WO2022174592A1 - 一种隧道形变实时监测方法及装置 - Google Patents
一种隧道形变实时监测方法及装置 Download PDFInfo
- Publication number
- WO2022174592A1 WO2022174592A1 PCT/CN2021/121671 CN2021121671W WO2022174592A1 WO 2022174592 A1 WO2022174592 A1 WO 2022174592A1 CN 2021121671 W CN2021121671 W CN 2021121671W WO 2022174592 A1 WO2022174592 A1 WO 2022174592A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- tunnel
- structured light
- monitoring
- real
- area
- Prior art date
Links
- 238000012544 monitoring process Methods 0.000 title claims abstract description 60
- 238000000034 method Methods 0.000 title claims abstract description 27
- 238000012545 processing Methods 0.000 claims abstract description 27
- 238000012806 monitoring device Methods 0.000 claims abstract description 8
- 238000003384 imaging method Methods 0.000 claims abstract description 4
- 238000006073 displacement reaction Methods 0.000 claims description 19
- 201000010099 disease Diseases 0.000 claims description 9
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 claims description 9
- 238000005259 measurement Methods 0.000 claims description 6
- 239000000284 extract Substances 0.000 claims description 3
- 238000013507 mapping Methods 0.000 claims description 3
- 238000013139 quantization Methods 0.000 claims description 3
- 238000004891 communication Methods 0.000 claims 1
- 238000010276 construction Methods 0.000 abstract description 16
- 238000001514 detection method Methods 0.000 description 8
- 238000004422 calculation algorithm Methods 0.000 description 5
- 238000005422 blasting Methods 0.000 description 4
- 230000011218 segmentation Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 238000007689 inspection Methods 0.000 description 3
- 239000004568 cement Substances 0.000 description 2
- 238000013135 deep learning Methods 0.000 description 2
- 238000003708 edge detection Methods 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 230000003044 adaptive effect Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000011897 real-time detection Methods 0.000 description 1
- 239000011435 rock Substances 0.000 description 1
- 239000002893 slag Substances 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/0002—Inspection of images, e.g. flaw detection
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical techniques
- G01B11/16—Measuring arrangements characterised by the use of optical techniques for measuring the deformation in a solid, e.g. optical strain gauge
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21F—SAFETY DEVICES, TRANSPORT, FILLING-UP, RESCUE, VENTILATION, OR DRAINING IN OR OF MINES OR TUNNELS
- E21F17/00—Methods or devices for use in mines or tunnels, not covered elsewhere
- E21F17/18—Special adaptations of signalling or alarm devices
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
- G01M5/00—Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings
- G01M5/0025—Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings of elongated objects, e.g. pipes, masts, towers or railways
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
- G01M5/00—Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings
- G01M5/0041—Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings by determining deflection or stress
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
- G01M5/00—Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings
- G01M5/0091—Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings by using electromagnetic excitation or detection
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/10—Segmentation; Edge detection
- G06T7/11—Region-based segmentation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/10—Segmentation; Edge detection
- G06T7/13—Edge detection
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/20—Analysis of motion
- G06T7/246—Analysis of motion using feature-based methods, e.g. the tracking of corners or segments
- G06T7/248—Analysis of motion using feature-based methods, e.g. the tracking of corners or segments involving reference images or patches
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N7/00—Television systems
- H04N7/18—Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast
- H04N7/181—Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast for receiving images from a plurality of remote sources
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20021—Dividing image into blocks, subimages or windows
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30181—Earth observation
- G06T2207/30184—Infrastructure
Definitions
- the invention relates to the field of tunnel structure deformation monitoring, in particular to a method and device for real-time monitoring of tunnel deformation.
- the shield method is mainly used for subway tunnel construction.
- the cutter head is excavated, the slag is transported, the duct piece is attached, and the track is laid at the same time.
- the structure is relatively stable and the cost is high.
- the blasting method is mainly used in the construction of high-speed railway tunnels. First, blast the tunnel face. After blasting, the I-beam beam is erected and cement is poured to become the initial support area.
- the deformation rate of the initial branch area is relatively large, and disasters such as tunnel settlement and convergence are very likely to occur, and real-time deformation monitoring is required.
- cement After the initial support area, cement will be poured to form a permanent tunnel structure, which is called the closed area of the inverted arch and the secondary lining area.
- the structure after this area belongs to a relatively stable area, and the tunnel structure is basically stable after the secondary lining is completed.
- the structural deformation monitoring of tunnels under construction is usually measured by a total station.
- tunnel construction it is necessary to install multiple reflective prisms (usually 3 to 7) at fixed intervals on the top of the tunnel by manual installation.
- the installation of reflective prisms is inconvenient, and there are certain construction safety hazards.
- the interval between each inspection is generally 2 to 4 hours. This inspection method is time-consuming and labor-intensive, and delays the construction progress.
- the above-mentioned current total station monitoring method can only monitor 3 to 7 points in each section of the tunnel, which is very sparse, and the monitoring deformation time interval is relatively long. If a disaster accident occurs during the monitoring window period, it cannot effectively warn.
- motion detection vehicles are usually used, and structured light sources and image sensors are deployed on the detection vehicles.
- this detection method cannot be used in tunnels under construction that use blasting methods, and the detection period is long and non-real-time detection.
- the present invention aims to provide a method and device for real-time monitoring of tunnel deformation, which can monitor the tunnel deformation in real time not only during the construction of the tunnel under construction, but also during the operation of the tunnel.
- the real-time monitoring method for tunnel deformation of the present invention comprises the following steps:
- the monitoring terminal observes all the structured light in the unstable area of the tunnel structure, and obtains the structured light curve in real time;
- the data processing unit analyzes the changes of the structured light imaging, detects the deformation degree and offset distance of the tunnel in real time, and monitors the settlement and convergence of a single section of the tunnel, as well as the overall settlement disease of multiple sections.
- step S3 includes the following steps:
- the data processing unit uses the image recognition module to locate the structured light area and its edge;
- the data processing unit extracts the center line of the structured light curve
- the data processing unit automatically or manually updates the reference line formed by the center line
- the data processing unit detects the structural state of the tunnel, and determines whether the tunnel single-section settlement, convergence, or multi-section overall settlement disaster occurs.
- step S34 the method for the data processing unit to detect the state of the tunnel structure includes:
- the present invention also provides a monitoring device for implementing the above-mentioned method for real-time monitoring of tunnel deformation, comprising a plurality of structured light sources and a monitoring terminal, wherein the plurality of structured light sources are erected in the unstable area of the tunnel structure;
- the stabilization area communicates with and controls multiple structured light sources, and the monitoring terminal includes a data processing unit and multiple image sensors.
- the structured light source is a multi-band light source
- the detection terminal can perceive the multi-band light source
- the measurement results of the multi-band light source are comprehensively analyzed to obtain the final measurement result.
- the structured light source has a built-in sensor for detecting whether it is impacted, and when it is detected that the structured light source is impacted, the structured light source automatically readjusts the reference curve of the structured light.
- the method and device for real-time monitoring of tunnel deformation of the present invention are based on improved structured light machine vision technology.
- Multiple structured light sources are installed on the sidewall of the monitored area, and a monitoring terminal is installed in a relatively stable area.
- the real-time change of the shape of the structured light on the inner wall of the tunnel can monitor the top settlement of the tunnel, the convergence of both sides, the local settlement, the overall settlement, the instability of the surrounding rock and other disasters.
- the present invention can not only perform real-time tunnel deformation monitoring during the construction of the tunnel under construction, but also can monitor the tunnel deformation in real time in the operating tunnel.
- the present invention does not need to install equipment on the top of the tunnel, and can replace the total station monitoring method commonly used in tunnels under construction. It has the characteristics of intensive monitoring points, automatic system operation and real-time monitoring.
- FIG. 1 is a schematic diagram of a real-time monitoring device for tunnel deformation according to a preferred embodiment of the present invention.
- FIG. 2 is a schematic diagram of the section division of the tunnel wall by the real-time monitoring method of tunnel deformation.
- FIG. 3 is a schematic diagram of a tunnel structure state detected by a real-time monitoring method for tunnel deformation.
- the real-time monitoring device for tunnel deformation includes a plurality of structured light sources 1 and a monitoring terminal 2 .
- a plurality of structured light sources 1 are erected on the face and primary branch area to be monitored, and these areas are collectively referred to as the monitoring area or the unstable area D1.
- the plurality of structured light sources 1 are arranged at equal intervals.
- the structured light source 1 is a multi-band light source, and at the same time, the monitoring terminal 2 has a multi-band light source sensing function, and the measurement results of the multi-band light source are comprehensively analyzed to obtain the final measurement result.
- the structured light source 1 has its own target, and the monitoring terminal 2 obtains the position change (settling or convergence) of each light source by observing the target.
- the target is preferably a cross self-luminous infrared light source.
- the structured light source 1 has a built-in sensor to detect whether it is hit. When it is detected, the structured light source 1 cooperates with the monitoring terminal 2 to automatically readjust the reference curve of the structured light.
- the monitoring terminal 2 is erected in the closed area of the inverted arch or the secondary lining area D2, that is, the stable area.
- the monitoring terminal 2 communicates with the plurality of structured light sources 1 in a wireless or wired manner, and controls the structured light sources 1 to be turned on at intervals according to detection requirements and on-site environment.
- the structured light source 1 can be powered by a cable or by its own battery.
- the monitoring terminal 1 includes a data processing unit and a plurality of image sensors, preferably two image sensors are used, one image sensor faces the monitoring area D1, and the other image sensor faces the secondary area D2.
- multiple structured light sources 1 may also be erected in the secondary lining area D2, and the monitoring terminal 2 monitors the multiple structured light sources in the secondary lining area through an image sensor facing the secondary lining area D2.
- the monitoring terminal 2 monitors the multiple structured light sources in the secondary lining area through an image sensor facing the secondary lining area D2.
- the monitoring method of the above-mentioned tunnel deformation real-time monitoring device comprises the following steps:
- the structured light source is installed at the bottom of the side wall of the tunnel.
- the monitoring terminal observes all structured light L0 in the unstable region of the tunnel structure, and obtains the structured light curve in real time;
- the data processing unit analyzes the changes of the structured light imaging, detects the deformation degree and offset distance of the tunnel in real time, and monitors the settlement and convergence of a single section of the tunnel, as well as the overall settlement of multiple sections and other diseases.
- step S3 includes the following steps:
- the data processing unit uses the image recognition module to locate the structured light area and its edge,
- the data processing unit locates the structured light area by means of adaptive threshold processing, and uses a deep learning segmentation network to identify the edge of the structured light in the area, and the segmentation network preferably adopts a semantic segmentation model.
- the data processing unit extracts the center line of the structured light curve
- the data processing unit adopts a light stripe geometric distribution feature extraction algorithm, and distinguishes the upper and lower edges of the light stripe by edge detection, and the center line is the average of the coordinates of the two edge columns, and the edge detection preferably adopts the neighborhood method.
- the data processing unit automatically or manually updates the reference line formed by the center line
- the data processing unit includes a tunnel structure reference line setting module, which collects the center line of the structured light curve under the normal tunnel structure, saves the mask map, and updates.
- the data processing unit detects the structural state of the tunnel, and determines whether a single-section subsidence, convergence, or multi-section overall subsidence of the tunnel occurs.
- the above step S3 further includes: the data processing unit locates the target of the structured light source, calculates the pixel resolution in the X direction and the Y direction, obtains the distance corresponding to the pixel in the actual space, and preferentially uses a deep learning network semantic segmentation model for positioning.
- the method for detecting the state of the tunnel structure by the data processing unit in the above step S34 includes:
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Aviation & Aerospace Engineering (AREA)
- Multimedia (AREA)
- Mining & Mineral Resources (AREA)
- Signal Processing (AREA)
- Quality & Reliability (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Electromagnetism (AREA)
- Geochemistry & Mineralogy (AREA)
- Geology (AREA)
- Length Measuring Devices By Optical Means (AREA)
- Excavating Of Shafts Or Tunnels (AREA)
- Geophysics And Detection Of Objects (AREA)
- Lining And Supports For Tunnels (AREA)
Abstract
Description
Claims (6)
- 一种隧道形变实时监测方法,其特征在于,包括如下步骤:S1、在需要监测的隧道结构不稳定区域和隧道结构相对稳定的二衬区域分别架设多个结构光光源,并且,在所述二衬区域架设监测终端,所述监测终端与所述多个结构光光源通信;S2、所述监测终端观测隧道结构不稳定区域和二衬区域内的所有结构光,并实时获取结构光曲线;S3、所述监测终端根据二衬区域的结构光位移变化,判断所述监测终端自身是否发生沉降或收敛,数据处理单元分析所述隧道结构不稳定区域的结构光成像变化,并根据二衬区域的结构光位移变化,校正所述隧道结构不稳定区域的结构光曲线的位移量,实时检测隧道形变程度及偏移距离,监测隧道单截面沉降、收敛、以及多截面整体沉降病害。
- 根据权利要求1所述的隧道形变实时监测方法,其特征在于,所述步骤S3包括如下步骤:S31、数据处理单元利用图像识别模块定位结构光区域及其边缘;S32、数据处理单元提取结构光曲线的中心线;S33、数据处理单元自动或手动更新由所述中心线形成的基准线;S34、数据处理单元检测隧道结构状态,判断是否发生隧道单截面沉降、收敛、或者多截面整体沉降灾害。
- 根据权利要求2所述的隧道形变实时监测方法,其特征在于,在所述步骤S34中,所述数据处理单元检测隧道结构状态的方法包括:S341、划分隧道壁区间,分为左右侧壁和拱顶部分,左右侧壁检测横向和纵向位移,拱顶检测纵向位移;S342、将实时结构光曲线中心线与基准线进行匹配,分析像素位移变化;S343、检测隧道多截面整体沉降,结合隧道前后多条结构光曲线中心线匹配结构,多条整体下移即为隧道多截面整体沉降病害;S344、沉降量空间映射,通过像素量化将像素位移转换为空间偏移距离,获得实际沉降及收敛量,并根据位移方向确定病害类型。
- 一种实施如权利要求1所述的隧道形变实时监测方法的监测装置,其特征在于,包括多个结构光光源和一台监测终端,所述多个结构光光源架设在隧道结构不稳定区域和隧道结构相对稳定的二衬区域;所述监测终端架设在隧道结构相对稳定的二衬区域,其与所述多个结构光光源通信,并控制所述多个结构光光源,所述监测终端包括数据处理单元和多个图像传感器。
- 根据权利要求4所述的监测装置,其特征在于,所述结构光光源为多波段光源,监测终端能感知多波段光源,多波段光源的测量结果综合分析得到最终测量结果。
- 根据权利要求4所述的监测装置,其特征在于,所述结构光光源内置传感器,用于检测自身是否被撞击,当检测到被撞击时,所述结构光光源自动重新调整结构光的基准曲线。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE112021004827.9T DE112021004827T9 (de) | 2021-02-22 | 2021-09-29 | Verfahren und vorrichtung zur echtzeit-überwachung der verformung vom tunnel |
AU2021428062A AU2021428062B2 (en) | 2021-02-22 | 2021-09-29 | Real-time tunnel deformation monitoring method and device |
JP2023532651A JP2023552171A (ja) | 2021-02-22 | 2021-09-29 | トンネル変形のリアルタイム監視方法及び装置 |
US18/446,004 US11908121B2 (en) | 2021-02-22 | 2023-08-08 | Conveying manipulator for machining precision parts |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110195026.6 | 2021-02-22 | ||
CN202110195026.6A CN112556600B (zh) | 2021-02-22 | 2021-02-22 | 一种隧道形变实时监测方法及装置 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US18/446,004 Continuation US11908121B2 (en) | 2021-02-22 | 2023-08-08 | Conveying manipulator for machining precision parts |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022174592A1 true WO2022174592A1 (zh) | 2022-08-25 |
Family
ID=75034454
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2021/121671 WO2022174592A1 (zh) | 2021-02-22 | 2021-09-29 | 一种隧道形变实时监测方法及装置 |
Country Status (6)
Country | Link |
---|---|
US (1) | US11908121B2 (zh) |
JP (1) | JP2023552171A (zh) |
CN (1) | CN112556600B (zh) |
AU (1) | AU2021428062B2 (zh) |
DE (1) | DE112021004827T9 (zh) |
WO (1) | WO2022174592A1 (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116906125A (zh) * | 2023-09-06 | 2023-10-20 | 四川高速公路建设开发集团有限公司 | 基于数据同步传输算法的软岩隧道安全监测方法及系统 |
CN117211886A (zh) * | 2023-11-07 | 2023-12-12 | 南京派光智慧感知信息技术有限公司 | 一种隧道掌子面多元信息一体化采集系统及其使用方法 |
CN117889823A (zh) * | 2024-03-11 | 2024-04-16 | 福建省高速公路科技创新研究院有限公司 | 一种隧道运营期拱顶沉降的传递式监测方法 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112556600B (zh) | 2021-02-22 | 2021-05-18 | 南京派光智慧感知信息技术有限公司 | 一种隧道形变实时监测方法及装置 |
CN113685189B (zh) * | 2021-08-25 | 2023-02-17 | 同济大学 | 隧道掌子面开挖变形自动化测量方法 |
CN116022196B (zh) * | 2023-02-13 | 2023-11-03 | 山东大学 | 一种基于计算机视觉的轨道变形监测系统 |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001289620A (ja) * | 2000-04-10 | 2001-10-19 | Ohbayashi Corp | トンネル内施工状態検知方法 |
US20030145658A1 (en) * | 2002-01-11 | 2003-08-07 | Gerhard Weithe | Method and apparatus for surveying the geometry of tunnels |
CN103017673A (zh) * | 2012-12-26 | 2013-04-03 | 中铁二十四局集团有限公司 | 隧道围岩变形实时连续监测报警方法 |
CN103438823A (zh) * | 2012-12-27 | 2013-12-11 | 广州市地下铁道总公司 | 一种基于视觉测量的隧道断面轮廊测量方法及装置 |
CN105809668A (zh) * | 2016-01-15 | 2016-07-27 | 武汉武大卓越科技有限责任公司 | 基于线扫描三维点云的物体表面变形特征提取方法 |
CN109373926A (zh) * | 2018-12-30 | 2019-02-22 | 江龙 | 隧道施工围岩变形连续监控报警方法以及监测系统 |
CN109681275A (zh) * | 2019-01-20 | 2019-04-26 | 江龙 | 一种隧道施工围岩变形连续监控报警方法以及系统 |
CN111855664A (zh) * | 2020-06-12 | 2020-10-30 | 山西省交通科技研发有限公司 | 一种可调节隧道病害三维检测系统 |
CN112097669A (zh) * | 2020-11-17 | 2020-12-18 | 南京派光智慧感知信息技术有限公司 | 一种基于激光测距的隧道内结构形变的监测方法 |
CN112556600A (zh) * | 2021-02-22 | 2021-03-26 | 南京派光智慧感知信息技术有限公司 | 一种隧道形变实时监测方法及装置 |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100575872C (zh) * | 2007-03-20 | 2009-12-30 | 中国空气动力研究与发展中心高速空气动力研究所 | 基于立体视觉的风洞模型外形监测方法 |
CN101458069B (zh) * | 2008-12-30 | 2011-02-23 | 中铁二十四局集团有限公司 | 隧道围岩变形监测方法及其监测系统 |
US8845107B1 (en) * | 2010-12-23 | 2014-09-30 | Rawles Llc | Characterization of a scene with structured light |
US8972310B2 (en) * | 2012-03-12 | 2015-03-03 | The Boeing Company | Method for identifying structural deformation |
US9626568B2 (en) * | 2013-11-26 | 2017-04-18 | Rowan University | Use of spatially structured light for dynamic three dimensional reconstruction and reality augmentation |
CN204007533U (zh) * | 2014-06-19 | 2014-12-10 | 樊晓东 | 隧道缺陷的全方位检测设备 |
CN105423940B (zh) * | 2015-12-25 | 2017-12-26 | 同济大学 | 一种地铁隧道结构断面变形快速检测装置 |
AU2016385541B2 (en) * | 2016-01-15 | 2019-07-11 | Wuhan Optics Valley Zoyon Science And Technology Co., Ltd. | Object surface deformation feature extraction method based on line scanning three-dimensional point Cloud |
US10560679B2 (en) * | 2016-08-30 | 2020-02-11 | Microsoft Technology Licensing, Llc | Deformation detection and automatic calibration for a depth imaging system |
CN107333046B (zh) * | 2017-08-14 | 2019-06-25 | 成都中信华瑞科技有限公司 | 数据采集方法及隧道检测车 |
CN107655898B (zh) * | 2017-10-10 | 2023-11-03 | 山西省智慧交通研究院有限公司 | 一种用于公路隧道检测的立体扫描机器人及其实施方法 |
CN110926339A (zh) * | 2018-09-19 | 2020-03-27 | 山东理工大学 | 一种基于一次投影结构光平行条纹图案的实时三维测量方法 |
CN110161043B (zh) * | 2019-05-10 | 2021-03-26 | 同济大学 | 一种地铁隧道结构综合检测车 |
CN111307043A (zh) * | 2020-03-24 | 2020-06-19 | 上海勃发空间信息技术有限公司 | 一种基于结构光的位移监测系统 |
-
2021
- 2021-02-22 CN CN202110195026.6A patent/CN112556600B/zh active Active
- 2021-09-29 JP JP2023532651A patent/JP2023552171A/ja active Pending
- 2021-09-29 AU AU2021428062A patent/AU2021428062B2/en active Active
- 2021-09-29 DE DE112021004827.9T patent/DE112021004827T9/de active Active
- 2021-09-29 WO PCT/CN2021/121671 patent/WO2022174592A1/zh active Application Filing
-
2023
- 2023-08-08 US US18/446,004 patent/US11908121B2/en active Active
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001289620A (ja) * | 2000-04-10 | 2001-10-19 | Ohbayashi Corp | トンネル内施工状態検知方法 |
US20030145658A1 (en) * | 2002-01-11 | 2003-08-07 | Gerhard Weithe | Method and apparatus for surveying the geometry of tunnels |
CN103017673A (zh) * | 2012-12-26 | 2013-04-03 | 中铁二十四局集团有限公司 | 隧道围岩变形实时连续监测报警方法 |
CN103438823A (zh) * | 2012-12-27 | 2013-12-11 | 广州市地下铁道总公司 | 一种基于视觉测量的隧道断面轮廊测量方法及装置 |
CN105809668A (zh) * | 2016-01-15 | 2016-07-27 | 武汉武大卓越科技有限责任公司 | 基于线扫描三维点云的物体表面变形特征提取方法 |
CN109373926A (zh) * | 2018-12-30 | 2019-02-22 | 江龙 | 隧道施工围岩变形连续监控报警方法以及监测系统 |
CN109681275A (zh) * | 2019-01-20 | 2019-04-26 | 江龙 | 一种隧道施工围岩变形连续监控报警方法以及系统 |
CN111855664A (zh) * | 2020-06-12 | 2020-10-30 | 山西省交通科技研发有限公司 | 一种可调节隧道病害三维检测系统 |
CN112097669A (zh) * | 2020-11-17 | 2020-12-18 | 南京派光智慧感知信息技术有限公司 | 一种基于激光测距的隧道内结构形变的监测方法 |
CN112556600A (zh) * | 2021-02-22 | 2021-03-26 | 南京派光智慧感知信息技术有限公司 | 一种隧道形变实时监测方法及装置 |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116906125A (zh) * | 2023-09-06 | 2023-10-20 | 四川高速公路建设开发集团有限公司 | 基于数据同步传输算法的软岩隧道安全监测方法及系统 |
CN116906125B (zh) * | 2023-09-06 | 2023-12-29 | 四川高速公路建设开发集团有限公司 | 基于数据同步传输算法的软岩隧道安全监测方法及系统 |
CN117211886A (zh) * | 2023-11-07 | 2023-12-12 | 南京派光智慧感知信息技术有限公司 | 一种隧道掌子面多元信息一体化采集系统及其使用方法 |
CN117211886B (zh) * | 2023-11-07 | 2024-01-19 | 南京派光智慧感知信息技术有限公司 | 一种隧道掌子面多元信息一体化采集系统及其使用方法 |
CN117889823A (zh) * | 2024-03-11 | 2024-04-16 | 福建省高速公路科技创新研究院有限公司 | 一种隧道运营期拱顶沉降的传递式监测方法 |
Also Published As
Publication number | Publication date |
---|---|
JP2023552171A (ja) | 2023-12-14 |
US11908121B2 (en) | 2024-02-20 |
CN112556600B (zh) | 2021-05-18 |
CN112556600A (zh) | 2021-03-26 |
AU2021428062B2 (en) | 2023-11-16 |
AU2021428062A9 (en) | 2024-05-02 |
US20230386006A1 (en) | 2023-11-30 |
DE112021004827T9 (de) | 2023-08-17 |
DE112021004827T5 (de) | 2023-06-29 |
AU2021428062A1 (en) | 2023-06-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2022174592A1 (zh) | 一种隧道形变实时监测方法及装置 | |
CN108050952B (zh) | 利用隧道断面变形监测系统进行隧道断面变形监测的方法 | |
CN109278053B (zh) | 一种铁路隧道运营状态检测监测方法 | |
CN107843195A (zh) | 一种活动断裂带隧道结构变形监测系统及方法 | |
CN111473779B (zh) | 一种滑坡-隧道体系变形的识别和联动监测的方法 | |
KR20200021911A (ko) | 전고형 플랫폼 스크린 도어용 안전 보호장치 | |
CN110966045B (zh) | 隧道工程软弱围岩变形监测方法 | |
CN115331264B (zh) | 一种基于神经网络的矿山工人安全识别管理方法 | |
Soni et al. | Extracting rail track geometry from static terrestrial laser scans for monitoring purposes | |
US20230279620A1 (en) | Three-dimensional bridge deck finisher | |
CN115598637B (zh) | 一种隧道围岩形变监测方法及系统 | |
US11655595B1 (en) | Adjustable device for railway to cross active faults | |
CN113900116A (zh) | 接触网几何参数动态检测方法和装置 | |
CN117189254A (zh) | 一种井下巷道变形智能监测及预警方法 | |
CN114312905B (zh) | 一种道岔尖轨形态图像实时监测装置 | |
KR20220097347A (ko) | 인접 대형굴착 시공에 따른 지하철 구조물 안정성 평가시스템 | |
CN110686656A (zh) | 一种矩形顶管自动化测量装置及其方法 | |
CN217951498U (zh) | 一种地铁车站基坑管道悬吊保护装置 | |
KR101375999B1 (ko) | 파형강판을 구비한 암거의 변형에 관한 측정 시스템 및 그 방법 | |
CN115372932A (zh) | 一种单轨吊可行驶性评估及巷道风险预测系统及方法 | |
CN115035060B (zh) | 基于计算机图像识别的隧道壁面变形检测方法 | |
CN114993198B (zh) | 近接施工条件下共线地铁结构自动化变形监测系统及方法 | |
CN205787177U (zh) | 一种隧道地质灾害检测装置 | |
RU2793867C1 (ru) | Система контроля готовности фронта к проведению машинизированной выправки железнодорожного пути | |
CN114320311B (zh) | 一种基于围岩等级的区间暗挖方法及支护架构 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21926306 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2023532651 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2021428062 Country of ref document: AU |
|
ENP | Entry into the national phase |
Ref document number: 2021428062 Country of ref document: AU Date of ref document: 20210929 Kind code of ref document: A |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21926306 Country of ref document: EP Kind code of ref document: A1 |