WO2016041504A1 - 一种贴片天线 - Google Patents

一种贴片天线 Download PDF

Info

Publication number
WO2016041504A1
WO2016041504A1 PCT/CN2015/089808 CN2015089808W WO2016041504A1 WO 2016041504 A1 WO2016041504 A1 WO 2016041504A1 CN 2015089808 W CN2015089808 W CN 2015089808W WO 2016041504 A1 WO2016041504 A1 WO 2016041504A1
Authority
WO
WIPO (PCT)
Prior art keywords
patch
parasitic
dielectric substrate
controllable
antenna
Prior art date
Application number
PCT/CN2015/089808
Other languages
English (en)
French (fr)
Inventor
杨雪松
沈从松
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2016041504A1 publication Critical patent/WO2016041504A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors

Definitions

  • the present invention relates to the field of communication antennas, and more particularly to a patch antenna.
  • the reconfigurable antenna changes the antenna current by changing the antenna structure by loading the switch at the antenna, such as the operating frequency, the radiation pattern, and the polarization mode.
  • the dual-polarized antenna has the characteristics of small size, strong anti-interference ability, improved spectrum utilization, and the like, and can well meet the requirements of the wireless communication system.
  • the dual-polarized antenna can greatly eliminate the multipath fading phenomenon in communication through polarization diversity, and effectively improve the quality of the call; in the satellite communication system, the same frequency signal transmits information through orthogonal polarization, which can save Spectrum resources.
  • Dual-polarized antennas have broad application prospects in future wireless communication systems.
  • the dual-polarized antenna technology for realizing the reconfigurable pattern includes the following two types: 1. Using a phase shifter to change the phase difference between the antenna elements in the array antenna, the direction map is continuously adjustable within a certain range; The Butler Matrix Feed Network implements discrete changes in the direction of the pattern. Both of these technologies have problems in that the feed structure is complicated and the loss is large.
  • the embodiment of the invention provides a patch antenna, which can make the patch antenna have dual polarization and reconfigurable characteristics, and has a simple feeding structure and a small difference.
  • a patch antenna comprising a patch antenna device comprising: at least one radiating element, at least one controllable parasitic unit, a floor, a first dielectric substrate, a second a dielectric substrate, a microstrip feed network; the at least one radiating element is octagonal; the at least one controllable parasitic element includes a second parasitic patch, at least one controllable switch and at least one shorting hole, the controllable parasitic unit
  • the parasitic patch is octagonal; the at least one radiating element and the at least one second parasitic patch are located on the first surface of the first dielectric substrate and attached to the first surface of the first dielectric substrate Parallelly aligned between the at least one radiating element and the at least one second parasitic patch, the floor being located between the second surface of the first dielectric substrate and the first surface of the second dielectric substrate;
  • the floor is provided with two H-shaped slits which are perpendicular to each other; the microstrip feed network is located on the second
  • the at least one radiating element comprises an excitation patch, a dielectric layer and a first parasitic patch, and the second surface of the excitation patch is adhered to the first surface of the first dielectric substrate
  • the first surface of the excitation patch is attached to the second surface of the dielectric layer, and the first surface of the dielectric layer is attached to the first parasitic patch.
  • the shorting hole passes through the first dielectric substrate, and the shorting hole group passes the controllable switch and the Floor connection.
  • controllable switch in combination with the first aspect or the first or second possible implementation manner of the first aspect, is connected to the floor through the controllable switch when the controllable switch is turned on The two parasitic patches are electrically connected to the floor.
  • the radiating element and the second parasitic patch are octagonal, which overcomes the difficulty of multi-level matching of the square patch, the coupling between the diamond patches is weak, and the radiation pattern deflection effect is not good, and the optimization is performed.
  • the radiation pattern deflection effect makes the feeding network simple, the antenna aperture is small, the loss is reduced, and the patch antenna can have both dual polarization and reconfigurable characteristics.
  • FIG. 1 is a front elevational view of a patch antenna device according to an embodiment of the present invention.
  • FIG. 2 is a schematic rear view of a patch antenna device according to an embodiment of the present invention.
  • FIG. 3 is a cross-sectional view showing a patch antenna device according to an embodiment of the present invention.
  • FIG. 4 is a partial schematic view of a patch antenna device according to an embodiment of the present invention.
  • Figure 5 is a radiation pattern of the four operating modes of the antenna under the port-feed
  • Figure 6 is a radiation pattern of the four operating modes of the port two-feed antenna.
  • the embodiment of the invention provides a patch antenna, and the patch antenna comprises: a patch antenna device.
  • 1, 2, and 3 show schematic structural views of a patch antenna device according to an embodiment of the present invention. 1 is a front view of the patch antenna device, FIG. 2 is a rear view of the patch antenna device, and FIG. 3 is a side cross-sectional view of the patch antenna device.
  • the patch antenna device includes:
  • the at least one radiating element (100) is octagonal;
  • the at least one controllable parasitic unit (200) (300) includes a second parasitic patch (201) (301), at least one controllable switch (203) (303) and at least one shorting hole (202) (302), Second
  • the parasitic patch (201) (301) is octagonal;
  • the at least one radiating element (100) and the second parasitic patch (201) (301) are located on a first surface of the first dielectric substrate (400), the at least one radiating element (100), the second parasitic patch
  • the sheets (201) (301) are aligned in parallel, the floor (600) being located between the second surface of the first dielectric substrate (400) and the first surface of the second dielectric substrate; the floor (600)
  • Two H-shaped slits (800) are provided thereon, and the two H-shaped slits (800) are perpendicular to each other.
  • the microstrip feed network (700) is located on a second surface of the second dielectric substrate (500), and the microstrip feed network (700) includes a port (701) (702).
  • the radiating unit (100) and the second parasitic patch (201) (301) are octagonal, which overcomes the difficulty of multi-level matching of the square patch, and the coupling between the diamond patches is weak, and the radiation direction is The problem of poor deflection of the figure optimizes the deflection effect of the radiation pattern, making the feeding network simple, the antenna aperture smaller, reducing the loss, and enabling the patch antenna to have both dual polarization and reconfigurable characteristics.
  • the eight-deformation structure can ensure that the antenna is in the horizontal horizontal polarization, the positive and negative 45-degree polarization, and the spatially formed pattern is E-plane/H-plane symmetrical; the eight-deformation structure can also ensure When the antenna is adjusted in direction, the E-plane/H-plane simultaneously performs beam change.
  • the length and width of the patch antenna device can be set according to the frequency, the material, and the like.
  • the patch antenna device can be set to be 100 mm long by 100 mm wide by 6.8 mm high.
  • the length, width and height of the antenna device may be slightly different within a range that does not affect the performance of the antenna. For example, it may be set to 98 mm ⁇ width 98 mm ⁇ height 6.7 mm, which is not in the embodiment of the present invention. Limited to this.
  • the patch antenna device includes at least one radiating element (100) including an excitation patch (101), a dielectric layer (102), and a first parasitic patch (103), the excitation patch (101)
  • the second surface is in contact with the first surface of the first dielectric substrate (400), and the first surface of the excitation patch (101) is bonded to the second surface of the dielectric layer (102), the dielectric layer (102)
  • the first surface of the first surface is attached to the first parasitic patch (103).
  • the first surface and the second surface have two sides of the excitation patch (101) and the dielectric layer (102), that is, the first surface and the second surface, and the first surface and the second surface are Different surfaces. As shown in FIG.
  • the radiation unit (100) has an octagonal shape formed by observing the four corners of the square.
  • the octagonal radiation unit (100) can be tilted by 45 degrees. Placed, that is, the lower edge of the octagon of the radiating element (100) as shown in Fig. 1 and the edge of the patch antenna device are at an angle of 45 degrees.
  • the octagonal radiating element (100) may be placed at other degrees, such as 43 degrees, in a range that does not affect the performance of the antenna.
  • the embodiment of the present invention is not limited thereto.
  • the radiating element (100) may be aligned in parallel with an adjacent radiating element or a second parasitic patch, that is, an octagonal right line of the radiating element (100) shown in FIG. 1 and an adjacent controllable parasitic unit (200)
  • the octagonal left line of the second parasitic patch in (300) is parallel, the octagon upper edge of the radiating element (100) and the second parasitic patch in the adjacent controllable parasitic element (200) (300)
  • the upper edge of the octagon of the slice is horizontally aligned.
  • the length of the original square of the radiating element (100) can be set to 24.5 mm.
  • the length of the original square of the radiating element (100) can also be within a range that does not affect the performance of the antenna.
  • the embodiment of the present invention is not limited thereto, and is set to other lengths, such as 24 mm.
  • the radiating element (100) is attached to the first surface of the first dielectric substrate (400).
  • the radiation unit (100) is the main radiator of the antenna and bears the role of radiant energy.
  • the number of the radiating elements (100) may be plural, and the number of the radiating elements (100) is positively correlated with the radiation gain of the patch antenna, that is, when the patch antenna is required to have a higher gain, more radiating elements are disposed. (100).
  • the controllable parasitic unit (200) (300) includes a second parasitic patch (201) (301), a controllable switch (203) (303), and at least one shorting aperture (202) (302).
  • the second parasitic patch (201) (301) is an octagon formed by cutting four corners of the square.
  • the original square side length of the second parasitic patch (201) (301) is set. 26mm, optionally, the length of the original square of the second parasitic patch (201) (301) may be set to other lengths, such as 25.5 mm, in a range that does not affect the performance of the antenna. Not limited to this.
  • the octagonal second parasitic patch (201) (301) is placed at an angle of 45 degrees, that is, the eight sides of the second parasitic patch of the second parasitic unit (200) (300) shown in FIG.
  • the shape of the lower edge is at an angle of 45 degrees to the edge of the patch antenna device.
  • the octagonal radiating element (100) may be placed at other degrees, such as 43 degrees, within a range that does not affect the performance of the antenna.
  • the second parasitic patch (201) (301) can be phased
  • the adjacent radiating elements (100) or other second parasitic patches (201) (301) are aligned in parallel.
  • the second parasitic patch (201) (301) and the first parasitic patch (101) may be the same parasitic patch.
  • the controllable parasitic unit (200) (300) is a secondary radiator of the antenna, and the parasitic element can be made to direct and reflect the electric field by adjusting the controllable switch (203) (303).
  • the number of controllable parasitic units (200) (300) may be multiple, and the number of controllable parasitic units (200) (300) may be determined according to the needs of the radiation pattern deflection angle, and the controllable parasitic unit (200) ( The greater the number of 300), the greater the deflection angle of the radiation pattern.
  • the second parasitic patch (201) (301) is attached to the first surface of the first dielectric substrate (400), and adjacent to the second parasitic patch (201) (301) may be other second parasitic patches.
  • (201) (301) which may also be a radiating unit (100); adjacent to the radiating unit (100) may be other radiating elements (100), or may be a second parasitic patch (201) (301); radiation
  • the unit is aligned in parallel with other radiating elements adjacent thereto;
  • the second parasitic patch is aligned in parallel with the adjacent other second parasitic patches.
  • the radiating element is aligned in parallel with the second parasitic patch adjacent thereto, that is, as shown in FIG.
  • the distance between adjacent radiating elements (100), or the distance between second parasitic patches in adjacent controllable parasitic elements (200) (300), or adjacent radiating elements (100) and The distance between the two parasitic patches (201) (301) can be determined according to the wavelength corresponding to the operating frequency of the patch antenna, and can be 0.5 to 0.6 times the wavelength corresponding to the operating frequency, which is in the embodiment of the present invention. Not limited to this.
  • the controllable parasitic unit (200) (300) further includes at least one shorting hole (202) (302), as shown in FIG. 3, the shorting hole (202) (302) is located at the second parasitic patch (201) (301) In the central region, the short-circuit hole (202) (302) is a hollow hole, and the inner surface of the short-circuit hole (202) (302) is coated with a metal coating, so that the short-circuit hole (202) (302) achieves a conduction effect, short circuit
  • the number of holes (202) (302) can be determined according to the conduction effect to be achieved, and the short-circuit holes (202) (302) The more the number, the better the conduction effect.
  • Each shorting hole (202) (302) extends longitudinally through the parasitic patch and the first dielectric substrate (400).
  • the controllable parasitic unit (200) (300) further includes at least one controllable switch (203) (303), and the controllable switch (203) (303) controls the second parasitic patch (201) by turning on or off ( 301) A connection to the floor (600) to control the effect of the second parasitic patch (201) (301) on the antenna pattern.
  • Figure 4 is a partial schematic view of the shorting hole and the controllable switch. As shown in FIG. 4, eight short-circuit holes are arranged around the short-circuit hole group, the floor around the short-circuit hole group is provided with a circular slit, and the controllable switch is disposed at the slit, and the controllable switch makes the second parasitic patch and the Floor connection.
  • the second parasitic patch in the controllable parasitic unit in which the controllable switch is located is in communication with the floor, and the second parasitic patch in the controllable parasitic unit acts as a director to cause radiation
  • the pattern is deflected toward the second parasitic patch; when the controllable switch is turned off, the second parasitic patch in the controllable parasitic unit in which the controllable switch is located is disconnected from the floor, and the second in the controllable parasitic unit
  • the two parasitic patches act as reflectors that deflect the radiation pattern away from the parasitic patch to form a plurality of radiation patterns.
  • the number of controllable switches in each controllable parasitic unit can be four, and the four controllable switches are evenly distributed on the circular slit.
  • the controllable switch can be a diode.
  • the microstrip feed network (700) port one (701) and port two (702) respectively receive the feed, and the controllable switch (203) on the floor (600) below the second parasitic patch (201) (301) ( 303) when turned on, the second parasitic patch (201) (301) acts as a director to guide the radiation pattern; and when the second parasitic patch (201) (301) is turned off, When opened, the second parasitic patch (201) (301) acts as a reflector to reflect the radiation pattern.
  • FIG. 4 is a radiation pattern of the antenna in four working modes when the port (701) is fed; FIG. The radiation pattern of the antenna in four operating modes when the port (702) is fed.
  • Working mode 1 The controllable switch (203) is turned on, the second parasitic patch (201) is used as a director, the controllable switch (303) is disconnected, and the second parasitic patch (301) is used as a reflector. As shown in FIG. 5 and FIG. 6, the radiation pattern is deflected toward the second parasitic patch (201);
  • Working mode 2 the controllable switch (203) and the controllable switch (303) are all turned on. As shown in Fig. 5 and Fig. 6, the pattern is not deflected, the beam width is narrow, and the gain is high;
  • Working mode 3 The controllable switch 303 is turned on, the second parasitic patch (301) is used as a director, the controllable switch (203) is turned off, and the second parasitic patch (201) is used as a reflector. As shown in FIG. 5 and FIG. 6, the radiation pattern is deflected toward the second parasitic patch (301);
  • Working mode 4 The controllable switch (203) and the controllable switch (303) are all disconnected. As shown in Fig. 5 and Fig. 6, the radiation pattern is not deflected, but the beam width is wider and the gain is relatively small.
  • the floor (600) is located between the second surface of the first dielectric substrate (400) and the first surface of the second dielectric substrate (500), and the floor (600) functions as a mirror current.
  • the first dielectric substrate (400) and the second dielectric substrate (500) have two sides, a first surface and a second surface, and the second surface is a surface different from the first surface.
  • the microstrip feed network (700) is located on a second surface of the second dielectric substrate (500), and the microstrip feed network (700) is fed by a slot coupling method, and two perpendicular to each other are opened on the floor (600).
  • the "H" shaped slit (800) causes the two ports to excite two linearly polarized waves having polarization directions perpendicular to each other and 45 degrees to the beam scanning plane.
  • the feed structure utilizes a multi-section impedance matching converter plus an open stub to improve antenna matching, ultimately enabling each radiation pattern to achieve good matching at the same time, and both have broadband characteristics.
  • a three-section impedance matching conversion structure (900) is adopted, so that the antenna reflects the port in the working mode 1, the working mode 2, and the working mode 3.
  • the coefficient satisfies less than -10 dB (decibel) at 3.4 GHz to 3.6 GHz; mode 4 can be achieved by adding an open stub because both parasitic patches are broken.
  • the patch antenna, the radiating element (100) and the second parasitic patch (201) (301) are octagonal, which overcomes the difficulty of multi-level matching of the square patch, and the coupling between the diamond patches is weak.
  • the radiation pattern deflection effect is not good, the radiation pattern deflection effect is optimized, the feeding network is simple, the antenna aperture is small, the loss is reduced, and the patch antenna can be dual-polarized and reconfigurable at the same time. Characteristics.
  • the eight-deformation structure can also ensure that the antenna is in a vertical horizontal polarization, a positive and a negative 45-degree polarization, and the spatially formed pattern is E-plane/H-plane symmetrical; the eight-deformation structure can also In order to ensure that the antenna is adjusted in the direction of the antenna, the E-plane/H-plane simultaneously performs beam change.
  • the antenna further includes other necessary antenna accessories outside the patch antenna device, such as a radome.

Landscapes

  • Waveguide Aerials (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

本发明的实施例提供了一种贴片天线,涉及通信天线领域,能够使得贴片天线同时具有双极化和可重构的特性。该贴片天线包括贴片天线装置,该贴片天线装置包括:至少一个辐射单元,至少一个可控寄生单元,地板,第一介质基片,第二介质基片,微带馈电网络;该至少一个辐射单元为八边形;该至少一个可控寄生单元包括第二寄生贴片,至少一个可控开关和至少一个短路孔,该第二寄生贴片为八边形。

Description

一种贴片天线 技术领域
本发明涉及通信天线领域,尤其涉及一种贴片天线。
背景技术
可重构天线是通过在天线加载开关来改变天线结构,从而改变天线的表面电流分布,来实现对天线特性的改变,如工作频率、辐射方向图、极化方式等。双极化天线通过正交具有体积小、抗干扰能力强、提高频谱利用率等特点,能很好的满足无线通信系统的要求。在移动通信系统中,双极化天线能通过极化分集大大消除通信中的多径衰落现象,有效提高通话的质量;在卫星通信系统中,相同频率信号通过正交极化传输信息,能节约频谱资源。双极化天线在未来的无线通信系统中有着广阔的应用前景。
天线的发展正向着多样化、多功能化的趋势发展,所以可重构天线与双极化天线结合是天线发展必然趋势。目前,实现方向图可重构的双极化天线技术包括以下两种:1.阵列天线中采用移相器改变天线单元间的相位差实现方向图指向在一定范围内连续可调;2.采用巴特勒矩阵馈电网络实现方向图指向的离散变化。而这两种技术都存在馈电结构复杂、差损较大的问题。
发明内容
本发明实施例提供了一种贴片天线,能够使得贴片天线具有双极化和可重构特性同时,具有简单的馈电结构和较小的差损。
第一方面,提供了一种贴片天线,包括贴片天线装置,该贴片天线装置包括:至少一个辐射单元,至少一个可控寄生单元,地板,第一介质基片,第二 介质基片,微带馈电网络;该至少一个辐射单元为八边形;该至少一个可控寄生单元包括第二寄生贴片,至少一个可控开关和至少一个短路孔,该可控寄生单元的该寄生贴片为八边形;该至少一个辐射单元和该至少一个该第二寄生贴片位于该第一介质基片的第一表面,贴附在该第一介质基片的第一表面上的该至少一个辐射单元、该至少一个该第二寄生贴片之间平行对齐,该地板位于该第一介质基片的第二表面和该第二介质基片的第一表面之间;该地板上设有两个H形缝隙,该两个H形缝隙之间相互垂直;该微带馈电网络位于该第二介质基片的第二表面。
在第一种可能的实现方式中,该至少一个辐射单元包括激励贴片、介质层和第一寄生贴片,该激励贴片的第二表面与该第一介质基片的第一表面贴合,该激励贴片的第一表面和该介质层的第二表面贴合,该介质层的第一表面和该第一寄生贴片贴合。
在第二种可能的实现方式中,结合第一方面或第一方面的第一种可能的实现方式,该短路孔穿过该第一介质基片,该短路孔组通过该可控开关和该地板连接。
在第三种可能的实现方式中,结合第一方面或第一方面的第一或第二种可能的实现方式,该可控开关导通时,通过该可控开关与该地板连接的该第二寄生贴片与该地板之间导通。
在本发明实施例中,辐射单元和第二寄生贴片为八边形,克服了正方形贴片多级匹配较为困难,菱形贴片间耦合较弱,辐射方向图偏转效果不好的问题,优化了辐射方向图偏转效果,使得馈电网络简单,天线口径较小,减少了差损,同时能够使得贴片天线同时具有双极化和可重构的特性。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例描述中所需 要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例中的贴片天线装置正面示意图;
图2为本发明实施例的贴片天线装置背面示意图;
图3为本发明实施例的贴片天线装置剖面示意图;
图4为本发明实施例的贴片天线装置的局部示意图;
图5为端口一馈电下天线四种工作模式下的辐射方向图;
图6为端口二馈电线天线四种工作模式下的辐射方向图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明实施例提供了一种贴片天线,该贴片天线包括:贴片天线装置。图1、图2、图3示出了根据本发明实施例的贴片天线装置的示意性结构图。图1为该贴片天线装置的正面示意图,图2为该贴片天线装置的背面示意图,图3为该贴片天线装置的侧面剖视图。如图1、图2、图3所示,该贴片天线装置包括:
至少一个辐射单元(100),至少一个可控寄生单元(200)(300),地板(600),第一介质基片(400),第二介质基片(500),微带馈电网络(700);
该至少一个辐射单元(100)为八边形;
该至少一个可控寄生单元(200)(300)包括第二寄生贴片(201)(301),至少一个可控开关(203)(303)和至少一个短路孔(202)(302),该第二 寄生贴片(201)(301)为八边形;
该至少一个辐射单元(100)和该第二寄生贴片(201)(301)位于该第一介质基片(400)的第一表面,该至少一个辐射单元(100)、该第二寄生贴片(201)(301)之间平行对齐,该地板(600)位于该第一介质基片(400)的第二表面和该第二介质基片的第一表面之间;该地板(600)上设有两个H形缝隙(800),该两个H形缝隙(800)之间相互垂直。该微带馈电网络(700)位于该第二介质基片(500)的第二表面,该微带馈电网络(700)包括端口(701)(702)。
在本发明实施例中,辐射单元(100)和第二寄生贴片(201)(301)为八边形,克服了正方形贴片多级匹配较为困难,菱形贴片间耦合较弱,辐射方向图偏转效果不好的问题,优化了辐射方向图偏转效果,使得馈电网络简单,天线口径较小,减少了差损,同时能够使得贴片天线同时具有双极化和可重构的特性。此外,该八变形的结构还可以保证天线在垂直水平极化、正负45度极化两种方式下,空间形成的方向图是E面/H面对称的;该八变形结构还可以保证在天线进行方向图调节的时候,E面/H面同时进行波束变化。
贴片天线装置的长宽高可根据频点、材料等的不同进行设置,在本发明实施例中,该贴片天线装置可设置为长100mm×宽100mm×高6.8mm,需要说明的是,在相同频点或材料的情况下,天线装置的长宽高在不影响天线性能的范围内也可略有不同,如也可设置为98mm×宽98mm×高6.7mm,本发明实施例并不限制于此。
贴片天线装置包括至少一个辐射单元(100),该辐射单元(100)包括激励贴片(101)、介质层(102)和第一寄生贴片(103),该激励贴片(101)的第二表面与该第一介质基片(400)的第一表面贴合,该激励贴片(101)的第一表面和该介质层(102)的第二表面贴合,该介质层(102)的第一表面和该第一寄生贴片(103)贴合。其中,第一表面和第二表面为激励贴片(101)和介质层(102)都有两面,即第一表面和第二表面,第一表面和第二表面为 不同的表面。如图1所示,该辐射单元(100)俯瞰形状为将正方形的四个角切除之后而形成的八边形,在本实施例中,可将该八边形辐射单元(100)倾斜45度放置,即如图1所示的辐射单元(100)的八边形的下边线和该贴片天线装置的边线成45度夹角。可选的,在不影响天线性能的范围内也可将该八边形辐射单元(100)倾斜其它度数放置,如43度,本发明实施例并不限制于此。该辐射单元(100)可与相邻的辐射单元或第二寄生贴片平行对齐,即图1所示的该辐射单元(100)的八边形右边线和相邻的可控寄生单元(200)(300)中的第二寄生贴片的八边形左边线平行,辐射单元(100)的八边形上边线和相邻的可控寄生单元(200)(300)中的第二寄生贴片的八边形上边线水平对齐。在本实施例中,该辐射单元(100)原正方形的边长可设置为24.5mm,可选的,在不影响天线性能的范围内,也可将该辐射单元(100)原正方形的边长设置为其它长度,如24mm,本发明实施例并不限制于此。该辐射单元(100)贴附在第一介质基片(400)的第一表面。
该辐射单元(100)是天线主要辐射体,承担辐射能量的作用。辐射单元(100)的个数可为多个,辐射单元(100)的个数和贴片天线的辐射增益正相关,即当需要该贴片天线有较高增益,则设置较多的辐射单元(100)。
该可控寄生单元(200)(300)包括第二寄生贴片(201)(301)、可控开关(203)(303)和至少一个短路孔(202)(302)。第二寄生贴片(201)(301)为将正方形的四个角切除之后而形成的八边形,在本实施例中,第二寄生贴片(201)(301)的原正方形边长设置为26mm,可选的,在不影响天线性能的范围内,也可将该第二寄生贴片(201)(301)原正方形的边长设置为其它长度,如25.5mm,本发明实施例并不限制于此。在本实施例中该八边形第二寄生贴片(201)(301)倾斜45度放置,即图1所示的第二寄生单元(200)(300)的第二寄生贴片的八边形的下边线和该贴片天线装置的边线成45度夹角。可选的,在不影响天线性能的范围内,也可将该八边形辐射单元(100)倾斜其它度数放置,如43度。该第二寄生贴片(201)(301)可与相 邻的辐射单元(100)或其它第二寄生贴片(201)(301)平行对齐。
该第二寄生贴片(201)(301)和第一寄生贴片(101)可以是相同的寄生贴片。
可控寄生单元(200)(300)是天线的次要辐射体,可以通过调节可控开关(203)(303)使寄生单元具有引导和反射电场的作用。可控寄生单元(200)(300)的个数可为多个,可控寄生单元(200)(300)的个数可根据辐射方向图偏转角度的需要决定,可控寄生单元(200)(300)的个数越多,辐射方向图偏转角度越大。
第二寄生贴片(201)(301)贴附在第一介质基片(400)的第一表面,与第二寄生贴片(201)(301)相邻的可以是其它第二寄生贴片(201)(301),也可以是辐射单元(100);与辐射单元(100)相邻的可以是其它辐射单元(100),也可以是第二寄生贴片(201)(301);辐射单元与和其相邻的其它辐射单元平行对齐;第二寄生贴片与相邻的其它第二寄生贴片平行对齐。辐射单元和与其相邻的第二寄生贴片平行对齐,即如图1所示,辐射单元(100)八边形的左边线和相邻的可控寄生单元(200)(300)中的第二寄生贴片的八边形右边线平行,辐射单元(100)八边形的上边线和相邻的可控寄生单元(200)(300)中的第二寄生贴片的八边形上边线水平对齐。相邻的辐射单元(100)之间的距离,或相邻的可控寄生单元(200)(300)中的第二寄生贴片之间的距离,或相邻的辐射单元(100)和第二寄生贴片(201)(301)之间的距离,均可根据该贴片天线的工作频率所对应的波长确定,可为工作频率所对应的波长的0.5至0.6倍,本发明实施例并不限制于此。
该可控寄生单元(200)(300)还包括至少一个短路孔(202)(302),如图3所示,该短路孔(202)(302)位于第二寄生贴片(201)(301)的中心区域,短路孔(202)(302)为中空孔,短路孔(202)(302)内侧表面涂有金属涂层,使得该短路孔(202)(302)实现导通的效果,短路孔(202)(302)的个数可根据所要达到的导通效果确定,短路孔(202)(302)个 数越多,导通效果越好。每个短路孔(202)(302)纵向穿过该寄生贴片和该第一介质基片(400)。
该可控寄生单元(200)(300)还包括至少一个可控开关(203)(303),可控开关(203)(303)通过导通或断开控制第二寄生贴片(201)(301)与地板(600)的连接,从而控制第二寄生贴片(201)(301)对天线方向图的影响。图4为短路孔和可控开关局部示意图。如图4所示,8个短路孔环绕排列为短路孔组,该短路孔组周围地板设置有圆形缝隙,可控开关设置于缝隙处,可控开关使得该第二寄生贴片和所述地板连接。当可控开关导通时,该可控开关所在的可控寄生单元中的第二寄生贴片与地板连通,该可控寄生单元中的第二寄生贴片起引向器的作用,使辐射方向图向该第二寄生贴片方向偏转;当可控开关断开,该可控开关所在的可控寄生单元中的第二寄生贴片与地板断开连接,该可控寄生单元中的第二寄生贴片起反射器作用,使辐射方向图偏离该寄生贴片,从而形成多种辐射模式。
每个可控寄生单元中的可控开关数量可为4个,该4个可控开关均匀分布于圆形缝隙上。该可控开关可为二极管。
微带馈电网络(700)端口一(701)和端口二(702)分别接受馈电,当第二寄生贴片(201)(301)下方地板(600)上的可控开关(203)(303)导通时,该第二寄生贴片(201)(301)作为引向器,对辐射方向图起到引向作用;而当第二寄生贴片(201)(301)下方的开关断开时,该第二寄生贴片(201)(301)作为反射器,对辐射方向图起反射作用。
改变可控开关(203)(303)的导通状态,可以得到天线的四种工作模式,图4为端口(701)接受馈电时,天线在四种工作模式下的辐射方向图;图5为端口(702)接受馈电时,天线在四种工作模式下的辐射方向图。
工作模式一:可控开关(203)导通,第二寄生贴片(201)作为引向器,可控开关(303)断开,第二寄生贴片(301)作反射器。如图5、图6所示,辐射方向图向第二寄生贴片(201)偏转;
工作模式二:可控开关(203),可控开关(303)都导通,如图5、图6所示,方向图不偏转,波束宽度较窄,增益高;
工作模式三:可控开关303导通,第二寄生贴片(301)作为引向器,可控开关(203)断开,第二寄生贴片(201)作反射器。如图5、图6所示,辐射方向图向第二寄生贴片(301)偏转;
工作模式四:可控开关(203),可控开关(303)都断开,如图5、图6所示,辐射方向图不偏转,但波束宽度较宽,增益相对较小。
地板(600)位于第一介质基片(400)的第二表面和第二介质基片(500)的第一表面之间,地板(600)承担镜像电流的作用。第一介质基片(400)和第二介质基片(500)都有两面,即第一表面和第二表面,第二表面为与第一表面不同的表面。
该微带馈电网络(700)位于第二介质基片(500)的第二表面,微带馈电网络(700)采用缝隙耦合方式馈电,在地板(600)上开两个相互垂直的“H”形缝隙(800),使两端口激励起极化方向相互垂直的、且与波束扫描平面呈45°的两种线极化波。馈电结构利用多节阻抗匹配变换器加开路短截线来改善天线匹配,最终使各辐射模式能同时达到良好匹配,而且都具备宽带特性。
可选的,在本发明实施例中的微带馈电网络(700)中,采用一个三节阻抗匹配变换结构(900),使得天线在工作模式一、工作模式二、工作模式三下的端口反射系数在3.4GHz-3.6GHz下满足小于-10dB(分贝);模式四由于两个寄生贴片都断开,可加入开路短截线以实现。
本发明实施例中的贴片天线,辐射单元(100)和第二寄生贴片(201)(301)为八边形,克服了正方形贴片多级匹配较为困难,菱形贴片间耦合较弱,辐射方向图偏转效果不好的问题,优化了辐射方向图偏转效果,使得馈电网络简单,天线口径较小,减少了差损,同时能够使得贴片天线同时具有双极化和可重构的特性。此外,该八变形的结构还可以保证天线在垂直水平极化、正负45度极化两种方式下,空间形成的方向图是E面/H面对称的;该八变形结构还可 以保证在天线进行方向图调节的时候,E面/H面同时进行波束变化。
进一步的,该天线还包括该贴片天线装置外的其它必要天线配件,如天线罩等。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以权利要求的保护范围为准。

Claims (4)

  1. 一种贴片天线,包括贴片天线装置,其特征在于,所述贴片天线装置包括:
    至少一个辐射单元,至少一个可控寄生单元,地板,第一介质基片,第二介质基片,微带馈电网络;
    所述至少一个辐射单元为八边形;
    所述至少一个可控寄生单元包括第二寄生贴片,至少一个可控开关和至少一个短路孔,所述第二寄生贴片为八边形;
    所述至少一个辐射单元和所述第二寄生贴片位于所述第一介质基片的第一表面,所述至少一个辐射单元、所述第二寄生贴片之间平行对齐,所述地板位于所述第一介质基片的第二表面和所述第二介质基片的第一表面之间;所述地板上设有两个H形缝隙,所述两个H形缝隙之间相互垂直;
    所述微带馈电网络位于所述第二介质基片的第二表面,所述微带馈电网络包括端口。
  2. 根据权利要求1所述的贴片天线,其特征在于,所述至少一个辐射单元包括激励贴片、介质层和第一寄生贴片,所述激励贴片的第二表面与所述第一介质基片的第一表面贴合,所述激励贴片的第一表面和所述介质层的第二表面贴合,所述介质层的第一表面和所述第一寄生贴片贴合。
  3. 根据权利要求1或2所述的贴片天线,其特征在于,所述短路孔穿过所述第一介质基片,所述短路孔通过所述可控开关和所述地板连接。
  4. 根据权利要求1至3任一所述的贴片天线,其特征在于,所述可控开关导通时,通过所述可控开关与所述地板连接的所述第二寄生贴片与所述地板之间导通。
PCT/CN2015/089808 2014-09-19 2015-09-16 一种贴片天线 WO2016041504A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410483175.2 2014-09-19
CN201410483175.2A CN105490018B (zh) 2014-09-19 2014-09-19 一种贴片天线

Publications (1)

Publication Number Publication Date
WO2016041504A1 true WO2016041504A1 (zh) 2016-03-24

Family

ID=55532562

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/089808 WO2016041504A1 (zh) 2014-09-19 2015-09-16 一种贴片天线

Country Status (2)

Country Link
CN (1) CN105490018B (zh)
WO (1) WO2016041504A1 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107978869A (zh) * 2017-12-14 2018-05-01 南京航空航天大学 一种宽带多极化重构缝隙天线及其极化方法
CN109244662A (zh) * 2018-09-06 2019-01-18 广东博纬通信科技有限公司 一种运用于5g系统的天线辐射单元
CN110504534A (zh) * 2019-08-07 2019-11-26 深圳市航天华拓科技有限公司 一种双极化天线
CN111613890A (zh) * 2020-06-11 2020-09-01 维沃移动通信有限公司 天线结构及电子设备
CN114336027A (zh) * 2021-12-30 2022-04-12 中国人民解放军空军工程大学 一种加载寄生耦合馈电网络的宽带天线
CN114552203A (zh) * 2022-03-04 2022-05-27 中国电子科技集团公司第三十八研究所 一种寄生贴片式天线罩及其拆装装置
CN115458945A (zh) * 2022-10-31 2022-12-09 汕头大学 一种槽激励的极化和方向图分集介质谐振器天线

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN206806508U (zh) * 2017-04-07 2017-12-26 深圳市景程信息科技有限公司 可重构的双极化宽频天线
CN109411886B (zh) * 2018-11-29 2023-11-24 华南理工大学 宽频带高增益的方向图可重构天线及通信设备
CN109786952B (zh) * 2018-12-29 2021-03-23 普联技术有限公司 一种天线和天线设备
CN111628274B (zh) * 2019-02-27 2022-10-04 华为技术有限公司 天线装置及电子设备
WO2020173292A1 (zh) 2019-02-27 2020-09-03 华为技术有限公司 天线装置及电子设备
TWI845937B (zh) * 2022-05-07 2024-06-21 富智康國際股份有限公司 天線饋入耦合模組及電子裝置
CN116231279B (zh) * 2022-12-28 2024-04-19 深圳市思讯通信技术有限公司 一种面向可穿戴设备的紧凑型波束可重构天线

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1599133A (zh) * 2003-09-16 2005-03-23 电子科技大学 方向图可重构的类八木微带天线
CN101834349A (zh) * 2010-05-05 2010-09-15 电子科技大学 一种方向图可重构微带贴片天线
US20130249751A1 (en) * 2012-01-24 2013-09-26 David J. Legare Dynamically reconfigurable feed network for multi-element planar array antenna

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201590485U (zh) * 2009-11-10 2010-09-22 广东盛路通信科技股份有限公司 整体式双极化超薄高效微带天线
CN203242752U (zh) * 2013-04-11 2013-10-16 佛山市三水区步步通电讯器材厂 整体式双极化高效微带天线

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1599133A (zh) * 2003-09-16 2005-03-23 电子科技大学 方向图可重构的类八木微带天线
CN101834349A (zh) * 2010-05-05 2010-09-15 电子科技大学 一种方向图可重构微带贴片天线
US20130249751A1 (en) * 2012-01-24 2013-09-26 David J. Legare Dynamically reconfigurable feed network for multi-element planar array antenna

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107978869A (zh) * 2017-12-14 2018-05-01 南京航空航天大学 一种宽带多极化重构缝隙天线及其极化方法
CN107978869B (zh) * 2017-12-14 2023-07-25 南京航空航天大学 一种宽带多极化重构缝隙天线及其极化方法
CN109244662A (zh) * 2018-09-06 2019-01-18 广东博纬通信科技有限公司 一种运用于5g系统的天线辐射单元
CN109244662B (zh) * 2018-09-06 2024-05-31 广东博纬通信科技有限公司 一种运用于5g系统的天线辐射单元
CN110504534A (zh) * 2019-08-07 2019-11-26 深圳市航天华拓科技有限公司 一种双极化天线
CN111613890A (zh) * 2020-06-11 2020-09-01 维沃移动通信有限公司 天线结构及电子设备
CN114336027A (zh) * 2021-12-30 2022-04-12 中国人民解放军空军工程大学 一种加载寄生耦合馈电网络的宽带天线
CN114336027B (zh) * 2021-12-30 2023-07-21 中国人民解放军空军工程大学 一种加载寄生耦合馈电网络的宽带天线
CN114552203A (zh) * 2022-03-04 2022-05-27 中国电子科技集团公司第三十八研究所 一种寄生贴片式天线罩及其拆装装置
CN114552203B (zh) * 2022-03-04 2024-06-04 中国电子科技集团公司第三十八研究所 一种寄生贴片式天线罩及其拆装装置
CN115458945A (zh) * 2022-10-31 2022-12-09 汕头大学 一种槽激励的极化和方向图分集介质谐振器天线
CN115458945B (zh) * 2022-10-31 2023-02-28 汕头大学 一种槽激励的极化和方向图分集介质谐振器天线

Also Published As

Publication number Publication date
CN105490018A (zh) 2016-04-13
CN105490018B (zh) 2019-01-25

Similar Documents

Publication Publication Date Title
WO2016041504A1 (zh) 一种贴片天线
US8854270B2 (en) Hybrid multi-antenna system and wireless communication apparatus using the same
US6480167B2 (en) Flat panel array antenna
KR20170027678A (ko) 이중 대역 이중 편파 안테나 모듈 구조
US20140062822A1 (en) Dual frequency coupling feed antenna and adjustable wave beam module using the antenna
JP2020506631A (ja) 新型のスペクトル拡散広帯域基地局アンテナ
CN105720361A (zh) 一种基于人工磁导体结构的宽带低剖面双极化全向天线
KR20130090770A (ko) 절연 특성을 가진 지향성 안테나
US11374331B1 (en) Base station antenna including Fabrey-Perot cavities
CN109742515B (zh) 一种用于移动终端的毫米波圆极化天线
US11239544B2 (en) Base station antenna and multiband base station antenna
WO2019090927A1 (zh) 天线单元及天线阵列
Lin et al. A novel beam-switching array antenna using series-fed slots with PIN diodes
Moknache et al. A switched-beam linearly-polarized transmitarray antenna for V-band backhaul applications
CN111670546A (zh) 一种用于无线通信设备的天线系统
JPH0865038A (ja) プリントアンテナ
Lee et al. Dual-polarized dual-band antenna-on-display using via-less and single-layer topology for mmWave wireless scenarios
KR101988172B1 (ko) 이중 원형 편파 안테나 장치
CN109860997A (zh) 一种光控极化可重构单极子天线
Pham et al. V-band beam-switching transmitarray antenna for 5G MIMO channel sounding
CN112201964B (zh) 一种反射传输阵列天线及其构建方法
JP4611401B2 (ja) アンテナ装置
TWI539675B (zh) Dual Directional Multiple Input Multiple Output Antenna Units and Their Arrays
TW202315223A (zh) 天線單元及陣列天線
Dogan A wide band, dual polarized patch antenna for wide angle scanning phased arrays

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15841312

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15841312

Country of ref document: EP

Kind code of ref document: A1