on the principle of spatial triangulation. Predict position coordinates for each transition.
  • the flying objects whose paths are predicted by the flight path prediction device by integrating the flying object information obtained from the plurality of surveillance satellites are a plurality of different flying objects. It may be configured to determine that.
  • the flying object information can be transmitted to the countermeasure system in near-real time.

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Evolutionary Computation (AREA)
  • General Engineering & Computer Science (AREA)
  • Radio Relay Systems (AREA)

Abstract

飛翔体対処システム(1000)では、監視地上センター(311)が、飛翔体情報を送信する監視衛星(100)のIDと、時刻情報と、位置情報と、飛翔体情報を受信する監視衛星(100)のIDと、時刻情報と、位置情報と、および対処システム(330)の位置情報を、通信地上センター(321)に送信する。通信地上センター(321)は、衛星情報の通信ルートを探索する通信ルート探索装置(470)を具備する。通信地上センター(321)は、通信ルート探索装置(470)の探索結果に基づき、通信システム(320)の有する通信衛星群に、指令コマンドを送信する。

Description

飛翔体対処システム、監視地上センター、対処地上センター、通信ルート探索装置、飛翔経路予測装置及び対処アセット選択装置
 本開示は、飛翔体対処システム、監視地上センター、対処地上センター、通信ルート探索装置、飛翔経路予測装置及び対処アセット選択装置に関する。
 近年、超音速で滑空する飛翔体の登場により、飛翔体の打上げ検知、飛行経路追跡、あるいは着地位置の予測といった衛星による監視が期待されている。
 滑空段階の飛翔体を検知して追跡する手段として、飛翔体が大気圏に侵入する時の大気摩擦による温度上昇を赤外線で検知することが有望視されている。また、滑空段階の飛翔体を赤外線で検知する手段は、低軌道周回衛星群から監視することが有望と考えられている。
 特許文献1は、低軌道を周回する少ない衛星機数で地球全球面内における特定緯度の地域を網羅的に監視するための監視衛星について開示している。
特開2008-137439号公報
 低軌道からの監視では、静止軌道からの監視と比較して、人工衛星から飛翔体までの距離が近距離となる。そのため、赤外線による検知性能を高めること-が可能となる。LEO衛星により常時監視および通信回線維持のためには膨大な数の衛星が必要となり、さらに地球固定座標系に対してほぼ固定して見える静止衛星とは異なり、LEO衛星は時々刻々飛翔位置が移動するため、赤外監視装置を具備した監視装置と、通信衛星群の構成およびデータ伝送方法が課題となる。
 本開示は、監視装置を具備した監視衛星群を有する監視システムと通信衛星群により通信網を形成する衛星情報伝送システムとを利用して飛翔体発射を探知して対処システムに飛翔体情報を準リアルタイムで伝送する、飛翔体対処システムの提供を目的とする。
 本開示に係る飛翔体対処システムは、
 監視装置と通信装置を備える複数の監視衛星と、前記複数の監視衛星に、指令コマンドを送信する監視地上センターとを備える監視システムと、
 通信装置を備える複数の通信衛星と、前記複数の通信衛星の一群である通信衛星群に、指令コマンドを送信する通信地上センターとを備える通信システムと、
 陸上と、海上と、空中との少なくともいずれかに位置して、飛翔体に対処する対処アセットを備える対処システムと、
を備え、
 前記監視システムは、
前記飛翔体を監視して生成した飛翔体情報を、前記通信システムを経由して前記対処システムに伝送し、
 前記監視地上センターは、
前記飛翔体情報を送信する予定の監視衛星のIDと、
前記飛翔体情報の送信予定時刻を示す送信予定時刻情報と、
前記送信予定時刻における前記IDを持つ前記監視衛星の位置を示す位置情報と、
前記飛翔体情報を受信する予定の別の監視衛星のIDと、
前記飛翔体情報を受信する受信予定時刻を示す受信予定時刻情報と、
前記受信予定時刻における前記別の監視衛星の位置を示す位置情報と、
を含む通知情報を、前記通信地上センターに送信し、
 前記通信地上センターは、
前記飛翔体情報の通信ルートを探索する通信ルート探索装置を備え、
 通信ルート探索装置は、
前記監視地上センターから送信された前記通知情報に基づいて指令コマンドを生成し、前記通信システムの有する前記通信衛星群に向けて、生成した前記指令コマンドを送信する。
 本開示に係る飛翔体対処システムによれば、対処システムに飛翔体情報を準リアルタイムで伝送することができる。
実施の形態1の図で、飛翔体対処システム1000の構成例を示す図。 実施の形態1の図で、衛星コンステレーション形成システム600の構成例を示す図。 実施の形態1の図で、衛星コンステレーション形成システム600の衛星620の構成の一例を示す図。 実施の形態1の図で、衛星コンステレーション形成システム600の衛星620の構成の一例を示す別の図。 実施の形態1の図で、極域以外で交差する複数の軌道面を有する衛星コンステレーション610の例を示す図。 実施の形態1の図で、監視地上センター311から通信地上センター321に送信される情報を示す図。 実施の形態1の図で、監視地上センター311から通信地上センター321に送信される情報を示す図。 実施の形態1の図で、監視地上センター311から通信地上センター321に送信される情報を示す図。 実施の形態1の図で、監視地上センター311から通信地上センター321に送信される情報を示す図。 実施の形態1の図で、監視地上センター311から通信地上センター321に送信される情報を示す図。 実施の形態1の図で、対処システム330の飛翔経路予測装置490を示す図。 実施の形態1の図で、対処システム330が複数の対処アセットを持つ図。 実施の形態1の図で、監視地上センター311から通信地上センター321に送信される情報を示す図。 実施の形態1の図で、監視地上センター311から通信地上センター321に送信される情報を示す図。 実施の形態1の図で、通信ルート探索装置470の処理を示す図。 実施の形態1の図で、通信ルート探索装置470の処理を示す図。 実施の形態1の図で、通信ルート探索装置470の処理を示す図。 実施の形態1の図で、飛翔経路予測装置490の処理を示す図。 実施の形態1の図で、飛翔経路予測装置490の処理を示す図。
 実施の形態の説明および図面において、同じ要素および対応する要素には同じ符号を付している。同じ符号が付された要素の説明は、適宜に省略または簡略化する。以下の実施の形態では、「部」を、「回路」、「工程」、「手順」、「処理」または「サーキットリ」に適宜読み替えてもよい。
 実施の形態1.
 図1は、飛翔体対処システム1000の構成例を示す。飛翔体対処システム1000は、監視システム310と、通信システム320と、対処システム330を備える。監視システム310は、監視装置と通信装置を具備する複数の監視衛星100を有する。通信システム320は、通信装置を具備する複数の通信衛星200を有する。対処システム330は、飛翔体520に対処する陸海空の対処アセット332を具備する。
 飛翔体対処システム1000は、監視システム310が飛翔体520を監視して生成した飛翔体情報を、通信システム320を経由して、対処システム330に伝送する。
 また、監視システム310は、赤外線監視装置を具備する複数の監視衛星100を有する。監視システム310は、飛翔体520の発射時プルームと、温度上昇して飛翔する飛翔体520とを、高温対象として検知する。そして、監視システム310は、飛翔体520に関する時刻情報と位置情報とを飛翔体情報として送信する。具体的には、監視衛星100は、赤外線監視装置により、飛翔体520の発射時プルームと、温度上昇して飛翔する飛翔体520とを、高温対象として検知する。そして、監視システム310は、飛翔体520に関する時刻情報と位置情報とを含む飛翔体情報を、通信システム320を経由して、対処システム330に伝送する。
<飛翔体対処システム1000>
 飛翔体対処システム1000は、監視装置と通信装置を具備する複数の監視衛星100と、監視衛星群に指令コマンドを送信する監視地上センター311により構成される監視システム310と、通信装置を具備する複数の通信衛星200と、通信衛星群に指令コマンドを送信する通信地上センター321を有する通信システム320と、飛翔体520に対処する陸海空の対処アセット32を具備する対処システム330とを備える。飛翔体対処システム1000では、監視システム310が飛翔体520を監視して生成した飛翔体情報を、通信システム320を経由して、対処システム330に伝送する。
 図6は、監視地上センター311から通信地上センター321に送信される情報を示す。図6を参照する。
監視地上センター311は、
(1)飛翔体情報を送信する予定の監視衛星のID、
(2)飛翔体情報の送信予定時刻を示す送信予定時刻を示す送信予定時刻情報、
(3)送信予定時刻における上記(1)のIDを持つ監視衛星の位置を示す位置情報、
(4)飛翔体情報を受信する予定の監視衛星のID、
(5)飛翔体情報を受信する予定時刻を示す受信予定時刻情報、
(6)受信予定時刻での「別の監視衛星」の位置を示す位置情報、
(7)対処アセット332の位置情報、
を含む通知情報を、通信地上センター321に送信する。
図6に示すように、通信地上センター321は、衛星情報の通信ルートを探索する通信ルート探索装置470を具備している。通信地上センター321は、通信ルート探索装置470を用いることで、監視地上センター311から送信された上記の(1)~(7)を含む通知情報に基づいて指令コマンドを生成し、通信システム320の有する通信衛星群に、生成した指令コマンドを送信する。
 図2から図4を用いて衛星コンステレーション610を形成する衛星コンステレーション形成システム600における衛星620と地上設備700の例について説明する。衛星コンステレーション形成システム600は、単に衛星コンステレーションと呼ばれることがある。
 図2は、衛星コンステレーション形成システム600の構成例である。衛星コンステレーション形成システム600は、コンピュータを備える。図2では、1つのコンピュータの構成を示しているが、実際には、衛星コンステレーション610を構成する複数の衛星の各衛星620、および、衛星620と通信する地上設備700の各々にコンピュータが備えられる。そして、複数の衛星の各衛星620、および、衛星620と通信する地上設備700の各々に備えられたコンピュータが連携して、衛星コンステレーション形成システム600の機能を実現する。以下において、衛星コンステレーション形成システム600の機能を実現するコンピュータの構成の一例について説明する。
 衛星コンステレーション形成システム600は、衛星620と地上設備700を備える。衛星620は、地上設備700の通信装置950と通信する通信装置622を備える。図2では、衛星620が備える構成のうち通信装置622を図示している。
 衛星コンステレーション形成システム600は、プロセッサ910を備えるとともに、メモリ921、補助記憶装置922、入力インタフェース930、出力インタフェース940、および通信装置950といった他のハードウェアを備える。プロセッサ910は、信号線を介して他のハードウェアと接続され、これら他のハードウェアを制御する。
 衛星コンステレーション形成システム600は、機能要素として、衛星コンステレーション形成部911を備える。衛星コンステレーション形成部911の機能は、ハードウェアあるいはソフトウェアにより実現される。衛星コンステレーション形成部911は、衛星620と通信しながら衛星コンステレーション610の形成を制御する。
 図3は、衛星コンステレーション形成システム600の衛星620の構成の一例である。衛星620は、衛星制御装置621と通信装置622と推進装置623と姿勢制御装置624と電源装置625とを備える。その他、各種の機能を実現する構成要素を備えていてもよいが、図3では、衛星制御装置621と通信装置622と推進装置623と姿勢制御装置624と電源装置625について説明する。図3の衛星620は、通信装置622を具備する通信衛星200の例である。
 衛星制御装置621は、推進装置623と姿勢制御装置624とを制御するコンピュータであり、処理回路を備える。具体的には、衛星制御装置621は、地上設備700から送信される各種コマンドにしたがって、推進装置623と姿勢制御装置624とを制御する。
 通信装置622は、地上設備700と通信する装置である。あるいは、通信装置622は、同一軌道面の前後の衛星620、あるいは、隣接する軌道面の衛星620と通信する装置である。具体的には、通信装置622は、自衛星に関する各種データを地上設備700あるいは他の衛星620へ送信する。また、通信装置622は、地上設備700から送信される各種コマンドを受信する。推進装置623、衛星620に推進力を与える装置であり、衛星620の速度を変化させる。姿勢制御装置624は、衛星620の姿勢と衛星620の角速度と視線方向(Line Of Sight)といった姿勢要素を制御するための装置である。姿勢制御装置624は、各姿勢要素を所望の方向に変化させる。もしくは、姿勢制御装置624は、各姿勢要素を所望の方向に維持する。姿勢制御装置624は、姿勢センサとアクチュエータとコントローラとを備える。姿勢センサは、ジャイロス
コープ、地球センサ、太陽センサ、スター・トラッカ、スラスタおよび磁気センサといった装置である。アクチュエータは、姿勢制御スラスタ、モーメンタムホイール、リアクションホイールおよびコントロール・モーメント・ジャイロといった装置である。コントローラは、姿勢センサの計測データまたは地上設備700からの各種コマンドにしたがって、アクチュエータを制御する。電源装置625は、太陽電池、バッテリおよび電力制御装置といった機器を備え、衛星620に搭載される各機器に電力を供給する。
 衛星制御装置621に備わる処理回路について説明する。処理回路は、専用のハードウェアであってもよいし、メモリに格納されるプログラムを実行するプロセッサであってもよい。処理回路において、一部の機能が専用のハードウェアで実現されて、残りの機能がソフトウェアまたはファームウェアで実現されてもよい。つまり、処理回路は、ハードウェア、ソフトウェア、ファームウェアまたはこれらの組み合わせで実現することができる。専用のハードウェアは、具体的には、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ASIC、FPGAまたはこれらの組み合わせである。ASICは、Application Specific Integrated
 Circuitの略称である。FPGAは、Field Programmable Gate Arrayの略称である。
 図4は、衛星コンステレーション形成システム600の衛星620の構成の別例である。図4の衛星620では、図3の構成に加え、監視装置626を備える。監視装置626は、物体を監視する装置である。具体的には、監視装置626は、宇宙物体、飛翔体、あるいは陸海空の移動体といった物体を監視あるいは観測するための装置である。監視装置36は、観測装置ともいう。例えば、監視装置626は、飛翔体が大気圏に侵入する時の大気摩擦による温度上昇を赤外線で検知する赤外線監視装置である。監視装置626は、飛翔体の発射時のプルームないし飛翔体本体の温度を検知する。あるいは、監視装置626は、光波ないし電波の情報収集装置でもよい。監視装置626は、物体を光学系で検知する装置でもよい。監視装置626は、観測衛星の軌道高度と異なる高度を飛翔する物体を光学系で撮影する。具体的には、監視装置626は可視光学センサであってもよい。図4の衛星620は、監視装置626と通信装置622を具備する監視衛星100の例である。監視衛星100は、複数の監視装置626を備えていてもよい。また、監視衛星100は、複数種類の監視装置を備えていてもよい。
<衛星コンステレーションの形成方法>
 衛星コンステレーション形成システム600が形成する衛星コンステレーション610を説明する。衛星コンステレーション610は地上設備700が衛星620を制御することによって形成される。
 図5は、衛星コンステレーション610の一例として、極域以外で交差する複数の軌道面を有する衛星コンステレーション610の例を示す図である。監視システム310および通信システム320は、衛星コンステレーション610として形成される。図5の衛星コンステレーション610では、軌道は傾斜軌道である。
 監視システム310は赤外線監視装置を具備する複数の監視衛星100を有する、複数の監視衛星100は、赤外線監視装置に、図1に示す飛翔体520の発射時プルームと、温度上昇して飛翔する飛翔体520とを、高温対象として検知させるとともに、赤外線監視装置が高温対象を検知した検知時刻と、赤外線監視装置を備える監視衛星100の位置を示す位置情報と飛翔体の位置を示す位置情報との少なくともいずれかの位置情報とを含む情報を、飛翔体情報として送信する。
 通信システム320の具備する複数の通信衛星00は、搭載する通信装置で、クロスリンクして通信網を形成する。図6に示したように、通信地上センター321は、通信ルート探索装置470により、情報伝送をする最短ルートの通信経路を探索をして、探索された通信経路を構成する通信衛星200に情報伝送指令を送信する。
 図7は、監視地上センター311から通信地上センター321に送信される情報を示す図である。図7を参照する。監視地上センター311は、監視システム310の有する監視衛星Aが飛翔体520の発射探知をした後に、監視衛星Aの送信した発射探知情報を、通信衛星200を介して取得する。
また、監視地上センター311は、前記発射探知情報に基づいて、通信地上センター321に対して、
(1)監視衛星AのID、
(2)発射探知の発射探知時刻を示す発射探知時刻、
(3)監視衛星Aの位置を示す位置情報
を含む情報を、飛翔体情報の送信側情報として伝達する。
通信地上センター321は、対処地上センター331に対して、飛翔体520の発射探知時刻と、前記飛翔体と前記監視衛星Aとの少なくともいずれかの位置を示す位置情報とを含む情報を、通信センター側飛翔体情報として伝送する。
 図7を参照する。通信地上センター321が、通信ルート探索装置470を使用することにより、監視衛星Aが飛翔体情報を発した位置座標から対処アセット332の位置座標までの通信衛星群の形成する通信網の最短ルートの探索を実施して、最短ルートの通信経路にある通信衛星群に情報伝送指令を送信し、対処地上センター331に対して、飛翔体の発射探知時刻と、監視衛星Aの位置を示す位置情報と飛翔体の発射地点位置を示す位置情報との少なくともいずれかの位置情報とを含む情報を、飛翔体情報として伝送する。
 図8は、監視地上センター311から通信地上センター321に送信される情報を示す図である。
 図8を参照する。監視地上センター311が、通信地上センター321に対して
(1)監視衛星AのIDと、
(2)飛翔体の発射探知時刻、
(3)発射探知時刻における監視衛星Aの位置を示す位置情報、
を監視センター側飛翔体情報の送信側情報として伝達し、
(4)監視衛星Aの周辺を飛翔する監視衛星群のIDと、
(5)監視衛星群に含まれる監視衛星である後継衛星が送信側情報を受信予定の時刻、
(6)後継衛星が送信側情報を受信予定の位置を示す位置情報を、
監視センター側飛翔体情報の受信側情報として伝達する。監視地上センター311は、飛翔体発射後に監視衛星Aの周辺を飛翔する監視衛星群に対して、通信システム320を経由して飛翔体情報を送信する。監視地上センター311は、監視装置衛星B(周辺衛星)が高温対象を検知した後に、監視地上センター311に対して、
(1)監視衛星BのID、
(2)監視衛星Bが高温対象を検知した検知時刻、
(3)この検知時刻における監視衛星Bの位置を示す位置情報、
を監視センター側飛翔体情報の送信側情報として伝達し、
(4)対処アセット332の位置情報を監視センター側飛翔体情報の受信側情報として伝達する。通信地上センター321が、通信ルート探索装置470により、監視衛星Bの位置情報の示す位置座標から、対処システム330の位置座標までの通信衛星群による通信網の最短ルートの探索を実施して、最短ルートの通信経路にある通信衛星群に情報伝送指令を送信する。通信地上センター321は、対処地上センター331に対して、
(1)高温対象の検知時刻、
(2)検知時刻における監視衛星Bの位置を示す位置座標、
(3)監視衛星Bの検知に基づく輝度情報、
を通信センター側飛翔体情報として伝送する。
 図9は、監視地上センター311から通信地上センター321に送信される情報を示す図である。
 図9を参照する。監視地上センター311が通信地上センター321に対して、
(1)監視衛星BのID、
(2)監視衛星Bによる高温対象の検知時刻、
(3)検知時刻における監視衛星Bの位置を示す位置情報、
を監視センター側飛翔体情報の送信側情報として伝達し、
(4)監視衛星Bの周辺を飛翔する監視衛星群のID、
(5)監視衛星群に含まれる監視衛星である後継衛星が送信側情報を受信予定の時刻と
(6)後継衛星が送信側情報を受信予定の位置を示す位置情報、
を監視センター側飛翔体情報の受信側情報として伝達する。
通信地上センター321が、監視衛星Bの近傍を飛翔する監視衛星群に対して、通信システム320の通信衛星を経由して監視センター側飛翔体情報を送信する。監視衛星Cが高温対象を検知した場合に、監視地上センター311は、通信地上センター321に対して、
(1)監視衛星CのID、
(2)監視衛星Cによる高温対象の検知時刻、
(3)検知時刻における監視衛星Cの位置を示す位置情報、
を監視センター側飛翔体情報の送信側情報として伝達し、
(4)対処アセット332の位置を示す位置情報、
を監視センター側飛翔体情報の受信側情報として伝達する。
通信地上センター321が、通信ルート探索装置470により、監視衛星Cの位置座標から対処アセット332の位置座標までの通信網の最短ルートの探索を実施して、最短ルートの通信経路にある通信衛星群に情報伝送指令を送信し、
対処システムに対して、監視衛星による高温対象の検知時刻と、検知時刻における監視衛星Cの位置を示す位置座標と、監視衛星Cの検知に基づく輝度情報を飛翔体情報として伝送する。
 図10は、監視地上センター311から通信地上センター321に送信される情報を示す図ある。図10を参照する。監視地上センター311が、通信地上センター321に対して、
(1)監視衛星NのID、
(2)監視衛星Nによる高温対象の検知時刻、
(3)検知時刻における監視衛星Nの位置を示す位置情報、
を監視センター側飛翔体情報の送信側情報として伝達し、
(4)監視衛星Nの周辺を飛翔する衛星群のID、
(5)監視衛星群に含まれる監視衛星である後継衛星が送信側情報を受信予定の時刻、
(6)後継衛星が送信側情報を受信予定の位置を示す位置情報、
を監視センター側飛翔体情報の受信側情報として伝達する。
通信地上センター321が、監視衛星Nの近傍を飛翔する監視衛星群に対して、前記衛星情報伝送システムの通信衛星を経由して監視センター側飛翔体情報を送信する。
監視地上センター311は、監視装置N+1が高温対象を検知した場合に、通信地上センター321に対して、
(1)監視衛星N+1のID
(2)監視衛星N+1による高温対象の検知時刻、
(3)検知時刻における監視衛星N+1の位置を示す位置情報、
を飛翔体情報の送信側情報として伝達し、
(4)対処アセット332の位置情報、
を監視センター側飛翔体情報の受信側情報として伝達する。
通信地上センター321は、通信ルート探索装置470により、監視衛星N+1の位置座標から対処アセット332の位置座標までの通信網の最短ルート探索を実施して、最短ルートの通信経路にある通信衛星群に情報伝送指令を送信し、対処地上センター331に対して、
(1)監視衛星N+1による高温対象の検知時刻、
(2)検知時刻における監視衛星N+1の位置を示す位置座標、
(3)監視衛星N+1の検知に基づく輝度情報、
を通信センター側飛翔体情報として伝送する。
 図11は、対処システム330の飛翔経路予測装置490を示す図である。図11を参照する。対処システム330は、複数の対処アセット332と、対処地上センター331を備えている。対処地上センター331は飛翔経路予測装置490を具備している飛翔経路予測装置490は、飛翔体情報の時系列位置情報の推移に基づき、将来の時刻と位置情報により構成される飛翔経路予測情報を生成する。
 図12は、対処システム330が複数の対処アセットを持つ図である。図12を参照する。対処システム330は、複数の対処アセット332と、対処地上センター331を備えている。対処地上センター331が対処アセット選択装置333を具備する。対処アセット選択装置333は対処アセット332と通信回線334で接続されている。対処アセット選択装置333は飛翔経路予測装置490の生成した飛行経路予測情報に基づき、飛翔体が通過するないし到達すると予測される位置座標の近傍にある対処アセット332を選択して、対処行動の指令信号を送信する。
 なお、対処システム330の飛翔経路予測装置490が、監視衛星Aが発射探知情報を送信した後に高温対象を検知した監視衛星Bないし監視衛星Cないし監視衛星Nないし監視衛星N+1の位置座標により飛翔体の移動方向を予測して、飛翔経路予測情報を生成する構成でもよい。
 図12を参照する。対処アセット選択装置333が、位置座標の異なる複数の対処アセット332の中から、飛翔経路予測装置490の生成した飛行経路予測情報の近傍に位置する対処アセット332を選択する。対処地上センター331が対処アセット332に対して飛翔体情報と対処行動指令を伝送する。
 図13は、監視地上センター311から通信地上センター321に送信される情報を示す図である。図13を参照する。対処システム330は、位置座標の異なる複数の対処地上センター331を有する。監視地上センター311は、通信地上センター321に対して、
(1)監視衛星AのID、
(2)監視衛星Aが飛翔体の発射を探知した探知時刻、
(3)探知時刻における監視衛星Aの位置を示す位置情報、
を飛翔体情報の送信側情報として伝達し、
(4)全ての対処アセット332のID、
(5)対処地上センター331が監視センター側飛翔体情報を受信するべき時刻、
(6)対処地上センター331の位置を示す位置情報、
を、監視センター側飛翔体情報の受信側情報として伝達する。通信地上センター321は、監視衛星Aが発射探知した飛翔体情報をすべての対処地上センター331に伝送する。
 図14は、監視地上センター311から通信地上センター321に送信される情報を示す図である。図14を参照する。監視地上センター311が通信地上センター321に対して、
(1)飛翔経路予測装置490の生成した飛翔経路予測情報の近傍に位置する対処地上センター331のID、
(2)対処地上センター331が飛翔体情報を受信するべき受信時刻、
(3)対処地上センターの位置を示す位置情報
を飛翔体情報の受信側情報として伝達する。通信地上センター321が、対処地上センター331に対して飛翔体情報を伝送する。
 図15は、通信地上センター321の有する通信ルート探索装置470を示す。
図15を参照する。
通信ルート探索装置470は、
(1)通開始時刻、
(2)位置座標、
及び
(3)飛翔体情報を伝送する伝送先の相手の位置座標、
を入力条件とする。通信ルート探索装置470は、
飛翔体情報を伝送する衛星IDを数珠繋ぎにした最適ルートを探索し、一連の衛星IDと当該衛星が次の衛星に飛翔体情報を伝送する予報時刻を列挙したリストと、当該通信衛星群に通信指令を与えるコマンドを生成物とする。
通信ルート探索装置470は、
(1)通信衛星飛翔位置の計画軌道に対する実軌道の予測誤差、
(2)特定位置座標を通過する予測時刻誤差、
(3)情報伝送に起因する遅延、
(4)予測誤差及び遅延時間に伴う衛星移動距離、
(5)衛星移動に伴う近傍通過衛星の相対位置変化、
をルート探索の解析対象に含めて、最短時間で飛翔体情報を伝送する最適ルートを探索する。
 図16は、通信地上センター321の有する通信ルート探索装置470を示す。
図16を参照する。通信ルート探索装置470は、監視衛星の発射探知信号を通信開始指令として、
(1)発射探知信号を発した監視衛星の位置座標、
(2)飛翔体発射を探知した位置座標、
(3)及び監視衛星の視野変更範囲を入力条件とする。
通信ルート探索装置470は、飛翔体情報を伝送する衛星IDを数珠繋ぎにした最適ルートを探索し、一連の衛星IDと当該衛星が次の衛星に飛翔体情報を伝送する予報時刻を列挙したリストと、当該通信衛星群に通信指令を与えるコマンドを生成物とする。
通信ルート探索装置470は、視野変更を含めて飛翔体発射地点近傍を監視可能な近傍通過監視衛星IDを探索して、飛翔体情報伝送時刻と監視衛星ID、及び当該監視IDに飛翔体情報を伝送するまでの最適ルート探索を実施する。
 図17は、通信地上センター321の有する通信ルート探索装置470を示す。図17を参照する。通信ルート探索装置470は、監視衛星の発射探知信号を通信開始指令として、
(1)発射探知信号を発した監視衛星の位置座標、
(2)飛翔体発射を探知した位置座標、
(3)監視衛星の視野変更範囲、
(4)及び過去に飛翔体情報を伝送した近傍通過監視衛星の中で、高温検知信号を発した監視衛星の位置座標、
(5)高温物体を検知した位置座標、
(6)監視衛星の視野変更範囲を入力条件とする。
通信ルート探索装置470は、飛翔体情報を伝送する衛星IDを数珠繋ぎにした最適ルートを探索し、一連の衛星IDと当該衛星が次の衛星に飛翔体情報を伝送する予報時刻を列挙したリストと、当該通信衛星群に通信指令を与えるコマンドを生成物とする。通信ルート探索装置470は、視野変更を含めて高温物体検知位置の近傍を監視可能な近傍通過監視衛星IDを探索して、飛翔体情報伝送時刻と監視衛星ID、及び当該監視IDに飛翔体情報を伝送するまでの最適ルート探索を実施する。
 図18は、飛翔経路予測装置490の処理を示す。図18を参照する。監視システム310における、複数の監視装置を具備する監視衛星100は、有意な高温対象を検出した場合に、通信システム320を経由して対処地上センター331に検知した時刻情報と監視衛星IDと監視装置IDと監視データを飛翔体情報として伝送する。対処地上センター331の具備する飛翔経路予測装置490が飛翔体情報における検知時刻における当該IDの監視衛星の位置情報と、進行方向と、当該IDの監視装置の視線方向を導出し、監視データから高温対象輝度を抽出して高温物体を指向する視線ベクトルを導出する。
 図19は、飛翔経路予測装置490の処理を示す。図19を参照する。対処地上センター331の具備する飛翔経路予測装置490が、複数監視衛星の飛翔体情報から導出した高温物体の視線ベクトルを地球固定座標系において時系列順に並べ、空間三角測量の原理により飛翔体の時間推移毎の位置座標を予測する。
 なお、複数の飛翔体が短時間のインターバルで発射された場合に、複数の監視衛星から取得した飛翔体情報を統合して飛翔経路予測装置で経路予測した飛翔体が複数の異なる飛翔体であることを判定する構成でもよい。
 近傍の発射点から複数の飛翔体が短時間のインターバルで発射された場合に、飛翔体の数を誤認すると、対処しきれないリスクとなるため、短時間の間に発射された飛翔体の数を正確に把握する必要がある。飛翔経路予測装置490が予測した、時間推移毎の飛翔体の位置座標を可視化すると、複数の飛翔体の飛翔経路が異なる場合には、飛翔位置情報が分散するので、異なる飛翔体であることが判定可能である。また仮に複数の飛翔体が同一経路を飛翔していても、取得情報の時間推移に応じた位置座標のオフセットが顕在化するために、異なる飛翔体であることが判定可能である。
***実施の形態1の効果***
 実施の形態1の飛翔体対処システム1000によれば、対処システムに飛翔体情報を準リアルタイムで伝送することができる。
 90 軌道面、100 監視衛星、200 通信衛星、310 監視システム、311 監視地上センター、320 通信システム、321 通信地上センター、330 対処システム、331 対処地上センター、332 対処アセット、333 対処アセット選択装置、334 通信回線、410 通信衛星事業装置、430 衛星コンステレーション事業装置、450 軌道情報管理装置、470 通信ルート探索装置、490 飛翔経路予測装置、510 地球、520 飛翔体、600 衛星コンステレーション形成システム、610 衛星コンステレーション、620 衛星、621 衛星制御装置、622 通信装置、623 推進装置、624 姿勢制御装置、625 電源装置、626 監視装置、700 地上設備、910 プロセッサ、911 衛星コンステレーション形成部、921 メモリ、922 補助記憶装置、930 入力インタフェース、940 出力インタフェース、950 通信装置、1000 飛翔体対処システム。

Claims (24)

  1.  監視装置と通信装置を備える複数の監視衛星と、前記複数の監視衛星に、指令コマンドを送信する監視地上センターとを備える監視システムと、
     通信装置を備える複数の通信衛星と、前記複数の通信衛星の一群である通信衛星群に、指令コマンドを送信する通信地上センターとを備える通信システムと、
     陸上と、海上と、空中との少なくともいずれかに位置して、飛翔体に対処する対処アセットを備える対処システムと、
    を備え、
     前記監視システムは、
    前記飛翔体を監視して生成した飛翔体情報を、前記通信システムを経由して前記対処システムに伝送し、
     前記監視地上センターは、
    前記飛翔体情報を送信する予定の監視衛星のIDと、
    前記飛翔体情報の送信予定時刻を示す送信予定時刻情報と、
    前記送信予定時刻における前記IDを持つ前記監視衛星の位置を示す位置情報と、
    前記飛翔体情報を受信する予定の別の監視衛星のIDと、
    前記飛翔体情報を受信する受信予定時刻を示す受信予定時刻情報と、
    前記受信予定時刻における前記別の監視衛星の位置を示す位置情報と、
    を含む通知情報を、前記通信地上センターに送信し、
     前記通信地上センターは、
    前記飛翔体情報の通信ルートを探索する通信ルート探索装置を備え、
     通信ルート探索装置は、
    前記監視地上センターから送信された前記通知情報に基づいて指令コマンドを生成し、前記通信システムの有する前記通信衛星群に向けて、生成した前記指令コマンドを送信する飛翔体対処システム。
  2.  前記複数の監視衛星のうち1以上の監視衛星は、
    赤外線監視装置を備え、
     前記赤外線監視装置を備える監視衛星は、
    前記赤外線監視装置に、前記飛翔体の発射時プルームと、温度上昇して飛翔する前記飛翔体とを高温対象として検知させるとともに、前記赤外線監視装置が前記高温対象を検知した検知時刻と、前記赤外線監視装置を備える前記監視衛星の位置を示す位置情報と前記飛翔体の位置を示す位置情報との少なくともいずれかの位置情報とを含む情報を、前記飛翔体情報として送信する請求項1に記載の飛翔体対処システム。
  3.  前記通信システムの備える通信衛星同士は、
    前記通信装置でクロスリンクして通信網を形成し、
     前記通信地上センターは、情報を伝送する最短ルートの通信経路を、前記通信ルート探索装置を用いて探索し、探索された前記通信経路となる前記通信衛星に情報伝送指令を送信する、請求項1または請求項2に記載の飛翔体対処システム。
  4.  前記監視地上センターは、
     前記監視システムの有する監視衛星Aが前記飛翔体の発射探知をした後に、前記監視衛星Aの送信した発射探知情報を、前記通信衛星を介して取得するともに、前記発射探知情報に基づいて、
    前記通信地上センターに対して、
    前記監視衛星AのIDと、
    前記発射探知の発射探知時刻を示す時刻情報と、
    前記監視衛星Aの位置を示す位置情報と、
    を含む情報を、前記飛翔体についての送信側情報として伝達し、前記対処システムの位置を示す位置情報を、前記飛翔体についての受信側情報として伝達し、
     前記通信地上センターは、
    前記対処システムに対して、前記飛翔体の前記発射探知時刻と、
    前記飛翔体と前記監視衛星Aとの少なくともいずれかの位置を示す位置座標と
    を含む情報を、センター側飛翔体情報として伝送する、請求項1から請求項3のいずれか1項に記載の飛翔体対処システム。
  5.  前記通信地上センターは、
    前記通信ルート探索装置により、監視衛星Aが飛翔体情報を発した位置座標から前記対処システムの位置座標までの前記通信衛星群の形成する通信網の最短ルートの探索を実施して、前記最短ルートの通信経路にある前記通信衛星群に情報伝送指令を送信するとともに、前記対処システムに対して、前記飛翔体の発射探知時刻と、前記監視衛星Aの位置を示す位置情報と前記飛翔体の発射地点位置を示す位置情報との少なくともいずれかの位置情報とを含む情報を、飛翔体情報として伝送する請求項1から請求項4のいずれか1項に記載の飛翔体対処システム。
  6.  前記監視地上センターは、
    前記通信地上センターに対して、
    監視衛星AのIDと、
    前記飛翔体の発射探知時刻と、
    前記発射探知時刻における前記監視衛星Aの位置を示す位置情報とを
    監視センター側飛翔体情報の送信側情報として伝達し、
    前記監視衛星Aの周辺を飛翔する監視衛星群のIDと、
    監視衛星群に含まれる監視衛星である後継衛星が前記送信側情報を受信予定の時刻と、
    前記後継衛星が前記送信側情報を受信予定の位置を示す位置情報を、
    前記監視センター側飛翔体情報の受信側情報として伝達し、
    飛翔体発射後に前記監視衛星Aの周辺を飛翔する前記監視衛星群に対して、前記通信システムを経由して前記監視センター側飛翔体情報を送信し、
     前記監視地上センターは、
    監視衛星Bが高温対象を検知した後に、前記通信地上センターに対して、
    前記監視衛星BのIDと、
    前記監視衛星Bが前記高温対象を検知した検知時刻と、
    前記検知時刻における前記監視衛星Bの位置を示す位置情報とを、
    監視センター側飛翔体情報の送信側情報として伝達し、前記対処システムの位置情報を監視センター側飛翔体情報の受信側情報として伝達し、
     前記通信地上センターは、
    前記通信ルート探索装置により、前記監視衛星Bの前記位置情報の示す位置から、前記対処システムの位置までの前記通信衛星群による通信網の最短ルートの探索を実施して、前記最短ルートの通信経路にある通信衛星群に情報伝送指令を送信し、
    前記対処システムに対して、
    高温対象の検知時刻と、
    前記検知時刻における前記監視衛星Bの位置を示す位置座標と、
    前記監視衛星Bの検知に基づく輝度情報とを、
    通信センター側飛翔体情報として伝送する請求項1から請求項5のいずれか1項に記載の飛翔体対処システム。
  7.  前記監視地上センターは、
    前記通信地上センターに対して、
    前記監視衛星BのIDと、
    前記監視衛星Bによる前記高温対象の検知時刻と、
    前記検知時刻における前記監視衛星Bの位置を示す位置情報とを、
    監視センター側飛翔体情報の送信側情報として伝達し、
    前記監視衛星Bの周辺を飛翔する監視衛星群のIDと、
    前記監視衛星群に含まれる監視衛星である後継衛星が前記送信側情報を受信予定の時刻と、
    前記後継衛星が前記送信側情報を受信予定の位置を示す位置情報とを、
    監視センター側飛翔体情報の受信側情報として伝達し、
     前記通信地上センターは、
    前記監視衛星Bの近傍を飛翔する監視衛星群に対して、
    前記通信システムを経由して前記監視センター側飛翔体情報を送信し、
     前記監視地上センターは、
    監視衛星Cが高温対象を検知した場合に、前記通信地上センターに対して、
    前記監視衛星CのIDと、
    前記監視衛星Cによる前記高温対象の検知時刻と、
    前記検知時刻における前記監視衛星Cの位置を示す位置情報とを、
    監視センター側飛翔体情報の送信側情報として伝達し、
    前記対処システムの位置を示す位置情報を、監視センター側飛翔体情報の受信側情報として伝達し、
     前記通信地上センターは、
    前記通信ルート探索装置により、前記監視衛星Cの位置座標から対処システムの位置座標までの通信網の最短ルートの探索を実施して、前記最短ルートの通信経路にある通信衛星群に情報伝送指令を送信し、
    前記対処システムに対して、
    前記監視衛星による前記高温対象の検知時刻と、
    前記検知時刻における前記監視衛星Cの位置を示す位置座標と、
    前記監視衛星Cの検知に基づく輝度情報とを、
    通信センター側飛翔体情報として伝送する請求項6に記載の飛翔体対処システム。
  8.  前記監視地上センターは、
    通信地上センターに対して、
    監視衛星NのIDと、
    前記監視衛星Nによる前記高温対象の検知時刻と、
    前記検知時刻における前記監視衛星Nの位置を示す位置情報とを、
    監視センター側飛翔体情報の送信側情報として伝達し、
    前記監視衛星Nの周辺を飛翔する監視衛星群のIDと、
    前記監視衛星群に含まれる監視衛星である後継衛星が前記送信側情報を受信予定の時刻と、
    前記後継衛星が前記送信側情報を受信予定の位置を示す位置情報とを、
    監視センター側飛翔体情報の受信側情報として伝達し、
     前記通信地上センターは、
    前記監視衛星Nの近傍を飛翔する監視衛星群に対して、
    前記通信システムの前記通信衛星を経由して、前記監視センター側飛翔体情報を送信し、前記監視地上センターは、
    監視装置N+1が高温対象を検知した場合に、前記通信地上センターに対して、監視衛星N+1のIDと、
    前記監視衛星N+1による前記高温対象の検知時刻と、
    前記検知時刻における前記監視衛星N+1の位置を示す位置情報とを、
    監視センター側飛翔体情報の送信側情報として伝達し、
    前記対処システムの位置を示す位置情報を、監視センター側飛翔体情報の受信側情報とし
    て伝達し、
     通信地上センターは、
    前記通信ルート探索装置により、前記監視衛星N+1の位置座標から前記対処システムの位置座標までの通信網の最短ルートを探索を実施して、前記最短ルートの通信経路にある通信衛星群に情報伝送指令を送信し、
    前記対処システムに対して、
    前記監視衛星N+1による前記高温対象の検知時刻と、
    前記検知時刻における前記監視衛星N+1の位置を示す位置座標と位置座標と、
    前記監視衛星N+1の検知に基づく輝度情報とを、
    通信センター側飛翔体情報として伝送する請求項7に記載の飛翔体対処システム。
  9.  前記対処システムは、
    複数の対処アセットと、対処地上センターとを備え、
     前記対処地上センターは、
    飛翔経路予測装置を備え、
     前記飛翔経路予測装置は、
    飛翔体情報の時系列位置情報の推移に基づき、将来の時刻と位置情報とを含む飛翔経路予測情報を生成する、請求項1から請求項8のいずれか1項に記載の飛翔体対処システム。
  10.  前記対処地上センターは、
     対処アセットを選択する対処アセット選択装置を備え、
     前記対処アセット選択装置は、
     各対処アセットと通信回線で接続されており、
     前記対処アセット選択装置は、
    前記飛翔経路予測装置の生成した前記飛翔経路予測情報に基づき、飛翔体に対処するべき対処アセットを選択して、選択した前記対処アセットに、対処行動を指令する指令信号を送信する請求項9に記載の飛翔体対処システム。
  11.  前記対処システムは、
    飛翔経路予測装置を有する対処地上センターを備え、
     前記飛翔経路予測装置は、
    飛翔体情報の時系列位置情報の推移に基づき、将来の時刻と位置情報とを含む飛翔経路予測情報を生成するとともに、前記監視衛星Aが発射探知情報を送信した後に、前記監視衛星Bと、前記監視衛星Cと、前記監視衛星Nと、前記監視衛星N+1とのいずれかの監視衛星が前記高温対象を検知した場合に、前記高温対象を検知した前記監視衛星の位置座標により、飛翔体の移動方向を予測して、飛翔経路予測情報を生成する請求項8に記載の飛翔体対処システム。
  12.  前記複数の対処アセットのそれぞれは、
    位置座標が異なり、
     前記対処アセット選択装置は、
     前記複数の対処アセットの中から、飛翔経路予測装置の生成した飛翔経路予測情報の近傍に位置する対処アセットを選択して、
    前記対処地上センターは、
    選択された前記対処アセットに、飛翔体情報と対処行動指令とを伝送する、
    請求項10に記載の飛翔体対処システム。
  13.  前記対処システムは、
     位置座標の異なる複数の対処地上センターを備え、
     前記監視地上センターは、
    前記通信地上センターに対して、
    監視衛星AのIDと、
    前記監視衛星Aが飛翔体の発射を探知した探知時刻と、
    前記探知時刻における前記監視衛星Aの位置を示す位置情報とを、
    監視センター側飛翔体情報の送信側情報として伝達し、
    全ての前記対処地上センターのIDと、
    前記対処地上センターが前記監視センター側飛翔体情報を受信するべき受信予定時刻と、前記対処地上センターの位置を示す位置情報とを、
    監視センター側飛翔体情報の受信側情報として伝達し、
     前記通信地上センターは、
    前記監視衛星Aが発射探知した飛翔体情報を、全ての前記対処地上センターに伝送する請求項4に記載の飛翔体対処システム。
  14.  前記監視地上センターは、
    前記通信地上センターに対して、
    前記飛翔経路予測装置の生成した前記飛翔経路予測情報の近傍に位置する前記対処地上センターのIDと、
    前記対処地上センターが飛翔体情報を受信するべき受信時刻と、
    前記対処地上センターの位置を示す位置情報とを、
    監視センター側飛翔体情報の受信側情報として伝達し、
    前記通信地上センターは、
    前記対処地上センターに対して飛翔体情報を伝送する、請求項9から請求項12のいずれか1項に記載の飛翔体対処システム。
  15.  請求項1から請求項14のいずれか1項に記載の飛翔体対処システムの備える監視地上センター。
  16.  請求項9から請求項12のいずれか1項に記載の飛翔体対処システムの備える対処地上センター。
  17.  請求項1に記載の飛翔体対処システムの備える通信ルート探索装置であって、
     通信開始時刻と位置座標、及び飛翔体情報を伝送する伝送先の相手の位置座標を入力条件として、
    飛翔体情報を伝送する衛星IDを数珠繋ぎにした最適ルートを探索し、一連の衛星IDと当該衛星が次の衛星に飛翔体情報を伝送する予報時刻を列挙したリストと、当該通信衛星群に通信指令を与えるコマンドを生成物とするとともに、
    通信衛星飛翔位置の計画軌道に対する実軌道の予測誤差、
    特定位置座標を通過する予測時刻誤差、
    情報伝送に起因する遅延、
    予測誤差及び遅延時間に伴う衛星移動距離、
    衛星移動に伴う近傍通過衛星の相対位置変化
    をルート探索の解析対象に含めて、最短時間で飛翔体情報を伝送する最適ルートを探索する
    通信ルート探索装置。
  18.  請求項6に記載の飛翔体対処システムの備える通信ルート探索装置であって、
     前記飛翔体対処システムは、通信ルート探索装置を備え、
     監視衛星の発射探知信号を通信開始指令として、
    発射探知信号を発した監視衛星の位置座標、飛翔体発射を探知した位置座標、及び監視衛星の視野変更範囲を入力条件として、
    飛翔体情報を伝送する衛星IDを数珠繋ぎにした最適ルートを探索し、一連の衛星IDと当該衛星が次の衛星に飛翔体情報を伝送する予報時刻を列挙したリストと、当該通信衛星群に通信指令を与えるコマンドを生成物とするとともに、
    視野変更を含めて飛翔体発射地点近傍を監視可能な近傍通過監視衛星IDを探索して、飛翔体情報伝送時刻と監視衛星ID、及び監視衛星IDに飛翔体情報を伝送するまでの最適ルート探索を実施する通信ルート探索装置。
  19.  請求項7または請求項8に記載の飛翔体対処システムの備える通信ルート探索装置であって、
    監視衛星の発射探知信号を通信開始指令として、
    発射探知信号を発した監視衛星の位置座標、飛翔体発射を探知した位置座標、監視衛星の視野変更範囲、及び過去に飛翔体情報を伝送した近傍通過監視衛星の中で、高温検知信号を発した監視衛星の位置座標、高温物体を検知した位置座標、及び監視衛星の視野変更範囲を入力条件として、
    飛翔体情報を伝送する衛星IDを数珠繋ぎにした最適ルートを探索し、一連の衛星IDと当該衛星が次の衛星に飛翔体情報を伝送する予報時刻を列挙したリストと、当該通信衛星群に通信指令を与えるコマンドを生成物とするとともに、
    視野変更を含めて高温物体検知位置の近傍を監視可能な近傍通過監視衛星IDを探索して、飛翔体情報伝送時刻と監視衛星ID、及び監視衛星IDに飛翔体情報を伝送するまでの最適ルート探索を実施する通信ルート探索装置。
  20.  複数の監視装置を具備する監視衛星が有意な高温対象を検出した場合に、
    通信システムを経由して対処地上センターに検知した時刻情報と監視衛星IDと監視装置IDと監視データを飛翔体情報として伝送し、
    対処地上センターの具備する飛翔経路予測装置が、
    飛翔体情報における検知時刻における当該IDの監視衛星の位置情報と、進行方向と、当該IDの監視装置の視線方向を導出し、
    監視データから高温対象輝度を抽出して高温物体を指向する視線ベクトルを導出する請求項1に記載の飛翔体対処システム。
  21.  前記飛翔経路予測装置が、
    複数監視衛星の飛翔体情報から導出した高温物体の視線ベクトルを地球固定座標系において時系列順に並べ、空間三角測量の原理により飛翔体の時間推移毎の位置座標を予測する請求項20に記載の飛翔体対処システム。
  22.  前記飛翔経路予測装置は、
     時間推移毎の飛翔体位置座標の予測結果を、繰り返して導出して時間推移に応じた位置座標の変化を可視化し、経路予測した飛翔体が複数の異なる飛翔体を含むことを判定する請求項21に記載の飛翔体対処システム。
  23.  請求項9,10,11,12,14のいずれか1項に記載の飛翔体対処システムの備える飛翔経路予測装置。
  24.  請求項10または請求項12に記載の飛翔体対処システムの備える対処アセット選択装置。
PCT/JP2022/006104 2021-02-19 2022-02-16 飛翔体対処システム、監視地上センター、対処地上センター、通信ルート探索装置、飛翔経路予測装置及び対処アセット選択装置 WO2022176892A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023500885A JPWO2022176892A1 (ja) 2021-02-19 2022-02-16
US18/276,043 US20240109674A1 (en) 2021-02-19 2022-02-16 Flying object coping system, surveillance ground center, coping ground center, communication route search device, flight path prediction device, and coping asset selection device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-024771 2021-02-19
JP2021024771 2021-02-19

Publications (1)

Publication Number Publication Date
WO2022176892A1 true WO2022176892A1 (ja) 2022-08-25

Family

ID=82930513

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/006104 WO2022176892A1 (ja) 2021-02-19 2022-02-16 飛翔体対処システム、監視地上センター、対処地上センター、通信ルート探索装置、飛翔経路予測装置及び対処アセット選択装置

Country Status (3)

Country Link
US (1) US20240109674A1 (ja)
JP (1) JPWO2022176892A1 (ja)
WO (1) WO2022176892A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008126876A (ja) * 2006-11-22 2008-06-05 Mitsubishi Electric Corp 観測衛星群管制システム、観測衛星、地上局、及び観測衛星群管制方法
JP2008137439A (ja) * 2006-11-30 2008-06-19 Mitsubishi Electric Corp 監視衛星
WO2020261481A1 (ja) * 2019-06-27 2020-12-30 三菱電機株式会社 衛星コンステレーション、地上設備および人工衛星
JP2021070342A (ja) * 2019-10-29 2021-05-06 三菱電機株式会社 衛星コンステレーション

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008126876A (ja) * 2006-11-22 2008-06-05 Mitsubishi Electric Corp 観測衛星群管制システム、観測衛星、地上局、及び観測衛星群管制方法
JP2008137439A (ja) * 2006-11-30 2008-06-19 Mitsubishi Electric Corp 監視衛星
WO2020261481A1 (ja) * 2019-06-27 2020-12-30 三菱電機株式会社 衛星コンステレーション、地上設備および人工衛星
JP2021070342A (ja) * 2019-10-29 2021-05-06 三菱電機株式会社 衛星コンステレーション

Also Published As

Publication number Publication date
US20240109674A1 (en) 2024-04-04
JPWO2022176892A1 (ja) 2022-08-25

Similar Documents

Publication Publication Date Title
US8594932B2 (en) Management system for unmanned aerial vehicles
AU2007293004B2 (en) A method and system for extending operational electronic range of a vehicle
WO2022176891A1 (ja) 飛翔体対処システム、監視地上センター、対処地上センター、通信ルート探索装置、飛翔経路予測装置、対処アセット選択装置、赤道上空衛星システム、赤道上空衛星、極軌道衛星システム、極軌道衛星、傾斜軌道衛星システム、および、傾斜軌道衛星
US20150059564A1 (en) Autonomous weapon effects planning
WO2022176889A1 (ja) 飛翔体対処システム、衛星統合指令センター、対処地上センター、通信ルート探索装置、飛翔経路予測装置、対処アセット選択装置、赤道上空衛星システム、赤道上空衛星、極軌道衛星システム、極軌道衛星、傾斜軌道衛星システム、傾斜軌道衛星、統合データライブラリ、および、衛星コンステレーション
JP2024045779A (ja) 飛翔経路予測装置、対処アセット選択装置、赤道上空衛星システム、極軌道衛星システムおよび監視衛星
WO2022176895A1 (ja) 通信ルート探索方法、地上システム、監視衛星コンステレーション、通信衛星コンステレーション、飛翔体対処システム、統合データライブラリ、衛星及び衛星コンステレーション
JP2024109653A (ja) クラウドコンピューティングシステム及びエッジコンピューティングシステム
JP2024099011A (ja) 飛翔体の飛翔経路モデル、統合データライブラリ、監視衛星及び衛星コンステレーション
JP7394801B2 (ja) 滑空飛翔体追跡方法、飛翔体追跡システム、飛翔体対処システム、および、地上システム
JP7394802B2 (ja) 滑空飛翔体識別方法、飛翔体追跡システム、飛翔体対処システム、および、地上システム
JPWO2022176891A5 (ja)
JPWO2022176889A5 (ja)
JP7546699B2 (ja) 通信衛星システム、地上設備、人工衛星、通信地上センター及び伝送ルート探索装置
WO2022176893A1 (ja) 統合衛星コンステレーションの形成方法、統合データライブラリ及び統合衛星コンステレーション
WO2022176892A1 (ja) 飛翔体対処システム、監視地上センター、対処地上センター、通信ルート探索装置、飛翔経路予測装置及び対処アセット選択装置
JPWO2022176890A5 (ja)
US20210179298A1 (en) System and method for determining an initial orbit of satellites post deployment
WO2023062731A1 (ja) 飛翔体追跡方法、飛翔体追跡システム、衛星コンステレーションおよび地上システム
JP7418365B2 (ja) 衛星コンステレーション、地球側制御設備及び人工衛星
JP2023018715A (ja) 移動体追跡システム
JP7499962B2 (ja) 統合データライブラリ装置、飛翔体対処システム、飛翔経路予測方法および通信ルート探索方法
JP7504281B2 (ja) 飛翔位置導出方法、飛翔体追跡システム、地上システムおよび飛翔体対処システム
JP2022126918A (ja) 弾道飛翔体追跡方法、飛翔体追跡システム、飛翔体対処システムおよび地上システム
JP2022169084A (ja) 飛翔体追跡システム、飛翔経路予測方法、監視衛星、および、地上設備

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22756210

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023500885

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 18276043

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22756210

Country of ref document: EP

Kind code of ref document: A1