WO2022174481A1 - 基于基片集成波导的可调控缝隙阵列天线 - Google Patents

基于基片集成波导的可调控缝隙阵列天线 Download PDF

Info

Publication number
WO2022174481A1
WO2022174481A1 PCT/CN2021/080219 CN2021080219W WO2022174481A1 WO 2022174481 A1 WO2022174481 A1 WO 2022174481A1 CN 2021080219 W CN2021080219 W CN 2021080219W WO 2022174481 A1 WO2022174481 A1 WO 2022174481A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
integrated waveguide
slot array
dielectric substrate
array antenna
Prior art date
Application number
PCT/CN2021/080219
Other languages
English (en)
French (fr)
Inventor
温维佳
胡传灯
曾永华
Original Assignee
深圳市环波科技有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市环波科技有限责任公司 filed Critical 深圳市环波科技有限责任公司
Publication of WO2022174481A1 publication Critical patent/WO2022174481A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/10Resonant slot antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system

Definitions

  • the invention relates to the technical field of electromagnetic microwaves, in particular to a controllable slot array antenna based on a substrate integrated waveguide.
  • the main function of the antenna is to transmit and receive wireless signals.
  • the requirements for the performance of the antenna itself are getting higher and higher, which is embodied in the higher and higher requirements for the directivity of the antenna beam, such as the ability to achieve beam scanning.
  • the phased array antenna In the prior art, the most common array antenna is the phased array antenna. Although the phased array antenna has the beam scanning control capability, it requires a complex feeding network, a large number of phase shifters, and the spacing between the array elements generally needs to be one-half wavelength. Therefore, the overall size of the phased array antenna is very large. Large, complex structure, and high manufacturing cost.
  • the object of the present invention is to provide a controllable slot array antenna based on a substrate integrated waveguide, which solves the problems of large volume, high cost and complicated beam direction control of traditional array antennas, and greatly reduces the size of the antenna on the premise of ensuring stable antenna performance. area, greatly reducing the cost of the antenna.
  • a controllable slot array antenna based on a substrate integrated waveguide comprising an upper dielectric substrate and a lower dielectric substrate, and the upper and lower surfaces of the upper dielectric substrate are respectively covered with a first metal plate and a second metal plate
  • the upper dielectric substrate is provided with rows of metal holes to form a substrate integrated waveguide structure;
  • the upper dielectric substrate is provided with an SMA connector, a substrate integrated waveguide power divider and a slot array, the substrate integrated waveguide
  • the power divider is fed into the slot array through a single port, and then combined to another port to form a traveling wave antenna;
  • each slot unit of the slot array is provided with a rectangular metal sheet, and the rectangular metal sheet and Pin diodes are welded on the first metal plate, and the Pin diodes are placed symmetrically on the rectangular metal sheet and the substrate-integrated waveguide power splitter.
  • a microstrip matching line is provided on the upper dielectric substrate for matching the SMA connector and the substrate-integrated waveguide power divider.
  • the substrate-integrated waveguide power splitter is provided with symmetrical through holes to adjust performance.
  • each of the slot units is alternately arranged away from the central axis of the substrate-integrated waveguide power splitter.
  • a metallized through hole passing through the upper and lower dielectric substrates is provided at the center of the rectangular metal sheet, and a circular gap is left on the lower surface of the upper dielectric substrate to avoid short circuits during DC control.
  • the position of the center of the circular slot is the same as the position of the center of the metallized through hole on the rectangular metal sheet.
  • a DC bias network is provided on the lower surface of the lower dielectric substrate, and a fan-shaped structure is provided on the DC bias network. Thereby, interference to the antenna can be prevented.
  • the metallized via is connected to the DC bias network.
  • a DC bias voltage can be provided to control the pin diode through the DC bias network, thereby enabling beam control.
  • the substrate-integrated waveguide power splitter may be replaced by a Wilkins power splitter.
  • symmetrical metal strips are provided on the upper surface of the upper dielectric substrate, rectangular metal strips are provided on both ends of the lower surface of the lower dielectric substrate, and the symmetrical metal strips and the rectangular metal strips are provided on There are perforations passing through the two layers of dielectric substrates, and the rectangular metal strips can be directly connected to the first metal plate through the perforations, so that the upper and lower layers of the dielectric substrates are seamlessly attached. In this way, the manufacturing process of the antenna can be simplified, and the rectangular metal strip ensures that the antenna can be well grounded, so that the overall structure of the antenna is compact and stable.
  • the invention provides a controllable slot array antenna based on a substrate integrated waveguide, which is fed into the slot array through a single port through a substrate integrated waveguide power divider, which effectively reduces the coupling degree between the array elements, and at the same time, the slot array is placed between the slots.
  • the switch diode controls the beam direction of the antenna through the switch of the DC bias voltage control diode.
  • the size of the antenna is greatly reduced, the manufacturing cost of the array antenna is greatly reduced, and the overall structure of the antenna is greatly reduced.
  • Compact and stable in the case of removing the phase shifter, the degree of freedom of the antenna beam direction does not decrease, and as the number of array elements increases, the arrangement and combination of antenna beam steering increases exponentially.
  • FIG. 1 is a schematic diagram of the overall structure of a controllable slot array antenna based on a substrate integrated waveguide according to the present invention
  • FIG. 2 is a schematic structural diagram of a substrate integrated waveguide power splitter
  • Figure 5 is a schematic diagram of the position of the Pin diode
  • FIG. 6 is a top view of the upper dielectric substrate
  • FIG. 7 is a bottom view of the upper dielectric substrate
  • FIG. 9 is a bottom view of the lower dielectric substrate.
  • FIG. 1 is a schematic diagram of the overall structure of the controllable slot array antenna based on the substrate integrated waveguide according to the present invention, which includes an upper dielectric substrate 1 and a lower dielectric substrate 2.
  • the upper dielectric substrate 1 is provided with an SMA connector 7, the substrate integrated
  • the waveguide power splitter 8 and the slot array 10 form the main structure of the antenna, and the upper dielectric substrate 1 is also provided with a microstrip matching line 6 for matching the SMA connector 7 and the substrate integrated waveguide power splitter 8;
  • the splitter 8 is split to the slot array 10 through a single port feed, and then combined to another port to form a traveling wave antenna.
  • the substrate-integrated waveguide splitter 8 may be replaced by a Wilkins splitter.
  • FIG. 2 is a schematic structural diagram of the substrate-integrated waveguide power splitter 8.
  • the upper dielectric substrate 1 is provided with rows of metal holes 5 to form a substrate-integrated waveguide structure.
  • the head of the SMA connector 7 is fed into the microstrip matching line 6 and then enters into the structure of the substrate integrated waveguide power splitter 8 which is divided into eight parts.
  • the substrate integrated waveguide power splitter 8 is provided with a symmetrical through hole 9 to adjust the substrate.
  • the performance of the integrated waveguide power splitter 8 itself; the upper surface of the upper dielectric substrate 1 is provided with symmetrical metal strips 18 , and the symmetrical metal strips 18 are provided with rows of perforations 20 passing through the two layers of dielectric plates.
  • the through holes 20 pass through the rectangular metal strips 19, so that the upper and lower dielectric substrates can be seamlessly connected, which simplifies the antenna manufacturing process.
  • FIG. 3 is a schematic diagram of the structure and effect of the slot array 10 , and the slot unit 11 is divided into a 4 ⁇ 8 array.
  • FIG. 4 is a schematic diagram of the structure and effect of each slot unit 11.
  • Each slot unit 11 is provided with a rectangular metal sheet 12, and Pin diodes 13 are welded on both sides of the rectangular metal sheet 12. The connection position of the Pin diode 13 is shown in the figure. 5 shown.
  • the center of the rectangular metal sheet 12 is provided with a metallized through hole 14 that passes through the upper and lower dielectric substrates.
  • the lower surface of the lower dielectric substrate 2 is provided with a DC offset network 15.
  • the metallized through hole 14 is connected to the DC offset network 15.
  • the DC bias voltage provided by the network 15 controls the switch of the Pin diode 13 and then controls the beam direction of the antenna; the DC bias network 15 is provided with a fan-shaped structure 16 to prevent interference to the antenna, and a circular gap 17 is left on the lower surface of the upper dielectric substrate 1 , to avoid short circuit during DC control, the center position of the circular slot 17 is the same as the center position of the metallized through hole 14 on the rectangular metal sheet.
  • FIG. 6 and 7 are the top and bottom views of the upper dielectric substrate 1 .
  • the upper and lower surfaces of the upper dielectric substrate 1 are covered with a first metal plate 3 and a second metal plate 4 respectively.
  • the metallized vias 14 can be directly connected to the first metal plate 3 .
  • the upper and lower dielectric substrates are made of Rogers4350B sheet, the relative permittivity is 3.6, the area is 276.8mm ⁇ 145mm, and the thickness of the upper and lower dielectric substrates is 0.762mm. paste.
  • the operating frequency of the antenna is 5.8GHz, the length of each slot unit in the slot array is 0.36 free-space wavelengths, the spacing of each unit of the slot array along the horizontal direction is 0.5 wavelength, and the spacing along the vertical direction is the length of the substrate integrated waveguide.
  • the equivalent width of the waveguide, the number of elements of the slot array is 4 ⁇ 8.
  • Two Pin diodes 13 are integrated on the rectangular metal sheet 12 in the middle of each slot unit 11 of the slot array 10, and the radiation state of the slot unit 11 is controlled by controlling the on-off state of the Pin diode 13.
  • the Pin diode 13 is disconnected, the radiation of the antenna is The efficiency reaches 60%.
  • the Pin diode 13 is turned on, the radiation efficiency of the antenna approaches 0, and the unit control effect is obvious.

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Waveguide Aerials (AREA)

Abstract

本发明公开了一种基于基片集成波导的可调控缝隙阵列天线,包括上层介质基板和下层介质基板,所述上层介质基板上下表面分别覆有第一金属板和第二金属板;所述上层介质基板上设置有成排金属孔可构成基片集成波导结构;所述上层介质基板上设置有SMA连接器、基片集成波导功分器和缝隙阵列,所述基片集成波导功分器通过单端口馈入分路到所述缝隙阵列,然后合路到另一端口从而构成行波天线;所述缝隙阵列的每个缝隙单元设置有矩形金属片,所述矩形金属片和所述第一金属板上焊接有Pin二极管,所述Pin二极管在所述矩形金属片两侧对称放置。本发明通过对二极管施加直流偏置电压控制二极管的开关而控制天线的波束,减小了天线的尺寸,降低了制作成本。

Description

基于基片集成波导的可调控缝隙阵列天线 技术领域
本发明涉及电磁微波技术领域,具体涉及一种基于基片集成波导的可调控缝隙阵列天线。
背景技术
天线作为无线通信系统中的重要组成部分,其主要的功能在于对无线信号的发射和接收。随着现代无线通信技术的快速发展,对天线自身的性能要求越来越高,具体体现在对天线波束指向性要求越来愈高,如实现波束扫描能力。
在现有技术当中,最常见的阵列天线当属相控阵天线。相控阵天线虽然具备波束扫描控制能力,但是需要复杂的馈电网络,数量繁多的移相器,阵元间的间距一般也须有二分之一波长,因此相控阵天线整体的尺寸很大,结构复杂,制造成本也很高。
发明内容
本发明的目的提供一种基于基片集成波导的可调控缝隙阵列天线,解决传统阵列天线体积大、成本高和波束方向控制复杂的问题,在保证天线性能稳定的前提下,大大的减小天线的面积,大大的降低天线的成本。
根据本发明的一个方面,提供一种基于基片集成波导的可调控缝隙阵列天线,包括上层介质基板和下层介质基板,所述上层介质基板上下表面分别覆有第一金属板和第二金属板;所述上层介质基板上设置有成排金属孔可构成基片集成波导结构;所述上层介质基板上设置有SMA连接器、基片集成波导功分器和缝隙阵列,所述基片集成波导功分器通过单端口馈入分路到所述缝隙阵列,然后合路到另一端口从而构成行波天线;所述缝隙阵列的每个缝隙单元设置有矩形金属片,所述矩形金属片和所述第一金属板上焊接有Pin二极管,所述Pin二极管在所述矩形金属片和所述基片集成波导功分器上对 称放置。
在某些实施方式中,所述上层介质基板上设置有微带匹配线用于匹配所述SMA连接器和所述基片集成波导功分器。
在某些实施方式中,所述基片集成波导功分器上设置有对称通孔来调节性能。
在某些实施方式中,所述每个缝隙单元偏离所述基片集成波导功分器中心轴线呈交替排列。
在某些实施方式中,所述矩形金属片中心处设置有穿过上下两层介质基板的金属化通孔,所述上层介质基板下表面留有圆形缝隙避免直流控制时产生短路,所述圆形缝隙的圆心位置与所述矩形金属片上的所述金属化通孔圆心位置相同。
在某些实施方式中,所述下层介质基板下表面设置有直流偏执网络,所述直流偏执网络上设置有扇形结构。由此,可以防止对天线的干扰。
在某些实施方式中,所述金属化通孔与所述直流偏执网络相连。
在某些实施方式中,通过所述直流偏执网络可提供直流偏置电压控制pin二极管,继而可实现对波束的控制。
在某些实施方式中,所述基片集成波导功分器可通过威尔金斯功分器代替。。
在某些实施方式中,所述上层介质基板上表面还设置有对称金属条,所述下层介质基板下表面的两端设置有矩形金属条,所述对称金属条和所述矩形金属条上设置有穿越两层介质基板的穿孔,所述矩形金属条可通过所述穿孔直接连接所述第一金属板,使得上下两层介质基板无缝贴合。由此,可以简化天线的制作工艺,通过矩形金属条保证天线能够良好接地,使天线整体结构紧凑稳定。
有益效果:
本发明提供的一种基于基片集成波导的可调控缝隙阵列天线,通过单端口经由基片集成波导功分器馈入缝隙阵列,有效的降低了阵元间的耦合度,同时在缝隙间置开关二极管,通过直流偏置电压控制二极管的开关控制天线的波束方向,对比传统天线控制波束方向的方法,大大的减小了天线的尺寸,大大的降低了阵列天线的制作成本,使天线整体结构紧凑稳定;在去除移相 器的情况下,天线波束方向的自由度反而并未降低,并且随着阵元数目的增加,天线波束控制的排列组合成指数级增长。
附图说明
图1为本发明基于基片集成波导的可调控缝隙阵列天线的整体结构示意图;
图2为基片集成波导功分器结构示意图;
图3为缝隙阵列结构效果示意图;
图4为每个缝隙单元结构效果示意图;
图5为Pin二极管位置示意图;
图6为上层介质基板顶视图;
图7为上层介质基板底视图;
图8为下层介质基板顶视图;
图9为下层介质基板底视图。
具体实施方式
为了使本技术领域的人员更好地理解本申请方案,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分的实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本申请保护的范围。
如图1所示为本发明基于基片集成波导的可调控缝隙阵列天线的整体结构示意图,包括上层介质基板1和下层介质基板2,上层介质基板1上设置有SMA连接器7、基片集成波导功分器8和缝隙阵列10组成天线的主体结构,上层介质基板1上还设置有微带匹配线6用于匹配SMA连接器7和基片集成波导功分器8;基片集成波导功分器8通过单端口馈入分路到缝隙阵列10,然后合路到另一端口从而构成行波天线。
在一些实施方式中,基片集成波导功分器8可通过威尔金斯功分器代替。
如图2所示为基片集成波导功分器8的结构示意图,上层介质基板1上设置有成排金属孔5可构成基片集成波导结构。SMA连接器7的头部馈入微带匹配线6后进入一分为八的基片集成波导功分器8结构中,基片集成波导功分器8上设置有对称通孔9来调节基片集成波导功分器8自身的性能;上层介质基板1上表面设置有对称金属条18,对称金属条18上设置有穿越两层介质板的成排的穿孔20。
如图8、9所示分别为下层介质基板2的顶视图和底视图,下层介质基板2下表面的两端设置有矩形金属条19。穿孔20穿过矩形金属条19,可以使得上下两层介质基板无缝对接,简化了天线的制作工艺,通过矩形金属条19实现天线良好接地,使天线整体结构紧凑稳定。
如图3所示为缝隙阵列10的结构效果示意图,缝隙单元11呈4×8阵列分部。
如图4所示为每个缝隙单元11的结构效果示意图,每个缝隙单元11内设置有矩形金属片12,矩形金属片12的两侧焊接有Pin二极管13,Pin二极管13的连接位置如图5所示。矩形金属片12中心处设置有穿过上下两层介质基板的金属化通孔14,下层介质基板2下表面设置有直流偏执网络15,金属化通孔14与直流偏执网络15相连,通过直流偏执网络15提供的直流偏置电压控制Pin二极管13的开关继而控制天线的波束方向;直流偏执网络15上设置有扇形结构16可以防止对天线的干扰,上层介质基板1下表面留有圆形缝隙17,避免直流控制时产生短路,圆形缝隙17的圆心位置与矩形金属片上的金属化通孔14圆心位置相同。
如图6、7所示为上层介质基板1的顶视图和底视图,上层介质基板1上下表面分别覆有第一金属板3和第二金属板4。金属化通孔14可直接连接至第一金属板3。
需要说明的是,本实例中上下两层介质基板采用Rogers4350B板材,相对介电常数为3.6,面积为276.8mm×145mm,上下两层介质基板的厚度都为0.762mm,通过黏贴剂无缝黏贴。天线的工作频率为5.8GHz,缝隙阵列中的每个缝隙单元的长度为0.36个自由空间波长,缝隙阵列每个单元沿水平方向的间距为0.5波长,沿垂直方向的间距为基片集成波导的波导等效宽度, 缝隙阵列的单元数为4×8。缝隙阵列10的每个缝隙单元11中间的矩形金属片12上集成两个Pin二极管13,通过控制Pin二极管13的开断状态来控制缝隙单元11的辐射状态,Pin二极管13断开时天线的辐射效率达60%,Pin二极管13开启时天线辐射效率趋近于0,单元控制效果明显。

Claims (10)

  1. 一种基于基片集成波导的可调控缝隙阵列天线,其特征在于:包括上层介质基板和下层介质基板,所述上层介质基板上下表面分别覆有第一金属板和第二金属板;所述上层介质基板上设置有成排金属孔可构成基片集成波导结构;所述上层介质基板上设置有SMA连接器、基片集成波导功分器和缝隙阵列,所述基片集成波导功分器通过单端口馈入分路到所述缝隙阵列,然后合路到另一端口从而构成行波天线;所述缝隙阵列的每个缝隙单元设置有矩形金属片,所述矩形金属片和所述第一金属板上焊接有Pin二极管,所述Pin二极管在所述矩形金属片两侧对称放置。
  2. 根据权利要求1所述的基于基片集成波导的可调控缝隙阵列天线,其特征在于:所述上层介质基板上设置有微带匹配线用于匹配所述SMA连接器和所述基片集成波导功分器。
  3. 根据权利要求2所述的基于基片集成波导的可调控缝隙阵列天线,其特征在于:所述基片集成波导功分器上设置有对称通孔来调节性能。
  4. 根据权利要求1所述的基于基片集成波导的可调控缝隙阵列天线,其特征在于:所述每个缝隙单元偏离所述基片集成波导功分器中心轴线呈交替排列。
  5. 根据权利要求1所述的基于基片集成波导的可调控缝隙阵列天线,其特征在于:所述矩形金属片中心处设置有穿过上下两层介质基板的金属化通孔,所述上层介质基板下表面留有圆形缝隙避免直流控制时产生短路,所述圆形缝隙的圆心位置与所述矩形金属片上的所述金属化通孔圆心位置相同。
  6. 根据权利要求1所述的基于基片集成波导的可调控缝隙阵列天线,其特征在于:所述下层介质基板下表面设置有直流偏执网络,所述直流偏执 网络上设置有扇形结构。
  7. 根据权利要求5或6所述的基于基片集成波导的可调控缝隙阵列天线,其特征在于:所述金属化通孔与所述直流偏执网络相连。
  8. 根据权利要求7所述的基于基片集成波导的可调控缝隙阵列天线,其特征在于:通过所述直流偏执网络可提供直流偏置电压控制p i n二极管,继而可实现对波束的控制。
  9. 根据权利要求1所述的基于基片集成波导的可调控缝隙阵列天线,其特征在于:所述基片集成波导功分器可通过威尔金斯功分器代替。
  10. 根据权利要求1所述的基于基片集成波导的可调控缝隙阵列天线,其特征在于:所述上层介质基板上表面还设置有对称金属条,所述下层介质基板下表面的两端设置有矩形金属条,所述对称金属条和所述矩形金属条上设置有穿越两层介质基板的穿孔,所述矩形金属条可通过所述穿孔直接连接所述第一金属板,使得上下两层介质基板无缝贴合。
PCT/CN2021/080219 2021-02-22 2021-03-11 基于基片集成波导的可调控缝隙阵列天线 WO2022174481A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110196019.8 2021-02-22
CN202110196019.8A CN113013627B (zh) 2021-02-22 2021-02-22 基于基片集成波导的可调控缝隙阵列天线

Publications (1)

Publication Number Publication Date
WO2022174481A1 true WO2022174481A1 (zh) 2022-08-25

Family

ID=76405352

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/080219 WO2022174481A1 (zh) 2021-02-22 2021-03-11 基于基片集成波导的可调控缝隙阵列天线

Country Status (2)

Country Link
CN (1) CN113013627B (zh)
WO (1) WO2022174481A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114204258B (zh) * 2021-11-30 2023-02-17 深圳市环波科技有限责任公司 一种频率和极化方式可调圆极化天线和天线调节方法
CN114709621B (zh) * 2022-03-07 2023-05-23 南京航空航天大学 一种单层基片集成波导单脉冲天线
CN114628918B (zh) * 2022-03-21 2024-07-19 重庆邮电大学 一种基于加载pin二极管的波束可重构缝隙阵列天线

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6307519B1 (en) * 1999-12-23 2001-10-23 Hughes Electronics Corporation Multiband antenna system using RF micro-electro-mechanical switches, method for transmitting multiband signals, and signal produced therefrom
CN102780092A (zh) * 2012-07-31 2012-11-14 电子科技大学 一种基片集成波导频率可调缝隙天线
CN108987911A (zh) * 2018-06-08 2018-12-11 西安电子科技大学 一种基于siw的毫米波波束赋形微带阵列天线及设计方法
CN210272694U (zh) * 2019-08-08 2020-04-07 深圳光启尖端技术有限责任公司 一种基片集成波导缝隙扫描天线
CN111129726A (zh) * 2019-12-07 2020-05-08 复旦大学 低剖面基片集成波导可编程超材料天线

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108711671B (zh) * 2018-04-25 2020-07-28 南京航空航天大学 一种共口径频率可重构片上缝隙阵列天线及使用方法
CN112310628A (zh) * 2020-09-27 2021-02-02 三万星空(西安)信息技术有限公司 一种基片集成波导缝隙馈电微带阵列天线
CN214797722U (zh) * 2021-02-22 2021-11-19 深圳市环波科技有限责任公司 基于基片集成波导的可调控缝隙阵列天线

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6307519B1 (en) * 1999-12-23 2001-10-23 Hughes Electronics Corporation Multiband antenna system using RF micro-electro-mechanical switches, method for transmitting multiband signals, and signal produced therefrom
CN102780092A (zh) * 2012-07-31 2012-11-14 电子科技大学 一种基片集成波导频率可调缝隙天线
CN108987911A (zh) * 2018-06-08 2018-12-11 西安电子科技大学 一种基于siw的毫米波波束赋形微带阵列天线及设计方法
CN210272694U (zh) * 2019-08-08 2020-04-07 深圳光启尖端技术有限责任公司 一种基片集成波导缝隙扫描天线
CN111129726A (zh) * 2019-12-07 2020-05-08 复旦大学 低剖面基片集成波导可编程超材料天线

Also Published As

Publication number Publication date
CN113013627A (zh) 2021-06-22
CN113013627B (zh) 2022-11-15

Similar Documents

Publication Publication Date Title
WO2022174481A1 (zh) 基于基片集成波导的可调控缝隙阵列天线
KR102368374B1 (ko) 액정 위상 시프터, 그 동작 방법, 액정 안테나, 및 통신 장치
EP3462543B1 (en) Array antenna
CN113300090B (zh) 一种差分馈电的方向图可重构介质贴片天线
WO2016041504A1 (zh) 一种贴片天线
JP2001339207A (ja) アンテナ給電線路およびそれを用いたアンテナモジュール
CN112332085B (zh) 一种ka波段双圆极化可切换收发天线
CN109616764A (zh) 基片集成间隙波导圆极化天线
US11791559B1 (en) Broadband solar cell antenna
JP2016213927A (ja) 電力送受信用アレイアンテナ
CN116826371B (zh) 一种双向准端射贴片天线
WO2021088630A1 (zh) 一种双圆极化波束可重构微带天线
JPH09284031A (ja) マイクロストリップアンテナ
CN107819201B (zh) 一种适用于5g毫米波通信的紧凑型渐变缝隙阵列天线
CN214797722U (zh) 基于基片集成波导的可调控缝隙阵列天线
CN217009552U (zh) 波束可重构天线及电子设备
CN217134687U (zh) 一种双极化辐射单元、一种天线以及一种天线系统
CN208045696U (zh) 一种基于基片集成波导的Butler矩阵馈电网络
CN114614246A (zh) 波束可重构天线及电子设备
US20220077593A1 (en) Dual polarized antenna using shift series feed
US11843173B2 (en) Antenna module and wireless transceiver device
CN113067133B (zh) 一种低剖面低副瓣大角度频扫阵列天线
KR20040013387A (ko) 혼합 급전 방식을 이용한 마이크로스트립 배열 안테나
CN114498016A (zh) 一种极化可调圆极化贴片阵列天线及极化调控方法
CN112164866A (zh) 一种基于s-pin固态等离子体的高隔离度可重构缝隙天线及其频率重构方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21926198

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21926198

Country of ref document: EP

Kind code of ref document: A1