WO2022176695A1 - Substrate processing device and liquid guide member - Google Patents

Substrate processing device and liquid guide member Download PDF

Info

Publication number
WO2022176695A1
WO2022176695A1 PCT/JP2022/004829 JP2022004829W WO2022176695A1 WO 2022176695 A1 WO2022176695 A1 WO 2022176695A1 JP 2022004829 W JP2022004829 W JP 2022004829W WO 2022176695 A1 WO2022176695 A1 WO 2022176695A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
liquid
opening
processing
substrate
Prior art date
Application number
PCT/JP2022/004829
Other languages
French (fr)
Japanese (ja)
Inventor
水根 李
洋 丸本
Original Assignee
東京エレクトロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京エレクトロン株式会社 filed Critical 東京エレクトロン株式会社
Priority to CN202280014713.6A priority Critical patent/CN116848620A/en
Priority to JP2023500756A priority patent/JPWO2022176695A1/ja
Priority to KR1020237031012A priority patent/KR20230145583A/en
Publication of WO2022176695A1 publication Critical patent/WO2022176695A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B1/00Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means
    • B05B1/14Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means with multiple outlet openings; with strainers in or outside the outlet opening
    • B05B1/20Arrangements of several outlets along elongated bodies, e.g. perforated pipes or troughs, e.g. spray booms; Outlet elements therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C3/00Apparatus in which the work is brought into contact with a bulk quantity of liquid or other fluent material
    • B05C3/02Apparatus in which the work is brought into contact with a bulk quantity of liquid or other fluent material the work being immersed in the liquid or other fluent material
    • B05C3/09Apparatus in which the work is brought into contact with a bulk quantity of liquid or other fluent material the work being immersed in the liquid or other fluent material for treating separate articles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching

Definitions

  • the present disclosure relates to a substrate processing apparatus and a liquid guide member.
  • Patent Document 1 discloses a substrate processing apparatus having a processing tank containing a processing liquid and a substrate, a plurality of gas nozzles for discharging gas at the lower part of the processing tank, and a gas supply section for supplying gas to the plurality of gas nozzles. is disclosed.
  • the present disclosure provides a substrate processing apparatus and a liquid guide member capable of improving controllability of convection of the processing liquid.
  • a substrate processing apparatus includes a processing tank containing a processing liquid and a substrate, a plurality of gas nozzles for discharging gas at a lower portion of the processing tank, and a gas for supplying the gas to the plurality of gas nozzles.
  • a supply unit wherein the gas nozzle has a tubular body formed with a plurality of ejection holes arranged along the bottom surface of the processing bath and ejecting the gas in a first direction;
  • a liquid guide member is provided to guide the processing liquid around the ejection hole so as to flow in the first direction as the ejected gas moves.
  • FIG. 1 is a plan view showing a substrate processing system.
  • FIG. 2 is a schematic diagram showing an etching processing apparatus.
  • FIG. 3 is a plan view showing the processing bath.
  • FIG. 4 is a schematic diagram showing a gas nozzle.
  • FIG. 5 is a diagram showing the configuration of the liquid guide member.
  • FIG. 6 is a cross-sectional view showing a gas nozzle to which a liquid guide member is attached.
  • FIG. 7 is a cross-sectional view showing a gas nozzle fitted with a liquid guide member with spacers.
  • FIG. 8 is a block diagram illustrating a functional configuration of a control unit;
  • FIG. 9 is a flow chart showing a substrate processing procedure.
  • FIG. 10 is a flow chart showing the process liquid filling procedure.
  • FIG. 9 is a functional configuration of a control unit.
  • FIG. 11 is a flow chart showing the nozzle cleaning procedure.
  • FIG. 12 is a flow chart showing the immersion treatment procedure.
  • FIG. 13 is a flow chart showing the procedure for controlling the amount of gas supply.
  • FIG. 14 is a flow chart showing the procedure for discharging the treatment liquid.
  • FIG. 15 is a diagram showing an example of the function of the liquid guide member.
  • FIG. 16 is a schematic diagram showing the behavior of bubbles.
  • FIG. 17 is a diagram showing another example of the function of the liquid guide member.
  • FIG. 18 is a cross-sectional view showing a modification of the liquid guide member.
  • FIG. 1 is a plan view showing a substrate processing system.
  • the substrate processing system 100 includes a carrier loading/unloading section 2, a lot formation section 3, a lot placement section 4, a lot transfer section 5, a lot processing section 6, and a control section 7. have.
  • the carrier loading/unloading unit 2 loads and unloads a carrier 9 containing a plurality of (for example, 25) substrates (silicon wafers) 8 arranged vertically in a horizontal posture.
  • the carrier loading/unloading unit 2 includes a carrier stage 10 on which a plurality of carriers 9 are placed, a carrier transport mechanism 11 that transports the carriers 9, carrier stocks 12 and 13 that temporarily store the carriers 9, and the carriers 9. and a carrier mounting table 14 for mounting the .
  • the carrier stock 12 temporarily stores substrates 8 as products before they are processed in the lot processing unit 6 .
  • the carrier stock 13 is temporarily stored after the substrate 8 as a product is processed by the lot processing unit 6 .
  • the carrier loading/unloading section 2 uses the carrier transport mechanism 11 to transport the carrier 9 loaded onto the carrier stage 10 from the outside onto the carrier stock 12 and the carrier mounting table 14 . Further, the carrier loading/unloading section 2 transports the carrier 9 mounted on the carrier mounting table 14 to the carrier stock 13 and the carrier stage 10 using the carrier transport mechanism 11 . The carrier 9 transported to the carrier stage 10 is carried out to the outside.
  • the lot forming unit 3 combines the substrates 8 accommodated in one or more carriers 9 to form a lot consisting of a plurality of substrates 8 (for example, 50 substrates) to be processed simultaneously.
  • the lots may be formed so that the surfaces of the substrate 8 on which the pattern is formed face each other. You may form a lot so that it may face .
  • the lot forming section 3 has a substrate transport mechanism 15 that transports a plurality of substrates 8 .
  • the substrate transport mechanism 15 can change the posture of the substrate 8 from the horizontal posture to the vertical posture and from the vertical posture to the horizontal posture while the substrate 8 is being transported.
  • the lot formation unit 3 transports the substrates 8 from the carrier 9 placed on the carrier table 14 to the lot placement unit 4 using the substrate transfer mechanism 15 , and transfers the substrates 8 forming a lot to the lot placement unit 4 . Place.
  • the lot forming section 3 transports the lot placed on the lot placing section 4 to the carrier 9 placed on the carrier placing table 14 by the substrate transport mechanism 15 .
  • the substrate transport mechanism 15 includes, as substrate support parts for supporting a plurality of substrates 8, a pre-process substrate support part for supporting the substrates 8 before processing (before being transported by the lot transport part 5) and a post-process ( There are two types of post-processed substrate supporting parts that support the substrates 8 after they have been transferred by the lot transfer part 5 . This prevents particles or the like attached to the substrate 8 or the like before processing from being transferred to the substrate 8 or the like after processing.
  • the lot placing unit 4 temporarily places (stands by) the lot transported between the lot forming unit 3 and the lot processing unit 6 by the lot transporting unit 5 on the lot placing table 16 .
  • the lot placement unit 4 includes a loading-side lot placement table 17 for placing a lot before processing (before being transported by the lot transporting unit 5) and a lot after processing (after being transported by the lot transporting unit 5). and an unloading-side lot placing table 18 on which the lot is to be placed.
  • a plurality of substrates 8 for one lot are placed on the load-in side lot placement table 17 and the carry-out side lot placement table 18 side by side in a vertical posture.
  • the lot placing section 4 the lot formed by the lot forming section 3 is placed on the load-in side lot placing table 17 , and the lot is carried into the lot processing section 6 via the lot conveying section 5 .
  • the lot carried out from the lot processing section 6 via the lot conveying section 5 is placed on the carry-out side lot placing table 18 , and the lot is conveyed to the lot forming section 3 .
  • the lot transport unit 5 transports lots between the lot placement unit 4 and the lot processing unit 6 and between the insides of the lot processing unit 6 .
  • the lot transport unit 5 has a lot transport mechanism 19 that transports lots.
  • the lot transport mechanism 19 has rails 20 arranged along the lot placement section 4 and the lot processing section 6 , and a moving body 21 that moves along the rails 20 while holding a plurality of substrates 8 .
  • the moving body 21 is provided with a substrate holder 22 that holds a plurality of substrates 8 arranged vertically in a forward and backward direction so as to be able to move back and forth.
  • the lot transport unit 5 receives the lot placed on the loading-side lot placement table 17 with the substrate holder 22 of the lot transport mechanism 19 and transfers the lot to the lot processing unit 6 .
  • the lot transporter 5 also receives the lot processed by the lot processing unit 6 by the substrate holder 22 of the lot transport mechanism 19 , and transfers the lot to the carry-out side lot table 18 . Furthermore, the lot transport unit 5 uses the lot transport mechanism 19 to transport the lot inside the lot processing unit 6 .
  • the lot processing unit 6 performs processing such as etching, cleaning, and drying on a plurality of substrates 8 arranged in a vertical posture as one lot.
  • the lot processing section 6 includes a drying processing device 23 for drying the substrate 8, a substrate holder cleaning processing device 24 for cleaning the substrate holder 22, a cleaning processing device 25 for cleaning the substrate 8, It has two etching processing apparatuses 1 for etching a substrate 8 .
  • a drying processing device 23, a substrate holder cleaning processing device 24, a cleaning processing device 25, and two etching processing devices 1 are arranged side by side.
  • the drying processing apparatus 23 has a processing tank 27 and a substrate elevating mechanism 28 provided in the processing tank 27 so as to be able to move up and down.
  • a drying processing gas IPA (isopropyl alcohol) or the like
  • the substrate lifting mechanism 28 holds a plurality of substrates 8 for one lot side by side in a vertical posture.
  • the drying processing apparatus 23 receives the lot from the substrate holder 22 of the lot transport mechanism 19 by the substrate lifting mechanism 28 , and lifts the lot by the substrate lifting mechanism 28 .
  • a drying process for the substrate 8 is performed.
  • the drying processing device 23 also transfers the lot from the substrate lifting mechanism 28 to the substrate holder 22 of the lot transport mechanism 19 .
  • the substrate holder cleaning processing apparatus 24 has a processing tank 29 and is configured to be able to supply a processing liquid for cleaning and a drying gas to the processing tank 29 .
  • the substrate holder cleaning apparatus 24 supplies a cleaning processing liquid to the substrate holder 22 of the lot transport mechanism 19 and then supplies dry gas to clean the substrate holder 22 .
  • the cleaning processing apparatus 25 has a processing bath 30 for cleaning and a processing bath 31 for rinsing.
  • a cleaning treatment liquid SC-1 or the like
  • a processing liquid for rinsing pure water or the like
  • the etching processing apparatus 1 has a processing tank 34 for etching and a processing tank 35 for rinsing.
  • An etching treatment liquid (phosphoric acid aqueous solution) is stored in the etching treatment bath 34 .
  • a processing liquid for rinsing (pure water or the like) is stored in the processing tank 35 for rinsing.
  • the cleaning equipment 25 and the etching equipment 1 have the same configuration.
  • the etching processing apparatus 1 will be described.
  • a substrate lifting mechanism 36 holds a plurality of substrates 8 for one lot in a vertical posture, lined up in the front-to-rear direction.
  • the lot is received by the substrate lifting mechanism 36 from the substrate holder 22 of the lot transport mechanism 19 , and the lot is lifted and lowered by the substrate lifting mechanism 36 to immerse the lot in the etching treatment liquid of the treatment tank 34 .
  • the substrate 8 is etched.
  • the etching processing apparatus 1 transfers the lot from the substrate lifting mechanism 36 to the substrate holder 22 of the lot transport mechanism 19 .
  • the lot is received by the substrate lifting mechanism 37 from the substrate holder 22 of the lot transport mechanism 19, and the lot is lifted and lowered by the substrate lifting mechanism 37 so that the lot is immersed in the treatment liquid for rinsing in the treatment tank 35, and the substrate 8 is transferred. rinsing. After that, the lot is transferred from the substrate lifting mechanism 37 to the substrate holder 22 of the lot transport mechanism 19 .
  • the control unit 7 controls the operation of each unit of the substrate processing system 100 (carrier loading/unloading unit 2, lot formation unit 3, lot placement unit 4, lot transfer unit 5, lot processing unit 6, etching processing apparatus 1).
  • the control unit 7 is composed of a computer, for example, and includes a computer-readable storage medium 38 .
  • the storage medium 38 stores programs for controlling various processes executed in the substrate processing system 100 .
  • the control unit 7 controls the operation of the substrate processing system 100 by reading and executing programs stored in the storage medium 38 .
  • the program may be stored in the computer-readable storage medium 38 and may be installed in the storage medium 38 of the control unit 7 from another storage medium.
  • the computer-readable storage medium 38 includes, for example, a hard disk (HD), flexible disk (FD), compact disk (CD), magnet optical disk (MO), memory card, and the like.
  • FIG. 2 is a schematic diagram showing the etching processing apparatus 1.
  • FIG. 3 is a plan view showing the processing bath.
  • the etching apparatus 1 includes an etching apparatus 1, a substrate lifting mechanism 36 (conveyor), and a controller .
  • the etching processing apparatus 1 is an example of a substrate processing apparatus.
  • the etching processing apparatus 1 includes a liquid processing section 40, a processing liquid supply section 44, a processing liquid discharge section 67, a plurality of (for example, six) gas nozzles 70, a gas supply section 89, a gas heating section 94, a gas It has an extraction part 95 and a liquid level sensor 80 .
  • the liquid processing unit 40 includes a processing bath 41, an outer bath 42, and a processing liquid 43, and performs liquid processing (etching processing) on the substrate 8.
  • the processing tank 41 accommodates the processing liquid 43 and the substrate 8 .
  • a specific example of the treatment liquid 43 is a phosphoric acid aqueous solution. Since the upper portion of the processing tank 41 is open, the substrate 8 can be immersed in the processing liquid 43 in the processing tank 41 from above. As will be described later, a circular substrate 8 is arranged in an upright state in the processing tank 41 .
  • the direction perpendicular to the height direction and along the substrate 8 in the processing bath 41 may be referred to as the “width direction”, and the direction perpendicular to the height direction and the width direction (that is, the thickness of the substrate 8 in the processing bath 41 direction) is sometimes referred to as the “depth direction”.
  • Both side portions in the width direction of the bottom surface of the processing tank 41 increase toward the outside. As a result, the dead space between the inner corner in the processing bath 41 and the outer periphery of the substrate 8 is reduced, and the processing liquid 43 is less likely to remain.
  • the outer bath 42 is provided so as to surround the processing bath 41 and accommodates the processing liquid overflowing from the processing bath 41 .
  • the processing liquid supply unit 44 supplies the processing liquid 43 into the processing tank 41 .
  • the processing liquid supply section 44 includes a processing liquid supply source 45 , a flow rate regulator 46 , a pure water supply source 47 , a flow rate regulator 48 , a processing liquid circulation section 49 and a concentration measurement section 55 .
  • the processing liquid supply source 45 supplies the processing liquid 43 to the outer bath 42 .
  • the flow controller 46 is provided in the flow path of the processing liquid from the processing liquid supply source 45 to the outer tank 42, and performs opening/closing and opening adjustment of the flow path.
  • the pure water supply source 47 supplies pure water to the outer tank 42 . This pure water compensates for the moisture evaporated by heating the treatment liquid 43 .
  • the flow controller 48 is provided in the pure water flow path from the pure water supply source 47 to the outer tank 42, and performs opening/closing and opening adjustment of the flow path.
  • the processing liquid circulation unit 49 sends the processing liquid 43 in the outer tank 42 to the lower part in the processing tank 41 .
  • the treatment liquid circulation unit 49 includes a plurality of (for example, three) treatment liquid nozzles 50 , a circulation channel 51 , a supply pump 52 , a filter 53 and a heater 54 .
  • the processing liquid nozzle 50 is provided in the lower part of the outer bath 42 and discharges the processing liquid 43 into the processing bath 41 .
  • the plurality of processing liquid nozzles 50 are arranged in the width direction at the same height and extend in the depth direction.
  • the circulation flow path 51 guides the processing liquid from the outer tank 42 to the plurality of processing liquid nozzles 50 .
  • One end of the circulation channel 51 is connected to the bottom of the outer tank 42 .
  • the other end of the circulation flow path 51 is branched into a plurality of lines and connected to a plurality of processing liquid nozzles 50 respectively.
  • the supply pump 52, the filter 53, and the heater 54 are provided in the circulation flow path 51 and are arranged in order from the upstream side (outer tank 42 side) to the downstream side (processing liquid nozzle 50 side).
  • the supply pump 52 pressure-feeds the processing liquid 43 from the upstream side to the downstream side.
  • the filter 53 removes particles mixed in the processing liquid 43 .
  • the heater 54 heats the treatment liquid 43 to a set temperature.
  • the set temperature is set to a value near the boiling point of the treatment liquid 43, for example.
  • the concentration measurement unit 55 measures the concentration of the treatment liquid 43 .
  • the concentration measurement section 55 has a measurement channel 56 , on-off valves 57 and 59 , a concentration sensor 58 , a cleaning fluid supply section 60 and a cleaning fluid discharge section 64 .
  • the measurement flow path 56 branches from the circulation flow path 51 between the heater 54 and the processing liquid nozzle 50 , extracts part of the processing liquid 43 and returns it to the outer tank 42 .
  • the on-off valves 57 and 59 are arranged in order from the upstream side (circulation flow path 51 side) to the downstream side (outer tank 42 side) in the measurement flow path 56 and open and close the measurement flow path 56 respectively.
  • the concentration sensor 58 is provided between the on-off valves 57 and 59 in the measurement channel 56 and measures the concentration (for example, phosphoric acid concentration) of the processing liquid 43 flowing through the measurement channel 56 .
  • the cleaning fluid supply unit 60 supplies cleaning fluid (eg, pure water) to the concentration sensor 58 .
  • the cleaning fluid supply unit 60 has a cleaning fluid supply source 61 , a supply channel 62 and an on-off valve 63 .
  • Cleaning fluid source 61 is a source of cleaning fluid.
  • the supply channel 62 supplies the cleaning fluid from the cleaning fluid supply source 61 to the concentration sensor 58 .
  • One end of the supply channel 62 is connected to the cleaning fluid supply source 61 , and the other end of the supply channel 62 is connected between the on-off valve 57 and the concentration sensor 58 .
  • the on-off valve 63 opens and closes the supply channel 62 .
  • the cleaning fluid discharge part 64 discharges the cleaning fluid.
  • the cleaning fluid discharge section 64 has a discharge channel 65 and an on-off valve 66 .
  • a discharge channel 65 leads the cleaning fluid that has passed through the concentration sensor 58 .
  • One end of the discharge channel 65 is connected between the concentration sensor 58 and the on-off valve 59, and the other end of the discharge channel 65 is connected to a drain pipe (not shown) of the substrate processing system 100.
  • the on-off valve 66 opens and closes the discharge channel 65 .
  • the processing liquid discharge unit 67 discharges the processing liquid 43 from the processing tank 41 .
  • the processing liquid discharge section 67 has a drainage channel 68 and an on-off valve 69 .
  • the drainage channel 68 leads out the processing liquid in the processing tank 41 .
  • One end of the drainage channel 68 is connected to the bottom of the processing tank 41 , and the other end of the drainage channel 68 is connected to a drainage pipe (not shown) of the substrate processing system 100 .
  • the on-off valve 69 opens and closes the drainage flow path 68 .
  • a plurality of gas nozzles 70 eject an inert gas (for example, N 2 gas) at the bottom of the processing tank 41 .
  • the plurality of gas nozzles 70 are arranged in the width direction below the processing liquid nozzle 50 and extend in the depth direction. The height of each gas nozzle 70 increases with distance from the center in the width direction.
  • a plurality of gas nozzles 70 may be arranged along an arc concentric with the substrate 8 .
  • Lined up along the arc includes not only the case where the gas nozzles 70 are positioned on the arc, but also the case where some of the gas nozzles 70 are deviated from the arc within a predetermined range.
  • the predetermined range can be arbitrarily set as long as the distance from each gas nozzle 70 to the center of the substrate 8 is more uniform than when the plurality of gas nozzles 70 are positioned at the same height.
  • the plurality of gas nozzles 70 are a pair of gas nozzles 70A located innermost in the width direction, a pair of gas nozzles 70B located outside the pair of gas nozzles 70A, and a pair of gas nozzles 70B located further outside the pair of gas nozzles 70B.
  • gas nozzle 70C The gas nozzles 70B, 70B are located above the gas nozzles 70A, 70A, and the gas nozzles 70C, 70C are located above the gas nozzles 70B, 70B.
  • Gas nozzles 70A, 70A, 70B, 70B, 70C, and 70C are arranged along an arc concentric with substrate 8 .
  • gas nozzles 70 can be changed as appropriate.
  • a plurality of gas nozzles 70 may be arranged at the same height. Details of the gas nozzle 70 will be described later.
  • the gas supply unit 89 supplies the inert gas to the gas nozzle 70 .
  • the gas supply unit 89 includes a gas supply source 90 , a supply channel 91 , an on-off valve 92 and a flow controller 93 .
  • the gas supply source 90 is an inert gas supply source.
  • the supply channel 91 guides the inert gas from the gas supply source 90 to the gas nozzle 70 .
  • the on-off valve 92 opens and closes the supply channel 91 .
  • the flow controller 93 adjusts the opening degree of the supply channel 91 between the on-off valve 92 and the gas supply source 90 to adjust the flow rate of the inert gas.
  • the supply channel 91, the on-off valve 92, and the flow controller 93 may be provided for each height of the gas nozzle 70.
  • the gas supply source 90 includes supply channels 91A, 91B, 91C, on-off valves 92A, 92B, 92C, and flow controllers 93A, 93B, 93C.
  • the supply channel 91A guides the inert gas from the gas supply source 90 to one end of the gas nozzles 70A, 70A.
  • the supply channel 91B guides the inert gas from the gas supply source 90 to one end of the gas nozzles 70B, 70B.
  • the supply channel 91C guides the inert gas from the gas supply source 90 to one end of the gas nozzles 70C, 70C.
  • the on-off valves 92A, 92B, 92C open and close the supply channels 91A, 91B, 91C, respectively.
  • the flow controllers 93A, 93B, 93C adjust the opening degrees of the supply channels 91A, 91B, 91C, respectively.
  • the gas heating unit 94 heats the inert gas supplied to the gas nozzle 70 by the gas supply source 90 to a set temperature.
  • the set temperature is set to a value near the boiling point of the treatment liquid 43, for example.
  • the gas heating section 94 is provided in the supply channel 91 .
  • the gas heating section 94 is provided at a portion where the supply flow paths 91A, 91B, and 91C join on the side of the gas supply source 90, but this is not restrictive.
  • the gas heating unit 94 may be provided for each of the supply channels 91A, 91B, 91C.
  • the gas release portion 95 reduces the internal pressure of the main body 71 of the gas nozzle 70 .
  • the degassing section 95 includes a pressure reducing passage 96 and a pressure reducing valve 97 .
  • the decompression channel 96 branches from the supply channel 91 between the on-off valve 92 and the gas nozzle 70 to lead out the gas in the supply channel 91 .
  • the pressure reducing valve 97 opens and closes the pressure reducing channel 96 .
  • the degassing section 95 may further include a forced exhaust pump.
  • the pressure reducing passage 96 and the pressure reducing valve 97 may be provided for each height of the gas nozzle 70 .
  • the degassing section 95 includes pressure reducing passages 96A, 96B, 96C and pressure reducing valves 97A, 97B, 97C.
  • the pressure reduction channel 96A branches from the supply channel 91A between the on-off valve 92A and the gas nozzle 70A, and leads out the gas in the supply channel 91A.
  • the pressure reduction channel 96B branches from the supply channel 91B between the on-off valve 92B and the gas nozzle 70B, and leads out the gas in the supply channel 91B.
  • the pressure reducing channel 96C branches from the supply channel 91C between the on-off valve 92C and the gas nozzle 70C, and leads out the gas in the supply channel 91C.
  • the pressure reducing valves 97A, 97B and 97C open and close the pressure reducing channels 96A, 96B and 96C, respectively.
  • the liquid level sensor 80 acquires information on the amount of gas contained in the treatment liquid 43 .
  • the amount of gas contained in the treatment liquid 43 may be referred to as "the gas content of the treatment liquid 43".
  • the liquid level sensor 80 is a bubble level gauge, and includes a bubble tube 81, a pressurized gas supply source 83, a gas line 84, a purge set 82, a detection line 85, a first detector 86A, and a second detector 86B.
  • the bubble tube 81 is inserted into the processing liquid in the processing bath 41 and its end is positioned near the bottom of the processing bath 41 .
  • the pressurized gas supply source 83 is an inert gas supply source for liquid level measurement.
  • the inert gas for liquid level measurement may be referred to as "measurement gas”.
  • a gas line 84 guides the measurement gas from the pressurized gas supply source 83 to the bubble tube 81 .
  • the measurement gas guided to the bubble tube 81 is released from the end of the bubble tube 81 into the processing liquid in the processing tank 41 .
  • the purge set 82 adjusts the internal pressure of the gas line 84 so that the amount of measured gas released from the bubble tube 81 is constant.
  • Constant means substantially constant, and means a state in which a predetermined value is used as a reference and is within an allowable range.
  • the detection line 85 transmits the internal pressure of the gas line 84 between the bubble tube 81 and the purge set 82 to the first detector 86A and the second detector 86B.
  • One end of the detection line 85 is connected to the gas line 84 between the bubble tube 81 and the purge set 82, and the other end of the detection line 85 branches into two, the first detector 86A and the second detector 86A. Each is connected to a detector 86B.
  • the first detector 86A and the second detector 86B detect the pressure transmitted by the detection line 85.
  • the detection ranges of the first detector 86A and the second detector 86B are different from each other.
  • the first detector 86A detects the pressure when the liquid level (position of the liquid surface) of the processing liquid 43 in the processing tank 41 is at the lowest level (when the processing tank 41 is empty), and when the liquid level is at the highest level (processing The detection range is up to the pressure when the liquid 43 is overflowing from the processing tank 41).
  • the detection range of the second detector 86B is from the minimum value to the maximum value of the pressure fluctuation range corresponding to the gas content of the processing liquid 43 when the liquid level of the processing liquid 43 in the processing tank 41 is at the highest level.
  • the detection value of the second detector 86B fluctuates mainly according to the gas content of the treatment liquid 43 . That is, when the liquid level of the treatment liquid 43 is maintained at the highest level, the detection value of the second detector 86B substantially correlates with the gas content of the treatment liquid 43 .
  • the detection range of the first detector 86A is larger than the detection range of the second detector 86B. It is practically imperceptible. Therefore, the detection value of the first detector 86A substantially correlates with the liquid level of the treatment liquid 43 .
  • information regarding the gas content of the treatment liquid 43 can be obtained. That is, when the detection value of the first detector 86A indicates that the liquid level of the treatment liquid 43 is maintained at the highest level, by acquiring the detection value of the second detector 86B, Information about the gas content of the liquid 43 is obtained.
  • the substrate lifting mechanism 36 immerses the substrate 8 in the processing liquid 43 in the processing tank 41 .
  • the substrate elevating mechanism 36 immerses the substrates 8 in the treatment liquid 43 while arranging them in the thickness direction.
  • the substrate elevating mechanism 36 has a plurality of support arms 87 and an elevating section 88 .
  • the plurality of support arms 87 support the plurality of substrates 8 erected along the width direction in a state of being aligned in the depth direction.
  • the plurality of support arms 87 are arranged in the width direction and extend in the depth direction.
  • Each support arm 87 has a plurality of slots 87a arranged in the depth direction.
  • the slot 87a is a groove-shaped portion that opens upward along the width direction, and receives the lower portion of the upright substrate 8 .
  • the elevating section 88 elevates the plurality of support arms 87 between a height at which the plurality of substrates 8 are immersed in the processing liquid 43 and a height at which the plurality of substrates 8 are positioned above the surface of the processing liquid 43 .
  • FIG. 4 is a schematic diagram showing the gas nozzle 70. As shown in FIG.
  • the gas nozzle 70 has a tubular (for example, cylindrical) main body 71 arranged to extend in the depth direction along the bottom surface of the processing tank 41, and an inner surface 73 and an outer surface 74 of the main body 71. and at least one discharge hole 77 formed therethrough.
  • the main body 71 is an example of a tubular body.
  • the gas nozzle 70 has a plurality of discharge holes 77 arranged along the depth direction.
  • the main body 71 is made of quartz, for example.
  • the main body 71 may be made of a silicon-free material instead of quartz. Specific examples of silicon-free materials include resin materials such as polyetheretherketone (PEEK) and polytetrafluoroethylene (PTFE).
  • Each discharge hole 77 is provided at the bottom of the main body 71 .
  • the discharge hole 77 may be provided at a position deviated from the vertical lower portion of the tube center 72 of the main body 71 .
  • the position of the discharge hole 77 may be set so that the vertical imaginary plane 75 including the pipe center 72 of the main body 71 does not pass through the discharge hole 77 .
  • the center of the discharge hole 77 may be positioned within a range 76 of ⁇ 10° vertically downward around the pipe center 72 of the main body 71 .
  • the discharge hole 77 deviates from vertically below the tube center 72 .
  • the discharge hole 77 is shifted to the right side in the drawing, but it may be shifted to the left side in the drawing.
  • the discharge holes 77 shifted to the right side in the drawing and the discharge holes 77 shifted to the left side in the drawing may be arranged in a zigzag pattern along the depth direction.
  • the discharge hole 77 is formed so that the opening area is constant from the inner surface 73 side of the main body 71 to the outer surface 74 side.
  • FIG. 5 is a diagram showing the configuration of the liquid guide member 200.
  • FIG. 5(a) is a top view
  • FIGS. 5(b) and 5(c) are cross-sectional views.
  • 5(b) corresponds to a cross-sectional view along the Vb-Vb line in FIG. 5(a)
  • FIG. 5(c) corresponds to a cross-sectional view along the Vc-Vc line in FIG. 5(a). do.
  • the liquid guide member 200 has a tubular guide portion 210 , a tubular base portion 220 , and a connecting portion 230 that connects the guide portion 210 and the base portion 220 .
  • the liquid guide member 200 is made of quartz, for example.
  • the liquid guide member 200 may be made of resin such as tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA).
  • PFA tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer
  • the guiding portion 210, the base portion 220, and the connecting portion 230 may be configured integrally.
  • the base 220 has a third opening 223 on the side of the guiding part 210 and a fourth opening 224 on the side opposite to the third opening 223 .
  • the opening area of the fourth opening 224 is approximately the same as the opening area of the third opening 223 .
  • the shape of the base portion 220 is, for example, cylindrical, and the outer wall surface of the base portion 220 has substantially the same shape as the inner wall surface of the discharge hole 77 . A base 220 is inserted into the discharge hole 77 .
  • the guiding part 210 has a first opening 211 on the side of the base part 220 and a second opening 212 on the side opposite to the first opening 211 .
  • the opening area of the second opening 212 is smaller than the opening area of the first opening 211 .
  • the first opening 211 and the second opening 212 are separated from each other in the direction in which the base 220 extends (first direction).
  • the shape of the guiding portion 210 is, for example, a truncated cone shape. That is, the opening area of the guide portion 210 continuously decreases from the first opening 211 to the second opening 212 .
  • a plurality of connecting portions 230 are provided.
  • the guiding portion 210 and the base portion 220 are connected by three connecting portions 230 .
  • the three connecting portions 230 are arranged, for example, at regular intervals (120° intervals) in the circumferential direction of the base portion 220 .
  • the first opening 211 and the second opening 212 of the guiding portion 210 are arranged concentrically with the third opening 223 and the fourth opening 224 of the base portion 220 .
  • the diameter of the first opening 211 is between 1 mm and 15 mm
  • the diameter of the second opening 212 is between 0.1 mm and 10 mm.
  • the diameter of the third opening 223 is 0.1 mm to 10 mm
  • the diameter of the fourth opening 224 is 0.1 mm to 10 mm.
  • the outer wall surface of the guide portion 210 is inclined by 1° to 80° with respect to the outer wall surface of the base portion 220 .
  • FIG. 6 is a cross-sectional view showing the gas nozzle 70 to which the liquid guide member 200 is attached.
  • 6(a) shows a cross section parallel to the tube axis of the gas nozzle 70
  • FIG. 6(b) shows a cross section perpendicular to the tube axis of the gas nozzle 70.
  • the lower end of the liquid guide member 200 is in contact with the main body 71 of the gas nozzle 70 in the cross section parallel to the pipe axis, but as shown in FIG. 6(b), the cross section perpendicular to the pipe axis There is a gap between the lower end of the liquid guide member 200 and the main body 71 . Although the details will be described later, the processing liquid around the liquid guide member 200 can flow into the guide section 210 through this gap.
  • FIG. 7 is a cross-sectional view showing gas nozzle 70 to which liquid guide member 200 with spacer 225 is attached.
  • 7(a) shows a cross section parallel to the tube axis of the gas nozzle 70
  • FIG. 7(b) shows a cross section perpendicular to the tube axis of the gas nozzle 70.
  • the control unit 7 moves the substrate 8 from a first height H1 below the gas nozzle 70 (e.g., the height of the lowest part of the bottom surface of the processing bath 41) to a second height H2 (e.g., the height of the processing bath 41) at which the substrate 8 can be immersed.
  • the processing liquid supply part 44 is controlled so as to supply the processing liquid 43 to the processing tank 41 until the liquid level rises to the height of the upper end surface), and the substrate is exposed to the liquid surface in a state where the liquid level is at the second height H2 or higher. 8 is immersed in the processing liquid 43, and the processing liquid 43 is discharged from the processing bath 41 until the liquid surface drops from the second height H2 to the first height H1.
  • the processing liquid discharge part 67 By controlling the processing liquid discharge part 67 and increasing the amount of gas supplied while the liquid level is rising from the first height H1 to the second height H2, the liquid level is increased from the second height H2 to the first height. and controlling the gas supply unit 89 so as to reduce the amount of gas supplied during the descent to H1.
  • the control unit 7 controls the gas venting unit 95 so as to reduce the internal pressure of the main body 71 to a pressure at which the processing liquid 43 can be sucked into the main body 71 of the gas nozzle 70 , and discharges the processing liquid 43 in the main body 71 . and controlling the gas supply unit 89 to increase the internal pressure of the main body 71 to the obtained pressure.
  • control unit 7 controls the flow of gas from the gas supply unit 89 to the gas nozzle 70 according to at least one of the distance between the substrates 8, the elapsed time after the substrate 8 starts being immersed, and the arrangement position of the gas nozzle 70. is configured to vary the supply of
  • the control unit 7 may be configured to further control the gas supply unit 89 so as to bring the gas content of the processing liquid 43 closer to the target value by adjusting the gas supply amount.
  • the gas supply amount may be changed by changing the target value.
  • FIG. 8 is a block diagram illustrating the functional configuration of the control unit 7.
  • the control unit 7 includes a liquid supply control unit 111, a drainage control unit 112, an immersion control unit 113, a gas supply control unit 114, and a cleaning control unit 118 as functional components. , and a recipe storage unit 119 .
  • the functional configuration may be referred to as a "functional module”.
  • the recipe storage unit 119 stores various parameters set in advance to specify the processing content.
  • the liquid supply control unit 111 controls the processing liquid supply unit 44 so as to supply the processing liquid 43 to the processing tank 41 until the liquid level rises from the first height H1 to the second height H2.
  • this control may be referred to as "filling control of the treatment liquid 43".
  • the immersion control unit 113 controls the substrate elevating mechanism 36 so that the substrate 8 is immersed in the processing liquid 43 while the liquid surface is at or above the second height H2.
  • this control may be referred to as “substrate 8 immersion control”.
  • the liquid discharge control section 112 controls the processing liquid discharge section 67 so as to discharge the processing liquid 43 from the processing bath 41 until the liquid level drops from the second height H2 to the first height H1.
  • this control may be referred to as "discharge control of the treatment liquid 43".
  • the gas supply control unit 114 has an on/off control unit 115, a target value setting unit 116, and a follow-up control unit 117 as more subdivided functional modules.
  • the on/off control unit 115 increases the amount of gas supplied while the liquid level rises from the first height H1 to the second height H2, and the liquid level drops from the second height H2 to the first height H1.
  • the gas supply unit 89 is controlled so as to reduce the amount of gas supplied during the process. Controlling the gas supply unit 89 to increase the amount of gas supplied includes controlling the gas supply unit 89 to open the on-off valve 92 from the closed state and start supplying gas. Controlling the gas supply unit 89 to reduce the amount of gas supplied includes controlling the gas supply unit 89 to close the on-off valve 92 from the open state to stop the gas supply.
  • the on/off control unit 115 starts supplying the gas before the liquid level rising from the first height H1 to the second height H2 reaches the discharge hole 77 of the gas nozzle 70, and increases the liquid level from the second height H2 to the second height H2.
  • the gas supply unit 89 may be controlled so as to stop the supply of gas after the liquid surface that descends to one height H1 passes through the discharge hole 77 .
  • the on/off control unit 115 starts supplying the gas before the liquid surface rising from the first height H1 to the second height H2 reaches the discharge hole 77 of the gas nozzle 70, and reaches the second height H2. to the first height H1 passes through the discharge hole 77, the gas supply unit 89 may be controlled so as to stop the gas supply for each gas nozzle 70 having a different height.
  • the on/off control unit 115 changes the on-off valve 92A from the closed state to the open state before the liquid surface rising from the first height H1 to the second height H2 reaches the discharge hole 77 of the gas nozzle 70A.
  • the on-off valve 92B is opened from the closed state before the liquid surface reaches the discharge hole 77 of the gas nozzle 70B, and the on-off valve 92C is opened from the closed state before the liquid surface reaches the discharge hole 77 of the gas nozzle 70C.
  • the gas supply unit 89 is controlled so as to After that, the on/off control unit 115 closes the on-off valve 92C after the liquid surface that descends from the second height H2 to the first height H1 passes through the discharge hole 77 of the gas nozzle 70C, and After the surface passes through the discharge hole 77 of the gas nozzle 70B, the on-off valve 92B is opened from the closed state, and after the liquid surface passes through the discharge hole 77 of the gas nozzle 70A, the on-off valve 92C is changed from the open state to the closed state. It controls the gas supply unit 89 .
  • the on/off control unit 115 starts supplying the gas before the liquid level rising from the first height H1 to the second height H2 reaches the discharge hole 77 of the gas nozzle 70, and increases the liquid level from the second height H2 to the second height H2.
  • the gas supply unit 89 may be controlled so as to stop the gas supply after the liquid surface descending to one height H1 passes through the discharge hole 77 at the same time with the gas nozzles 70 having different heights.
  • the ON/OFF control unit 115 controls all the gas nozzles 70 before the liquid level rising from the first height H1 to the second height H2 reaches the discharge hole 77 of the lowest gas nozzle 70 (gas nozzle 70A). and stop supplying gas to all the gas nozzles 70 after the liquid level descending from the second height H2 to the first height H1 passes through the discharge hole 77 of the lowest gas nozzle 70.
  • the gas supply unit 89 may be controlled so as to do so.
  • the target value setting unit 116 sets the target value of the gas content of the treatment liquid 43 according to at least one of the distance between the substrates 8 and the elapsed time after the substrates 8 start being immersed. For example, the target value setting unit 116 acquires the elapsed time from the immersion control unit 113, and changes the target value of the gas content of the treatment liquid 43 according to the elapsed time. More specifically, the target value setting unit 116 may change the target value of the gas content of the treatment liquid 43 before and after the elapsed time reaches a predetermined timing. The timing and target values before and after the timing are set in advance and stored in the recipe storage unit 119 , and the target value setting unit 116 acquires this information from the recipe storage unit 119 .
  • Different target values may be stored in the recipe storage unit 119 according to the spacing between the substrates 8 .
  • the target value setting section 116 changes the target value according to the distance between the substrates 8 .
  • the distance between substrates 8 is determined according to the number of substrates 8 supported by the support arm 87 of the substrate lifting mechanism 36 .
  • the number of substrates 8 supported by the support arm 87 is appropriately set according to the etching conditions for the substrates 8 . For example, if the influence of the effluent from one of the adjacent substrates 8 on the etching process of the other cannot be ignored, the number of substrates 8 supported by the support arm 87 is reduced to leave some slots 87a open, and the substrates 8 are separated from each other. It is preferable to increase the interval between .
  • the follow-up control unit 117 controls the gas supply unit 89 so that the gas content of the treatment liquid 43 approaches the target value by adjusting the gas supply amount.
  • the follow-up control unit 117 may change the amount of gas supplied from the gas supply unit 89 to the gas nozzle 70 according to the arrangement position of the gas nozzle 70 .
  • the tracking control unit 117 may change the amount of gas supplied from the gas supply unit 89 to the gas nozzle 70 according to the position of the gas nozzle 70 with respect to the center in the width direction. That is, the follow-up control unit 117 may increase the amount of gas supplied from the gas supply unit 89 to the gas nozzle 70 as the arrangement position of the gas nozzle 70 moves away from the center in the width direction.
  • the amount of gas supplied from the gas supply portion 89 to the gas nozzle 70 may be decreased as the distance from the center in the width direction increases. More specifically, the tracking control unit 117 may vary the opening degrees of the flow controllers 93A, 93B, 93C so as to vary the amount of gas supplied to the gas nozzles 70A, 70B, 70C.
  • the cleaning control unit 118 controls the gas venting unit 95 so as to reduce the internal pressure of the main body 71 of the gas nozzle 70 to a pressure at which the processing liquid 43 can be sucked into the main body 71, and discharges the processing liquid 43 in the main body 71. and controlling the gas supply unit 89 to increase the internal pressure of the main body 71 to a possible pressure.
  • this control may be referred to as "cleaning control of the gas nozzle 70".
  • the cleaning control unit 118 may perform cleaning control of the gas nozzle 70 after the liquid surface rises from the first height H1 to the second height H2 and before the substrate 8 is immersed in the processing liquid 43. , after the substrate 8 is immersed in the treatment liquid 43 and before the liquid surface drops from the second height H2 to the first height H1.
  • FIG. 9 is a flow chart showing a substrate processing procedure.
  • the control unit 7 first executes step S01.
  • Step S01 includes filling control of the treatment liquid 43 described above.
  • the controller 7 executes step S02.
  • Step S02 includes cleaning control of the gas nozzle 70 described above.
  • the control section 7 executes step S03.
  • Step S03 includes the immersion control of the substrate 8 described above.
  • the controller 7 executes step S04.
  • Step S04 includes discharge control of the treatment liquid 43 described above. A more detailed procedure will be described later.
  • Step S05 includes confirming whether liquid processing for all lots has been completed.
  • step S05 when it is determined that there are still lots for which liquid processing has not been completed, the control section 7 returns the procedure to step S01. After that, the filling control of the processing liquid 43, the cleaning control of the gas nozzle 70, the immersion control of the substrate 8, and the discharge control of the processing liquid 43 are repeated until the liquid processing of all lots is completed.
  • step S ⁇ b>05 when it is determined that the liquid processing of all lots has been completed, the control unit 7 completes the control of the etching processing apparatus 1 .
  • control unit 7 executes the cleaning control of the gas nozzle 70 after the filling control of the processing liquid 43 and before the immersion control of the substrate 8, but it is not limited to this.
  • control unit 7 may perform cleaning control of the gas nozzle 70 after controlling the immersion of the substrate 8 and before controlling the discharge of the processing liquid 43 .
  • more silicon is eluted when the substrate 8 is immersed in the treatment liquid than in the treatment in the cleaning treatment apparatus 25 .
  • the silicon concentration in the processing tank 34 becomes high, as in the example of FIG. is preferred.
  • control unit 7 executes filling control of the processing liquid, cleaning control of the gas nozzle 70, and discharge control of the processing liquid for each process of one lot. Filling control of the processing liquid, cleaning control of the gas nozzle 70, and discharging control of the processing liquid may be executed for each lot.
  • FIG. 10 is a flow chart showing the process liquid filling procedure.
  • the controller 7 first executes step S11.
  • the liquid supply control unit 111 controls the processing liquid supply unit 44 so as to start filling the processing bath 41 with the processing liquid 43 .
  • the liquid supply controller 111 opens the flow controller 46 to start supplying the processing liquid 43 into the outer tank 42 in a state where the processing tank 41 is empty and the on-off valve 69 is closed.
  • the processing liquid supply unit 44 is controlled so that the pump 52 is driven to start feeding the liquid from the outer bath 42 to the processing bath 41 .
  • step S12 the on/off control unit 115 waits for a preset valve opening time for the on-off valve 92 to be opened next.
  • the opening time of the on-off valve 92 is set to the time before the liquid surface reaches the discharge hole 77 of the gas nozzle 70 corresponding to the on-off valve 92 , and is stored in the recipe storage unit 119 .
  • the opening time of the on-off valve 92 differs depending on the height of the corresponding gas nozzle 70, and the higher the gas nozzle 70 is, the longer the opening time is.
  • step S13 the on/off control unit 115 controls the gas supply unit 89 so that the on-off valve 92 whose opening time has elapsed in step S12 is switched from the closed state to the open state.
  • step S14 the on/off control unit 115 confirms whether or not the on-off valves 92 of all the gas nozzles 70 are opened.
  • step S14 If it is determined in step S14 that the on-off valve 92 remains unopened, the control unit 7 returns the procedure to step S12. Thereafter, until all the on-off valves 92 are opened, the control unit 7 repeats waiting for the valve opening time and opening the on-off valves 92 .
  • the on-off valves 92 of the gas nozzles 70 at the lower level are sequentially opened. More specifically, the on-off valve 92A is opened before the liquid surface of the processing liquid 43 reaches the discharge hole 77 of the gas nozzle 70A, and the liquid surface passing through the discharge hole 77 of the gas nozzle 70A reaches the discharge hole 77 of the gas nozzle 70B.
  • the on-off valve 92C is opened before the liquid surface that has passed through the discharge hole 77 of the gas nozzle 70B reaches the discharge hole 77 of the gas nozzle 70C.
  • step S15 the liquid supply control unit 111 waits until the preset filling time elapses.
  • the filling time is set after the time when the liquid surface of the treatment liquid 43 reaches the second height H2, and is stored in the recipe storage unit 119 .
  • step S16 the control unit 7 executes step S16.
  • step S ⁇ b>16 the liquid supply controller 111 starts circulation control of the processing liquid 43 .
  • the circulation of the processing liquid 43 is controlled by continuing to drive the supply pump 52 to control the processing liquid supply unit 44 so that the processing liquid 43 overflowing from the processing tank 41 into the outer tank 42 is circulated to the lower part of the processing tank 41.
  • the liquid supply control unit 111 controls the processing liquid supply unit 44 so as to adjust the opening of the pure water flow rate regulator 48 according to the concentration of the processing liquid 43 detected by the concentration sensor 58 . You can do what you do. Above, the said step S01 is completed.
  • FIG. 11 is a flow chart showing the nozzle cleaning procedure.
  • the controller 7 first executes step S21.
  • the cleaning control unit 118 controls the gas supply unit 89 so as to close the on-off valve 92 and interrupt the gas supply to the gas nozzle 70 .
  • step S22 the control unit 7 executes step S22.
  • the cleaning control unit 118 controls the degassing unit 95 so as to reduce the internal pressure of the main body 71 of the gas nozzle 70 to a pressure at which the treatment liquid 43 can be sucked into the main body 71 .
  • the cleaning control unit 118 controls the degassing unit 95 to open the pressure reducing valve 97 from the closed state.
  • step S23 the cleaning control unit 118 waits for a preset decompression time.
  • the depressurization time is set so that an amount of the treatment liquid 43 suitable for cleaning is sucked into the main body 71 and is stored in the recipe storage unit 119 .
  • step S24 the cleaning control unit 118 controls the degassing unit 95 so as to stop reducing the pressure inside the main body 71 .
  • the cleaning control unit 118 controls the degassing unit 95 to close the pressure reducing valve 97 from the open state.
  • step S25 the cleaning control unit 118 waits for a preset cleaning time.
  • the cleaning time is set so that the treatment liquid 43 sucked into the main body 71 has a sufficient cleaning effect, and is stored in the recipe storage unit 119 .
  • step S26 the control unit 7 executes step S26.
  • the cleaning control unit 118 controls the gas supply unit 89 so as to increase the internal pressure of the main body 71 to a pressure that allows the treatment liquid 43 in the main body 71 to be discharged.
  • the cleaning control unit 118 controls the gas supply unit 89 to open the on-off valve 92 and restart the gas supply to the gas nozzle 70 .
  • step S27 the cleaning control unit 118 waits for a preset drainage time.
  • the liquid draining time is set so that the processing liquid 43 sucked into the main body 71 can be sufficiently drained, and is stored in the recipe storage unit 119 .
  • the above step S02 is completed.
  • FIG. 12 is a flow chart showing the immersion treatment procedure.
  • the controller 7 first executes step S31.
  • step S ⁇ b>31 the immersion control unit 113 moves the plurality of support arms from a height at which the plurality of substrates 8 are positioned above the liquid surface of the processing liquid 43 to a height at which the plurality of substrates 8 are immersed in the processing liquid 43 .
  • the substrate lifting mechanism 36 is controlled so that the substrate 87 is lowered.
  • step S32 the immersion control unit 113 waits for the preset processing time to elapse.
  • the processing time is set according to the degree of etching required and stored in the recipe storage unit 119 .
  • step S33 the immersion control unit 113 moves the plurality of support arms from a height at which the plurality of substrates 8 are immersed in the processing liquid 43 to a height at which the plurality of substrates 8 are positioned above the liquid surface of the processing liquid 43 .
  • the substrate elevating mechanism 36 is controlled so that the substrate 87 is lifted.
  • step S03 is completed.
  • FIG. 13 is a flow chart showing the procedure for controlling the amount of gas supply.
  • the controller 7 first executes step S41.
  • step S ⁇ b>41 the target value setting unit 116 acquires the target value of the gas content of the treatment liquid 43 from the recipe storage unit 119 .
  • the recipe storage unit 119 may store different target values depending on the spacing between the substrates 8 .
  • the target value setting section 116 changes the target value according to the distance between the substrates 8 .
  • step S42 the control unit 7 executes step S42.
  • step S ⁇ b>42 the follow-up control unit 117 acquires information about the gas content of the treatment liquid 43 from the liquid level sensor 80 .
  • step S43 the follow-up control unit 117 sets the amount of gas supplied from the gas supply unit 89 to the gas nozzle 70 so that the gas content of the processing liquid 43 approaches the target value.
  • the follow-up control unit 117 calculates the current value of the gas content of the treatment liquid 43 based on the information acquired in step S42, calculates the deviation between the target value and the current value, and computes the deviation proportionally.
  • proportional/integral calculation or proportional/integral/differential calculation is performed to calculate the opening of the flow rate regulator 93 .
  • the follow-up control unit 117 may change the amount of gas supplied from the gas supply unit 89 to the gas nozzle 70 according to the arrangement position of the gas nozzle 70 .
  • the follow-up control unit 117 may change the opening setting value of the flow controller 93 corresponding to the gas nozzle 70 according to the position of the gas nozzle 70 with respect to the center in the width direction. That is, the follow-up control unit 117 may increase the opening setting value of the flow rate regulator 93 as the arrangement position of the gas nozzle 70 moves away from the center in the width direction.
  • the opening setting value of the flow rate regulator 93 may be decreased as the distance from the point increases. More specifically, the follow-up control unit 117 may vary the opening degrees of the flow controllers 93A, 93B, 93C so as to vary the amount of gas supplied to the gas nozzles 70A, 70B, 70C.
  • step S44 the follow-up control unit 117 controls the gas supply unit 89 so as to adjust the opening of the flow rate regulator 93 according to the opening setting value set in step S43.
  • step S45 the target value setting unit 116 checks whether or not the elapsed time after the start of the immersion of the substrate 8 has reached the change timing of the target value.
  • the target value setting unit 116 acquires information on the elapsed time from the immersion control unit 113 and acquires information on timing of changing the target value from the recipe storage unit 119 .
  • step S45 When it is determined in step S45 that the elapsed time has reached the change timing of the target value, the control unit 7 executes step S46.
  • step S ⁇ b>46 the target value setting unit 116 changes the target value of the gas content of the treatment liquid 43 .
  • the target value setting unit 116 acquires the target value of the gas content of the treatment liquid 43 after the change timing from the recipe storage unit 119 .
  • step S47 the control unit 7 executes step S47.
  • step S45 the control unit 7 executes step S47 without executing step S46.
  • step S47 the target value setting unit 116 confirms whether the immersion of the substrate 8 has been completed.
  • the target value setting unit 116 acquires information indicating whether the immersion of the substrate 8 has been completed from the immersion control unit 113 .
  • step S47 If it is determined in step S47 that the immersion of the substrate 8 has not been completed, the controller 7 returns the procedure to step S42. After that, until the immersion of the substrate 8 is completed, the control to bring the gas content of the processing liquid 43 close to the target value and the change of the target time according to the elapsed time are repeated.
  • step S47 When it is determined in step S47 that the immersion of the substrate 8 has been completed, the controller 7 completes control of the gas supply amount.
  • FIG. 14 is a flow chart showing the procedure for discharging the treatment liquid.
  • the controller 7 first executes step S51.
  • step S ⁇ b>51 the liquid discharge control section 112 controls the processing liquid supply section 44 and the processing liquid discharge section 67 so as to start discharging the processing liquid 43 from the processing tank 41 .
  • the liquid discharge control unit 112 closes the flow rate regulators 46 and 48 to stop the supply of the processing liquid 43 and pure water, and then closes the on-off valve 69.
  • the processing liquid discharge unit 67 is controlled so as to open and start discharging the processing liquid 43 from the processing tank 41 .
  • step S52 the on/off control unit 115 waits for a preset valve closing time for the open/close valve 92 to be closed next.
  • the closing time of the on-off valve 92 is set to the time after the liquid surface passes through the discharge hole 77 of the gas nozzle 70 corresponding to the on-off valve 92 , and is stored in the recipe storage unit 119 .
  • the closing time of the on-off valve 92 differs depending on the height of the corresponding gas nozzle 70, and the lower the gas nozzle 70 is, the longer the closing time is.
  • step S53 the on/off control unit 115 controls the gas supply unit 89 so that the on-off valve 92 whose closing time has elapsed in step S52 is switched from the open state to the closed state.
  • step S54 the on/off control unit 115 confirms whether or not the on-off valves 92 of all the gas nozzles 70 are closed.
  • step S54 If it is determined in step S54 that the on-off valve 92 remains open, the control unit 7 returns the procedure to step S52. After that, waiting for the valve closing time and closing the on-off valves 92 are repeated until all the on-off valves 92 are closed. As a result, the on-off valves 92 of the gas nozzles 70 at the higher level are sequentially closed. More specifically, the on-off valve 92C is closed after the liquid surface of the processing liquid 43 passes through the discharge hole 77 of the gas nozzle 70C, and the liquid surface passing through the discharge hole 77 of the gas nozzle 70C passes through the discharge hole 77 of the gas nozzle 70B. After the opening/closing valve 92B is closed, the opening/closing valve 92A is closed after the liquid level passing through the discharge hole 77 of the gas nozzle 70B passes through the discharge hole 77 of the gas nozzle 70A.
  • step S55 the drainage control unit 112 waits until a preset drainage time elapses.
  • the liquid draining time is set after the liquid level of the treatment liquid 43 reaches the first height H1, and is stored in the recipe storage unit 119 .
  • step S56 the control unit 7 executes step S56.
  • step S ⁇ b>56 the liquid discharge controller 112 controls the processing liquid supply section 44 to stop driving the supply pump 52 and controls the processing liquid discharge section 67 to close the on-off valve 69 .
  • step S04 is completed.
  • 15A and 15B are diagrams showing an example of the function of the liquid guide member 200.
  • FIG. 15A and 15B are diagrams showing an example of the function of the liquid guide member 200.
  • Gas 250 flowing through main body 71 of gas nozzle 70, as shown in FIG. get into Gas 250 that has entered guide portion 210 is subjected to pressure in the direction in which base portion 220 extends (first direction).
  • the gas 250 that has entered the guiding portion 210 flows from the first opening 211 toward the second opening 212 due to pressure. Also, in the vicinity of the second opening 212, the continuous flow of gas 250 changes into bubbles. Also, the pressure in the space 215 decreases as the gas 250 moves.
  • the treatment liquid 43 is guided into the space 215 through the gap between the lower end of the guide portion 210 and the main body 71 (arrow 251). That is, the guiding portion 210 guides the processing liquid 43 around the ejection hole 77 to flow in the first direction.
  • the pressure associated with the flow of the treatment liquid 43 acts on the gas 250 that has changed into bubbles. Therefore, in addition to the pressure in the first direction from the main body 71, the pressure in the first direction due to the flow of the processing liquid 43 acts on the portion of the gas 250 that has changed into a bubble shape, as shown in FIG. 15(c). As shown, the gas 250 is discharged into the processing liquid 43 from the second opening 212 as bubbles 255 . Since the pressure in the first direction due to the flow of the treatment liquid 43 acts on the bubbles 255, the straightness of the bubbles 255 immediately after being discharged can be improved. In addition, as the bubbles 255 are ejected, the treatment liquid 43 is guided to flow out of the guide section 210 through the second opening 212 (arrow 252).
  • FIG. 16 is a schematic diagram showing the behavior of bubbles 255. As shown in FIG. 16(a) shows the behavior of bubbles 255 when the liquid guide member 200 is not provided, and FIG. 16(a) shows the behavior of the bubbles 255 when the liquid guide member 200 is provided. Here, regardless of the presence or absence of the liquid guide member 200, it is assumed that the treatment liquid 43 has an irregular flow to the same degree.
  • An arrow 260 in FIGS. 16(a) and 16(b) indicates the moving direction of the foam 255 in design.
  • the pressure from the main body 71 acts on the bubbles 255 ejected from the ejection holes 77 .
  • some bubbles 255 move in the processing liquid 43 along arrows 260
  • some other bubbles 255 are caused by the irregular flow of the processing liquid 43 . It can move to the opposite side of arrow 260 of body 71 without fully resisting.
  • the bubbles 255 discharged from the liquid guide member 200 are affected by the flow of the processing liquid 43 guided by the liquid guide member 200 in addition to the pressure from the main body 71 .
  • the accompanying pressure acts. Therefore, as shown in FIG. 16(b), generation of bubbles 255 moving in the direction opposite to the arrow 260 of the main body 71 without sufficiently resisting the irregular flow of the treatment liquid 43 is suppressed, and most of the bubbles 255 Bubble 255 can be moved along arrow 260 .
  • controllability of the convection of the processing liquid 43 caused by the discharge of the gas 250 can be improved.
  • FIG. 17A and 17B are diagrams showing another example of the function of the liquid guide member 200.
  • FIG. 17(a) shows the generation of bubbles 255 when the liquid guide member 200 is not provided
  • FIG. 17(a) illustrates the generation of bubbles 255 when the liquid guide member 200 is provided.
  • the continuous flow of the gas 250 changes into bubbles in the vicinity of the discharge hole 77, as shown in FIG. 17(a). At this time, the flow of the gas 250 narrows in the ejection holes 77 and the processing liquid 43 flows into the ejection holes 77 .
  • the continuous flow of the gas 250 changes into bubbles near the second opening 212 as shown in FIG. 17(b).
  • the flow of the gas 250 narrows mainly within the guiding portion 210 . Therefore, the flow of the gas 250 is less likely to narrow within the ejection holes 77 , and the processing liquid 43 is less likely to flow into the ejection holes 77 .
  • the liquid guiding member 200 has the cylindrical guiding portion 210 having the first opening 211 and the second opening 212, so that the processing liquid 43 around the ejection hole 77 is guided in the first direction. It's easy to do.
  • the guide portion 210 surrounds the ejection hole 77 when viewed from the ejection direction (first direction) of the gas 250 . This is because the treatment liquid 43 around the ejection holes 77 can be more stably guided in the first direction.
  • the second opening 212 is preferably arranged concentrically with the discharge hole 77 when viewed from the first direction. This is because the treatment liquid 43 around the ejection holes 77 can be more stably guided in the first direction.
  • the opening area of the second opening 212 is preferably 0.9 times or more and 1.1 times or less the opening area of the discharge hole 77 . This is because bubbles of the same size as when the liquid guide member 200 is not provided are likely to be generated.
  • the shape of the guiding part 210 is preferably a cylindrical truncated cone. This is because the treatment liquid 43 around the ejection holes 77 can be more stably guided in the first direction.
  • the liquid guide member 200 is detachably attached to the gas nozzle 70, so even if the liquid guide member 200 has a problem such as clogging, it can be easily replaced.
  • the guiding portion 210 may be attached to the gas nozzle 70 without the base portion 220 and the connecting portion 230 being provided.
  • FIG. 18 is a cross-sectional view showing a modification of the liquid guide member.
  • the liquid guiding member 200 includes a gas flow adjusting portion 214 inside the guiding portion 210 that changes the flow of the gas 250, which is circular in cross section, into a partially annular shape. good too.
  • the gas flow adjustment portion 214 may be connected to the guide portion 210 by a connection portion 230, for example.
  • the gas flow adjuster 214 can increase the flow velocity of the gas 250 flowing through the liquid guide member 200 .
  • the inclination angle of the guide portion 210 may be different among the plurality of liquid guide members 200 attached to the gas nozzle 70 .
  • the angle of inclination refers to the angle of the inner wall surface of the guide portion 210 with respect to the plane including the first opening 211 .
  • the application of the liquid guide member 200 is not limited to the gas nozzle 70 of the etching processing apparatus 1.
  • it can be used as a nozzle in which a fluid flows and which is immersed in a liquid and ejects the fluid in the liquid.
  • the substrate to be processed is not limited to silicon wafers, and may be, for example, glass substrates, mask substrates, FPDs (Flat Panel Displays), and the like. Also, although the configuration of the etching processing apparatus 1 has been described in detail as a substrate processing apparatus, the same configuration can be applied to the cleaning processing apparatus 25 as well.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Cleaning Or Drying Semiconductors (AREA)

Abstract

The substrate processing device has a processing tank for housing a processing solution and a substrate, a plurality of gas nozzles for discharging a gas at the bottom within the processing tank, and a gas supply unit for supplying the gas to the plurality of gas nozzles. The gas nozzles are arranged along the bottom surface of the processing tank, have tube bodies in which are formed a plurality of discharge holes for discharging the gas in a first direction, and have liquid guide members for guiding the processing solution around the discharge holes so as to flow in the first direction in association with the movement of the gas discharged from the discharge holes.

Description

基板処理装置及び液体誘導部材SUBSTRATE PROCESSING APPARATUS AND LIQUID GUIDE MEMBER
 本開示は、基板処理装置及び液体誘導部材に関する。 The present disclosure relates to a substrate processing apparatus and a liquid guide member.
 特許文献1には、処理液及び基板を収容する処理槽と、処理槽内の下部にてガスを吐出する複数のガスノズルと、複数のガスノズルにガスを供給するガス供給部とを有する基板処理装置が開示されている。 Patent Document 1 discloses a substrate processing apparatus having a processing tank containing a processing liquid and a substrate, a plurality of gas nozzles for discharging gas at the lower part of the processing tank, and a gas supply section for supplying gas to the plurality of gas nozzles. is disclosed.
日本国特開2018-174257号公報Japanese Patent Application Laid-Open No. 2018-174257
 本開示は、処理液の対流の制御性を向上できる基板処理装置及び液体誘導部材を提供する。 The present disclosure provides a substrate processing apparatus and a liquid guide member capable of improving controllability of convection of the processing liquid.
 本開示の一態様による基板処理装置は、処理液及び基板を収容する処理槽と、前記処理槽内の下部にてガスを吐出する複数のガスノズルと、前記複数のガスノズルに前記ガスを供給するガス供給部と、を有し、前記ガスノズルは、前記処理槽の底面に沿って配置され、前記ガスを第1方向に吐出する複数の吐出孔が形成された管体を有し、前記吐出孔から吐出された前記ガスの移動に伴って、前記第1方向に流れるように前記吐出孔の周囲の前記処理液を誘導する液体誘導部材を有する。 A substrate processing apparatus according to an aspect of the present disclosure includes a processing tank containing a processing liquid and a substrate, a plurality of gas nozzles for discharging gas at a lower portion of the processing tank, and a gas for supplying the gas to the plurality of gas nozzles. a supply unit, wherein the gas nozzle has a tubular body formed with a plurality of ejection holes arranged along the bottom surface of the processing bath and ejecting the gas in a first direction; A liquid guide member is provided to guide the processing liquid around the ejection hole so as to flow in the first direction as the ejected gas moves.
 本開示によれば、処理液の対流の制御性を向上できる。 According to the present disclosure, it is possible to improve the controllability of the convection of the treatment liquid.
図1は、基板処理システムを示す平面図である。FIG. 1 is a plan view showing a substrate processing system. 図2は、エッチング処理装置を示す模式図である。FIG. 2 is a schematic diagram showing an etching processing apparatus. 図3は、処理槽を示す平面図である。FIG. 3 is a plan view showing the processing bath. 図4は、ガスノズルを示す模式図である。FIG. 4 is a schematic diagram showing a gas nozzle. 図5は、液体誘導部材の構成を示す図である。FIG. 5 is a diagram showing the configuration of the liquid guide member. 図6は、液体誘導部材が取り付けられたガスノズルを示す断面図である。FIG. 6 is a cross-sectional view showing a gas nozzle to which a liquid guide member is attached. 図7は、スペーサを備えた液体誘導部材が取り付けられたガスノズルを示す断面図である。FIG. 7 is a cross-sectional view showing a gas nozzle fitted with a liquid guide member with spacers. 図8は、制御部の機能的な構成を例示するブロック図である。FIG. 8 is a block diagram illustrating a functional configuration of a control unit; 図9は、基板処理手順を示すフローチャートである。FIG. 9 is a flow chart showing a substrate processing procedure. 図10は、処理液の充填手順を示すフローチャートである。FIG. 10 is a flow chart showing the process liquid filling procedure. 図11は、ノズル洗浄手順を示すフローチャートである。FIG. 11 is a flow chart showing the nozzle cleaning procedure. 図12は、浸漬処理手順を示すフローチャートである。FIG. 12 is a flow chart showing the immersion treatment procedure. 図13は、ガス供給量の制御手順を示すフローチャートである。FIG. 13 is a flow chart showing the procedure for controlling the amount of gas supply. 図14は、処理液の排出手順を示すフローチャートである。FIG. 14 is a flow chart showing the procedure for discharging the treatment liquid. 図15は、液体誘導部材の機能の一例を示す図である。FIG. 15 is a diagram showing an example of the function of the liquid guide member. 図16は、泡の挙動を示す模式図である。FIG. 16 is a schematic diagram showing the behavior of bubbles. 図17は、液体誘導部材機能の他の一例を示す図である。FIG. 17 is a diagram showing another example of the function of the liquid guide member. 図18は、液体誘導部材の変形例を示す断面図である。FIG. 18 is a cross-sectional view showing a modification of the liquid guide member.
 以下、実施形態について、図面を参照しつつ詳細に説明する。説明において、同一要素又は同一機能を有する要素には同一の符号を付し、重複する説明を省略する。 Hereinafter, embodiments will be described in detail with reference to the drawings. In the explanation, the same reference numerals are given to the same elements or elements having the same function, and duplicate explanations are omitted.
 図1は、基板処理システムを示す平面図である。図1に示すように、基板処理システム100は、キャリア搬入出部2と、ロット形成部3と、ロット載置部4と、ロット搬送部5と、ロット処理部6と、制御部7とを有する。 FIG. 1 is a plan view showing a substrate processing system. As shown in FIG. 1, the substrate processing system 100 includes a carrier loading/unloading section 2, a lot formation section 3, a lot placement section 4, a lot transfer section 5, a lot processing section 6, and a control section 7. have.
 キャリア搬入出部2は、複数枚(例えば、25枚)の基板(シリコンウエハ)8を水平姿勢で上下に並べて収容したキャリア9の搬入及び搬出を行う。 The carrier loading/unloading unit 2 loads and unloads a carrier 9 containing a plurality of (for example, 25) substrates (silicon wafers) 8 arranged vertically in a horizontal posture.
 キャリア搬入出部2は、複数個のキャリア9を載置するキャリアステージ10と、キャリア9の搬送を行うキャリア搬送機構11と、キャリア9を一時的に保管するキャリアストック12,13と、キャリア9を載置するキャリア載置台14とを有する。キャリアストック12は、製品となる基板8をロット処理部6で処理する前に一時的に保管する。キャリアストック13は、製品となる基板8をロット処理部6で処理した後に一時的に保管する。 The carrier loading/unloading unit 2 includes a carrier stage 10 on which a plurality of carriers 9 are placed, a carrier transport mechanism 11 that transports the carriers 9, carrier stocks 12 and 13 that temporarily store the carriers 9, and the carriers 9. and a carrier mounting table 14 for mounting the . The carrier stock 12 temporarily stores substrates 8 as products before they are processed in the lot processing unit 6 . The carrier stock 13 is temporarily stored after the substrate 8 as a product is processed by the lot processing unit 6 .
 キャリア搬入出部2は、外部からキャリアステージ10に搬入されたキャリア9を、キャリア搬送機構11を用いてキャリアストック12やキャリア載置台14に搬送する。また、キャリア搬入出部2は、キャリア載置台14に載置されたキャリア9を、キャリア搬送機構11を用いてキャリアストック13やキャリアステージ10に搬送する。キャリアステージ10に搬送されたキャリア9は、外部へ搬出される。 The carrier loading/unloading section 2 uses the carrier transport mechanism 11 to transport the carrier 9 loaded onto the carrier stage 10 from the outside onto the carrier stock 12 and the carrier mounting table 14 . Further, the carrier loading/unloading section 2 transports the carrier 9 mounted on the carrier mounting table 14 to the carrier stock 13 and the carrier stage 10 using the carrier transport mechanism 11 . The carrier 9 transported to the carrier stage 10 is carried out to the outside.
 ロット形成部3は、1又は複数のキャリア9に収容された基板8を組合せて同時に処理される複数枚(例えば、50枚)の基板8からなるロットを形成する。なお、ロットを形成するときは、基板8の表面にパターンが形成されている面を互いに対向するようにロットを形成してもよく、基板8の表面にパターンが形成されている面がすべて一方を向くようにロットを形成してもよい。 The lot forming unit 3 combines the substrates 8 accommodated in one or more carriers 9 to form a lot consisting of a plurality of substrates 8 (for example, 50 substrates) to be processed simultaneously. When forming lots, the lots may be formed so that the surfaces of the substrate 8 on which the pattern is formed face each other. You may form a lot so that it may face .
 ロット形成部3は、複数枚の基板8を搬送する基板搬送機構15を有する。基板搬送機構15は、基板8の搬送途中で基板8の姿勢を水平姿勢から垂直姿勢及び垂直姿勢から水平姿勢に変更させることができる。 The lot forming section 3 has a substrate transport mechanism 15 that transports a plurality of substrates 8 . The substrate transport mechanism 15 can change the posture of the substrate 8 from the horizontal posture to the vertical posture and from the vertical posture to the horizontal posture while the substrate 8 is being transported.
 ロット形成部3は、キャリア載置台14に載置されたキャリア9から基板搬送機構15を用いて基板8をロット載置部4に搬送し、ロットを形成する基板8をロット載置部4に載置する。また、ロット形成部3は、ロット載置部4に載置されたロットを基板搬送機構15でキャリア載置台14に載置されたキャリア9へ搬送する。基板搬送機構15は、複数枚の基板8を支持するための基板支持部として、処理前(ロット搬送部5で搬送される前)の基板8を支持する処理前基板支持部と、処理後(ロット搬送部5で搬送された後)の基板8を支持する処理後基板支持部の2種類を有している。これにより、処理前の基板8等に付着したパーティクル等が処理後の基板8等に転着するのを防止する。 The lot formation unit 3 transports the substrates 8 from the carrier 9 placed on the carrier table 14 to the lot placement unit 4 using the substrate transfer mechanism 15 , and transfers the substrates 8 forming a lot to the lot placement unit 4 . Place. In addition, the lot forming section 3 transports the lot placed on the lot placing section 4 to the carrier 9 placed on the carrier placing table 14 by the substrate transport mechanism 15 . The substrate transport mechanism 15 includes, as substrate support parts for supporting a plurality of substrates 8, a pre-process substrate support part for supporting the substrates 8 before processing (before being transported by the lot transport part 5) and a post-process ( There are two types of post-processed substrate supporting parts that support the substrates 8 after they have been transferred by the lot transfer part 5 . This prevents particles or the like attached to the substrate 8 or the like before processing from being transferred to the substrate 8 or the like after processing.
 ロット載置部4は、ロット搬送部5によってロット形成部3とロット処理部6との間で搬送されるロットをロット載置台16で一時的に載置(待機)する。 The lot placing unit 4 temporarily places (stands by) the lot transported between the lot forming unit 3 and the lot processing unit 6 by the lot transporting unit 5 on the lot placing table 16 .
 ロット載置部4は、処理前(ロット搬送部5で搬送される前)のロットを載置する搬入側ロット載置台17と、処理後(ロット搬送部5で搬送された後)のロットを載置する搬出側ロット載置台18とを有する。搬入側ロット載置台17及び搬出側ロット載置台18には、1ロット分の複数枚の基板8が垂直姿勢で前後に並べて載置される。 The lot placement unit 4 includes a loading-side lot placement table 17 for placing a lot before processing (before being transported by the lot transporting unit 5) and a lot after processing (after being transported by the lot transporting unit 5). and an unloading-side lot placing table 18 on which the lot is to be placed. A plurality of substrates 8 for one lot are placed on the load-in side lot placement table 17 and the carry-out side lot placement table 18 side by side in a vertical posture.
 ロット載置部4では、ロット形成部3で形成したロットが搬入側ロット載置台17に載置され、そのロットがロット搬送部5を介してロット処理部6に搬入される。また、ロット載置部4では、ロット処理部6からロット搬送部5を介して搬出されたロットが搬出側ロット載置台18に載置され、そのロットがロット形成部3に搬送される。 In the lot placing section 4 , the lot formed by the lot forming section 3 is placed on the load-in side lot placing table 17 , and the lot is carried into the lot processing section 6 via the lot conveying section 5 . In the lot placing section 4 , the lot carried out from the lot processing section 6 via the lot conveying section 5 is placed on the carry-out side lot placing table 18 , and the lot is conveyed to the lot forming section 3 .
 ロット搬送部5は、ロット載置部4とロット処理部6との間やロット処理部6の内部間でロットの搬送を行う。 The lot transport unit 5 transports lots between the lot placement unit 4 and the lot processing unit 6 and between the insides of the lot processing unit 6 .
 ロット搬送部5は、ロットの搬送を行うロット搬送機構19を有する。ロット搬送機構19は、ロット載置部4とロット処理部6に沿わせて配置したレール20と、複数枚の基板8を保持しながらレール20に沿って移動する移動体21とを有する。移動体21には、垂直姿勢で前後に並んだ複数枚の基板8を保持する基板保持体22が進退自在に設けられている。 The lot transport unit 5 has a lot transport mechanism 19 that transports lots. The lot transport mechanism 19 has rails 20 arranged along the lot placement section 4 and the lot processing section 6 , and a moving body 21 that moves along the rails 20 while holding a plurality of substrates 8 . The moving body 21 is provided with a substrate holder 22 that holds a plurality of substrates 8 arranged vertically in a forward and backward direction so as to be able to move back and forth.
 ロット搬送部5は、搬入側ロット載置台17に載置されたロットをロット搬送機構19の基板保持体22で受け取り、そのロットをロット処理部6に受け渡す。また、ロット搬送部5は、ロット処理部6で処理されたロットをロット搬送機構19の基板保持体22で受け取り、そのロットを搬出側ロット載置台18に受け渡す。さらに、ロット搬送部5は、ロット搬送機構19を用いてロット処理部6の内部においてロットの搬送を行う。 The lot transport unit 5 receives the lot placed on the loading-side lot placement table 17 with the substrate holder 22 of the lot transport mechanism 19 and transfers the lot to the lot processing unit 6 . The lot transporter 5 also receives the lot processed by the lot processing unit 6 by the substrate holder 22 of the lot transport mechanism 19 , and transfers the lot to the carry-out side lot table 18 . Furthermore, the lot transport unit 5 uses the lot transport mechanism 19 to transport the lot inside the lot processing unit 6 .
 ロット処理部6は、垂直姿勢で前後に並んだ複数枚の基板8を1ロットとしてエッチングや洗浄や乾燥などの処理を行う。 The lot processing unit 6 performs processing such as etching, cleaning, and drying on a plurality of substrates 8 arranged in a vertical posture as one lot.
 ロット処理部6は、基板8の乾燥処理を行う乾燥処理装置23と、基板保持体22の洗浄処理を行う基板保持体洗浄処理装置24と、基板8の洗浄処理を行う洗浄処理装置25と、基板8のエッチング処理を行う2台のエッチング処理装置1とを有する。例えば、乾燥処理装置23と、基板保持体洗浄処理装置24と、洗浄処理装置25と、2台のエッチング処理装置1とが並べて配置される。 The lot processing section 6 includes a drying processing device 23 for drying the substrate 8, a substrate holder cleaning processing device 24 for cleaning the substrate holder 22, a cleaning processing device 25 for cleaning the substrate 8, It has two etching processing apparatuses 1 for etching a substrate 8 . For example, a drying processing device 23, a substrate holder cleaning processing device 24, a cleaning processing device 25, and two etching processing devices 1 are arranged side by side.
 乾燥処理装置23は、処理槽27と、処理槽27に昇降自在に設けられた基板昇降機構28とを有する。処理槽27には、乾燥用の処理ガス(IPA(イソプロピルアルコール)等)が供給される。基板昇降機構28には、1ロット分の複数枚の基板8が垂直姿勢で前後に並べて保持される。乾燥処理装置23は、ロット搬送機構19の基板保持体22からロットを基板昇降機構28で受け取り、基板昇降機構28でそのロットを昇降させることで、処理槽27に供給した乾燥用の処理ガスで基板8の乾燥処理を行う。また、乾燥処理装置23は、基板昇降機構28からロット搬送機構19の基板保持体22にロットを受け渡す。 The drying processing apparatus 23 has a processing tank 27 and a substrate elevating mechanism 28 provided in the processing tank 27 so as to be able to move up and down. A drying processing gas (IPA (isopropyl alcohol) or the like) is supplied to the processing bath 27 . The substrate lifting mechanism 28 holds a plurality of substrates 8 for one lot side by side in a vertical posture. The drying processing apparatus 23 receives the lot from the substrate holder 22 of the lot transport mechanism 19 by the substrate lifting mechanism 28 , and lifts the lot by the substrate lifting mechanism 28 . A drying process for the substrate 8 is performed. The drying processing device 23 also transfers the lot from the substrate lifting mechanism 28 to the substrate holder 22 of the lot transport mechanism 19 .
 基板保持体洗浄処理装置24は、処理槽29を有し、処理槽29に洗浄用の処理液及び乾燥ガスを供給できるように構成されている。基板保持体洗浄処理装置24は、ロット搬送機構19の基板保持体22に洗浄用の処理液を供給した後、乾燥ガスを供給することで基板保持体22の洗浄処理を行う。 The substrate holder cleaning processing apparatus 24 has a processing tank 29 and is configured to be able to supply a processing liquid for cleaning and a drying gas to the processing tank 29 . The substrate holder cleaning apparatus 24 supplies a cleaning processing liquid to the substrate holder 22 of the lot transport mechanism 19 and then supplies dry gas to clean the substrate holder 22 .
 洗浄処理装置25は、洗浄用の処理槽30とリンス用の処理槽31とを有し、各処理槽30,31に基板昇降機構32,33を昇降自在に設けている。洗浄用の処理槽30には、洗浄用の処理液(SC-1等)が貯留される。リンス用の処理槽31には、リンス用の処理液(純水等)が貯留される。 The cleaning processing apparatus 25 has a processing bath 30 for cleaning and a processing bath 31 for rinsing. A cleaning treatment liquid (SC-1 or the like) is stored in the cleaning treatment bath 30 . A processing liquid for rinsing (pure water or the like) is stored in the processing tank 31 for rinsing.
 エッチング処理装置1は、エッチング用の処理槽34とリンス用の処理槽35とを有し、各処理槽34,35に基板昇降機構36,37が昇降自在に設けられている。エッチング用の処理槽34には、エッチング用の処理液(リン酸水溶液)が貯留される。リンス用の処理槽35には、リンス用の処理液(純水等)が貯留される。 The etching processing apparatus 1 has a processing tank 34 for etching and a processing tank 35 for rinsing. An etching treatment liquid (phosphoric acid aqueous solution) is stored in the etching treatment bath 34 . A processing liquid for rinsing (pure water or the like) is stored in the processing tank 35 for rinsing.
 洗浄処理装置25及びエッチング処理装置1は、互いに同様の構成となっている。エッチング処理装置1について説明すると、基板昇降機構36には、1ロット分の複数枚の基板8が垂直姿勢で前後に並べて保持される。エッチング処理装置1において、ロット搬送機構19の基板保持体22からロットを基板昇降機構36で受け取り、基板昇降機構36でそのロットを昇降させることでロットを処理槽34のエッチング用の処理液に浸漬させて基板8のエッチング処理を行う。その後、エッチング処理装置1は、基板昇降機構36からロット搬送機構19の基板保持体22にロットを受け渡す。また、ロット搬送機構19の基板保持体22からロットを基板昇降機構37で受け取り、基板昇降機構37でそのロットを昇降させることでロットを処理槽35のリンス用の処理液に浸漬させて基板8のリンス処理を行う。その後、基板昇降機構37からロット搬送機構19の基板保持体22にロットを受け渡す。 The cleaning equipment 25 and the etching equipment 1 have the same configuration. The etching processing apparatus 1 will be described. A substrate lifting mechanism 36 holds a plurality of substrates 8 for one lot in a vertical posture, lined up in the front-to-rear direction. In the etching apparatus 1 , the lot is received by the substrate lifting mechanism 36 from the substrate holder 22 of the lot transport mechanism 19 , and the lot is lifted and lowered by the substrate lifting mechanism 36 to immerse the lot in the etching treatment liquid of the treatment tank 34 . Then, the substrate 8 is etched. After that, the etching processing apparatus 1 transfers the lot from the substrate lifting mechanism 36 to the substrate holder 22 of the lot transport mechanism 19 . Further, the lot is received by the substrate lifting mechanism 37 from the substrate holder 22 of the lot transport mechanism 19, and the lot is lifted and lowered by the substrate lifting mechanism 37 so that the lot is immersed in the treatment liquid for rinsing in the treatment tank 35, and the substrate 8 is transferred. rinsing. After that, the lot is transferred from the substrate lifting mechanism 37 to the substrate holder 22 of the lot transport mechanism 19 .
 制御部7は、基板処理システム100の各部(キャリア搬入出部2、ロット形成部3、ロット載置部4、ロット搬送部5、ロット処理部6、エッチング処理装置1)の動作を制御する。 The control unit 7 controls the operation of each unit of the substrate processing system 100 (carrier loading/unloading unit 2, lot formation unit 3, lot placement unit 4, lot transfer unit 5, lot processing unit 6, etching processing apparatus 1).
 制御部7は、例えばコンピュータからなり、コンピュータで読み取り可能な記憶媒体38を備える。記憶媒体38には、基板処理システム100において実行される各種の処理を制御するプログラムが格納される。制御部7は、記憶媒体38に記憶されたプログラムを読み出して実行することによって基板処理システム100の動作を制御する。なお、プログラムは、コンピュータによって読み取り可能な記憶媒体38に記憶されていたものであって、他の記憶媒体から制御部7の記憶媒体38にインストールされたものであってもよい。コンピュータによって読み取り可能な記憶媒体38としては、例えばハードディスク(HD)、フレキシブルディスク(FD)、コンパクトディスク(CD)、マグネットオプティカルディスク(MO)、メモリカードなどがある。 The control unit 7 is composed of a computer, for example, and includes a computer-readable storage medium 38 . The storage medium 38 stores programs for controlling various processes executed in the substrate processing system 100 . The control unit 7 controls the operation of the substrate processing system 100 by reading and executing programs stored in the storage medium 38 . The program may be stored in the computer-readable storage medium 38 and may be installed in the storage medium 38 of the control unit 7 from another storage medium. The computer-readable storage medium 38 includes, for example, a hard disk (HD), flexible disk (FD), compact disk (CD), magnet optical disk (MO), memory card, and the like.
 〔エッチング処理装置〕
 次に、エッチング処理装置1の詳細について説明する。図2は、エッチング処理装置1を示す模式図である。図3は、処理槽を示す平面図である。図2及び図3に示すように、エッチング処理装置1は、エッチング処理装置1と、基板昇降機構36(搬送部)と、制御部7とを備える。エッチング処理装置1は基板処理装置の一例である。
[Etching equipment]
Next, details of the etching processing apparatus 1 will be described. FIG. 2 is a schematic diagram showing the etching processing apparatus 1. As shown in FIG. FIG. 3 is a plan view showing the processing bath. As shown in FIGS. 2 and 3, the etching apparatus 1 includes an etching apparatus 1, a substrate lifting mechanism 36 (conveyor), and a controller . The etching processing apparatus 1 is an example of a substrate processing apparatus.
 エッチング処理装置1は、液処理部40と、処理液供給部44と、処理液排出部67と、複数(例えば六つ)のガスノズル70と、ガス供給部89と、ガス加熱部94と、ガス抜き部95と、液位センサ80とを備える。 The etching processing apparatus 1 includes a liquid processing section 40, a processing liquid supply section 44, a processing liquid discharge section 67, a plurality of (for example, six) gas nozzles 70, a gas supply section 89, a gas heating section 94, a gas It has an extraction part 95 and a liquid level sensor 80 .
 液処理部40は、処理槽41と、外槽42と、処理液43とを含み、基板8に対して液処理(エッチング処理)を実行する。 The liquid processing unit 40 includes a processing bath 41, an outer bath 42, and a processing liquid 43, and performs liquid processing (etching processing) on the substrate 8.
 処理槽41は、処理液43及び基板8を収容する。処理液43の具体例としては、リン酸水溶液が挙げられる。処理槽41の上部は開放されているので、上方から処理槽41内の処理液43に基板8を浸漬することが可能である。後述のように、処理槽41内には、円形の基板8が起立した状態で配置される。以下、高さ方向に直交して処理槽41内の基板8に沿う方向を「幅方向」ということがあり、高さ方向及び幅方向に直交する方向(すなわち処理槽41内の基板8の厚さ方向)を「奥行方向」ということがある。 The processing tank 41 accommodates the processing liquid 43 and the substrate 8 . A specific example of the treatment liquid 43 is a phosphoric acid aqueous solution. Since the upper portion of the processing tank 41 is open, the substrate 8 can be immersed in the processing liquid 43 in the processing tank 41 from above. As will be described later, a circular substrate 8 is arranged in an upright state in the processing tank 41 . Hereinafter, the direction perpendicular to the height direction and along the substrate 8 in the processing bath 41 may be referred to as the “width direction”, and the direction perpendicular to the height direction and the width direction (that is, the thickness of the substrate 8 in the processing bath 41 direction) is sometimes referred to as the “depth direction”.
 処理槽41の底面のうち、幅方向における両側部分は、外側に向かうにつれて高くなっている。これにより、処理槽41内の入隅部と、基板8の外周との間のデッドスペースが小さくなり、処理液43の滞留が生じ難くなっている。 Both side portions in the width direction of the bottom surface of the processing tank 41 increase toward the outside. As a result, the dead space between the inner corner in the processing bath 41 and the outer periphery of the substrate 8 is reduced, and the processing liquid 43 is less likely to remain.
 外槽42は、処理槽41を包囲するように設けられており、処理槽41から溢れた処理液を収容する。 The outer bath 42 is provided so as to surround the processing bath 41 and accommodates the processing liquid overflowing from the processing bath 41 .
 処理液供給部44は、処理槽41内に処理液43を供給する。例えば処理液供給部44は、処理液供給源45と、流量調節器46と、純水供給源47と、流量調節器48と、処理液循環部49と、濃度計測部55とを含む。 The processing liquid supply unit 44 supplies the processing liquid 43 into the processing tank 41 . For example, the processing liquid supply section 44 includes a processing liquid supply source 45 , a flow rate regulator 46 , a pure water supply source 47 , a flow rate regulator 48 , a processing liquid circulation section 49 and a concentration measurement section 55 .
 処理液供給源45は、処理液43を外槽42に供給する。流量調節器46は、処理液供給源45から外槽42への処理液の流路に設けられており、当該流路の開閉及び開度調節を行う。 The processing liquid supply source 45 supplies the processing liquid 43 to the outer bath 42 . The flow controller 46 is provided in the flow path of the processing liquid from the processing liquid supply source 45 to the outer tank 42, and performs opening/closing and opening adjustment of the flow path.
 純水供給源47は、純水を外槽42に供給する。この純水は、処理液43の加熱によって蒸発した水分を補う。流量調節器48は、純水供給源47から外槽42への純水の流路に設けられており、当該流路の開閉及び開度調節を行う。 The pure water supply source 47 supplies pure water to the outer tank 42 . This pure water compensates for the moisture evaporated by heating the treatment liquid 43 . The flow controller 48 is provided in the pure water flow path from the pure water supply source 47 to the outer tank 42, and performs opening/closing and opening adjustment of the flow path.
 処理液循環部49は、外槽42内の処理液43を処理槽41内の下部に送る。例えば処理液循環部49は、複数(例えば三つ)の処理液ノズル50と、循環流路51と、供給ポンプ52と、フィルタ53と、ヒータ54とを含む。 The processing liquid circulation unit 49 sends the processing liquid 43 in the outer tank 42 to the lower part in the processing tank 41 . For example, the treatment liquid circulation unit 49 includes a plurality of (for example, three) treatment liquid nozzles 50 , a circulation channel 51 , a supply pump 52 , a filter 53 and a heater 54 .
 処理液ノズル50は、外槽42内の下部に設けられており、処理液43を処理槽41内に吐出する。複数の処理液ノズル50は、同一高さにおいて幅方向に並んでおり、それぞれ奥行方向に延びている。 The processing liquid nozzle 50 is provided in the lower part of the outer bath 42 and discharges the processing liquid 43 into the processing bath 41 . The plurality of processing liquid nozzles 50 are arranged in the width direction at the same height and extend in the depth direction.
 循環流路51は、外槽42から複数の処理液ノズル50に処理液を導く。循環流路51の一端部は外槽42の底部に接続されている。循環流路51の他端部は、複数本に分岐して複数の処理液ノズル50にそれぞれ接続されている。 The circulation flow path 51 guides the processing liquid from the outer tank 42 to the plurality of processing liquid nozzles 50 . One end of the circulation channel 51 is connected to the bottom of the outer tank 42 . The other end of the circulation flow path 51 is branched into a plurality of lines and connected to a plurality of processing liquid nozzles 50 respectively.
 供給ポンプ52、フィルタ53及びヒータ54は、循環流路51に設けられており、上流側(外槽42側)から下流側(処理液ノズル50側)に順に並んでいる。供給ポンプ52は、処理液43を上流側から下流側に圧送する。フィルタ53は、処理液43中に混入したパーティクルを除去する。ヒータ54は、処理液43を設定温度まで加熱する。設定温度は、例えば処理液43の沸点近傍の値に設定されている。 The supply pump 52, the filter 53, and the heater 54 are provided in the circulation flow path 51 and are arranged in order from the upstream side (outer tank 42 side) to the downstream side (processing liquid nozzle 50 side). The supply pump 52 pressure-feeds the processing liquid 43 from the upstream side to the downstream side. The filter 53 removes particles mixed in the processing liquid 43 . The heater 54 heats the treatment liquid 43 to a set temperature. The set temperature is set to a value near the boiling point of the treatment liquid 43, for example.
 濃度計測部55は、処理液43の濃度を計測する。例えば濃度計測部55は、計測用流路56と、開閉弁57,59と、濃度センサ58と、洗浄流体供給部60と、洗浄流体排出部64とを有する。 The concentration measurement unit 55 measures the concentration of the treatment liquid 43 . For example, the concentration measurement section 55 has a measurement channel 56 , on-off valves 57 and 59 , a concentration sensor 58 , a cleaning fluid supply section 60 and a cleaning fluid discharge section 64 .
 計測用流路56は、ヒータ54と処理液ノズル50との間で循環流路51から分岐し、処理液43の一部を抜き出して外槽42に還流させる。開閉弁57,59は、計測用流路56において上流側(循環流路51側)から下流側(外槽42側)に順に並んでおり、それぞれ計測用流路56を開閉する。濃度センサ58は、計測用流路56において開閉弁57,59の間に設けられており、計測用流路56を流れる処理液43の濃度(例えばリン酸濃度)を計測する。 The measurement flow path 56 branches from the circulation flow path 51 between the heater 54 and the processing liquid nozzle 50 , extracts part of the processing liquid 43 and returns it to the outer tank 42 . The on-off valves 57 and 59 are arranged in order from the upstream side (circulation flow path 51 side) to the downstream side (outer tank 42 side) in the measurement flow path 56 and open and close the measurement flow path 56 respectively. The concentration sensor 58 is provided between the on-off valves 57 and 59 in the measurement channel 56 and measures the concentration (for example, phosphoric acid concentration) of the processing liquid 43 flowing through the measurement channel 56 .
 洗浄流体供給部60は、洗浄用の流体(例えば純水)を濃度センサ58に供給する。例えば洗浄流体供給部60は、洗浄流体供給源61と、供給流路62と、開閉弁63とを有する。洗浄流体供給源61は、洗浄用の流体の供給源である。供給流路62は、洗浄流体供給源61から濃度センサ58に洗浄用の流体を供給する。供給流路62の一端部は洗浄流体供給源61に接続されており、供給流路62の他端部は開閉弁57と濃度センサ58との間に接続されている。開閉弁63は供給流路62を開閉する。 The cleaning fluid supply unit 60 supplies cleaning fluid (eg, pure water) to the concentration sensor 58 . For example, the cleaning fluid supply unit 60 has a cleaning fluid supply source 61 , a supply channel 62 and an on-off valve 63 . Cleaning fluid source 61 is a source of cleaning fluid. The supply channel 62 supplies the cleaning fluid from the cleaning fluid supply source 61 to the concentration sensor 58 . One end of the supply channel 62 is connected to the cleaning fluid supply source 61 , and the other end of the supply channel 62 is connected between the on-off valve 57 and the concentration sensor 58 . The on-off valve 63 opens and closes the supply channel 62 .
 洗浄流体排出部64は、洗浄用の流体を排出する。例えば洗浄流体排出部64は、排出流路65と、開閉弁66とを有する。排出流路65は、濃度センサ58を通った洗浄用の流体を導出する。排出流路65の一端部は濃度センサ58と開閉弁59との間に接続されており、排出流路65の他端部は基板処理システム100の排液管(不図示)に接続されている。開閉弁66は排出流路65を開閉する。 The cleaning fluid discharge part 64 discharges the cleaning fluid. For example, the cleaning fluid discharge section 64 has a discharge channel 65 and an on-off valve 66 . A discharge channel 65 leads the cleaning fluid that has passed through the concentration sensor 58 . One end of the discharge channel 65 is connected between the concentration sensor 58 and the on-off valve 59, and the other end of the discharge channel 65 is connected to a drain pipe (not shown) of the substrate processing system 100. . The on-off valve 66 opens and closes the discharge channel 65 .
 処理液排出部67は、処理槽41内から処理液43を排出する。例えば処理液排出部67は、排液流路68と、開閉弁69とを有する。排液流路68は、処理槽41内の処理液を導出する。排液流路68の一端部は処理槽41の底部に接続されており、排液流路68の他端部は基板処理システム100の排液管(不図示)に接続されている。開閉弁69は排液流路68を開閉する。 The processing liquid discharge unit 67 discharges the processing liquid 43 from the processing tank 41 . For example, the processing liquid discharge section 67 has a drainage channel 68 and an on-off valve 69 . The drainage channel 68 leads out the processing liquid in the processing tank 41 . One end of the drainage channel 68 is connected to the bottom of the processing tank 41 , and the other end of the drainage channel 68 is connected to a drainage pipe (not shown) of the substrate processing system 100 . The on-off valve 69 opens and closes the drainage flow path 68 .
 複数のガスノズル70は、処理槽41内の下部にて不活性ガス(例えばNガス)を吐出する。複数のガスノズル70は、処理液ノズル50よりも下において幅方向に並び、それぞれ奥行方向に延びている。各ガスノズル70の高さは、その配置位置が幅方向の中心から遠ざかるにつれて高くなっている。 A plurality of gas nozzles 70 eject an inert gas (for example, N 2 gas) at the bottom of the processing tank 41 . The plurality of gas nozzles 70 are arranged in the width direction below the processing liquid nozzle 50 and extend in the depth direction. The height of each gas nozzle 70 increases with distance from the center in the width direction.
 複数のガスノズル70は、基板8と同心の円弧に沿うように並んでいてもよい。上記円弧に沿うように並ぶとは、各ガスノズル70が当該円弧上に位置する場合だけでなく、一部のガスノズル70が当該円弧から所定範囲内でずれている場合も含む。複数のガスノズル70が同一高さに位置する場合に比較して、各ガスノズル70から基板8の中心までの距離の均一性が高くなる限り、上記所定範囲は任意に設定可能である。 A plurality of gas nozzles 70 may be arranged along an arc concentric with the substrate 8 . Lined up along the arc includes not only the case where the gas nozzles 70 are positioned on the arc, but also the case where some of the gas nozzles 70 are deviated from the arc within a predetermined range. The predetermined range can be arbitrarily set as long as the distance from each gas nozzle 70 to the center of the substrate 8 is more uniform than when the plurality of gas nozzles 70 are positioned at the same height.
 例えば、複数のガスノズル70は、幅方向において最も内側に位置する一対のガスノズル70Aと、一対のガスノズル70Aよりも外側に位置する一対のガスノズル70Bと、一対のガスノズル70Bよりもさらに外側に位置する一対のガスノズル70Cとを含む。ガスノズル70B,70Bは、ガスノズル70A,70Aよりも上に位置し、ガスノズル70C,70Cはガスノズル70B,70Bよりも上に位置している。ガスノズル70A,70A,70B,70B,70C,70Cは、基板8と同心の円弧に沿うように並んでいる。 For example, the plurality of gas nozzles 70 are a pair of gas nozzles 70A located innermost in the width direction, a pair of gas nozzles 70B located outside the pair of gas nozzles 70A, and a pair of gas nozzles 70B located further outside the pair of gas nozzles 70B. gas nozzle 70C. The gas nozzles 70B, 70B are located above the gas nozzles 70A, 70A, and the gas nozzles 70C, 70C are located above the gas nozzles 70B, 70B. Gas nozzles 70A, 70A, 70B, 70B, 70C, and 70C are arranged along an arc concentric with substrate 8 .
 なお、ガスノズル70の数及び配置は適宜変更可能である。複数のガスノズル70は同一高さに配置されていてもよい。ガスノズル70の詳細については後述する。 Note that the number and arrangement of the gas nozzles 70 can be changed as appropriate. A plurality of gas nozzles 70 may be arranged at the same height. Details of the gas nozzle 70 will be described later.
 ガス供給部89は、ガスノズル70に上記不活性ガスを供給する。例えばガス供給部89は、ガス供給源90と、供給流路91と、開閉弁92と、流量調節器93とを含む。 The gas supply unit 89 supplies the inert gas to the gas nozzle 70 . For example, the gas supply unit 89 includes a gas supply source 90 , a supply channel 91 , an on-off valve 92 and a flow controller 93 .
 ガス供給源90は、不活性ガスの供給源である。供給流路91は、ガス供給源90からガスノズル70に不活性ガスを導く。開閉弁92は供給流路91を開閉する。流量調節器93は、開閉弁92とガス供給源90との間において、供給流路91の開度を調節して不活性ガスの流量を調節する。 The gas supply source 90 is an inert gas supply source. The supply channel 91 guides the inert gas from the gas supply source 90 to the gas nozzle 70 . The on-off valve 92 opens and closes the supply channel 91 . The flow controller 93 adjusts the opening degree of the supply channel 91 between the on-off valve 92 and the gas supply source 90 to adjust the flow rate of the inert gas.
 供給流路91、開閉弁92及び流量調節器93は、ガスノズル70の配置高さごとに設けられていてもよい。例えばガス供給源90は、供給流路91A,91B,91Cと、開閉弁92A,92B,92Cと、流量調節器93A,93B,93Cとを含む。供給流路91Aは、ガス供給源90からガスノズル70A,70Aの一端部に不活性ガスを導く。供給流路91Bは、ガス供給源90からガスノズル70B,70Bの一端部に不活性ガスを導く。供給流路91Cは、ガス供給源90からガスノズル70C,70Cの一端部に不活性ガスを導く。開閉弁92A,92B,92Cは、供給流路91A,91B,91Cをそれぞれ開閉する。流量調節器93A,93B,93Cは、供給流路91A,91B,91Cの開度をそれぞれ調節する。 The supply channel 91, the on-off valve 92, and the flow controller 93 may be provided for each height of the gas nozzle 70. For example, the gas supply source 90 includes supply channels 91A, 91B, 91C, on-off valves 92A, 92B, 92C, and flow controllers 93A, 93B, 93C. The supply channel 91A guides the inert gas from the gas supply source 90 to one end of the gas nozzles 70A, 70A. The supply channel 91B guides the inert gas from the gas supply source 90 to one end of the gas nozzles 70B, 70B. The supply channel 91C guides the inert gas from the gas supply source 90 to one end of the gas nozzles 70C, 70C. The on-off valves 92A, 92B, 92C open and close the supply channels 91A, 91B, 91C, respectively. The flow controllers 93A, 93B, 93C adjust the opening degrees of the supply channels 91A, 91B, 91C, respectively.
 ガス加熱部94は、ガス供給源90によりガスノズル70に供給される不活性ガスを設定温度まで加熱する。設定温度は、例えば処理液43の沸点近傍の値に設定されている。例えばガス加熱部94は、供給流路91に設けられている。図示において、ガス加熱部94は、供給流路91A,91B,91Cがガス供給源90側にて合流した部分に設けられているが、これに限られない。ガス加熱部94は、供給流路91A,91B,91Cごとに設けられていてもよい。 The gas heating unit 94 heats the inert gas supplied to the gas nozzle 70 by the gas supply source 90 to a set temperature. The set temperature is set to a value near the boiling point of the treatment liquid 43, for example. For example, the gas heating section 94 is provided in the supply channel 91 . In the drawing, the gas heating section 94 is provided at a portion where the supply flow paths 91A, 91B, and 91C join on the side of the gas supply source 90, but this is not restrictive. The gas heating unit 94 may be provided for each of the supply channels 91A, 91B, 91C.
 ガス抜き部95は、ガスノズル70の本体71の内圧を低下させる。例えばガス抜き部95は、減圧流路96と、減圧弁97とを含む。減圧流路96は、開閉弁92とガスノズル70との間において供給流路91から分岐し、供給流路91内のガスを導出する。減圧弁97は、減圧流路96を開閉する。 The gas release portion 95 reduces the internal pressure of the main body 71 of the gas nozzle 70 . For example, the degassing section 95 includes a pressure reducing passage 96 and a pressure reducing valve 97 . The decompression channel 96 branches from the supply channel 91 between the on-off valve 92 and the gas nozzle 70 to lead out the gas in the supply channel 91 . The pressure reducing valve 97 opens and closes the pressure reducing channel 96 .
 なお、ガス抜き部95は、強制排気用のポンプをさらに含んでいてもよい。減圧流路96及び減圧弁97は、ガスノズル70の配置高さごとに設けられていてもよい。例えばガス抜き部95は、減圧流路96A,96B,96Cと、減圧弁97A,97B,97Cとを含む。減圧流路96Aは、開閉弁92Aとガスノズル70Aとの間において供給流路91Aから分岐し、供給流路91A内のガスを導出する。減圧流路96Bは、開閉弁92Bとガスノズル70Bとの間において供給流路91Bから分岐し、供給流路91B内のガスを導出する。減圧流路96Cは、開閉弁92Cとガスノズル70Cとの間において供給流路91Cから分岐し、供給流路91C内のガスを導出する。減圧弁97A,97B,97Cは、減圧流路96A,96B,96Cをそれぞれ開閉する。 The degassing section 95 may further include a forced exhaust pump. The pressure reducing passage 96 and the pressure reducing valve 97 may be provided for each height of the gas nozzle 70 . For example, the degassing section 95 includes pressure reducing passages 96A, 96B, 96C and pressure reducing valves 97A, 97B, 97C. The pressure reduction channel 96A branches from the supply channel 91A between the on-off valve 92A and the gas nozzle 70A, and leads out the gas in the supply channel 91A. The pressure reduction channel 96B branches from the supply channel 91B between the on-off valve 92B and the gas nozzle 70B, and leads out the gas in the supply channel 91B. The pressure reducing channel 96C branches from the supply channel 91C between the on-off valve 92C and the gas nozzle 70C, and leads out the gas in the supply channel 91C. The pressure reducing valves 97A, 97B and 97C open and close the pressure reducing channels 96A, 96B and 96C, respectively.
 液位センサ80は、処理液43に含まれる気体の量に関する情報を取得する。以下、処理液43に含まれる気体の量を「処理液43の気体含有量」ということがある。例えば液位センサ80は、気泡式液位計であり、気泡管81と、加圧ガス供給源83と、ガスライン84と、パージセット82と、検出ライン85と、第一検出器86Aと、第二検出器86Bとを含む。 The liquid level sensor 80 acquires information on the amount of gas contained in the treatment liquid 43 . Hereinafter, the amount of gas contained in the treatment liquid 43 may be referred to as "the gas content of the treatment liquid 43". For example, the liquid level sensor 80 is a bubble level gauge, and includes a bubble tube 81, a pressurized gas supply source 83, a gas line 84, a purge set 82, a detection line 85, a first detector 86A, and a second detector 86B.
 気泡管81は、処理槽41内の処理液に挿入されており、その端部は処理槽41の底部近傍に位置している。加圧ガス供給源83は、液位計測用の不活性ガスの供給源である。以下、液位計測用の不活性ガスを「計測用ガス」ということがある。ガスライン84は、加圧ガス供給源83から気泡管81に計測用ガスを導く。気泡管81に導かれた計測用ガスは、気泡管81の端部から処理槽41内の処理液中に放出される。 The bubble tube 81 is inserted into the processing liquid in the processing bath 41 and its end is positioned near the bottom of the processing bath 41 . The pressurized gas supply source 83 is an inert gas supply source for liquid level measurement. Hereinafter, the inert gas for liquid level measurement may be referred to as "measurement gas". A gas line 84 guides the measurement gas from the pressurized gas supply source 83 to the bubble tube 81 . The measurement gas guided to the bubble tube 81 is released from the end of the bubble tube 81 into the processing liquid in the processing tank 41 .
 パージセット82は、気泡管81からの計測ガスの放出量を一定にするように、ガスライン84の内圧を調節する。なお、一定とは、実質的な一定を意味し、所定値を基準として許容範囲内に収まっている状態を意味する。 The purge set 82 adjusts the internal pressure of the gas line 84 so that the amount of measured gas released from the bubble tube 81 is constant. Note that "constant" means substantially constant, and means a state in which a predetermined value is used as a reference and is within an allowable range.
 検出ライン85は、気泡管81とパージセット82との間におけるガスライン84の内圧を第一検出器86A及び第二検出器86Bに伝達する。検出ライン85の一端部は、気泡管81とパージセット82との間においてガスライン84に接続されており、検出ライン85の他端部は二本に分岐して第一検出器86A及び第二検出器86Bにそれぞれ接続されている。 The detection line 85 transmits the internal pressure of the gas line 84 between the bubble tube 81 and the purge set 82 to the first detector 86A and the second detector 86B. One end of the detection line 85 is connected to the gas line 84 between the bubble tube 81 and the purge set 82, and the other end of the detection line 85 branches into two, the first detector 86A and the second detector 86A. Each is connected to a detector 86B.
 第一検出器86A及び第二検出器86Bは、検出ライン85により伝達された圧力を検出する。第一検出器86A及び第二検出器86Bの検出範囲は互いに異なっている。第一検出器86Aは、処理槽41内の処理液43の液位(液面の位置)が最低位(処理槽41が空の状態)のときにおける圧力から、当該液位が最高位(処理液43が処理槽41から溢れている状態)のときにおける圧力までの範囲を検出範囲としている。第二検出器86Bは、処理槽41内の処理液43の液位が最高位にあるときにおいて、処理液43の気体含有量に応じた圧力の変動範囲の最小値から最大値までを検出範囲としている。 The first detector 86A and the second detector 86B detect the pressure transmitted by the detection line 85. The detection ranges of the first detector 86A and the second detector 86B are different from each other. The first detector 86A detects the pressure when the liquid level (position of the liquid surface) of the processing liquid 43 in the processing tank 41 is at the lowest level (when the processing tank 41 is empty), and when the liquid level is at the highest level (processing The detection range is up to the pressure when the liquid 43 is overflowing from the processing tank 41). The detection range of the second detector 86B is from the minimum value to the maximum value of the pressure fluctuation range corresponding to the gas content of the processing liquid 43 when the liquid level of the processing liquid 43 in the processing tank 41 is at the highest level. and
 処理液43の液位が最高位に保たれた状態において、第二検出器86Bの検出値は、主として処理液43の気体含有量に応じて変動することとなる。すなわち、処理液43の液位が最高位に保たれた状態において、第二検出器86Bの検出値は、実質的に、処理液43の気体含有量に相関する。一方、第一検出器86Aの検出範囲は、第二検出器86Bの検出範囲に比較して大きいので、第一検出器86Aによる圧力検出値は、処理液43の気体含有量の変動に対して実質的に不感である。このため、第一検出器86Aの検出値は、実質的に処理液43の液位に相関する。以上より、第一検出器86A及び第二検出器86Bを組合せて用いることで、処理液43の気体含有量に関する情報が得られる。すなわち、第一検出器86Aの検出値により、処理液43の液位が最高位に保たれていることが示されているときに、第二検出器86Bの検出値を取得することにより、処理液43の気体含有量に関する情報が得られる。 With the liquid level of the treatment liquid 43 maintained at the highest level, the detection value of the second detector 86B fluctuates mainly according to the gas content of the treatment liquid 43 . That is, when the liquid level of the treatment liquid 43 is maintained at the highest level, the detection value of the second detector 86B substantially correlates with the gas content of the treatment liquid 43 . On the other hand, the detection range of the first detector 86A is larger than the detection range of the second detector 86B. It is practically imperceptible. Therefore, the detection value of the first detector 86A substantially correlates with the liquid level of the treatment liquid 43 . As described above, by using the first detector 86A and the second detector 86B in combination, information regarding the gas content of the treatment liquid 43 can be obtained. That is, when the detection value of the first detector 86A indicates that the liquid level of the treatment liquid 43 is maintained at the highest level, by acquiring the detection value of the second detector 86B, Information about the gas content of the liquid 43 is obtained.
 基板昇降機構36は、基板8を処理槽41内の処理液43に浸漬する。例えば基板昇降機構36は、起立した複数の基板8を厚さ方向に沿って並べた状態で処理液43に浸漬する。 The substrate lifting mechanism 36 immerses the substrate 8 in the processing liquid 43 in the processing tank 41 . For example, the substrate elevating mechanism 36 immerses the substrates 8 in the treatment liquid 43 while arranging them in the thickness direction.
 基板昇降機構36は、複数の支持アーム87と、昇降部88とを有する。複数の支持アーム87は、幅方向に沿って起立した複数の基板8を奥行方向に整列させた状態で支持する。複数の支持アーム87は幅方向に並び、それぞれ奥行方向に延びている。各支持アーム87は、奥行方向に並ぶ複数のスロット87aを有する。スロット87aは、幅方向に沿って上方に開口した溝状部分であり、起立した基板8の下部を受け入れる。 The substrate elevating mechanism 36 has a plurality of support arms 87 and an elevating section 88 . The plurality of support arms 87 support the plurality of substrates 8 erected along the width direction in a state of being aligned in the depth direction. The plurality of support arms 87 are arranged in the width direction and extend in the depth direction. Each support arm 87 has a plurality of slots 87a arranged in the depth direction. The slot 87a is a groove-shaped portion that opens upward along the width direction, and receives the lower portion of the upright substrate 8 .
 昇降部88は、複数の基板8を処理液43内に浸漬する高さと、複数の基板8を処理液43の液面より上に位置させる高さとの間で複数の支持アーム87を昇降させる。 The elevating section 88 elevates the plurality of support arms 87 between a height at which the plurality of substrates 8 are immersed in the processing liquid 43 and a height at which the plurality of substrates 8 are positioned above the surface of the processing liquid 43 .
 (ガスノズル)
 次に、ガスノズル70の詳細について説明する。図4は、ガスノズル70を示す模式図である。
(gas nozzle)
Next, details of the gas nozzle 70 will be described. FIG. 4 is a schematic diagram showing the gas nozzle 70. As shown in FIG.
 図4に示すように、ガスノズル70は、処理槽41の底面に沿って奥行方向に延びるように配置された管状(例えば円管状)の本体71と、本体71の内面73及び外面74の間を貫通するように形成された少なくとも一つの吐出孔77とを有する。本体71は管体の一例である。例えばガスノズル70は、奥行方向に沿って並ぶ複数の吐出孔77を有する。本体71は、例えば石英により構成されている。本体71は、石英に代えて、ケイ素を含有しない材料で構成されていてもよい。ケイ素を含有しない材料の具体例としては、ポリエーテルエーテルケトン(PEEK)、ポリテトラフルオロエチレン(PTFE)等の樹脂材料が挙げられる。 As shown in FIG. 4, the gas nozzle 70 has a tubular (for example, cylindrical) main body 71 arranged to extend in the depth direction along the bottom surface of the processing tank 41, and an inner surface 73 and an outer surface 74 of the main body 71. and at least one discharge hole 77 formed therethrough. The main body 71 is an example of a tubular body. For example, the gas nozzle 70 has a plurality of discharge holes 77 arranged along the depth direction. The main body 71 is made of quartz, for example. The main body 71 may be made of a silicon-free material instead of quartz. Specific examples of silicon-free materials include resin materials such as polyetheretherketone (PEEK) and polytetrafluoroethylene (PTFE).
 各吐出孔77は、本体71の下部に設けられている。吐出孔77は、本体71の管中心72の鉛直下方からずれた位置に設けられていてもよい。この場合、吐出孔77の位置は、本体71の管中心72を含む鉛直な仮想平面75が吐出孔77内を通らないように設定されていてもよい。吐出孔77の中心は、本体71の管中心72まわりで鉛直下方±10°の範囲76内に位置していてもよい。 Each discharge hole 77 is provided at the bottom of the main body 71 . The discharge hole 77 may be provided at a position deviated from the vertical lower portion of the tube center 72 of the main body 71 . In this case, the position of the discharge hole 77 may be set so that the vertical imaginary plane 75 including the pipe center 72 of the main body 71 does not pass through the discharge hole 77 . The center of the discharge hole 77 may be positioned within a range 76 of ±10° vertically downward around the pipe center 72 of the main body 71 .
 吐出孔77が管中心72の鉛直下方からずれる方向に制限はない。例えば、吐出孔77は図示右側にずれているが、図示左側にずれていてもよい。また、図示右側にずれた吐出孔77と、図示左側にずれた吐出孔77とが奥行方向に沿って千鳥状に並んでいてもよい。 There is no limit to the direction in which the discharge hole 77 deviates from vertically below the tube center 72 . For example, the discharge hole 77 is shifted to the right side in the drawing, but it may be shifted to the left side in the drawing. Further, the discharge holes 77 shifted to the right side in the drawing and the discharge holes 77 shifted to the left side in the drawing may be arranged in a zigzag pattern along the depth direction.
 吐出孔77は、本体71の内面73側から外面74側にかけて開口面積が一定となるように形成されている。 The discharge hole 77 is formed so that the opening area is constant from the inner surface 73 side of the main body 71 to the outer surface 74 side.
 本実施形態では、ガスノズル70に液体誘導部材200が着脱可能に取り付けられている。図5は、液体誘導部材200の構成を示す図である。図5(a)は上面図であり、図5(b)及び(c)は断面図である。図5(b)は図5(a)中のVb-Vb線に沿った断面図に相当し、図5(c)は図5(a)中のVc-Vc線に沿った断面図に相当する。 In this embodiment, the liquid guide member 200 is detachably attached to the gas nozzle 70 . FIG. 5 is a diagram showing the configuration of the liquid guide member 200. As shown in FIG. FIG. 5(a) is a top view, and FIGS. 5(b) and 5(c) are cross-sectional views. 5(b) corresponds to a cross-sectional view along the Vb-Vb line in FIG. 5(a), and FIG. 5(c) corresponds to a cross-sectional view along the Vc-Vc line in FIG. 5(a). do.
 図5に示すように、液体誘導部材200は、筒状の誘導部210と、筒状の基部220と、誘導部210と基部220とを連結する連結部230とを有する。液体誘導部材200は、例えば石英により構成されている。液体誘導部材200が、テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体(PFA)等の樹脂から構成されていてもよい。誘導部210、基部220及び連結部230が一体的に構成されていてもよい。 As shown in FIG. 5 , the liquid guide member 200 has a tubular guide portion 210 , a tubular base portion 220 , and a connecting portion 230 that connects the guide portion 210 and the base portion 220 . The liquid guide member 200 is made of quartz, for example. The liquid guide member 200 may be made of resin such as tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA). The guiding portion 210, the base portion 220, and the connecting portion 230 may be configured integrally.
 基部220は、誘導部210側の第3開口223と、第3開口223とは反対側の第4開口224とを備える。第4開口224の開口面積は、第3開口223の開口面積と同程度である。基部220の形状は、例えば円筒状であり、基部220の外壁面は、吐出孔77の内壁面と略同一の形状を有する。基部220が吐出孔77に挿入される。 The base 220 has a third opening 223 on the side of the guiding part 210 and a fourth opening 224 on the side opposite to the third opening 223 . The opening area of the fourth opening 224 is approximately the same as the opening area of the third opening 223 . The shape of the base portion 220 is, for example, cylindrical, and the outer wall surface of the base portion 220 has substantially the same shape as the inner wall surface of the discharge hole 77 . A base 220 is inserted into the discharge hole 77 .
 誘導部210は、基部220側の第1開口211と、第1開口211とは反対側の第2開口212を備える。第2開口212の開口面積は、第1開口211の開口面積よりも小さい。第1開口211と第2開口212とは、基部220が延びる方向(第1方向)で互いから離れている。誘導部210の形状は、例えば、円錐台筒状である。つまり、誘導部210の開口面積は、第1開口211から第2開口212にかけて連続的に減少している。 The guiding part 210 has a first opening 211 on the side of the base part 220 and a second opening 212 on the side opposite to the first opening 211 . The opening area of the second opening 212 is smaller than the opening area of the first opening 211 . The first opening 211 and the second opening 212 are separated from each other in the direction in which the base 220 extends (first direction). The shape of the guiding portion 210 is, for example, a truncated cone shape. That is, the opening area of the guide portion 210 continuously decreases from the first opening 211 to the second opening 212 .
 連結部230は複数設けられている。例えば、三つの連結部230により誘導部210と基部220とが連結されている。三つの連結部230は、例えば基部220の周方向において等間隔(120°間隔)で配置されている。 A plurality of connecting portions 230 are provided. For example, the guiding portion 210 and the base portion 220 are connected by three connecting portions 230 . The three connecting portions 230 are arranged, for example, at regular intervals (120° intervals) in the circumferential direction of the base portion 220 .
 好ましくは、誘導部210の第1開口211及び第2開口212は、基部220の第3開口223及び第4開口224と同心状に配置されている。例えば、第1開口211の直径は1mm~15mmであり、第2開口212の直径は0.1mm~10mmである。例えば、第3開口223の直径は0.1mm~10mmであり、第4開口224の直径は0.1mm~10mmである。また、例えば、基部220の外壁面を基準として、誘導部210の外壁面は1°~80°傾斜している。 Preferably, the first opening 211 and the second opening 212 of the guiding portion 210 are arranged concentrically with the third opening 223 and the fourth opening 224 of the base portion 220 . For example, the diameter of the first opening 211 is between 1 mm and 15 mm, and the diameter of the second opening 212 is between 0.1 mm and 10 mm. For example, the diameter of the third opening 223 is 0.1 mm to 10 mm, and the diameter of the fourth opening 224 is 0.1 mm to 10 mm. Further, for example, the outer wall surface of the guide portion 210 is inclined by 1° to 80° with respect to the outer wall surface of the base portion 220 .
 図6は、液体誘導部材200が取り付けられたガスノズル70を示す断面図である。図6(a)は、ガスノズル70の管軸に平行な断面を示し、図6(b)はガスノズル70の管軸に垂直な断面を示す。図6では、便宜上、吐出孔77が上方に延びるように図示している。 FIG. 6 is a cross-sectional view showing the gas nozzle 70 to which the liquid guide member 200 is attached. 6(a) shows a cross section parallel to the tube axis of the gas nozzle 70, and FIG. 6(b) shows a cross section perpendicular to the tube axis of the gas nozzle 70. FIG. In FIG. 6, for the sake of convenience, the discharge holes 77 are shown extending upward.
 図6(a)に示すように、管軸に平行な断面では、液体誘導部材200の下端がガスノズル70の本体71に接するが、図6(b)に示すように、管軸に垂直な断面では、液体誘導部材200の下端と本体71との間に隙間がある。詳細は後述するが、この隙間を介して液体誘導部材200の周囲の処理液が誘導部210の内側に流れ込むことができる。 As shown in FIG. 6(a), the lower end of the liquid guide member 200 is in contact with the main body 71 of the gas nozzle 70 in the cross section parallel to the pipe axis, but as shown in FIG. 6(b), the cross section perpendicular to the pipe axis There is a gap between the lower end of the liquid guide member 200 and the main body 71 . Although the details will be described later, the processing liquid around the liquid guide member 200 can flow into the guide section 210 through this gap.
 図7に示すように、基部220の周囲に吐出孔77の開口径よりも大きなスペーサ225を設け、液体誘導部材200の周囲の処理液が誘導部210の内側に流れ込みやすくしてもよい。図7は、スペーサ225を備えた液体誘導部材200が取り付けられたガスノズル70を示す断面図である。図7(a)は、ガスノズル70の管軸に平行な断面を示し、図7(b)はガスノズル70の管軸に垂直な断面を示す。 As shown in FIG. 7, a spacer 225 larger than the opening diameter of the ejection hole 77 may be provided around the base 220 to facilitate the flow of the processing liquid around the liquid guide member 200 into the guide portion 210 . FIG. 7 is a cross-sectional view showing gas nozzle 70 to which liquid guide member 200 with spacer 225 is attached. 7(a) shows a cross section parallel to the tube axis of the gas nozzle 70, and FIG. 7(b) shows a cross section perpendicular to the tube axis of the gas nozzle 70. FIG.
 (制御部)
 制御部7は、ガスノズル70の下方の第一高さH1(例えば、処理槽41の底面における最低部分の高さ)から、基板8を浸漬可能な第二高さH2(例えば、処理槽41の上端面の高さ)に液面が上昇するまで処理槽41に処理液43を供給するように処理液供給部44を制御することと、液面が第二高さH2以上にある状態で基板8を処理液43に浸漬するように基板昇降機構36を制御することと、液面が第二高さH2から第一高さH1に下降するまで処理槽41から処理液43を排出するように処理液排出部67を制御することと、液面が第一高さH1から第二高さH2に上昇する途中でガスの供給量を増やし、液面が第二高さH2から第一高さH1に下降する途中でガスの供給量を減らすようにガス供給部89を制御することと、を実行するように構成されている。
(control part)
The control unit 7 moves the substrate 8 from a first height H1 below the gas nozzle 70 (e.g., the height of the lowest part of the bottom surface of the processing bath 41) to a second height H2 (e.g., the height of the processing bath 41) at which the substrate 8 can be immersed. The processing liquid supply part 44 is controlled so as to supply the processing liquid 43 to the processing tank 41 until the liquid level rises to the height of the upper end surface), and the substrate is exposed to the liquid surface in a state where the liquid level is at the second height H2 or higher. 8 is immersed in the processing liquid 43, and the processing liquid 43 is discharged from the processing bath 41 until the liquid surface drops from the second height H2 to the first height H1. By controlling the processing liquid discharge part 67 and increasing the amount of gas supplied while the liquid level is rising from the first height H1 to the second height H2, the liquid level is increased from the second height H2 to the first height. and controlling the gas supply unit 89 so as to reduce the amount of gas supplied during the descent to H1.
 制御部7は、ガスノズル70の本体71内に処理液43を吸引し得る圧力まで本体71の内圧を低下させるようにガス抜き部95を制御することと、本体71内の処理液43を排出し得る圧力まで本体71の内圧を上昇させるようにガス供給部89を制御することと、をさらに実行するように構成されていてもよい。 The control unit 7 controls the gas venting unit 95 so as to reduce the internal pressure of the main body 71 to a pressure at which the processing liquid 43 can be sucked into the main body 71 of the gas nozzle 70 , and discharges the processing liquid 43 in the main body 71 . and controlling the gas supply unit 89 to increase the internal pressure of the main body 71 to the obtained pressure.
 また、制御部7は、基板8同士の間隔、基板8の浸漬が開始された後の経過時間、及びガスノズル70の配置位置の少なくともいずれかに応じて、ガス供給部89からガスノズル70へのガスの供給量を変えるように構成されている。 In addition, the control unit 7 controls the flow of gas from the gas supply unit 89 to the gas nozzle 70 according to at least one of the distance between the substrates 8, the elapsed time after the substrate 8 starts being immersed, and the arrangement position of the gas nozzle 70. is configured to vary the supply of
 制御部7は、ガスの供給量の調節により、処理液43の気体含有量を目標値に近付けるようにガス供給部89を制御することをさらに実行するように構成されていてもよく、基板8同士の間隔、及び基板8の浸漬が開始された後の経過時間の少なくとも一方に応じてガスの供給量を変える際には、当該目標値を変えることでガスの供給量を変えてもよい。 The control unit 7 may be configured to further control the gas supply unit 89 so as to bring the gas content of the processing liquid 43 closer to the target value by adjusting the gas supply amount. When changing the gas supply amount according to at least one of the distance between the substrates 8 and the elapsed time after the start of immersion of the substrate 8, the gas supply amount may be changed by changing the target value.
 図8は、制御部7の機能的な構成を例示するブロック図である。図8に示すように、制御部7は、機能上の構成として、液供給制御部111と、排液制御部112と、浸漬制御部113と、ガス供給制御部114と、洗浄制御部118と、レシピ記憶部119を有する。以下、機能上の構成を「機能モジュール」ということがある。 FIG. 8 is a block diagram illustrating the functional configuration of the control unit 7. As shown in FIG. As shown in FIG. 8, the control unit 7 includes a liquid supply control unit 111, a drainage control unit 112, an immersion control unit 113, a gas supply control unit 114, and a cleaning control unit 118 as functional components. , and a recipe storage unit 119 . Hereinafter, the functional configuration may be referred to as a "functional module".
 レシピ記憶部119は、処理内容を特定するために予め設定された各種パラメータを記憶する。 The recipe storage unit 119 stores various parameters set in advance to specify the processing content.
 液供給制御部111は、上記第一高さH1から上記第二高さH2に液面が上昇するまで処理槽41に処理液43を供給するように処理液供給部44を制御する。以下、この制御を「処理液43の充填制御」ということがある。 The liquid supply control unit 111 controls the processing liquid supply unit 44 so as to supply the processing liquid 43 to the processing tank 41 until the liquid level rises from the first height H1 to the second height H2. Hereinafter, this control may be referred to as "filling control of the treatment liquid 43".
 浸漬制御部113は、液面が第二高さH2以上にある状態で基板8を処理液43に浸漬するように基板昇降機構36を制御する。以下、この制御を「基板8の浸漬制御」ということがある。 The immersion control unit 113 controls the substrate elevating mechanism 36 so that the substrate 8 is immersed in the processing liquid 43 while the liquid surface is at or above the second height H2. Hereinafter, this control may be referred to as "substrate 8 immersion control".
 排液制御部112は、液面が第二高さH2から第一高さH1に下降するまで処理槽41から処理液43を排出するように処理液排出部67を制御する。以下、この制御を「処理液43の排出制御」ということがある。 The liquid discharge control section 112 controls the processing liquid discharge section 67 so as to discharge the processing liquid 43 from the processing bath 41 until the liquid level drops from the second height H2 to the first height H1. Hereinafter, this control may be referred to as "discharge control of the treatment liquid 43".
 ガス供給制御部114は、より細分化された機能モジュールとして、オン・オフ制御部115と、目標値設定部116と、追従制御部117とを有する。 The gas supply control unit 114 has an on/off control unit 115, a target value setting unit 116, and a follow-up control unit 117 as more subdivided functional modules.
 オン・オフ制御部115は、液面が第一高さH1から第二高さH2に上昇する途中でガスの供給量を増やし、液面が第二高さH2から第一高さH1に下降する途中でガスの供給量を減らすようにガス供給部89を制御する。ガスの供給量を増やすようにガス供給部89を制御することは、開閉弁92を閉状態から開状態にしてガスの供給を開始するようにガス供給部89を制御することを含む。ガスの供給量を減らすようにガス供給部89を制御することは、開閉弁92を開状態から閉状態にしてガスの供給を停止するようにガス供給部89を制御することを含む。 The on/off control unit 115 increases the amount of gas supplied while the liquid level rises from the first height H1 to the second height H2, and the liquid level drops from the second height H2 to the first height H1. The gas supply unit 89 is controlled so as to reduce the amount of gas supplied during the process. Controlling the gas supply unit 89 to increase the amount of gas supplied includes controlling the gas supply unit 89 to open the on-off valve 92 from the closed state and start supplying gas. Controlling the gas supply unit 89 to reduce the amount of gas supplied includes controlling the gas supply unit 89 to close the on-off valve 92 from the open state to stop the gas supply.
 オン・オフ制御部115は、第一高さH1から第二高さH2まで上昇する液面がガスノズル70の吐出孔77に到達する前にガスの供給を開始し、第二高さH2から第一高さH1まで下降する液面が吐出孔77を通過した後にガスの供給を停止するようにガス供給部89を制御してもよい。 The on/off control unit 115 starts supplying the gas before the liquid level rising from the first height H1 to the second height H2 reaches the discharge hole 77 of the gas nozzle 70, and increases the liquid level from the second height H2 to the second height H2. The gas supply unit 89 may be controlled so as to stop the supply of gas after the liquid surface that descends to one height H1 passes through the discharge hole 77 .
 また、オン・オフ制御部115は、第一高さH1から第二高さH2まで上昇する液面がガスノズル70の吐出孔77に到達する前にガスの供給を開始し、第二高さH2から第一高さH1まで下降する液面が吐出孔77を通過した後にガスの供給を停止するようにガス供給部89を制御することを、高さの異なるガスノズル70ごとに実行してもよい。例えば、オン・オフ制御部115は、第一高さH1から第二高さH2まで上昇する液面がガスノズル70Aの吐出孔77に到達する前に開閉弁92Aを閉状態から開状態にし、当該液面がガスノズル70Bの吐出孔77に到達する前に開閉弁92Bを閉状態から開状態にし、当該液面がガスノズル70Cの吐出孔77に到達する前に開閉弁92Cを閉状態から開状態にするようにガス供給部89を制御する。その後、オン・オフ制御部115は、第二高さH2から第一高さH1まで下降する液面がガスノズル70Cの吐出孔77を通過した後に開閉弁92Cを開状態から閉状態にし、当該液面がガスノズル70Bの吐出孔77を通過した後に開閉弁92Bを開状態から閉状態に、当該液面がガスノズル70Aの吐出孔77を通過した後に開閉弁92Cを開状態から閉状態にするようにガス供給部89を制御する。 Further, the on/off control unit 115 starts supplying the gas before the liquid surface rising from the first height H1 to the second height H2 reaches the discharge hole 77 of the gas nozzle 70, and reaches the second height H2. to the first height H1 passes through the discharge hole 77, the gas supply unit 89 may be controlled so as to stop the gas supply for each gas nozzle 70 having a different height. . For example, the on/off control unit 115 changes the on-off valve 92A from the closed state to the open state before the liquid surface rising from the first height H1 to the second height H2 reaches the discharge hole 77 of the gas nozzle 70A. The on-off valve 92B is opened from the closed state before the liquid surface reaches the discharge hole 77 of the gas nozzle 70B, and the on-off valve 92C is opened from the closed state before the liquid surface reaches the discharge hole 77 of the gas nozzle 70C. The gas supply unit 89 is controlled so as to After that, the on/off control unit 115 closes the on-off valve 92C after the liquid surface that descends from the second height H2 to the first height H1 passes through the discharge hole 77 of the gas nozzle 70C, and After the surface passes through the discharge hole 77 of the gas nozzle 70B, the on-off valve 92B is opened from the closed state, and after the liquid surface passes through the discharge hole 77 of the gas nozzle 70A, the on-off valve 92C is changed from the open state to the closed state. It controls the gas supply unit 89 .
 オン・オフ制御部115は、第一高さH1から第二高さH2まで上昇する液面がガスノズル70の吐出孔77に到達する前にガスの供給を開始し、第二高さH2から第一高さH1まで下降する液面が吐出孔77を通過した後にガスの供給を停止するようにガス供給部89を制御することを、高さの異なるガスノズル70で同時に実行してもよい。この場合、オン・オフ制御部115は、第一高さH1から第二高さH2まで上昇する液面が最低位のガスノズル70(ガスノズル70A)の吐出孔77に到達する前にすべてのガスノズル70へのガスの供給を開始し、第二高さH2から第一高さH1まで下降する液面が最低位のガスノズル70の吐出孔77を通過した後にすべてのガスノズル70へのガスの供給を停止するようにガス供給部89を制御してもよい。 The on/off control unit 115 starts supplying the gas before the liquid level rising from the first height H1 to the second height H2 reaches the discharge hole 77 of the gas nozzle 70, and increases the liquid level from the second height H2 to the second height H2. The gas supply unit 89 may be controlled so as to stop the gas supply after the liquid surface descending to one height H1 passes through the discharge hole 77 at the same time with the gas nozzles 70 having different heights. In this case, the ON/OFF control unit 115 controls all the gas nozzles 70 before the liquid level rising from the first height H1 to the second height H2 reaches the discharge hole 77 of the lowest gas nozzle 70 (gas nozzle 70A). and stop supplying gas to all the gas nozzles 70 after the liquid level descending from the second height H2 to the first height H1 passes through the discharge hole 77 of the lowest gas nozzle 70. The gas supply unit 89 may be controlled so as to do so.
 目標値設定部116は、基板8同士の間隔、及び基板8の浸漬が開始された後の経過時間の少なくともいずれかに応じて、処理液43の気体含有量の目標値を設定する。例えば目標値設定部116は、上記経過時間を浸漬制御部113から取得し、当該経過時間に応じて処理液43の気体含有量の目標値を変える。より具体的に、目標値設定部116は、上記経過時間が所定のタイミングとなる前後で、処理液43の気体含有量の目標値を相違させてもよい。上記タイミングと、当該タイミング前後の目標値は予め設定され、レシピ記憶部119に記憶されており、目標値設定部116はこれらの情報をレシピ記憶部119から取得する。 The target value setting unit 116 sets the target value of the gas content of the treatment liquid 43 according to at least one of the distance between the substrates 8 and the elapsed time after the substrates 8 start being immersed. For example, the target value setting unit 116 acquires the elapsed time from the immersion control unit 113, and changes the target value of the gas content of the treatment liquid 43 according to the elapsed time. More specifically, the target value setting unit 116 may change the target value of the gas content of the treatment liquid 43 before and after the elapsed time reaches a predetermined timing. The timing and target values before and after the timing are set in advance and stored in the recipe storage unit 119 , and the target value setting unit 116 acquires this information from the recipe storage unit 119 .
 レシピ記憶部119には、基板8同士の間隔に応じて異なる目標値が記憶されていてもよい。この場合、目標値設定部116は、基板8同士の間隔に応じて目標値を変えることとなる。なお、基板8同士の間隔は、基板昇降機構36の支持アーム87が支持する基板8の枚数に応じて定まる。支持アーム87が支持する基板8の枚数は、基板8に対するエッチング処理の条件に応じて適宜設定される。例えば、隣り合う基板8の一方の溶出物が他方のエッチング処理に及ぼす影響を無視できない場合には、支持アーム87が支持する基板8の枚数を減らして一部のスロット87aを空け、基板8同士の間隔を大きくすることが好ましい。 Different target values may be stored in the recipe storage unit 119 according to the spacing between the substrates 8 . In this case, the target value setting section 116 changes the target value according to the distance between the substrates 8 . The distance between substrates 8 is determined according to the number of substrates 8 supported by the support arm 87 of the substrate lifting mechanism 36 . The number of substrates 8 supported by the support arm 87 is appropriately set according to the etching conditions for the substrates 8 . For example, if the influence of the effluent from one of the adjacent substrates 8 on the etching process of the other cannot be ignored, the number of substrates 8 supported by the support arm 87 is reduced to leave some slots 87a open, and the substrates 8 are separated from each other. It is preferable to increase the interval between .
 追従制御部117は、ガスの供給量の調節により、処理液43の気体含有量を上記目標値に近付けるようにガス供給部89を制御する。この際に、追従制御部117は、ガスノズル70の配置位置に応じて、ガス供給部89からガスノズル70へのガスの供給量を変えてもよい。例えば、追従制御部117は、上記幅方向の中心を基準としたガスノズル70の位置に応じて、ガス供給部89からガスノズル70へのガスの供給量を変えてもよい。すなわち、追従制御部117は、ガスノズル70の配置位置が上記幅方向の中心から遠ざかるにつれてガス供給部89からガスノズル70へのガスの供給量を大きくしてもよいし、ガスノズル70の配置位置が上記幅方向の中心から遠ざかるにつれてガス供給部89からガスノズル70へのガスの供給量を小さくしてもよい。より具体的に、追従制御部117は、ガスノズル70A,70B,70Cへのガスの供給量を相違させるように、流量調節器93A,93B,93Cの開度を相違させてもよい。 The follow-up control unit 117 controls the gas supply unit 89 so that the gas content of the treatment liquid 43 approaches the target value by adjusting the gas supply amount. At this time, the follow-up control unit 117 may change the amount of gas supplied from the gas supply unit 89 to the gas nozzle 70 according to the arrangement position of the gas nozzle 70 . For example, the tracking control unit 117 may change the amount of gas supplied from the gas supply unit 89 to the gas nozzle 70 according to the position of the gas nozzle 70 with respect to the center in the width direction. That is, the follow-up control unit 117 may increase the amount of gas supplied from the gas supply unit 89 to the gas nozzle 70 as the arrangement position of the gas nozzle 70 moves away from the center in the width direction. The amount of gas supplied from the gas supply portion 89 to the gas nozzle 70 may be decreased as the distance from the center in the width direction increases. More specifically, the tracking control unit 117 may vary the opening degrees of the flow controllers 93A, 93B, 93C so as to vary the amount of gas supplied to the gas nozzles 70A, 70B, 70C.
 洗浄制御部118は、ガスノズル70の本体71内に処理液43を吸引し得る圧力まで本体71の内圧を低下させるようにガス抜き部95を制御することと、本体71内の処理液43を排出し得る圧力まで本体71の内圧を上昇させるようにガス供給部89を制御することと、を実行する。以下、この制御を「ガスノズル70の洗浄制御」ということがある。洗浄制御部118は、ガスノズル70の洗浄制御を、液面が第一高さH1から第二高さH2に上昇した後、処理液43に基板8が浸漬される前に実行してもよいし、処理液43に基板8が浸漬された後、液面が第二高さH2から第一高さH1に下降する前に実行してもよい。 The cleaning control unit 118 controls the gas venting unit 95 so as to reduce the internal pressure of the main body 71 of the gas nozzle 70 to a pressure at which the processing liquid 43 can be sucked into the main body 71, and discharges the processing liquid 43 in the main body 71. and controlling the gas supply unit 89 to increase the internal pressure of the main body 71 to a possible pressure. Hereinafter, this control may be referred to as "cleaning control of the gas nozzle 70". The cleaning control unit 118 may perform cleaning control of the gas nozzle 70 after the liquid surface rises from the first height H1 to the second height H2 and before the substrate 8 is immersed in the processing liquid 43. , after the substrate 8 is immersed in the treatment liquid 43 and before the liquid surface drops from the second height H2 to the first height H1.
 〔基板液処理方法〕
 続いて、基板液処理方法の一例として、制御部7が実行する制御手順を説明する。図9は、基板処理手順を示すフローチャートである。図9に示すように、制御部7は、まずステップS01を実行する。ステップS01は、上述した処理液43の充填制御を含む。より詳細な手順は後述する。次に、制御部7はステップS02を実行する。ステップS02は、上述したガスノズル70の洗浄制御を含む。より詳細な手順は後述する。次に、制御部7はステップS03を実行する。ステップS03は、上述した基板8の浸漬制御を含む。より詳細な手順は後述する。次に、制御部7はステップS04を実行する。ステップS04は、上述した処理液43の排出制御を含む。より詳細な手順は後述する。
[Substrate liquid processing method]
Next, a control procedure executed by the control unit 7 will be described as an example of the substrate liquid processing method. FIG. 9 is a flow chart showing a substrate processing procedure. As shown in FIG. 9, the control unit 7 first executes step S01. Step S01 includes filling control of the treatment liquid 43 described above. A more detailed procedure will be described later. Next, the controller 7 executes step S02. Step S02 includes cleaning control of the gas nozzle 70 described above. A more detailed procedure will be described later. Next, the control section 7 executes step S03. Step S03 includes the immersion control of the substrate 8 described above. A more detailed procedure will be described later. Next, the controller 7 executes step S04. Step S04 includes discharge control of the treatment liquid 43 described above. A more detailed procedure will be described later.
 次に、制御部7はステップS05を実行する。ステップS05は、全ロットの液処理が完了したか否かを確認することを含む。ステップS05において、液処理が未完了のロットが残っていると判定した場合、制御部7は手順をステップS01に戻す。以後、全ロットの液処理が完了するまで、処理液43の充填制御、ガスノズル70の洗浄制御、基板8の浸漬制御、及び処理液43の排出制御が繰り返される。ステップS05において、全ロットの液処理が完了したと判定した場合、制御部7はエッチング処理装置1の制御を完了する。 Next, the control unit 7 executes step S05. Step S05 includes confirming whether liquid processing for all lots has been completed. In step S05, when it is determined that there are still lots for which liquid processing has not been completed, the control section 7 returns the procedure to step S01. After that, the filling control of the processing liquid 43, the cleaning control of the gas nozzle 70, the immersion control of the substrate 8, and the discharge control of the processing liquid 43 are repeated until the liquid processing of all lots is completed. In step S<b>05 , when it is determined that the liquid processing of all lots has been completed, the control unit 7 completes the control of the etching processing apparatus 1 .
 図9の例において、制御部7は、処理液43の充填制御の後、基板8の浸漬制御の前にガスノズル70の洗浄制御を実行しているが、これに限られない。例えば制御部7は、基板8の浸漬制御の後、処理液43の排出制御の前にガスノズル70の洗浄制御を実行してもよい。なお、エッチング処理装置1における処理では、洗浄処理装置25における処理に比較して、処理液への基板8の浸漬時に多くのケイ素が溶出する。これにより、処理槽34のケイ素濃度が高くなる場合には、図9の例のように、処理槽41の充填制御の後、基板8の浸漬制御の前にガスノズル70の洗浄制御を実行することが好ましい。 In the example of FIG. 9, the control unit 7 executes the cleaning control of the gas nozzle 70 after the filling control of the processing liquid 43 and before the immersion control of the substrate 8, but it is not limited to this. For example, the control unit 7 may perform cleaning control of the gas nozzle 70 after controlling the immersion of the substrate 8 and before controlling the discharge of the processing liquid 43 . In the treatment in the etching treatment apparatus 1 , more silicon is eluted when the substrate 8 is immersed in the treatment liquid than in the treatment in the cleaning treatment apparatus 25 . As a result, when the silicon concentration in the processing tank 34 becomes high, as in the example of FIG. is preferred.
 また、図9の例において、制御部7は、1ロットの処理ごとに、処理液の充填制御、ガスノズル70の洗浄制御、処理液の排出制御を実行しているが、これに限られず、複数ロットごとに処理液の充填制御、ガスノズル70の洗浄制御、及び処理液の排出制御を実行してもよい。 In the example of FIG. 9, the control unit 7 executes filling control of the processing liquid, cleaning control of the gas nozzle 70, and discharge control of the processing liquid for each process of one lot. Filling control of the processing liquid, cleaning control of the gas nozzle 70, and discharging control of the processing liquid may be executed for each lot.
 (処理液の充填手順)
 続いて、上記ステップS01における処理液43の充填制御の詳細な手順を説明する。図10は、処理液の充填手順を示すフローチャートである。図10に示すように、制御部7は、まずステップS11を実行する。ステップS11では、液供給制御部111が、処理槽41への処理液43の充填を開始するように処理液供給部44を制御する。例えば、液供給制御部111は、処理槽41が空であり、開閉弁69が閉じた状態にて、流量調節器46を開いて外槽42内への処理液43の供給を開始し、供給ポンプ52を駆動させて外槽42から処理槽41への送液を開始するように処理液供給部44を制御する。
(Processing liquid filling procedure)
Next, a detailed procedure of filling control of the treatment liquid 43 in step S01 will be described. FIG. 10 is a flow chart showing the process liquid filling procedure. As shown in FIG. 10, the controller 7 first executes step S11. In step S<b>11 , the liquid supply control unit 111 controls the processing liquid supply unit 44 so as to start filling the processing bath 41 with the processing liquid 43 . For example, the liquid supply controller 111 opens the flow controller 46 to start supplying the processing liquid 43 into the outer tank 42 in a state where the processing tank 41 is empty and the on-off valve 69 is closed. The processing liquid supply unit 44 is controlled so that the pump 52 is driven to start feeding the liquid from the outer bath 42 to the processing bath 41 .
 次に、制御部7はステップS12を実行する。ステップS12では、オン・オフ制御部115が、次に開くべき開閉弁92について予め設定された開弁時間を待機する。開閉弁92の開弁時間は、当該開閉弁92に対応するガスノズル70の吐出孔77に液面が到達する前の時間に設定されており、レシピ記憶部119に記憶されている。開閉弁92の開弁時間は、対応するガスノズル70の高さに応じて異なっており、ガスノズル70が高位にあるほど長時間となっている。 Next, the control unit 7 executes step S12. In step S12, the on/off control unit 115 waits for a preset valve opening time for the on-off valve 92 to be opened next. The opening time of the on-off valve 92 is set to the time before the liquid surface reaches the discharge hole 77 of the gas nozzle 70 corresponding to the on-off valve 92 , and is stored in the recipe storage unit 119 . The opening time of the on-off valve 92 differs depending on the height of the corresponding gas nozzle 70, and the higher the gas nozzle 70 is, the longer the opening time is.
 次に、制御部7はステップS13を実行する。ステップS13では、オン・オフ制御部115が、ステップS12にて開弁時間の経過した開閉弁92を閉状態から開状態に切り替えるようにガス供給部89を制御する。 Next, the control unit 7 executes step S13. In step S13, the on/off control unit 115 controls the gas supply unit 89 so that the on-off valve 92 whose opening time has elapsed in step S12 is switched from the closed state to the open state.
 次に、制御部7はステップS14を実行する。ステップS14では、オン・オフ制御部115が、全ガスノズル70の開閉弁92が開かれたか否かを確認する。 Next, the control unit 7 executes step S14. In step S14, the on/off control unit 115 confirms whether or not the on-off valves 92 of all the gas nozzles 70 are opened.
 ステップS14において、未開の開閉弁92が残っていると判定した場合、制御部7は手順をステップS12に戻す。以後、すべての開閉弁92が開かれるまで、制御部7は、開弁時間の待機と開閉弁92の開放とを繰り返す。これにより、低位のガスノズル70の開閉弁92から順に開かれる。より具体的に、処理液43の液面がガスノズル70Aの吐出孔77に到達する前に開閉弁92Aが開かれ、ガスノズル70Aの吐出孔77を通過した液面がガスノズル70Bの吐出孔77に到達する前に開閉弁92Bが開かれ、ガスノズル70Bの吐出孔77を通過した液面がガスノズル70Cの吐出孔77に到達する前に開閉弁92Cが開かれる。 If it is determined in step S14 that the on-off valve 92 remains unopened, the control unit 7 returns the procedure to step S12. Thereafter, until all the on-off valves 92 are opened, the control unit 7 repeats waiting for the valve opening time and opening the on-off valves 92 . As a result, the on-off valves 92 of the gas nozzles 70 at the lower level are sequentially opened. More specifically, the on-off valve 92A is opened before the liquid surface of the processing liquid 43 reaches the discharge hole 77 of the gas nozzle 70A, and the liquid surface passing through the discharge hole 77 of the gas nozzle 70A reaches the discharge hole 77 of the gas nozzle 70B. Before the on-off valve 92B is opened, the on-off valve 92C is opened before the liquid surface that has passed through the discharge hole 77 of the gas nozzle 70B reaches the discharge hole 77 of the gas nozzle 70C.
 ステップS14において、すべての開閉弁92が開かれたと判定した場合、制御部7はステップS15を実行する。ステップS15では、液供給制御部111が、予め設定された充填時間の経過を待機する。充填時間は、処理液43の液面が第二高さH2に到達する時間以降に設定されており、レシピ記憶部119に記憶されている。 When it is determined in step S14 that all the on-off valves 92 have been opened, the controller 7 executes step S15. In step S15, the liquid supply control unit 111 waits until the preset filling time elapses. The filling time is set after the time when the liquid surface of the treatment liquid 43 reaches the second height H2, and is stored in the recipe storage unit 119 .
 次に、制御部7はステップS16を実行する。ステップS16では、液供給制御部111が、処理液43の循環制御を開始する。処理液43の循環制御は、供給ポンプ52の駆動を継続させることで、処理槽41から外槽42に溢れた処理液43を処理槽41の下部に還流させるように処理液供給部44を制御することを含む。当該循環制御において、液供給制御部111は、濃度センサ58により検出された処理液43の濃度に応じて純水用の流量調節器48の開度を調節するように処理液供給部44を制御することを実行してもよい。以上で、上記ステップS01が完了する。 Next, the control unit 7 executes step S16. In step S<b>16 , the liquid supply controller 111 starts circulation control of the processing liquid 43 . The circulation of the processing liquid 43 is controlled by continuing to drive the supply pump 52 to control the processing liquid supply unit 44 so that the processing liquid 43 overflowing from the processing tank 41 into the outer tank 42 is circulated to the lower part of the processing tank 41. including doing In the circulation control, the liquid supply control unit 111 controls the processing liquid supply unit 44 so as to adjust the opening of the pure water flow rate regulator 48 according to the concentration of the processing liquid 43 detected by the concentration sensor 58 . You can do what you do. Above, the said step S01 is completed.
 (ガスノズルの洗浄手順)
 続いて、上記ステップS02におけるガスノズル70の洗浄制御の詳細な手順を説明する。図11は、ノズル洗浄手順を示すフローチャートである。図11に示すように、制御部7は、まずステップS21を実行する。ステップS21では、洗浄制御部118が、開閉弁92を閉じてガスノズル70へのガスの供給を中断するようにガス供給部89を制御する。
(Gas nozzle cleaning procedure)
Next, a detailed procedure of cleaning control of the gas nozzle 70 in step S02 will be described. FIG. 11 is a flow chart showing the nozzle cleaning procedure. As shown in FIG. 11, the controller 7 first executes step S21. In step S<b>21 , the cleaning control unit 118 controls the gas supply unit 89 so as to close the on-off valve 92 and interrupt the gas supply to the gas nozzle 70 .
 次に、制御部7はステップS22を実行する。ステップS22では、洗浄制御部118は、ガスノズル70の本体71内に処理液43を吸引し得る圧力まで本体71の内圧を低下させるようにガス抜き部95を制御する。例えば洗浄制御部118は、減圧弁97を閉状態から開状態にするようにガス抜き部95を制御する。 Next, the control unit 7 executes step S22. In step S<b>22 , the cleaning control unit 118 controls the degassing unit 95 so as to reduce the internal pressure of the main body 71 of the gas nozzle 70 to a pressure at which the treatment liquid 43 can be sucked into the main body 71 . For example, the cleaning control unit 118 controls the degassing unit 95 to open the pressure reducing valve 97 from the closed state.
 次に、制御部7はステップS23を実行する。ステップS23では、洗浄制御部118が、予め設定された減圧時間を待機する。減圧時間は、洗浄に適した量の処理液43が本体71内に吸引されるように設定されており、レシピ記憶部119に記憶されている。 Next, the control unit 7 executes step S23. In step S23, the cleaning control unit 118 waits for a preset decompression time. The depressurization time is set so that an amount of the treatment liquid 43 suitable for cleaning is sucked into the main body 71 and is stored in the recipe storage unit 119 .
 次に、制御部7はステップS24を実行する。ステップS24では、洗浄制御部118が、本体71内の減圧を停止するようにガス抜き部95を制御する。例えば洗浄制御部118は、減圧弁97を開状態から閉状態にするようにガス抜き部95を制御する。 Next, the control unit 7 executes step S24. In step S<b>24 , the cleaning control unit 118 controls the degassing unit 95 so as to stop reducing the pressure inside the main body 71 . For example, the cleaning control unit 118 controls the degassing unit 95 to close the pressure reducing valve 97 from the open state.
 次に、制御部7はステップS25を実行する。ステップS25では、洗浄制御部118が、予め設定された洗浄時間を待機する。洗浄時間は、本体71内に吸引された処理液43による洗浄効果が十分に得られるように設定されており、レシピ記憶部119に記憶されている。 Next, the control unit 7 executes step S25. In step S25, the cleaning control unit 118 waits for a preset cleaning time. The cleaning time is set so that the treatment liquid 43 sucked into the main body 71 has a sufficient cleaning effect, and is stored in the recipe storage unit 119 .
 次に、制御部7はステップS26を実行する。ステップS26では、洗浄制御部118が、本体71内の処理液43を排出し得る圧力まで本体71の内圧を上昇させるようにガス供給部89を制御する。例えば洗浄制御部118は、開閉弁92を開いてガスノズル70へのガスの供給を再開するようにガス供給部89を制御する。 Next, the control unit 7 executes step S26. In step S<b>26 , the cleaning control unit 118 controls the gas supply unit 89 so as to increase the internal pressure of the main body 71 to a pressure that allows the treatment liquid 43 in the main body 71 to be discharged. For example, the cleaning control unit 118 controls the gas supply unit 89 to open the on-off valve 92 and restart the gas supply to the gas nozzle 70 .
 次に、制御部7はステップS27を実行する。ステップS27では、洗浄制御部118が、予め設定された排液時間を待機する。排液時間は、本体71内に吸引された処理液43を十分に排液できるように設定されており、レシピ記憶部119に記憶されている。以上で上記ステップS02が完了する。 Next, the control unit 7 executes step S27. In step S27, the cleaning control unit 118 waits for a preset drainage time. The liquid draining time is set so that the processing liquid 43 sucked into the main body 71 can be sufficiently drained, and is stored in the recipe storage unit 119 . The above step S02 is completed.
 (基板の浸漬手順)
 続いて、上記ステップS03における基板8の浸漬制御の詳細な手順を説明する。図12は、浸漬処理手順を示すフローチャートである。図12に示すように、制御部7は、まずステップS31を実行する。ステップS31では、浸漬制御部113が、複数の基板8を処理液43の液面より上に位置させる高さから、当該複数の基板8を処理液43内に浸漬する高さまで、複数の支持アーム87を下降させるように基板昇降機構36を制御する。
(Substrate immersion procedure)
Next, a detailed procedure for controlling the immersion of the substrate 8 in step S03 will be described. FIG. 12 is a flow chart showing the immersion treatment procedure. As shown in FIG. 12, the controller 7 first executes step S31. In step S<b>31 , the immersion control unit 113 moves the plurality of support arms from a height at which the plurality of substrates 8 are positioned above the liquid surface of the processing liquid 43 to a height at which the plurality of substrates 8 are immersed in the processing liquid 43 . The substrate lifting mechanism 36 is controlled so that the substrate 87 is lowered.
 次に、制御部7はステップS32を実行する。ステップS32では、浸漬制御部113が、予め設定された処理時間の経過を待機する。処理時間は、必要とされるエッチングの程度に応じて設定され、レシピ記憶部119に記憶されている。 Next, the control unit 7 executes step S32. In step S32, the immersion control unit 113 waits for the preset processing time to elapse. The processing time is set according to the degree of etching required and stored in the recipe storage unit 119 .
 次に、制御部7はステップS33を実行する。ステップS33では、浸漬制御部113が、複数の基板8を処理液43内に浸漬する高さから、当該複数の基板8を処理液43の液面より上に位置させる高さまで、複数の支持アーム87を上昇させるように基板昇降機構36を制御する。以上で上記ステップS03が完了する。 Next, the control unit 7 executes step S33. In step S<b>33 , the immersion control unit 113 moves the plurality of support arms from a height at which the plurality of substrates 8 are immersed in the processing liquid 43 to a height at which the plurality of substrates 8 are positioned above the liquid surface of the processing liquid 43 . The substrate elevating mechanism 36 is controlled so that the substrate 87 is lifted. The above step S03 is completed.
 (基板の浸漬中におけるガス供給部の制御手順)
 基板8の浸漬制御に並行して、制御部7は、ガス供給部89によるガスの供給量の制御を実行する。以下、ガスの供給量の制御手順を説明する。図13は、ガス供給量の制御手順を示すフローチャートである。図13に示すように、制御部7は、まずステップS41を実行する。ステップS41では、目標値設定部116が、処理液43の気体含有量の目標値をレシピ記憶部119から取得する。
(Procedure for controlling the gas supply section while the substrate is immersed)
In parallel with the immersion control of the substrate 8 , the control section 7 controls the amount of gas supplied by the gas supply section 89 . The procedure for controlling the gas supply amount will be described below. FIG. 13 is a flow chart showing the procedure for controlling the amount of gas supply. As shown in FIG. 13, the controller 7 first executes step S41. In step S<b>41 , the target value setting unit 116 acquires the target value of the gas content of the treatment liquid 43 from the recipe storage unit 119 .
 上述の通り、レシピ記憶部119には、基板8同士の間隔に応じて異なる目標値が記憶されていてもよい。この場合、目標値設定部116は、基板8同士の間隔に応じて目標値を変えることとなる。 As described above, the recipe storage unit 119 may store different target values depending on the spacing between the substrates 8 . In this case, the target value setting section 116 changes the target value according to the distance between the substrates 8 .
 次に、制御部7はステップS42を実行する。ステップS42では、追従制御部117が、処理液43の気体含有量に関する情報を液位センサ80から取得する。 Next, the control unit 7 executes step S42. In step S<b>42 , the follow-up control unit 117 acquires information about the gas content of the treatment liquid 43 from the liquid level sensor 80 .
 次に、制御部7はステップS43を実行する。ステップS43では、追従制御部117が、処理液43の気体含有量を目標値に近付けるように、ガス供給部89からガスノズル70へのガスの供給量を設定する。例えば、追従制御部117は、ステップS42において取得された情報に基づいて、処理液43の気体含有量の現在値を算出し、目標値と現在値との偏差を算出し、当該偏差に比例演算、比例・積分演算、又は比例・積分・微分演算を施して流量調節器93の開度を算出する。 Next, the control unit 7 executes step S43. In step S43, the follow-up control unit 117 sets the amount of gas supplied from the gas supply unit 89 to the gas nozzle 70 so that the gas content of the processing liquid 43 approaches the target value. For example, the follow-up control unit 117 calculates the current value of the gas content of the treatment liquid 43 based on the information acquired in step S42, calculates the deviation between the target value and the current value, and computes the deviation proportionally. , proportional/integral calculation or proportional/integral/differential calculation is performed to calculate the opening of the flow rate regulator 93 .
 追従制御部117は、ガスノズル70の配置位置に応じて、ガス供給部89からガスノズル70へのガスの供給量を変えてもよい。例えば、追従制御部117は、上記幅方向の中心を基準としたガスノズル70の位置に応じて、当該ガスノズル70に対応する流量調節器93の開度設定値を変えてもよい。すなわち、追従制御部117は、ガスノズル70の配置位置が上記幅方向の中心から遠ざかるにつれて流量調節器93の開度設定値を大きくしてもよいし、ガスノズル70の配置位置が上記幅方向の中心から遠ざかるにつれて流量調節器93の開度設定値を小さくしてもよい。より具体的に、追従制御部117は、ガスノズル70A,70B,70Cへのガスの供給量を相違させるように、流量調節器93A,93B,93Cの開度を相違させてもよい。 The follow-up control unit 117 may change the amount of gas supplied from the gas supply unit 89 to the gas nozzle 70 according to the arrangement position of the gas nozzle 70 . For example, the follow-up control unit 117 may change the opening setting value of the flow controller 93 corresponding to the gas nozzle 70 according to the position of the gas nozzle 70 with respect to the center in the width direction. That is, the follow-up control unit 117 may increase the opening setting value of the flow rate regulator 93 as the arrangement position of the gas nozzle 70 moves away from the center in the width direction. The opening setting value of the flow rate regulator 93 may be decreased as the distance from the point increases. More specifically, the follow-up control unit 117 may vary the opening degrees of the flow controllers 93A, 93B, 93C so as to vary the amount of gas supplied to the gas nozzles 70A, 70B, 70C.
 次に、制御部7はステップS44を実行する。ステップS44では、追従制御部117が、ステップS43にて設定された開度設定値に応じて流量調節器93の開度を調節するようにガス供給部89を制御する。 Next, the control unit 7 executes step S44. In step S44, the follow-up control unit 117 controls the gas supply unit 89 so as to adjust the opening of the flow rate regulator 93 according to the opening setting value set in step S43.
 次に、制御部7はステップS45を実行する。ステップS45では、基板8の浸漬が開始された後の経過時間が目標値の変更タイミングに到達したか否かを目標値設定部116が確認する。目標値設定部116は、経過時間の情報を浸漬制御部113から取得し、目標値の変更タイミングの情報をレシピ記憶部119から取得する。 Next, the control unit 7 executes step S45. In step S45, the target value setting unit 116 checks whether or not the elapsed time after the start of the immersion of the substrate 8 has reached the change timing of the target value. The target value setting unit 116 acquires information on the elapsed time from the immersion control unit 113 and acquires information on timing of changing the target value from the recipe storage unit 119 .
 ステップS45において、経過時間が目標値の変更タイミングに到達したと判定した場合、制御部7はステップS46を実行する。ステップS46では、目標値設定部116が、処理液43の気体含有量の目標値を変更する。例えば目標値設定部116は、変更タイミング以降における処理液43の気体含有量の目標値をレシピ記憶部119から取得する。 When it is determined in step S45 that the elapsed time has reached the change timing of the target value, the control unit 7 executes step S46. In step S<b>46 , the target value setting unit 116 changes the target value of the gas content of the treatment liquid 43 . For example, the target value setting unit 116 acquires the target value of the gas content of the treatment liquid 43 after the change timing from the recipe storage unit 119 .
 次に、制御部7はステップS47を実行する。ステップS45において、経過時間が目標値の変更タイミングに到達していないと判定した場合、制御部7はステップS46を実行することなくステップS47を実行する。ステップS47では、基板8の浸漬が完了したか否かを目標値設定部116が確認する。目標値設定部116は、基板8の浸漬が完了したか否かを示す情報を浸漬制御部113から取得する。 Next, the control unit 7 executes step S47. When it is determined in step S45 that the elapsed time has not reached the change timing of the target value, the control unit 7 executes step S47 without executing step S46. In step S47, the target value setting unit 116 confirms whether the immersion of the substrate 8 has been completed. The target value setting unit 116 acquires information indicating whether the immersion of the substrate 8 has been completed from the immersion control unit 113 .
 ステップS47において、基板8の浸漬が完了していないと判定した場合、制御部7は手順をステップS42に戻す。以後、基板8の浸漬が完了するまで、処理液43の気体含有量を目標値に近付ける制御と、経過時間に応じて目標時間を変更することとが繰り返される。 If it is determined in step S47 that the immersion of the substrate 8 has not been completed, the controller 7 returns the procedure to step S42. After that, until the immersion of the substrate 8 is completed, the control to bring the gas content of the processing liquid 43 close to the target value and the change of the target time according to the elapsed time are repeated.
 ステップS47において、基板8の浸漬が完了したと判定した場合、制御部7はガスの供給量の制御を完了する。 When it is determined in step S47 that the immersion of the substrate 8 has been completed, the controller 7 completes control of the gas supply amount.
 (処理液の排出手順)
 続いて、上記ステップS04における処理液43の排出制御の詳細な手順を説明する。図14は、処理液の排出手順を示すフローチャートである。図14に示すように、制御部7は、まずステップS51を実行する。ステップS51では、排液制御部112が、処理槽41からの処理液43の排出を開始するように処理液供給部44及び処理液排出部67を制御する。例えば排液制御部112は、流量調節器46及び流量調節器48を閉じて処理液43及び純水の供給を停止するように処理液供給部44を制御した後、開閉弁69を閉状態から開状態にして処理槽41からの処理液43の排出を開始するように処理液排出部67を制御する。
(Processing liquid discharge procedure)
Next, a detailed procedure for controlling the discharge of the treatment liquid 43 in step S04 will be described. FIG. 14 is a flow chart showing the procedure for discharging the treatment liquid. As shown in FIG. 14, the controller 7 first executes step S51. In step S<b>51 , the liquid discharge control section 112 controls the processing liquid supply section 44 and the processing liquid discharge section 67 so as to start discharging the processing liquid 43 from the processing tank 41 . For example, the liquid discharge control unit 112 closes the flow rate regulators 46 and 48 to stop the supply of the processing liquid 43 and pure water, and then closes the on-off valve 69. The processing liquid discharge unit 67 is controlled so as to open and start discharging the processing liquid 43 from the processing tank 41 .
 次に、制御部7はステップS52を実行する。ステップS52では、オン・オフ制御部115が、次に閉じるべき開閉弁92について予め設定された閉弁時間を待機する。開閉弁92の閉弁時間は、当該開閉弁92に対応するガスノズル70の吐出孔77を液面が通過する時以降の時間に設定されており、レシピ記憶部119に記憶されている。開閉弁92の閉弁時間は、対応するガスノズル70の高さに応じて異なっており、ガスノズル70が低位にあるほど長時間となっている。 Next, the control unit 7 executes step S52. In step S52, the on/off control unit 115 waits for a preset valve closing time for the open/close valve 92 to be closed next. The closing time of the on-off valve 92 is set to the time after the liquid surface passes through the discharge hole 77 of the gas nozzle 70 corresponding to the on-off valve 92 , and is stored in the recipe storage unit 119 . The closing time of the on-off valve 92 differs depending on the height of the corresponding gas nozzle 70, and the lower the gas nozzle 70 is, the longer the closing time is.
 次に、制御部7はステップS53を実行する。ステップS53では、オン・オフ制御部115が、ステップS52にて閉弁時間の経過した開閉弁92を開状態から閉状態に切り替えるようにガス供給部89を制御する。 Next, the control unit 7 executes step S53. In step S53, the on/off control unit 115 controls the gas supply unit 89 so that the on-off valve 92 whose closing time has elapsed in step S52 is switched from the open state to the closed state.
 次に、制御部7はステップS54を実行する。ステップS54では、オン・オフ制御部115が、全ガスノズル70の開閉弁92が閉じられたか否かを確認する。 Next, the control unit 7 executes step S54. In step S54, the on/off control unit 115 confirms whether or not the on-off valves 92 of all the gas nozzles 70 are closed.
 ステップS54において、開いた開閉弁92が残っていると判定した場合、制御部7は手順をステップS52に戻す。以後、すべての開閉弁92が閉じられるまで、閉弁時間の待機と開閉弁92の閉塞とが繰り返される。これにより、高位のガスノズル70の開閉弁92から順に閉じられる。より具体的に、処理液43の液面がガスノズル70Cの吐出孔77を通過した後に開閉弁92Cが閉じられ、ガスノズル70Cの吐出孔77を通過した液面がガスノズル70Bの吐出孔77を通過した後に開閉弁92Bが閉じられ、ガスノズル70Bの吐出孔77を通過した液面がガスノズル70Aの吐出孔77を通過した後に開閉弁92Aが閉じられる。 If it is determined in step S54 that the on-off valve 92 remains open, the control unit 7 returns the procedure to step S52. After that, waiting for the valve closing time and closing the on-off valves 92 are repeated until all the on-off valves 92 are closed. As a result, the on-off valves 92 of the gas nozzles 70 at the higher level are sequentially closed. More specifically, the on-off valve 92C is closed after the liquid surface of the processing liquid 43 passes through the discharge hole 77 of the gas nozzle 70C, and the liquid surface passing through the discharge hole 77 of the gas nozzle 70C passes through the discharge hole 77 of the gas nozzle 70B. After the opening/closing valve 92B is closed, the opening/closing valve 92A is closed after the liquid level passing through the discharge hole 77 of the gas nozzle 70B passes through the discharge hole 77 of the gas nozzle 70A.
 ステップS54において、すべての開閉弁92が閉じられたと判定した場合、制御部7はステップS55を実行する。ステップS55では、排液制御部112が、予め設定された排液時間の経過を待機する。排液時間は、処理液43の液面が第一高さH1に到達する時間以降に設定されており、レシピ記憶部119に記憶されている。 When it is determined in step S54 that all the on-off valves 92 are closed, the control section 7 executes step S55. In step S55, the drainage control unit 112 waits until a preset drainage time elapses. The liquid draining time is set after the liquid level of the treatment liquid 43 reaches the first height H1, and is stored in the recipe storage unit 119 .
 次に、制御部7はステップS56を実行する。ステップS56では、排液制御部112が、供給ポンプ52の駆動を停止するように処理液供給部44を制御し、開閉弁69を閉じるように処理液排出部67を制御する。以上で、上記ステップS04が完了する。 Next, the control unit 7 executes step S56. In step S<b>56 , the liquid discharge controller 112 controls the processing liquid supply section 44 to stop driving the supply pump 52 and controls the processing liquid discharge section 67 to close the on-off valve 69 . Above, the said step S04 is completed.
 〔実施形態の効果〕
 続いて、実施形態の効果について説明する。図15は、液体誘導部材200の機能の一例を示す図である。
[Effect of Embodiment]
Next, effects of the embodiment will be described. 15A and 15B are diagrams showing an example of the function of the liquid guide member 200. FIG.
 ガスノズル70の本体71を流れてきたガス250は、図15(a)に示すように、吐出孔77に挿入された基部220の内部の空間を流れ、基部220から誘導部210の内部の空間215に入り込む。誘導部210に入り込んだガス250には、基部220が延びる方向(第1方向)の圧力が作用する。誘導部210に入り込んだガス250は、圧力によって第1開口211から第2開口212に向かって流れる。また、第2開口212の近傍において、ガス250の連続した流れが泡状に変化する。また、ガス250の移動に伴って、空間215の圧力が低下する。 Gas 250 flowing through main body 71 of gas nozzle 70, as shown in FIG. get into Gas 250 that has entered guide portion 210 is subjected to pressure in the direction in which base portion 220 extends (first direction). The gas 250 that has entered the guiding portion 210 flows from the first opening 211 toward the second opening 212 due to pressure. Also, in the vicinity of the second opening 212, the continuous flow of gas 250 changes into bubbles. Also, the pressure in the space 215 decreases as the gas 250 moves.
 空間215の圧力が低下すると、図15(b)に示すように、誘導部210の下端と本体71との間の隙間から処理液43が空間215に誘導される(矢印251)。つまり、誘導部210によって、吐出孔77の周囲の処理液43が第1方向に流れるように誘導される。 When the pressure in the space 215 decreases, as shown in FIG. 15(b), the treatment liquid 43 is guided into the space 215 through the gap between the lower end of the guide portion 210 and the main body 71 (arrow 251). That is, the guiding portion 210 guides the processing liquid 43 around the ejection hole 77 to flow in the first direction.
 処理液43が第1方向に流れるように誘導されると、泡状に変化してきたガス250に処理液43の流動に伴う圧力が作用する。従って、ガス250の泡状に変化した部分には、本体71からの第1方向の圧力に加えて、処理液43の流動に伴う第1方向の圧力が作用し、図15(c)に示すように、第2開口212からガス250が泡255となって処理液43中に吐出される。泡255には、処理液43の流動に伴う第1方向の圧力が作用するため、泡255の吐出直後の直進性を向上することができる。また、泡255の吐出に伴って、処理液43は第2開口212から誘導部210の外側に流れ出すように誘導される(矢印252)。 When the treatment liquid 43 is guided to flow in the first direction, the pressure associated with the flow of the treatment liquid 43 acts on the gas 250 that has changed into bubbles. Therefore, in addition to the pressure in the first direction from the main body 71, the pressure in the first direction due to the flow of the processing liquid 43 acts on the portion of the gas 250 that has changed into a bubble shape, as shown in FIG. 15(c). As shown, the gas 250 is discharged into the processing liquid 43 from the second opening 212 as bubbles 255 . Since the pressure in the first direction due to the flow of the treatment liquid 43 acts on the bubbles 255, the straightness of the bubbles 255 immediately after being discharged can be improved. In addition, as the bubbles 255 are ejected, the treatment liquid 43 is guided to flow out of the guide section 210 through the second opening 212 (arrow 252).
 なお、泡255が吐出された後には、再び、図15(a)に示す状態が得られ、ガス250の供給が継続している間、泡255の吐出が繰り返される。 After the bubbles 255 are discharged, the state shown in FIG. 15A is obtained again, and the discharge of the bubbles 255 is repeated while the supply of the gas 250 continues.
 そして、泡255の直進性の向上に伴って、処理液43の対流の制御性を向上できる。ここで、処理液43の対流の制御性について説明する。図16は、泡255の挙動を示す模式図である。図16(a)は液体誘導部材200が設けられていない場合の泡255の挙動を示し、図16(a)は液体誘導部材200が設けられている場合の泡255の挙動を示す。ここでは、液体誘導部材200の有無に拘わらず、処理液43に同程度に不規則な流動が存在するとする。なお、図16(a)及び(b)中の矢印260は、設計上の泡255の移動方向を示す。 Further, as the bubbles 255 improve in straightness, the controllability of the convection of the treatment liquid 43 can be improved. Here, controllability of the convection of the treatment liquid 43 will be described. FIG. 16 is a schematic diagram showing the behavior of bubbles 255. As shown in FIG. 16(a) shows the behavior of bubbles 255 when the liquid guide member 200 is not provided, and FIG. 16(a) shows the behavior of the bubbles 255 when the liquid guide member 200 is provided. Here, regardless of the presence or absence of the liquid guide member 200, it is assumed that the treatment liquid 43 has an irregular flow to the same degree. An arrow 260 in FIGS. 16(a) and 16(b) indicates the moving direction of the foam 255 in design.
 液体誘導部材200が設けられていない場合、吐出孔77から吐出される泡255には、本体71からの圧力が作用する。この場合、図16(a)に示すように、一部の泡255は矢印260に沿って処理液43中を移動するが、他の一部の泡255は、処理液43の不規則な流動に十分に逆らえずに、本体71の矢印260とは反対側に移動し得る。 When the liquid guide member 200 is not provided, the pressure from the main body 71 acts on the bubbles 255 ejected from the ejection holes 77 . In this case, as shown in FIG. 16( a ), some bubbles 255 move in the processing liquid 43 along arrows 260 , while some other bubbles 255 are caused by the irregular flow of the processing liquid 43 . It can move to the opposite side of arrow 260 of body 71 without fully resisting.
 一方、液体誘導部材200が設けられている場合には、液体誘導部材200から吐出される泡255には、本体71からの圧力に加えて液体誘導部材200に誘導された処理液43の流動に伴う圧力が作用する。このため、図16(b)に示すように、処理液43の不規則な流動に十分に逆らえずに、本体71の矢印260とは反対側に移動する泡255の発生を抑制し、ほとんどの泡255を矢印260に沿って移動させることができる。 On the other hand, when the liquid guide member 200 is provided, the bubbles 255 discharged from the liquid guide member 200 are affected by the flow of the processing liquid 43 guided by the liquid guide member 200 in addition to the pressure from the main body 71 . The accompanying pressure acts. Therefore, as shown in FIG. 16(b), generation of bubbles 255 moving in the direction opposite to the arrow 260 of the main body 71 without sufficiently resisting the irregular flow of the treatment liquid 43 is suppressed, and most of the bubbles 255 Bubble 255 can be moved along arrow 260 .
 このように、本実施形態によれば、ガス250の吐出による処理液43の対流の制御性を向上できる。 As described above, according to the present embodiment, the controllability of the convection of the processing liquid 43 caused by the discharge of the gas 250 can be improved.
 図17は、液体誘導部材200の機能の他の一例を示す図である。図17(a)は液体誘導部材200が設けられていない場合の泡255の生成を示し、図17(a)は液体誘導部材200が設けられている場合の泡255の生成を示す。 17A and 17B are diagrams showing another example of the function of the liquid guide member 200. FIG. 17(a) shows the generation of bubbles 255 when the liquid guide member 200 is not provided, and FIG. 17(a) illustrates the generation of bubbles 255 when the liquid guide member 200 is provided.
 液体誘導部材200が設けられていない場合は、図17(a)に示すように、吐出孔77の近傍にて、ガス250の連続した流れが泡状に変化する。このとき、吐出孔77内でガス250の流れが細り、吐出孔77内に処理液43が流れ込む。 When the liquid guide member 200 is not provided, the continuous flow of the gas 250 changes into bubbles in the vicinity of the discharge hole 77, as shown in FIG. 17(a). At this time, the flow of the gas 250 narrows in the ejection holes 77 and the processing liquid 43 flows into the ejection holes 77 .
 一方、液体誘導部材200が設けられている場合には、図17(b)に示すように、第2開口212の近傍において、ガス250の連続した流れが泡状に変化する。このとき、主として誘導部210内でガス250の流れが細る。このため、吐出孔77内では、ガス250の流れが細りにくく、吐出孔77内に処理液43が流れ込みにくい。 On the other hand, when the liquid guide member 200 is provided, the continuous flow of the gas 250 changes into bubbles near the second opening 212 as shown in FIG. 17(b). At this time, the flow of the gas 250 narrows mainly within the guiding portion 210 . Therefore, the flow of the gas 250 is less likely to narrow within the ejection holes 77 , and the processing liquid 43 is less likely to flow into the ejection holes 77 .
 このように、本実施形態によれば、吐出孔77への処理液43の流れ込みを抑制できる。そして、処理液43の流れ込みの抑制により、吐出孔77の閉塞を抑制できる。 Thus, according to the present embodiment, it is possible to suppress the processing liquid 43 from flowing into the ejection holes 77 . By suppressing the inflow of the treatment liquid 43, clogging of the ejection holes 77 can be suppressed.
 また、本実施形態では、液体誘導部材200が、第1開口211及び第2開口212を備えた筒状の誘導部210を有するため、吐出孔77の周囲の処理液43を第1方向に誘導しやすい。 Further, in the present embodiment, the liquid guiding member 200 has the cylindrical guiding portion 210 having the first opening 211 and the second opening 212, so that the processing liquid 43 around the ejection hole 77 is guided in the first direction. It's easy to do.
 なお、ガス250の吐出方向(第1方向)から見たときに、誘導部210が吐出孔77を包囲することが好ましい。吐出孔77の周囲の処理液43をより安定して第1方向に誘導しやすいためである。 It is preferable that the guide portion 210 surrounds the ejection hole 77 when viewed from the ejection direction (first direction) of the gas 250 . This is because the treatment liquid 43 around the ejection holes 77 can be more stably guided in the first direction.
 第1方向から見たときに、第2開口212が吐出孔77と同心状に配置されていることが好ましい。吐出孔77の周囲の処理液43をより安定して第1方向に誘導しやすいためである。 The second opening 212 is preferably arranged concentrically with the discharge hole 77 when viewed from the first direction. This is because the treatment liquid 43 around the ejection holes 77 can be more stably guided in the first direction.
 第2開口212の開口面積は、吐出孔77の開口面積の0.9倍以上1.1倍以下であることが好ましい。液体誘導部材200が設けられていない場合と同程度のサイズの泡を発生しやすいためである。 The opening area of the second opening 212 is preferably 0.9 times or more and 1.1 times or less the opening area of the discharge hole 77 . This is because bubbles of the same size as when the liquid guide member 200 is not provided are likely to be generated.
 誘導部210の形状は、円錐台筒状であることが好ましい。吐出孔77の周囲の処理液43をより安定して第1方向に誘導しやすいためである。 The shape of the guiding part 210 is preferably a cylindrical truncated cone. This is because the treatment liquid 43 around the ejection holes 77 can be more stably guided in the first direction.
 また、本実施形態では、液体誘導部材200が着脱可能にガスノズル70に取り付けられているため、液体誘導部材200に閉塞等の不具合が生じた場合でも、容易に交換することができる。 In addition, in the present embodiment, the liquid guide member 200 is detachably attached to the gas nozzle 70, so even if the liquid guide member 200 has a problem such as clogging, it can be easily replaced.
 なお、基部220及び連結部230が設けられずに、誘導部210がガスノズル70に取り付けられていてもよい。 Note that the guiding portion 210 may be attached to the gas nozzle 70 without the base portion 220 and the connecting portion 230 being provided.
 また、液体誘導部材200の構成は上記のものに限定されない。図18は、液体誘導部材の変形例を示す断面図である。例えば、図18に示すように、液体誘導部材200が誘導部210の内側に、断面視で円状となるガス250の流れを、部分的に環状に変化させるガス流調整部214を含んでいてもよい。ガス流調整部214は、例えば連結部230により誘導部210に連結することができる。ガス流調整部214により、液体誘導部材200内を流れるガス250の流速を高めることができる。 Also, the configuration of the liquid guide member 200 is not limited to the above. FIG. 18 is a cross-sectional view showing a modification of the liquid guide member. For example, as shown in FIG. 18, the liquid guiding member 200 includes a gas flow adjusting portion 214 inside the guiding portion 210 that changes the flow of the gas 250, which is circular in cross section, into a partially annular shape. good too. The gas flow adjustment portion 214 may be connected to the guide portion 210 by a connection portion 230, for example. The gas flow adjuster 214 can increase the flow velocity of the gas 250 flowing through the liquid guide member 200 .
 また、ガスノズル70に取り付けられる複数の液体誘導部材200の間で、誘導部210の傾斜の角度が相違していてもよい。適宜、傾斜の角度を調整することで、泡255が移動する方向を制御し、処理液43の対流を制御することができる。ここで、傾斜の角度とは、第1開口211を含む面を基準とした、誘導部210の内壁面の角度をいう。 Further, the inclination angle of the guide portion 210 may be different among the plurality of liquid guide members 200 attached to the gas nozzle 70 . By appropriately adjusting the angle of inclination, the direction in which the bubbles 255 move can be controlled, and the convection of the treatment liquid 43 can be controlled. Here, the angle of inclination refers to the angle of the inner wall surface of the guide portion 210 with respect to the plane including the first opening 211 .
 液体誘導部材200の用途は、エッチング処理装置1のガスノズル70に限定されない。例えば、流体が内部を流れるノズルであって、液体に浸漬されて、当該液体内で流体を吐出するノズルに用いることができる。 The application of the liquid guide member 200 is not limited to the gas nozzle 70 of the etching processing apparatus 1. For example, it can be used as a nozzle in which a fluid flows and which is immersed in a liquid and ejects the fluid in the liquid.
 以上、好ましい実施の形態等について詳説したが、上述した実施の形態等に制限されることはなく、請求の範囲に記載された範囲を逸脱することなく、上述した実施の形態等に種々の変形及び置換を加えることができる。 Although the preferred embodiments and the like have been described in detail above, the present invention is not limited to the above-described embodiments and the like, and various modifications can be made to the above-described embodiments and the like without departing from the scope of the claims. and substitutions can be added.
 処理対象の基板はシリコンウエハに限られず、例えばガラス基板、マスク基板、FPD(Flat Panel Display)等であってもよい。また、エッチング処理装置1に関する構成を基板処理装置として詳細に示したが、同様の構成を洗浄処理装置25にも適用可能である。 The substrate to be processed is not limited to silicon wafers, and may be, for example, glass substrates, mask substrates, FPDs (Flat Panel Displays), and the like. Also, although the configuration of the etching processing apparatus 1 has been described in detail as a substrate processing apparatus, the same configuration can be applied to the cleaning processing apparatus 25 as well.
 本出願は、2021年2月19日に日本国特許庁に出願した特願2021-025018号に基づく優先権を主張するものであり、特願2021-025018号の全内容を本出願に援用する。 This application claims priority based on Japanese Patent Application No. 2021-025018 filed with the Japan Patent Office on February 19, 2021, and the entire contents of Japanese Patent Application No. 2021-025018 are incorporated into this application. .
 1 エッチング処理装置
 43 処理液
 70 ガスノズル
 71 本体
 77 吐出孔
 100 基板処理システム
 200 液体誘導部材
 210 誘導部
 211 第1開口
 212 第2開口
 214 ガス流調整部
 215 空間
 220 基部
 223 第3開口
 224 第4開口
 225 スペーサ
 230 連結部
 250 ガス
 255 泡
Reference Signs List 1 etching processing apparatus 43 processing liquid 70 gas nozzle 71 main body 77 discharge hole 100 substrate processing system 200 liquid guiding member 210 guiding section 211 first opening 212 second opening 214 gas flow adjusting section 215 space 220 base 223 third opening 224 fourth opening 225 Spacer 230 Connection 250 Gas 255 Bubble

Claims (13)

  1.  処理液及び基板を収容する処理槽と、
     前記処理槽内の下部にてガスを吐出する複数のガスノズルと、
     前記複数のガスノズルに前記ガスを供給するガス供給部と、
     を有し、
     前記ガスノズルは、前記処理槽の底面に沿って配置され、前記ガスを第1方向に吐出する複数の吐出孔が形成された管体を有し、
     前記吐出孔から吐出された前記ガスの移動に伴って、前記第1方向に流れるように前記吐出孔の周囲の前記処理液を誘導する液体誘導部材を有する基板処理装置。
    a processing tank containing a processing liquid and a substrate;
    a plurality of gas nozzles for discharging gas at a lower portion of the processing tank;
    a gas supply unit that supplies the gas to the plurality of gas nozzles;
    has
    The gas nozzle is arranged along the bottom surface of the processing bath and has a tubular body formed with a plurality of ejection holes for ejecting the gas in a first direction,
    A substrate processing apparatus comprising a liquid guiding member that guides the processing liquid around the ejection holes so as to flow in the first direction as the gas ejected from the ejection holes moves.
  2.  前記液体誘導部材は、
     第1開口と、
     前記第1方向で前記第1開口から離れて設けられた第2開口と、
     を備えた筒状の誘導部を有し、
     前記吐出孔から突出された前記ガスと、前記吐出孔の周囲の前記処理液とが、前記第1開口から前記第2開口に向けて前記第1方向に流れる請求項1に記載の基板処理装置。
    The liquid guide member is
    a first opening;
    a second opening spaced apart from the first opening in the first direction;
    having a cylindrical guiding part with
    2. The substrate processing apparatus according to claim 1, wherein said gas projecting from said ejection hole and said processing liquid around said ejection hole flow in said first direction from said first opening toward said second opening. .
  3.  前記第2開口の開口面積は、前記第1開口の開口面積よりも小さい請求項2に記載の基板処理装置。 The substrate processing apparatus according to claim 2, wherein the opening area of the second opening is smaller than the opening area of the first opening.
  4.  前記第1方向から見たときに、前記誘導部が前記吐出孔を包囲する請求項2又は3に記載の基板処理装置。 The substrate processing apparatus according to claim 2 or 3, wherein the guide portion surrounds the discharge hole when viewed from the first direction.
  5.  前記第1方向から見たときに、前記第2開口が前記吐出孔と同心状に配置されている請求項2乃至4のいずれか1項に記載の基板処理装置。 The substrate processing apparatus according to any one of claims 2 to 4, wherein the second opening is arranged concentrically with the ejection hole when viewed from the first direction.
  6.  前記第2開口の開口面積は、前記吐出孔の開口面積の0.9倍以上1.1倍以下である請求項2乃至5のいずれか1項に記載の基板処理装置。 The substrate processing apparatus according to any one of claims 2 to 5, wherein the opening area of the second opening is 0.9 times or more and 1.1 times or less the opening area of the discharge hole.
  7.  前記誘導部の形状は、円錐台筒状である請求項2乃至6のいずれか1項に記載の基板処理装置。 The substrate processing apparatus according to any one of Claims 2 to 6, wherein the shape of the guide portion is a cylindrical truncated cone.
  8.  前記ガスノズルの1つ当たりに前記液体誘導部材が複数設けられ、
     複数の前記液体誘導部材の間で、前記第1開口を含む面を基準とした、前記誘導部の内壁面の角度が相違している請求項2乃至7のいずれか1項に記載の基板処理装置。
    A plurality of the liquid guide members are provided for each of the gas nozzles,
    8. The substrate processing according to any one of claims 2 to 7, wherein angles of the inner wall surfaces of the guide portions with respect to a plane including the first opening are different among the plurality of liquid guide members. Device.
  9.  前記液体誘導部材は、
     前記第1開口から前記誘導部の外側に延出し、内部を前記ガスが流れる筒状の基部と、
     前記誘導部と前記基部とを連結する連結部と、
     を有し、
     前記基部が前記吐出孔に挿入されている請求項2乃至8のいずれか1項に記載の基板処理装置。
    The liquid guide member is
    a cylindrical base portion extending from the first opening to the outside of the guide portion and through which the gas flows;
    a connection portion that connects the guide portion and the base portion;
    has
    9. The substrate processing apparatus according to claim 2, wherein said base is inserted into said discharge hole.
  10.  前記液体誘導部材は、着脱自在に前記ガスノズルに取り付けられている請求項1乃至8のいずれか1項に記載の基板処理装置。 The substrate processing apparatus according to any one of claims 1 to 8, wherein the liquid guide member is detachably attached to the gas nozzle.
  11.  第1開口と、第1方向で前記第1開口から離れて設けられた第2開口と、を備えた筒状の誘導部と、
     前記第1開口から前記誘導部の外側に延出し、内部を流体が流れる筒状の基部と、
     前記誘導部と前記基部とを連結する連結部と、
     を有する液体誘導部材。
    a cylindrical guiding portion having a first opening and a second opening spaced apart from the first opening in a first direction;
    a cylindrical base portion extending from the first opening to the outside of the guide portion and through which a fluid flows;
    a connection portion that connects the guide portion and the base portion;
    a liquid directing member having a
  12.  液体に浸漬されて前記液体内で前記第1方向に流体を吐出するノズルの吐出孔に前記基部が挿入され、
     前記吐出孔から吐出された前記流体の移動に伴って、前記吐出孔の周囲の前記液体を前記第1方向に流れるように案内する請求項11に記載の液体誘導部材。
    the base is inserted into a discharge hole of a nozzle that is immersed in a liquid and discharges fluid in the liquid in the first direction;
    12. The liquid guide member according to claim 11, which guides the liquid around the ejection hole so as to flow in the first direction as the fluid ejected from the ejection hole moves.
  13.  前記誘導部の形状は、円錐台筒状である請求項11又は12に記載の液体誘導部材。 The liquid guide member according to claim 11 or 12, wherein the shape of the guide part is a cylindrical truncated cone.
PCT/JP2022/004829 2021-02-19 2022-02-08 Substrate processing device and liquid guide member WO2022176695A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202280014713.6A CN116848620A (en) 2021-02-19 2022-02-08 Substrate processing apparatus and liquid guiding member
JP2023500756A JPWO2022176695A1 (en) 2021-02-19 2022-02-08
KR1020237031012A KR20230145583A (en) 2021-02-19 2022-02-08 Substrate processing device and liquid guide member

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-025018 2021-02-19
JP2021025018 2021-02-19

Publications (1)

Publication Number Publication Date
WO2022176695A1 true WO2022176695A1 (en) 2022-08-25

Family

ID=82930867

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/004829 WO2022176695A1 (en) 2021-02-19 2022-02-08 Substrate processing device and liquid guide member

Country Status (4)

Country Link
JP (1) JPWO2022176695A1 (en)
KR (1) KR20230145583A (en)
CN (1) CN116848620A (en)
WO (1) WO2022176695A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH029124A (en) * 1988-06-28 1990-01-12 Nec Kyushu Ltd Washing device for semiconductor substrate with water
US5044559A (en) * 1988-11-02 1991-09-03 United Technologies Corporation Gas assisted liquid atomizer
JP2007281358A (en) * 2006-04-11 2007-10-25 Dainippon Screen Mfg Co Ltd Substrate treatment method, and substrate treatment apparatus

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6788542B2 (en) 2017-03-31 2020-11-25 東京エレクトロン株式会社 Substrate liquid processing equipment

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH029124A (en) * 1988-06-28 1990-01-12 Nec Kyushu Ltd Washing device for semiconductor substrate with water
US5044559A (en) * 1988-11-02 1991-09-03 United Technologies Corporation Gas assisted liquid atomizer
JP2007281358A (en) * 2006-04-11 2007-10-25 Dainippon Screen Mfg Co Ltd Substrate treatment method, and substrate treatment apparatus

Also Published As

Publication number Publication date
KR20230145583A (en) 2023-10-17
CN116848620A (en) 2023-10-03
JPWO2022176695A1 (en) 2022-08-25

Similar Documents

Publication Publication Date Title
CN108695208B (en) Substrate liquid processing apparatus
CN107017160B (en) Substrate liquid processing apparatus and substrate liquid processing method
CN109494152B (en) Substrate liquid processing apparatus, substrate liquid processing method, and storage medium
KR101545373B1 (en) Substrate processing apparatus, substrate processing method, and computer-readable recording medium having program for executing the substrate processing method recorded therein
KR102063322B1 (en) Apparatus and Method for treating a substrate
CN107492511B (en) Substrate liquid processing apparatus, substrate liquid processing method, and storage medium
KR102381166B1 (en) Substrate liquid processing apparatus, substrate liquid processing method, and storage medium
US10381246B2 (en) Substrate processing apparatus
KR102513202B1 (en) Substrate liquid processing apparatus, substrate liquid processing method, and computer-readable storage medium storing substrate liquid processing program
JP2019050349A (en) Substrate liquid processing apparatus, substrate liquid processing method and storage medium
CN109585335B (en) Apparatus and method for processing substrate
WO2022176695A1 (en) Substrate processing device and liquid guide member
JP6895295B2 (en) Substrate liquid treatment equipment, substrate liquid treatment method and storage medium
JP6805048B2 (en) Substrate liquid treatment equipment, substrate liquid treatment method and storage medium
JP7001804B2 (en) Substrate liquid treatment equipment, substrate liquid treatment method and storage medium
CN109494175B (en) Substrate liquid processing apparatus and storage medium
JP2019050360A (en) Substrate liquid processing device and storage medium
KR102343638B1 (en) Apparatus and method for treating substrate
KR102596286B1 (en) Method and apparatus for treating a substrate
JP7264858B2 (en) SUBSTRATE PROCESSING APPARATUS AND PROCESSING LIQUID SUPPLY METHOD
KR102643103B1 (en) Apparatus for treating substrate
KR20130023144A (en) Method and device for liquid level regulating in continuous system
KR20240065520A (en) Apparatus and Method for treating substrate
KR20240034713A (en) An apparatus for treating a substrate and method for treating a substrate
CN111540694A (en) Substrate processing apparatus and substrate processing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22756016

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023500756

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202280014713.6

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 20237031012

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020237031012

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22756016

Country of ref document: EP

Kind code of ref document: A1