WO2022173174A1 - 사용 후 배터리 등급 분류 공정 및 이를 제공하는 시스템 - Google Patents

사용 후 배터리 등급 분류 공정 및 이를 제공하는 시스템 Download PDF

Info

Publication number
WO2022173174A1
WO2022173174A1 PCT/KR2022/001820 KR2022001820W WO2022173174A1 WO 2022173174 A1 WO2022173174 A1 WO 2022173174A1 KR 2022001820 W KR2022001820 W KR 2022001820W WO 2022173174 A1 WO2022173174 A1 WO 2022173174A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
information
battery pack
module
item
Prior art date
Application number
PCT/KR2022/001820
Other languages
English (en)
French (fr)
Inventor
구회진
김유탁
권오준
유어현
정수안
차동민
이상아
유재승
Original Assignee
한국전지연구조합
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국전지연구조합 filed Critical 한국전지연구조합
Publication of WO2022173174A1 publication Critical patent/WO2022173174A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/10Services
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0046Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electric energy storage systems, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0092Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption with use of redundant elements for safety purposes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/16Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to battery ageing, e.g. to the number of charging cycles or the state of health [SoH]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/40Business processes related to the transportation industry
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/54Reclaiming serviceable parts of waste accumulators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • B60Y2200/91Electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles

Definitions

  • the present invention is a technology for the reuse and remanufacturing of batteries used as electric vehicles or energy storage devices, and more specifically, performs an appearance inspection, electrical insulation inspection, performance and remaining life inspection of the collected battery after use, and based on this,
  • By classifying the reuse/remanufacture grade it relates to a spent battery classification process and a system for providing the same, which can quickly, efficiently, and easily reuse/remanufacture a used battery.
  • a secondary battery refers to a battery that can be repeatedly charged and discharged, and is converted between chemical energy and electrical energy through an electrochemical reaction in which an internal active material is oxidized and reduced by charging and discharging. use the phenomenon.
  • An electric vehicle or a hybrid electric vehicle uses electric energy of such a secondary battery as a power source in an electric driving mode.
  • a secondary battery may lose its function as a secondary battery due to abnormal use such as overdischarge or overcharge, but the ability to store electrical energy even when used normally decreases gradually according to the number of charging and discharging.
  • the battery when the battery is reduced to about 80% or less of its initial capacity, it is replaced with operational problems such as reduced mileage, reduced charging speed, and increased safety risk.
  • These replacement batteries have 80% capacity, so they can be reused as an electric vehicle battery again depending on the remaining lifespan or battery health status, or for purposes other than electric vehicle batteries through repurposing.
  • the battery after use, the battery contains some toxic substances, and a fire or explosion due to overcharging or overdischarging, or electric shock to workers due to insulation breakdown, etc., may occur, so a safe disassembly and treatment system is required.
  • an object of the present invention is to secure the safety of reuse/remanufacturing work by performing cleaning and electrical inspection when a battery used as an electric vehicle or an energy storage device is collected, and then disassembling the collected battery into module units for appearance Inspection, performance and remaining life test are performed, and the residual value of each item subject to conversion to which the battery can be applied after use is evaluated, and the reuse/remanufacturing grade is classified based on this to quickly, efficiently and safely use the battery. It relates to a spent battery grading process that can be reused and remanufactured and a system for providing the same.
  • the after-use battery classification process and the system for providing the same transmits the stored used battery pack and the module information in which the used battery pack is disassembled through the inspector terminal After receiving and using a unique identification code for each battery pack and module, storing information about the battery pack and module after use in response to the given unique identification code, inputting battery pack information after use, and electric battery pack after use Inspection, cleaning the battery pack after use, inspecting the battery pack appearance after use, disassembling the battery pack module unit after use, inspecting the battery module appearance after use, evaluating the residual value of the battery module after use, classifying the battery module after use and inspecting the battery module after use It is characterized in that the process information including the work instruction information and the parameter input information is generated in the form of at least one user interface in the first step so that the process can proceed step by step and outputted to the inspector terminal.
  • the battery module is charged and discharged after use according to a preset charge/discharge rate for each item subject to change of use to which the battery module can be applied. It is characterized by estimating the lifespan and calculating the expected lifespan for each item through the estimated remaining lifespan.
  • the residual value evaluation is calculated for each item subject to conversion to which the battery module can be applied after use. characterized in that
  • the classification server assigns a unique identification code to each of the used battery pack and the module in which the used battery pack is disassembled, and creates a new database in response to the assigned unique identification code, and the used battery module It is characterized in that the database is created so that the unique identification code of the battery pack has a sub-index structure at a lower level than the unique identification code of the battery pack after use.
  • the present invention wears a grade classification process for reuse and remanufacturing of batteries after use, and includes electrical inspection, cleaning, external inspection, battery pack disassembly, module exterior inspection, residual value evaluation, classification, SOC control, and self-discharge inspection steps.
  • the after-use battery treatment process can be efficiently configured, and an efficient management system for the used battery can be established.
  • FIG. 1 is a process diagram showing a battery class classification process after use according to an embodiment of the present invention.
  • FIG. 2 is a graph for explaining the prediction of the battery module life expectancy after use according to an embodiment of the present invention.
  • 3 is a graph for explaining life expectancy prediction for each battery module item after use according to an embodiment of the present invention.
  • FIG. 4 is a configuration diagram illustrating a system for providing classification of a battery after use according to an embodiment of the present invention.
  • 5 and 6 are exemplary views showing an example of a user interface screen according to an embodiment of the present invention.
  • first, second, etc. may be used to describe various elements, but the elements should not be limited by the terms. The above terms are used only for the purpose of distinguishing one component from another. For example, without departing from the scope of the present invention, a first component may be referred to as a second component, and similarly, the second component may also be referred to as a first component.
  • FIG. 1 is a process diagram illustrating a battery classification process after use according to an embodiment of the present invention.
  • batteries that have been used as electric vehicles or energy storage devices and then have expired the performance warranty period guaranteed by the battery manufacturer are obliged to go through the process of disposal or recycling for safety reasons. Therefore, it is discharged and collected.
  • the battery must be discharged even when the vehicle is scrapped due to a vehicle accident or has to be replaced due to deterioration/defectiveness of the battery.
  • the battery used as an electric vehicle or energy storage device has 80% capacity, so it can be reused as an electric vehicle or energy storage device, or the battery pack can be reused as an electric vehicle or energy storage device depending on the performance state or state of health (SOH) of the battery.
  • SOH state of health
  • the present invention re-uses a battery used as an electric vehicle or an energy storage device as an electric vehicle or an energy storage device, or re-manufactures it to be applied to an application for another purpose, the received battery pack information input step (S1), the battery after use Pack electrical inspection step (S2), battery pack cleaning step after use (S3), battery pack appearance inspection step after use (S4), battery pack module unit disassembly step after use (S5), battery module appearance inspection step after use (S6) ), is configured to include a battery module residual value evaluation step (S7) after use, a battery module class classification step (S8) after use, and a battery module inspection step (S9) after use.
  • the post-used battery pack information input step information on the collected, stored and used battery pack is transmitted to the classifying server through the inspector's terminal and stored.
  • the information of the battery pack after use may be input from the inspector through the inspector's terminal, or may be information collected from an electric vehicle manufacturer server, a battery manufacturer server, an electric vehicle repair company server, and the like.
  • the rating server assigns a unique identification code to the battery pack after use, and creates a new database for managing battery pack information after use in response to the assigned unique identification code.
  • the unique identification code given to the battery pack after use may be newly generated by letters, numbers, symbols, and any combination other than the previously assigned identification code,
  • a unique serial number product serial number
  • the information of the battery pack after use according to the present invention includes not only unique information about the battery pack and module, including model name, product specification, manufacturing information, electrical characteristic information, electrochemical characteristic information, usage conditions, environmental conditions, etc., but also battery pack and Display and instructions for modules, information related to history of use in electric vehicles or energy storage devices, BMS data information, assembly drawings, configuration and uses, main parts, mileage of electric vehicles, user manuals, specifications, and safety-related configurations Information on parts, reasons for battery discontinuation, date of discontinuation, dismantling manual, and storage and handling conditions information before use are included.
  • the classification server determines that the battery pack has been discontinued for reasons related to severe environmental exposure, vehicle collision, flooding, fire, etc., the subsequent process (step ), and after that use, the battery pack can be classified as a recycling grade.
  • the post-use battery pack electrical inspection step it is checked whether the insulation state of the battery is not destroyed after use through an insulation resistance measuring device or a withstand voltage measuring device, and the result is transmitted to the classifying server through the inspector terminal and stored. .
  • the resistance is measured and if it is 1.0 M ⁇ or more, the insulation performance is determined to be normal, or after use through a withstand voltage meter
  • a withstand voltage of 3600Vdc to the positive and negative terminals of the battery pack for 1 minute and measuring the leakage current during and after the test, if the leakage current value is less than 10mA, the insulation performance is judged to be normal.
  • the rating server classifies the used battery pack into a recycling grade without performing subsequent processes (steps). Through this, fire or explosion, which may occur when the battery is inspected after use with the insulation broken, and an electric shock accident by the user, etc. can be prevented in advance.
  • the foreign material removal device may include an air jet nozzle for jetting air, and an air compressor that is connected to the air jet nozzle and is an air generating means for supplying air to the air jet nozzle.
  • an insulation cleaner containing insulation may be used to remove foreign substances adsorbed to the outside of the battery pack after use.
  • a drying process for drying the insulation cleaning agent remaining after the washing process treatment may be additionally performed.
  • the electrical connection to the battery is completely cut off after use for safety of electrical work before cleaning the battery after use.
  • the overall appearance state inspection result of the battery pack and accessories after use is transmitted and stored to the rating classification server through the inspector terminal.
  • the external condition inspection items include a state that is inflated due to internal pressure, a state of electrolyte leakage, a state of gas ejection, a state where there is no visible electrolyte ejection but an unpleasant odor, and an external shock. It includes a state where the case is damaged or deformed by a dent, a state in which the terminal part is damaged, and can include damage and change of wiring, insulator, high voltage bus, insulation system and PCB, and a state check of the cooling system.
  • the dimensions related to the shape of the battery pack after use may be measured through mechanical dimension measurement means, and the image shape of the inside and outside of the battery pack after use is acquired through an image diagnosis device and inspected. You may.
  • Means for measuring mechanical dimensions may include a micrometer, vernier calipers, a height gauge, and the like, and the image diagnosis apparatus includes a machine vision camera, a thermal imaging camera, and an X-ray ( X-ray), computed tomography, and the like.
  • the image diagnosis apparatus includes a machine vision camera, a thermal imaging camera, and an X-ray ( X-ray), computed tomography, and the like.
  • the classification server may classify the used battery pack as a recycling grade if it does not meet a preset standard based on the overall appearance condition inspection information of the battery pack and accessories after use.
  • the battery After use, the battery can be used as it is without disassembling or disassembling the battery pack after use when reused.
  • battery packs for electric vehicles have different shapes and mounting positions depending on vehicle grades, sizes, driving characteristics, etc.
  • the application of products for reuse is limited, and design restrictions exist for capacity expansion.
  • the defect rate is very high, and there is a problem that a sudden death phenomenon in which a reused battery abruptly ends its life occurs frequently.
  • the process is shortened by disassembling the battery module unit directly without performing a separate performance test in the battery pack unit after use, so that reuse and remanufacturing of the battery after use is performed only in the module unit. .
  • the performance test of the battery pack after use was performed through the basic test of the collected battery pack state after use, and then the performance test was performed by disassembling each module again by module unit.
  • the collected battery By disassembling the battery pack immediately after use and disassembling it into module units without separately performing residual value evaluation on the pack, there is an advantage in that efficiency increases and cost reduction through process shortening increases.
  • each battery module is given a unique identification code.
  • a unique identification code may be generated by letters, numbers, symbols, and any combination other than the previously assigned identification code, and may include a random function.
  • it is composed of barcode, QR code, and RF-ID type tags so that the inspector can easily recognize the unique identification code of the battery module after disassembly and use.
  • the classification server creates a database so that the unique identification code of the disassembled and used battery module has a sub-index structure that is at a lower level than the after-use battery pack unique identification code. That is, when recognizing the unique identification code of the battery pack after use, information of a plurality of used battery modules disassembled from the battery pack after use is provided hierarchically, and the unique identification code of the battery module after use is provided. If recognized, information on which battery module after use has been disassembled from the battery pack and information on multiple used battery modules that have been disassembled from the battery pack after the same use in addition to the battery module can be hierarchically identified do.
  • the result of disassembling the battery module after use is transmitted to the rating classification server through the inspector terminal and stored.
  • the external condition inspection items include a state that is inflated due to internal pressure, a state of electrolyte leakage, a state of gas ejection, a state where there is no visible electrolyte ejection but an unpleasant odor, and an external shock. It includes a state in which the case is damaged or deformed by a dent, a state in which the terminal part is damaged, and may include a state check of damage and change of wiring, insulator, high voltage bus, insulation system and PCB.
  • the dimensions related to the shape of the battery module after use can be measured through a mechanical dimension measuring means, and the image shape of the inside and outside of the battery module after use is acquired through an image diagnosis device and inspected. You may.
  • Means for measuring mechanical dimensions may include a micrometer, vernier calipers, a height gauge, and the like, and the image diagnosis apparatus includes a machine vision camera, a thermal imaging camera, and an X-ray ( X-ray), computed tomography, and the like.
  • the image diagnosis apparatus includes a machine vision camera, a thermal imaging camera, and an X-ray ( X-ray), computed tomography, and the like.
  • the classification server may classify the used battery module as a recycling grade if it does not meet the preset criteria based on the overall appearance condition inspection information of the battery module and accessories after use.
  • Residual life is a parameter that quantitatively indicates a change in capacity that occurs as a battery is used, and may be expressed as a percentage of a full charge capacity to an actual capacity.
  • the full charge capacity represents the maximum amount of charge that the battery can actually accommodate, and is distinguished from the design capacity of a fixed value in that it gradually decreases as the number of times of charging and discharging of the battery increases.
  • SOH remaining life
  • a method of estimating the remaining life using the internal resistance and temperature of the battery a method of estimating the remaining life through a full charge/discharge test, and the like.
  • the battery module is completely discharged from a fully charged state to a fully discharged state, or the remaining capacity is calculated while fully charged from the fully discharged state, and the calculated remaining capacity is compared with the standard charging capacity of the battery module after use.
  • the remaining life of the battery module was estimated.
  • the method for estimating the remaining life of the battery after use is not limited thereto, and may be estimated through various methods.
  • the state of charge (SOC) of the battery module after use is a ratio of the charge capacity to the total capacity of the battery, and may be calculated based on the charge current input to the battery after use and the discharge current output from the battery. .
  • the remaining capacity of the battery is estimated using a current integration method for integrating the charging current and the discharging current.
  • the method for estimating the remaining capacity of the battery is not limited thereto, and may be estimated through various methods.
  • the C-Rate which is the charge/discharge rate for each item subject to change of use for reuse/remanufacturing of the battery module after use
  • the remaining lifespan is estimated for each item to which the battery module can be applied after use by charging and discharging each battery module after use according to the charge/discharge rate corresponding to the item to which the battery module can be applied.
  • the charging and discharging device is charged through reuse and remanufacturing. Estimate the remaining life by charging and discharging by setting the discharge rate to 2 C-Rate.
  • the charge/discharge rate is set to 1 C-Rate to perform charging and discharging.
  • C-Rate Applications 2C ESS for frequency control, ESS for wind power, uninterruptible power supply 1C Battery for electric cart, battery for electric two-wheeled vehicle, ESS for emergency generator, ESS for peak reduction 1/3C ESS for solar power, battery for electric vehicle 0.2C Home ESS, battery for electric wheelchair 0.1C Power bank, battery for electricity and electricity, solar street light battery, electronic product battery
  • the charge/discharge rate (C-Rate) is a word for predicting or indicating the setting of the current value under various usage conditions and the possible use time of the secondary battery during charging and discharging of the secondary battery, which is expressed in the following [Equation 1] ] can be expressed as
  • the full charge capacity (rated capacity) of the battery module is 1000 mAh (Apere-hour)
  • the charging current is 100 mA
  • the charge/discharge rate is 0.1C. If the charging current is 1000 mA, the charge/discharge rate is 1C, and the charging current is If it is 2000mA, the charge/discharge rate is 2C.
  • the operation of fully charging and completely discharging the battery module after use is repeatedly performed through the charging/discharging device to estimate the remaining life (SOH) up to a preset battery capacity reduction rate point.
  • the expected lifespan of the battery module after use is estimated by predicting the change in the remaining lifespan with respect to the total capacity of the battery based on the estimated degree of change in the remaining lifespan.
  • a cycling life method is expressed as a method of expressing the battery life expectancy. Cycling life is a method of expressing the number of charge/discharge cycles of a battery under a given condition. If the cycling lifespan of a specific battery is given as an integer value, the remaining count (ie, lifespan) may be determined through the difference between the corresponding value and the number of cycles already used.
  • a cycle refers to one cycle of fully charging and fully discharging the battery module after use (or fully discharging and fully charging the battery module), and the life expectancy is how long the battery module can be used in the future.
  • As an indicator indicating whether there is a battery module it indicates how many times the battery module can be fully charged and completely discharged according to the capacity of the battery module after use.
  • 80% of the battery capacity reduction rate which is the point at which the electric vehicle or energy storage device is replaced, is set as the reference point, and the remaining life of the battery module after use becomes the reference point (80% of the capacity reduction rate).
  • the operation of charging and completely discharging is repeatedly performed, but the remaining life is estimated in units of 100 cycles, and the remaining life of the entire battery after 80% of the capacity reduction rate based on the change (slope of the curve) estimated according to the number of cycles. Estimate the lifespan Through this, it is possible to infer the total lifespan without measuring the cycle life by charging and discharging the entire capacity of the battery after use.
  • the life expectancy is calculated by calculating the number of cycles from 80% of the battery capacity reduction rate, which is the time when an electric vehicle or energy storage device is replaced, to 70% of the capacity reduction rate, which is the battery replacement time for products applied for reuse and remanufacturing. do.
  • FIG. 2 is a graph for explaining the prediction of life expectancy of a battery module after use according to an embodiment of the present invention.
  • the operation of fully charging and fully discharging the battery module after use at 1/3 C-Rate which is the standard charge/discharge rate for reuse and remanufacturing, is repeatedly performed, and the battery is the point at which the electric vehicle or energy storage device is replaced.
  • the remaining life was estimated in units of 100 cycles up to the point where the capacity reduction rate was 80%.
  • the remaining life after 80% of the capacity reduction rate is estimated.
  • the estimated remaining life of the entire battery can be predicted by applying a linear equation, etc. to the slope of the curve connecting the estimated remaining life values up to 100 to 80% of the capacity reduction.
  • the life expectancy is calculated as the number of cycles from the point at which 80% of the battery capacity reduction rate, which is the point at which electric vehicles or energy storage devices are replaced, to 70% of the capacity reduction rate, the point at which the battery is replaced for products applied for reuse and remanufacturing. .
  • the battery module is 70% of the capacity reduction rate at the end of the battery life applied by reuse and remanufacturing. Since the number of cycles is 7000 Cycles, it can be estimated that the life expectancy of the battery module will be 3200 Cycles in the future when the battery module is reused and remanufactured after use.
  • the life expectancy of each item is predicted by charging and discharging by setting different charging/discharging rates for each item subject to change of use for reuse and remanufacturing of the battery module after use.
  • FIG. 3 is a graph for explaining the prediction of the life expectancy of each item subject to change of use of the battery module after use according to an embodiment of the present invention. Charging and discharging were repeatedly performed by setting each differently to C.
  • charging/discharging is performed by setting different charging/discharging rates for each item subject to change of use for reuse/remanufacturing of the battery module after use, and charging and discharging are performed respectively, and the battery, which is the point at which the electric vehicle or energy storage device is replaced
  • the remaining life of the entire battery after the capacity reduction rate of 80% is estimated based on the change in the estimated remaining life.
  • the estimated remaining life of the entire battery can be predicted by applying a linear equation to the slope of the curve connecting the estimated remaining life values up to a capacity reduction rate of 100 to 80%.
  • the battery module is reused as an uninterruptible power supply (2C-Rate). Since the number of cycles at 70% is 5000 Cycles, it can be estimated that the life expectancy of the battery module is 1000 Cycles in the future when it is reused as an uninterruptible power supply device of the battery module.
  • the classification server applies the previously stored battery price for each item or product to the calculated life expectancy by item (by charge/discharge rate), and can calculate the residual value for each item or product subject to conversion to which the battery module can be applied after use. have.
  • the class of the battery module after use is classified based on the previously calculated life expectancy by item and/or residual value evaluation result for each item or product.
  • each grade is assigned based on the lifespan and/or residual value evaluation results, more subdivided and systematic classification is possible. For example, even if it is a battery module after the same use, it is grade C when used as an uninterruptible power supply device, grade B when used as a battery for electric carts, grade A when used as a home ESS, and the use for which the battery module is applicable after use Each grade may be assigned to each item subject to conversion.
  • the leakage current and cell balancing abnormality inside the battery module are checked after use through the charger and/or voltage meter, and according to the check result, the target SOC of the battery module after use is determined. Charge or discharge accordingly.
  • the battery module after use, is charged at room temperature with a constant current of 1/3C-Rate to the charging termination voltage, stored for 24 hours, and then opened after 5 minutes, 1 hour, and 24 hours after full charge
  • the voltage (OCV) is measured, and the value measured in each step is compared with a preset reference value, and if the reference value is exceeded, it is reclassified as a recycling grade.
  • the target SOC of the battery module after use according to an embodiment of the present invention may be set to 30%.
  • the rating classification server calculates the remaining life of the battery module after use, information on items subject to conversion to which the battery is applicable after use, remaining life by item, life expectancy by item, residual value evaluation by item
  • the result and battery rating result are stored in the database, and the rating classification result is reprocessed in the form of a test report and transmitted to the inspector's terminal. Accordingly, it is supported to judge the reuse and remanufacturing value of the battery module after use from various angles, and it is possible to reuse the battery module after use in a field with high performance value and economic benefit.
  • the present invention wears a grade classification process for reuse and remanufacturing of batteries after use, and includes electrical inspection, cleaning, external inspection, battery pack disassembly, module exterior inspection, residual value evaluation, grading, and inspection steps.
  • the treatment process for reuse and remanufacturing of the used battery can be efficiently configured, and an efficient management system for the used battery can be established.
  • FIG. 4 is a block diagram illustrating a system for providing classification of a battery after use according to an embodiment of the present invention.
  • the after-use battery rating providing system receives various test results and state information generated in the battery rating process after use and transmits it to the rating server at least one or more A rating classification server ( 200) is included.
  • the inspector terminal 100 classifies the test results and status information for the battery after use input through the inspector in real time. It can be transmitted to the server 200, and the rating classification server 200 stores the information on the used battery transmitted through the inspector terminal 100, and based on this, the residual value evaluation and rating classification for the battery module after use and transmits it to the inspector terminal 100 .
  • the class classification server 200 is connected to a plurality of electric vehicle manufacturer servers (not shown), battery manufacturer servers (not shown) or electric vehicle repairer servers (not shown) to provide information about battery packs and modules after use. Build and update it.
  • Information on battery packs and modules after use includes not only unique information about battery packs and modules, including model name, product specifications, manufacturing information, electrical property information, electrochemical property information, usage conditions, environmental conditions, etc., but also battery packs and modules indications and guidelines for electric vehicles or energy storage devices, information related to history of use in electric vehicles or energy storage devices, BMS data information, assembly drawings, configuration and uses, main parts, mileage of electric vehicles, user manuals, specifications, and safety-related components information on battery life, reasons for discontinuing use of the battery, date of discontinuation of use, dismantling manual, and storage and handling conditions prior to change of use are included.
  • the classification server 200 assigns a new unique identification code to the battery pack or module after use, when new after-use battery pack or module information is transmitted through the inspector terminal 100, and assigns a new used battery pack or module
  • the inspector recognizes the unique identification code through the inspector terminal 100 and transmits the identification code to the classification server. After use, information related to the battery pack and module may be provided.
  • the rating classification server 200 assigns a new unique identification code to the battery pack after use, and uses it when a new battery pack is received and new use battery pack information is received from the inspector terminal. Then, a new database is created for battery pack information management.
  • the received battery pack information input step (S1) the post-use battery pack electrical inspection step (S2), the post-use battery pack washing step (S3), and after use Battery pack appearance inspection step (S4), battery pack module unit disassembly step after use (S5), battery module appearance inspection step after use (S6), battery module residual value evaluation step after use (S7), battery module classification after use
  • process information including work instruction information and parameter input information is generated in the form of at least one user interface and transmitted to the inspector terminal.
  • the inspector performs the work according to the sequential work instruction information provided for each step from the receipt of the battery to the shipment after use through the inspector terminal 100, and displays the inspection result and state information on the battery after use through the user interface.
  • the inspector terminal 100 is a computer device capable of wired/wireless communication with the classification server 200 , and includes a desktop, a tablet PC, a notebook computer, a mobile communication terminal, a personal digital assistant (PDA), and the like.
  • the inspector terminal may include a scanner or RF reader to recognize a barcode, QR code or RF-ID type tag attached to the exterior of the battery pack or module after use.
  • the inspector terminal 100 accesses the rating classification server 200 on the Internet web through an Internet connection and inputs or receives information related to the battery pack and module after use corresponding to the unique identification code entered by the inspector.
  • a battery rating classification dedicated application is installed in the inspector terminal 100 , and the rating classification server 200 is accessed through the dedicated application to input or receive battery pack and module related information after use.
  • Such an inspector terminal 100 accesses the rating classification server through an internet site or a dedicated application, and authentication for access can be accessed through an ID / password, and can also be accessed after automatic authentication using the identification data of the inspector terminal. , it is not limited thereto, and can be adopted and changed in various ways.
  • the rating classification server 200 receives and stores various test results and state information about the battery after use from the inspector terminal 100, and based on this, the residual value evaluation and rating classification of the battery module after use and transmits it to the inspector terminal 100 .
  • the classification server includes a battery pack information input step (S1), a battery pack electrical inspection step after use (S2), a battery pack cleaning step (S3) after use, a battery pack appearance inspection step after use (S4), and use After disassembling the battery pack module unit (S5), after using the battery module appearance inspection step (S6), after using the battery module residual value evaluation step (S7), after using the battery module classification step (S8), and after using the battery module inspection Process information including the step-by-step work instruction information and parameter input information proceeding to step S9 is generated in the form of at least one user interface and transmitted to the inspector terminal.
  • the classification server 200 is configured to include a communication unit 210 , a control unit 230 , and a database 220 .
  • the communication unit 210 provides a network interface for performing wired/wireless communication with the inspector terminal 100 and a plurality of electric vehicle manufacturer servers, battery manufacturer servers, or electric vehicle repair company servers.
  • the database 220 responds to unique identification information by receiving various inspection results and status information generated in the process (S1 to S9) that proceeds in the order of the battery module inspection step after use from the battery pack wearing after use from the inspector terminal 100 make and save
  • information on battery packs and modules after use received from a plurality of electric vehicle manufacturer servers, battery manufacturer servers, or electric vehicle repair company servers is built and updated.
  • Information on battery packs and modules after use includes not only unique information about battery packs and modules, including model name, product specifications, manufacturing information, electrical property information, electrochemical property information, usage conditions, environmental conditions, etc., but also battery packs and modules indications and guidelines for electric vehicles or energy storage devices, information related to history of use in electric vehicles or energy storage devices, BMS data information, assembly drawings, configuration and uses, main parts, mileage of electric vehicles, user manuals, specifications, and safety-related components information about battery life, reasons for discontinuing use of the battery, date of discontinuation, dismantling manual, and storage and handling conditions information before changing use.
  • the database 220 stores the inspector's unique information, including the inspector's unique ID, password, terminal information, name, department, etc. can be done
  • the database 220 stores information on items subject to change of use applicable to each model of the battery module after use, and a C-Rate for each item so that the life expectancy and residual value can be calculated for each item subject to application.
  • the set value and the battery price for economic value judgment are stored.
  • the battery price for determining the economic value may be the battery unit price according to the number of cycles.
  • the applicable use conversion target item for each model of the battery module after use is a device that uses a secondary battery as a power source and refers to a device to which the battery module can be applied after use, for example, an uninterruptible power supply (UPS). ), a battery that supplies electricity to electronic products (stationary battery), a home or industrial energy storage device, or an energy storage device for renewable energy.
  • UPS uninterruptible power supply
  • model A of the battery module for electric vehicles may have a problem that the size or shape is not suitable for use as an uninterruptible power supply device. Inappropriate problems may arise.
  • information on items subject to change of use applicable to each model of the battery module after use is stored in the database in advance, so that life expectancy estimation and residual value evaluation can be performed only for items to which the battery module is applicable after use.
  • the control unit 230 allocates a new unique identification code to the battery pack after use and provides a new method for managing battery pack information after use. Create a database.
  • the received battery pack information input step (S1), the battery pack electrical inspection step after use (S2), the battery pack cleaning step after use (S3), the battery pack appearance inspection step after use (S4), the battery pack module after use Unit disassembly step (S5), battery module appearance inspection step after use (S6), residual value evaluation step of battery module after use (S7), battery module classification step after use (S8), and battery module inspection step after use (S9) In order for the work to proceed sequentially, the work instruction information for each process is read, and a user interface including a screen for inputting inspection results and status information for each stage is created and transmitted to the inspector terminal.
  • 5 and 6 are exemplary views showing examples of a user interface screen according to an embodiment of the present invention.
  • the control unit can input information of the battery pack after use, as shown in FIG. 5 .
  • the user interface screen including the ‘Create battery pack information after new use’ menu and the menu that allows you to ‘enter or scan a unique identification code’ so that you can read the information of the battery pack or module after already registered use is displayed on the inspector’s terminal. displayed on the screen.
  • the control unit when the 'new battery pack information generation after new use' menu is selected from the inspector, the control unit generates a new battery pack unique identification code after use, and then, as shown in FIG. 6 , the received battery pack information input step (S1) ), battery pack electrical inspection step after use (S2), battery pack cleaning step after use (S3), battery pack appearance inspection step after use (S4), battery pack module disassembly step after use (S5), battery module after use Work for each process so that the work can proceed in the order of appearance inspection step (S6), post-use battery module residual value evaluation step (S7), post-use battery module classification step (S8), and post-use battery module inspection step (S9)
  • a user interface including instruction information and a screen for inputting inspection results and status information for each stage is generated and transmitted to the inspector terminal.
  • the inspector performs the work according to the sequential work instruction information provided for each step from storage to the inspection stage, and records the inspection result and status information on the battery after use.
  • control unit when the control unit receives a unique identification code from the inspector terminal, it provides information on the battery after use corresponding to the received unique identification code to be read. At this time, if the process for reuse/remanufacturing of the used battery corresponding to the received unique identification code is still in progress, the inspector is The screen can be displayed so that it can be recognized. Accordingly, the inspector can read information on the steps already completed for the after-use battery corresponding to the unique identification code entered by the inspector, and can proceed with the work on the subsequent process steps.
  • control unit uses a screen for inputting work instruction information for each process and inspection results and status information for each process based on the information about the battery pack and module after use, which is pre-stored in the database. It can be created differently for each model.
  • control unit receives various test results and status information about the battery after use from the inspector terminal and stores it in the database, and at the same time classifies the grade of the battery after use that is not included in the preset reference value into a recycling grade, and after normal use If it is determined as a battery, the remaining lifespan is estimated based on the residual capacity calculated for each battery module after use, and the life expectancy is estimated through this to classify the reuse/remanufacturing grade for the battery.
  • each expected lifespan is calculated for each item of the product to which the battery is applied after use, and a previously stored battery price for each item or product is applied to the calculated life expectancy, so that the use of the battery module after use is changed.
  • the residual value is calculated for each target item or product.
  • the control unit determines the remaining life of the battery module after use, information on items and/or products subject to conversion to which the battery is applicable after use, remaining life by item, life expectancy by item, residual value evaluation result by item, and battery rating result for each item.
  • a user interface capable of outputting or reprocessing at least one information included in the form of a test report is generated and transmitted to the inspector's terminal.
  • the present invention computerizes the process management of battery reuse and remanufacturing after use, which has been done manually, so that the inspector can check the data generated in each step from the storage (S1) to the inspection (S9) step in real time.
  • the verification it is possible to systematically manage the processing history information generated throughout the entire cycle from warehousing to shipment of the battery after use, and to manage the information required in the battery reuse/remanufacturing process after use.
  • the present invention can be used extensively in methods of classifying batteries after use.

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Transportation (AREA)
  • Tourism & Hospitality (AREA)
  • Mechanical Engineering (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Primary Health Care (AREA)
  • Marketing (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • Health & Medical Sciences (AREA)
  • Economics (AREA)
  • General Health & Medical Sciences (AREA)
  • Human Resources & Organizations (AREA)
  • Physics & Mathematics (AREA)
  • Strategic Management (AREA)
  • Electrochemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Secondary Cells (AREA)
  • Operations Research (AREA)

Abstract

본 발명은 전기차 또는 에너지저장장치로 사용된 배터리의 재사용·재제조를 위한 기술로서, 더욱 상세하게는 전기차 또는 에너지저장장치로 사용되었던 배터리가 수거되어 입고되면 세척 및 전기 검사를 수행하여 재사용·재제조 작업의 안전성을 확보한 후, 수거된 사용 후 배터리를 모듈단위로 분해하여 외관 검사, 성능 및 잔존수명 검사를 수행하고, 해당 사용 후 배터리가 적용될 수 있는 용도 전환 대상 품목별로 잔존가치를 평가하여, 이를 기반으로 재사용·재제조 등급을 분류함으로써, 사용 후 배터리를 신속하고 효율적이며 안전하게 재사용·재제조할 수 있는 사용 후 배터리 등급 분류 공정 및 이를 제공하는 시스템에 관한 것이다.

Description

사용 후 배터리 등급 분류 공정 및 이를 제공하는 시스템
본 발명은 전기차 또는 에너지저장장치로 사용된 배터리의 재사용·재제조를 위한 기술로서, 더욱 상세하게는 수거된 사용 후 배터리의 외관 검사, 전기 절연 검사, 성능 및 잔존수명 검사를 수행하고 이를 기반으로 재사용·재제조 등급을 분류함으로써, 사용 후 배터리를 신속하고 효율적이며 용이하게 재사용·재제조할 수 있는 사용 후 배터리 등급 분류 공정 및 이를 제공하는 시스템에 관한 것이다.
일반적으로 2차전지(secondary battery)는 충전 및 방전을 반복하여 사용할 수 있는 전지를 말하며, 충전 및 방전에 의하여 내부 활성 물질이 산화, 환원되는 전기 화학적 반응을 통해 화학 에너지와 전기 에너지 간의 변환이 이루어지는 현상을 이용한다. 전기자동차 또는 하이브리드 전기 자동차는 전기 구동 모드에서 이와 같은 2차전지의 전기 에너지를 동력원으로 사용한다.
2차전지는 과방전 또는 과충전 등 비정상적인 사용에 의해 2차전지로서의 기능을 상실하기도 하지만, 정상적으로 사용되는 경우에도 전기 에너지를 저장하는 능력은 충전 및 방전횟수에 따라 점진적으로 감소한다. 전기자동차의 경우, 배터리가 초기 용량대비 대략 80% 이하로 감소하면 주행거리 감소, 충전 속도 저하 및 안전성 위험 증가 등 운행상의 문제로 교체된다.
이러한 교체 대상 배터리는 80% 수준의 용량을 보유하고 있어, 잔존수명이나 배터리 건강상태 등에 따라 다시 전기차용 배터리로 재사용(Reuse) 될 수 있으며, 또는 재제조(Repurposing)를 통해 전기차용 배터리 이외의 목적으로 활용될 수 있다. 한국등록특허 제2043714호에 기재된 바와 같이, 전기자동차에서 교체된(탈거한) 배터리를 분해하여 다시 조합하는 재제조를 통해 골프카, 카트용 배터리로 사용하거나, 가정용, 산업용 ESS(에너지 저장장치) 및 신재생에너지 연계형 ESS로 사용이 가능하다.
그러나, 사용 후 배터리를 재사용·재제조하기 위해서는 사용 후 배터리의 건강상태 및 잔존용량을 정확히 분석해야할 뿐만 아니라, 전기차 또는 에너지저장장치용 배터리 이외의 목적으로 활용되는 경우, 사용 후 배터리의 가치 및 경제성을 충분히 확보할 수 있도록 용도 전환의 목적에 맞춰 사용 후 배터리의 잔존가치를 정확하게 평가할 필요가 있다.
또한, 사용 후 배터리는 일부 유독물질이 포함되어 있으며, 과충전 또는 과방전으로 인한 화재나 폭발, 절연 파괴로 인한 작업자의 감전 사고 등이 일어날 수 있어, 안전한 분해 및 처리 체계가 필요하다.
하지만, 사용 후 배터리는 제조사별로 형태, 크기, 구성물질 등이 각각 다양하여 재사용·재제조를 위한 복잡성이 높기 때문에, 현재까지 사용 후 배터리를 재사용·재제조하기 위한 체계적인 처리 공정 및 관리 방법은 존재하고 있지 않으며, 모두 수작업으로 이루어지고 있다.
또한, 전기자동차의 보증이 급증함에 따라 사용 후 배터리의 배출량도 곧 급격하게 늘어날 것으로 예상되는 바, 이에 대한 사용 후 배터리의 잔존가치평가 체계 구축 및 사용 후 배터리 재사용·재제조 처리 방법과 기준 마련이 시급한 실정이다.
이에 따라, 수거된 사용 후 배터리의 입고부터 출고까지 전주기에 걸쳐 사용 후 배터리의 처리 이력을 효율적으로 관리하고, 사용 후 배터리 처리에 요구되는 정보를 통합 관리 할 수 있는 기술개발이 시급한 실정이다.
본 발명은 상기한 종래 기술에 따른 문제점을 해결하기 위한 것이다. 즉, 본 발명의 목적은 전기차 또는 에너지저장장치로 사용되었던 배터리가 수거되면 세척 및 전기 검사를 수행하여 재사용·재제조 작업의 안전성을 확보한 후, 수거된 사용 후 배터리를 모듈단위로 분해하여 외관 검사, 성능 및 잔존수명 검사를 수행하고, 해당 사용 후 배터리가 적용될 수 있는 용도 전환 대상 품목별로 잔존가치를 평가하여 이를 기반으로 재사용·재제조 등급을 분류함으로써, 사용 후 배터리를 신속하고 효율적이며 안전하게 재사용·재제조할 수 있는 사용 후 배터리 등급 분류 공정 및 이를 제공하는 시스템에 관한 것이다.
상기의 목적을 달성하기 위한 기술적 사상으로서 본 발명에 따른 사용 후 배터리 등급 분류 공정 및 이를 제공하는 시스템은, 입고된 사용 후 배터리 팩 및 상기 사용 후 배터리 팩이 분해된 모듈 정보를 검수자 단말기를 통해 전송받아 사용 후 배터리 팩 및 모듈에 대한 고유 식별 코드를 각각 부여하고, 부여된 고유 식별 코드에 대응하여 사용 후 배터리 팩 및 모듈에 대한 정보를 저장하며, 사용 후 배터리 팩 정보 입력, 사용 후 배터리 팩 전기 검사, 사용 후 배터리 팩 세척, 사용 후 배터리 팩 외관 검사, 사용 후 배터리 팩 모듈 단위 분해, 사용 후 배터리 모듈 외관 검사, 사용 후 배터리 모듈 잔존 가치 평가, 사용 후 배터리 모듈 등급 분류 및 사용 후 배터리 모듈 검수 단계로 공정이 진행될 수 있도록, 상기 제 단계별로 작업 지시 정보 및 파라미터 입력 정보를 포함하는 공정 정보를 적어도 하나 이상의 유저 인터페이스 형태로 생성하여 검수자 단말기로 출력하는 것을 특징으로 한다.
또한, 검수자 단말기로부터 입력된 파라미터 정보 중, 사용 후 배터리 모듈이 적용될 수 있는 용도 전환 대상 품목별로 미리 설정된 충방전율에 따라 사용 후 배터리 모듈의 충방전을 각각 수행하여 산출된 품목별 잔존용량을 바탕으로 잔존수명을 추정하고, 추정된 잔존수명을 통해 품목별 기대수명을 산출하는 것을 특징으로 한다.
상기 추정된 잔존수명을 통해 품목별 기대수명을 산출함에 있어서는, 상기 산출된 기대수명에 미리 저장된 품목별 경제 가치 기준을 적용하여, 해당 사용 후 배터리 모듈이 적용될 수 있는 용도 전환 대상 품목별로 잔존 가치 평가를 산출하는 것을 특징으로 한다.
더불어, 상기 등급 분류 서버는, 사용 후 배터리 팩 및 상기 사용 후 배터리 팩이 분해된 모듈 각각에 고유 식별 코드를 부여하고, 부여된 고유 식별 코드에 대응하여 신규 데이터베이스를 생성하며, 상기 사용후 배터리 모듈의 고유 식별 코드가 사용 후 배터리 팩 고유 식별 코드보다 하위레벨인 서브 인덱스 구조를 갖도록 데이터베이스를 생성하는 것을 특징으로 한다.
본 발명은 사용 후 배터리의 재사용·재재조를 위한 등급 분류 공정을 입고, 전기검사, 세척, 외관검사, 배터리 팩 분해, 모듈 외관 검사, 잔존가치평가, 등급분류, SOC 조절 및 자가방전검사 단계로 체계화시킴으로써, 사용 후 배터리 처리 공정을 효율적으로 구성하여, 사용 후 배터리에 대한 효율적인 관리체계를 구축할 수 있다.
또한, 모두 동일한 C-Rate를 기반으로 한 충방전 검사를 통해 잔존용량에 따라 단순히 A~D 등급으로 매겨진 종래 기술과 달리, 본 발명에서는 사용 후 배터리가 적용 가능한 용도 전환 대상 품목별로 산출된 기대수명 및/또는 잔존가치평가 결과를 기반으로 각각의 등급이 부여됨에 따라 더욱 세분화되고 체계화 된 등급분류가 가능하다.
더불어, 기존의 수작업으로 이루어지던 사용 후 배터리 재사용·재제조의 공정관리를 전산화하여, 각 공정별 검사 및 평가에 관련한 자료를 실시간으로 확인 가능하도록 지원함으로써, 사용 후 배터리의 재사용·재제조에 대한 처리 공정 용이성을 확보하고, 검수자의 작업 안전성을 확보할 수 있다.
이와 함께, 입고부터 출고까지 전주기에 걸쳐 사용 후 배터리의 처리이력 정보를 체계적으로 관리하고, 사용 후 배터리 처리에 요구되는 정보를 통합 관리 할 수 있다.
도 1은 본 발명의 일실시예에 따른 사용 후 배터리 등급 분류 공정을 나타내는 공정도.
도 2는 본 발명의 일실시예에 따른 사용 후 배터리 모듈 기대수명 예측을 설명하기 위한 그래프.
도 3은 본 발명의 일실시예에 따른 사용 후 배터리 모듈 품목별 기대수명 예측을 설명하기 위한 그래프.
도 4는 본 발명의 일실시예에 따른 사용 후 배터리 등급 분류 제공 시스템을 도시한 구성도.
도 5 및 도 6은 본 발명의 일실시예에 따른 유저 인터페이스 화면의 예를 나타낸 예시도.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 본문에 상세하게 설명하고자 한다.
그러나, 이는 본 발명을 특정한 개시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 제1, 제2 등의 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성 요소들은 상기 용어들에 의해 한정되어서는 안된다. 상기 용어들은 하나의 구성 요소를 다른 구성 요소로부터 구별하는 목적으로만 사용된다. 예를 들어, 본 발명의 권리범위를 벗어나지 않으면서 제1 구성 요소는 제2 구성 요소로 명명될 수 있고, 유사하게 제2 구성 요소도 제1 구성 요소로 명명될 수 있다.
본 출원에서 사용한 용어는 단지 특정한 실시예들을 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 명세서에 기재된 특징, 숫자, 단계, 동작, 구성 요소, 부분품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성 요소, 부분품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
이하, 본 발명의 바람직한 실시예를 첨부 도면에 의거하여 상세하게 설명하기로 한다.
도 1은 본 발명의 일실시예에 따른 사용 후 배터리 등급 분류 공정을 나타내는 공정도이다.
먼저 전기차 또는 에너지저장장치로 사용되었다가 배터리 제조업체(또는 자동차 제작·판매업체, 또는 에너지저장장치 제작·판매업체)에서 보증하는 성능 보증기간이 다한 배터리는 안전상 폐차 또는 재활용 절차를 거쳐야할 의무가 있기 때문에 배출되어 수거된다. 물론 차량사고로 인해 폐차를 하면서, 혹은 배터리의 기능저하/불량 등으로 인해 교체해야 하는 경우에도 배터리를 배출해야 하므로, 배터리의 성능 보증기간을 충족하지 못한 경우에도 배출되어 수거된다.
이러한 전기차 또는 에너지저장장치로 사용되었던 배터리는 80% 수준의 용량을 보유하고 있어, 배터리의 성능상태나 잔존수명(SOH : State of Health) 등에 따라 다시 전기차 또는 에너지저장장치로 재사용되거나, 배터리팩을 분해하여 다시 조합하는 재제조를 통해 골프카 배터리, 카트용 배터리, 가정용 ESS 등 원래 목적과는 다른 용도로 활용될 수 있다.
본 발명은 전기차 또는 에너지저장장치로 사용된 배터리를 다시 전기차 또는 에너지저장장치로 재사용하거나, 다른 목적의 어플리케이션에 적용될 수 있도록 재제조하기 위하여, 입고된 배터리 팩 정보 입력단계(S1), 사용 후 배터리 팩 전기 검사 단계(S2), 사용 후 배터리 팩 세척 단계(S3), 사용 후 배터리 팩 외관검사 단계(S4), 사용 후 배터리 팩 모듈단위 분해 단계(S5), 사용 후 배터리 모듈 외관 검사 단계(S6), 사용 후 배터리 모듈 잔존 가치 평가 단계(S7), 사용 후 배터리 모듈 등급 분류 단계(S8) 및 사용 후 배터리 모듈 검수 단계(S9)를 포함하여 구성된다.
1. 사용 후 배터리 팩 정보 입력 단계(S1)
본 발명에 따른 사용 후 배터리 팩 정보 입력단계에서는, 수거되어 입고된 사용 후 배터리 팩의 정보를 검수자 단말기를 통해 등급 분류 서버로 전송하여 저장한다.
이러한 사용 후 배터리 팩의 정보는 검수자로부터 검수자 단말기를 통해 입력되거나, 전기자동차 제조자 서버, 배터리 제조자 서버, 전기자동차 수리업자 서버 등으로부터 수집된 정보일 수 있다.
등급 분류 서버는 검수자 단말기를 통해 새로운 사용 후 배터리 팩 정보가 전송되는 경우, 사용 후 배터리 팩에 고유 식별 코드를 부여하고, 부여된 고유 식별 코드에 대응하여 사용 후 배터리 팩 정보 관리를 위한 신규 데이터베이스를 생성한다.
여기서, 사용 후 배터리 팩에 부여되는 고유 식별 코드는 이전 부여된 식별코드를 제외한 문자, 숫자, 기호 및 임의의 조합에 의해 새롭게 생성될 수 있으며, 기존의 전기자동차 제조자 또는 배터리 제조자가 부여한 배터리 팩의 고유 시리얼 넘버(제품 일련번호)를 고유 식별 코드로 사용할 수도 있다.
본 발명에 따른 사용 후 배터리 팩의 정보는 모델명, 제품규격, 제조정보, 전기적 특성 정보, 전기화학적 특성 정보, 사용 조건, 환경 조건 등을 포함한 배터리 팩 및 모듈에 대한 고유정보 뿐만 아니라, 배터리 팩 및 모듈에 대한 표시와 지침, 전기자동차 또는 에너지저장장치에서의 사용 이력과 관련된 정보, BMS 데이터 정보, 조립도, 구성과 용도, 주요 부품, 전기자동차의 주행 거리, 사용자 메뉴얼, 제원, 안전과 관련된 구성 부품에 대한 정보, 배터리 사용 중단 사유, 사용 중단 일자, 해체 매뉴얼, 용도변경 전 보관 및 취급 조건 정보들을 포함한다.
또한, 등급 분류 서버는 사용 후 배터리 팩의 정보에 기반하여, 심각한 환경의 노출, 차량 충돌, 침수, 화재 등과 관련된 사유로 사용이 중단된 사용 후 배터리 팩으로 판단되는 경우, 이후 진행되는 공정(단계)을 수행하지 않고 해당 사용 후 배터리 팩을 재활용 등급으로 분류시킬 수 있다.
2. 사용 후 배터리 팩 전기 검사 단계(S2)
본 발명에 따른 사용 후 배터리 팩 전기 검사 단계에서는, 절연 저항 측정기 또는 내전압 측정기를 통해 사용 후 배터리의 절연상태가 파괴되지 않았는지 확인하고, 그 결과를 검수자 단말기를 통해 등급 분류 서버로 전송하여 저장한다.
본 발명의 실시예에서는 절연 저항 측정기를 통해 사용 후 배터리 팩에 전압을 500Vdc로 1분 동안 인가한 후, 저항을 측정하여 1.0MΩ 이상인 경우 절연성능이 정상인 것으로 판단하며, 또는 내전압 측정기를 통해 사용후 배터리 팩의 양극단자와 음극단자에 내전압을 3600Vdc로 1분 동안 지속적으로 인가하여 시험 도중 및 시험 후에 누설전류값을 측정함으로써, 누설전류값이 10mA 미만일 경우 절연성능이 정상인 것으로 판단한다.
등급분류 서버는 절연 상태 검사 결과에 따라, 절연 상태가 불량인 사용 후 배터리 팩으로 판단되는 경우, 이후 진행되는 공정(단계)을 수행하지 않고 해당 사용 후 배터리 팩을 재활용 등급으로 분류시킨다. 이를 통해, 절연상태가 파괴된 사용 후 배터리를 검사할 경우 발생할 수 있는 화재나 폭발, 사용자의 감전 사고 등이 사전에 방지될 수 있다.
3. 사용 후 배터리 팩 세척 단계(S3)
본 발명에 따른 사용 후 배터리 팩 세척 단계에서는, 이물질 제거 장치를 통해 사용 후 배터리 팩에 존재하는 오염물질을 제거한다.
본 발명에 따른 이물질 제거 장치는 에어를 분사시키기 위한 에어분사노즐과, 에어분사노즐과 연결되어 에어분사노즐로 에어를 공급하기 위한 에어발생수단인 에어콤프레셔로 구성될 수 있다. 또한, 필요에 따라 절연제가 들어간 절연세정제를 이용하여 사용 후 배터리 팩 외부에 흡착된 외부 이물질을 제거할 수도 있다. 더불어, 세척 공정 처리 후 잔존하는 절연세정제를 건조시키기 위한 건조 공정이 추가로 진행될 수도 있다.
사용 후 배터리 팩 세척 단계에서는, 사용 후 배터리의 세척에 앞서 전기적 작업 안전성을 위해, 사용 후 배터리에 대한 전기적 연결을 완전히 차단한다. 일실시예로, 사용 후 배터리에 대한 단자를 차단하고, 안전 플러그를 제거 등을 실시한 후 5분 이상의 안정화 시간을 가진 후 세척이 진행되는 것이 바람직하다.
4. 사용 후 배터리 팩 외관검사 단계(S4)
본 발명에 따른 사용 후 배터리 팩 외관검사 단계에서는, 사용 후 배터리 팩 및 부속품의 전반적인 외관상태 검사 결과를 검수자 단말기를 통해 등급 분류 서버로 전송하여 저장한다.
이러한 외관 검사는 검수자의 육안으로 수행될 수 있으며, 외관상태 검사 항목으로는 내부 압력으로 부풀어 오른 상태, 전해질이 누출된 상태, 가스 분출 상태, 가시적으로 전해질 분출은 없지만 불쾌한 냄새가 나는 상태, 외부 충격에 의해 케이스가 파손되거나 변형되어 찌그러진 상태, 단자 부위가 손상된 상태를 포함하며, 배선, 절연체, 고전압 버스, 절연계통 및 PCB 손상 및 변경과 냉각 시스템의 상태 점검을 포함할 수 있다.
또한, 외관검사 단계에서는 필요에 따라 기구적 치수 측정수단을 통해 사용 후 배터리 팩의 형상에 관련한 치수를 측정할 수도 있으며, 이미지 진단 장치를 통해 사용 후 배터리 팩 내·외부의 이미지 형상을 획득하여 검사할 수도 있다.
본 발명에 따른 기구적 치수 측정 수단은 마이크로미터(micrometer), 버니어 캘리퍼스(vernier calipers), 높이 측정기(Heitht gauge) 등을 포함할 수 있으며, 이미지 진단 장치는 머신 비전 카메라, 열화상 카메라, 엑스레이(X-Ray), 컴퓨터 단층 촬영장치(Computed Tomography) 등을 포함할 수 있다.
등급 분류 서버는 사용 후 배터리 팩 및 부속품의 전반적인 외관상태 검사 정보에 기반하여, 미리 설정된 기준에 부합되지 않는 경우, 해당 사용 후 배터리 팩을 재활용 등급으로 분류시킬 수 있다.
5. 사용 후 배터리 팩 모듈단위 분해 단계(S5)
사용 후 배터리는 재사용 시 사용 후 배터리 팩을 분해나 해체 과정없이 그대로 사용 할 수 있다. 그러나, 전기차용 배터리 팩은 자동차 등급, 크기, 주행 특성 등에 따라 배터리 팩의 모양과 탑재 위치가 천차만별이기 때문에 재사용 되기 위한 제품의 적용이 제한적이고, 용량확대를 위해서는 설계적인 제약이 존재한다. 또한 배터리 모듈 또는 셀 단위에서의 불량상태를 파악하고 조치하는 것이 어려워 불량률이 매우 높아져, 재사용 된 배터리가 갑작스럽게 수명을 종료하는 서든데스(sudden death)현상이 빈번하게 발생하는 문제점이 있다.
이에 반해, 사용 후 배터리를 최소단위인 셀 단위로 분해하는 경우, 분해 작업이 아직까지 전적으로 수작업으로 이루어질 수 밖에 없는 관계로 추가 가공시간이 길어지고 많은 비용이 소요되며, 안전 확보를 위한 까다로운 작업환경이 필요한 단점이 있다. 더불어, 배터리 셀 단위에서의 재목적화는 소요공정이 많아지고 비용이 높아 경제성이 낮은 문제점이 있다.
이에 따라, 본 발명에서는 사용 후 배터리 팩 단위에서 별도의 성능검사를 수행하지 않고 바로 배터리 모듈단위로 분해를 수행함으로써, 모듈 단위에서만 사용 후 배터리의 재사용·재제조가 수행되도록 진행하여 공정을 단축시킨다.
즉, 종래에는 수거된 사용 후 배터리 팩 상태의 기초검사를 통해 사용 후 배터리 팩의 성능검사를 수행한 후, 다시 모듈 단위로 해체하여 각각의 모듈별 성능검사를 수행하였으나, 본 발명에서는 수거된 배터리 팩에 대한 잔존가치평가를 별도로 수행하지 않고, 사용 후 배터리 팩을 바로 해체하여 모듈 단위로 분해함으로써, 공정 단축을 통한 효율성 증가 및 비용 절감이 커지는 장점이 있다.
분해된 사용 후 배터리 모듈에는 각각 고유 식별 코드가 부여된다. 이러한 고유 식별 코드는 이전 부여된 식별코드를 제외한 문자, 숫자, 기호 및 임의의 조합에 의해 생성될 수 있고, 랜덤함수를 포함할 수 있다. 또한, 검수자가 분해된 사용 후 배터리 모듈의 고유 식별 코드를 쉽게 인식할 수 있도록 바코드, QR코드, RF-ID 형태의 태그로 구성되어 사용 후 배터리 모듈의 외관에 부착되어 관리될 수도 있다.
더불어, 등급 분류 서버는 분해된 사용 후 배터리 모듈의 고유 식별 코드가 사용 후 배터리 팩 고유 식별 코드 보다 하위레벨인 서브 인덱스 구조를 갖도록 데이터베이스를 생성한다. 즉, 사용 후 배터리 팩의 고유 식별 코드를 인식하는 경우, 해당 사용 후 배터리 팩에서 분해된 다수의 사용 후 배터리 모듈들의 정보를 계층적으로 파악할 수 있도록 제공하며, 사용 후 배터리 모듈의 고유 식별 코드를 인식하는 경우, 해당 사용 후 배터리 모듈이 어떠한 사용 후 배터리 팩에서 분해되었는지에 대한 정보와 해당 배터리 모듈 이외에 동일한 사용 후 배터리 팩에서 분해된 다수의 사용 후 배터리 모듈 들의 정보를 계층적으로 파악할 수 있도록 제공한다.
6. 사용 후 배터리 모듈 외관 검사 단계(S6)
본 발명에 따른 사용 후 배터리 모듈 외관검사 단계에서는, 사용 후 배터리 팩에서 분해된 사용 후 배터리 모듈의 전반적인 외관상태 검사 결과를 검수자 단말기를 통해 등급 분류 서버로 전송하여 저장한다.
이러한 외관 검사는 검수자의 육안으로 수행될 수 있으며, 외관상태 검사 항목으로는 내부 압력으로 부풀어 오른 상태, 전해질이 누출된 상태, 가스 분출 상태, 가시적으로 전해질 분출은 없지만 불쾌한 냄새가 나는 상태, 외부 충격에 의해 케이스가 파손되거나 변형되어 찌그러진 상태, 단자 부위가 손상된 상태를 포함하며, 배선, 절연체, 고전압 버스, 절연계통 및 PCB 손상 및 변경의 상태 점검을 포함할 수 있다.
또한, 외관검사 단계에서는 필요에 따라 기구적 치수 측정수단을 통해 사용 후 배터리 모듈의 형상에 관련한 치수를 측정할 수도 있으며, 이미지 진단 장치를 통해 사용 후 배터리 모듈 내·외부의 이미지 형상을 획득하여 검사할 수도 있다.
본 발명에 따른 기구적 치수 측정 수단은 마이크로미터(micrometer), 버니어 캘리퍼스(vernier calipers), 높이 측정기(Heitht gauge) 등을 포함할 수 있으며, 이미지 진단 장치는 머신 비전 카메라, 열화상 카메라, 엑스레이(X-Ray), 컴퓨터 단층 촬영장치(Computed Tomography) 등을 포함할 수 있다.
등급 분류 서버는 사용 후 배터리 모듈 및 부속품의 전반적인 외관상태 검사 정보에 기반하여, 미리 설정된 기준에 부합되지 않는 경우, 해당 사용 후 배터리 모듈을 재활용 등급으로 분류시킬 수 있다.
7. 사용 후 배터리 모듈 잔존 가치 평가 단계(S7)
본 발명에 따른 사용 후 배터리 모듈 잔존 가치 평가 단계에서는, 충방전 장치 및/또는 교류 임피던스 장치를 통해 사용 후 배터리 모듈을 충방전시키면서 전류, 전압, 내부저항 등을 측정하고, 이러한 결과값들을 등급 분류 서버로 전송하여 해당 배터리 모듈의 잔존수명을 추정하고, 추정된 잔존수명을 기반으로 사용 후 배터리가 적용될 수 있는 용도 전환 대상 품목별로 충·방전 성능에 따른 기대수명을 예측하여, 사용 후 배터리 모듈에 대한 잔존 가치를 평가한다.
잔존수명(SoH)은 배터리가 사용됨에 따라 발생하는 용량의 변화를 정량적으로 나타내주는 파라미터로, 실제 용량에 대한 만충전 용량의 백분율로 표현될 수 있다. 만충전 용량은 배터리가 실제로 수용할 수 있는 최대의 전하량을 나타내는 것으로서, 배터리의 충방전 횟수가 증가함에 따라 점차적으로 낮아진다는 점에서, 고정된 값의 설계 용량과는 구별되는 것이다.
이러한 잔존수명(SOH)을 추정하는 방법은 매우 다양하다. 예를 들어, 배터리의 내부저항과 온도를 이용하여 잔존수명을 추정하는 방법, 완전 충방전 테스트를 통해 잔존수명을 추청하는 방법 등이 존재한다. 본 발명에서는 사용 후 배터리 모듈을 완전 충전 상태에서 완전 방전 상태로 완전 방전시키거나, 완전 방전 상태에서 완전 충전 시키면서 잔존용량을 산출하고, 산출된 잔존용량을 배터리 모듈의 기준 충전 용량과 비교하여 사용 후 배터리 모듈의 잔존수명을 추정하였다. 그러나 사용 후 배터리의 잔존수명을 추정하는 방법은 이에 한정되지 않으며, 다양한 방법을 통해 추정될 수 있다.
여기서, 사용 후 배터리 모듈의 잔존용량(State of Charge, SOC)은 배터리의 전체 용량 대비 충전 용량의 비율로서, 사용후 배터리에 입력되는 충전전류와 배터리로부터 출력되는 방전전류에 기초하여 산출될 수 있다. 본 발명의 실시예에서는 충전 전류와 방전 전류를 적산하는 전류적산법을 이용하여 배터리의 잔존용량을 추정하였으나, 배터리의 잔존용량을 추정 하는 방법 역시 이에 한정되지 않으며, 다양한 방법을 통해 추정될 수 있다.
사용 후 배터리가 재사용·재제조로 적용되는 제품은 제품별로 각기 다른 전력공급능력을 가지며, 이에 따라 제품별로 각각 다른 충방전율(C-Rate)을 가진다. 따라서, 동일한 배터리일지라도 배터리의 잔존수명은 재사용·재제조로 적용되기 위한 제품의 충방전율(C-Rate)에 따라 각각 다르게 나타나며, 잔존수명이 다르게 나타나는 만큼 이를 기반으로 예측되는 기대수명 또한 달라진다.
본 발명에서는 사용 후 배터리가 적용되는 제품의 품목별로 배터리의 기대수명 및 잔존가치를 산출하기 위해, 사용 후 배터리 모듈의 재사용·재제조를 위한 용도 전환 대상 품목별로 충방전율인 씨레이트(C-Rate)가 각각 설정되어 있으며, 사용 후 배터리 모듈이 적용될 수 있는 품목에 해당하는 충방전율에 맞춰 사용 후 배터리 모듈의 충방전을 각각 수행함으로써, 사용 후 배터리 모듈이 적용될 수 있는 품목별로 잔존수명을 추정한다.
예를 들어, 하기의 [표 1]과 같이 사용 후 배터리 모듈이 재사용·재제조를 통해 주파수조절용 ESS, 풍력용 ESS, 무정전 전원 장치(UPS) 중 적어도 하나 이상 적용 가능한 경우, 충방전장치의 충방전율을 2 C-Rate로 설정하여 충방전을 수행함으로써 잔존수명을 추정한다. 또한, 사용 후 배터리 모듈이 전동카트 배터리, 전기이륜차 배터리, 비상발전기용 ESS, 피크저감용 ESS로 적어도 하나 이상 적용 가능한 경우 충방전율을 1 C-Rate로 설정하여 충방전을 수행하며, 태양광용 ESS와 전기차용 배터리로 적용 가능한 경우 1/3 C-Rate, 가정용 ESS, 전동휠체어로 적용 가능한 경우 0.2 C-Rate, 파워뱅크, 전기자전거 배터리, 태양광 가로등, 전자제품 중 적어도 하나 이상 적용 가능한 경우 0.1 C-Rate로 충방전을 수행한다.
C-Rate 적용분야
2C 주파수 조절용 ESS, 풍력용 ESS, 무정전 전원 장치
1C 전동카트용 배터리, 전기이륜차용 배터리, 비상발전기용 ESS, 피크저감용 ESS
1/3C 태양광용 ESS, 전기차용 배터리
0.2C 가정용 ESS, 전동휠체어용 배터리
0.1C 파워뱅크, 전기자전기용 배터리, 태양광 가로등 배터리, 전자제품 배터리
본 발명에 있어서 충방전율(C-Rate)은 2차전지의 충방전시 다양한 사용 조건 하에서의 전류값 설정 및 2차 전지의 가능 사용시간을 예측하거나 표기하기 위한 단어로서, 이는 하기의 [수학식 1]로 나타낼 수 있다.
[수학식 1]
C-Rate(A)=충방전 전류(A)/2차전지의 정격용량
예를 들어, 배터리 모듈의 만충전 용량(정격용량)이 1000mAh(Apere-hour)인 경우, 충전 전류가 100mA이면 충방전율은 0.1C 이고, 충전전류가 1000mA이면 충방전율은 1C이며, 충전 전류가 2000mA이면 충방전율은 2C이다.
본 발명에서는 충방전장치를 통해 사용 후 배터리 모듈을 완전 충전 및 완전 방전시키는 동작을 반복수행하여, 미리 설정된 배터리 용량감소율 지점까지 잔존수명(SOH)을 추정한다. 또한, 추정된 잔존수명의 변화 정도에 기초하여, 배터리 전체 용량에 대한 잔존수명 변화를 예측함으로써 사용 후 배터리 모듈의 기대수명을 추정한다.
본 발명의 실시예에서는 배터리 기대수명을 표현하는 방식으로 사이클링 수명(cycling life) 방식으로 표현하였다. 사이클링 수명은 주어진 조건 하에서 배터리를 충방전 사이클의 횟수로 표현하는 방식이다. 만일 특정 배터리의 사이클링 수명이 정수 값으로 주어진다면, 해당 값과 기존에 이미 사용한 사이클링 횟수의 차이를 통해 남은 횟수(즉, 수명)을 파악할 수 있다.
사이클(Cycle)은 사용 후 배터리의 모듈을 완전 충전하여 완전 방전시키는 동작(또는 완전 방전하여 완전 충전시키는 동작)이 1사이클(1 Cycle)을 의미하며, 기대수명은 배터리 모듈을 앞으로 더 얼마나 사용할 수 있는 지를 알려주는 지표로서, 사용 후 배터리 모듈의 용량에 따라 배터리 모듈이 완전 충전과 완전 방전을 몇 번 수행할 수 있는지를 나타낸다.
본 발명의 실시예에서는 전기차용 또는 에너지저장장치가 교체되는 지점인 배터리 용량감소율의 80%를 기준점으로 설정하여, 사용 후 배터리 모듈의 잔존수명이 기준점(용량감소율의 80%)이 될 때까지 완전 충전 및 완전 방전시키는 동작을 반복수행하되, 100cycle 단위로 잔존수명을 추정하고, Cycle 횟수에 따라 추정된 잔존수명의 변화(곡선의 기울기)에 기초하여 용량감소율의 80% 이후의 배터리 전체에 대한 잔존수명을 추정한다. 이를 통해, 사용 후 배터리의 전체 용량에 대한 충방전을 수행하여 사이클 수명을 측정하지 않고도, 전체 수명을 유추할 수 있게 된다.
또한, 전기차용 또는 에너지저장장치가 교체되는 시점인 배터리 용량감소율의 80%인 시점부터, 재사용·재제조로 적용되는 제품의 배터리 교체 시점인 용량감소율의 70%까지의 사이클 횟수를 기대수명으로 산출한다.
도 2는 본 발명의 일실시예에 따른 사용 후 배터리 모듈의 기대수명 예측을 설명하기 위한 그래프이다.
본 발명의 실시예에서는 재사용·재제조 기준 충방전율인 1/3 C-Rate로 사용 후 배터리 모듈을 완전 충전 및 완전 방전시키는 동작을 반복수행하여, 전기차용 또는 에너지저장장치가 교체되는 지점인 배터리 용량감소율의 80%가 되는 지점까지 100cycle 단위로 잔존수명을 추정하였다.
이어서, 배터리 용량감소율의 80%가 되는 지점까지 추정된 잔존수명 값들을 연결한 곡선의 기울기에 기초하여, 용량감소율의 80% 이후에 대한 잔존수명을 추정한다. 이러한 배터리 전체에 대한 잔존수명 추정은, 용량감소울 100~80%까지 추정된 잔존수명 값들을 연결한 곡선의 기울기에 선형방정식 등을 적용하여 예측가능하다.
이후, 전기차용 또는 에너지저장장치가 교체되는 지점인 배터리 용량감소율의 80%인 지점부터 재사용·재제조로 적용되는 제품의 배터리 교체 시점인 용량감소율의 70%까지의 사이클 횟수를 기대수명으로 산출한다.
즉, 도 2를 참고하면 사용 후 배터리 모듈이 전기차 배터리 수명 종료 시점인 용량감소율 80%에서 3800Cycle을 사용하였다고 가정하였을 경우, 재사용·재제조로 적용된 배터리 수명 종료 시점인 용량 감소율의 70%인 지점에서의 Cycle 수는 7000Cycle임에 따라, 해당 사용 후 배터리 모듈이 재사용·재제조 되는 경우의 기대수명은 앞으로 3200Cycle이라고 추정할 수 있다.
또한, 본 발명에서는 사용 후 배터리 모듈의 재사용·재제조를 위한 용도 전환 대상 품목별로 충방전율을 각각 다르게 설정하여 충방전을 수행함으로써, 품목별로 기대수명을 각각 예측한다.
도 3은 본 발명의 일실시예에 따른 사용 후 배터리 모듈의 용도 전환 대상 품목별 기대수명 예측을 설명하기 위한 그래프로서, 사용 후 배터리 모듈의 충방전율을 2C, 1C, 1/3C, 0.2C, 0.1C로 각각 다르게 설정하여 충방전을 반복 수행하였다.
그래프에 나타난 바와 같이, 동일한 배터리일지라도 충방전율인 C-Rate에 따라 배터리의 잔존수명은 각각 다르게 나타나며, 이에 따라 기대수명도 각각 다르게 산출된다.
이러한 점을 이용하여, 본 발명에서는 사용 후 배터리 모듈의 재사용·재제조를 위한 용도 전환 대상 품목별로 충방전율을 다르게 설정하여 충방전을 각각 수행하고, 전기차용 또는 에너지저장장치가 교체되는 지점인 배터리 용량감소율의 80%가 되는 지점까지 100cycle 단위로 잔존수명을 추정한 후, 추정된 잔존수명의 변화에 기초하여 용량감소율 80% 이후의 배터리 전체에 대한 잔존수명을 추정한다. 이러한 배터리 전체에 대한 잔존수명 추정은, 용량감소율 100~80%까지 추정된 잔존수명 값들을 연결한 곡선의 기울기에 선형방정식 등을 적용하여 예측가능하다.
이후, 전기차용 또는 에너지저장장치가 교체되는 시점인 배터리 용량감소율의 80%인 시점부터 재사용·재제조로 적용되는 제품의 배터리 교체 시점인 용량감소율의 70%까지의 사이클 횟수를 충방전율별 기대수명으로 각각 산출한다.
즉, 도 3을 참고하면 사용 후 배터리 모듈이 전기차 배터리 수명 종료 시점인 80%에서 4000Cycle을 사용하였다고 가정하였을 경우, 무정전 전원 장치(2C-Rate)로 재사용될 경우 재사용 배터리 수명 종료 시점인 용량 감소율의 70%인 시점의 Cycle 수는 5000Cycle임에 따라, 해당 사용 후 배터리 모듈의 무정전 전원 장치로 재사용 되는 경우의 기대수명은 앞으로 1000Cycle이라고 추정할 수 있다.
더불어, 등급 분류 서버는 산출된 품목별(충방전율별) 기대수명에 기 저장된 품목별 또는 제품별 배터리 가격을 적용하여, 해당 사용 후 배터리 모듈이 적용가능한 용도 전환 대상 품목별 또는 제품별로 잔존가치를 산출할 수 있다.
8. 사용 후 배터리 모듈 등급 분류 단계(S8)
본 발명에 따른 사용 후 배터리 모듈 등급 분류 단계에서는, 앞서 산출된 품목별 기대수명 및/또는 품목 또는 제품별 잔존 가치 평가 결과를 기반으로 사용 후 배터리 모듈의 등급을 분류한다.
특히, 모두 동일한 C-Rate를 기반으로 한 충방전 검사를 통해 잔존용량에 따라 단순히 A~D 등급으로 매겨진 종래 기술과 달리, 본 발명에서는 사용 후 배터리 모듈이 적용 가능한 용도 전환 대상 품목별로 산출된 기대수명 및/또는 잔존 가치 평가 결과를 기반으로 각각의 등급이 부여됨에 따라 더욱 세분화되고 체계화 된 등급분류가 가능하다. 예를 들어, 동일한 사용 후 배터리 모듈일지라도 무정전 전원 장치로 사용되는 경우 C등급, 전동 카트용 배터리로 사용되는 경우 B등급, 가정용 ESS로 사용되는 경우 A등급으로, 해당 사용 후 배터리 모듈이 적용 가능한 용도 전환 대상 품목별로 각각의 등급이 부여될 수 있다.
9. 사용 후 배터리 모듈 검수 단계(S9)
본 발명에 따른 사용 후 배터리 모듈 검수 단계에서는, 충방전기 및/또는 전압측정기를 통해 사용 후 배터리 모듈 내부의 누전 전류 및 셀 밸런싱 이상상태를 확인하고, 확인결과에 따라 사용 후 배터리 모듈의 목표 SOC에 맞춰 충전 또는 방전을 수행한다.
본 발명의 일실시예에서는 사용 후 배터리 모듈을 실온에서 1/3C-Rate의 정전류로 충전 종료 전압까지 충전한 후 24시간 동안 보관하고, 이후 완전 충전 후 5분, 1시간, 24시간 뒤의 개방전압(OCV)를 측정하여, 각 단계에서 측정된 값을 미리 설정된 기준값과 비교하여, 기준값을 초과할 경우 재활용 등급으로 재분류한다.
이어서, 기준값을 초과하지 않은 정상 사용 후 배터리 모듈의 경우 사용 후 배터리 모듈의 목표 SOC에 맞춰 충전 또는 방전을 수행한다. 본 발명의 실시예에 따른 사용 후 배터리 모듈의 목표 SOC는 30%로 설정될 수 있다.
이에 반해, 재활용 등급으로 분류된 사용 후 배터리 모듈의 경우 SOC를 0%인 완전 방전 상태로 만들어, 배터리 보관 및 운송을 안전하게 하는 것이 바람직하다.
사용 후 배터리 모듈의 검수까지 완료되면, 등급 분류 서버는 산출된 사용 후 배터리 모듈에 대한 잔존수명, 해당 사용 후 배터리가 적용 가능한 용도 전환 대상 품목 정보, 품목별 잔존수명, 품목별 기대수명, 품목별 잔존가치평가 결과 및 배터리 등급 결과를 데이터베이스에 저장하고, 이러한 등급 분류 결과를 시험성적서 형태로 재가공하여 검수자 단말기로 전송한다. 이에 따라, 사용 후 배터리 모듈의 재사용·재제조 가치를 다각도에서 판단할 수 있도록 지원하며, 해당 사용 후 배터리 모듈을 성능가치 및 경제적 이득이 높은 분야에서 재자원화 시킬 수 있게 된다.
상술한 바와 같이, 본 발명은 사용 후 배터리의 재사용·재재조를 위한 등급 분류 공정을 입고, 전기검사, 세척, 외관검사, 배터리 팩 분해, 모듈 외관 검사, 잔존가치평가, 등급분류, 검수 단계로 체계화시킴으로써, 사용 후 배터리의 재사용·재제조를 위한 처리 공정을 효율적으로 구성하여, 사용 후 배터리에 대한 효율적인 관리체계를 구축할 수 있다.
도 4는 본 발명의 일실시예에 따른 사용 후 배터리 등급 분류 제공 시스템을 나타낸 구성도이다.
도 4에 도시된 바와 같이, 본 발명에 따른 사용 후 배터리 등급 분류 제공 시스템은, 사용 후 배터리의 등급 분류 공정에서 발생되는 각종 검사결과 및 상태정보를 입력받아 등급 분류 서버로 전송하는 적어도 한 개 이상의 검수자 단말기(100)와, 상기 검수자 단말기(100)로부터 사용 후 배터리에 대한 각종 검사결과 및 상태정보를 입력받아 잔존 가치 평가 및 등급 분류를 수행하여 이를 검수자 단말기(100)로 제공하는 등급 분류 서버(200)를 포함하여 구성된다.
이러한 등급 분류 서버(200) 및 검수자 단말기(100)는 유/무선 네트워크 망으로 연결됨에 따라, 검수자 단말기(100)는 검수자를 통해 입력되는 사용 후 배터리에 대한 검사결과 및 상태정보를 실시간으로 등급 분류 서버(200)로 전송할 수 있으며, 등급 분류 서버(200)는 검수자 단말기(100)를 통해 전송되는 사용 후 배터리에 대한 정보를 저장하고, 이를 기반으로 사용 후 배터리 모듈에 대한 잔존 가치 평가 및 등급 분류를 수행하여 검수자 단말기(100)로 전송한다.
또한, 등급 분류 서버(200)는 다수의 전기자동차 제조자 서버(미도시), 배터리 제조자 서버(미도시) 또는 전기자동차 수리업자 서버(미도시)와 연결되어 사용 후 배터리 팩 및 모듈에 대한 정보를 구축하고 이를 업데이트 한다. 사용 후 배터리 팩 및 모듈에 대한 정보는 모델명, 제품규격, 제조정보, 전기적 특성 정보, 전기화학적 특성 정보, 사용 조건, 환경 조건 등을 포함한 배터리 팩 및 모듈에 대한 고유정보 뿐만 아니라, 배터리 팩 및 모듈에 대한 표시와 지침, 전기자동차 또는 에너지저장장치에서의 사용 이력과 관련된 정보, BMS 데이터 정보, 조립도, 구성과 용도, 주요 부품, 전기자동차의 주행 거리, 사용자 메뉴얼, 제원, 안전과 관련된 구성 부품에 대한 정보, 배터리 사용 중단 사유, 사용 중단 일자, 해체 메뉴얼, 용도변경 전 보관 및 취급 조건 정보들을 포함한다.
이에 따라, 등급 분류 서버(200)는 검수자 단말기(100)를 통해 새로운 사용 후 배터리 팩 또는 모듈 정보가 전송되는 경우, 사용 후 배터리 팩 또는 모듈에 새로운 고유 식별 코드를 할당하고, 할당된 사용 후 배터리 팩 또는 모듈의 고유 식별 코드에 대응하여 사용 후 배터리 팩 및 모듈에 대한 정보를 저장함으로써, 검수자는 검수자 단말기(100)를 통해 고유 식별 코드를 인식하여 등급 분류 서버로 전송하는 경우, 해당 식별 코드에 해당하는 사용 후 배터리 팩 및 모듈 관련 정보들을 제공받을 수 있게 된다.
특히, 본 발명에 따른 등급 분류 서버(200)는 새로운 사용 후 배터리 팩이 입고되어, 검수자 단말기로부터 새로운 사용 후 배터리 팩 정보를 입력받는 경우, 사용 후 배터리 팩에 새로운 고유 식별 코드를 할당하고, 사용 후 배터리 팩 정보 관리를 위한 신규 데이터베이스를 생성한다.
또한, 앞서 설명한 본 발명의 사용 후 배터리 등급 분류 공정에 따라, 입고된 배터리 팩 정보 입력단계(S1), 사용 후 배터리 팩 전기 검사 단계(S2), 사용 후 배터리 팩 세척 단계(S3), 사용 후 배터리 팩 외관검사 단계(S4), 사용 후 배터리 팩 모듈단위 분해 단계(S5), 사용 후 배터리 모듈 외관 검사 단계(S6), 사용 후 배터리 모듈 잔존 가치 평가 단계(S7), 사용 후 배터리 모듈 등급 분류 단계(S8) 및 사용 후 배터리 모듈 검수 단계(S9)로 진행되는 제 단계별로, 작업 지시 정보 및 파라미터 입력 정보를 포함하는 공정 정보를 적어도 하나 이상의 유저 인터페이스 형태로 생성하여 검수자 단말기로 전송한다.
이에 따라, 검수자는 검수자 단말기(100)를 통해 사용 후 배터리의 입고부터 출고까지 각 단계별로 제공되는 순차적인 작업 지시 정보에 따라 작업을 수행하고, 사용 후 배터리에 대한 검사 결과 및 상태 정보를 유저 인터페이스 형태로 제공되는 파라미터 입력 항목에 맞춰 입력함으로써, 작업의 용이성을 확보하고, 사용 후 배터리에 대한 정보를 체계적으로 관리 할 수 있게 된다.
검수자 단말기(100)는 상기 등급 분류 서버(200)와 유/무선 통신이 가능한 컴퓨터 장치로서, 데스크탑, 타블렛 PC, 노트북, 이동통신단말기, PDA(Personal Digital Assistant) 등을 포함한다. 또한, 검수자 단말기는 사용 후 배터리 팩 또는 모듈의 외관에 부착된 바코드, QR코드 또는 RF-ID 형태의 태그를 인식하기 위하여 스캐너 또는 RF리더기를 포함할 수 있다.
본 발명에서 검수자 단말기(100)는 인터넷 접속을 통해 인터넷 웹상에서 등급 분류 서버(200)에 접속하여 자신이 입력한 고유 식별 코드에 해당하는 사용 후 배터리 팩 및 모듈 관련 정보들을 입력하거나 제공 받을 수 있으며, 검수자 단말기(100)에 사용 후 배터리 등급 분류 전용 어플리케이션이 인스톨되어 전용 어플리케이션을 통해 등급 분류 서버(200)에 접속하여 사용 후 배터리 팩 및 모듈 관련 정보들을 입력하거나 제공 받을 수 있다.
이러한 검수자 단말기(100)는 인터넷 사이트 또는 전용 어플리케이션을 통해 등급 분류 서버에 접속하는 바, 접속에 대한 인증은 아이디/패스워드를 통하여 접속할 수 있으며, 검수자 단말기의 식별데이터를 이용한 자동인증 후 접속할 수도 있는 것으로, 이에 한정되지 않고 다양하게 채택변경할 수 있다.
본 발명에 따른 등급 분류 서버(200)는 검수자 단말기(100)로부터 사용 후 배터리에 대한 각종 검사결과 및 상태정보를 전송받아 저장하고, 이를 기반으로 사용 후 배터리 모듈에 대한 잔존 가치 평가 및 등급 분류를 수행하여 검수자 단말기(100)로 전송한다. 또한, 등급 분류 서버는 입고된 배터리 팩 정보 입력단계(S1), 사용 후 배터리 팩 전기 검사 단계(S2), 사용 후 배터리 팩 세척 단계(S3), 사용 후 배터리 팩 외관검사 단계(S4), 사용 후 배터리 팩 모듈단위 분해 단계(S5), 사용 후 배터리 모듈 외관 검사 단계(S6), 사용 후 배터리 모듈 잔존 가치 평가 단계(S7), 사용 후 배터리 모듈 등급 분류 단계(S8) 및 사용 후 배터리 모듈 검수 단계(S9)로 진행되는 제 단계별 작업 지시 정보 및 파라미터 입력 정보를 포함하는 공정 정보를 적어도 하나 이상의 유저 인터페이스 형태로 생성하여 검수자 단말기로 전송한다. 이를 위해, 등급 분류 서버(200)는 통신부(210), 제어부(230) 및 데이터베이스(220)를 포함하여 구성된다.
통신부(210)는 검수자 단말기(100) 및 다수의 전기자동차 제조자 서버, 배터리 제조자 서버 또는 전기자동차 수리업자 서버와의 유/무선 통신을 수행하기 위한 네트워크 인터페이스를 제공한다.
데이터베이스(220)는 검수자 단말기(100)로부터 사용 후 배터리 팩 입고부터 사용 후 배터리 모듈 검수 단계 순으로 진행되는 공정(S1~S9)에서 발생하는 각종 검사결과 및 상태정보를 입력받아 고유 식별 정보에 대응시켜 저장한다. 또한, 다수의 전기자동차 제조자 서버, 배터리 제조자 서버 또는 전기자동차 수리업자 서버로부터 전송받은 사용 후 배터리 팩 및 모듈에 대한 정보를 구축하고 이를 업데이트 한다.
사용 후 배터리 팩 및 모듈에 대한 정보는 모델명, 제품규격, 제조정보, 전기적 특성 정보, 전기화학적 특성 정보, 사용 조건, 환경 조건 등을 포함한 배터리 팩 및 모듈에 대한 고유정보 뿐만 아니라, 배터리 팩 및 모듈에 대한 표시와 지침, 전기자동차 또는 에너지저장장치에서의 사용 이력과 관련된 정보, BMS 데이터 정보, 조립도, 구성과 용도, 주요 부품, 전기자동차의 주행 거리, 사용자 메뉴얼, 제원, 안전과 관련된 구성 부품에 대한 정보, 배터리 사용 중단 사유, 사용 중단 일자, 해체 메뉴얼, 용도변경 전 보관 및 취급 조건 정보들을 포함한다.
또한, 데이터베이스(220)에는 검수자의 고유 ID, 비밀번호, 단말기 정보, 성명, 부서 등을 포함한 검수자 고유 정보가 저장되어, 검수자가 검수자 단말기를 통해 등급 분류 서버에 접속하여 ID와 비밀번호를 통한 로그인 과정을 수행할 수 있다.
더불어, 데이터베이스(220)에는 사용 후 배터리 모듈의 모델별로 적용 가능한 용도 전환 대상 품목에 대한 정보가 저장되어 있으며, 적용 대상 품목별로 기대수명 및 잔존가치를 산출할 수 있도록 품목별 씨레이트(C-Rate) 설정값과 경제성 가치 판단을 위한 배터리 가격 등이 저장되어 있다. 이때, 경제성 가치 판단을 위한 배터리 가격은 Cycle횟수에 따른 배터리 단가일 수 있다.
본 발명에 따른 사용 후 배터리 모듈의 모델별로 적용 가능한 용도 전환 대상 품목은 2차전지를 동력원으로 사용하는 장치로 사용 후 배터리 모듈이 적용될 수 있는 장치를 뜻하며, 구체적인 예로 무정전 전원 장치(UPS: uninterruptible power supply), 전자제품에 전기를 공급하는 배터리(stationary battery), 가정용 또는 산업용 에너지저장장치, 또는 신재생 에너지용 에너지저장장치 등이 될 수 있다.
그러나, 전기차용 또는 에너지저장장치용 사용 후 배터리 모듈은 제조사별 및 모델별로 각각 다른 크기와 모양을 가지고 있으며, 사용 후 배터리 모듈이 재사용·재제조로 적용되기에 불가능한 용도 전환 대상 품목이 존재할 수 있다. 예를 들어, 전기차용 배터리 모듈의 A모델은 크기나 모양이 무정전 전원 장치용으로 사용되기에 적절하지 않는 문제가 발생할 수 있으며, 에너지저장장치용 B모델은 활물질의 구성이 소형 IT기기로 사용되기에 적절하지 않는 문제가 발생할 수 있다.
이에 따라, 본 발명에서는 사용 후 배터리 모듈의 모델별로 적용 가능한 용도 전환 대상 품목에 대한 정보가 미리 데이터베이스에 저장되어 있어, 사용 후 배터리 모듈이 적용 가능한 품목에 대해서만 기대수명 추정 및 잔존가치 평가를 수행할 수 있다.
제어부(230)는 검수자 단말기(100)가 등급 분류 서버에 접속하여 새로운 사용 후 배터리 팩 정보를 입력하는 경우, 사용 후 배터리 팩에 새로운 고유 식별 코드를 할당하고, 사용 후 배터리 팩 정보 관리를 위한 신규 데이터베이스를 생성한다. 또한, 입고된 배터리 팩 정보 입력단계(S1), 사용 후 배터리 팩 전기 검사 단계(S2), 사용 후 배터리 팩 세척 단계(S3), 사용 후 배터리 팩 외관검사 단계(S4), 사용 후 배터리 팩 모듈단위 분해 단계(S5), 사용 후 배터리 모듈 외관 검사 단계(S6), 사용 후 배터리 모듈 잔존 가치 평가 단계(S7), 사용 후 배터리 모듈 등급 분류 단계(S8) 및 사용 후 배터리 모듈 검수 단계(S9) 순으로 작업이 진행될 수 있도록 각 공정별 작업 지시 정보를 열람하고, 제 단계별 검사결과와 상태정보를 입력할 수 있는 화면이 포함된 유저 인터페이스를 생성하여 검수자 단말기로 전송한다.
도 5 및 도 6은 본 발명의 일실시예에 따른 유저 인터페이스 화면의 예를 나타낸 예시도이다.
먼저, 검수자가 검수자 단말기를 통해 등급 분류 서버에 접속하여 ID와 비밀번호를 통한 로그인 과정을 수행하면, 제어부는 도 5에 도시된 바와 같이, 새롭게 입고된 사용 후 배터리 팩의 정보를 입력할 수 있는 '신규 사용 후 배터리 팩 정보 생성' 메뉴와, 기 등록된 사용 후 배터리 팩 또는 모듈의 정보를 열람할 수 있도록 '고유 식별 코드를 입력 또는 스캔'할 수 있는 메뉴가 포함된 유저 인터페이스 화면을 검수자 단말기의 화면에 디스플레이한다.
이어서, 제어부는 검수자로부터 '신규 사용 후 배터리 팩 정보 생성'메뉴를 선택받은 경우, 새로운 사용 후 배터리 팩 고유 식별 코드를 생성한 후, 도 6에 도시된 바와 같이 입고된 배터리 팩 정보 입력단계(S1), 사용 후 배터리 팩 전기 검사 단계(S2), 사용 후 배터리 팩 세척 단계(S3), 사용 후 배터리 팩 외관검사 단계(S4), 사용 후 배터리 팩 모듈단위 분해 단계(S5), 사용 후 배터리 모듈 외관 검사 단계(S6), 사용 후 배터리 모듈 잔존 가치 평가 단계(S7), 사용 후 배터리 모듈 등급 분류 단계(S8) 및 사용 후 배터리 모듈 검수 단계(S9) 순으로 작업이 진행될 수 있도록 각 공정별 작업 지시 정보 및 제 단계별 검사결과와 상태정보를 입력할 수 있는 화면이 포함된 유저 인터페이스를 생성하여 검수자 단말기로 전송한다.
이에 따라, 검수자는 새로운 사용 후 배터리 팩이 수거되어 입고되는 경우, 입고부터 검수단계까지 각 단계별로 제공되는 순차적인 작업 지시 정보에 따라 작업을 수행하고, 사용 후 배터리에 대한 검사 결과 및 상태 정보를 입력항목에 맞춰 입력함으로써, 체계적이고 안전하게 사용 후 배터리의 재사용·재제조를 위한 처리 공정을 수행할 수 있게 된다.
또한, 제어부는 검수자 단말기로부터 고유 식별 코드를 입력받은 경우, 입력받은 고유 식별 코드에 해당하는 사용 후 배터리에 대한 정보를 열람 할 수 있도록 제공한다. 이때, 입력받은 고유 식별 코드에 해당하는 사용 후 배터리가 아직 재사용·재제조를 위한 공정이 진행 중인 경우, 앞서 도시된 도 6과 같이 이미 완료된 단계(S1~S3)와 현재 진행중인 단계에 대해 검수자가 인식할 수 있도록 화면을 표시할 수 있다. 이에 따라, 검수자는 자신이 입력한 고유 식별 코드에 해당하는 사용 후 배터리에 대해 이미 진행완료된 단계에 대한 정보를 열람할 수 있으며, 이후 공정 단계에 대한 작업을 이어서 진행할 수 있다.
더불어, 제어부는 각 공정별 작업 지시 정보 및 제 단계별 검사결과와 상태정보를 입력할 수 있는 화면을 데이터베이스에 기 저장되어 있는 사용 후 배터리 팩 및 모듈에 대한 정보를 기반으로 사용 후 배터리의 제조사별 및 모델별로 다르게 생성할 수 있다.
이와 같이, 제어부는 검수자 단말기로부터 사용 후 배터리에 대한 각종 검사결과 및 상태정보를 입력받아 데이터베이스에 저장함과 동시에, 미리 설정된 기준값에 포함되지 않는 사용 후 배터리의 등급을 재활용 등급으로 분류하고, 정상적인 사용 후 배터리로 판단되는 경우 사용 후 배터리 모듈별로 산출된 잔존용량에 기반하여 잔존수명을 추정하고, 이를 통해 기대수명을 추산함으로써 해당 배터리에 대한 재사용·재제조 등급을 분류한다.
특히, 본 발명에서는 사용 후 배터리가 적용되는 제품의 품목별로 각각의 기대수명을 산출하고, 산출된 기대수명에 기 저장된 품목별 또는 제품별 배터리 가격을 적용하여, 해당 사용 후 배터리 모듈이 적용가능한 용도 전환 대상 품목별 또는 제품별로 잔존가치를 산출한다.
제어부는 이와 같이 산출된 사용 후 배터리 모듈에 대한 잔존수명, 해당 사용 후 배터리가 적용 가능한 용도 전환 대상 품목 및/또는 제품 정보, 품목별 잔존수명, 품목별 기대수명, 품목별 잔존가치평가 결과 및 배터리 등급 결과가 적어도 하나 이상 포함된 정보를 시험성적서 형태로 출력하거나 재가공할 수 있는 유저 인터페이스를 생성하여 검수자 단말기로 전송한다.
상술한 바와 같이, 본 발명은 기존의 수작업으로 이루어지던 사용 후 배터리 재사용·재제조의 공정관리를 전산화하여, 입고(S1)부터 검수(S9)단계까지 제 단계별로 생성된 자료를 검수자가 실시간으로 확인 가능하도록 지원함으로써, 사용 후 배터리에 대해 입고부터 출고까지 전주기에 걸쳐 생성된 처리 이력 정보를 체계적으로 관리하고, 사용 후 배터리 재사용·재제조 공정에서 요구되는 정보를 통합 관리 할 수 있다.
이상에서 설명한 본 발명은 전술한 실시예 및 첨부된 도면에 의해 한정되는 것은 아니며, 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 여러 가지 치환, 변형 및 변경이 가능하다는 것은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 있어 명백하다 할 것이다.
본 발명은 사용 후 배터리에 대한 등급을 분류하는 방법에 광범위하게 사용될 수 있다.

Claims (16)

  1. 적어도 하나 이상의 검수자 단말기와 유/무선 통신으로 연결된 등급 분류 서버를 이용하여 사용 후 배터리에 대한 등급을 분류하는 방법에 있어서,
    상기 등급 분류 서버는,
    입고된 사용 후 배터리 팩 및 상기 사용 후 배터리 팩이 분해된 모듈 정보를 검수자 단말기를 통해 전송받아 사용 후 배터리 팩 및 모듈에 대한 고유 식별 코드를 각각 부여하고, 부여된 고유 식별 코드에 대응하여 사용 후 배터리 팩 및 모듈에 대한 정보를 저장하며,
    사용 후 배터리 팩 정보 입력 단계, 사용 후 배터리 팩 전기 검사 단계, 사용 후 배터리 팩 세척 단계, 사용 후 배터리 팩 외관 검사 단계, 사용 후 배터리 팩 모듈 단위 분해 단계, 사용 후 배터리 모듈 외관 검사 단계, 사용 후 배터리 모듈 잔존 가치 평가 단계, 사용 후 배터리 모듈 등급 분류 단계 및 사용 후 배터리 모듈 검수 단계로 공정이 진행될 수 있도록, 상기 제 단계별로 작업 지시 정보 및 파라미터 입력 정보를 포함하는 공정 정보를 적어도 하나 이상의 유저 인터페이스 형태로 생성하여 검수자 단말기로 출력하는 것을 특징으로 하는 사용 후 배터리 등급 분류 방법.
  2. 제 1 항에 있어서,
    상기 등급 분류 서버는,
    상기 검수자 단말기로부터 입력된 파라미터 정보 중, 사용 후 배터리 모듈이 적용될 수 있는 용도 전환 대상 품목별로 미리 설정된 충방전율에 따라 사용 후 배터리 모듈의 충방전을 각각 수행하여 산출된 품목별 잔존용량을 바탕으로 잔존수명을 추정하고, 추정된 잔존수명을 통해 품목별 기대수명을 산출하는 것을 특징으로 하는 사용 후 배터리 등급 분류 방법.
  3. 제 2 항에 있어서,
    상기 추정된 잔존수명을 통해 품목별 기대수명을 산출함에 있어서는,
    상기 산출된 기대수명에 미리 저장된 품목별 경제 가치 기준을 적용하여, 해당 사용 후 배터리 모듈이 적용될 수 있는 용도 전환 대상 품목별로 잔존 가치 평가를 산출하는 것을 특징으로 하는 사용 후 배터리 등급 분류 방법.
  4. 제 3 항에 있어서,
    상기 추정된 잔존수명을 통해 품목별 기대수명을 산출한 이후에는,
    상기 산출된 사용 후 배터리 모듈에 대한 잔존수명, 해당 사용 후 배터리가 적용 가능한 용도 전환 대상 품목 및/또는 제품 정보, 품목별 잔존수명, 품목별 기대수명, 품목별 잔존가치평가 결과 및 배터리 등급 결과 중 적어도 하나 이상의 정보를 검수자 단말기로 전송하는 것을 특징으로 하는 사용 후 배터리 등급 분류 방법.
  5. 제 1 항에 있어서,
    상기 사용 후 배터리 팩 및 모듈에 대한 정보는,
    모델명, 제품규격, 제조정보, 전기적 특성 정보, 전기화학적 특성 정보, 사용 조건, 환경 조건, 배터리 팩 및 모듈에 대한 표시와 지침, 전기자동차 또는 에너지저장장치에서의 사용이력, BMS 데이터 정보, 조립도, 구성과 용도, 주요 부품, 전기자동차의 주행 거리, 사용자 메뉴얼, 제원, 안전과 관련된 구성 부품에 대한 정보, 배터리 사용 중단 사유, 사용 중단 일자, 용도변경 전 보관 및 취급 조건 정보 중 적어도 하나 이상을 포함하는 것을 특징으로 하는 사용 후 배터리 등급 분류 방법.
  6. 제 1 항에 있어서,
    상기 등급 분류 서버는,
    상기 사용 후 배터리 팩 및 모듈에 대한 정보를 기반으로 차량 충돌, 침수, 화재로 인해 사용이 중단된 경우, 해당 사용 후 배터리 팩을 재활용 등급으로 분류시키는 것을 특징으로 하는 사용 후 배터리 등급 분류 방법.
  7. 제 1 항에 있어서,
    상기 등급 분류 서버는,
    상기 검수자 단말기로부터 입력된 파라미터 정보 중, 내전압 측정기를 통해 측정된 사용 후 배터리 팩의 누설전류값이 10mA 이상일 경우, 해당 사용 후 배터리 팩을 재활용 등급으로 분류시키는 것을 특징으로 하는 사용 후 배터리 등급 분류 방법.
  8. 제 1 항에 있어서,
    상기 등급 분류 서버는,
    상기 검수자 단말기로부터 입력된 파라미터 정보 중, 절연 저항 측정기를 통해 측정된 사용 후 배터리 팩의 저항 값이 1.0MΩ 미만일 경우, 해당 사용 후 배터리 팩을 재활용 등급을 분류시키는 것을 특징으로 하는 사용 후 배터리 등급 분류 방법.
  9. 적어도 하나 이상의 검수자 단말기와 유/무선 통신으로 연결된 등급 분류 서버를 포함하여 구성된 사용 후 배터리 등급 분류 제공 시스템에 있어서,
    상기 등급 분류 서버는,
    입고된 사용 후 배터리 팩 및 상기 사용 후 배터리 팩이 분해된 모듈 정보를 검수자 단말기를 통해 전송받아 사용 후 배터리 팩 및 모듈에 대한 고유 식별 코드를 각각 부여하고, 부여된 고유 식별 코드에 대응하여 사용 후 배터리 팩 및 모듈에 대한 정보를 저장하며,
    사용 후 배터리 팩 정보 입력, 사용 후 배터리 팩 전기 검사, 사용 후 배터리 팩 세척, 사용 후 배터리 팩 외관 검사, 사용 후 배터리 팩 모듈 단위 분해, 사용 후 배터리 모듈 외관 검사, 사용 후 배터리 모듈 잔존 가치 평가, 사용 후 배터리 모듈 등급 분류 및 사용 후 배터리 모듈 검수 단계로 진행되는 작업 지시 정보 및 파라미터 입력 정보를 포함하는 공정 정보를 적어도 하나 이상의 유저 인터페이스 형태로 생성하여 검수자 단말기로 출력하는 것을 특징으로 하는 사용 후 배터리 등급 분류 제공 시스템.
  10. 제 9 항에 있어서,
    상기 등급 분류 서버는,
    상기 검수자 단말기로부터 입력된 파라미터 정보 중, 사용 후 배터리 모듈이 적용될 수 있는 용도 전환 대상 품목별로 미리 설정된 충방전율에 따라 사용 후 배터리 모듈의 충방전을 각각 수행하여 산출된 품목별 잔존용량을 바탕으로 잔존수명을 추정하고, 추정된 잔존수명을 통해 품목별 기대수명을 산출하여 검수자 단말기로 제공하는 것을 특징으로 하는 사용 후 배터리 등급 분류 제공 시스템.
  11. 제 10 항에 있어서,
    상기 등급 분류 서버는,
    상기 산출된 기대수명에 미리 저장된 품목별 경제 가치 기준을 적용하여, 해당 사용 후 배터리 모듈이 적용될 수 있는 용도 전환 대상 품목별로 잔존 가치 평가를 산출하는 것을 특징으로 하는 사용 후 배터리 등급 분류 제공 시스템.
  12. 제 11 항에 있어서,
    상기 등급 분류 서버는,
    상기 산출된 사용 후 배터리 모듈에 대한 잔존수명, 해당 사용 후 배터리가 적용 가능한 용도 전환 대상 품목 및/또는 제품 정보, 품목별 잔존수명, 품목별 기대수명, 품목별 잔존가치평가 결과 및 배터리 등급 결과 중 적어도 하나 이상의 정보를 검수자 단말기로 전송하는 것을 특징으로 하는 사용 후 배터리 등급 분류 제공 시스템.
  13. 제 9 항에 있어서,
    상기 등급 분류 서버는,
    적어도 하나 이상의 전기 자동차 제조자 서버, 배터리 제조자 서버 또는 전기자동차 수리업자 서버와 유/무선 통신으로 연결되어 사용 후 배터리 팩 및 모듈에 대한 정보를 전송받는 것을 특징으로 하는 사용 후 배터리 등급 분류 제공 시스템.
  14. 제 9 항에 있어서,
    상기 사용 후 배터리 팩 및 모듈에 대한 정보는,
    모델명, 제품규격, 제조정보, 전기적 특성 정보, 전기화학적 특성 정보, 사용 조건, 환경 조건, 배터리 팩 및 모듈에 대한 표시와 지침, 전기자동차 또는 에너지저장장치에서의 사용이력, BMS 데이터 정보, 조립도, 구성과 용도, 주요 부품, 전기자동차의 주행 거리, 사용자 메뉴얼, 제원, 안전과 관련된 구성 부품에 대한 정보, 배터리 사용 중단 사유, 사용 중단 일자, 해체 메뉴얼, 용도변경 전 보관 및 취급 조건 정보 중 적어도 하나 이상 포함하는 것을 특징으로 하는 사용 후 배터리 등급 분류 제공 시스템.
  15. 제 9 항에 있어서,
    상기 등급 분류 서버는,
    상기 사용 후 배터리 팩 및 상기 사용 후 배터리 팩이 분해된 모듈 각각에 고유 식별 코드를 부여하고, 부여된 고유 식별 코드에 대응하여 신규 데이터베이스를 생성하는 것을 특징으로 하는 사용 후 배터리 등급 분류 제공 시스템.
  16. 제 15 항에 있어서,
    상기 등급 분류 서버는,
    상기 사용후 배터리 모듈의 고유 식별 코드가 사용 후 배터리 팩 고유 식별 코드보다 하위레벨인 서브 인덱스 구조를 갖도록 데이터베이스를 생성하는 것을 특징으로 하는 사용 후 배터리 등급 분류 제공 시스템.
PCT/KR2022/001820 2021-02-09 2022-02-07 사용 후 배터리 등급 분류 공정 및 이를 제공하는 시스템 WO2022173174A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2021-0018224 2021-02-09
KR1020210018224A KR102289155B1 (ko) 2021-02-09 2021-02-09 사용 후 배터리 등급 분류 공정 및 이를 제공하는 시스템

Publications (1)

Publication Number Publication Date
WO2022173174A1 true WO2022173174A1 (ko) 2022-08-18

Family

ID=77313892

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/001820 WO2022173174A1 (ko) 2021-02-09 2022-02-07 사용 후 배터리 등급 분류 공정 및 이를 제공하는 시스템

Country Status (2)

Country Link
KR (1) KR102289155B1 (ko)
WO (1) WO2022173174A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116238384A (zh) * 2023-05-12 2023-06-09 深圳艾斯特创新科技有限公司 电池的性能识别方法、装置、设备及存储介质
CN116562596A (zh) * 2023-07-07 2023-08-08 杭州安影科技有限公司 一种退役电池处理方法、装置、退役电池仓储立库及介质

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102289155B1 (ko) * 2021-02-09 2021-08-11 한국전지연구조합 사용 후 배터리 등급 분류 공정 및 이를 제공하는 시스템
KR20230046645A (ko) 2021-09-30 2023-04-06 재단법인 제주테크노파크 전기차 배터리 잔존가치 평가 방법
KR20240027250A (ko) * 2022-08-23 2024-03-04 주식회사 엘지에너지솔루션 셀 id 복원 방법 및 이를 이용한 제조 공정 시스템
KR102560121B1 (ko) * 2022-12-23 2023-07-27 주식회사 포엔 전기차 배터리 시스템의 재제조를 위한 평가 시스템 및 그 동작방법
KR102638784B1 (ko) * 2022-12-29 2024-02-20 (주)오렌지아이 기계학습 기반 배터리 잔여 수명 예측 방법

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004246762A (ja) * 2003-02-17 2004-09-02 Olympus Corp 作業マニュアル作成支援システム
KR20100101311A (ko) * 2009-03-09 2010-09-17 윤대성 지게차의 성능이 저하된 배터리 재생방법
KR20150049557A (ko) * 2013-10-30 2015-05-08 주식회사 엘지화학 배터리 재사용 및 재활용 방법
JP2015127676A (ja) * 2013-12-27 2015-07-09 パナソニックIpマネジメント株式会社 蓄電池検査装置、蓄電池検査方法、蓄電池検査システム、及び、プログラム
KR101555322B1 (ko) * 2014-04-21 2015-09-23 주식회사 넥스트스퀘어 배터리 재자원화를 위한 충방전 시스템 및 방법
KR102289155B1 (ko) * 2021-02-09 2021-08-11 한국전지연구조합 사용 후 배터리 등급 분류 공정 및 이를 제공하는 시스템

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011162014A1 (ja) * 2010-06-24 2011-12-29 トヨタ自動車株式会社 電池管理システムおよび電池管理装置および電池の再利用方法および情報通信端末機器
KR102043714B1 (ko) 2018-12-13 2019-11-12 제주국제대학교 산학협력단 전기차 폐배터리를 이용한 ess 시스템

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004246762A (ja) * 2003-02-17 2004-09-02 Olympus Corp 作業マニュアル作成支援システム
KR20100101311A (ko) * 2009-03-09 2010-09-17 윤대성 지게차의 성능이 저하된 배터리 재생방법
KR20150049557A (ko) * 2013-10-30 2015-05-08 주식회사 엘지화학 배터리 재사용 및 재활용 방법
JP2015127676A (ja) * 2013-12-27 2015-07-09 パナソニックIpマネジメント株式会社 蓄電池検査装置、蓄電池検査方法、蓄電池検査システム、及び、プログラム
KR101555322B1 (ko) * 2014-04-21 2015-09-23 주식회사 넥스트스퀘어 배터리 재자원화를 위한 충방전 시스템 및 방법
KR102289155B1 (ko) * 2021-02-09 2021-08-11 한국전지연구조합 사용 후 배터리 등급 분류 공정 및 이를 제공하는 시스템

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116238384A (zh) * 2023-05-12 2023-06-09 深圳艾斯特创新科技有限公司 电池的性能识别方法、装置、设备及存储介质
CN116238384B (zh) * 2023-05-12 2023-07-07 深圳艾斯特创新科技有限公司 电池的性能识别方法、装置、设备及存储介质
CN116562596A (zh) * 2023-07-07 2023-08-08 杭州安影科技有限公司 一种退役电池处理方法、装置、退役电池仓储立库及介质

Also Published As

Publication number Publication date
KR102289155B1 (ko) 2021-08-11

Similar Documents

Publication Publication Date Title
WO2022173174A1 (ko) 사용 후 배터리 등급 분류 공정 및 이를 제공하는 시스템
WO2019209033A1 (ko) 배터리 진단 방법
KR20130103473A (ko) 2차 전지 모듈, 2차 전지 시스템, 전지 정보관리장치, 전지 정보관리시스템, 2차 전지 재이용 시스템, 2차 전지 회수·판매시스템, 2차 전지 재이용방법 및 2차 전지 회수·판매방법
WO2022158774A1 (ko) 사용 후 배터리 모듈 잔존 가치 평가 시스템 및 그 방법
KR102397534B1 (ko) 다수 및 다기종 전기차 배터리의 재사용 방법 및 보관 시스템
KR102079875B1 (ko) 배터리의 열화 모듈 또는 열화 셀 검출장치 및 방법
WO2022250390A1 (ko) 배터리 모니터링 장치 및 방법
KR102284352B1 (ko) 방전 밸런스 검사 기반 차량용 폐배터리 재생 방법
WO2024053870A1 (ko) 배터리의 이상을 감지하는 전자 장치 및 이의 동작 방법
KR20210110429A (ko) 차량용 폐배터리를 재생하는 배터리 재생장치
WO2024029754A1 (ko) 배터리 시스템의 진단 장치 및 방법
KR102284351B1 (ko) 차량용 폐배터리 재생 방법
Menyhárt et al. Battery Measurement Methods and Artificial Intelligence Applied in Energy Management Systems
WO2024101771A1 (ko) 배터리의 성능을 진단하는 장치 및 방법
WO2024080484A1 (ko) 누설 전류 감지를 위한 배터리 진단 장치 및 방법
WO2023013961A1 (ko) 배터리 검사 장치 및 배터리 검사 시스템
WO2024136225A1 (ko) 배터리 데이터 관리 장치 및 그것의 동작 방법
WO2022059957A1 (ko) 배터리 팩 및 배터리 팩의 제어방법
WO2024054037A1 (ko) 배터리의 이상을 감지하는 전자 장치 및 이의 동작 방법
WO2024063207A1 (ko) 차량의 상태 추정 장치 및 그의 동작 방법
KR102537356B1 (ko) Obd 데이터를 활용한 배터리 팩의 충방전 시험장치
KR102603310B1 (ko) 차량용 폐배터리의 이상상태 검사방법
WO2023132521A1 (ko) 배터리 데이터 관리 장치 및 그것의 동작 방법
WO2023171010A1 (ja) 組電池管理システム及び組電池管理方法
WO2022158757A1 (ko) 배터리 시스템 진단 장치 및 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22752934

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22752934

Country of ref document: EP

Kind code of ref document: A1