WO2022176529A1 - 排ガス浄化用触媒 - Google Patents

排ガス浄化用触媒 Download PDF

Info

Publication number
WO2022176529A1
WO2022176529A1 PCT/JP2022/002682 JP2022002682W WO2022176529A1 WO 2022176529 A1 WO2022176529 A1 WO 2022176529A1 JP 2022002682 W JP2022002682 W JP 2022002682W WO 2022176529 A1 WO2022176529 A1 WO 2022176529A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust gas
filter
catalyst
gas purifying
pores
Prior art date
Application number
PCT/JP2022/002682
Other languages
English (en)
French (fr)
Inventor
凌 田▲崎▼
亮太 尾上
桃子 岩井
大和 松下
Original Assignee
株式会社キャタラー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社キャタラー filed Critical 株式会社キャタラー
Priority to EP22755853.3A priority Critical patent/EP4295948A1/en
Priority to CN202280015004.XA priority patent/CN116940416A/zh
Publication of WO2022176529A1 publication Critical patent/WO2022176529A1/ja
Priority to US18/355,016 priority patent/US20230356205A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/56Foraminous structures having flow-through passages or channels, e.g. grids or three-dimensional monoliths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/944Simultaneously removing carbon monoxide, hydrocarbons or carbon making use of oxidation catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/10Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of rare earths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/44Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/63Platinum group metals with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • B01J37/0219Coating the coating containing organic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • B01J37/0232Coating by pulverisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/024Multiple impregnation or coating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/022Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/033Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices
    • F01N3/035Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices with catalytic reactors, e.g. catalysed diesel particulate filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • F01N3/2803Construction of catalytic reactors characterised by structure, by material or by manufacturing of catalyst support
    • F01N3/2825Ceramics
    • F01N3/2828Ceramic multi-channel monoliths, e.g. honeycombs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1023Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/206Rare earth metals
    • B01D2255/2065Cerium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/209Other metals
    • B01D2255/2092Aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/40Mixed oxides
    • B01D2255/407Zr-Ce mixed oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/915Catalyst supported on particulate filters
    • B01D2255/9155Wall flow filters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/92Dimensions
    • B01D2255/9202Linear dimensions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/92Dimensions
    • B01D2255/9205Porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/01Engine exhaust gases
    • B01D2258/012Diesel engines and lean burn gasoline engines

Definitions

  • the present invention relates to an exhaust gas purifying catalyst.
  • Exhaust gases emitted by internal combustion engines contain harmful substances such as hydrocarbons (HC), carbon monoxide (CO) and nitrogen oxides (NO x ).
  • HC hydrocarbons
  • CO carbon monoxide
  • NO x nitrogen oxides
  • a straight-flow type exhaust gas purifying catalyst containing a platinum group metal as a catalytic metal is used.
  • diesel particulate filters are also used to remove PM from the exhaust gas for cleaning the exhaust gas emitted by the diesel engine.
  • These particulate filters include, for example, a wall-flow type exhaust gas purifying catalyst in which a supported catalyst is supported on the partition walls of the filter.
  • Patent Document 1 A wall-flow type exhaust gas purifying catalyst is described in Patent Document 1, for example.
  • Patent Document 1 for example, a powder made of a metal oxide is deposited only in the pores of the porous partition walls that are the filter walls of a wall-flow exhaust gas purification catalyst, and the maximum pore volume is 50% of the total pore volume. are described to be filled with the powder.
  • An object of the present invention is to provide a wall flow type exhaust gas purifying catalyst that has excellent PM trapping performance and small initial pressure loss.
  • a catalyst-coated filter including a filter substrate and a catalyst layer provided on the pore walls of the filter substrate, wherein a first end, a second end and a filter partition and an inlet cell and an outlet cell, wherein the filter partition is porous, the inlet cell extends from the first end toward the second end, and at the first end open and closed at the second end, the outlet cell extending from the second end toward the first end, open at the second end and closed at the first end;
  • the inlet-side cell and the outlet-side cell are adjacent to the catalyst-coated filter with the filter partition wall interposed therebetween, and are adjacent to the inlet-side cell of the filter partition wall in a cross section parallel to the thickness direction of the filter partition wall.
  • an exhaust gas purifying catalyst comprising powdery inorganic particles unevenly distributed on the surface.
  • the exhaust gas purifying catalyst is also referred to as a "powder-added catalyst-coated filter”.
  • the term "powder inorganic particles” may be in a state in which the particles are not fixed to each other or to another article, or such particles are fixed on another article by heat treatment or chemical treatment. It can be in the state of The inorganic particles may be primary particles or secondary particles.
  • a cross section of the porous partition wall of the exhaust gas purifying catalyst that is, a cross section of a portion of the exhaust gas purifying catalyst corresponding to the filter partition wall is imaged with a scanning electron microscope to obtain a grayscale image. This imaging is performed on a cross-section of a portion of the porous partition wall where the distance from the first end is equal to the distance from the second end.
  • the position analyzed by the energy dispersive X-ray spectrometer is specified in the grayscale image, and the intensity of characteristic X-rays derived from the elements contained only in the inorganic particles is measured.
  • the structure in which the inorganic particles are unevenly distributed as described above can be used to reduce pores with large opening diameters.
  • This exhaust gas purification catalyst is a particulate filter containing a catalyst layer. More specifically, in this exhaust gas purifying catalyst, the exhaust gas passes through the first cell, which is a space corresponding to the inlet-side cell of the exhaust gas purifying catalyst, the pores of the porous partition wall, and the exhaust gas purifying catalyst.
  • This is a wall-flow type exhaust gas purifying catalyst that sequentially passes through the second cells, which are spaces corresponding to the side cells, and collects PM in the exhaust gas with porous partition walls in the process.
  • wall-flow type exhaust gas purifying catalysts are used to remove PM from exhaust gases emitted by internal combustion engines such as gasoline engines and diesel engines.
  • wall-flow type exhaust gas purifying catalysts are used in self-propelled vehicles that include a gasoline engine or a diesel engine as at least part of the power source.
  • the catalyst layer is provided to promote the combustion of PM trapped by the filter partition wall.
  • the catalyst layer is particularly sensitive to the gasoline engine, such as when driving in the suburbs or on the highway. accelerates the combustion of the trapped PM during high-load operation periods during which exhaust gas is discharged at high temperatures.
  • the exhaust gas emitted by a diesel engine has a lower temperature than the exhaust gas emitted by a gasoline engine. Therefore, in a diesel automobile equipped with a wall-flow type exhaust gas purification catalyst, the power generated in the diesel engine is used as a propulsion force, and the temperature of the exhaust gas is raised by injecting fuel into the exhaust gas, and the collected Burn PM.
  • the catalyst layer promotes this combustion and thus contributes to reducing the fuel injected into the exhaust gas.
  • the exhaust gas purifying catalyst in which the powdery inorganic particles are unevenly distributed on the surface of the filter partition wall can exhibit the effects described below.
  • the catalyst layer can promote PM combustion, but the catalyst layer does not always sufficiently promote PM combustion.
  • the catalyst layer when driving a short distance by repeating stop-and-go, the amount of trapped PM exceeds the amount of combusted PM, and as a result, PM accumulates in a wall-flow exhaust gas purifying catalyst.
  • PM accumulates in the wall-flow type exhaust gas purification catalyst within a period before performing fuel injection into the exhaust gas.
  • a typical wall-flow type exhaust gas purification catalyst for example, a wall-flow type exhaust gas purification catalyst that does not include the powdery inorganic particles described above
  • PM is deposited on the entrance side of the filter partition wall.
  • Deposited in pores located in the surface area adjacent to the cell i.e., the distance from the surface of the filter partition wall adjacent to the entrance cell is, for example, 30% or less of the thickness of the filter partition wall, The deposition amount of PM in these pores increases.
  • the gas flow path narrows or closes in the filter partition walls, resulting in a significant increase in pressure loss. Therefore, in the initial stage of PM deposition, the pressure loss increases rapidly as the amount of trapped PM increases.
  • the PM begins to deposit on the surface of the filter partition wall adjacent to the inlet-side cell.
  • the deposited layer of PM deposited on this surface is a granular layer with a low apparent density. In this granular layer, narrowing or blockage of the gas flow path due to an increase in the amount of deposited PM is less likely to occur. Therefore, during this period, the increase in pressure loss accompanying the increase in the amount of trapped PM is moderate.
  • the exhaust gas purifying catalyst according to the above aspect, wherein most of the inorganic particles are located within the pores of the filter partition walls.
  • PM is less likely to pass through the porous partition walls of the exhaust gas purifying catalyst, so high PM trapping performance is likely to be achieved.
  • the majority of the inorganic particles are located within the pores of the filter partition walls, and the inorganic particles occupying the total amount of the inorganic particles are located within the pores of the filter partition walls.
  • the amount of material is 70% or more.
  • the ratio D1/D2 between the average particle diameter D1 of the inorganic particles and the average pore diameter D2 of the pores of the partition walls of the filter is in the range of 0.06 to 2.
  • An exhaust gas purifying catalyst according to any of the above is provided.
  • the ratio D1/D2 is small, it is difficult to achieve high PM trapping performance.
  • PM tends to deposit in the pores, and the pressure loss caused by the deposition of PM on the porous partition walls tends to be large.
  • the ratio D1/D2 is large, the initial pressure loss of the exhaust gas purifying catalyst tends to increase.
  • the ratio D1/D2 is in the range of 0.06 to 1, according to one example.
  • the ratio D1/D2 is in the range 0.15 to 2, according to another example.
  • the ratio D1/D2 is preferably in the range of 0.15 to 0.7.
  • an exhaust gas purifying catalyst according to any one of the above aspects, wherein the filter substrate includes a honeycomb structure and a plug.
  • a honeycomb structure is a columnar body having a pair of opposing bottom surfaces, and is provided with a plurality of through holes extending from one bottom surface to the other bottom surface.
  • one bottom surface corresponds to the first end and the other bottom surface corresponds to the second end.
  • the shape of the pair of opposing bottom surfaces is, for example, circular, elliptical, oval, or polygonal.
  • the honeycomb structure includes partition walls that form the side walls of these through holes. These partition walls are porous and partition adjacent through holes.
  • honeycomb structure materials for the honeycomb structure.
  • ceramics such as cordierite, aluminum titanate, and silicon carbide can be used.
  • a metal or alloy nonwoven fabric may be woven into such a honeycomb structure.
  • a metal such as stainless steel or an alloy may be used as the material of the honeycomb structure.
  • Each plug closes the through hole of the honeycomb structure on one end side.
  • Half of the through-holes of the plurality of through-holes are blocked on the second end side by plugs.
  • the first cell is a space surrounded by a plug closing the through hole on the second end side and a partition forming a side wall of the through hole.
  • the remaining through-holes of the honeycomb structure that are not closed on the second end side are closed by plugs on the first end side.
  • the second cell is a space surrounded by a plug that closes the through hole on the first end side and a partition wall that forms the side wall of the hole.
  • the first cell and the second cell are adjacent to each other with the partition wall of the filter substrate and the catalyst layer formed in the pores of the partition wall interposed therebetween.
  • plug material for example, ceramics such as cordierite, aluminum titanate, and silicon carbide can be used.
  • an exhaust gas purifying catalyst according to any one of the above aspects, wherein the filter substrate has a volume V within the range of 0.1 to 5 L.
  • the "volume" of the filter base material is the volume including the spaces corresponding to the first and second cells and the partition walls in the filter base material, and the height of the filter base material is the area of the bottom surface of the filter base material. Calculated by multiplying
  • the volume V of the filter base material is preferably 0.5 L or more.
  • the volume V of the filter base material is preferably 3 L or less, more preferably 2 L or less.
  • the filter substrate for exhaust gas purification according to any of the above aspects, wherein the dimension in the length direction of the inlet-side cell and the outlet-side cell is in the range of 10 to 500 mm.
  • a catalyst is provided. This dimension is preferably in the range of 50 to 300 mm.
  • the portion of the filter substrate corresponding to the filter partition wall, that is, the partition wall thickness of the filter substrate is in the range of 0.05 to 2 mm
  • Such an exhaust gas purifying catalyst is provided. Reducing this thickness reduces the mechanical strength of the filter substrate. If this thickness is increased, the porous partition walls become thicker, and as a result, the pressure loss in the state where PM is not deposited (ie, the initial pressure loss) increases.
  • This thickness is preferably in the range 0.1 to 1 mm.
  • the portion of the filter substrate corresponding to the filter partition wall, that is, the partition wall of the filter substrate has a porosity in the range of 30 to 90%.
  • a porosity is a value obtained by mercury porosimetry. Increasing the porosity reduces the mechanical strength of the filter substrate. When the porosity is reduced, the porosity of the porous partition walls is also reduced, resulting in an increase in pressure loss in the state where PM is not deposited. This porosity is preferably in the range of 40 to 80%.
  • the portion of the filter substrate corresponding to the filter partition walls, that is, the average pore diameter of the partition walls of the filter substrate is in the range of 5 to 50 ⁇ m
  • the "average pore size” is a value obtained by mercury porosimetry. Increasing the average pore size reduces the mechanical strength of the filter substrate. When the average pore diameter is reduced, the pressure loss increases in the state where PM is not deposited. This average pore diameter is preferably in the range of 10 to 40 ⁇ m.
  • an exhaust gas purifying catalyst according to any one of the above aspects, wherein the catalyst layer contains a noble metal.
  • a noble metal is an example of a catalytic metal.
  • Noble metals are, for example, platinum group elements.
  • the catalyst layer can contain, for example, one or more of platinum, palladium and rhodium as noble metals. These noble metals are highly capable of promoting PM combustion.
  • the exhaust gas according to the above aspect wherein the ratio M M /V between the mass M M of the noble metal and the volume V of the filter base is in the range of 0.01 to 10 g/L.
  • Purification catalysts are provided.
  • the ratio M M /V is preferably in the range of 0.1 to 5 g/L.
  • an exhaust gas purifying catalyst according to any one of the above aspects, wherein the catalyst layer further includes at least one of a porous carrier supporting the noble metal and a co-catalyst.
  • a porous carrier facilitates increasing the specific surface area of the noble metal.
  • the use of a co-catalyst, such as an oxygen storage material, can, for example, reduce the change in catalyst performance with variations in exhaust gas composition.
  • the porous carrier and the co-catalyst are, for example, alumina; a composite oxide of ceria and zirconia; a polycrystal or single crystal further containing one or more selected from the group consisting of oxides of transition metal elements other than alumina, and silica; or a combination of two or more thereof.
  • the average particle size of each of the porous carrier and co-catalyst is preferably in the range of 0.05 to 5 ⁇ m, more preferably in the range of 0.1 to 3 ⁇ m.
  • this "average particle size" is a median size obtained by a laser diffraction/scattering method.
  • the exhaust gas purifying catalyst according to the above aspect, wherein the ratio M C /V between the mass M C of the catalyst layer and the volume V of the filter base is 300 g/L or less. be done.
  • the ratio M C /V is preferably 250 g/L or less, more preferably 150 g/L or less, even more preferably 120 g/L or less, and even more preferably 100 g/L or less.
  • the exhaust gas purification according to the above aspect wherein the ratio M C /V between the mass M C of the catalyst layer and the volume V of the filter base is in the range of 10 to 300 g/L.
  • Increasing the ratio M C /V increases the pressure loss in the state where PM is not deposited.
  • the ratio M C /V is preferably in the range of 20 to 250 g/L, more preferably in the range of 20 to 200 g/L, even more preferably in the range of 30 to 100 g/L. .
  • the lower limit of the ratio M C /V may be 25 g/L.
  • the upper limit of the ratio M C /V may be 150 g/L.
  • At least part of the catalyst layer is located in a portion of the filter partition wall adjacent to the entry-side cell, that is, a portion of the filter partition wall on the entry-side cell side.
  • An exhaust gas purifying catalyst according to any one of the above aspects is provided.
  • "a portion of the filter partition adjacent to the entry-side cell” is a portion of the filter partition whose distance from the surface of the portion adjacent to the entry-side cell is 80% or less of the thickness of the filter partition.
  • the entire catalyst layer may be located in a portion of the filter partition wall adjacent to the entry-side cell, that is, a portion of the filter partition wall on the entry-side cell side. Alternatively, the catalyst layer may be provided over the entire thickness of the filter partition wall.
  • the catalyst layer extends from the entry-side cell-side surface of the partition wall of the filter substrate to the vicinity of the exit-side cell-side surface of the partition wall. to the surface of the partition wall on the exit side cell side.
  • a portion of the filter partition wall adjacent to the entry-side cell is the filter base material
  • the internal pores are divided into first pores with a pore diameter of 5 ⁇ m or more and less than 10 ⁇ m, second pores with a pore diameter of 10 ⁇ m or more and less than 20 ⁇ m, and third pores with a pore diameter of 20 ⁇ m or more
  • the filling rate R F1 of the first pores with the catalyst layer, the filling rate R F2 of the second pores with the catalyst layer, and the filling rate R F3 of the third pores with the catalyst layer are given by the inequalities:
  • an exhaust gas purifying catalyst according to any one of the above aspects, which satisfies the relationship R F1 ⁇ R F2 ⁇ R F3 .
  • the filling factor R F1 is the ratio of the total area S C1 of the portion of the catalyst layer positioned inside the first pores to the total area S F1 of the first pores in the cross section.
  • the filling factor R F2 is the ratio of the total area S C2 of the portion of the catalyst layer positioned inside the second pores to the total area S F2 of the second pores in the cross section.
  • the filling factor R F3 is the ratio of the total area S C3 of the portion of the catalyst layer positioned inside the third pores to the total area S F3 of the third pores in the cross section.
  • the configuration specified by the above inequality can be used to achieve high PM collection performance while suppressing an increase in pressure loss when PM is not deposited.
  • the exhaust gas according to the above aspect wherein the filling rate R F1 is 40% or less, the filling rate R F2 is 40% or less, and the filling rate R F3 is 45% or less Purification catalysts are provided.
  • an exhaust gas purifying catalyst according to any one of the above aspects, wherein the filling factor RF3 is 20% or more. If the filling rate R F3 is small, a sufficient amount of catalyst cannot be placed in the exhaust gas flow path, which is disadvantageous in purifying harmful substances.
  • an exhaust gas purifying catalyst according to any one of the above aspects, wherein the filling rate R F1 is 10% or more and the filling rate R F2 is 15% or more.
  • Filling factor R F1 and filling factor R F2 are preferably small. Since most of the exhaust gas flows through the third pores, it is preferable to reduce the filling rate R F1 and the filling rate R F2 and increase the filling rate R F3 from the viewpoint of PM combustion and purification of other harmful substances. .
  • the total amount A of the inorganic particles and on the surface of the catalyst-coated filter adjacent to the entry-side cell that is, on the surface of the catalyst-coated filter on the entry-side cell side
  • the amount A1 of the inorganic particles positioned and the distance from the surface of the catalyst-coated filter adjacent to the entry-side cell within the pores of the catalyst-coated filter are the filter partition walls of the catalyst-coated filter.
  • the portion corresponding to, that is, the amount A2 of the inorganic particles that is 20% or less of the thickness of the filter partition wall of the catalyst-coated filter is the above aspect that satisfies the relationship represented by the inequality (A1 + A2) / A ⁇ 90%
  • An exhaust gas purifying catalyst according to any of the above is provided.
  • the ratio (A1+A2)/A which indicates the extent to which the inorganic particles are unevenly distributed on the first cell side of the porous partition wall, is preferably 90% or more. There is no upper limit for the ratio (A1+A2)/A. The ratio (A1+A2)/A may be 100%.
  • an exhaust gas purifying catalyst according to any one of the above aspects, wherein the inorganic particles have an average particle diameter within the range of 1 to 50 ⁇ m.
  • the "average particle size” is the median size obtained by the laser diffraction/scattering method. Inorganic particles having an average particle size within the above range, for example, tend to achieve high PM trapping performance. This average particle size is preferably in the range of 5 to 10 ⁇ m.
  • the inorganic particles are in the group consisting of metal oxides, metal hydroxides, metal carbonates, metal phosphates, metal nitrates, metal sulfates, clay minerals, and porous inorganics.
  • An exhaust gas purifying catalyst according to any of the above aspects including one or more selected from the above is provided.
  • the inorganic particles consist of one or more selected from the group consisting of metal oxides, metal hydroxides, metal carbonates, metal phosphates, metal nitrates, metal sulfates, and porous inorganic substances.
  • the metal element contained in the inorganic particles is, for example, one or more selected from the group consisting of alkali metal elements, alkaline earth metal elements, rare earth elements, and transition metal elements.
  • This metal element is preferably one or more selected from the group consisting of calcium, magnesium, strontium, barium, aluminum, silicon, titanium, zirconium, and cerium.
  • inorganic particles include, for metal oxides, calcium oxide, cerium oxide, titanium dioxide, zirconium dioxide, silicon dioxide, aluminum oxide, mixtures thereof, and mixed oxides.
  • the clay mineral may be an artificial clay mineral or a natural clay mineral.
  • the porous inorganic material for example, one or more of zeolite and sepiolite can be used.
  • the inorganic particles preferably contain calcium oxide, and more preferably consist of calcium oxide.
  • any of the above aspects wherein the ratio M P /V of the mass M P of the inorganic particles to the volume V of the filter base material is 3 g/L or more.
  • An exhaust gas purifying catalyst according to the above is provided.
  • the ratio M P /V is small, it is difficult to achieve high PM trapping performance.
  • the ratio M P /V is preferably 5 g/L or more.
  • the exhaust gas purifying catalyst according to any of the above aspects, wherein the ratio M P /V of the mass M P of the inorganic particles to the volume V of the filter base material is 50 g/L or less. is provided.
  • the ratio M P /V is preferably 15 g/L or less, more preferably 10 g/L or less.
  • the ratio M P /V of the mass M P of the inorganic particles to the volume V of the filter substrate is in the range of 3 to 15 g/L.
  • An exhaust gas purifying catalyst is provided.
  • the ratio M P /V is preferably in the range of 5 to 10 g/L.
  • the portion of the exhaust gas purifying catalyst corresponding to the filter partition wall, that is, the porous partition wall has an opening diameter that occupies the total area S of all pores on the surface.
  • the "aperture diameter” is a value obtained by the following method.
  • An optical microscope is used for this imaging. Also, this imaging is carried out on a region near the center in the longitudinal direction of the catalyst-coated filter on the surface of the porous partition wall on the first cell side. Note that this "lengthwise direction” is the same as the lengthwise direction of the first and second cells.
  • the resulting grayscale image is then binarized to obtain a binarized image.
  • the ratio S S /S is preferably 70% or more. Although there is no upper limit to the ratio S S /S, according to one example, the ratio S S /S is 95% or less.
  • the portion of the exhaust gas purifying catalyst corresponding to the filter partition wall, i.e., the porous partition wall, has an opening diameter that occupies the total area S of all the pores on the surface.
  • the ratio S M /S is preferably 20% or less. Although there is no lower limit to the ratio S S /S, according to one example, the ratio S M /S is 4% or more.
  • the portion of the exhaust gas purifying catalyst corresponding to the filter partition wall, i.e., the porous partition wall, has an opening diameter that occupies the total area S of all the pores on the surface.
  • the ratio S L /S is preferably 10% or less. Although there is no lower limit to the ratio S L /S, according to one example, the ratio S L /S is 1% or more.
  • the portion of the exhaust gas purifying catalyst corresponding to the filter partition wall, i.e., the porous partition wall, has an opening diameter that occupies the total area S of all the pores on the surface.
  • An exhaust gas purifying catalyst having a large ratio S SS /S tends to have a large pressure loss in a state where PM is not deposited, compared to an exhaust gas purifying catalyst having a small ratio S SS /S.
  • the ratio S SS /S is 20% or more.
  • the portion of the exhaust gas purifying catalyst corresponding to the filter partition wall that is, the pores of the porous partition wall have an opening diameter of 40 ⁇ m. and first large pores having an opening diameter of 40 ⁇ m or more
  • the portion of the catalyst-coated filter corresponding to the filter partition wall that is, the first cell side of the filter partition wall
  • the pores of the filter partition wall are divided into second small pores having an opening diameter of less than 40 ⁇ m and second large pores having an opening diameter of 40 ⁇ m or more
  • the second small pores The ratio of the difference S S2 ⁇ S S1 between the total area S S2 and the total area S S1 of the first small pores to the total area S S2 (S S2 ⁇ S S1 )/S S2 is 40% or less, The ratio of the difference S L2 ⁇ S L1 between the total area S L2 and the total area S L1 of the first large pores to the total area S L2 of the second
  • the large pores are compared to the small pores in the application of inorganic particles.
  • the degree of reduction in aperture diameter due to Such a configuration is advantageous, for example, in obtaining a structure with a large ratio S s /S and a small ratio S ss /S.
  • any of the above aspects comprising forming the catalyst layer provided on the pore walls of the filter substrate, and supplying the inorganic particles to the surface.
  • a method for manufacturing an exhaust gas purifying catalyst is provided.
  • a catalyst layer can be formed, for example, by the following method.
  • a slurry containing a raw material for a catalyst layer and a dispersion medium is prepared.
  • the raw material for the catalyst layer contains a catalyst metal and optionally at least one of a porous carrier and a co-catalyst.
  • the catalyst metal can be contained in the slurry, for example, in the form of a metal compound that can be dissolved in the dispersion medium, or in the form of a supported catalyst in which the catalyst metal is supported on a porous carrier.
  • the dispersion medium is, for example, an aqueous solvent such as water.
  • a slurry is prepared to have an appropriate viscosity.
  • the slurry is prepared so that the viscosity at a shear rate of 400 s ⁇ 1 is greater than 50 mPa s and within the range of 150 mPa s or less, preferably within the range of 60 to 110 mPa s. do.
  • the viscosity of the slurry is a viscosity that can be measured at room temperature with a commercially available shear viscometer.
  • viscosity at such shear rates can be readily measured using a dynamic viscoelasticity measuring device (rheometer) standard in the art.
  • "normal temperature” means a temperature within the temperature range of 15 to 35°C, typically a temperature within the temperature range of 20 to 30°C, eg, 25°C.
  • the slurry can further contain a thickening agent.
  • Cellulosic polymers such as carboxymethylcellulose (CMC), methylcellulose (MC), hydroxypropylmethylcellulose (HPMC), and hydroxyethylmethylcellulose (HEMC) can be used as thickeners.
  • the ratio of the thickening agent to the total solid content in the slurry is not particularly limited as long as the viscosity of the slurry satisfies the above range, preferably 0.1 to 5% by mass, more preferably 0.3 to 4% by mass. and more preferably in the range of 0.5 to 3% by mass.
  • the portion of the filter substrate corresponding to the first end that is, the slurry is supplied from the first end side of the filter substrate, and the portion of the filter substrate corresponding to the second end, That is, the gas inside the filter substrate is sucked from the second end side of the filter substrate.
  • the slurry is allowed to flow into the cells of the filter base material, the first ends of which are open, and the slurry is allowed to flow into the pores of the partition walls from the surfaces of the partition walls that form these cells.
  • the portion of the filter substrate corresponding to the second end that is, the slurry is supplied from the second end side of the filter substrate, and the portion of the filter substrate corresponding to the first end, That is, the gas inside the filter base material is sucked from the first end side of the filter base material.
  • the slurry is allowed to flow into the pores opened in the portion of the filter base material corresponding to the second end, and the slurry is allowed to flow into the pores of the partition walls from the surfaces of the partition walls. Note that this step can be omitted.
  • the above suction conditions may vary depending on the cross-sectional diameter of the filter base material.
  • the end of the filter substrate when the filter substrate is installed in the apparatus and no slurry is supplied is preferable to perform suction under the condition that the linear velocity (wind speed) of the gas flow in the vicinity is within the range of 10 to 80 m/s.
  • the suction time is not particularly limited, but is preferably within the range of 0.1 to 30 seconds. Preferred combinations of linear velocity and suction time are 20-70 m/s and 0.5-25 seconds; and 40-60 m/s and 2-15 seconds.
  • the filter substrate supplied with the slurry is dried and subjected to firing.
  • a catalyst-coated filter is obtained.
  • Using a highly viscous slurry and performing suction under the above conditions yields a catalyst-coated filter in which the ratios R F1 , R F2 and R F3 satisfy the conditions described above.
  • the inorganic particles are supplied to the catalyst-coated filter.
  • an aerosol containing inorganic particles as aerosol particles is supplied to the first end of the catalyst-coated filter.
  • the gas inside the catalyst-coated filter is sucked from the second end of the catalyst-coated filter. This suction is preferably performed with the first end of the catalyst-coated filter facing downward.
  • the aerosol flows into the cells that are open on the first end side of the catalyst-coated filter, and is separated into gas and inorganic particles by the filter partition wall of the catalyst-coated filter.
  • a gas flow path composed of pores with a large pore diameter has a smaller gas flow resistance than a gas flow path composed of pores with a small pore diameter. Therefore, more inorganic particles are deposited in pores with large pore sizes compared to pores with small pore sizes.
  • the catalyst-coated filter having the catalyst layer formed as described above even if the pores opened on the surface of the filter partition wall into which the aerosol flows are large, the pore diameter is not excessively large. do not have. Therefore, the inorganic particles can be localized near the aerosol inflow face of the filter partition.
  • an exhaust gas purifying catalyst according to any of the above aspects that is, a powder-added catalyst-coated filter is obtained.
  • FIG. 2 is an enlarged cross-sectional view showing porous partition walls of the exhaust gas purifying catalyst shown in FIG. 1 ;
  • FIG. 2 is a cross-sectional view showing a further enlarged porous partition wall of the exhaust gas purifying catalyst shown in FIG. 1 ;
  • Sectional drawing which shows the method of isolate
  • the top view which shows roughly the surface by the side of the 1st cell of a porous partition.
  • image. 7 is a composite image showing an enlarged cross section in the thickness direction of the porous partition wall of the exhaust gas purification catalyst shown in FIG. 6 .
  • 4 is a graph showing the distribution of powdery inorganic particles in the thickness direction obtained for the porous partition walls of the exhaust gas purifying catalyst according to Example 1.
  • FIG. 4 is a microscope image showing the surface of the first cell side of the porous partition wall of the exhaust gas purifying catalyst according to Example 1.
  • FIG. 10 is an image showing colored dots having brightness according to the intensity of characteristic X-rays originating from palladium in FIG. 9 ;
  • FIG. 10 is an image showing colored dots having brightness according to the intensity of characteristic X-rays derived from calcium in FIG. 9 ;
  • 13 is a graph showing the results of line analysis along a straight line on the image shown in FIG. 12; 13 is a graph showing results of line analysis along other straight lines on the image shown in FIG. 12; 13 is a graph showing results of line analysis along still another straight line on the image shown in FIG.
  • FIG. 1 is a cross-sectional view schematically showing an exhaust gas purifying catalyst according to one embodiment of the present invention.
  • FIG. 2 is a cross-sectional view showing an enlarged porous partition wall of the exhaust gas purifying catalyst shown in FIG.
  • FIG. 3 is a cross-sectional view showing a further enlarged porous partition wall of the exhaust gas purifying catalyst shown in FIG.
  • the white arrow has shown the flow direction of waste gas.
  • the exhaust gas purifying catalyst 1 shown in FIGS. 1 to 3 is a particulate filter including the catalyst layer 22 shown in FIGS.
  • This exhaust gas purifying catalyst 1 has a substantially cylindrical shape.
  • the exhaust gas purifying catalyst 1 has a first end E1, a second end E2, a porous partition wall W, a first cell C1 and a second cell C2.
  • the first end E1 and the second end E2 are the bottom surfaces of the cylinder.
  • the first cell C1 extends from the first end E1 toward the second end E2.
  • the first cell C1 is open at the first end E1 and closed at the second end E2.
  • the second cell C2 extends from the second end E2 toward the first end E1.
  • the second cell C2 is open at the second end E2 and closed at the first end E1.
  • the first cell C1 and the second cell C2 are adjacent to each other with the porous partition wall W interposed therebetween.
  • the first cells C1 and the second cells C2 are arranged to form a checkered pattern at the first end E1 and the second end E2.
  • the exhaust gas purifying catalyst 1 includes a catalyst-coated filter 2, as shown in FIGS.
  • the catalyst-coated filter 2 includes a filter substrate 21 and a catalyst layer 22, as shown in FIGS.
  • the filter base material 21 includes a honeycomb structure 211 and plugs 212a and 212b, as shown in FIG.
  • the honeycomb structure 211 is a cylindrical body provided with a plurality of through holes each extending from one bottom surface to the other bottom surface. One of these bottom surfaces corresponds to the first end E1 and the other bottom surface corresponds to the second end E2.
  • the honeycomb structure 211 includes partition walls 211W forming side walls of these through holes. These partition walls 211W are porous and partition adjacent through holes.
  • the plugs 212a block part of the holes of the honeycomb structure 211 on the second end E2 side.
  • the first cell C1 is located in a space surrounded by a plug 212a closing the hole on the second end E2 side and a partition wall 211W forming a side wall of the hole.
  • the plugs 212b close the remaining holes of the honeycomb structure 211 on the first end E1 side.
  • the second cell C2 is located in a space surrounded by a plug 212b closing the hole on the first end E1 side and a partition wall 211W forming a side wall of the hole.
  • plugs 212a and 212b are arranged such that a hole whose second end E2 side is closed with the plug 212a and a hole whose first end E1 side is closed with the plug 212b are adjacent to each other with the partition wall 211W interposed therebetween. ing.
  • the first cell C1 and the second cell C2 are adjacent to each other with the partition walls 211W of the filter substrate 21 and the catalyst layer 22 provided on the pore walls thereof interposed therebetween.
  • the catalyst layer 22 is supported by the filter substrate 21 as shown in FIGS. Specifically, the catalyst layer 22 is provided on the pore walls of the filter substrate 21 . That is, the catalyst layer 22 covers the inner walls of the pores of the partition walls 211W.
  • the catalyst layer 22 is provided over the entire thickness of the porous partition wall W or partition wall 211W.
  • a portion of the catalyst layer 22 covering the inner walls of the pores of the partition wall 211W and having a distance of a predetermined value or more from the surface of the partition wall 211W on the first cell C1 side can be omitted. That is, the entire catalyst layer 22 may be positioned on the first cell C1 side of the porous partition wall W or the partition wall 211W.
  • the partition wall 211W and the portion of the catalyst layer 22 supported by the partition wall 211W constitute the filter partition wall 21W.
  • the filter partition wall 21W is porous.
  • the exhaust gas purifying catalyst 1 further contains inorganic particles 3, as shown in FIGS.
  • the inorganic particles 3 are unevenly distributed on or near the surface of the porous partition wall W or the filter partition wall 21W on the first cell C1 side.
  • the inorganic particles 3 are powdery. At least part of the inorganic particles 3 adhere to the catalyst-coated filter 2 , but are not fixed to the catalyst-coated filter 2 . Although the inorganic particles 3 are not fixed to each other, they can be fixed by heat treatment or chemical treatment.
  • the inorganic particles 3 reduce the pore diameter of the pores located near the surface of the porous partition wall W on the first cell C1 side.
  • the filling rate of the pores of the filter partition wall 21W with the inorganic particles 3 is low in pores with small opening diameters, and is low in pores with large opening diameters. tends to be high.
  • the above filling factor does not have to follow the above trend.
  • the inorganic particles 3 are unevenly distributed on or near the surface of the porous partition wall W or the filter partition wall 21W on the first cell C1 side. Therefore, high PM trapping performance can be easily achieved. Further, in this exhaust gas purifying catalyst 1, the inorganic particles 3 hardly exist on the surface of the porous partition wall W or the filter partition wall 21W other than the surface on the first cell C1 side or the vicinity thereof. Therefore, the exhaust gas purifying catalyst 1 has a small initial pressure loss.
  • the catalyst layer 22 is preferably configured such that the filter partition wall 21W has the structure described below.
  • the portion of the filter partition wall 21W on the first cell C1 side has pores of the filter base material 21 with a pore diameter of 5 ⁇ m or more and less than 10 ⁇ m in a cross section perpendicular to the surface of the filter partition wall 21W on the first cell C1 side.
  • the catalyst layer When divided into first pores, second pores with a pore diameter of 10 ⁇ m or more and less than 20 ⁇ m, and third pores with a pore diameter of 20 ⁇ m or more, the catalyst layer with respect to the total area S F1 of the first pores
  • the ratio R F1 of the total area S C1 of the portion of the catalyst layer 22 located in the first pores, the total area of the portion of the catalyst layer 22 located in the second pores to the total area S F2 of the second pores The ratio R F2 of S C2 and the ratio R F3 of the total area S C3 of the portion of the catalyst layer 22 located within the third pores to the total area S F3 of the third pores are expressed by the inequality: R F1 ⁇ R It is preferable to satisfy the relationship shown by F2 ⁇ R F3 .
  • the boundaries between continuous pores and the pore diameter of each pore are determined by a method to be described later with reference to FIG.
  • the portion of the filter partition wall 21W near the surface on the first cell C1 side has a wider pore size distribution than the portion of the partition wall 211W near the surface on the first cell C1 side. Narrower, smaller average pore size.
  • FIG. 4 is a cross-sectional view showing a method of separating pores that are connected in a cross-sectional image of porous partition walls.
  • FIG. 4 corresponds to a cross-sectional image of the porous partition wall W.
  • FIG. 4 omits the catalyst layer 22 and the inorganic particles 3 to be described later.
  • Step S1 In this method, first, a cross section of the porous partition wall W is imaged using a scanning electron microscope (SEM) or a transmission electron microscope (TEM).
  • SEM scanning electron microscope
  • TEM transmission electron microscope
  • partition walls 211W (hereinafter referred to as partition walls) of the filter base material 21 are specified in the image thus acquired. Then, the space portion is specified in the partition portion.
  • partition walls not only the space CV1 which is separated from both surfaces of the partition 211W but also the space CV2 which is open on at least one surface of the partition 211W is specified. A part of the catalyst layer 22 and the inorganic particles 3 may be located in the space. Then, one of these spaces is selected.
  • Step S3 the area of the selected space is obtained, and the diameter of a circle having the same area as this area, that is, the equivalent circle diameter is calculated. Then, it is determined whether or not the equivalent circle diameter is 5 ⁇ m or less.
  • Step S4 When this equivalent circle diameter is 5 ⁇ m or less, it is determined that the previous space corresponds to one pore, and this equivalent circle diameter is determined as the pore diameter of this pore. If there are unselected spaces, one of the unselected spaces is selected, and the process returns to step S3. If there is no unselected space, the process ends.
  • the space portion CV1 when the space portion CV1 is selected, the space portion CV1 has an equivalent circle diameter of 5 ⁇ m or less, so it is determined to correspond to one pore P1. Then, this equivalent circle diameter is defined as the pore diameter of this pore P1. Then, the unselected space portion CV2 is selected, and the process returns to step S3.
  • Step S5 When the equivalent circle diameter is more than 5 ⁇ m, it is determined that the above-mentioned space corresponds to two or more pores connected to each other. Then, the space portion is divided at the position where the equivalent circle diameter decreases to 50% of the equivalent circle diameter, and the boundary between a plurality of regions generated thereby is defined as the boundary of the pore.
  • the space portion CV2 when the space portion CV2 is selected, the space portion CV2 has an equivalent circle diameter of more than 5 ⁇ m, so it is determined that it corresponds to two or more pores connected to each other. Then, the space portion CV2 is divided at the position where the equivalent circle diameter decreases to 50% of the equivalent circle diameter, and the boundary between a plurality of regions generated thereby is defined as the boundary of the pore.
  • (Sub-step SS1) Specifically, first, a large number of circles are generated that are inscribed in the space and that are in contact with both of a pair of wall surfaces facing each other with the space interposed therebetween.
  • the wall portion is a portion corresponding to the boundary between the space portion and the partition portion.
  • a reference line is generated by connecting the centers of these circles. In the example shown in FIG. 4, the reference line obtained by connecting the centers of the circles is the branched dashed line CL.
  • the line segment connecting the two points of contact between the first circle and the wall surface is defined as the boundary dividing the space. If the first circle is not found, the boundary that divides the space is not defined for the portion of the reference line that is on the first direction side with respect to the center of the reference circle.
  • the line segment connecting the two points of contact between the second circle and the wall surface is defined as the boundary dividing the space. If the second circle is not found, the boundary that divides the space section is not defined for the portion of the reference line on the second direction side with respect to the center of the reference circle.
  • the third direction the diameters of the circles with the shortest distance from the branching point to the center are confirmed. This checking is done until a circle is found whose diameter is 50% of the diameter of the reference circle.
  • the third circle When such a circle (hereinafter referred to as the third circle) is found, the line segment connecting the two points of contact between the third circle and the wall surface is defined as the boundary that divides the space. If the third circle is not found, the boundary that divides the space is not determined for the portion of the reference line that is on the third direction side with respect to the branch point.
  • the dashed line CL does not branch within the range corresponding to the line connecting the centers of the circles whose diameters were confirmed with the circle IC1 as the reference circle in sub-steps SS4 or SS5.
  • Sub-step SS5 therefore proceeds to the next step S6 without defining an additional boundary.
  • Step S6 In step S6, it is determined whether or not the boundary has been defined in step S5.
  • Step S7 If no boundary is determined in step S5, it is determined that the preceding space is a single pore, and this equivalent circle diameter is determined as the pore diameter of this pore. If there are unselected spaces, one of the unselected spaces is selected, and the process returns to step S3. If there is no unselected space, the process ends.
  • Step S8 If one or more boundaries are defined in step S5, one of the plurality of regions formed by dividing the above space by boundaries is determined to be one pore where the center of the reference circle is located, The circle equivalent diameter is defined as the pore diameter of this pore.
  • a new space is determined by excluding the area where the center of the reference circle is located from the space. Then, this space is selected, and the process returns to step S3.
  • the one where the center of the circle IC1 is located is determined to be one pore P2, and the circle equivalent diameter is determined as follows. Defined as the pore size of the pore P2. Then, a portion (hereinafter referred to as a first remainder) obtained by excluding the area corresponding to the pore P2 where the center of the circle IC1 is located from the space CV2 is defined as a new space. Then, this space is selected, and the process returns to step S3.
  • the circle IC3 is specified as the reference circle in step S5. Note that the reference line need not be newly generated.
  • circles IC4a and IC4b whose diameter is 50% of the diameter of circle IC3 and boundaries B1 and B2 are further specified.
  • step S8 among a plurality of regions formed by dividing the first remainder by boundaries B1 and B2, the region where the center of circle IC2 is located is determined to be one pore P3. , and its equivalent circle diameter is defined as the pore diameter of the pore P3.
  • a portion obtained by removing the region corresponding to the pore P3 where the center of the circle IC2 is located from the first remainder (hereinafter referred to as a second remainder) is defined as a new space. Then, this space is selected, and the process returns to step S3.
  • step S4 Since the equivalent circle diameter of the second remainder is 5 ⁇ m or less, in step S4, it is determined that the second remainder corresponds to one pore P4, and this equivalent circle diameter is regarded as the pore diameter of this pore P4. stipulate. If there are unselected spaces, one of the unselected spaces is selected, and the process returns to step S3. If there is no unselected space, the process ends.
  • the porous partition wall W preferably has the structure described below with reference to FIG.
  • FIG. 5 is a plan view schematically showing the surface of the porous partition on the first cell side.
  • FIG. 5 depicts the surface of the porous partition wall W on the side of the first cell C1.
  • the pores P of the porous partition walls W are divided into first small pores with an opening diameter of less than 40 ⁇ m and first large pores with an opening diameter of 40 ⁇ m or more.
  • the pores P located at the lower right and upper left are the first large pores, and the remaining pores P are the first small pores.
  • the circle formed by the dashed line LL2 has an area equal to the opening of the pore P.
  • the opening diameter of the pore P is the diameter of the circle formed by the dashed line LL2.
  • the pores of the filter partition wall 21W are replaced with second small pores having an opening diameter of less than 40 ⁇ m. and second large pores having an opening diameter of 40 ⁇ m or more.
  • the pores located at the lower right and upper left are the second large pores, and the remaining pores are the second small pores.
  • the pores of the filter partition wall 21W are the regions surrounded by the solid lines LL1. Therefore, the opening diameter of the pores of the filter partition wall 21W is the diameter of a circle having the same area as the area surrounded by the solid line LL1.
  • the ratio of the difference S S2 ⁇ S S1 between the total area S S2 of the second small pores and the total area S S1 of the first small pores to the total area S S2 of the second small pores (S S2 ⁇ S S1 )/S S2 is 40 % or less. Also, the ratio of the difference S L2 ⁇ S L1 between the total area S L2 of the second large pores and the total area S L1 of the first large pores to the total area S L2 of the second large pores (S L2 ⁇ S L1 )/S L2 is 60% or more.
  • the second large pores have a larger degree of reduction in opening diameter due to the application of the inorganic particles 3 than the second small pores.
  • Such a configuration is advantageous, for example, in reducing pores P having excessively large or excessively small opening diameters on the surface of the porous partition wall on the first cell side.
  • Example 1 Manufacture of exhaust gas purifying catalyst (Example 1)
  • the exhaust gas purifying catalyst described with reference to FIGS. 1 to 3 was manufactured by the following method. First, 3 parts by mass of palladium nitrate solution, 35 parts by mass of alumina powder, 32 parts by mass of ceria-containing oxide, and ion-exchanged water were mixed. This mixture was mixed with 1 part by mass of polycarboxylic acid to prepare a slurry. This slurry had a viscosity ⁇ 400 of 100 mPa ⁇ s at a temperature of 25° C. and a shear rate of 400 s ⁇ 1 .
  • the filter base material was prepared.
  • a columnar filter substrate with a volume of 2.1 L and a height of 127 mm was used.
  • the slurry was supplied to one end surface (first end surface) of the filter substrate, and the gas inside the filter substrate was sucked from the other end surface (second end surface) of the filter substrate.
  • This suction is performed at a temperature of 25° C. under the conditions that the linear velocity (wind speed) of the gas flow near the end of the filter substrate when the filter substrate is installed and the slurry is not supplied is 50 m / s. rice field.
  • the partition walls of the filter substrate were coated with the slurry.
  • the slurry was supplied to the catalyst-coated filter so that the amount of the catalyst layer with respect to the volume of the filter base material was 75 g/L.
  • the slurry-coated filter substrate was then dried and fired. Thus, a catalyst-coated filter was obtained.
  • inorganic particles were supplied to one surface of each filter partition wall of the catalyst-coated filter. Specifically, an aerosol containing inorganic particles as aerosol particles was supplied to the first end corresponding to the first end face of the catalyst-coated filter. At the same time, the gas inside the catalyst-coated filter was sucked from the second end corresponding to the second end face of the catalyst-coated filter. This suction was performed with the catalyst-coated filter installed with the first end facing downward.
  • the amount of inorganic particles with respect to the volume of the filter substrate was 5 g/L.
  • Sepiolite having an average particle size of 6 ⁇ m was used as the inorganic particles.
  • an exhaust gas purifying catalyst was obtained.
  • the inorganic particle distribution in the thickness direction of the porous partition walls was measured. Specifically, regarding the exhaust gas purifying catalyst according to Example 1, the cross section of the porous partition wall was imaged with a scanning electron microscope to obtain a grayscale image. This imaging was performed on a cross section of a portion of the porous partition wall where the distance from the first end and the distance from the second end were equal. Next, the position analyzed by the energy dispersive X-ray spectrometer was specified in the grayscale image, and the intensity of characteristic X-rays derived from calcium was measured. Here, line analysis was performed along the thickness direction of the porous partition walls.
  • a composite image was generated by superimposing colored points having brightness (gradation value) corresponding to the intensity of the characteristic X-ray on the grayscale image. From this composite image, the relationship between the distance from the surface of the catalyst-coated filter on the first cell side and the gradation value was obtained.
  • FIG. 6 is an image showing a cross section in the thickness direction of the porous partition wall of the exhaust gas purifying catalyst according to Example 1, and superimposed with colored points having brightness corresponding to the intensity of characteristic X-rays derived from calcium. This is a combined image.
  • the first cell is positioned above the porous partition wall of the exhaust gas purifying catalyst.
  • FIG. 7 is a composite image showing an enlarged cross section in the thickness direction of the porous partition wall of the exhaust gas purification catalyst shown in FIG.
  • the central white curve in FIG. 7 indicates the boundary between the filter substrate and the first cell.
  • the white portion indicates the inorganic particles
  • the light gray portion indicates the catalyst layer
  • the dark gray portion indicates the filter substrate.
  • many inorganic particles exist on the first cell side of the pores of the filter partition walls.
  • FIG. 8 is a graph showing the distribution of powdery inorganic particles in the thickness direction obtained for the porous partition walls of the exhaust gas purifying catalyst according to Example 1.
  • the horizontal axis represents the distance from the surface of the catalyst-coated filter on the side of the first cell
  • the vertical axis represents the gradation value.
  • the distance for the inorganic particles existing within the filter partition wall of the catalyst-coated filter is indicated by a positive value.
  • the distance for the inorganic particles existing outside the filter partition wall of the catalyst-coated filter (that is, inside the first cell) is indicated by a negative value.
  • the inorganic particles were unevenly distributed on the first cell side of the porous partition wall.
  • the amounts A, A1 and A2 described above satisfy the relationship represented by the inequality (A1+A2)/A ⁇ 90%. Specifically, the ratio (A1+A2)/A was 98.7%.
  • A1 is the sum of each gradation value within the range of -50 ⁇ m or more and less than 0 ⁇ m from the catalyst-coated filter.
  • A2 is the sum of each gradation value within the range of 0 ⁇ m or more and 40 ⁇ m or less from the catalyst-coated filter.
  • A is the sum of the respective gradation values within the range of ⁇ 50 ⁇ m or more and 200 ⁇ m or less from the catalyst-coated filter.
  • the amount of the inorganic particles located inside the pores of the filter partition walls was 70% or more of the total amount of the inorganic particles.
  • the amount of the inorganic particles located in the pores of the partition walls of the filter accounted for 77.4% of the total amount of the inorganic particles.
  • the amount of the inorganic particles located in the pores of the partition walls of the filter is the sum of the density values within the range of 0 ⁇ m or more and 200 ⁇ m or less from the catalyst-coated filter.
  • the total amount of inorganic particles is the sum of the respective gradation values within the range of ⁇ 50 ⁇ m or more and 200 ⁇ m or less from the catalyst-coated filter.
  • the catalyst layer distribution and inorganic particle distribution were measured. Specifically, first, for the exhaust gas purifying catalyst according to Example 1, the surface of the porous partition wall on the first cell side was photographed with a scanning electron microscope to obtain a micrograph. This imaging was performed on a cross section of a portion of the porous partition wall where the distance from the first end and the distance from the second end were equal. Next, the position analyzed by the energy dispersive X-ray spectrometer was specified in the above micrograph, and an image showing colored points having brightness corresponding to the intensity of characteristic X-rays derived from palladium was acquired. Next, the position analyzed by the energy dispersive X-ray spectrometer was specified in the above micrograph, and an image showing colored dots having brightness corresponding to the intensity of characteristic X-rays derived from calcium was acquired.
  • FIG. 9 is a micrograph showing the surface of the first cell side of the porous partition wall of the exhaust gas purifying catalyst according to Example 1.
  • FIG. FIG. 10 is an image showing colored dots having brightness according to the intensity of characteristic X-rays originating from palladium in FIG.
  • FIG. 10 shows the position of the catalyst layer in FIG.
  • FIG. 11 is an image showing colored dots having brightness according to the intensity of characteristic X-rays derived from calcium in FIG.
  • FIG. 11 shows the positions of the inorganic particles in FIG.
  • FIG. 10 shows colored points having brightness corresponding to the intensity of characteristic X-rays derived from palladium, which are present in a portion relatively close to the surface of the porous partition wall of the exhaust gas purification catalyst.
  • FIG. 11 shows colored points having brightness corresponding to the intensity of characteristic X-rays derived from calcium, which are present in a portion relatively close to the surface of the porous partition walls of the exhaust gas purifying catalyst. .
  • FIG. 12 is a composite image obtained by superimposing the image shown in FIG. 10 and the image shown in FIG.
  • FIGS. 13 to 15 is a graph showing the results of line analysis along a straight line on the image shown in FIG.
  • line analysis on a certain straight line on the image shown in FIG. 12, the gray value of the colored point having the brightness corresponding to the intensity of the characteristic X-rays derived from palladium and the intensity of the characteristic X-rays derived from calcium It was analyzed with the gradation value of the point which had the brightness according to , and was colored.
  • FIG. 13 when the horizontal length of the image shown in FIG. The results are shown.
  • FIG. 14 shows the results of line analysis along a straight line located 120 pixels from the left end in the above case.
  • line analysis was performed along a straight line located 180 pixels from the left end in the above case. Gray values were determined using ImageJ.
  • the position of the top edge of the image shown in FIG. 12 was set to 0 pixel, and the position of the bottom edge was set to 200 pixels.
  • FIG. 10 shows colored points having brightness corresponding to the intensity of characteristic X-rays derived from palladium, which are located relatively close to the surface of the porous partition walls of the exhaust gas purifying catalyst.
  • FIG. 11 shows a colored point having a brightness corresponding to the intensity of characteristic X-rays derived from calcium present in a portion relatively close to the surface of the porous partition wall of the exhaust gas purifying catalyst, that is, the porous partition wall. Inorganic particles present in a portion relatively close to the surface of the partition wall are shown.
  • FIGS. 13 to 15 there is an inverse correlation between the palladium density value and the calcium density value.
  • the portion where the density value of palladium is small indicates the pore portion.
  • the inorganic particles are located within the pores of the filter partition walls. Furthermore, pores with relatively small pore diameters are present in portions where the amount of palladium is relatively large, and pores with relatively large pore diameters are present in portions where the amount of palladium is relatively small or where palladium is not detected. Existing. Also, in FIGS. 13 to 15, a large amount of calcium is present in the portion where the amount of palladium is relatively small than in the portion where the amount of palladium is relatively large. For these reasons, in FIGS. 13 to 15, more inorganic particles were present in the pores with relatively large pore diameters than in the pores with relatively small pore diameters.
  • Example 2 An exhaust gas purifying catalyst was produced in the same manner as in Example 1, except that the ratio of the amount of inorganic particles to the volume of the filter base material was changed from 5 g/L to 1 g/L.
  • Example 3 An exhaust gas purifying catalyst was produced in the same manner as in Example 1, except that the ratio of the amount of inorganic particles to the volume of the filter base material was changed from 5 g/L to 20 g/L.
  • Example 1 The filter substrate used in Example 1 was prepared and used as an exhaust gas purifying catalyst according to Comparative Example 1.
  • Example 2 Exhaust gas purifying filter was prepared in the same manner as in Example 1 except that the ratio of the amount of the catalyst layer to the volume of the filter base material was changed from 75 g / L to 50 g / L and the supply of inorganic particles to the catalyst-coated filter was omitted. A catalyst was prepared.
  • Example 3 An exhaust gas purifying catalyst was produced in the same manner as in Example 1, except that the supply of inorganic particles to the catalyst-coated filter was omitted. That is, a catalyst-coated filter was manufactured in the same manner as in Example 1, and this was used as an exhaust gas purifying catalyst according to Comparative Example 3.
  • Example 4 Exhaust gas purifying filter was prepared in the same manner as in Example 1, except that the ratio of the amount of the catalyst layer to the volume of the filter base material was changed from 75 g / L to 100 g / L, and the supply of inorganic particles to the catalyst-coated filter was omitted. A catalyst was obtained.
  • FIG. 17 is an image obtained by binarizing a micrograph of the porous partition walls of the exhaust gas purifying catalyst according to Example 1.
  • FIG. 18 is an image obtained by binarizing a microscope photograph of the porous partition walls of the exhaust gas purifying catalyst according to Comparative Example 3.
  • FIG. 17 is an image obtained by binarizing a micrograph of the porous partition walls of the exhaust gas purifying catalyst according to Example 1.
  • FIG. 18 is an image obtained by binarizing a microscope photograph of the porous partition walls of the exhaust gas purifying catalyst according to Comparative Example 3.
  • FIG. 17 is an image obtained by binarizing a micrograph of the porous partition walls of the exhaust gas purifying catalyst according to Example 1.
  • FIG. 18 is an image obtained by binarizing a microscope photograph of the porous partition walls of the exhaust gas purifying catalyst according to Comparative Example 3.
  • S ⁇ 20 /S is the total area of pores with an opening diameter of less than 20 ⁇ m in the total area S of all pores in the micrograph of the surface of the porous partition wall on the first cell side.
  • S 20-40 /S is the ratio of the total area S 20-40 of pores having an opening diameter in the range of 20 ⁇ m or more and less than 40 ⁇ m to the total area S of all pores in the above micrograph.
  • S 40-60 /S is the ratio of the total area S 40-60 of pores having an opening diameter in the range of 40 ⁇ m or more and less than 60 ⁇ m to the total area S of all pores in the above micrograph.
  • S 60-80 /S is the ratio of the total area S 60-80 of pores having an opening diameter in the range of 60 ⁇ m or more and less than 80 ⁇ m to the total area S of all pores in the above micrograph.
  • S 80-100 /S is the ratio of the total area S 80-100 of pores having an opening diameter in the range of 80 ⁇ m or more and less than 100 ⁇ m to the total area S of all pores in the above micrograph.
  • S 100 ⁇ /S is the ratio of the total area S 100 ⁇ of pores having an opening diameter of 100 ⁇ m or more to the total area S of all pores in the micrograph.
  • S S /S is the ratio of the total area S S of pores with an opening diameter of less than 40 ⁇ m to the total area S of all pores in the micrograph.
  • the sum of the total area S ⁇ 20 and S 20-40 obtained in calculating the above opening diameter is the total area of the exhaust gas purifying catalyst according to Example 1.
  • SS1 the total area of the exhaust gas purifying catalyst according to Example 1.
  • the sum of the total areas S 40-60 , S 60-80 , S 80-100 and S 100 ⁇ obtained when calculating the opening diameter was The total area of the exhaust gas purifying catalyst was defined as SL1 .
  • the sum of the total area S ⁇ 20 and S 20-40 obtained in calculating the above opening diameter was calculated as the total area S of the exhaust gas purifying catalyst according to Comparative Example 3.
  • S2 the sum of the total area S ⁇ 20 and S 20-40 obtained in calculating the above opening diameter
  • the ratio (S L2 ⁇ S L1 )/S L2 was larger than the ratio (S S2 ⁇ S S1 )/S S2 . That is, in the exhaust gas purifying catalyst according to Example 1, among the pores opened on the surface of the porous partition wall on the first cell side, those with a large opening diameter are compared to those with a small opening diameter. The filling rate was high.
  • the PM collection efficiency was obtained by the following method. Specifically, light oil was burned with a soot generator to generate PM, and the PM was accumulated in the exhaust gas purifying catalyst according to Example 1. When the accumulated amount of PM reached 0.02 g/L, the number of PM discharged from the exhaust gas purifying catalyst was measured. The PM number was measured at a gas temperature of 240° C. and a gas flow rate of 250 kg/hour.
  • the exhaust gas purifying catalyst according to Example 1 was installed in the soot generator, and the number of PM was measured upstream of the exhaust gas purifying catalyst.
  • the PM number was measured at a gas temperature of 240° C. and a gas flow rate of 250 kg/hour.
  • x1 is the number of PM discharged from the exhaust gas purifying catalyst according to Example 1
  • x0 is the number of PM upstream of the exhaust gas purifying catalyst according to Example 1.
  • the exhaust gas purifying catalysts according to Examples 1 to 3 all had excellent PM trapping performance.
  • each of the exhaust gas purifying catalysts according to Examples 1 to 3 had a small pressure loss.
  • the exhaust gas purifying catalysts according to Examples 1 and 2 had a small pressure loss.
  • the exhaust gas purifying catalyst according to Example 1 had a smaller pressure loss after PM deposition than the exhaust gas purifying catalysts according to Comparative Examples 2 to 4.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Processes For Solid Components From Exhaust (AREA)

Abstract

PMの捕集性能に優れ、且つ初期の圧力損失が小さいウォールフロー型の排ガス浄化用触媒を提供する。排ガス浄化用触媒(1)は、触媒塗布フィルタ(2)と粉末状の無機粒子(3)とを備えている。触媒塗布フィルタ(2)は、フィルタ基材(21)とフィルタ基材(21)の細孔壁上に設けられた触媒層(22)とを含んでいる。触媒塗布フィルタ(2)は、第1端部と第2端部とフィルタ隔壁(21W)と入側セルと出側セルとを有している。フィルタ隔壁(21W)は多孔質である。入側セルは、第1端部で開口し、第2端部で閉塞されている。出側セルは、第2端部で開口し、第1端部で閉塞されている。入側セル及び出側セルはフィルタ隔壁(21W)を間に挟んで隣接している。粉末状の無機粒子(3)は、前記フィルタ隔壁の厚さ方向に平行な断面において、フィルタ隔壁(21W)の入側セルと隣接した表面に偏在している。

Description

排ガス浄化用触媒
 本発明は、排ガス浄化用触媒に関する。
 内燃機関が排出する排ガスは、炭化水素(HC)、一酸化炭素(CO)及び窒素酸化物(NO)などの有害物質を含んでいる。そのような排ガスの浄化には、例えば、白金族金属を触媒金属として含んだストレートフロー型の排ガス浄化用触媒が使用されている。
 また、ディーゼル機関が排出する排ガスは、上記の有害物質に加え、粒子状物質(PM)を比較的高い濃度で含んでいる。それ故、ディーゼル機関が排出する排ガスの浄化には、排ガスからPMを除去するべく、ディーゼルパーティキュレートフィルタ(DPF)が更に使用されている。
 近年、PM排出への規制が強まり、ディーゼル機関が排出する排ガスだけでなく、ガソリン機関が排出する排ガスからも、PMを除去する必要を生じてきている。そのため、ガソリン機関が排出する排ガスの浄化に、ガソリンパーティキュレートフィルタ(GPF)が使用されつつある。
 これらパーティキュレートフィルタとしては、例えば、担持触媒をフィルタの隔壁に担持させてなるウォールフロー型の排ガス浄化用触媒がある。そのような排ガス浄化用触媒を使用すると、排ガス浄化システムの設置スペースを小さくすることや、排ガス浄化システムを低コスト化することが可能である。
 ウォールフロー型の排ガス浄化用触媒は、例えば、特許文献1に記載されている。特許文献1には、例えば金属酸化物からなる粉末を、ウォールフロー型の排ガス浄化用触媒のフィルタ壁である多孔質隔壁の細孔内にのみ堆積させるとともに、最大で全細孔容積の50%を上記粉末で充填することが記載されている。
国際公開第2019/197177号
 本発明は、PMの捕集性能に優れ、且つ初期の圧力損失が小さいウォールフロー型の排ガス浄化用触媒を提供することを目的とする。
 本発明の一態様によると、フィルタ基材と前記フィルタ基材の細孔壁上に設けられた触媒層とを含んだ触媒塗布フィルタであって、第1端部と第2端部とフィルタ隔壁と入側セルと出側セルとを有し、前記フィルタ隔壁は多孔質であり、前記入側セルは、前記第1端部から前記第2端部へ向けて伸び、前記第1端部で開口し、前記第2端部で閉塞され、前記出側セルは、前記第2端部から前記第1端部へ向けて伸び、前記第2端部で開口し、前記第1端部で閉塞され、前記入側セル及び前記出側セルは前記フィルタ隔壁を間に挟んで隣接した触媒塗布フィルタと、前記フィルタ隔壁の厚さ方向に平行な断面において、前記フィルタ隔壁の前記入側セルと隣接した表面に偏在した粉末状の無機粒子とを備えた排ガス浄化用触媒が提供される。以下、上記の排ガス浄化用触媒を、「粉末付加触媒塗布フィルタ」ともいう。
 ここで、用語「粉末状の無機粒子」は、粒子が互いに又は他の物品に対して固着していない状態でもよいし、そのような粒子が熱処理又は薬液処理によって他の物品上に固定化された状態でもよい。無機粒子は、一次粒子であってもよく、二次粒子であってもよい。
 ここで、無機粒子が上記のように偏在していることは、以下の方法により確認することができる。先ず、排ガス浄化用触媒の多孔質隔壁の断面、即ち、排ガス浄化用触媒のうちフィルタ隔壁に対応した部分の断面を、走査電子顕微鏡で撮像して、グレイスケール画像を取得する。この撮像は、多孔質隔壁のうち、第1端からの距離と第2端からの距離とが等しい部分の断面に対して行う。次いで、エネルギー分散型X線分析装置による分析位置を先のグレイスケール画像において指定して、無機粒子のみが含む元素に由来する特性X線の強度を測定する。ここでは、多孔質隔壁の厚さ方向に沿った線分析を行うこととする。この分析結果から、無機粒子が上記のように偏在していることを確認することができる。なお、無機粒子が上記のように偏在していることは、先のグレイスケール画像に、特性X線の強度に応じた明るさを有し且つ着色した点を重ね合わせてなる合成画像から確認することもできる。なお、第1端及び第2端は、それぞれ、排ガス浄化用触媒のうち第1端部及び第2端部に対応した部分である。
 無機粒子が上記のように偏在した構成は、開口径が大きな細孔を少なくするのに利用可能である。
 この排ガス浄化用触媒は、触媒層を含んだパーティキュレートフィルタである。より詳細には、この排ガス浄化用触媒は、排ガスが、排ガス浄化用触媒のうち入側セルに対応した空間である第1セル、多孔質隔壁の細孔、及び、排ガス浄化用触媒のうち出側セルに対応した空間である第2セルを順次通過し、その過程で、排ガス中のPMを多孔質隔壁によって捕集するウォールフロー型の排ガス浄化用触媒である。
 一般に、ウォールフロー型の排ガス浄化用触媒は、ガソリン機関及びディーゼル機関などの内燃機関が排出した排ガスからPMを除去するために使用する。例えば、ウォールフロー型の排ガス浄化用触媒は、動力源の少なくとも一部としてガソリン機関又はディーゼル機関を含んだ自動推進車両において使用する。
 ウォールフロー型の排ガス浄化用触媒では、触媒層は、フィルタ隔壁によって捕集されたPMの燃焼を促進するために設けられる。
 例えば、ガソリン機関において生じた動力を推進力として使用し、ウォールフロー型の排ガス浄化用触媒を搭載したガソリン自動車では、触媒層は、特には、郊外や高速道路の走行時のように、ガソリン機関が高温の排ガスを排出している高負荷運転期間において、捕集されたPMの燃焼を促進する。
 また、ディーゼル機関が排出する排ガスは、ガソリン機関が排出する排ガスと比較して、温度がより低い。そこで、ディーゼル機関において生じた動力を推進力として使用し、ウォールフロー型の排ガス浄化用触媒を搭載したディーゼル自動車では、排ガスへ燃料を噴射することにより排ガスの温度を上昇させて、捕集されたPMを燃焼させる。触媒層は、この燃焼を促進し、それ故、排ガスへ噴射する燃料の減少に寄与する。
 上述したウォールフロー型の排ガス浄化用触媒の中には、フィルタ隔壁の厚さ全体に亘って細孔内に粉末状の無機粒子を配置したものがある。無機粒子はフィルタ隔壁の細孔の実効的な細孔径を小さくするため、このような排ガス浄化用触媒はPMの捕集性能に優れている。しかしながら、このような排ガス浄化用触媒は、フィルタ隔壁の厚さ全体に亘って細孔内に無機粒子が存在しているため、初期の圧力損失が大きい。
 フィルタ隔壁の厚さ方向に平行な断面において、フィルタ隔壁の入側セルと隣接した表面に粉末状の無機粒子を偏在させると、上記表面における細孔の実効的な径が小さくなる。そのため、PMの捕集性能を向上させることができる。また、フィルタ隔壁の厚さ方向に平行な断面において、フィルタ隔壁の入側セルと隣接した表面に無機粒子を偏在させた場合、フィルタ隔壁の上記表面近傍以外の部分には、無機粒子はほとんど存在しない。このため、この構成を採用した排ガス浄化用触媒は、初期の圧力損失が小さい。
 また、フィルタ隔壁の厚さ方向に平行な断面において、フィルタ隔壁の上記表面に粉末状の無機粒子を偏在させた排ガス浄化用触媒は、以下に説明する効果を奏し得る。
 上述した通り、触媒層はPMの燃焼を促進し得るが、触媒層によるPM燃焼が常に十分に促進される訳ではない。例えば、ウォールフロー型の排ガス浄化用触媒を搭載したガソリン自動車では、ストップ・アンド・ゴーを繰り返して短い距離を走行すると、捕集されるPMの量が燃焼するPMの量を上回り、その結果、ウォールフロー型の排ガス浄化用触媒にPMが蓄積される。また、ウォールフロー型の排ガス浄化用触媒を搭載したディーゼル自動車では、排ガスへの燃料噴射を行う前の期間内において、ウォールフロー型の排ガス浄化用触媒にPMが蓄積される。
 PMが蓄積されると、ウォールフロー型の排ガス浄化用触媒において生じる圧力損失が大きくなる。圧力損失が大きくなると、燃費性能が低下する。従って、PMの蓄積に伴う圧力損失の増大は小さいことが望ましい。
 一般的なウォールフロー型の排ガス浄化用触媒、例えば、上述した粉末状の無機粒子を備えていないウォールフロー型の排ガス浄化用触媒では、PM堆積の初期においては、PMは、フィルタ隔壁の入側セルと隣接した表面領域内に位置した細孔、即ち、フィルタ隔壁の入側セルと隣接した面からの距離が、例えば、フィルタ隔壁の厚さの30%以下である細孔内に堆積し、これら細孔内におけるPMの堆積量が増加する。これら細孔内におけるPM堆積量が増加すると、フィルタ隔壁においてガス流路が狭まるか又は閉塞し、その結果、圧力損失が大幅に増大する。このため、PM堆積の初期においては、PM捕集量の増加に伴い、圧力損失は急激に増大する。
 上記の表面領域内に位置した細孔内へのPMの堆積が或る程度進行すると、PMは、フィルタ隔壁の入側セルと隣接した面上に堆積するようになる。この面上に堆積したPMからなる堆積層は、見かけ密度が低い粒状層である。この粒状層では、PM堆積量の増加に伴うガス流路の狭小化や閉塞は生じ難い。それ故、この期間においては、PM捕集量の増加に伴う圧力損失の増大は穏やかである。
 このように、一般的なウォールフロー型の排ガス浄化用触媒では、PM堆積の初期において、圧力損失は急速且つ大幅に増大する。それ故、そのような排ガス浄化用触媒を搭載した自動車では、PMが蓄積し始めてからPMが燃焼してその蓄積量が十分に少なくなるまでの期間に占める、圧力損失が大きい期間の割合が高い。
 これに対し、フィルタ隔壁の厚さ方向に平行な断面において、フィルタ隔壁の入側セルと隣接した表面に偏在した粉末状の無機粒子を備えた排ガス浄化用触媒では、PMは、多孔質隔壁の第1セル側の面から遠く位置した細孔まで到達し難い。それ故、多孔質隔壁の細孔内に堆積するPMの量は少なく、多孔質隔壁におけるガス流路の狭小化や閉塞は生じ難い。従って、この排ガス浄化用触媒は、PMの堆積により生じる圧力損失が小さい。
 また、フィルタ隔壁の厚さ方向に平行な断面において、フィルタ隔壁の入側セルと隣接した表面に粉末状の無機粒子を偏在させると、多孔質隔壁の表面にてPMを捕集しやすいため、PMが細孔内に堆積することによって生じる触媒性能の低下が生じにくい。
 本発明の他の態様によると、前記無機粒子は、大部分が前記フィルタ隔壁の細孔内に位置している上記態様に係る排ガス浄化用触媒が提供される。無機粒子の大部分がフィルタ隔壁の細孔内に位置していると、PMは排ガス浄化用触媒の多孔質隔壁を通り抜けにくいため、高いPM捕集性能を達成しやすい。前記無機粒子の大部分が前記フィルタ隔壁の細孔内に位置していることは、好ましくは、前記無機粒子の全量に占める、前記無機粒子のうち前記フィルタ隔壁の細孔内に位置しているものの量が70%以上である。
 本発明の更に他の態様によると、前記無機粒子の平均粒子径D1と前記フィルタ隔壁の細孔の平均細孔径D2との比D1/D2は、0.06乃至2の範囲内にある上記態様の何れかに係る排ガス浄化用触媒が提供される。比D1/D2が小さい場合、高いPM捕集性能を達成することが難しい。また、比D1/D2が小さい場合、細孔内へのPMの堆積が生じやすいため、多孔質隔壁へのPMの堆積により生じる圧力損失が大きい傾向にある。比D1/D2が大きい場合、排ガス浄化用触媒の初期の圧力損失が大きくなりやすい。比D1/D2は、一例によると、0.06乃至1の範囲内にある。比D1/D2は、他の例によると、0.15乃至2の範囲内にある。比D1/D2は、0.15乃至0.7の範囲内にあることが好ましい。
 本発明の更に他の態様によると、前記フィルタ基材は、ハニカム構造体と栓とを含んだ上記態様の何れかに係る排ガス浄化用触媒が提供される。
 ハニカム構造体は、一対の対向する底面を有する柱体であり、一方の底面から他方の底面まで伸びた複数の貫通孔が設けられている。ここで、一方の底面は第1端に対応し、他方の底面は第2端に対応している。一対の対向する底面の形状は、例えば、円形、楕円形、長円形、又は多角形である。
 ハニカム構造体は、これら貫通孔の側壁を構成している隔壁を含んでいる。これら隔壁は、多孔質であり、隣り合った貫通孔を仕切っている。
 ハニカム構造体の材料としては、例えば、コージェライト、チタン酸アルミニウム及び炭化ケイ素などのセラミックスを使用することができる。そのようなハニカム構造体には、金属又は合金製の不織布が編み込まれていてもよい。或いは、ハニカム構造体の材料として、ステンレス鋼などの金属又は合金を使用してもよい。
 各栓は、ハニカム構造体の貫通孔を一端側で閉塞している。複数の貫通孔のうち半数の貫通孔は、栓により第2端側で塞がれている。第1セルは、貫通孔を第2端側で塞いでいる栓と、この貫通孔の側壁を構成している隔壁とによって囲まれた空間である。
 第2端側で閉塞されていないハニカム構造体の残りの貫通孔は、栓により第1端側で塞がれている。第2セルは、貫通孔を第1端側で塞いでいる栓と、この孔の側壁を構成している隔壁とによって囲まれた空間である。
 第1セルと第2セルとは、フィルタ基材の隔壁と隔壁の細孔内に形成された触媒層とを挟んで隣り合っている。
 栓の材料としては、例えば、コージェライト、チタン酸アルミニウム及び炭化ケイ素などのセラミックスを使用することができる。
 本発明の更に他の態様によると、前記フィルタ基材は、容積Vが0.1乃至5Lの範囲内にある上記態様の何れかに係る排ガス浄化用触媒が提供される。ここで、フィルタ基材の「容積」は、フィルタ基材のうち第1及び第2セルに対応した空間並びに隔壁を含む体積であり、フィルタ基材の底面の面積にフィルタ基材の高さを乗じて算出される。フィルタ基材の容積Vは、0.5L以上であることが好ましい。また、フィルタ基材の容積Vは、3L以下であることが好ましく、2L以下であることがより好ましい。
 本発明の更に他の態様によると、前記フィルタ基材は、前記入側セル及び前記出側セルの長さ方向における寸法が10乃至500mmの範囲内にある上記態様の何れかに係る排ガス浄化用触媒が提供される。この寸法は、50乃至300mmの範囲内にあることが好ましい。
 本発明の更に他の態様によると、前記フィルタ基材のうち前記フィルタ隔壁に対応した部分、即ちフィルタ基材の隔壁の厚さは0.05乃至2mmの範囲内にある上記態様の何れかに係る排ガス浄化用触媒が提供される。この厚さを小さくすると、フィルタ基材の機械的強度が低下する。この厚さを大きくすると、多孔質隔壁が厚くなり、その結果、PMが堆積していない状態における圧力損失(即ち、初期の圧力損失)が大きくなる。この厚さは、0.1乃至1mmの範囲内にあることが好ましい。
 本発明の更に他の態様によると、前記フィルタ基材のうち前記フィルタ隔壁に対応した部分、即ちフィルタ基材の隔壁の気孔率は、30乃至90%の範囲内にある上記態様の何れかに係る排ガス浄化用触媒が提供される。なお、この「気孔率」は、水銀圧入法によって得られる値である。気孔率を大きくすると、フィルタ基材の機械的強度が低下する。この気孔率を小さくすると、多孔質隔壁の気孔率も小さくなり、その結果、PMが堆積していない状態における圧力損失が大きくなる。この気孔率は、40乃至80%の範囲内にあることが好ましい。
 本発明の更に他の態様によると、前記フィルタ基材のうち前記フィルタ隔壁に対応した部分、即ちフィルタ基材の隔壁の平均細孔径は、5乃至50μmの範囲内にある上記態様の何れかに係る排ガス浄化用触媒が提供される。なお、この「平均細孔径」は、水銀圧入法によって得られる値である。平均細孔径を大きくすると、フィルタ基材の機械的強度が低下する。平均細孔径を小さくすると、PMが堆積していない状態における圧力損失が大きくなる。この平均細孔径は、10乃至40μmの範囲内にあることが好ましい。
 本発明の更に他の態様によると、前記触媒層は貴金属を含んだ上記態様の何れかに係る排ガス浄化用触媒が提供される。貴金属は、触媒金属の一例である。貴金属は、例えば、白金族元素である。触媒層は、貴金属として、例えば、白金、パラジウム及びロジウムのうちの1種類以上を含むことができる。これら貴金属は、PMの燃焼を促進する能力が高い。
 本発明の更に他の態様によると、前記貴金属の質量Mと前記フィルタ基材の容積Vとの比M/Vは、0.01乃至10g/Lの範囲内にある上記態様に係る排ガス浄化用触媒が提供される。比M/Vが小さい場合、貴金属がPMの燃焼を促進する効果が小さい。比M/Vを大きくすると、高コストになる。比M/Vは、0.1乃至5g/Lの範囲内にあることが好ましい。
 本発明の更に他の態様によると、前記触媒層は、前記貴金属を担持した多孔質担体及び助触媒の少なくとも一方を更に含んだ上記態様の何れかに係る排ガス浄化用触媒が提供される。多孔質担体を使用すると、貴金属の比表面積を大きくすることが容易である。酸素貯蔵材料などの助触媒を使用すると、例えば、排ガスの組成の変動に伴う触媒の性能変化を小さくすることができる。
 多孔質担体及び助触媒は、例えば、アルミナ;セリアとジルコニアとの複合酸化物;この複合酸化物を主成分として含み、セリウム以外の希土類元素の酸化物、アルカリ土類金属元素の酸化物、ジルコニウム以外の遷移金属元素の酸化物、アルミナ、及びシリカからなる群より選ばれる1以上を更に含んだ多結晶又は単結晶;又は、それらの2以上の組み合わせである。
 多孔質担体及び助触媒の各々の平均粒子径は、0.05乃至5μmの範囲内にあることが好ましく、0.1乃至3μmの範囲内にあることがより好ましい。なお、この「平均粒子径」は、レーザー回折・散乱法によって得られるメジアン径である。
 本発明の更に他の態様によると、前記触媒層の質量Mと前記フィルタ基材の容積Vとの比M/Vは、300g/L以下である上記態様に係る排ガス浄化用触媒が提供される。比M/Vは、250g/L以下であることが好ましく、150g/L以下であることがより好ましく、120g/L以下であることが更に好ましく、100g/L以下であることが更に好ましい。
 本発明の更に他の態様によると、前記触媒層の質量Mと前記フィルタ基材の容積Vとの比M/Vは、10乃至300g/Lの範囲内にある上記態様に係る排ガス浄化用触媒が提供される。比M/Vが小さい場合、開口径が大きな細孔を少なくすることに対する触媒層の寄与が小さい。比M/Vを大きくすると、PMが堆積していない状態における圧力損失が大きくなる。比M/Vは、20乃至250g/Lの範囲内にあることが好ましく、20乃至200g/Lの範囲内にあることがより好ましく、30乃至100g/Lの範囲内にあることが更に好ましい。比M/Vの下限値は25g/Lであってもよい。また、比M/Vの上限値は150g/Lであってもよい。
 本発明の更に他の態様によると、前記触媒層の少なくとも一部は、前記フィルタ隔壁のうち前記入側セルと隣接した部分、即ち、フィルタ隔壁のうち入側セル側の部分に位置している上記態様の何れかに係る排ガス浄化用触媒が提供される。ここで、「フィルタ隔壁のうち入側セルと隣接した部分」は、フィルタ隔壁のうち、入側セルと隣接した部分の表面からの距離が、フィルタ隔壁の厚さの80%以下の部分である。触媒層の全体が、フィルタ隔壁のうち入側セルと隣接した部分、即ち、フィルタ隔壁のうち入側セル側の部分に位置していてもよい。或いは、触媒層は、フィルタ隔壁の厚さの全体に亘って設けられていてもよい。即ち、触媒層は、フィルタ基材の隔壁の入側セル側の面からこの隔壁の出側セル側の面の近傍まで拡がっていること、例えば、フィルタ基材の隔壁の入側セル側の面からこの隔壁の出側セル側の面まで拡がっていることが好ましい。このような構造は、PMが堆積していない状態における圧力損失を小さくするうえで、特に有利である。また、このような構造は、PMを確実に燃焼させるとともに、他の有害物質を浄化するうえでも、特に有利である。
 本発明の更に他の態様によると、前記フィルタ隔壁のうち前記入側セルと隣接した部分、即ち、フィルタ隔壁のうち入側セル側の部分は、前記表面に垂直な断面において、前記フィルタ基材内部の細孔を、細孔径が5μm以上10μm未満の第1細孔と、細孔径が10μm以上20μm未満の第2細孔と、細孔径が20μm以上の第3細孔とに区分した場合に、前記第1細孔の前記触媒層による充填率RF1、前記第2細孔の前記触媒層による充填率RF2、及び前記第3細孔の前記触媒層による充填率RF3は、不等式:RF1<RF2<RF3に示す関係を満たす上記態様の何れかに係る排ガス浄化用触媒が提供される。
 ここで、充填率RF1は、前記断面における、前記第1細孔の合計面積SF1に対する、前記触媒層のうち前記第1細孔内に位置した部分の合計面積SC1の比である。充填率RF2は、前記断面における、前記第2細孔の合計面積SF2に対する、前記触媒層のうち前記第2細孔内に位置した部分の合計面積SC2の比である。充填率RF3は、前記断面における、前記第3細孔の合計面積SF3に対する、前記触媒層のうち前記第3細孔内に位置した部分の合計面積SC3の比である。
 ここでは、連続した細孔間の境界及び各細孔の細孔径は、後で図面を参照しながら説明する方法により決定する。
 上記不等式によって特定される構成は、PMが堆積していない状態における圧力損失が大きくなるのを抑制しつつ、高いPM捕集性能を達成するのに利用可能である。
 本発明の更に他の態様によると、前記充填率RF1は40%以下であり、前記充填率RF2は40%以下であり、前記充填率RF3は45%以下である上記態様に係る排ガス浄化用触媒が提供される。
 これら充填率を大きくすると、PMが堆積していない状態における圧力損失が大きくなる。
 本発明の更に他の態様によると、前記充填率RF3は20%以上である上記態様の何れかに係る排ガス浄化用触媒が提供される。充填率RF3が小さい場合、排ガスの流路に十分な量の触媒を配置できておらず、有害物質の浄化に不利である。
 本発明の更に他の態様によると、前記充填率RF1は10%以上であり、前記充填率RF2は15%以上である上記態様の何れかに係る排ガス浄化用触媒が提供される。
 充填率RF1及び充填率RF2は、小さいことが好ましい。排ガスの多くは第3細孔を流れるので、PMの燃焼及び他の有害物質の浄化の観点でも、充填率RF1及び充填率RF2を小さくして、充填率RF3を大きくすることが好ましい。
 本発明の更に他の態様によると、前記無機粒子の全量Aと、前記触媒塗布フィルタの前記入側セルと隣接した面上、即ち、前記触媒塗布フィルタの前記入側セル側の面上、に位置した前記無機粒子の量A1と、前記触媒塗布フィルタの細孔内であって、前記触媒塗布フィルタの前記入側セルと隣接した前記面からの距離が、前記触媒塗布フィルタのうち前記フィルタ隔壁に対応した部分、即ち、前記触媒塗布フィルタのフィルタ隔壁の厚さの20%以下である前記無機粒子の量A2とは、不等式(A1+A2)/A≧90%で表される関係を満たす上記態様の何れかに係る排ガス浄化用触媒が提供される。
 無機粒子が多孔質隔壁の第1セル側に偏在している程度を表す割合(A1+A2)/Aは、90%以上であることが好ましい。割合(A1+A2)/Aの上限値に制限はない。割合(A1+A2)/Aは、100%であってもよい。
 本発明の更に他の態様によると、前記無機粒子は1乃至50μmの範囲内の平均粒子径を有する上記態様の何れかに係る排ガス浄化用触媒が提供される。
 ここで、「平均粒子径」は、レーザー回折・散乱法によって得られるメジアン径である。平均粒子径が上記範囲内にある無機粒子は、例えば、高いPM捕集性能を達成しやすい。この平均粒子径は、5乃至10μmの範囲内にあることが好ましい。
 本発明の更に他の態様によると、前記無機粒子は、金属酸化物、金属水酸化物、金属炭酸塩、金属リン酸塩、金属硝酸塩、金属硫酸塩、粘土鉱物、及び多孔質無機物からなる群より選択される1以上を含んだ上記態様の何れかに係る排ガス浄化用触媒が提供される。
 好ましくは、無機粒子は、金属酸化物、金属水酸化物、金属炭酸塩、金属リン酸塩、金属硝酸塩、金属硫酸塩、及び多孔質無機物からなる群より選択される1以上からなる。
 無機粒子が含む金属元素は、例えば、アルカリ金属元素、アルカリ土類金属元素、希土類元素、及び遷移金属元素からなる群より選ばれる1以上である。この金属元素は、カルシウム、マグネシウム、ストロンチウム、バリウム、アルミニウム、ケイ素、チタン、ジルコニウム、及びセリウムからなる群より選択される1以上であることが好ましい。
 無機粒子の具体例としては、例えば、金属酸化物については、酸化カルシウム、酸化セリウム、二酸化チタン、二酸化ジルコニウム、二酸化ケイ素、酸化アルミニウム、それらの混合物、及び混合酸化物が挙げられる。粘土鉱物は人工の粘土鉱物であってもよく、天然の粘土鉱物であってもよい。多孔質無機物としては、例えば、ゼオライト及びセピオライトの1以上を使用することができる。無機粒子は、酸化カルシウムを含んでいることが好ましく、酸化カルシウムからなることがより好ましい。
 本発明の更に他の態様によると、粉末付加触媒塗布フィルタにおける、前記フィルタ基材の容積Vに対する前記無機粒子の質量Mの比M/Vは、3g/L以上である上記態様の何れかに係る排ガス浄化用触媒が提供される。
 比M/Vが小さいと、高いPM捕集性能を達成することが難しい。比M/Vは、5g/L以上であることが好ましい。
 本発明の更に他の態様によると、前記フィルタ基材の容積Vに対する前記無機粒子の質量Mの比M/Vは、50g/L以下である上記態様の何れかに係る排ガス浄化用触媒が提供される。
 比M/Vを大きくすると、PMが堆積していない状態における圧力損失が大きくなる。比M/Vは、15g/L以下であることが好ましく、10g/L以下であることがより好ましい。
 本発明の更に他の態様によると、前記フィルタ基材の容積Vに対する前記無機粒子の質量Mの比M/Vは、3乃至15g/Lの範囲内にある上記態様の何れかに係る排ガス浄化用触媒が提供される。比M/Vは、5乃至10g/Lの範囲内にあることが好ましい。
 本発明の更に他の態様によると、前記排ガス浄化用触媒のうち前記フィルタ隔壁に対応した部分、即ち、前記多孔質隔壁は、前記表面において、全細孔の合計面積Sに占める、開口径が40μm未満である細孔の合計面積Sの割合S/Sが65%以上である上記態様の何れかに係る排ガス浄化用触媒が提供される。割合S/Sが65%以上であると、PMの堆積により生じる圧力損失が小さい。
 ここで、「開口径」は、以下の方法によって得られる値である。 
 先ず、排ガス浄化用触媒の多孔質隔壁の第1セル側の表面を、200倍の倍率で撮像して、グレイスケール画像を取得する。この撮像には、光学顕微鏡を使用する。また、この撮像は、多孔質隔壁の第1セル側の表面のうち、触媒塗布フィルタの長さ方向における中央付近の領域に対して行う。なお、この「長さ方向」は、第1及び第2セルの長さ方向と等しい。次いで、得られたグレイスケール画像を二値化して、二値化画像を取得する。そして、二値化画像における第1セル側表面の黒色部の各々の面積を求め、この面積と等しい面積を有する円の直径、即ち円相当径を、その黒色部に対応した細孔の「開口径」とする。ここでは、或る黒色部が他の黒色部から離間している限り、それがどのような形状を有していようと、その黒色部は1つの細孔に対応しているとする。なお、この画像処理には、画像処理ソフトウェア「ImageJ」を使用することができる。
 割合S/Sは、70%以上であることが好ましい。割合S/Sに上限値はないが、一例によれば、割合S/Sは95%以下である。
 本発明の他の態様によると、前記排ガス浄化用触媒のうち前記フィルタ隔壁に対応した部分、即ち、前記多孔質隔壁は、前記表面における、前記全細孔の前記合計面積Sに占める、開口径が40μm以上60μm未満である細孔の合計面積Sの割合S/Sが30%以下である上記態様に係る排ガス浄化用触媒が提供される。
 割合S/Sが大きくなると、割合S/Sは小さくなる傾向にある。割合S/Sは、20%以下であることが好ましい。割合S/Sに下限値はないが、一例によれば、割合S/Sは4%以上である。
 本発明の更に他の態様によると、前記排ガス浄化用触媒のうち前記フィルタ隔壁に対応した部分、即ち、多孔質隔壁は、前記表面における、前記全細孔の前記合計面積Sに占める、開口径が60μm以上である細孔の合計面積Sの割合S/Sが15%以下である上記態様の何れかに係る排ガス浄化用触媒が提供される。
 割合S/Sが大きくなると、割合S/Sは小さくなる傾向にある。割合S/Sは、10%以下であることが好ましい。割合S/Sに下限値はないが、一例によれば、割合S/Sは1%以上である。
 本発明の更に他の態様によると、前記排ガス浄化用触媒のうち前記フィルタ隔壁に対応した部分、即ち、多孔質隔壁は、前記表面における、前記全細孔の前記合計面積Sに占める、開口径が20μm未満である細孔の合計面積SSSの割合SSS/Sが50%以下である上記態様の何れかに係る排ガス浄化用触媒が提供される。
 割合SSS/Sが大きい排ガス浄化用触媒は、割合SSS/Sが小さい排ガス浄化用触媒と比較して、PMが堆積していない状態における圧力損失が大きい傾向にある。割合SSS/Sに下限値はないが、一例によれば、割合SSS/Sは20%以上である。
 本発明の更に他の態様によると、前記触媒塗布フィルタの前記表面において、前記排ガス浄化用触媒のうち前記フィルタ隔壁に対応した部分、即ち、前記多孔質隔壁の前記細孔を、開口径が40μm未満の第1小細孔と、開口径が40μm以上の第1大細孔とに区分し、前記触媒塗布フィルタのうち前記フィルタ隔壁に対応した部分、即ち、フィルタ隔壁の前記第1セル側の表面において、前記フィルタ隔壁が有する細孔を、開口径が40μm未満の第2小細孔と、開口径が40μm以上の第2大細孔とに区分した場合に、前記第2小細孔の合計面積SS2に対する、前記合計面積SS2と前記第1小細孔の合計面積SS1との差SS2-SS1の比(SS2-SS1)/SS2は40%以下であり、前記第2大細孔の合計面積SL2に対する、前記合計面積SL2と前記第1大細孔の合計面積SL1との差SL2-SL1の比(SL2-SL1)/SL2は60%以上である上記態様の何れかに係る排ガス浄化用触媒が提供される。
 比(SL2-SL1)/SL2及び比(SS2-SS1)/SS2が上記の要件を満たしている場合、大細孔は、小細孔と比較して、無機粒子の適用による開口径の減少の程度がより大きい。このような構成は、例えば、割合S/Sが大きく且つ割合SSS/Sが小さい構造を得るうえで有利である。
 本発明の更に他の態様によると、前記フィルタ基材の細孔壁上に設けられた前記触媒層を形成することと、前記無機粒子を前記表面に供給することとを含む、上記態様の何れかに係る排ガス浄化用触媒の製造方法が提供される。
 触媒層は、例えば、以下の方法により形成することができる。
 先ず、触媒層の原料と分散媒とを含んだスラリーを準備する。 
 触媒層の原料は、触媒金属と、任意に、多孔質担体及び助触媒の少なくとも一方とを含んでいる。触媒金属は、例えば、分散媒に溶解可能な金属化合物の形態で、又は、触媒金属を多孔質担体に担持させてなる担持触媒の形態でスラリーに含まれ得る。分散媒は、例えば、水などの水系溶媒である。
 スラリーは、適切な粘度を有するように調製する。例えば、スラリーは、せん断速度が400s-1のときの粘度が50mPa・sより大きく且つ150mPa・s以下の範囲内となるように、好ましくは60乃至110mPa・s以下の範囲内となるように調製する。
 ここで、上記スラリーの粘度は、市販のせん断粘度計により常温で測定され得る粘度である。例えば、当該分野で標準的な動的粘弾性測定装置(レオメータ)を使用することにより、上記のようなせん断速度における粘度を容易に測定することができる。ここで「常温」とは、15乃至35℃の温度範囲内の温度であり、典型的には20乃至30℃の温度範囲内の温度、例えば25℃である。
 スラリーは、増粘剤を更に含むことができる。増粘剤としては、例えば、カルボキシメチルセルロース(CMC)、メチルセルロース(MC)、ヒドロキシプロピルメチルセルロース(HPMC)、及びヒドロキシエチルメチルセルロース(HEMC)等のセルロース系のポリマーを使用することができる。スラリー中の全固形分に占める増粘剤の割合は、スラリーの粘度が上記範囲を満たす限りにおいて特に限定されないが、好ましくは0.1乃至5質量%、より好ましくは0.3乃至4質量%、更に好ましくは0.5乃至3質量%の範囲内である。
 次に、フィルタ基材のうち第1端部に対応した部分、即ち、フィルタ基材の第1端側から上記のスラリーを供給するとともに、フィルタ基材のうち第2端部に対応した部分、即ち、フィルタ基材の第2端側から、フィルタ基材内のガスを吸引する。これにより、フィルタ基材のうち第1端が開口したセルにスラリーを流入させるとともに、これらセルを形成する隔壁表面から、隔壁の細孔内にスラリーを流入させる。
 次いで、フィルタ基材のうち第2端部に対応した部分、即ち、フィルタ基材のうち第2端側から上記のスラリーを供給するとともに、フィルタ基材のうち第1端部に対応した部分、即ち、フィルタ基材のうち第1端側から、フィルタ基材内のガスを吸引する。これにより、フィルタ基材のうち第2端部に対応した部分で開口した孔にスラリーを流入させるとともに、これら隔壁表面から、隔壁の細孔内にスラリーを流入させる。なお、この工程は省略することができる。
 上記の吸引の条件は、フィルタ基材の断面径などによって異なり得る。一例を挙げると、80乃至250mmの範囲内の直径を有している円柱形のフィルタ基材の場合、装置にフィルタ基材を設置し且つスラリーの供給を行わないときにおけるフィルタ基材の端部近傍におけるガス流の線速度(風速)が10乃至80m/sの範囲内になる条件下で吸引を行うことが好ましい。吸引時間は特に限定されないが、0.1乃至30秒の範囲内とすることが好ましい。線速度及び吸引時間の好ましい組み合わせは、20乃至70m/s及び0.5乃至25秒;並びに、40乃至60m/s及び2乃至15秒である。
 その後、スラリーを供給したフィルタ基材を乾燥させ、焼成に供する。以上のようにして、触媒塗布フィルタを得る。高粘度のスラリーを使用し、上記条件下で吸引を行うと、比RF1、RF2及びRF3が上述した条件を満たす触媒塗布フィルタが得られる。
 次に、触媒塗布フィルタへ無機粒子を供給する。具体的には、無機粒子をエアロゾル粒子として含んだエアロゾルを、触媒塗布フィルタの第1端部へ供給する。これとともに、触媒塗布フィルタの第2端部から、触媒塗布フィルタ内のガスを吸引する。この吸引は、好ましくは、触媒塗布フィルタの第1端部が下方を向くように設置して行う。
 この操作により、エアロゾルは、触媒塗布フィルタの第1端部側で開口したセルへ流入し、触媒塗布フィルタのフィルタ隔壁によって、ガスと無機粒子とに分離される。細孔径が大きな細孔からなるガス流路は、細孔径が小さな細孔からなるガス流路と比較して通気抵抗が小さい。それ故、無機粒子は、細孔径が小さな細孔と比較して、細孔径が大きな細孔内により多く堆積する。
 また、触媒層を上記のように形成した触媒塗布フィルタでは、フィルタ隔壁のエアロゾルが流入する面で開口した細孔は、細孔径が大きな細孔であっても、細孔径が過剰に大きい訳ではない。それ故、無機粒子を、フィルタ隔壁のエアロゾルが流入する面の近傍に局在化することができる。 
 以上のようにして、上記態様の何れかに係る排ガス浄化用触媒、即ち、粉末付加触媒塗布フィルタが得られる。
本発明の一実施形態に係る排ガス浄化用触媒を概略的に示す断面図。 図1に示す排ガス浄化用触媒の多孔質隔壁を拡大して示す断面図。 図1に示す排ガス浄化用触媒の多孔質隔壁を更に拡大して示す断面図。 多孔質隔壁の断面画像において連結した細孔を分離する方法を示す断面図。 多孔質隔壁の第1セル側の表面を概略的に示す平面図。 例1に係る排ガス浄化用触媒の多孔質隔壁の厚さ方向の断面を示す画像に、カルシウムに由来する特性X線の強度に応じた明るさを有し且つ着色した点を重ね合わせてなる合成画像。 図6に示す排ガス浄化用触媒の多孔質隔壁の厚さ方向の断面を拡大して示す合成画像。 例1に係る排ガス浄化用触媒の多孔質隔壁について得られた、厚さ方向における粉末状の無機粒子の分布を示すグラフ。 例1に係る排ガス浄化用触媒の多孔質隔壁の第1セル側の表面を示す顕微鏡画像。 図9における、パラジウムに由来する特性X線の強度に応じた明るさを有し且つ着色した点を示す画像。 図9における、カルシウムに由来する特性X線の強度に応じた明るさを有し且つ着色した点を示す画像。 図10に示す画像と図11に示す画像とを重ね合わせてなる合成画像。 図12に示す画像上のある直線に沿った線分析の結果を示すグラフ。 図12に示す画像上の他の直線に沿った線分析の結果を示すグラフ。 図12に示す画像上の更に他の直線に沿った線分析の結果を示すグラフ。 比較例1乃至4に係る排ガス浄化用触媒について、フィルタ隔壁の細孔分布を測定した結果を示すグラフ。 例1に係る排ガス浄化用触媒の多孔質隔壁の顕微鏡写真を二値化してなる画像。 比較例3に係る排ガス浄化用触媒の多孔質隔壁の顕微鏡写真を二値化してなる画像。 例1及び比較例1乃至4に係る排ガス浄化用触媒の捕集率を示すグラフ。 例1乃至3及び比較例3に係る排ガス浄化用触媒の捕集率を示すグラフ。 例1乃至3及び比較例3に係る排ガス浄化用触媒の初期の圧力損失を示すグラフ。
 以下に、本発明の実施形態について、図面を参照しながら説明する。以下に説明する実施形態は、上記態様の何れかをより具体化したものである。
 以下に説明する特徴の各々は、上記態様の各々と組み合わせることが可能である。また、以下に説明する特徴の2以上の組み合わせは、上記態様の各々と組み合わせることが可能である。
 なお、以下で参照する図において、同様又は類似した機能を有する要素については、同一の参照符号を付し、重複する説明は省略する。また、各図において、寸法比や形状は、実物とは異なる可能性がある。
 図1は、本発明の一実施形態に係る排ガス浄化用触媒を概略的に示す断面図である。図2は、図1に示す排ガス浄化用触媒の多孔質隔壁を拡大して示す断面図である。図3は、図1に示す排ガス浄化用触媒の多孔質隔壁を更に拡大して示す断面図である。なお、図1及び図2において、白抜き矢印は、排ガスの流れ方向を示している。
 図1乃至図3に示す排ガス浄化用触媒1は、図2及び図3に示す触媒層22を含んだパーティキュレートフィルタである。この排ガス浄化用触媒1は、略円柱形状を有している。図1に示すように、排ガス浄化用触媒1は、第1端E1と、第2端E2と、多孔質隔壁Wと、第1セルC1と、第2セルC2とを有している。第1端E1及び第2端E2は、円筒の底面である。
 第1セルC1は、第1端E1から第2端E2へ向けて伸びている。第1セルC1は、第1端E1で開口し、第2端E2で閉塞されている。
 第2セルC2は、第2端E2から第1端E1へ向けて伸びている。第2セルC2は、第2端E2で開口し、第1端E1で閉塞されている。
 第1セルC1及び第2セルC2は、多孔質隔壁Wを間に挟んで隣接している。第1セルC1及び第2セルC2は、第1端E1及び第2端E2で市松模様状のパターンを形成するように配列している。
 排ガス浄化用触媒1は、図1乃至図3に示すように、触媒塗布フィルタ2を含んでいる。触媒塗布フィルタ2は、図2及び図3に示すように、フィルタ基材21と触媒層22とを含んでいる。
 フィルタ基材21は、図1に示すように、ハニカム構造体211と栓212a及び212bとを含んでいる。
 ハニカム構造体211は、一方の底面から他方の底面へと各々が延びた複数の貫通孔が設けられた円柱体である。これら底面の一方は第1端E1に対応し、他方の底面は第2端E2に対応している。ハニカム構造体211は、これら貫通孔の側壁を構成している隔壁211Wを含んでいる。これら隔壁211Wは、多孔質であり、隣り合った貫通孔を仕切っている。
 栓212aは、ハニカム構造体211の孔の一部を第2端E2側で塞いでいる。第1セルC1は、孔を第2端E2側で塞いでいる栓212aと、この孔の側壁を構成している隔壁211Wとによって囲まれた空間内に位置している。
 栓212bは、ハニカム構造体211の残りの孔を第1端E1側で塞いでいる。第2セルC2は、孔を第1端E1側で塞いでいる栓212bと、この孔の側壁を構成している隔壁211Wとによって囲まれた空間内に位置している。
 これら栓212a及び212bは、第2端E2側が栓212aで塞がれている孔と第1端E1側が栓212bで塞がれている孔とが、隔壁211Wを挟んで隣り合うように配置されている。第1セルC1と第2セルC2セルとは、フィルタ基材21の隔壁211Wとその細孔壁上に設けられた触媒層22とを挟んで隣り合っている。
 触媒層22は、図2及び図3に示すように、フィルタ基材21に支持されている。具体的には、触媒層22は、フィルタ基材21の細孔壁上に設けられている。即ち、触媒層22は、隔壁211Wの細孔内壁とを覆っている。
 この構造では、触媒層22は、多孔質隔壁W又は隔壁211Wの厚さの全体に亘って設けられている。触媒層22のうち、隔壁211Wの細孔内壁を覆っており且つ隔壁211Wの第1セルC1側の表面から距離が所定の値以上の部分は省略することができる。即ち、触媒層22の全体が、多孔質隔壁W又は隔壁211Wのうち第1セルC1側の部分に位置していてもよい。
 隔壁211Wと、触媒層22のうち隔壁211Wによって支持された部分とは、フィルタ隔壁21Wを構成している。フィルタ隔壁21Wは多孔質である。
 排ガス浄化用触媒1は、図2及び図3に示すように、無機粒子3を更に含んでいる。無機粒子3は、多孔質隔壁W又はフィルタ隔壁21Wの第1セルC1側の面又はその近傍に偏在している。
 無機粒子3は、粉末状である。無機粒子3は、少なくとも一部が触媒塗布フィルタ2に付着しているが、触媒塗布フィルタ2に固着していない。また、無機粒子3は、相互に固着していないが、熱処理や化学処理で固着させることができる。
 無機粒子3は、多孔質隔壁Wの第1セルC1側の表面近傍に位置した細孔の細孔径を小さくしている。多孔質隔壁Wの第1セルC1側の表面近傍では、一例によると、フィルタ隔壁21Wが有する細孔の無機粒子3による充填率は、開口径が小さい細孔では低く、開口径が大きい細孔では高い傾向にある。上記の充填率は、上記の傾向に従っていなくてもよい。
 この排ガス浄化用触媒1では、無機粒子3が多孔質隔壁W又はフィルタ隔壁21Wの第1セルC1側の面又はその近傍に偏在している。このため、高いPM捕集性能を容易に達成することができる。また、この排ガス浄化用触媒1では、多孔質隔壁W又はフィルタ隔壁21Wの第1セルC1側の面又はその近傍以外の部分には、無機粒子3はほとんど存在しない。このため、この排ガス浄化用触媒1は初期の圧力損失が小さい。
 触媒層22は、フィルタ隔壁21Wが以下に説明する構造を有するように構成されていることが好ましい。
 即ち、フィルタ隔壁21Wのうち第1セルC1側の部分は、フィルタ隔壁21Wの第1セルC1側の表面に垂直な断面において、フィルタ基材21の細孔を、細孔径が5μm以上10μm未満の第1細孔と、細孔径が10μm以上20μm未満の第2細孔と、細孔径が20μm以上の第3細孔とに区分した場合に、第1細孔の合計面積SF1に対する、触媒層22のうち第1細孔内に位置した部分の合計面積SC1の比RF1、第2細孔の合計面積SF2に対する、触媒層22のうち第2細孔内に位置した部分の合計面積SC2の比RF2、及び第3細孔の合計面積SF3に対する、触媒層22のうち第3細孔内に位置した部分の合計面積SC3の比RF3が、不等式:RF1<RF2<RF3に示す関係を満たすことが好ましい。なお、ここでは、連続した細孔間の境界及び各細孔の細孔径は、後で図4を参照しながら説明する方法により決定する。
 このような構成では、例えば、フィルタ隔壁21Wのうち第1セルC1側の表面近傍の部分は、隔壁211Wのうち第1セルC1側の表面近傍の部分と比較して、細孔径分布の幅がより狭く、平均細孔径がより小さい。
 図4は、多孔質隔壁の断面画像において連結した細孔を分離する方法を示す断面図である。図4は、多孔質隔壁Wの断面の画像に相当する。なお、図4では、触媒層22及び後述する無機粒子3は省略している。
 (ステップS1)
 この方法では、先ず、走査電子顕微鏡(SEM)又は透過電子顕微鏡(TEM)を用いて、多孔質隔壁Wの断面を撮像する。この断面は、多孔質隔壁Wの第1セルC1側の表面に垂直な断面、即ち、多孔質隔壁Wの厚さ方向に平行な断面である。
 (ステップS2)
 次に、このようにして取得した画像において、フィルタ基材21の隔壁211W(以下、隔壁部という)を特定する。そして、隔壁部において、空間部を特定する。ここでは、空間部CV1のように隔壁211Wの双方の表面から離間したものだけでなく、空間部CV2のように、隔壁211Wの少なくとも一方の表面で開口したものについても特定する。空間部内には、触媒層22や無機粒子3の一部が位置していてもよい。そして、これら空間部から1つを選択する。
 (ステップS3)
 次に、選択した空間部の面積を求め、この面積と同一の面積を有する円の直径、即ち、円相当径を算出する。そして、円相当径が5μm以下であるか否かを判断する。
 (ステップS4)
 この円相当径が5μm以下である場合は、先の空間部は1つの細孔に相当すると判断し、この円相当径をこの細孔の細孔径であると定める。そして、選択していない空間部がある場合は、未選択の空間部の1つを選択し、ステップS3へ戻る。選択していない空間部がない場合は、処理を終了する。
 図4の例において、空間部CV1を選択した場合、空間部CV1は、円相当径が5μm以下であるので、1つの細孔P1に相当すると判断する。そして、この円相当径を、この細孔P1の細孔径であると定める。そして、未選択の空間部CV2を選択し、ステップS3へ戻る。
 (ステップS5)
 円相当径が5μm超である場合、上記の空間部は、2以上の細孔が連結したものに相当すると判断する。そして、この円相当径の50%まで円相当径が減少する位置で空間部を区分し、それによって生じた複数の領域間の境界を細孔の境界として定める。
 図4の例において、空間部CV2を選択した場合、空間部CV2は、円相当径が5μm超であるので、2以上の細孔が連結したものに相当すると判断する。そして、この円相当径の50%まで円相当径が減少する位置で空間部CV2を区分し、これによって生じた複数の領域間の境界を細孔の境界として定める。
 (サブステップSS1)
 具体的には、先ず、空間部に内接し且つ空間部を間に挟んで向き合った一対の壁面部の双方と接した多数の円を生成する。ここで、壁面部は、空間部と隔壁部との境界に相当する部分である。ここでは、隔壁211Wの一対の主面間に中心が位置した円のみを生成する。そして、これら円の中心を結ぶことにより、基準線を生成する。図4に示す例では、円の中心を結ぶことにより得られる基準線は、分岐した破線CLである。
 (サブステップSS2)
 次に、上記の円のうち、直径が最大の円を特定する(以下、基準円という)。図4の例では、円IC1を特定する。
 (サブステップSS3)
 続いて、基準円の中心から基準線に沿って中心が一方向(以下、第1方向という)に並んだ円について、基準円との中心間距離が短い円から順に直径を確認する。この確認は、直径が基準円の直径の50%である円が見出されるまで行う。
 そのような円(以下、第1円という)が見出された場合、第1円と壁面部との2つの接点を結ぶ線分を、空間部を区分する境界として定める。第1円が見出されなかった場合、基準線のうち基準円の中心に対して第1方向側の部分については、空間部を区分する境界は定めない。
 図4の例では、円IC1の中心から破線CLに沿って中心が下方向に並んだ円について、円IC1との中心間距離が短い円から順に直径を確認すると、直径が円IC1の直径の50%である円として、円IC2が見出される。従って、円IC2と壁面部との2つの接点を結ぶ線分B1を、空間部CV2を区分する境界として定める。
 (サブステップSS4)
 次いで、基準円の中心から基準線に沿って中心が逆方向(以下、第2方向という)に並んだ円について、基準円との中心間距離が短い円から順に直径を確認する。この確認は、直径が基準円の直径の50%である円が見出されるまで行う。
 そのような円(以下、第2円という)が見出された場合、第2円と壁面部との2つの接点を結ぶ線分を、空間部を区分する境界として定める。第2円が見出されなかった場合、基準線のうち基準円の中心に対して第2方向側の部分については、空間部を区分する境界は定めない。
 図4の例では、円IC1の中心から破線CLに沿って中心が上方向に並んだ円について、円IC1との中心間距離が短い円から順に直径を確認しても、直径が円IC1の直径の50%である円は見出されない。従って、破線CLのうち円IC1の中心に対して上方向側の部分については、空間部CV2を区分する境界は定めない。
 (サブステップSS5)
 基準線が、サブステップSS4又はSS5において直径を確認した円の中心を結ぶ線に相当する部分の範囲内で分岐しているか判断する。
 基準線が上記範囲内で分岐している場合には、各分岐先についても、サブステップSS4と同様の処理を行う。
 即ち、分岐点から基準線に沿って中心が分岐方向(以下、第3方向という)に並んだ円について、分岐点から中心までの距離が短い円から順に直径を確認する。この確認は、直径が基準円の直径の50%である円が見出されるまで行う。
 そのような円(以下、第3円という)が見出された場合、第3円と壁面部との2つの接点を結ぶ線分を、空間部を区分する境界として定める。第3円が見出されなかった場合、基準線のうち分岐点に対して第3方向側の部分については、空間部を区分する境界は定めない。
 以上の処理を完了した場合又は基準線が上記範囲内で分岐していない場合には、次のステップS6へと進む。
 なお、図4の例では、破線CLは、サブステップSS4又はSS5において円IC1を基準円として直径を確認した円の中心を結ぶ線に相当する部分の範囲内で分岐していない。それ故、サブステップSS5では追加の境界を定めることなしに、次のステップS6へと進む。
 (ステップS6)
 ステップS6では、ステップS5において境界が定められたか否かを判断する。
 (ステップS7)
 ステップS5において境界が1つも定められなかった場合には、先の空間部は1つの細孔であると判断し、この円相当径をこの細孔の細孔径であると定める。そして、選択していない空間部がある場合は、未選択の空間部の1つを選択し、ステップS3へ戻る。選択していない空間部がない場合は、処理を終了する。
 (ステップS8)
 ステップS5において1以上の境界が定められた場合、先の空間部を境界によって区分してなる複数の領域のうち、基準円の中心が位置したものを、1つの細孔であると判断し、その円相当径を、この細孔の細孔径であると定める。
 続いて、上記の空間部から基準円の中心が位置した上記領域を除いた部分を、新たな空間部として定める。そして、この空間部を選択し、ステップS3へ戻る。
 図4の例では、空間部CV2を境界B1によって区分してなる複数の領域のうち、円IC1の中心が位置したものを、1つの細孔P2であると判断し、その円相当径を、細孔P2の細孔径であると定める。そして、空間部CV2から円IC1の中心が位置した細孔P2に対応した領域を除いた部分(以下、第1残部という)を、新たな空間部として定める。そして、この空間部を選択し、ステップS3へ戻る。
 上記の第1残部は円相当径が5μm超であるので、ステップS5において、基準円として円IC3を特定する。なお、基準線は新たに生成しなくてもよい。ステップS5においては、直径が円IC3の直径の50%である円IC4a及びIC4bと境界B1及びB2とを更に特定する。次いで、ステップS6を経て、ステップS8において、第1残部を境界B1及びB2によって区分してなる複数の領域のうち、円IC2の中心が位置したものを、1つの細孔P3であると判断し、その円相当径を、細孔P3の細孔径であると定める。そして、第1残部から円IC2の中心が位置した細孔P3に対応した領域を除いた部分(以下、第2残部という)を、新たな空間部として定める。そして、この空間部を選択し、ステップS3へ戻る。
 上記の第2残部は円相当径が5μm以下であるので、ステップS4において、第2残部は1つの細孔P4に相当すると判断し、この円相当径をこの細孔P4の細孔径であると定める。そして、選択していない空間部がある場合は、未選択の空間部の1つを選択し、ステップS3へ戻る。選択していない空間部がない場合は、処理を終了する。
 多孔質隔壁Wは、図5を参照しながら以下に説明する構造を有していることが好ましい。 
 図5は、多孔質隔壁の第1セル側の表面を概略的に示す平面図である。図5には、多孔質隔壁Wの第1セルC1側の表面を描いている。
 この表面において、多孔質隔壁Wの細孔Pを、開口径が40μm未満の第1小細孔と、開口径が40μm以上の第1大細孔とに区分する。例えば、図5においては、右下及び左上に位置した細孔Pは第1大細孔であり、残りの細孔Pは第1小細孔である。なお、破線LL2が形成している円は、細孔Pの開口と等しい面積を有している円である。従って、細孔Pの開口径は、破線LL2が形成している円の直径である。
 また、触媒塗布フィルタのうち多孔質隔壁Wに対応した部分、即ち、フィルタ隔壁21Wの第1セル側の表面において、フィルタ隔壁21Wが有する細孔を、開口径が40μm未満の第2小細孔と、開口径が40μm以上の第2大細孔とに区分する。例えば、図5においては、フィルタ隔壁21Wが有する細孔のうち、右下及び左上に位置した細孔は第2大細孔であり、残りの細孔は第2小細孔である。なお、図5において、フィルタ隔壁21Wが有する細孔は、実線LL1で囲まれた領域である。従って、フィルタ隔壁21Wが有する細孔の開口径は、実線LL1で囲まれた領域と等しい面積を有している円の直径である。
 第2小細孔の合計面積SS2に対する、この合計面積SS2と第1小細孔の合計面積SS1との差SS2-SS1の比(SS2-SS1)/SS2は40%以下である。また、第2大細孔の合計面積SL2に対する、この合計面積SL2と第1大細孔の合計面積SL1との差SL2-SL1の比(SL2-SL1)/SL2は60%以上である。
 この構造では、第2大細孔は、第2小細孔と比較して、無機粒子3の適用による開口径の減少の程度がより大きい。このような構成は、例えば、多孔質隔壁の第1セル側の表面における開口径が過剰に大きいか又は過剰に小さい細孔Pを少なくするうえで有利である。
 以下に、本発明の具体例を記載する。 
 <1>排ガス浄化用触媒の製造
 (例1)
 図1乃至図3を用いて説明した排ガス浄化用触媒を、以下の方法により製造した。 
 先ず、3質量部の硝酸パラジウム溶液と35質量部のアルミナ粉末と32質量部のセリア含有酸化物とイオン交換水とを混合した。この混合液に、1質量部のポリカルボン酸を混合して、スラリーを調製した。このスラリーは、温度が25℃及びせん断速度が400s-1における粘度η400が100mPa・sであった。
 次に、フィルタ基材を準備した。ここでは、容積が2.1Lであり、高さが127mmの円柱形状を有しているフィルタ基材を使用した。
 次いで、上記スラリーをフィルタ基材の一方の端面(第1端面)へ供給し、フィルタ基材の他方の端面(第2端面)から、フィルタ基材内のガスを吸引した。この吸引は、25℃の温度で、フィルタ基材を設置し且つスラリーの供給を行わないときにおけるフィルタ基材の端部近傍におけるガス流の線速度(風速)が50m/sとなる条件で行った。このようにして、フィルタ基材の隔壁をスラリーでコートした。なお、スラリーの供給は、触媒塗布フィルタにおいて、フィルタ基材の容積に対する触媒層の量が75g/Lとなるように行った。
 その後、スラリーでコートしたフィルタ基材を乾燥及び焼成した。 
 このようにして、触媒塗布フィルタを得た。
 次に、触媒塗布フィルタの各フィルタ隔壁の一方の表面に、無機粒子を供給した。具体的には、無機粒子をエアロゾル粒子として含んだエアロゾルを、触媒塗布フィルタの第1端面に対応した第1端部へ供給した。これとともに、触媒塗布フィルタの第2端面に対応した第2端部から、触媒塗布フィルタ内のガスを吸引した。この吸引は、触媒塗布フィルタを、第1端部が下方を向くように設置して行った。
 フィルタ基材の容積に対する無機粒子の量は5g/Lとした。無機粒子としては、平均粒子径が6μmのセピオライトを用いた。 
 以上のようにして、排ガス浄化用触媒を得た。
 <2>無機粒子分布の測定
 例1に係る排ガス浄化用触媒について、多孔質隔壁の厚さ方向における無機粒子分布を測定した。具体的には、例1に係る排ガス浄化用触媒について、その多孔質隔壁の断面を、走査電子顕微鏡で撮像して、グレイスケール画像を取得した。この撮像は、多孔質隔壁のうち、第1端からの距離と第2端からの距離とが等しい部分の断面に対して行った。次いで、エネルギー分散型X線分析装置による分析位置を先のグレイスケール画像において指定して、カルシウムに由来する特性X線の強度を測定した。ここでは、多孔質隔壁の厚さ方向に沿った線分析を行った。そして、先のグレイスケール画像に、特性X線の強度に応じた明るさ(濃淡値)を有し且つ着色した点を重ね合わせてなる合成画像を生成した。この合成画像から、触媒塗布フィルタの第1セル側の面からの距離と濃淡値との関係を求めた。
 図6は、例1に係る排ガス浄化用触媒の多孔質隔壁の厚さ方向の断面を示す画像に、カルシウムに由来する特性X線の強度に応じた明るさを有し且つ着色した点を重ね合わせてなる合成画像である。図6においては、排ガス浄化用触媒の多孔質隔壁の上側部分に第1セルが位置している。
 図7は、図6に示す排ガス浄化用触媒の多孔質隔壁の厚さ方向の断面を拡大して示す合成画像である。図7における中央の白い曲線は、フィルタ基材と第1セルとの境界を示す。図7において、白色の部分は無機粒子を示し、薄い灰色の部分は触媒層を示し、濃い灰色の部分はフィルタ基材を示す。図7に示すように、フィルタ隔壁の細孔のうち第1セル側に多くの無機粒子が存在している。
 図8は、例1に係る排ガス浄化用触媒の多孔質隔壁について得られた、厚さ方向における粉末状の無機粒子の分布を示すグラフである。図8において、横軸は、触媒塗布フィルタの第1セル側の面からの距離を表し、縦軸は上記の濃淡値を表している。図8において、触媒塗布フィルタのフィルタ隔壁内に存在する無機粒子についての距離は正の値で示した。また、触媒塗布フィルタのフィルタ隔壁外(即ち、第1セル内)に存在する無機粒子についての距離は負の値で示した。
 図8に示すように、例1に係る排ガス浄化用触媒では、無機粒子は、多孔質隔壁の第1セル側に偏在していた。そして、例1に係る排ガス浄化用触媒では、上述した量A、A1及びA2が不等式(A1+A2)/A≧90%で表される関係を満たしていた。具体的には、割合(A1+A2)/Aは98.7%であった。ここで、A1は触媒塗布フィルタからの距離が-50μm以上0μm未満の範囲内における各濃淡値の合計である。A2は触媒塗布フィルタからの距離が0μm以上40μm以下の範囲内における各濃淡値の合計である。Aは触媒塗布フィルタからの距離が-50μm以上200μm以下の範囲内における各濃淡値の合計である。
 また、例1に係る排ガス浄化用触媒では、無機粒子の全量に占める、無機粒子のうちフィルタ隔壁の細孔内に位置しているものの量が70%以上であった。具体的には、無機粒子の全量に占める、無機粒子のうちフィルタ隔壁の細孔内に位置しているものの量は77.4%であった。ここで、無機粒子のうちフィルタ隔壁の細孔内に位置しているものの量は、触媒塗布フィルタからの距離が0μm以上200μm以下の範囲内における各濃淡値の合計である。また、無機粒子の全量は、触媒塗布フィルタからの距離が-50μm以上200μm以下の範囲内における各濃淡値の合計である。
 <3>触媒層分布及び無機粒子分布の測定
 例1に係る排ガス浄化用触媒について、触媒層分布及び無機粒子分布を測定した。具体的には、先ず、例1に係る排ガス浄化用触媒について、その多孔質隔壁の第1セル側の表面を、走査電子顕微鏡で撮影して、顕微鏡写真を得た。この撮像は、多孔質隔壁のうち、第1端からの距離と第2端からの距離とが等しい部分の断面に対して行った。次いで、エネルギー分散型X線分析装置による分析位置を先の顕微鏡写真において指定して、パラジウムに由来する特性X線の強度に応じた明るさを有し且つ着色した点を示す画像を取得した。次いで、エネルギー分散型X線分析装置による分析位置を先の顕微鏡写真において指定して、カルシウムに由来する特性X線の強度に応じた明るさを有し且つ着色した点を示す画像を取得した。
 図9は、例1に係る排ガス浄化用触媒の多孔質隔壁の第1セル側の表面を示す顕微鏡写真である。図10は、図9における、パラジウムに由来する特性X線の強度に応じた明るさを有し且つ着色した点を示す画像である。図10は、図9における触媒層の位置を示している。図11は、図9における、カルシウムに由来する特性X線の強度に応じた明るさを有し且つ着色した点を示す画像である。図11は、図9における無機粒子の位置を示している。
 図10は、排ガス浄化用触媒の多孔質隔壁の表面から比較的近い部分に存在する、パラジウムに由来する特性X線の強度に応じた明るさを有し且つ着色した点を示している。また、図11は、排ガス浄化用触媒の多孔質隔壁の表面から比較的近い部分に存在する、カルシウムに由来する特性X線の強度に応じた明るさを有し且つ着色した点を示している。
 図12は、図10に示す画像と図11に示す画像とを重ね合わせてなる合成画像である。
 図13乃至図15の各々は、図12に示す画像上のある直線に沿った線分析の結果を示すグラフである。線分析によって、図12に示す画像上のある直線における、パラジウムに由来する特性X線の強度に応じた明るさを有し且つ着色した点の濃淡値と、カルシウムに由来する特性X線の強度に応じた明るさを有し且つ着色した点の濃淡値と分析した。図13は、図12に示す画像の横方向の長さを250ピクセルとし、縦方向の長さを200ピクセルとした場合において、左端から60ピクセルの位置に存在する直線に沿って線分析を行った結果を示す。図14は、上記の場合において、左端から120ピクセルの位置に存在する直線に沿って線分析を行った結果を示す。図15は、上記の場合において、左端から180ピクセルの位置に存在する直線に沿って線分析を行った。濃淡値は、ImageJを用いて求めた。上記の線分析では、図12に示す画像の上端の位置を0ピクセルとし、下端の位置を200ピクセルとした。
 上述した通り、図10は、排ガス浄化用触媒の多孔質隔壁の表面から比較的近い部分に存在する、パラジウムに由来する特性X線の強度に応じた明るさを有し且つ着色した点を示している。また、図11は、排ガス浄化用触媒の多孔質隔壁の表面から比較的近い部分に存在するカルシウムに由来する特性X線の強度に応じた明るさを有し且つ着色した点、即ち、多孔質隔壁の表面から比較的近い部分に存在する無機粒子を示している。図13乃至図15に示すようにパラジウムの濃淡値とカルシウムの濃淡値とは逆相関になっている。ここで、パラジウムの濃淡値が小さい部分は細孔部分を示している。このことから、無機粒子がフィルタ隔壁の細孔内に位置していることが分かる。更に、パラジウムの量が比較的多い部分に比較的小さい細孔径を有する細孔が存在し、パラジウムの量が比較的少ない或いはパラジウムが検出されなかった部分に比較的大きい細孔径を有する細孔が存在している。また、図13乃至図15では、パラジウムの量が比較的多い部分よりも、パラジウムの量が比較的少ない部分に多量のカルシウムが存在している。これらのことから、図13乃至図15では、比較的小さい細孔径を有する細孔よりも、比較的大きい細孔径を有する細孔に多くの無機粒子が存在していた。
 (例2)
 フィルタ基材の容積に対する無機粒子の量の比を5g/Lから1g/Lへ変更したこと以外は例1と同様の方法により、排ガス浄化用触媒を製造した。
 (例3)
 フィルタ基材の容積に対する無機粒子の量の比を5g/Lから20g/Lへ変更したこと以外は例1と同様の方法により、排ガス浄化用触媒を製造した。
 (比較例1)
 例1で使用したフィルタ基材を準備し、これを比較例1に係る排ガス浄化用触媒とした。
 (比較例2)
 フィルタ基材の容積に対する触媒層の量の比を75g/Lから50g/Lに変更し、触媒塗布フィルタへの無機粒子の供給を省略したこと以外は例1と同様の方法により、排ガス浄化用触媒を製造した。
 (比較例3)
 触媒塗布フィルタへの無機粒子の供給を省略したこと以外は例1と同様の方法により、排ガス浄化用触媒を製造した。即ち、例1と同様の方法により触媒塗布フィルタを製造し、これを比較例3に係る排ガス浄化用触媒とした。
 (比較例4)
 フィルタ基材の容積に対する触媒層の量の比を75g/Lから100g/Lへ変更し、触媒塗布フィルタへの無機粒子の供給を省略したこと以外は例1と同様の方法により、排ガス浄化用触媒を得た。
 <4>比D1/D2の測定
 比較例1乃至4に係る排ガス浄化用触媒について、水銀圧入法を用いてフィルタ隔壁の細孔分布を測定した。その結果を図16に示す。図16の縦軸は、log微分細孔容積(mg/L)を示す。図16の横軸は細孔径を示す。図16によると、比較例1乃至4に係る排ガス浄化用触媒のフィルタ隔壁の平均細孔径は、それぞれ、17.0μm、10.5μm、10.0μm及び8.5μmであった。このことから、例1乃至3に係る排ガス浄化用触媒における、無機粒子の平均粒子径D1とフィルタ隔壁の細孔の平均細孔径D2との比D1/D2は何れも0.6であった。
 <5>開口径の測定
 例1乃至3及び比較例2乃至4に係る排ガス浄化用触媒の各々について、上述した方法により、多孔質隔壁の第1セル側の表面における開口径を測定した。結果を、表1に示す。
Figure JPOXMLDOC01-appb-T000001
 図17は、例1に係る排ガス浄化用触媒の多孔質隔壁の顕微鏡写真を二値化してなる画像である。図18は、比較例3に係る排ガス浄化用触媒の多孔質隔壁の顕微鏡写真を二値化してなる画像である。
 表1において、「S<20/S」は、多孔質隔壁の第1セル側の表面の顕微鏡写真において、全細孔の合計面積Sに占める、開口径が20μm未満である細孔の合計面積S<20の割合である。「S20-40/S」は、上記顕微鏡写真において、全細孔の合計面積Sに占める、開口径が20μm以上40μm未満の範囲内にある細孔の合計面積S20-40の割合である。「S40-60/S」は、上記顕微鏡写真において、全細孔の合計面積Sに占める、開口径が40μm以上60μm未満の範囲内にある細孔の合計面積S40-60の割合である。「S60-80/S」は、上記顕微鏡写真において、全細孔の合計面積Sに占める、開口径が60μm以上80μm未満の範囲内にある細孔の合計面積S60-80の割合である。「S80-100/S」は、上記顕微鏡写真において、全細孔の合計面積Sに占める、開口径が80μm以上100μm未満の範囲内にある細孔の合計面積S80-100の割合である。「S100</S」は、上記顕微鏡写真において、全細孔の合計面積Sに占める、開口径が100μm以上である細孔の合計面積S100<の割合である。「S/S」は、上記顕微鏡写真において、全細孔の合計面積Sに占める、開口径が40μm未満である細孔の合計面積Sの割合である。
 図17及び図18並びに表1に示すように、例1及び例3に係る排ガス浄化用触媒では、比較例2乃至4に係る排ガス浄化用触媒と比較して、多孔質隔壁の第1セル側の表面において開口径が大きな細孔の割合が小さかった。
 <6>充填率の測定
 例1に係る排ガス浄化用触媒について、上述した比(SS2-SS1)/SS2及び比(SL2-SL1)/SL2を算出した。
 具体的には、例1に係る排ガス浄化用触媒について、上記の開口径を算出するにあたって取得した合計面積S<20及びS20-40の和を、例1に係る排ガス浄化用触媒の合計面積SS1とした。また、例1に係る排ガス浄化用触媒について、上記の開口径を算出するにあたって取得した合計面積S40-60、S60-80、S80-100及びS100<の和を、例1に係る排ガス浄化用触媒の合計面積SL1とした。また、比較例3に係る排ガス浄化用触媒について、上記の開口径を算出するにあたって取得した合計面積S<20及びS20-40の和を、比較例3に係る排ガス浄化用触媒の合計面積SS2とした。そして、比較例3に係る排ガス浄化用触媒について、上記の開口径を算出するにあたって取得した合計面積S40-60、S60-80、S80-100及びS100<の和を、比較例3に係る排ガス浄化用触媒の合計面積SL2とした。例2及び3に係る排ガス浄化用触媒についても、例1と同様の方法により、上述した比(SS2-SS1)/SS2及び比(SL2-SL1)/SL2を求めた。計算結果を以下の表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、例1に係る排ガス浄化用触媒では、比(SL2-SL1)/SL2は、比(SS2-SS1)/SS2と比較して大きかった。即ち、例1に係る排ガス浄化用触媒では、多孔質隔壁の第1セル側の面で開口した細孔のうち、開口径が大きなものは、開口径が小さなものと比較して、無機粒子による充填率が高かった。
 <7>PMの数(PN)に対する捕集率の測定
 例1に係る排ガス浄化用触媒について、以下の方法によりPMの捕集率を求めた。具体的には、煤発生機で軽油を燃焼させてPMを発生させ、例1に係る排ガス浄化用触媒にPMを蓄積させた。PMの蓄積量が0.02g/Lに達した時点で、排ガス浄化用触媒から排出されたPMの数を測定した。PMの数の測定は、ガス温度を240℃、ガス流量を250kg/時間として測定した。
 次に、煤発生機に例1に係る排ガス浄化用触媒を設置し、排ガス浄化用触媒の上流おいてPMの数を測定した。PMの数の測定は、ガス温度を240℃、ガス流量を250kg/時間として測定した。
 次いで、例1に係る排ガス浄化用触媒について捕集率を以下の式(1)によって求めた。
Figure JPOXMLDOC01-appb-M000003
 上記式(1)において、x1は例1に係る排ガス浄化用触媒から排出されたPMの数であり、x0は例1に係る排ガス浄化用触媒の上流におけるPMの数である。
 次いで、例2及び3並びに比較例1乃至4に係る排ガス浄化用触媒についても、例1について説明したのと同様の方法により捕集率を得た。 
 捕集率の結果を図19及び図20に示す。
 図19及び図20に示すように、例1乃至3に係る排ガス浄化用触媒は、何れもPMの捕集性能に優れていた。
 <8>初期の圧力損失の評価
 例1に係る排ガス浄化用触媒について、初期の圧力損失を求めた。具体的には、風速10m/分における圧力損失を求めた。
 次いで、例2、例3及び比較例3に係る排ガス浄化用触媒についても、例1について説明したのと同様の方法により初期の圧力損失を調べた。 
 初期の圧力損失の結果を図21に示す。 
 図21に示すように、例1乃至3に係る排ガス浄化用触媒は、何れも圧力損失が小さかった。とりわけ、例1及び2に係る排ガス浄化用触媒は圧力損失が小さかった。
 <9>PM堆積によって生じる圧力損失の評価
 例1及び比較例2乃至4に係る排ガス浄化用触媒体の各々について、圧力損失の評価を行った。具体的には、煤発生機で軽油を燃焼させてPMを発生させ、これら排ガス浄化用触媒体の各々にPMを蓄積させた。PMの蓄積量が1g/Lに達した時点で、排ガス浄化用触媒の各々に対して圧力損失の測定を行った。圧力損失は、ガス温度を240℃、ガス流量を250kg/時間として測定した。結果を表3に示す。
Figure JPOXMLDOC01-appb-T000004
 表3に示すように、例1に係る排ガス浄化用触媒は、比較例2乃至4に係る排ガス浄化用触媒と比較して、PM堆積後における圧力損失が小さかった。
 <10>充填率の測定
 例1乃至3及び比較例2乃至4に係る排ガス浄化用触媒について、図4を参照しながら説明した方法により、充填率RF1、RF2及びRF3を求めた。その結果、例1乃至3及び比較例2乃至4に係る排ガス浄化用触媒の何れについても、充填率RF1、RF2及びRF3は、不等式:RF1<RF2<RF3に示す関係を満たし、充填率RF1は10乃至40%の範囲内にあり、充填率RF2は15乃至40%の範囲内にあり、充填率RF3は20乃至45%の範囲内にあった。
 1…排ガス浄化用触媒、2…触媒塗布フィルタ、3…無機粒子、21…フィルタ基材、21W…フィルタ隔壁、22…触媒層、211…ハニカム構造体、211W…隔壁、212a…栓、212b…栓、B1…境界、B2…境界IC1…円、IC2…円、IC3…円、IC4a…円、IC4b…円、C1…第1セル、C2…第2セル、CL…破線、CV1…空間部、CV2…空間部、E1…第1端、E2…第2端、P1…細孔、P2…細孔、P3…細孔、P4…細孔、W…多孔質隔壁。

Claims (6)

  1.  フィルタ基材と前記フィルタ基材の細孔壁上に設けられた触媒層とを含んだ触媒塗布フィルタであって、第1端部と第2端部とフィルタ隔壁と入側セルと出側セルとを有し、前記フィルタ隔壁は多孔質であり、前記入側セルは、前記第1端部から前記第2端部へ向けて伸び、前記第1端部で開口し、前記第2端部で閉塞され、前記出側セルは、前記第2端部から前記第1端部へ向けて伸び、前記第2端部で開口し、前記第1端部で閉塞され、前記入側セル及び前記出側セルは前記フィルタ隔壁を間に挟んで隣接した触媒塗布フィルタと、
     前記フィルタ隔壁の厚さ方向に平行な断面において、前記フィルタ隔壁の前記入側セルと隣接した表面に偏在した粉末状の無機粒子と
    を備えた排ガス浄化用触媒。
  2.  前記無機粒子は、大部分が前記フィルタ隔壁の細孔内に位置している請求項1に記載の排ガス浄化用触媒。
  3.  前記無機粒子は1乃至50μmの範囲内の平均粒子径を有する請求項1又は2に記載の排ガス浄化用触媒。
  4.  前記無機粒子は、金属酸化物、金属水酸化物、金属炭酸塩、金属リン酸塩、金属硝酸塩、金属硫酸塩、及び粘土鉱物からなる群より選択される1以上を含んだ請求項1乃至3の何れか1項に記載の排ガス浄化用触媒。
  5.  前記無機粒子の平均粒子径D1と前記フィルタ隔壁の細孔の平均細孔径D2との比D1/D2は、0.15乃至2の範囲内にある請求項1乃至4の何れか1項に記載の排ガス浄化用触媒。
  6.  前記フィルタ基材の容積に対する前記無機粒子の質量の比は、3乃至50g/Lの範囲内にある請求項1乃至5の何れか1項に記載の排ガス浄化用触媒。
PCT/JP2022/002682 2021-02-16 2022-01-25 排ガス浄化用触媒 WO2022176529A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP22755853.3A EP4295948A1 (en) 2021-02-16 2022-01-25 Exhaust gas purification catalyst
CN202280015004.XA CN116940416A (zh) 2021-02-16 2022-01-25 废气净化用催化剂
US18/355,016 US20230356205A1 (en) 2021-02-16 2023-07-19 Exhaust gas-purifying catalyst

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-022660 2021-02-16
JP2021022660A JP2022124805A (ja) 2021-02-16 2021-02-16 排ガス浄化用触媒

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/355,016 Continuation US20230356205A1 (en) 2021-02-16 2023-07-19 Exhaust gas-purifying catalyst

Publications (1)

Publication Number Publication Date
WO2022176529A1 true WO2022176529A1 (ja) 2022-08-25

Family

ID=82931567

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/002682 WO2022176529A1 (ja) 2021-02-16 2022-01-25 排ガス浄化用触媒

Country Status (5)

Country Link
US (1) US20230356205A1 (ja)
EP (1) EP4295948A1 (ja)
JP (1) JP2022124805A (ja)
CN (1) CN116940416A (ja)
WO (1) WO2022176529A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010110011A1 (ja) * 2009-03-26 2010-09-30 日本碍子株式会社 ハニカムフィルタ及びハニカムフィルタの製造方法
JP2013534463A (ja) * 2010-06-02 2013-09-05 ジョンソン、マッセイ、パブリック、リミテッド、カンパニー ディーゼルパティキュレートフィルター
WO2019197177A1 (de) 2018-04-09 2019-10-17 Umicore Ag & Co. Kg Beschichteter wandflussfilter
WO2020031975A1 (ja) * 2018-08-09 2020-02-13 エヌ・イーケムキャット株式会社 触媒塗工ガソリンパティキュレートフィルター及びその製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010110011A1 (ja) * 2009-03-26 2010-09-30 日本碍子株式会社 ハニカムフィルタ及びハニカムフィルタの製造方法
JP2013534463A (ja) * 2010-06-02 2013-09-05 ジョンソン、マッセイ、パブリック、リミテッド、カンパニー ディーゼルパティキュレートフィルター
WO2019197177A1 (de) 2018-04-09 2019-10-17 Umicore Ag & Co. Kg Beschichteter wandflussfilter
WO2020031975A1 (ja) * 2018-08-09 2020-02-13 エヌ・イーケムキャット株式会社 触媒塗工ガソリンパティキュレートフィルター及びその製造方法

Also Published As

Publication number Publication date
CN116940416A (zh) 2023-10-24
EP4295948A1 (en) 2023-12-27
JP2022124805A (ja) 2022-08-26
US20230356205A1 (en) 2023-11-09

Similar Documents

Publication Publication Date Title
US9175587B2 (en) Substrate with surface-collection-layer and catalyst-carrying substrate with surface-collection-layer
CN109973176B (zh) 排气净化过滤器
US7517830B2 (en) Substrate for exhaust-gas purifying filter catalyst
WO2012046484A1 (ja) 排ガス浄化装置
WO2020031975A1 (ja) 触媒塗工ガソリンパティキュレートフィルター及びその製造方法
US12092008B2 (en) Exhaust purification filter
WO2024053260A1 (ja) パティキュレートフィルタ
WO2022176529A1 (ja) 排ガス浄化用触媒
WO2022264935A1 (ja) パティキュレートフィルタ
WO2022176528A1 (ja) 排ガス浄化用触媒
US11850541B2 (en) Exhaust gas purification filter
CN113530646B (zh) 排气净化装置及其制造方法
WO2022269947A1 (ja) パティキュレートフィルタ
WO2021131630A1 (ja) 排ガス浄化用触媒
CN112203764B (zh) 废气净化催化剂的制造方法
JP4293771B2 (ja) ハニカムフィルター

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22755853

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202317054656

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 202280015004.X

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2022755853

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022755853

Country of ref document: EP

Effective date: 20230918