WO2022176048A1 - Dispositif de transfert de réseau de particules et procédé de transfert de réseau de particules - Google Patents

Dispositif de transfert de réseau de particules et procédé de transfert de réseau de particules Download PDF

Info

Publication number
WO2022176048A1
WO2022176048A1 PCT/JP2021/005854 JP2021005854W WO2022176048A1 WO 2022176048 A1 WO2022176048 A1 WO 2022176048A1 JP 2021005854 W JP2021005854 W JP 2021005854W WO 2022176048 A1 WO2022176048 A1 WO 2022176048A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
channel
particles
particle array
particle
Prior art date
Application number
PCT/JP2021/005854
Other languages
English (en)
Japanese (ja)
Inventor
優生 橋本
隆子 石原
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to PCT/JP2021/005854 priority Critical patent/WO2022176048A1/fr
Publication of WO2022176048A1 publication Critical patent/WO2022176048A1/fr

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D57/00Separation, other than separation of solids, not fully covered by a single other group or subclass, e.g. B03C
    • B01D57/02Separation, other than separation of solids, not fully covered by a single other group or subclass, e.g. B03C by electrophoresis
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N37/00Details not covered by any other group of this subclass

Definitions

  • the present invention relates to a particle array transport device and method for array transport of fine particles such as bacteria.
  • the technology for counting the number of bacteria has a wide variety of applications, not only in the basic research field of biotechnology, but also in medical care, food, and hygiene management (see Non-Patent Document 1).
  • physical condition management is performed by counting bacteria contained in the skin, mucous membranes, and urine of patients, and in the food industry, the number of bacteria is monitored as a control guideline for fermentation.
  • a portable bacteria counter that can be used for on-site measurement.
  • techniques for counting the number of bacteria for example, methods using image recognition such as the colony method and fluorescent staining method, and optical methods such as flow cytometry have been proposed (see Non-Patent Document 2).
  • the former method using image recognition requires culturing, so the types of bacteria that can be applied are greatly limited for bacteria, 99% of which are difficult to culture.
  • an optical method such as flow cytometry can count with high precision (one bacterium unit).
  • this method requires a large-sized apparatus, there is a problem of lack of portability.
  • the present invention has been made to solve the above-mentioned problems, and it is an object of the present invention to enable the number of bacteria to be counted for many bacterial species without requiring a large-sized device. .
  • the particle array transport device comprises a channel through which a solution containing particles made of a dielectric material to be transported flows, and a flow channel that extends in the direction of the flow channel and extends in the direction of the flow channel. and a power supply for applying an alternating voltage between the first electrode and the second electrode, wherein the distance between the first electrode and the second electrode is the distance between the current and the second electrode. It narrows towards the outlet of the channel, and the narrowest distance between the first and second electrodes is about the diameter of the particle.
  • the arrayed particle transport method according to the present invention includes a first step of applying the AC voltage to the first electrode and the second electrode of the arrayed particle transport device; and a second step of feeding the solution.
  • the interval is narrowed toward the outlet of the flow channel, and the interval at the narrowest point is about the diameter of the particles. Since a voltage is applied, the number of bacteria can be counted for many kinds of bacteria without requiring a large-sized device.
  • FIG. 1A is a configuration diagram showing the configuration of an arrayed particle transport device according to an embodiment of the present invention.
  • FIG. 1B is a configuration diagram showing a partial configuration of the arrayed particle transport device according to the embodiment of the present invention;
  • FIG. 2 is a flow chart for explaining the particle array transportation method according to the embodiment of the present invention.
  • FIG. 1A shows a plan view of a portion of channel 101 .
  • the flow path 101 in FIG. 1B shows a cross section taken along line xx' in FIG. 1A.
  • bacteria are spherical particles.
  • a solution (solvent) 122 containing particles 121 made of a dielectric material to be transported flows through the channel 101 .
  • the solution 122 can be sent to the channel 101 by using a pump (not shown).
  • the flow path 101 can be composed of, for example, a plate-like substrate 111 and a flow path substrate 112 having grooves that form the flow path 101 formed therein.
  • Substrate 111 may be composed of glass, silicon, plastic, or the like.
  • the channel substrate 112 can be made of glass, silicon, plastic, or the like. Note that the channel 101 can also be configured to have an open upper surface.
  • the first electrode 102 and the second electrode 103 are formed on the bottom surface of the channel 101 so as to extend in the direction of the channel 101 so as to be divided into left and right sides.
  • the distance between the first electrode 102 and the second electrode 103 is narrowed toward the outlet of the channel 101, and the distance at the narrowest point between the first electrode 102 and the second electrode 103 is about the diameter of the particle 121. ing.
  • the distance between the first electrode 102 and the second electrode 103 is set to a width that allows a plurality of target particles to be arranged in the width direction of the channel in the first region 151 on the inlet side of the channel 101 .
  • the distance between the first electrode 102 and the second electrode 103 is gradually narrowed toward the exit of the channel 101 .
  • the distance between the first electrode 102 and the second electrode 103 is approximately the diameter of the particle 121 .
  • a power supply 104 applies an alternating voltage between the first electrode 102 and the second electrode 103 .
  • the alternating voltage applied by the power supply 104 has an alternating frequency at which the complex permittivity ⁇ p of the particles 121 is greater than the complex permittivity ⁇ s of the solution 122 .
  • ⁇ p is the complex dielectric constant of the particle 121
  • ⁇ s is the complex dielectric constant of the solution 122
  • r is the particle radius
  • E is the electric field strength. Since ⁇ s and ⁇ p depend on the applied AC frequency, the direction of F also depends on the AC frequency.
  • the flow of the solution 122 is generated in the direction from the first region 151 toward the third region 153, so that the vicinity of the edge of the first electrode 102 and the third region 153 are generated.
  • Particles 121 that are attracted near the edge of the two electrodes 103 can be transported in the direction of flow while being aligned near the edge of the first electrode 102 and near the edge of the second electrode 103 .
  • the distance between the first electrode 102 and the second electrode 103 in the second region 152 is gradually narrowed to the third region 153.
  • the particles 121 are arranged in a line and guided in the third region 153 where the electrode spacing is about the diameter of the particles 121 .
  • a first step S101 an AC voltage is applied to the first electrode 102 and the second electrode 103 of the particle array transport device described above.
  • an alternating voltage having an alternating frequency at which the complex permittivity of the particles 121 is higher than the complex permittivity of the solution 122 is applied to the first electrode 102 and the second electrode 103 .
  • the solution 122 containing the particles 121 is sent to the channel 101.
  • the solution 122 is sent to the channel 101 by a pump.
  • the particles 121 are arranged in a line and guided in the third region 153 where the electrode spacing is about the diameter of the particles 121 .
  • the interval is narrowed toward the outlet of the flow channel, and the interval at the narrowest point is about the diameter of the particles. Since AC voltage is applied, the number of bacteria can be counted for many kinds of bacteria without requiring a large-sized device.
  • the present invention arranges and transports fine particles such as bacteria to a specific location as an elemental technology for highly accurate counting of the number of bacteria per bacteria. Bacteria are arranged in the channel by a dielectrophoretic force induced by a high-frequency electric field applied between electrodes arranged in a spatially wide channel with a line width interval of about the size of the bacteria.
  • microparticles such as bacteria can be transported while arranging them at a specific location. Furthermore, by combining the present invention with a sensor capable of detecting a single bacterium as described in Reference 2, it becomes possible to guide the arrayed bacterium to the vicinity of an arbitrary sensor and count the bacterium.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Microbiology (AREA)
  • Sustainable Development (AREA)
  • Molecular Biology (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Electrochemistry (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

Le présent dispositif de transfert de réseau de particules est pourvu d'un canal d'écoulement (101), d'une première électrode (102), d'une seconde électrode (103), et d'une alimentation électrique (104). La première électrode (102) et la seconde électrode (103) sont formées sur la surface inférieure du canal d'écoulement (101) de façon à s'étendre dans la direction du canal d'écoulement (101) de manière à être séparées l'une de l'autre vers la droite et la gauche dans la direction du canal d'écoulement (101). L'intervalle entre les électrodes est conçu pour être de plus en plus rétréci vers une sortie du canal d'écoulement (101), et est réglé pour être, au niveau d'une partie étroite, approximativement égal au diamètre des particules (121). L'alimentation électrique (104) applique une tension alternative à une fréquence de courant alternatif à laquelle les particules (121) auront une permittivité complexe εp supérieure à la permittivité complexe εp d'une solution (122).
PCT/JP2021/005854 2021-02-17 2021-02-17 Dispositif de transfert de réseau de particules et procédé de transfert de réseau de particules WO2022176048A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/005854 WO2022176048A1 (fr) 2021-02-17 2021-02-17 Dispositif de transfert de réseau de particules et procédé de transfert de réseau de particules

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/005854 WO2022176048A1 (fr) 2021-02-17 2021-02-17 Dispositif de transfert de réseau de particules et procédé de transfert de réseau de particules

Publications (1)

Publication Number Publication Date
WO2022176048A1 true WO2022176048A1 (fr) 2022-08-25

Family

ID=82930310

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/005854 WO2022176048A1 (fr) 2021-02-17 2021-02-17 Dispositif de transfert de réseau de particules et procédé de transfert de réseau de particules

Country Status (1)

Country Link
WO (1) WO2022176048A1 (fr)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08506179A (ja) * 1993-01-21 1996-07-02 サイエンティフィック ジェネリクス リミテッド 分析/分離方法
US20080283402A1 (en) * 2007-05-18 2008-11-20 Washington, University Of Shaped electrodes for microfluidic dielectrophoretic particle manipulation
WO2009027927A2 (fr) * 2007-08-31 2009-03-05 Koninklijke Philips Electronics N.V. Dispositif diélectrophorétique destiné à la manipulation de particules
JP2010511412A (ja) * 2006-10-25 2010-04-15 セレクトリコン アーベー センサー周辺の溶液環境を迅速に変化させるシステム及び方法
US20140247971A1 (en) * 2013-03-04 2014-09-04 Caliper Life Sciences, Inc. High-throughput single-cell imaging, sorting, and isolation

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08506179A (ja) * 1993-01-21 1996-07-02 サイエンティフィック ジェネリクス リミテッド 分析/分離方法
JP2010511412A (ja) * 2006-10-25 2010-04-15 セレクトリコン アーベー センサー周辺の溶液環境を迅速に変化させるシステム及び方法
US20080283402A1 (en) * 2007-05-18 2008-11-20 Washington, University Of Shaped electrodes for microfluidic dielectrophoretic particle manipulation
WO2009027927A2 (fr) * 2007-08-31 2009-03-05 Koninklijke Philips Electronics N.V. Dispositif diélectrophorétique destiné à la manipulation de particules
US20140247971A1 (en) * 2013-03-04 2014-09-04 Caliper Life Sciences, Inc. High-throughput single-cell imaging, sorting, and isolation

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HONMA RENATO, TATSUMI KAZUYA, KURIYAMA REIKO, NAKABE KAZUYOSHI: "Particle separation and alignment technique in microchannel flow by dielectrophoretic force using boxcar-type electrode", TRANSACTIONS OF THE JSME (IN JAPANESE), vol. 86, no. 890, 8 October 2020 (2020-10-08), pages 20-00117 - 20-00117, XP055965122, DOI: 10.1299/transjsme.20-00117 *
OBARA, RYOJI: "Bacterial concentration by negative dielectrophoretic and its fluorescence detection", THE 2014 ANNUAL MEETING OF THE INSTITUTE OF ELECTRICAL ENGINEERS OF JAPAN, vol. 26, 2014, pages 3 - 116 *

Similar Documents

Publication Publication Date Title
Zhang et al. Raman-activated cell sorting based on dielectrophoretic single-cell trap and release
CN108387488B (zh) 颗粒物检测装置及检测方法
Fritzsch et al. Picoliter nDEP traps enable time-resolved contactless single bacterial cell analysis in controlled microenvironments
Schoendube et al. Single-cell printing based on impedance detection
US10252269B2 (en) Methods of sorting activated T cells using three dimensional dielectrophoresis
Kose et al. Ferrofluid mediated nanocytometry
US10139323B2 (en) Apparatus for separating micro-particles
CN107209180B (zh) 检测稀释样品中生物体的方法
CN110734853B (zh) 微生物检测装置及检测方法
CN102227637A (zh) 捕获粒子
JP2009014342A (ja) 誘電泳動チップおよび誘電泳動装置並びに誘電泳動システム
US20190292565A1 (en) Acoustically-Driven Buffer Switching for Microparticles
Lee et al. An integrated microfluidic platform for size-selective single-cell trapping of monocytes from blood
WO2009139124A1 (fr) Appareil et procédé de concentration d’échantillon
WO2022176048A1 (fr) Dispositif de transfert de réseau de particules et procédé de transfert de réseau de particules
Oshiro et al. Fabrication of a new all-in-one microfluidic dielectrophoresis integrated chip and living cell separation
Elvington et al. Label-free isolation and enrichment of cells through contactless dielectrophoresis
Isozaki et al. Dual sequentially addressable dielectrophoretic array for high-throughput, scalable, multiplexed droplet sorting
US11203734B2 (en) Bacteria separation system and methods
JP7375834B2 (ja) 粒子配列運搬デバイスおよび粒子配列運搬方法
WO2021102304A1 (fr) Système d'électroporation de particules
WO2022241247A1 (fr) Dispositif microfluidique à profil d'écoulement amélioré
Zhang et al. High velocity dielectrophoretic cell separation using continuously extended sidewall electrode featuring undercut profile
CN211896990U (zh) 一种微米颗粒排列装置
Gurung et al. Separation and enrichment of sodium-motile bacteria using cost-effective microfluidics

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21926488

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21926488

Country of ref document: EP

Kind code of ref document: A1