WO2022171021A1 - 信号处理方法及装置 - Google Patents

信号处理方法及装置 Download PDF

Info

Publication number
WO2022171021A1
WO2022171021A1 PCT/CN2022/074884 CN2022074884W WO2022171021A1 WO 2022171021 A1 WO2022171021 A1 WO 2022171021A1 CN 2022074884 W CN2022074884 W CN 2022074884W WO 2022171021 A1 WO2022171021 A1 WO 2022171021A1
Authority
WO
WIPO (PCT)
Prior art keywords
sequence
sequences
golay complementary
ppdu
zero
Prior art date
Application number
PCT/CN2022/074884
Other languages
English (en)
French (fr)
Other versions
WO2022171021A9 (zh
WO2022171021A8 (zh
Inventor
杜瑞
张倩
韩霄
杨讯
刘辰辰
张美红
孙滢翔
张云
李杨
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to JP2023548634A priority Critical patent/JP2024506652A/ja
Priority to AU2022220522A priority patent/AU2022220522A1/en
Priority to KR1020237030379A priority patent/KR20230144579A/ko
Priority to MX2023009343A priority patent/MX2023009343A/es
Priority to CA3210915A priority patent/CA3210915A1/en
Priority to EP22752182.0A priority patent/EP4284060A4/en
Publication of WO2022171021A1 publication Critical patent/WO2022171021A1/zh
Priority to US18/446,764 priority patent/US20240031050A1/en
Publication of WO2022171021A9 publication Critical patent/WO2022171021A9/zh
Publication of WO2022171021A8 publication Critical patent/WO2022171021A8/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/06Optimizing the usage of the radio link, e.g. header compression, information sizing, discarding information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J13/00Code division multiplex systems
    • H04J13/0007Code type
    • H04J13/0011Complementary
    • H04J13/0014Golay
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • H04L25/0226Channel estimation using sounding signals sounding signals per se
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/024Channel estimation channel estimation algorithms
    • H04L25/0242Channel estimation channel estimation algorithms using matrix methods
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/2605Symbol extensions, e.g. Zero Tail, Unique Word [UW]
    • H04L27/2607Cyclic extensions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]

Definitions

  • the present application relates to the field of communication technologies, and in particular, to a signal processing method and device.
  • the Institute of Electrical and Electronics Engineers (IEEE) series of standards include low-band (for example: 2.4GHz and 5GHz) related standards (for example: 802.11n, 802.11ac, 802.11ax, etc.) and high-band (for example: 60GHz) related standards (for example: 802.11ad, 802.11ay, etc.).
  • low-band and 5GHz for example: 802.11n, 802.11ac, 802.11ax, etc.
  • high-band for example: 60GHz
  • the correlation operations can include Channel estimation or target perception.
  • the sending end device sends a physical layer (PHY) protocol data unit (PHY protocol data unit, PPDU) to the receiving end device, so that the receiving end device can perform channel estimation or target sensing according to the sequence carried in the PPDU. Wait.
  • PHY physical layer
  • PPDU PHY protocol data unit
  • the present application provides a signal processing method and device, which can effectively improve the transmission efficiency of sequences.
  • an embodiment of the present application provides a signal processing method, and the method includes:
  • the PPDU includes a first field, and the first field is used to carry M sequences, and the M sequences correspond to M space times stream, one of the sequences corresponds to one of the space-time streams, the M is a positive integer, the M sequences include the first sequence, and when the M is greater than 2, the first sequence is at least the same as the M sequence.
  • PHY physical layer
  • PPDU includes a first field, and the first field is used to carry M sequences, and the M sequences correspond to M space times stream, one of the sequences corresponds to one of the space-time streams, the M is a positive integer, the M sequences include the first sequence, and when the M is greater than 2, the first sequence is at least the same as the M sequence.
  • Two sequences in the sequence have zero cross-correlation energy within the length of the Golay complementary sequence, and the first sequence has zero autocorrelation side lobe energy within the length of the Golay complementary sequence, and the first sequence depends on the channel Estimation (channel estimation, CE) sequence is obtained, and the Golay complementary sequence is used to construct the CE sequence; and the PPDU is sent.
  • CE channel estimation
  • the transmitting end device when M is greater than 1, when the transmitting end device sends M sequences, the cross-correlation energy between the first sequence provided in the embodiment of the present application and at least two sequences within the length range of the Golay complementary sequence is zero, so that the cross-correlation energy is zero.
  • the interference between the first sequence and the at least two sequences is improved, so that the transmitting end device can send as many sequences as possible in one cycle (for example, at least three sequences can be sent).
  • the efficiency of transmitting M sequences by the transmitting end device is improved, and the efficiency of channel estimation by the receiving end device is improved.
  • the sensing pulse time is also effectively reduced. According to the relationship between the pulse repetition time and the pulse repetition frequency, the maximum detectable Dopp le or rate.
  • an embodiment of the present application provides a signal processing method, the method comprising:
  • the PPDU includes a first field, the first field is used to carry M sequences, the M sequences correspond to M space-time streams, and one of the sequences corresponds to one of the space-time streams stream, the M is a positive integer, the M sequences include a first sequence, and when the M is greater than 2, the first sequence and at least two of the M sequences are in the length of the Golay complementary sequence
  • the cross-correlation energy is zero within the range
  • the autocorrelation side lobe energy of the first sequence is zero within the length range of the Golay complementary sequence.
  • the first sequence is obtained according to the channel estimation CE sequence, and the Golay complementary sequence is used for Construct the CE sequence; perform signal processing according to the M sequences.
  • the receiving end device may perform channel estimation or target perception according to the M sequences.
  • the M sequences are used for channel estimation, or the M sequences are used for target perception.
  • the first sequence and at least three sequences in the M sequences are within the length of the Golay complementary sequence
  • the cross-correlation energy in the range is zero.
  • the first sequence is obtained according to a P matrix and the CE sequence, and the P matrix is:
  • the Golay complementary sequence includes first Golay complementary sequences Ga and Gb, and the first sequence is based on the Ga, the Gb and the first symbol A sequence is obtained, and the first symbol sequence is used to represent the positive and negative symbols of the Ga and the Gb.
  • the first symbol sequence a(n) ⁇ a 1 , a 2 , a 3 , a 4 , a 5 , a 6 , a 7 , a 8 , a 9 , a 10 ⁇ , the a 1 is equal to the a 9 , the a 2 is equal to the a 10 , and the value of each element in the a(n) is 1 or -1.
  • the a(n) satisfies at least one of the following:
  • the value of the a 1 to the a 10 is any of the following, and the horizontal order corresponds to the a 1 to the a 10 in sequence :
  • the M sequences when M is greater than 2, the M sequences further include a second sequence, and the second sequence is complementary to the first sequence in the Gray
  • the cross-correlation energy is zero within the length range of the sequence, and the Golay complementary sequence also includes second Golay complementary sequences Ga' and Gb';
  • the second symbol sequence is used to represent the positive and negative symbols of the Ga' and the Gb'
  • the b 1 is equal to the b 9
  • the b 2 is equal to the b 10
  • the value of each element in the b(n) is 1 or -1
  • the b(n) is not equal to the a(n).
  • the a(n) and the b(n) satisfy at least one of the following:
  • the b(n) ⁇ 1,1,1,1,-1,1,-1,1,1,1 ⁇
  • the b(n) ⁇ 1,1,-1,-1, -1, 1, 1, -1, 1, 1 ⁇
  • the b(n) ⁇ -1, 1, 1, -1, 1, 1, -1, -1, 1 ⁇ ;or,
  • the b(n) ⁇ -1,1,-1, -1, -1, -1, 1, -1, 1 ⁇ ;
  • the first field is a training field unit in the PPDU; or,
  • the first field is an enhanced directional multi-gigabit channel estimation field in the PPDU.
  • the first field is a long training field in the PPDU.
  • an embodiment of the present application provides a communication apparatus, which is configured to execute the method in the first aspect or any possible implementation manner of the first aspect.
  • the communication apparatus includes corresponding means for performing the method of the first aspect or any possible implementation of the first aspect.
  • the communication apparatus may be a sending end device or a chip in the sending end device, or the like.
  • an embodiment of the present application provides a communication apparatus for executing the method in the second aspect or any possible implementation manner of the second aspect.
  • the communication apparatus includes a corresponding method having a method for performing the second aspect or any possible implementation of the second aspect.
  • the communication apparatus may be a receiver device or a chip in the receiver device, or the like.
  • the above-mentioned communication apparatus may include a transceiving unit and a processing unit.
  • a transceiving unit and a processing unit.
  • the transceiver unit and the processing unit reference may also be made to the apparatus embodiments shown below.
  • an embodiment of the present application provides a communication apparatus, where the communication apparatus includes a processor configured to execute the method shown in the first aspect or any possible implementation manner of the first aspect.
  • the processor is configured to execute a program stored in the memory, and when the program is executed, the method shown in the first aspect or any possible implementation manner of the first aspect is executed.
  • the process of sending information in the above method can be understood as a process in which the processor outputs the above-mentioned information, or a process in which the processor receives the above-mentioned input information.
  • the processor In outputting the above-mentioned information, the processor outputs the above-mentioned information to the transceiver for transmission by the transceiver. After the above-mentioned information is output by the processor, other processing may be required before reaching the transceiver.
  • the transceiver receives the above-mentioned information and inputs it into the processor. Furthermore, after the transceiver receives the above-mentioned information, the above-mentioned information may need to perform other processing before being input to the processor.
  • the above-mentioned processor may be a processor specially used to execute these methods, or may be a processor that executes computer instructions in a memory to execute these methods, such as a general-purpose processor.
  • the above-mentioned memory can be a non-transitory (non-transitory) memory, such as a read-only memory (Read Only Memory, ROM), which can be integrated with the processor on the same chip, or can be set on different chips respectively.
  • ROM read-only memory
  • the embodiment does not limit the type of the memory and the setting manner of the memory and the processor. It can be understood that the description of the processor and the memory is also applicable to the sixth aspect shown below, and to avoid redundant description, the sixth aspect will not be described in detail.
  • the memory is located outside the above-mentioned communication device.
  • the memory is located within the above-mentioned communication device.
  • the processor and the memory may also be integrated into one device, that is, the processor and the memory may also be integrated together.
  • the communication device further includes a transceiver, which is used for receiving a signal or transmitting a signal.
  • the transceiver may also be used to transmit PPDUs and the like.
  • the communication device may be a sending end device or a chip in the sending end device, or the like.
  • an embodiment of the present application provides a communication device, where the communication device includes a processor, configured to execute the method shown in the second aspect or any possible implementation manner of the second aspect.
  • the processor is configured to execute a program stored in the memory, and when the program is executed, the method shown in the second aspect or any possible implementation manner of the second aspect is executed.
  • the memory is located outside the above-mentioned communication device.
  • the memory is located within the above-mentioned communication device.
  • the processor and the memory may also be integrated into one device, that is, the processor and the memory may also be integrated together.
  • the communication device further includes a transceiver, which is used for receiving a signal or transmitting a signal.
  • the transceiver may be used to receive PPDUs.
  • the communication device may be a receiving end device or a chip in the receiving end device, or the like.
  • an embodiment of the present application provides a communication device, the communication device includes a logic circuit and an interface, the logic circuit and the interface are coupled; the logic circuit is used to generate a PPDU; the interface is used to output the PPDU.
  • the logic circuit is used to obtain processed data (eg PPDU), and the interface is used to output the processing processed by the logic circuit.
  • processed data eg PPDU
  • the interface is used to output the processing processed by the logic circuit.
  • an embodiment of the present application provides a communication device, the communication device includes a logic circuit and an interface, the logic circuit and the interface are coupled; the interface is used to input a PPDU; the logic circuit is used to process The PPDU (for example, includes processing the M sequences carried in the PPDU, etc.).
  • the logic circuit is used to process the data to be processed.
  • an embodiment of the present application provides a computer-readable storage medium, where the computer-readable storage medium is used to store a computer program, which, when running on a computer, enables the first aspect or any possible possibility of the first aspect The methods shown in the implementation are executed.
  • an embodiment of the present application provides a computer-readable storage medium, where the computer-readable storage medium is used to store a computer program, which, when running on a computer, enables the second aspect or any possible possibility of the second aspect.
  • the methods shown in the implementation are executed.
  • an embodiment of the present application provides a computer program product, where the computer program product includes a computer program or computer code that, when run on a computer, enables the first aspect or any possible implementation manner of the first aspect The method shown is executed.
  • an embodiment of the present application provides a computer program product, the computer program product includes a computer program or computer code, which, when run on a computer, enables the above-mentioned second aspect or any possible implementation manner of the second aspect The method shown is executed.
  • an embodiment of the present application provides a computer program.
  • the computer program runs on a computer, the method shown in the first aspect or any possible implementation manner of the first aspect is executed.
  • an embodiment of the present application provides a computer program.
  • the computer program runs on a computer, the method shown in the second aspect or any possible implementation manner of the second aspect is executed.
  • an embodiment of the present application provides a wireless communication system, where the wireless communication system includes a sending end device and a receiving end device, where the sending end device is configured to perform the first aspect or any possible implementation of the first aspect The method shown in the method, the receiving end device is configured to execute the method shown in the second aspect or any possible implementation manner of the second aspect.
  • FIG. 1 is a schematic diagram of a communication system provided by an embodiment of the present application.
  • FIG. 2 is a schematic structural diagram of an access point and a site provided by an embodiment of the present application
  • 3a and 3b are schematic structural diagrams of a PPDU provided by an embodiment of the present application.
  • FIG. 4a is a schematic structural diagram of a CE sequence provided in an embodiment of the present application.
  • 4b is a schematic structural diagram of a CE sequence autocorrelation provided in an embodiment of the present application.
  • 4c is a schematic diagram of sending a multi-stream sequence provided by an embodiment of the present application.
  • 4d is a schematic structural diagram of a CE sequence provided in an embodiment of the present application.
  • Fig. 5a is a kind of analysis schematic diagram of CE sequence autocorrelation provided in the embodiment of the present application.
  • 5b to 5d are schematic structural diagrams of a CE sequence provided by the present application.
  • Figure 6a and Figure 6b are schematic diagrams of a CE sequence cross-correlation analysis provided by the embodiment of the present application.
  • 6c is a schematic structural diagram of a CE sequence provided in an embodiment of the present application.
  • FIG. 7 is a schematic flowchart of a signal processing method provided by an embodiment of the present application.
  • FIG. 8a is a schematic structural diagram of a CE sequence provided in an embodiment of the present application.
  • FIG. 8b and FIG. 8c are schematic diagrams of results of autocorrelation of a CE sequence provided by the embodiment of the present application.
  • FIG. 8d and FIG. 8e are schematic diagrams of results of cross-correlation of CE sequences provided by the embodiments of the present application.
  • FIG. 9 is a schematic diagram of sending a multi-stream sequence provided by an embodiment of the present application.
  • 10a is a schematic structural diagram of a CE sequence provided in an embodiment of the present application.
  • 10b to 10e are schematic diagrams of results of cross-correlation of a CE sequence provided by an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of a CE sequence provided in an embodiment of the present application.
  • FIG. 12 to FIG. 14 are schematic structural diagrams of a communication device provided by an embodiment of the present application.
  • At least one (item) means one or more
  • plural means two or more
  • at least two (item) means two or three and three
  • “and/or” is used to describe the relationship of related objects, indicating that there can be three kinds of relationships, for example, "A and/or B” can mean: only A exists, only B exists, and both A and B exist three A case where A and B can be singular or plural.
  • the character “/” generally indicates that the associated objects are an “or” relationship.
  • At least one of the following” or similar expressions refers to any combination of these items. For example, at least one (a) of a, b or c, can mean: a, b, c, "a and b", “a and c", “b and c", or "a and b and c" ".
  • the method provided in this application can be applied to various communication systems, for example, it can be an internet of things (Internet of things, IoT) system, a narrow band internet of things (NB-IoT) system, a long term evolution (long term evolution, LTE) system, may also be a fifth-generation (5th-generation, 5G) communication system, and a new communication system (such as 6G) that will appear in future communication development.
  • IoT internet of things
  • NB-IoT narrow band internet of things
  • LTE long term evolution
  • 5G fifth-generation
  • 6G new communication system
  • the method provided by this application can also be applied to a wireless local area network (wireless local area network, WLAN) system, such as wireless fidelity (wireless-fidelity, Wi-Fi) and the like.
  • WLAN wireless local area network
  • the method provided in this application can be implemented by a communication device in a wireless communication system.
  • the communication apparatus may be an access point (AP) device or a station (station, STA) device.
  • AP access point
  • STA station
  • the method provided in this application can be applied to the scenario where one node and one or more nodes perform data transmission; it can also be applied to the uplink/downlink transmission of a single user, and/or the uplink/downlink transmission of multiple users; it can also be applied It can also be used for device to device (D2D) transmission, etc.; it can also be used to perceive objects in the environment, estimate their distance, speed, angle and other information, and further, based on relevant information to perceive the action of the target Recognition, imaging, etc., will not be described in detail here.
  • D2D device to device
  • WLAN sensing is a technology that utilizes WLAN wireless signals for object sensing. This technology can be based on the ability of radio to measure or sample the environment, enabling every communication path between two physical devices to obtain information about the surrounding environment.
  • the above node may be either an AP or a STA.
  • the following description takes the communication between the AP and the STA as an example.
  • a communication system to which the method provided in this application can be applied may include an access point (access point, AP) device and a station (station, STA) device.
  • the access point device may also be understood as an access point entity
  • the station device may also be understood as a station entity.
  • the present application can be applied to a communication or perception scenario between an AP and a STA in a WLAN.
  • the AP may communicate or sense with a single STA, or the AP may communicate or sense with multiple STAs simultaneously.
  • the communication or perception between the AP and multiple STAs can be further divided into downlink transmission in which the AP simultaneously sends signals to the multiple STAs, and uplink transmission in which the multiple STAs send signals to the AP.
  • the WLAN communication protocol may be supported between the AP and the STA, and the communication protocol may include protocols of the IEEE802.11 series.
  • the communication protocol may also include a next-generation protocol of IEEE 802.11ay or IEEE 802.11ad, and the like.
  • FIG. 1 is a schematic structural diagram of a communication system provided by an embodiment of the present application.
  • the communication system may include one or more APs and one or more STAs.
  • FIG. 1 shows one access point device such as AP, and three station devices such as STA1, STA2 and STA3. It can be understood that FIG. 1 only exemplarily shows one AP and three STAs, but the number of the APs or STAs may be more or less, which is not limited in this application.
  • the access point (for example, the AP in FIG. 1 ) is a device with wireless communication function, which supports communication or perception using the WLAN protocol, and has the ability to communicate or perceive with other devices (such as stations or other access points) in the WLAN network.
  • the function can also have the function of communicating or sensing with other devices.
  • the access point is equivalent to a bridge connecting the wired network and the wireless network, and the main function is to connect the various wireless network clients together, and then connect the wireless network to the Ethernet.
  • an access point may be referred to as an access point station (AP STA).
  • the device with wireless communication function can be a complete device, or a chip or a processing system installed in the complete device.
  • the device with these chips or processing system installed can be controlled by the chip or the processing system.
  • the AP in this embodiment of the present application is a device that provides services for the STA, and can support the 802.11 series of protocols.
  • an access point can be an access point for a terminal device (such as a mobile phone) to enter a wired (or wireless) network. It is mainly deployed in homes, buildings, and campuses, with a typical coverage radius ranging from tens of meters to hundreds of meters. Can be deployed outdoors.
  • an AP can be a communication entity such as a communication server, router, switch, and network bridge; the AP can include various forms of macro base stations, micro base stations, relay stations, etc.
  • the AP can also be the chips and A processing system is used to implement the methods and functions of the embodiments of the present application.
  • the access point in the present application may be a high efficient (HE) AP or an extremely high throughput (extramely high throughput, EHT) AP, and may also be an access point applicable to future WiFi standards, or the like.
  • HE high efficient
  • EHT extremely high throughput
  • a station (such as STA1 or STA2 in FIG. 1 ) is a device with wireless communication function, supports communication or perception using the WLAN protocol, and has the ability to communicate or perceive with other stations or access points in the WLAN network.
  • a station can be called a non-access point station (non-access point station, non-AP STA).
  • the STA is any user communication device that allows the user to communicate with the AP or sense and then communicate with the WLAN.
  • the device with wireless communication function can be a complete device, or a chip or processing system installed in the complete device. etc., the devices on which these chips or processing systems are installed may implement the methods and functions of the embodiments of the present application under the control of the chips or processing systems.
  • the station may be a wireless communication chip, a wireless sensor, or a wireless communication terminal, etc., and may also be called a user.
  • the site may be a mobile phone that supports WiFi communication, a tablet that supports WiFi communication, a set-top box that supports WiFi communication, a smart TV that supports WiFi communication, a smart wearable device that supports WiFi communication, or a smart wearable that supports WiFi communication.
  • Functional vehicle communication equipment and computers that support WiFi communication functions, etc.
  • the WLAN system can provide high-speed and low-latency transmission.
  • the WLAN system will be applied in more scenarios or industries, such as the Internet of Things industry, the Internet of Vehicles industry, or the Banking industry, used in corporate offices, stadiums and exhibition halls, concert halls, hotel rooms, dormitories, wards, classrooms, supermarkets, squares, streets, production workshops and warehousing, etc.
  • devices that support WLAN communication or perception can be sensor nodes in smart cities (such as smart water meters, smart electricity meters, and smart air detection nodes), smart devices in smart homes (such as smart cameras) , projectors, display screens, TVs, stereos, refrigerators, washing machines, etc.), nodes in the Internet of Things, entertainment terminals (such as AR, VR and other wearable devices), smart devices in smart office (such as printers, projectors, etc.) Instruments, loudspeakers, stereos, etc.), Internet of Vehicles devices in the Internet of Vehicles, infrastructure in daily life scenarios (such as vending machines, self-service navigation desks in supermarkets, self-service cash registers, self-service ordering machines, etc.), and Equipment for large sports and music venues, etc.
  • smart cities such as smart water meters, smart electricity meters, and smart air detection nodes
  • smart devices in smart homes such as smart cameras
  • projectors display screens, TVs, stereos, refrigerators, washing machines, etc.
  • nodes in the Internet of Things such as AR, VR and other wear
  • access points and stations may be devices used in the Internet of Vehicles, IoT nodes, sensors, etc. in the Internet of Things (IoT, internet of things), smart cameras in smart homes, smart remote controls, Smart water and electricity meters, and sensors in smart cities, etc.
  • IoT Internet of Things
  • smart cameras in smart homes
  • smart remote controls Smart water and electricity meters
  • sensors in smart cities, etc.
  • the specific forms of the STA and the AP are not limited in the embodiments of the present application, which are only exemplary descriptions herein.
  • FIG. 2 is a schematic structural diagram of an access point and a site provided by an embodiment of the present application.
  • the AP may be multi-antenna or single-antenna.
  • the AP includes a physical layer (PHY) processing circuit and a medium access control (MAC) processing circuit.
  • the physical layer processing circuit can be used to process physical layer signals
  • the MAC layer processing circuit can Used to process MAC layer signals.
  • the 802.11 standard focuses on the PHY and MAC parts.
  • FIG. 2 also shows a schematic structural diagram of a STA with a single antenna. In an actual scenario, the STA may also have multiple antennas, and may be a device with more than two antennas.
  • the STA may include a PHY processing circuit and a MAC processing circuit, the physical layer processing circuit may be used for processing physical layer signals, and the MAC layer processing circuit may be used for processing MAC layer signals.
  • the sending end device may be an access point device or a site device; the receiving end device may also be an access point device or a site device.
  • the transmitting end device may be an access point device, and the receiving end device may be an access point device; in another example, the transmitting end device may be a station device, and the receiving end device may be a station device; in another example, the transmitting end device may be an access point device , the receiving end device is a station device; for another example, the transmitting end device may be a station device, and the receiving end device is an access point device.
  • the transmitting end device and the receiving end device shown here may also be collectively referred to as a communication apparatus.
  • the signal processing method provided by this application will be described by taking the sending end device sending a physical layer protocol data unit (PHY protocol data unit, PPDU) to the receiving end device as an example.
  • PHY protocol data unit PHY protocol data unit
  • PPDU physical layer protocol data unit
  • the method shown in this application can also be applied to various types of PPDUs.
  • the PPDU may include: multiple user PHY protocol data unit (MU PPDU), single user PHY protocol data unit (SU PPDU), or trigger frame-based physical protocol data unit (trigger based PHY protocol data unit, TB PPDU), etc.
  • FIG. 3a shows a schematic structural diagram of a PPDU.
  • the PPDU may include a legacy short training field (L-STF), a legacy long training field (L-LTF), a legacy header (legacy-header, L-header), Enhanced Directional Multi-Gigabit Header Flag A (EDMG-header-A), Enhanced Directional Multi-Gigabit Short Training Field (EDMG-STF), Enhanced Directional Multi-Gigabit Channel Estimation Field (EDMG-channel estimation field, EDMG) -CEF), Enhanced Directional Multi-Gigabit Header-B (EDMG-header-B), data (data), training field unit (training filed unit, TRN unit).
  • the training field unit may include a sequence. It can be understood that for the specific description of the PPDU shown in FIG. 3a, reference may also be made to the 802.11ay EDMG protocol, etc., which will not be described in detail here.
  • FIG. 3b shows a schematic structural diagram of a PPDU.
  • the PPDU may include a short training field (short training field, STF), a long training field (long training field, LTF), a header (header), data (data), and a training field unit (TRN unit).
  • STF short training field
  • LTF long training field
  • TRN unit training field unit
  • Golay complementary sequence also referred to as the golay complementary sequence
  • CE channel estimation
  • the binary constant modulus sequences x and y of length N that is, the sequence length is N, or the length of the Golay complementary sequence can also be called N
  • they are golay complementary sequences to each other.
  • the superscript * represents the complex conjugate
  • the symbol Re represents a convolution operation
  • ZCC zero cross correlation
  • the superscripts 1-8 shown here can be understood as the index of the sequence, or the sequence number and so on.
  • the CE1 sequence when the sender device sends 1 stream can be given by and composition
  • the CE2 sequence when sending 2 streams can be composed of and Composition (CE1 sequence is also sent when sending 2 streams)
  • CE3 sequence when sending 3 streams can be composed of and The composition, etc., will not be listed here.
  • n represents the element index or the index of the slice, etc., the above notation Represents a convolution operation.
  • the CE sequence can be used for WLAN sensing, and when WLAN sensing is performed, the one-way distance L can satisfy formula (4).
  • the chip rate specified in the 802.11ay SC PHY standard is 1.76Gpbs (for example, it can also be called the symbol rate) as an example
  • the rate of the transmitted code per second is 1.76G
  • N shown here is only an example, and N shown below in this application may be equal to 128, or N may be equal to 256, or N may be equal to 512, etc.
  • the specific value of the sequence length N in this application is Not limited. However, with the change of the value of N, the distance L will also change, and at the same time, the length range of the Golay complementary sequence shown below in the present application will also change.
  • Figure 4a shows a schematic structural diagram of a CE sequence constructed using a golay complementary sequence.
  • the golay complementary sequence to construct the CE sequence can make the CE sequence in the length range of the Golay complementary sequence, such as -128 to +128, the autocorrelation side lobe energy is zero (zero can also be referred to as 0).
  • Figure 4b shows a schematic diagram of the autocorrelation result of the CE sequence. It can be seen from Figure 4b that the autocorrelation side lobe energy is zero within the length range of the Golay complementary sequence (ie -128 to +128).
  • the abscissa in Figure 4b represents the delay index, and the ordinate represents the power.
  • the CE sequence has a The correlation result can reach 1024 (ie, the autocorrelation main lobe energy is 1024), and in the range of -128 to +128 except 0, the autocorrelation result of the CE sequence is 0.
  • the abscissa in Fig. 4b can also be represented as a symbol.
  • the abscissas in the drawings of the present application are shown as samples, but should not be construed as a limitation of the present application.
  • Figures 4b, 8b to 8e, and 10b to 10e are all abscissas shown by taking samples as an example, and the abscissas may also be called symbols or delay indices (not shown in the figures).
  • the CE sequence can be applied to multiple input multiple output (multiple input multiple output, MIMO) channel estimation, so as to combine with P-matrix (P-matrix) for transmission.
  • MIMO multiple input multiple output
  • P-matrix P-matrix
  • the P matrix can be shown in formula (5):
  • FIG. 4c shows a schematic diagram of the transmission of the CE sequence for channel estimation.
  • the abscissa can represent time, and the ordinate can represent space time stream (it can also be referred to as a stream, as shown in Figure 4c for short), and Figure 4c shows a combination of P Schematic diagram of the emission of the CE sequence of the matrix.
  • the CE sequences of the 2 streams have the same symbol structure, or can also be said to have the same structure.
  • the conforming structure or construction mode shown in this application refers to the plus and minus signs of the golay complementary sequence constituting the CE sequence.
  • the symbol structure of the CE1 sequence refers to positive and negative sign.
  • the symbol structure of the CE2 sequence refers to positive and negative sign.
  • the CE sequences provided by the present application are illustrated below in the same construction manner.
  • CE1 which may also be referred to as CE1 for short
  • CE2 which may also be referred to as CE2 for short
  • C i (n) be the combined sequence of cyclic prefix (cydic prefix) and CEi
  • U i (n) be the same sequence as C i (n) but the cyclic prefix and the cyclic suffix are both 0.
  • U i (n) can also be the same sequence as C i (n) but without the cyclic prefix and cyclic suffix.
  • U i (n) can be used as a reference sequence for channel estimation.
  • C 1 (n) represents the combined sequence of cyclic prefix and CE1
  • C 2 (n) represents the combined sequence of cyclic prefix and CE2
  • U 1 (n) represents the combined sequence of cyclic prefix of 0, and the combined sequence of CE1
  • the cyclic suffix in is 0,
  • U 2 (n) represents the cyclic prefix of 0, and the combined sequence of CE2, the cyclic suffix in the CE2 sequence is 0.
  • C 1 (n) represents the combined sequence of the cyclic prefix and CE1
  • C 2 (n) represents the combined sequence of the cyclic prefix and CE2
  • U 1 (n) is the same as the sequence of CE1, but does not contain the cyclic suffix
  • U 2 (n) Same sequence as CE2, but without the cyclic suffix.
  • the information received by the first antenna can be as follows:
  • h 11 and h 12 represent the channel responses of the first and second streams, respectively
  • z 1 represents noise
  • the following formula (8) can be obtained by using a matched filter (or correlator, etc.) to solve:
  • a matched filter can also be used for channel estimation of h 12 , as follows:
  • the above is the channel estimation method for transmitting the CE sequence of 2 streams.
  • CE sequences with more than 2 streams are transmitted, since there is no ZCC characteristic between CE sequences within the length range of Golay complementary sequences (eg -128 to +128), it is necessary to combine P-matrix for transmission.
  • the channel estimation is performed in two cycles in combination with the P-matrix.
  • the P-matrix is as follows:
  • the above process illustrates how to achieve MIMO channel estimation through CE sequences and P-matrix.
  • the sequences involved in this application can also be used to sense objects in the environment (such as the WLAN sensing shown above).
  • channel estimation can be performed according to the above process, and then on the result of channel estimation, multipath cancellation, target parameter (time, distance, angle) estimation and other processing are further performed, so as to realize target perception .
  • the orthogonal number of CE sequences will cause the P matrix to be different.
  • the P matrix is shown in formula (10) or formula (11), that is, the transmitting end device needs to send the CE sequence through two cycles such as T1 and T2 to ensure that the receiving end device can correctly estimate the channel. It is understandable that if the transmitting end device sends the CE sequence of 4 streams without combining with the P matrix, for example, sending the CE sequence of 4 streams in one cycle, it will cause the CE1 sequence and the CE3 (or CE4) sequence to be different.
  • CE2 sequences and CE3 (or CE4) sequences Interference between CE2 sequences and CE3 (or CE4) sequences is generated, so that the receiving end device cannot perform channel estimation correctly. Therefore, when the transmitting end device sends the 4-stream CE sequence, it needs to combine the P matrix as shown in the above formula (10) to send the 4-stream CE sequence in two cycles to ensure that the four The sequences can be guaranteed to be orthogonal to each other. It can be understood that the two sequences shown in this application are orthogonal, and it can also be understood that the cross-correlation energy of the two sequences is zero within the length range of the Golay complementary sequence.
  • the P matrix is shown in formula (5) or formula (6), that is, the transmitting end device needs to send the CE sequence through four cycles, such as T1, T2, T3 and T4. , to ensure that the receiving end device can perform channel estimation correctly.
  • the P matrix is shown in formula (5) or formula (6), that is, the transmitting end device needs to send the CE sequence through four cycles such as T1 to T4 to ensure the reception. The end device can correctly perform channel estimation.
  • sending the CE sequence through the above method causes the sending end device to need more sending cycles (or referred to as sending time) to ensure that the receiving end device can correctly perform multi-stream channel estimation. That is, when using the CE sequence for channel estimation, including MIMO channel estimation and target sensing, in order to enable the receiving end device to accurately estimate the channel, the transmitting end device not only needs to send the CE sequence in combination with the P matrix, but also needs to pass at least two cycles. Send the CE sequence.
  • the present application provides a signal processing method and device.
  • the receiving end device can correctly estimate the channel, it reduces the transmission time for the transmitting end device to send the CE sequence, thereby improving target perception (including WLAN perception) or MIMO. Efficiency of channel estimation.
  • the method provided by the present application can realize that the 4-stream CE sequence has ZCC characteristics within the length range of the Golay complementary sequence, so that the dimension of the P-matrix can be improved when performing channel estimation (for example, for P -matrix for dimensionality reduction), which can also reduce the cycle of sending CE sequences.
  • the sensing pulse repetition time can also be reduced. Since the pulse repetition time and the pulse repetition frequency have an inverse relationship, the method provided in this application effectively improves the sensing pulse repetition.
  • the pulse repetition frequency (PRF) increases the maximum detectable Doppler/velocity in perception and can effectively optimize perception performance.
  • the CE1 sequence and CE2 sequence provided in this application have zero cross-correlation energy within the length of the Golay complementary sequence, and the CE3 sequence and CE4 sequence are within the range of the Golay complementary sequence.
  • the cross-correlation energy is zero in the length range; and the cross-correlation energy of the CE1 sequence and the CE3 (or CE4) sequence is in the length range of the Golay complementary sequence, and the cross-correlation energy of the CE2 sequence and the CE3 (or CE4) sequence is in the length range of the Golay complementary sequence.
  • the internal cross-correlation energy is zero.
  • the CE1 sequence, CE2 sequence, CE3 sequence and CE4 sequence provided in this application are orthogonal to each other.
  • the transmitting end device when the transmitting end device sends the CE sequence of four streams, it can make the above four CE sequences without combining the P matrix. are orthogonal to each other. Therefore, the transmitting end device can send 4-stream CE sequences in only one cycle, which effectively improves the efficiency of sending CE sequences, and further improves the efficiency of channel estimation and target-aware PRF of the receiving end device.
  • the CE1 sequence provided by the present application and at least three sequences have zero cross-correlation energy within the length range of the Golay complementary sequence.
  • the cross-correlation energy between the CE1 sequence and the CE3 sequence is not zero within the length range of the Golay complementary sequence, if the CE1 sequence and the CE3 sequence are sent in the same period, interference between the CE1 sequence and the CE3 sequence will occur. , so that the receiving end device cannot effectively perform channel estimation, etc. Therefore, in this case, the transmitting end device may send the CE sequence of the 6 streams in combination with the P matrix, for example, sending the CE sequence of the 6 streams in two cycles.
  • the transmitting end device can send the CE sequence of 6 streams in two cycles. Compared with the above-mentioned transmitting end device that needs to send the CE sequence of 6 streams in 4 cycles, the method provided by this application, The efficiency of sending CE sequences is effectively improved, the efficiency of channel estimation by the receiving end device and the PRF of target perception are improved.
  • the value of N is not limited in this application. Alternatively, N can also be equal to 32 or 64, etc.
  • the length of the Golay complementary sequence may range from -128 to +128 (which may include -128 and/or +128).
  • a Gray complement such as and and and and and and and and and and and The unit length (representing the length of a unit) is 128, respectively.
  • the length of each of the above-mentioned Golay complementary sequences ranges from -128 to +128.
  • the autocorrelation side lobe energy of the CE sequence can be zero in the range of -128 to +128.
  • the cross-correlation energy of different CE sequences is zero in the range of -128 to +128 (may include -128 and/or +128).
  • the cross-correlation energies of different CE sequences may range from -256 to +256 (which may include -256 and/or +256).
  • the length range of the Golay complementary sequence shown in this application can also be understood as the range of the unit length of the Golay complementary sequence.
  • each dashed box shown in Figure 5a can represent the unit length of the Golay complementary sequence.
  • Fig. 5a only exemplarily shows three unit lengths, and other length units shown in Fig. 5a are not shown one by one in Fig. 5a.
  • sequence 2 is the original CE sequence, and the unit lengths of the Gray complementary sequences at both ends of the sequence related to it (such as the unit length corresponding to the cyclic prefix and the unit length corresponding to the cyclic suffix) are replaced by 0, and the sequence is obtained.
  • sequence 3 That is, sequence 1 is shifted to the left by n (0 ⁇ n ⁇ 128) symbols from sequence 2, and sequence 3 is shifted to the right by n (0 ⁇ n ⁇ 128) symbols from sequence 2.
  • the superscripts in the formula (12), formula (13), formula (14) and formula (16) of the present application represent the position in the CE sequence. That is, the superscript shown here is different from the superscript shown in other embodiments of the present application.
  • the superscripts of the above formulas (2) and (3) represent the golay complementary sequences constituting the CE sequence, and different superscripts indicate different golay complementary sequences.
  • the superscripts in the formula (12), formula (13), formula (14) and formula (16) of the present application indicate the positions in the CE sequence, and different superscripts indicate different positions in the CE sequence.
  • a 1 to a 10 are respectively -1 or 1, for example, a 1 is -1 or 1, a 2 is -1 or 1, and so on, a 10 is -1 or 1.
  • the above-derived reference sequence (sequence 1 in Figure 5a) is composed of a cyclic prefix of 0 and a CE sequence of 0 with a cyclic suffix. If the reference sequence is a CE sequence without a cyclic suffix, the above derivation is also valid.
  • the reference sequence shown in this application may be a sequence stored in a device (such as a receiver device) itself or a sequence stored in the cloud, rather than a sequence sent by other devices (such as a transmitter device).
  • the symbol sequence y(n) ⁇ -a 1 , -a 2 , -a 3 , -a 4 , -a 5 , -a 6 , -a 7 , -a 8 , -a 9 , - a 10 ⁇ , which also belongs to the protection scope of the present application.
  • the difference between the y(n) and x(n) is only in that the phase is opposite.
  • the CE sequence constructed according to the y(n) has the same effect as the CE sequence constructed by x(n).
  • a 1 represents the sign of the cyclic prefix
  • a 2 -a 5 represent the sign of the Gu unit
  • a 6 -a 9 represent the sign of the Gv unit
  • a 10 represents the sign of the cyclic suffix
  • the CE sequence is composed of Gu, Gv and cyclic suffix, whereby a 2 -a 10 can correspond to the sign of the length of each unit of the Golay complementary sequence, and the values of a 1 -a 10 are shown in Table 1.
  • the CE sequence can be as shown in Figure 5b.
  • the CE sequence can be shown in Figure 5c.
  • the CE1 sequence and CE2 sequence sent by the sending end device can both be as shown in Figure 5d.
  • CE1 represents the CE1 sequence and CE2 represents the CE2 sequence
  • the CE1 sequence has zero autocorrelation side lobe energy within the length range of the Golay complementary sequence
  • the CE2 sequence has zero autocorrelation side lobe energy within the length range of the Golay complementary sequence
  • the CE1 sequence and CE2 sequence are within the length range of the Golay complementary sequence.
  • the internal cross-correlation energy is zero.
  • the values of a 1 -a 10 are ⁇ 1, 1, -1, 1, 1, -1, 1, 1, 1, 1 ⁇ (that is, the values corresponding to the number 2 in Table 1) , then when the sender device sends a 2-stream CE sequence,
  • the values of a 1 -a 10 are ⁇ 1, 1, 1, -1, 1, -1, 1, 1, 1, 1 ⁇ (that is, the values corresponding to the number 3 in Table 1) , then when the sender device sends a 2-stream CE sequence,
  • the values of a 1 -a 10 are ⁇ 1, 1, -1, 1, 1, 1, -1, 1, 1, 1 ⁇ (that is, the values corresponding to number 4 in Table 1) , then when the sender device sends a 2-stream CE sequence,
  • the above only exemplarily provides four CE sequences corresponding to the values of a 1 -a 10 , and the CE sequences constructed according to the values of a 1 -a 10 shown in Table 1 belong to the present application The scope of protection is not listed here. It can be understood that the above only exemplarily shows the CE sequence of 2 streams, and the method shown above is also applicable to the CE sequence of 1 stream. It is understandable that the values of a 1 -a 10 shown above can also be used to construct a single CE sequence in a 3-stream CE sequence (or a 4-stream CE sequence or a 5-stream CE sequence, etc.). For example, the values of a 1 -a 10 shown above can be used to construct a CE3 sequence in a 3-stream CE sequence.
  • the values of a 1 -a 10 shown above can also be used to construct the CE5 sequence in the CE sequence of 5 streams.
  • the values of a 1 -a 10 shown above can also be used to construct the CE7 sequence in the CE sequence of 7 streams, etc., which will not be described in detail here. That is to say, the method shown above is applicable to a single-stream CE sequence, but when CE sequences of more than two streams are sent, the relationship between the CE sequences of more than two streams is not limited in this application. Exemplarily, when CE sequences with more than 2 streams are sent, the relationship between the CE sequences with more than 2 streams may refer to the description of the cross-correlation of different CE sequences shown below.
  • Arrangement 16 is the reference sequence.
  • the reference sequence does not contain a cyclic prefix and a cyclic suffix, so it is replaced by 0 here. It should be noted that the following derivation still holds when the correlation operation is performed with a reference sequence that does not contain a cyclic prefix and a cyclic suffix. As shown in Fig. 6a or Fig.
  • Ga 1 and Gb 3 , Ga 3 and Gb 1 are not golay complementary sequences, therefore, they need to be eliminated as unrelated sequences, that is, the products of the corresponding parts are added to zero, In order to achieve the result that the cross-correlation energy is zero within the length range of the Golay complementary sequence.
  • Ga 1 and Gb 3 and Ga 3 and Gb 1 shown here are only examples.
  • the Ga 1 and Gb 1 may constitute one CE sequence
  • the Ga 3 and Gb 3 may constitute another CE sequence.
  • the subscript in the formula (15) shown below has the same meaning as the superscript 1 or 2 in the formula (2) or formula (3) shown above in this application, except that the formula shown below (15)
  • the length N of the Golay complementary sequence is omitted. It can be understood that Ga 1 and Gb 3 and Ga 3 and Gb 1 in this application can be understood as row vectors.
  • Ga 1 , Gb 1 , Ga 3 , Gb 3 can satisfy at least one of the following:
  • the superscript represents the position
  • the multiplication (such as ⁇ ) represents the multiplication of two vectors.
  • two CE sequences (such as CE1 sequence and CE3 sequence) can be made to have zero cross-correlation energy within the length range of the Golay complementary sequence, that is, two CE sequences can be achieved
  • the sequence has ZCC properties over the length of the Golay complement.
  • the dot product (eg ⁇ ) in formula (17) represents the multiplication and summation of the corresponding positions of the sequence. It is understandable that the dot product shown in this application may also be referred to as dot product, inner product, or quantity product, and the like.
  • the above formula (17) can make the length of Golay complementary sequences do not have ZCC characteristics.
  • the two CE sequences have ZCC properties.
  • any one of the two CE sequences has the characteristic of zero autocorrelation side lobe energy within the length range of the Golay complementary sequence. It can be understood that the CE1 sequence and CE3 sequence shown in FIG. 6c are only examples, and the CE1 sequence and CE3 sequence shown in FIG. 6c should not be construed as a limitation of the present application.
  • a 1 to a 10 and b 1 to b 10 may be as shown in Table 3.
  • the numbers 1 and 2 in Table 3 refer to the numbers in Table 1.
  • the values of a 1 to a 10 may be the number 1 in Table 1, namely ⁇ 1, 1, -1, 1, -1, 1, 1, 1, 1 ⁇
  • the values of b 1 to b 10 are respectively the number 16 in Table 1, namely ⁇ 1, 1, 1, -1, -1, 1, -1, -1, 1 ,1 ⁇ .
  • the values of b 1 to b 10 may be the number 1 in Table 1, namely ⁇ 1, 1, -1, 1, -1, 1, 1, 1, 1 ⁇ , a 1 to a 10
  • the values are respectively the number 16 in Table 1, namely ⁇ 1, 1, 1, -1, -1, 1, -1, -1, 1, 1 ⁇ .
  • the CE sequences constructed in Table 3 can make two CE sequences that originally do not have ZCC characteristics within the length range of the Golay complementary sequences have ZCC properties, that is, the two CE sequences can be made to be within the length of the Golay complementary sequences.
  • the cross-correlation energy is zero in the length range.
  • the number 1 in Table 3 may correspond to the above a 1 to a 10
  • the number 2 may correspond to the above b 1 to b 10
  • the number 1 in Table 3 may correspond to the above-mentioned b 1 to b 10
  • the number 2 may correspond to the above-mentioned a 1 to a 10 .
  • the values of a 1 -a 10 are ⁇ 1, 1, -1, 1, -1, 1, 1, 1, 1 ⁇ (that is, the values corresponding to the number 1 in Table 1)
  • the values of b 1 -b 10 are ⁇ 1, 1, 1, -1, -1, 1, -1, -1, 1, 1 ⁇ (that is, the values corresponding to the number 16 in Table 1)
  • the values of a 1 -a 10 are ⁇ 1, 1, 1, -1, 1, -1, 1, 1, 1 ⁇ (that is, the values corresponding to the number 3 in Table 1)
  • the values of b 1 -b 10 are ⁇ 1, 1, -1, 1, 1, -1, -1, -1, 1, 1 ⁇ (that is, the values corresponding to the number 17 in Table 1)
  • CE sequences shown above are only examples, and the CE sequences corresponding to different values of a(n) and b(n) will not be listed one by one here.
  • specific description of the sending end device sending the CE sequence of 5 streams, the CE sequence of 6 streams, the CE sequence of 7 streams, or the CE sequence of 8 streams can also be referred to below, and will not be described in detail here.
  • FIG. 7 is a schematic flowchart of a signal processing method provided by an embodiment of the present application. As shown in FIG. 7 , the method includes:
  • the transmitting end device generates a PPDU, where the PPDU includes a first field, where the first field is used to carry M sequences, the M sequences correspond to M space-time streams, one sequence corresponds to one space-time stream, and the M sequences include The first sequence, when M is greater than 2, the first sequence and at least two sequences in the M sequences have zero cross-correlation energy within the length range of the Golay complementary sequence, and the first sequence is within the length range of the Golay complementary sequence The autocorrelation side lobe energy is zero, the first sequence is obtained from the CE sequence, and the Golay complementary sequence is used to construct the CE sequence.
  • each of the M sequences can be obtained based on a CE sequence, and the CE sequence can be obtained from a Golay complementary sequence.
  • the first sequence shown in the embodiment of the present application is obtained from the CE sequence, which can be understood as: the first sequence is a CE sequence, or the first sequence is different from the CE sequence, but is obtained from the CE sequence.
  • the autocorrelation side lobe energy of the CE sequence is zero within the length range of the Golay complementary sequence.
  • the first field is used to carry one sequence, such as the first sequence
  • the first sequence may be the CE1 sequence
  • the CE1 sequence may be composed of the first Golay complementary sequence such as get.
  • the first field is used to carry two sequences, such as sequence 1 and sequence 2.
  • Sequence 1 can be a CE1 sequence
  • the CE1 sequence can be based on the Golay complementary sequence such as Obtained
  • the sequence 2 can be the CE2 sequence
  • the CE2 sequence can be based on the Gray complementary sequence such as get.
  • sequence 1 can be called the first sequence
  • sequence 2 can be called the first sequence, may be referred to as the first Golay complement.
  • the first sequence may be either sequence 1 or sequence 2.
  • the sign of the sign (as in the first sign sequence) and
  • the positive and negative symbols of reference may be made to the descriptions elsewhere in this application, which will not be repeated here.
  • the first field may be used to carry 3 sequences, for example, the 3 sequences are sequence 1, sequence 2 and sequence 3, for example, sequence 1 may be CE1 sequence, and sequence 2 may be CE2 sequence, sequence 3 can be a CE3 sequence.
  • the cross-correlation energy of the CE1 sequence and the CE2 sequence is zero within the length range of the Golay complementary sequence, or, it can also be said that the CE1 sequence and the CE2 sequence have ZCC characteristics within the length range of the Golay complementary sequence, or, It may also be said that the CE1 sequence and the CE2 sequence are orthogonal over the length of the Golay complementary sequence.
  • the cross-correlation energy of sequence 1 and sequence 2 is zero within the length of the Golay complementary sequence.
  • sequence 1 can be referred to as the first sequence
  • sequence 3 can be referred to as the second sequence
  • sequence 3 can be the CE3 sequence
  • the CE3 sequence can be based on the second Golay complementary sequence such as get.
  • the first field can be used to carry 4 sequences, for example, the 4 sequences are sequence 1, sequence 2, sequence 3 and sequence 4, and sequence 4 is a CE4 sequence.
  • sequence 3 is a CE4 sequence.
  • sequence 3 is a CE4 sequence.
  • the cross-correlation energy of the CE1 sequence and the CE4 sequence is zero within the length range of the Golay complementary sequence
  • the cross-correlation energy of the CE2 sequence and the CE4 sequence is zero within the length range of the Golay complementary sequence
  • the CE3 sequence and the CE4 sequence are within the range of the Golay complementary sequence.
  • the cross-correlation energy is zero in the length range of Golay's complementary sequence, thus, the cross-correlation energy of sequence 1 and sequence 4 is zero in the length range of Golay's complementary sequence, and the cross-correlation energy of sequence 2 and sequence 4 is cross-correlated in the length range of Golay's complementary sequence.
  • the energy is zero, and the cross-correlation energy of sequence 3 and sequence 4 is zero over the length of the Golay complementary sequence.
  • sequence 3 or sequence 4 can be referred to as the second sequence.
  • sequence 1 is CE1 sequence
  • sequence 2 is CE2 sequence
  • sequence 3 is CE3 sequence
  • sequence 4 is CE4 sequence
  • the cross-correlation energy of any two CE sequences between the CE1 sequence and the CE4 sequence provided in this application is zero within the length of the Golay complementary sequence.
  • the sender device sends the sequence
  • the P matrix can be as shown in the following formula (18) As shown, that is, each row element of the P matrix is +1. Therefore, after acquiring the CE1 sequence to the CE4 sequence, the transmitting end device can directly send the CE1 sequence to the CE4 sequence.
  • the reason why the sequence 5 is obtained according to the CE5 sequence is that when the transmitting end device sends the sequence 5, it needs to be sent in combination with the P matrix.
  • the P matrix is the formula (19) shown below
  • the sequence 5 can be obtained according to the CE5 sequence
  • the sequence 6 can be obtained according to the CE6 sequence.
  • sequence 3 can be obtained from the CE3 sequence
  • sequence 4 can be obtained from the CE4 sequence
  • sequence 5 is the CE5 sequence
  • sequence 6 is the CE6 sequence.
  • sequence 3 can be obtained from the CE3 sequence
  • sequence 4 can be obtained from the CE4 sequence
  • sequence 5 can be obtained from the CE5 sequence
  • sequence 6 can be obtained from the CE6 sequence.
  • the first field can be used to carry 5 sequences.
  • the 5 sequences are respectively sequence 1 to sequence 5.
  • the sequence 5 can be obtained from the CE5 sequence, and the CE5 sequence can be obtained according to the get.
  • the CE5 sequence may have zero cross-correlation energy with the CE4 sequence, CE3 sequence, and CE1 sequence respectively within the length range of the Golay complementary sequence, and then the sequence 5 may be respectively within the Golay complementary sequence with the sequence 4, the sequence 3, and the sequence 1.
  • the cross-correlation energy is zero in the length range. It can be understood that the cross-correlation energy between the CE5 sequence and the CE4 sequence, the CE3 sequence and the CE1 sequence respectively within the length range of the Golay complementary sequence is only an example.
  • the CE5 sequence can also have zero cross-correlation energy with the CE1 sequence and the CE2 sequence respectively within the length range of the Golay complementary sequence.
  • the CE5 sequence may also have zero cross-correlation energy with the CE3 sequence and the CE4 sequence respectively within the length range of the Golay complementary sequence. It will not be described in detail here.
  • the first field can be used to carry 6 sequences.
  • the 6 sequences are respectively sequence 1 to sequence 6.
  • the sequence 6 can be obtained according to the CE6 sequence, and the CE6 sequence can be obtained according to the get.
  • the CE6 sequence can have zero cross-correlation energy with the CE3 sequence, CE4 sequence, and CE5 sequence within the length range of the Golay complementary sequence, respectively, and the sequence 6 can be respectively within the length range of the Golay complementary sequence with the sequence 3, sequence 4, and sequence 5.
  • the cross-correlation energy is zero. If sequence 1 is referred to as the first sequence, any one of sequence 3 to sequence 6 may be referred to as the second sequence.
  • first sequence and the second sequence shown in this application are only examples, and the specific names of other sequences in the M sequences are not limited in the embodiments of this application.
  • the names in the M sequences may also be sequence 1, sequence 2, sequence 3, etc. as shown above. It can be understood that the description of the first sequence and the second sequence will not be described in detail below.
  • the first field can be used for 8 sequences.
  • the 8 sequences are respectively sequence 1 to sequence 8.
  • sequence 7 can be obtained from the CE7 sequence, and the CE7 sequence can be obtained according to the Golay complementary sequence.
  • sequence 8 can be obtained from the CE8 sequence, and the CE8 sequence can be obtained according to the Gray complement get.
  • CE8 sequence can be respectively with CE7 sequence, CE1 sequence, CE2 sequence within the length range of Golay complementary sequence, the cross-correlation energy is zero, therefore, sequence 8 can be complementary to sequence 7, sequence 1, and sequence 2 in Golay complementary sequence respectively.
  • the cross-correlation energy is zero over the length of the sequence.
  • the CE8 sequence can have zero cross-correlation energy with the CE5 sequence, CE6 sequence, and CE7 sequence respectively within the length range of the Golay complementary sequence, so the sequence 8 can be respectively correlated with the sequence 5, the sequence 6, and the sequence 7 within the length of the Golay complementary sequence.
  • the cross-correlation energy in the range is zero.
  • the CE8 sequence can have zero cross-correlation energy with the CE7 sequence, CE3 sequence, and CE4 sequence respectively within the length range of the Golay complementary sequence. Therefore, the sequence 8 can be respectively correlated with the sequence 7, the sequence 3, and the sequence 4 within the Golay complementary sequence.
  • the cross-correlation energy is zero in the length range.
  • CE8 shown here is only an example, and for the specific description of CE1 to CE7, reference may also be made to the description of CE8, etc., which is not described in detail in this embodiment of the present application.
  • the transmitting end device may also send the CE sequence in combination with the P matrix, that is, when M is greater than 4, the first sequence may be obtained according to the CE sequence and the P matrix.
  • the P matrix For the specific description of the P matrix, reference may also be made to the descriptions elsewhere in this application, and will not be described in detail here.
  • the first field may be TRN in the PPDU, or the first field may be the EDMG-CEF in the PPDU, or the first field may be the LTF in the PPDU.
  • the CE sequence can be carried in the TRN in the 802.11ay SC PHY, and the TRN can be used for target sensing, beam training, etc.
  • the CE sequence can be carried in EDMG-CEF in 802.11ay SC PHY, and the EDMG-CEF can be used for (MIMO) channel estimation.
  • the CE sequence can be carried in the TRN in 802.11ad, and the TRN can be used for target sensing and beam training.
  • the CE sequence may be carried in the DMG-CEF in 802.11ad, and the DMG-CEF may be used for channel estimation.
  • the M sequences shown in this application can be used for channel estimation or target perception, etc.
  • For the specific functions of the M sequences reference may be made to the functions of the CE sequences described elsewhere in this application, which will not be described in detail here.
  • the sending end device sends a PPDU.
  • the receiving end device receives the PPDU.
  • the receiving end device performs signal processing according to the M sequences.
  • the receiving end device performs channel estimation or target perception according to the M sequences, which will not be described in detail here.
  • the receiving end device may perform channel estimation or target perception on the CE sequence.
  • the receiving end device can perform channel estimation or target perception according to the M sequences received by it.
  • the method provided by the embodiments of the present application can not only effectively shorten the time for the transmitting end device to send the sequence, but also improve the efficiency of channel estimation performed by the receiving end device or improve the PRF of target perception.
  • first-rate/second-rate One spatial stream/two spatial streams
  • the transmitting end device may send one CE sequence, such as a CE1 sequence (ie, one stream), or may send two CE sequences (ie, two streams), such as a CE1 sequence and a CE2 sequence.
  • the positive and negative symbols constituting the CE1 sequence can be obtained according to Table 1, that is, there are 72 choices for the positive and negative symbols of the CE1 sequence provided in this application.
  • the CE1 sequence has the characteristic of zero autocorrelation side lobe energy within the length range of the Golay complementary sequence
  • the CE2 sequence also has the characteristics of zero autocorrelation side lobe energy.
  • the characteristic that the autocorrelation side lobe energy is zero over the length of the Golay complementary sequence. Therefore, after receiving the PPDU, the receiving end device can perform channel estimation according to the obtained CE1 sequence and CE2 sequence.
  • the channel estimation method can refer to the descriptions of the above formulas (7) to (9), which will not be described in detail here.
  • the sending end device generates and sends a physical layer protocol data unit PPDU, the PPDU includes a first field, and the first field is used to carry M sequences; the M sequences correspond to M space-time streams , one of the sequences corresponds to one of the space-time streams, and the M is a positive integer; the receiving end device receives the PPDU and performs signal processing according to the M sequences.
  • a sequence carried in the first field may be the same as the CE1 sequence, such as (For example, the values of a 1 -a 10 corresponding to No. 1 in Table 1). Another example, (For example, the values of a 1 -a 10 corresponding to No. 2 in Table 1). Another example, (For example, the values of a 1 -a 10 corresponding to No. 3 in Table 1). Another example, (For example, the values of a 1 -a 10 corresponding to No. 4 in Table 1).
  • the first field may carry two sequences, for example, the two sequences may be sequence 1 and sequence 2, (such as the value of a 1 -a 10 corresponding to the number 37 in Table 1), Another example, (such as the value of a 1 -a 10 corresponding to the number 38 in Table 1), Another example, (such as the value of a 1 -a 10 corresponding to the number 39 in Table 1), Another example, (such as the value of a 1 -a 10 corresponding to the number 40 in Table 1),
  • the description of the M sequences shown here is only an example.
  • the above sequence 1 or sequence 2 can be referred to as the first sequence.
  • sequence 1 is referred to as the first sequence
  • the first Golay complement is referred to as the first Golay complement.
  • sequence 2 is called the first sequence, then and may be referred to as the first Golay complement.
  • the transmitting end device may send three CE sequences, such as CE1 sequence, CE2 sequence, and CE3 sequence (that is, three-stream), or may also send four CE sequences, such as CE1 sequence, CE2 sequence, CE3 sequence, and CE4 sequence sequence (i.e. four streams).
  • three CE sequences such as CE1 sequence, CE2 sequence, CE3 sequence, and CE4 sequence sequence (i.e. four streams).
  • the CE1 sequence is constructed in the same manner as the CE2 sequence (that is, the symbol sequences of the CE1 sequence and the CE2 sequence are the same), and the CE3 sequence and the CE4 sequence are constructed in the same manner (that is, the symbol sequences of the CE3 sequence and the CE4 sequence are the same).
  • the symbol sequence of CE1 sequence and CE2 sequence corresponds to number 1 in Table 1
  • the symbol sequence of CE3 sequence and CE4 sequence can correspond to number 16 in Table 1 (as shown in Figure 8a), No. 28, No. 45 or No. 57.
  • the 4 sequences carried in the first field such as
  • the 4 sequences carried in the first field such as
  • the 4 sequences carried in the first field such as
  • the 4 sequences carried in the first field such as It is understandable that for the specific description of the sequence 1 and the sequence 2, reference may be made to the above description, and details are not repeated here. It can be understood that the above sequence 1 or sequence 2 can be referred to as the first sequence, and (i.e. Ga and Gb shown above) may be referred to as the first Golay complementary sequence, or, and may be referred to as the first Golay complement. Then the above sequence 3 or sequence 4 can be called the second sequence, and (i.e. Ga' and Gb' shown above) may be referred to as the second Gray complement, or, and may be referred to as the second Golay complement.
  • the symbol sequence of the CE1 sequence and the CE2 sequence corresponds to the number 3 in Table 1
  • the symbol sequence of the CE3 sequence and the CE4 sequence may correspond to the number 17, number 29, number 44 or number 56 in Table 1.
  • the 4 sequences carried in the first field such as
  • the 4 sequences carried in the first field such as
  • the 4 sequences carried in the first field such as
  • the symbol sequences of the CE1 sequence and the CE2 sequence correspond to the number 6 in Table 1
  • the symbol sequences of the CE3 sequence and the CE4 sequence may correspond to the number 13 or the number 32 in Table 1.
  • the symbol sequences of the CE1 sequence and the CE2 sequence correspond to the number 8 in Table 1
  • the symbol sequences of the CE3 sequence and the CE4 sequence may correspond to the number 14 or the number 36 in Table 1.
  • FIG. 8a only exemplarily shows the symbol sequences of CE1 sequence and CE2 sequence, and the symbol sequence of CE3 sequence and CE4 sequence.
  • sequence 1 to sequence 4 reference may be made to the description of CE1 to CE4, etc., which will not be described in detail here.
  • the CE1 to CE4 sequences can have the characteristic that the cross-correlation energy is zero within the length range of the Golay complementary sequence.
  • the cross-correlation peaks (ie, the maximum energy) of the four CE sequences within the length range of the Golay complementary sequence from -128 to +128 are shown in Table 4.
  • the P matrix can be shown in the following formula (18):
  • the transmitting end device can send three streams or four streams in one cycle, and the receiving end device can also complete channel estimation or target perception in one cycle.
  • Figure 8b-8e Figure 8b shows a schematic diagram of the autocorrelation results of CE1 sequences
  • Figure 8c shows a schematic diagram of CE3 autocorrelation results
  • Figure 8d shows CE1 sequences without local ZCC characteristics
  • FIG. 8e shows a schematic diagram of the result of cross-correlation of CE1 sequence and CE3 sequence with local ZCC characteristics provided by the present application. It can be seen from Fig. 8b to Fig.
  • the single stream of CE1 sequence and CE3 sequence constructed in this application both have the characteristic of zero autocorrelation side lobe energy within the length range of Golay's complementary sequence, and for the cross-correlation characteristic, Compared with the CE1 sequence and CE3 sequence shown in 802.11ad, the cross-correlation energy is not zero within the length range of the Golay complementary sequence, that is, it does not have the local area ZCC characteristic, the CE1 sequence and CE3 sequence constructed in this application are in Golay
  • the complementary sequence has the characteristic of zero cross-correlation energy within the length range, that is, the CE1 sequence and CE3 sequence constructed in this application have the ZCC characteristic of the length range of the Golay complementary sequence.
  • the transmitting end device when the transmitting end device sends three streams or four streams, the transmitting end device can simultaneously send three streams or four streams in one cycle, as shown in FIG. 9 . Therefore, not only can the time for channel estimation be effectively shortened (also referred to as shortening the duration of channel estimation), but also the efficiency of channel estimation is improved.
  • the method provided by the embodiments of the present application can also shorten the time of target perception and improve the efficiency of target perception.
  • the method provided by the embodiments of the present application also effectively improves the perceived PRF, and increases the maximum detectable Doppler and/or velocity in the perception.
  • the transmitting end device may send five CE sequences, such as a CE1 sequence to a CE5 sequence, or may also send six CE sequences, such as a CE1 sequence to a CE6 sequence.
  • the CE1 sequence is constructed in the same manner as the CE2 sequence, and the CE3 sequence, CE4 sequence, CE5 sequence, and CE6 sequence are constructed in the same manner. That is to say, the symbol sequences corresponding to the CE1 sequence and the CE2 sequence are the same, and the symbol sequences corresponding to the CE3 sequence to the CE6 sequence are the same.
  • the specific values for these two symbol sequences can be shown in Table 1 and Table 2.
  • Figure 10a exemplarily shows CE1 to CE6 sequences.
  • the cross-correlation peaks of the six CE sequences in the length range of -128 to +128 of the Golay complementary sequences are shown in Table 5.
  • FIG. 10b shows a schematic diagram of the cross-correlation results of CE3 sequences and CE5 sequences provided by this application
  • FIG. 10c is a schematic diagram of the results of cross-correlation results of CE3 sequences and CE5 sequences shown in 802.11ad
  • 10d is a schematic diagram of the cross-correlation result between the CE1 sequence and the CE3 sequence provided in this application
  • FIG. 10e is a schematic diagram of the cross-correlation result between the CE1 sequence and the CE3 sequence shown in 802.11ad.
  • the CE1 sequence and CE3 sequence shown in this application have local ZCC properties.
  • the transmitting end device may determine the CE sequence in combination with the P-matrix. As shown in FIG. 9 , the transmitting end device can send the CE sequence in combination with the P matrix, and the P matrix can be the formula (19) shown below:
  • CE1 and CE2 are constructed in the same manner
  • CE3 to CE6 are constructed in the same manner.
  • the symbol sequences of CE1 and CE2 correspond to No. 1 in Table 1
  • the symbol sequences of CE3 to CE6 correspond to No. 16, No. 28, No. 45 or No. 57 in Table 1.
  • the CE1 sequence, the CE2 sequence, the CE5 sequence, and the CE6 sequence are constructed in the same manner, and the CE3 sequence and the CE4 sequence are constructed in the same manner.
  • the transmitting end device can also send the CE sequence in combination with the P matrix, where the P matrix can be as shown in the above formula (19).
  • the CE1 sequence, the CE2 sequence, the CE3 sequence, and the CE4 sequence are constructed in the same manner, and the CE5 sequence and the CE6 sequence are constructed in the same manner.
  • the transmitting end device can also send the CE sequence in combination with the P matrix, and the P matrix can be shown in formula (20) or formula (21):
  • the receiving end device can perform channel estimation or target sensing in two cycles in combination with the P-matrix, which not only reduces the time for the transmitting end device to send the CE sequence, but also shortens the time for the receiving end device to estimate the channel. Or shorten the time that the receiving end device perceives.
  • the transmitting end device may send seven CE sequences, such as CE1 sequence to CE7 sequence, or may also send eight CE sequences, such as CE1 sequence to CE8 sequence.
  • the CE1 sequence, CE2 sequence, CE7 sequence, and CE8 sequence are constructed in the same manner, and the CE3 sequence, CE4 sequence, CE5 sequence, and CE6 sequence are constructed in the same manner. That is to say, the symbol sequences corresponding to the CE1 sequence, the CE2 sequence, the CE7 sequence, and the CE8 sequence are the same, and the symbol sequences corresponding to the CE3 sequence, CE4 sequence, CE5 sequence, and CE6 sequence are the same.
  • the specific values for these two symbol sequences can be shown in Table 1 and Table 2.
  • FIG. 11 exemplarily shows the CE1 sequence to the CE8 sequence.
  • cross-correlation peaks of the eight CE sequences provided in the present application in the length range of Golay's complementary sequence, such as -128 to +128, are shown in Table 6.
  • the peak value of the cross-correlation between the CE1 sequence and the CE8 sequence shown in 802.11ad may be as shown in Table 7.
  • the CE sequences provided in this application are significantly improved. It can be seen from Table 6 that the cross-correlation result between the CE1 sequence and the CE7 sequence is not 0, and at the same time, the cross-correlation result between the CE1 sequence and the CE8 sequence is not 0, etc. Therefore, the sender device can combine the formula (22) shown in P-matrix to send CE sequence. In this case, the receiver device can complete the channel estimation or WLAN sensing in two cycles in combination with the P-matrix, which not only reduces the time for the transmitter device to send the CE sequence, but also shortens the channel estimation time for the receiver device. Alternatively, the time for sensing by the device at the receiving end is shortened.
  • the P matrix can be represented by the following formula (22):
  • the CE1 sequence, CE2 sequence, CE7 sequence, and CE8 sequence are constructed in the same manner, and the CE3 sequence, CE4 sequence, CE5 sequence, and CE6 sequence are constructed in the same manner.
  • the symbols of CE1, CE2, CE7, and CE8 correspond to number 1 in Table 1
  • CE3 to CE6 correspond to number 16, number 28, number 45, or number 57 in Table 1. It can be understood that, in the example shown above, CE3 to CE6 are constructed in the same manner, and CE1 and CE2 are constructed in the same manner. Therefore, for the descriptions of CE1 to CE6 and sequences 1 to 6 in the embodiments of this application, reference may be made to the above-mentioned The description of the fifth stream/six stream will not be repeated here. The following will focus on CE7 and CE8, and Sequence 7 and Sequence 8.
  • the CE1 sequences to CE4 sequences are constructed in the same manner, and the CE5 sequences to CE8 sequences are constructed in the same manner.
  • the transmitting end device can also perform channel estimation or target sensing in combination with the P matrix, and the P matrix can be shown in the following formula (23) or formula (24):
  • the symbol sequences of CE1 to CE4 correspond to the number 1 in Table 1
  • the symbol sequences of CE5 to CE8 correspond to the number 16 in Table 1, then That is, it corresponds to the number 1 in Table 1. That is, it corresponds to the number 16 in Table 1.
  • the 8 sequences carried in the first field such as
  • the CE1, CE2, CE5, and CE6 sequences are constructed in the same manner, and the CE3, CE4, CE7, and CE8 sequences are constructed in the same manner, and will not be described in detail here.
  • the transmitting end device may also perform channel estimation or target sensing in combination with the P matrix, and the P matrix may be as shown in the above formula (23) or formula (24). It is understandable that for the specific descriptions of CE1 to CE8 and sequence 1 to sequence 8, reference may be made to the above, and details are not repeated here.
  • the receiving end device can complete channel estimation or WLAN sensing in two cycles in combination with the P-matrix, which not only reduces the time for the transmitting end device to send the CE sequence, but also shortens the channel estimation time of the receiving end device. time, or, shortens the time sensed by the receiving end device.
  • the PPDUs shown in FIG. 3a and FIG. 3b above in the present application are only examples, but any PPDUs with functions similar to those of the PPDUs shown in the embodiments of the present application belong to the protection scope of the present application.
  • the PPDU shown in Fig. 3a and/or Fig. 3b is only an example, with the evolution of the standard, the form of the PPDU may also change, but as long as a certain field or some fields in the PPDU meet the requirements of the first The features of a field belong to the protection scope of this application.
  • the value of N is not limited in this application. Alternatively, N can also be equal to 32 or 64, etc.
  • the cross-correlation energy of the different CE sequences is zero in the range of -127 to +127 (including -127 and/or +127, including 0).
  • the length of the Golay complementary sequence may range from -63 to +63 (which may include -63 and/or +63).
  • the autocorrelation side lobe energy of one CE sequence may be zero in the range of -63 to +63 (including -63 and/or +63, excluding 0).
  • the cross-correlation energies of different CE sequences can range from zero to -63 to +63 (including -63 and/or +63, including 0).
  • the length of the Golay complementary sequence may range from -255 to +255 (which may include -255 and/or +255).
  • the autocorrelation side lobe energy of one CE sequence may be zero in the range of -255 to +255 (including -255 and/or +255, excluding 0).
  • the cross-correlation energies of different CE sequences can range from -255 to +255 (including -255 and/or +255, including 0) in the range of zero.
  • the English name of the cyclic prefix shown in this application is cyclic prefix, and the English name of the cyclic suffix is cyclic suffix.
  • the abscissas shown in Figures 4b, 8b to 8e, and 10b to 10e shown in this application may also represent elements or bits in addition to samples, symbols or delay indices.
  • the ordinates shown in Figures 4b, 8b to 8e, 10b to 10e may also represent correlations.
  • the cross-correlation energy of the two CE sequences shown above in the present application is zero within the length range of the Golay complementary sequence, and can also be referred to as: the two CE sequences are zero cross-correlation within the length range of the Golay complementary sequence.
  • the autocorrelation side lobe energy of a CE sequence is zero within the length range of the Golay complementary sequence can also be referred to as: the autocorrelation side lobe of the CE sequence is zero within the length range of the Golay complementary sequence.
  • the cross-correlation energy between the first sequence shown above in the present application and at least two of the M sequences is zero within the length of the Golay complementary sequence, which can also be referred to as: the first sequence is at least associated with M sequences.
  • the first sequence has zero autocorrelation side lobe energy within the length range of the Golay complementary sequence, which can also be referred to as: the first sequence has zero autocorrelation side lobes within the length range of the Golay complementary sequence. That is to say, the autocorrelation side lobe energy of zero shown above in the present application can also be referred to as: the autocorrelation side lobe is zero; the cross-correlation energy of zero can also be referred to as: the cross-correlation is zero.
  • the present application divides the communication device into functional modules according to the above method embodiments.
  • each functional module may be divided corresponding to each function, or two or more functions may be integrated into one processing module.
  • the above-mentioned integrated modules can be implemented in the form of hardware, and can also be implemented in the form of software function modules. It should be noted that the division of modules in this application is schematic, and is only a logical function division, and other division methods may be used in actual implementation.
  • the communication device according to the embodiment of the present application will be described in detail below with reference to FIG. 12 to FIG. 14 .
  • FIG. 12 is a schematic structural diagram of a communication apparatus provided by an embodiment of the present application. As shown in FIG. 12 , the communication apparatus includes a processing unit 1201 and a transceiver unit 1202 .
  • the communication apparatus may be the sending end device shown above or a chip in the sending end device, or the like. That is, the communication apparatus may be used to perform the steps or functions performed by the sender device in the above method embodiments.
  • the processing unit 1201 is used to generate a PPDU; the transceiver unit 1202 is used to output the PPDU.
  • the processing unit 1201 may be configured to perform step 701 shown in FIG. 7 .
  • the transceiver unit 1202 can be used to perform the sending step in step 702 shown in FIG. 7 .
  • the communication apparatus may be the receiving end device shown above or a chip in the receiving end device, or the like. That is, the communication apparatus may be used to perform the steps or functions performed by the receiving end device in the above method embodiments.
  • the transceiver unit 1202 is used to input the PPDU; the processing unit 1201 is used to process the M sequences carried in the PPDU.
  • the processing unit 1201 may perform channel estimation according to the M sequences, or perform target perception according to the M sequences.
  • the specific functions of the M sequences reference may be made to the above, which will not be repeated here.
  • the transceiver unit 1202 may also be configured to perform the receiving step in step 702 shown in FIG. 7 .
  • the processing unit 1201 may also be used to perform step 703 shown in FIG. 7 .
  • CE sequence for example, including CE1 sequence to CE8 sequence
  • other descriptions can also refer to the introduction in the above method embodiment, and will not be described in detail here.
  • the processing unit 1201 may be one or more processors
  • the transceiver unit 1202 may be a transceiver, or the transceiver unit 1202 may also be a sending unit and a receiving unit
  • the sending unit may be a transmitter
  • the receiving unit may be a receiver
  • the sending unit and the receiving unit are integrated into one device, such as a transceiver.
  • the processor and the transceiver may be coupled, etc., and the connection manner of the processor and the transceiver is not limited in the embodiment of the present application.
  • the communication device 130 includes one or more processors 1320 and a transceiver 1310 .
  • the processor 1320 is used to generate a PPDU; the transceiver 1310 is used to send the PPDU to the receiving end device.
  • the transceiver 1310 is used to receive the PPDU from the sending end device; sequence is processed.
  • a transceiver may include a receiver for performing the function (or operation) of receiving and a transmitter for performing the function (or operation) of transmitting ). And transceivers are used to communicate with other devices/devices over the transmission medium.
  • the communication device 130 may further include one or more memories 1330 for storing program instructions and/or data and the like.
  • Memory 1330 and processor 1320 are coupled.
  • the coupling in the embodiments of the present application is an indirect coupling or communication connection between devices, units or modules, which may be in electrical, mechanical or other forms, and is used for information exchange between devices, units or modules.
  • Processor 1320 may cooperate with memory 1330.
  • the processor 1320 may execute program instructions stored in the memory 1330 .
  • at least one of the above-mentioned one or more memories may be included in the processor.
  • the specific connection medium between the transceiver 1310, the processor 1320, and the memory 1330 is not limited in the embodiments of the present application.
  • the memory 1330, the processor 1320, and the transceiver 1310 are connected through a bus 13120 in FIG. 13.
  • the bus is represented by a thick line in FIG. 13.
  • the connection between other components is only for schematic illustration. , is not limited.
  • the bus can be divided into an address bus, a data bus, a control bus, and the like. For ease of presentation, only one thick line is used in FIG. 13, but it does not mean that there is only one bus or one type of bus.
  • the processor may be a general-purpose processor, a digital signal processor, an application-specific integrated circuit, a field programmable gate array or other programmable logic device, a discrete gate or transistor logic device, a discrete hardware component, etc.
  • a general purpose processor may be a microprocessor or any conventional processor or the like.
  • the steps of the method disclosed in conjunction with the embodiments of the present application may be directly embodied as being executed by a hardware processor, or executed by a combination of hardware and software modules in the processor, or the like.
  • the memory may include, but is not limited to, a non-volatile memory such as a hard disk drive (HDD) or a solid-state drive (SSD), a random access memory (Random Access Memory, RAM), Erasable Programmable Read-Only Memory (Erasable Programmable ROM, EPROM), Read-Only Memory (Read-Only Memory, ROM) or Portable Read-Only Memory (Compact Disc Read-Only Memory, CD-ROM) and so on.
  • a memory is any storage medium that can be used to carry or store program codes in the form of instructions or data structures, and can be read and/or written by a computer (such as the communication devices shown in this application, etc.), but is not limited thereto.
  • the memory in this embodiment of the present application may also be a circuit or any other device capable of implementing a storage function, for storing program instructions and/or data.
  • the processor 1320 is mainly used for processing communication protocols and communication data, as well as controlling the entire communication device, executing software programs, and processing data of the software programs.
  • the memory 1330 is mainly used to store software programs and data.
  • the transceiver 1310 may include a control circuit and an antenna, and the control circuit is mainly used for converting baseband signals to radio frequency signals and processing radio frequency signals.
  • Antennas are mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
  • Input and output devices, such as touch screens, display screens, and keyboards, are mainly used to receive data input by users and output data to users.
  • the processor 1320 can read the software program in the memory 1330, interpret and execute the instructions of the software program, and process the data of the software program.
  • the processor 1320 performs baseband processing on the data to be sent, and outputs a baseband signal to a radio frequency circuit.
  • the radio frequency circuit performs radio frequency processing on the baseband signal and sends the radio frequency signal through an antenna in the form of electromagnetic waves.
  • the radio frequency circuit receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor 1320, and the processor 1320 converts the baseband signal into data and processes the data. deal with.
  • the radio frequency circuit and antenna can be provided independently of the processor that performs baseband processing.
  • the radio frequency circuit and antenna can be arranged remotely from the communication device. .
  • the communication device shown in the embodiment of the present application may also have more components and the like than those shown in FIG. 13 , which is not limited in the embodiment of the present application.
  • the method performed by the processor and the transceiver shown above is only an example, and for the specific steps performed by the processor and the transceiver, reference may be made to the method described above.
  • the processing unit 1201 may be one or more logic circuits, and the transceiver unit 1202 may be an input and output interface, also called a communication interface, or an interface circuit , or interfaces, etc.
  • the transceiver unit 1202 may also be a sending unit and a receiving unit, the sending unit may be an output interface, and the receiving unit may be an input interface, the sending unit and the receiving unit are integrated into one unit, such as an input and output interface.
  • the communication device shown in FIG. 14 includes a logic circuit 1401 and an interface 1402 .
  • the above-mentioned processing unit 1201 may be implemented by the logic circuit 1401, and the transceiver unit 902 may be implemented by the interface 1402.
  • the logic circuit 1401 may be a chip, a processing circuit, an integrated circuit or a system on chip (SoC) chip, etc.
  • the interface 1402 may be a communication interface, an input/output interface, a pin, and the like.
  • FIG. 14 takes the above communication device as a chip as an example, and the chip includes a logic circuit 1401 and an interface 1402 .
  • the logic circuit and the interface may also be coupled to each other.
  • the specific connection manner of the logic circuit and the interface is not limited in the embodiment of the present application.
  • the logic circuit 1401 is used to generate a PPDU; the interface 1402 is used to output the PPDU.
  • the interface 1402 is used to input the PPDU; the logic circuit 1401 is used to process the M sequences carried in the PPDU.
  • the communication apparatus shown in the embodiments of the present application may implement the methods provided in the embodiments of the present application in the form of hardware, and may also implement the methods provided in the embodiments of the present application in the form of software, etc., which are not limited in the embodiments of the present application.
  • An embodiment of the present application further provides a wireless communication system, where the wireless communication system includes a sending end device and a receiving end device, and the sending end device and the receiving end device may be used to perform any of the foregoing embodiments (as shown in FIG. 7 ). Methods.
  • the present application also provides a computer program for implementing the operations and/or processing performed by the sender device in the method provided by the present application.
  • the present application also provides a computer program for implementing the operations and/or processing performed by the receiving end device in the method provided by the present application.
  • the present application also provides a computer-readable storage medium, where computer codes are stored in the computer-readable storage medium.
  • the computer codes When the computer codes are run on the computer, the computer enables the computer to perform the operations performed by the sender device in the method provided by the present application and / or processing.
  • the present application also provides a computer-readable storage medium, where computer codes are stored in the computer-readable storage medium, and when the computer codes are run on the computer, the computer executes the operations performed by the receiving end device in the method provided by the present application and / or processing.
  • the present application also provides a computer program product, the computer program product includes computer code or computer program, when the computer code or computer program is run on a computer, the operations performed by the sender device in the method provided by the present application and/or or processing is executed.
  • the present application also provides a computer program product, the computer program product includes computer code or computer program, when the computer code or computer program is run on a computer, the operations performed by the receiving end device in the method provided by the present application and/or or processing is executed.
  • the disclosed system, apparatus and method may be implemented in other manners.
  • the apparatus embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may also be electrical, mechanical or other forms of connection.
  • the units described as separate components may or may not be physically separated, and components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the technical effects of the solutions provided by the embodiments of the present application.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the above-mentioned integrated units may be implemented in the form of hardware, or may be implemented in the form of software functional units.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as an independent product, may be stored in a computer-readable storage medium.
  • a computer-readable storage medium includes several instructions to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned readable storage medium includes: U disk, mobile hard disk, read-only memory (ROM), random access memory (RAM), magnetic disk or optical disk, etc. that can store program codes medium.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)
  • Communication Control (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

本申请公开了一种信号处理方法及装置,该方法包括:发送端设备生成PPDU,并发送该PPDU;接收端设备接收该PPDU,并对该PPDU中承载的M个序列进行处理。本申请所示的PPDU包括第一字段,该第一字段用于承载M个序列,M个序列对应M个空时流,一个序列对应一个空时流,M为正整数;同时,M个序列中包括第一序列,M大于2时,该第一序列至少与M个序列中的两个序列在格雷互补序列的长度范围内互相关能量为零,第一序列在格雷互补序列的长度范围内自相关旁瓣能量为零,第一序列根据信道估计CE序列得到,格雷互补序列用于构造CE序列。本申请提供的方法可以有效提高发送序列的效率。

Description

信号处理方法及装置
本申请要求于2021年02月10日提交中国专利局、申请号为202110184266.6、申请名称为“信号处理方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种信号处理方法及装置。
背景技术
目前电气与电子工程师协会(institute of electrical and electronics engineers,IEEE)系列标准有低频段(例如:2.4GHz和5GHz)相关标准(例如:802.11n、802.11ac、802.11ax等)和高频段(例如:60GHz)相关标准(例如:802.11ad、802.11ay等)。
同时,由于高频信号(如60HGz)具有诸多的优势,如波长短,对运动目标敏感,传输带宽大,距离分辨率高等,因此,常常利用高频信号进行相关操作,例如该相关操作可以包括信道估计或目标感知。示例性的,发送端设备通过向接收端设备发送物理层(physical,PHY)协议数据单元(PHY protocol data unit,PPDU),可使得接收端设备根据该PPDU中承载的序列进行信道估计或目标感知等。
因此,如何提高序列的发送效率亟待解决。
发明内容
本申请提供一种信号处理方法及装置,能够有效提高序列的发送效率。
第一方面,本申请实施例提供一种信号处理方法,所述方法包括:
生成物理层(physical,PHY)协议数据单元(PHY protocol data unit,PPDU),所述PPDU包括第一字段,所述第一字段用于承载M个序列,所述M个序列对应M个空时流,一个所述序列对应一个所述空时流,所述M为正整数,所述M个序列中包括第一序列,所述M大于2时,所述第一序列至少与所述M个序列中的两个序列在格雷互补序列的长度范围内互相关能量为零,所述第一序列在所述格雷互补序列的长度范围内自相关旁瓣能量为零,所述第一序列根据信道估计(channel estimation,CE)序列得到,所述格雷互补序列用于构造所述CE序列;发送所述PPDU。
本申请实施例中,M大于1时,发送端设备在发送M个序列时,本申请实施例提供的第一序列至少与两个序列在格雷互补序列的长度范围内互相关能量为零,从而改善了该第一序列与该至少两个序列之间的干扰,使得发送端设备在一个周期内能够尽可能多的发送序列(如至少可以发送三个序列)。进而,提高了发送端设备发送M个序列的效率,提高了接收端设备进行信道估计的效率。同时,由于发送端设备在一个周期内能发送至少三个序列,由此还有效减少了感知脉冲时间,根据脉冲重复时间与脉冲重复频率之间的关系,还提高了感知的最大可探测多普勒或速率。
第二方面,本申请实施例提供一种信号处理方法,所述方法包括:
接收物理层协议数据单元PPDU,所述PPDU包括第一字段,所述第一字段用于承载M个序列,所述M个序列对应M个空时流,一个所述序列对应一个所述空时流,所述M为正整数,所述M个序列中包括第一序列,所述M大于2时,所述第一序列至少与所述M个序 列中的两个序列在格雷互补序列的长度范围内互相关能量为零,所述第一序列在所述格雷互补序列的长度范围内自相关旁瓣能量为零,所述第一序列根据信道估计CE序列得到,所述格雷互补序列用于构造所述CE序列;根据所述M个序列进行信号处理。
示例性的,接收端设备可以根据该M个序列进行信道估计或目标感知等。
关于第二方面的有益效果可以参考第一方面的描述,这里不再赘述。
结合第一方面或第二方面,在一种可能的实现方式中,所述M个序列用于信道估计,或者,所述M个序列用于目标感知。
结合第一方面或第二方面,在一种可能的实现方式中,所述M大于4时,所述第一序列至少与所述M个序列中的三个序列在所述格雷互补序列的长度范围内互相关能量为零。
结合第一方面或第二方面,在一种可能的实现方式中,所述第一序列根据P矩阵以及所述CE序列得到,所述P矩阵为:
Figure PCTCN2022074884-appb-000001
结合第一方面或第二方面,在一种可能的实现方式中,所述格雷互补序列包括第一格雷互补序列Ga和Gb,所述第一序列根据所述Ga、所述Gb以及第一符号序列得到,所述第一符号序列用于表示所述Ga和所述Gb的正负符号。
结合第一方面或第二方面,在一种可能的实现方式中,所述第一符号序列a(n)={a 1,a 2,a 3,a 4,a 5,a 6,a 7,a 8,a 9,a 10},所述a 1等于所述a 9,所述a 2等于所述a 10,所述a(n)中各元素的取值为1或-1。
结合第一方面或第二方面,在一种可能的实现方式中,所述a(n)满足如下至少一项:
Figure PCTCN2022074884-appb-000002
结合第一方面或第二方面,在一种可能的实现方式中,所述a 1至所述a 10的取值为以下任一项,且横向顺序依次对应所述a 1至所述a 10
1   1   -1   1   -1   1   1   1   1   1;
1   1   -1   1   1   -1   1   1   1   1;
1   1   -1   1   1   1   -1   1   1   1;
1   1   1   -1   1   1   -1   1   1   1;
1   1   1   1   -1   1   -1   1   1   1;
1   1   -1  -1  -1   1   -1   1   1   1;
1   1   -1  -1   1   -1  -1   1   1   1;
1   1   -1   1   -1  -1  -1   1   1   1;
1   1   -1   1   1   1   1   -1   1   1;
1   1   1   -1   1   1   1   -1   1   1;
1   1   1   1   -1   1   1   -1   1   1;
1    1   -1  -1  -1   1   1   -1   1   1;
1    1   1   1   1   -1   1   -1   1   1;
1    1   1   -1  -1  -1   1   -1   1   1;
1    1   1   -1  -1   1   -1  -1   1   1;
1    1   -1   1   1   -1  -1  -1   1   1;
1    1   1   -1   1   -1  -1  -1   1   1;
-1   1   -1   1   1   1   1   1   -1   1;
-1   1   1   -1   1   1   1   1   -1   1;
-1   1   1   1   -1   1   1   1   -1   1;
-1   1   -1  -1  -1   1   1   1   -1   1;
-1   1   1   1   1   -1   1   1   -1   1;
-1   1   1   -1  -1  -1   1   1   -1   1;
-1   1   1   1   1   1   -1   1   -1   1;
-1   1   1   1   -1  -1  -1   1   -1   1;
-1   1   -1  -1  -1  -1  -1   1   -1   1;
-1   1   -1  -1   1   1   1   -1  -1   1;
-1   1   1   1   -1  -1   1   -1  -1   1;
-1   1   -1  -1  -1  -1   1   -1  -1   1;
-1   1   -1   1   1   1   -1  -1  -1   1;
-1   1   1   -1   1   1   -1  -1  -1   1;
-1   1   1   1   -1   1   -1  -1  -1   1;
-1   1   -1  -1  -1   1   -1  -1  -1   1;
-1   1   -1  -1   1   -1  -1  -1  -1   1;
-1   1   -1   1   -1  -1  -1  -1  -1   1。
结合第一方面或第二方面,在一种可能的实现方式中,M大于2时,所述M个序列还包括第二序列,所述第二序列与所述第一序列在所述格雷互补序列的长度范围内互相关能量为零,所述格雷互补序列还包括第二格雷互补序列Ga’和Gb’;
其中,所述第二序列根据所述Ga’、所述Gb’以及第二符号序列b(n)={b 1,b 2,b 3,b 4,b 5,b 6,b 7,b 8,b 9,b 10}得到,所述第二符号序列用于表示所述Ga’和所述Gb’的正负符号,所述b 1等于所述b 9,所述b 2等于所述b 10,所述b(n)中各元素的取值为1或-1,所述b(n)不等于所述a(n)。
结合第一方面或第二方面,在一种可能的实现方式中,所述a(n)与所述b(n)满足如下至少一项:
Figure PCTCN2022074884-appb-000003
结合第一方面或第二方面,在一种可能的实现方式中,所述a(n)={1,1,-1,1,-1,1,1,1,1,1}时,所述b(n)={1,1,1,-1,-1,1,-1,-1,1,1},或者,所述b(n)={-1,1,-1,-1,1,1,1,-1,-1,1};或者,
所述a(n)={1,1,1,-1,1,-1,1,1,1,1}时,所述b(n)={1,1,-1,1,1,-1,-1,-1,1,1},或者,所述b(n)={-1,1,1,1,-1,-1,1,-1,-1,1};或者,
所述a(n)={1,1,1,1,-1,1,-1,1,1,1}时,所述b(n)={1,1,-1,-1,-1,1,1,-1,1,1},或者,所述b(n)={-1,1,1,-1,1,1,-1,-1,-1,1};或者,
所述a(n)={1,1,-1,-1,1-,1,-1,1,1,1}时,所述b(n)={1,1,1,1,1,-1,1,-1,1,1},或者,所述b(n)={-1,1,-1,1,-1,-1,-1,-1,-1,1};或者,
所述a(n)={1,1,-1,-1,-1,1,1,-1,1,1}时,所述b(n)={-1,1,-1,1,1,1,1,1,-1,1};或者,
所述a(n)={1,1,1,1,1,-1,1,-1,1,1}时,所述b(n)={-1,1,1,-1,-1,-1,1,1,-1,1};或者,
所述a(n)={1,1,1,-1,-1,1,-1,-1,1,1}时,所述b(n)={-1,1,1,1,1,1,-1,1,-1,1};或者,
所述a(n)={1,1,-1,1,1,-1,-1,-1,1,1}时,所述b(n)={-1,1,-1,-1,-1,-1,-1,1,-1,1};或者,
所述a(n)={-1,1,-1,1,1,1,1,1,-1,1}时,所述b(n)={-1,1,1,-1,1,1,-1,-1,-1,1};或者,
所述a(n)={-1,1,1,-1,-1,-1,1,1,-1,1}时,所述b(n)={-1,1,-1,1,-1,-1,-1,-1,-1,1};或者,
所述a(n)={-1,1,1,1,1,1,-1,1,-1,1}时,所述b(n)={-1,1,-1,-1,1,1,1,-1,-1,1};或者,
所述a(n)={-1,1,-1,-1,-1,-1,-1,1,-1,1}时,所述b(n)={-1,1,1,1,-1,-1,1,-1,-1,1}。
结合第一方面或第二方面,在一种可能的实现方式中,所述第一字段为所述PPDU中的训练字段单元;或者,
所述第一字段为所述PPDU中的增强定向多千兆信道估计字段;或者,
所述第一字段为所述PPDU中的长训练字段。
可理解,关于第一方面或第二方面的具体说明,还可以参考下文所示的实施例,这里不再一一详述。
第三方面,本申请实施例提供一种通信装置,用于执行第一方面或第一方面的任意可能的实现方式中的方法。该通信装置包括具有执行第一方面或第一方面的任意可能的实现方式中的方法的相应单元。
示例性的,该通信装置可以为发送端设备或发送端设备中的芯片等。
第四方面,本申请实施例提供一种通信装置,用于执行第二方面或第二方面的任意可能的实现方式中的方法。该通信装置包括具有执行第二方面或第二方面的任意可能的实现方式中的方法的相应方法。
示例性的,该通信装置可以为接收端设备或接收端设备中的芯片等。
在第三方面或第四方面中,上述通信装置可以包括收发单元和处理单元。对于收发单元和处理单元的具体描述还可以参考下文示出的装置实施例。
第五方面,本申请实施例提供一种通信装置,该通信装置包括处理器,用于执行上述第一方面或第一方面的任意可能的实现方式所示的方法。或者,该处理器用于执行存储器中存储的程序,当该程序被执行时,上述第一方面或第一方面的任意可能的实现方式所示的方法被执行。
在执行上述方法的过程中,上述方法中有关发送信息(如发送PPDU)的过程,可以理解为由处理器输出上述信息的过程,或者处理器接收输入的上述信息的过程。在输出上述信 息时,处理器将该上述信息输出给收发器,以便由收发器进行发射。该上述信息在由处理器输出之后,还可能需要进行其他的处理,然后才到达收发器。类似的,处理器接收输入的上述信息时,收发器接收该上述信息,并将其输入处理器。更进一步的,在收发器收到该上述信息之后,该上述信息可能需要进行其他的处理,然后才输入处理器。
对于处理器所涉及的发射、发送和接收等操作,如果没有特殊说明,或者,如果未与其在相关描述中的实际作用或者内在逻辑相抵触,则均可以更加一般性的理解为处理器输出和接收、输入等操作,而不是直接由射频电路和天线所进行的发射、发送和接收操作。
在实现过程中,上述处理器可以是专门用于执行这些方法的处理器,也可以是执行存储器中的计算机指令来执行这些方法的处理器,例如通用处理器。上述存储器可以为非瞬时性(non-transitory)存储器,例如只读存储器(Read Only Memory,ROM),其可以与处理器集成在同一块芯片上,也可以分别设置在不同的芯片上,本申请实施例对存储器的类型以及存储器与处理器的设置方式不做限定。可理解,对于处理器和存储器的说明同样适用于下文示出的第六方面,为避免赘述,第六方面不再详述。
在一种可能的实现方式中,存储器位于上述通信装置之外。
在一种可能的实现方式中,存储器位于上述通信装置之内。
本申请实施例中,处理器和存储器还可以集成于一个器件中,即处理器和存储器还可以被集成在一起。
在一种可能的实现方式中,通信装置还包括收发器,该收发器,用于接收信号或发送信号。示例性的,该收发器还可以用于发送PPDU等。
本申请实施例中,该通信装置可以为发送端设备或发送端设备中的芯片等。
第六方面,本申请实施例提供一种通信装置,该通信装置包括处理器,用于执行上述第二方面或第二方面的任意可能的实现方式所示的方法。或者,处理器用于执行存储器中存储的程序,当该程序被执行时,上述第二方面或第二方面的任意可能的实现方式所示的方法被执行。
在一种可能的实现方式中,存储器位于上述通信装置之外。
在一种可能的实现方式中,存储器位于上述通信装置之内。
在本申请实施例中,处理器和存储器还可以集成于一个器件中,即处理器和存储器还可以被集成在一起。
在一种可能的实现方式中,通信装置还包括收发器,该收发器,用于接收信号或发送信号。示例性的,该收发器可以用于接收PPDU。
本申请实施例中,该通信装置可以为接收端设备或接收端设备中的芯片等。
第七方面,本申请实施例提供一种通信装置,该通信装置包括逻辑电路和接口,所述逻辑电路和所述接口耦合;所述逻辑电路,用于生成PPDU;所述接口,用于输出该PPDU。
可理解,上述接口和逻辑电路还可以有如下理解:
如所述逻辑电路,用于获得处理后的数据(如PPDU),所述接口,用于输出由逻辑电路处理后的处理。
可理解,关于PPDU、M个序列、第一序列、格雷互补序列、CE序列等的描述,可以参考上述第一方面或第二方面的描述;或者,还可以参考下文示出的各个实施例,这里不再详述。
第八方面,本申请实施例提供一种通信装置,该通信装置包括逻辑电路和接口,所述逻辑电路和所述接口耦合;所述接口,用于输入PPDU;所述逻辑电路,用于处理该PPDU(如 包括处理PPDU中所承载的M个序列等)。
可理解,上述接口和逻辑电路还可以有如下理解:
如所述接口用于输入待处理的数据(如PPDU),所述逻辑电路,用于所述待处理的数据进行处理。
可理解,关于PPDU、M个序列、第一序列、格雷互补序列、CE序列等的描述,可以参考上述第一方面或第二方面的描述;或者,还可以参考下文示出的各个实施例,这里不再详述。
第九方面,本申请实施例提供一种计算机可读存储介质,该计算机可读存储介质用于存储计算机程序,当其在计算机上运行时,使得上述第一方面或第一方面的任意可能的实现方式所示的方法被执行。
第十方面,本申请实施例提供一种计算机可读存储介质,该计算机可读存储介质用于存储计算机程序,当其在计算机上运行时,使得上述第二方面或第二方面的任意可能的实现方式所示的方法被执行。
第十一方面,本申请实施例提供一种计算机程序产品,该计算机程序产品包括计算机程序或计算机代码,当其在计算机上运行时,使得上述第一方面或第一方面的任意可能的实现方式所示的方法被执行。
第十二方面,本申请实施例提供一种计算机程序产品,该计算机程序产品包括计算机程序或计算机代码,当其在计算机上运行时,使得上述第二方面或第二方面的任意可能的实现方式所示的方法被执行。
第十三方面,本申请实施例提供一种计算机程序,该计算机程序在计算机上运行时,上述第一方面或第一方面的任意可能的实现方式所示的方法被执行。
第十四方面,本申请实施例提供一种计算机程序,该计算机程序在计算机上运行时,上述第二方面或第二方面的任意可能的实现方式所示的方法被执行。
第十五方面,本申请实施例提供一种无线通信系统,该无线通信系统包括发送端设备和接收端设备,所述发送端设备用于执行上述第一方面或第一方面的任意可能的实现方式所示的方法,所述接收端设备用于执行上述第二方面或第二方面的任意可能的实现方式所示的方法。
附图说明
图1是本申请实施例提供的一种通信系统示意图;
图2是本申请实施例提供的一种接入点和站点的结构示意图;
图3a和图3b是本申请实施例提供的一种PPDU的结构示意图;
图4a是本申请实施例提供的一种CE序列的结构示意图;
图4b是本申请实施例提供的一种CE序列自相关的结构示意图;
图4c是本申请实施例提供的一种多流序列的发送示意图;
图4d是本申请实施例提供的一种CE序列的结构示意图;
图5a是本申请实施例提供的一种CE序列自相关的分析示意图;
图5b至图5d是本申请提供的一种CE序列的结构示意图;
图6a和图6b是本申请实施例提供的一种CE序列互相关的分析示意图;
图6c是本申请实施例提供的一种CE序列的结构示意图;
图7是本申请实施例提供的一种信号处理方法的流程示意图;
图8a是本申请实施例提供的一种CE序列的结构示意图;
图8b和图8c是本申请实施例提供的一种CE序列自相关的结果示意图;
图8d和图8e是本申请实施例提供的一种CE序列互相关的结果示意图;
图9是本申请实施例提供的一种多流序列的发送示意图;
图10a是本申请实施例提供的一种CE序列的结构示意图;
图10b至图10e是本申请实施例提供的一种CE序列互相关的结果示意图;
图11是本申请实施例提供的一种CE序列的结构示意图;
图12至图14是本申请实施例提供的一种通信装置的结构示意图。
具体实施方式
为了使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请作进一步地描述。
本申请的说明书、权利要求书及附图中的术语“第一”和“第二”等仅用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备等,没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元等,或可选地还包括对于这些过程、方法、产品或设备等固有的其它步骤或单元。
在本文中提及的“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员可以显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
在本申请中,“至少一个(项)”是指一个或者多个,“多个”是指两个或两个以上,“至少两个(项)”是指两个或三个及三个以上,“和/或”,用于描述关联对象的关联关系,表示可以存在三种关系,例如,“A和/或B”可以表示:只存在A,只存在B以及同时存在A和B三种情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指这些项中的任意组合。例如,a,b或c中的至少一项(个),可以表示:a,b,c,“a和b”,“a和c”,“b和c”,或“a和b和c”。
本申请提供的方法可以应用于各类通信系统,例如,可以是物联网(internet of things,IoT)系统、窄带物联网(narrow band internet ofthings,NB-IoT)系统、长期演进(long term evolution,LTE)系统,也可以是第五代(5th-generation,5G)通信系统,以及未来通信发展中出现的新的通信系统(如6G)等。以及本申请提供的方法还可以应用于无线局域网(wireless local area network,WLAN)系统,如无线保真(wireless-fidelity,Wi-Fi)等。
本申请提供的方法可以由无线通信系统中的通信装置实现。例如,该通信装置可以是接入点(access point,AP)设备或站点(station,STA)设备。
本申请提供的方法可以应用于一个节点与一个或多个节点进行数据传输的场景中;也可以应用于单用户的上行/下行传输,和/或,多用户的上行/下行传输;还可以应用于设备到设备(device to device,D2D)的传输等;还可以应用于对于环境中的目标进行感知,估计其距离,速度,角度等信息,进一步的,还可以基于相关信息对感知目标的动作进行识别,成像等,这里不再一一详述。例如,WLAN感知是一种利用WLAN无线信号进行目标感知的技 术。这项技术可以基于无线电测量或采样环境的能力,使得两个物理设备之间的每个通信路径都能够获取周围环境信息。
其中,上述节点既可以是AP,也可以是STA。为便于描述,下文以AP与STA之间的通信为例进行说明。
示例性的,本申请提供的方法可以应用的通信系统可以包括接入点(access point,AP)设备和站点(station,STA)设备。该接入点设备也可理解为接入点实体,该站点设备也可理解为站点实体。例如,本申请可以适用于WLAN中AP与STA之间通信或感知的场景。可选地,AP可以与单个STA通信或感知,或者,AP同时与多个STA通信或感知。具体地,AP与多个STA通信或感知又可以分为AP同时给多个STA发送信号的下行传输,以及多个STA向AP发送信号的上行传输。其中,AP和STA之间可以支持WLAN通信协议,该通信协议可以包括IEEE802.11系列的协议。示例性的,低频段(如2.4GHz和5GHz)协议,如802.11n、802.11ac、802.11ax;又如高频段(如60HGz)协议,如802.11ad/定向多千兆比特(directional multi gigabit,DMG)、802.11ay/增强定向多千兆比特(enhanced directional multi gigabit,EDMG);又如802.11ay单载波物理层(single carrier physical Layer,SC PHY)等协议。当然,随着通信技术的不断演进和发展,该通信协议还可以包括IEEE 802.11ay或IEEE802.11ad的下一代协议等。
图1是本申请实施例提供的一种通信系统的架构示意图。该通信系统可以包括一个或多个AP以及一个或多个STA。图1中示出了一个接入点设备如AP,以及三个站点设备,如STA1、STA2和STA3。可理解,图1仅示例性的示出了一个AP和三个STA,但是该AP或STA的数量还可以更多或更少,本申请对此不作限定。
其中,接入点(例如图1的AP)是一种具有无线通信功能的装置,支持采用WLAN协议进行通信或感知,具有与WLAN网络中其他设备(比如站点或其他接入点)通信或感知的功能,当然,还可以具有与其他设备通信或感知的功能。或者,接入点相当于一个连接有线网和无线网的桥梁,主要作用是将各个无线网络客户端连接到一起,然后将无线网络接入以太网。在WLAN系统中,接入点可以称为接入点站点(AP STA)。该具有无线通信功能的装置可以为一个整机的设备,还可以是安装在整机设备中的芯片或处理系统等,安装这些芯片或处理系统的设备可以在芯片或处理系统的控制下,实现本申请实施例的方法和功能等。本申请实施例中的AP是为STA提供服务的装置,可以支持802.11系列协议。例如,接入点可以为终端设备(如手机)进入有线(或无线)网络的接入点,主要部署于家庭、大楼内部以及园区内部,典型覆盖半径为几十米至上百米,当然,也可以部署于户外。又例如,AP可以为通信服务器、路由器、交换机、网桥等通信实体;AP可以包括各种形式的宏基站,微基站,中继站等,当然AP还可以为这些各种形式的设备中的芯片和处理系统,从而实现本申请实施例的方法和功能。本申请中的接入点可以是高效(high efficient,HE)AP或极高吞吐量(extramely high throughput,EHT)AP,还可以是适用未来WiFi标准的接入点等。
站点(例如图1中的STA1或STA2等)是一种具有无线通信功能的装置,支持采用WLAN协议进行通信或感知,具有与WLAN网络中的其他站点或接入点通信或感知的能力。在WLAN系统中,站点可以称为非接入点站点(non-access point station,non-AP STA)。例如,STA是允许用户与AP通信或感知进而与WLAN通信的任何用户通信设备,该具有无线通信功能的装置可以为一个整机的设备,还可以是安装在整机设备中的芯片或处理系统等,安装这些芯片或处理系统的设备可以在芯片或处理系统的控制下,实现本申请实施例的方法和功能。例如,站点可以为无线通讯芯片、无线传感器或无线通信终端等,也可称为用户。又例 如,站点可以为支持WiFi通讯功能的移动电话、支持WiFi通讯功能的平板电脑、支持WiFi通讯功能的机顶盒、支持WiFi通讯功能的智能电视、支持WiFi通讯功能的智能可穿戴设备、支持WiFi通讯功能的车载通信设备和支持WiFi通讯功能的计算机等等。
WLAN系统可以提供高速率低时延的传输,随着WLAN应用场景的不断演进,WLAN系统将会应用于更多场景或产业中,比如,应用于物联网产业,应用于车联网产业或应用于银行业,应用于企业办公,体育场馆展馆,音乐厅,酒店客房,宿舍,病房,教室,商超,广场,街道,生成车间和仓储等。当然,支持WLAN通信或感知的设备(比如接入点或站点)可以是智慧城市中的传感器节点(比如,智能水表,智能电表,智能空气检测节点),智慧家居中的智能设备(比如智能摄像头,投影仪,显示屏,电视机,音响,电冰箱,洗衣机等),物联网中的节点,娱乐终端(比如AR,VR等可穿戴设备),智能办公中的智能设备(比如,打印机,投影仪,扩音器,音响等),车联网中的车联网设备,日常生活场景中的基础设施(比如自动售货机,商超的自助导航台,自助收银设备,自助点餐机等),以及大型体育以及音乐场馆的设备等。示例性的,例如,接入点和站点可以是应用于车联网中的设备,物联网(IoT,internet of things)中的物联网节点、传感器等,智慧家居中的智能摄像头,智能遥控器,智能水表电表,以及智慧城市中的传感器等。本申请实施例中对于STA和AP的具体形式不做限制,在此仅是示例性说明。
虽然本申请主要以部署IEEE 802.11的网络为例进行说明,本领域技术人员容易理解,本申请涉及的各个方面可以扩展到采用各种标准或协议的其它网络,例如,蓝牙(bluetooth)、高性能无线LAN(high performance radio LAN,HIPERLAN)(一种与IEEE 802.11标准类似的无线标准,主要在欧洲使用)以及广域网(WAN)、无线局域网(wireless local area network,WLAN)、个人区域网(personal area network,PAN)或其它现在已知或以后发展起来的网络等。
示例性的,图2是本申请实施例提供的接入点和站点的结构示意图。其中,AP可以是多天线的,也可以是单天线的。如图2所示,AP包括物理层(physical layer,PHY)处理电路和媒介接入控制(medium access control,MAC)处理电路,物理层处理电路可以用于处理物理层信号,MAC层处理电路可以用于处理MAC层信号。802.11标准关注PHY和MAC部分。如图2所示,图2还示出了单个天线的STA结构示意图,实际场景中,STA也可以是多天线的,并且可以是两个以上天线的设备。STA可以包括PHY处理电路和MAC处理电路,物理层处理电路可以用于处理物理层信号,MAC层处理电路可以用于处理MAC层信号。
本申请中,发送端设备可以为接入点设备或站点设备;接收端设备也可以为接入点设备或站点设备。例如,发送端设备可为接入点设备,接收端设备为接入点设备;又例如,发送端设备为站点设备,接收端设备为站点设备;又例如,发送端设备可为接入点设备,接收端设备为站点设备;又例如,发送端设备可为站点设备,接收端设备为接入点设备。可理解,这里示出的发送端设备和接收端设备还可以统称为通信装置。
可理解,本申请是将以发送端设备向接收端设备发送物理层协议数据单元(PHY protocol data unit,PPDU)为例,说明本申请所提供的信号处理方法的。但是,本申请示出的方法还可以适用于各种类型的PPDU。例如,该PPDU可以包括:多用户物理协议数据单元(multiple user PHY protocol data unit,MU PPDU)、单用户物理协议数据单元(single user PHY protocol data unit,SU PPDU)或基于触发帧的物理协议数据单元(trigger based PHY protocol data unit,TB PPDU)等。
示例性的,图3a示出的是一种PPDU的结构示意图。如图3a所示,该PPDU可以包括传统短训练字段(legacy-short training field,L-STF)、传统长训练字段(legacy-long training field,L-LTF)、传统头标记(legacy-header,L-header)、增强定向多千兆头标记A(EDMG-header-A)、增强定向多千兆短训练字段(EDMG-STF)、增强定向多千兆信道估计字段(EDMG-channel estimation field,EDMG-CEF)、增强定向多千兆头标记B(EDMG-header-B)、数据(data)、训练字段单元(training filed unit,TRN unit)。该训练字段单元可以包括序列(sequence)。可理解,关于图3a所示的PPDU的具体说明还可以参考802.11ay EDMG协议等,这里不作详述。
示例性的,图3b示出的是一种PPDU的结构示意图。如该PPDU可以包括短训练字段(short training field,STF)、长训练字段(long training field,LTF)、头(header)、数据(data)、训练字段单元(TRN unit)。可理解,关于图3b所示的PPDU的具体说明还可以从参考802.11ad DMG协议。
以下将详细说明本申请涉及的格雷(golay)互补序列(也可以称为golay互补序列)以及信道估计(channel estimation,CE)序列。
示例性的,长度为N(即序列长度为N,或者也可以称为格雷互补序列的长度为N)的二元恒模序列x和y满足如下公式(1)的情况下,则可以称其互为golay互补序列。
Figure PCTCN2022074884-appb-000004
其中,上标*表示复共轭,符号
Figure PCTCN2022074884-appb-000005
表示卷积运算。
结合相关标准如802.11ay中规定的golay互补序列,
Figure PCTCN2022074884-appb-000006
Figure PCTCN2022074884-appb-000007
具有零互相关(zero cross correlation,ZCC)特性,如下公式(2)和公式(3)。同样的,
Figure PCTCN2022074884-appb-000008
Figure PCTCN2022074884-appb-000009
Figure PCTCN2022074884-appb-000010
Figure PCTCN2022074884-appb-000011
Figure PCTCN2022074884-appb-000012
也都具有ZCC特性。
Figure PCTCN2022074884-appb-000013
Figure PCTCN2022074884-appb-000014
可理解,这里所示的上标1-8可以理解为序列的索引,或序列编号等。例如,发送端设备发送1流时的CE1序列可以由
Figure PCTCN2022074884-appb-000015
Figure PCTCN2022074884-appb-000016
构成,发送2流时的CE2序列可以由
Figure PCTCN2022074884-appb-000017
Figure PCTCN2022074884-appb-000018
构成(发送2流时还会发送CE1序列),发送3流时的CE3序列可以由
Figure PCTCN2022074884-appb-000019
Figure PCTCN2022074884-appb-000020
构成等等,这里不再一一列举。n表示元素索引或码片的索引等,上述符号
Figure PCTCN2022074884-appb-000021
表示卷积运算。
示例性的,CE序列可以用于进行WLAN感知(sensing),在进行WLAN感知时,单程距离L可以满足公式(4)。
Figure PCTCN2022074884-appb-000022
其中,若以802.11ay SC PHY标准中规定的码片速率(如也可以称为码元速率)1.76Gpbs为例,则每秒钟发送的码率速率为1.76G,由此公式(2)中的Chip_rate=1.76Gbps=1.76Gb/s。如当N=128时,
Figure PCTCN2022074884-appb-000023
由此往返距离L/2=10.9091m,该距离可以满足WLAN感知中的多数应用场景。需要注意的是,这里所示的N仅为示例,本申请下文示出的N可以等于128,或者,N可以等于256,或者,N可以等于512等,本申请对于序列长度N的具体取值不作限定。但是,随着N取值的变化,距离L也会发生变化,同时,本申请下文示出的格雷互补序列的长度范围也会发生变化。
如图4a所示,图4a示出的是利用golay互补序列构造的CE序列的结构示意图。采用golay互补序列构造CE序列,可以使得CE序列在格雷互补序列的长度范围内如-128至+128自相关旁瓣能量为零(零也可以称为0)。如图4b所示,图4b示出的是CE序列自相关的结果示意图,从图4b可以看出在格雷互补序列的长度范围(即-128至+128)内自相关旁瓣能量为零。图4b中的横坐标表示延迟索引(delay index),纵坐标表示能量(power),从图4b中可以看出,在-128至+128的范围内,该CE序列在横坐标0处的自相关结果可以达到1024(即自相关主瓣能量为1024),而在该-128至+128除了0之外的其他范围,该CE序列的自相关结果为0。可理解,图4b中的横坐标还可以表示为码元。需要说明的是,本申请附图中的横坐标是以样本(samples)为例示出的,但是不应将其理解为对本申请的限定。如图4b、图8b至图8e、图10b至图10e均是以samples为例示出的横坐标,该横坐标还可以称为码元或延迟索引(附图中未示出)。
CE序列可以应用于多输入多输出(multiple input multiple output,MIMO)信道估计中,从而结合P矩阵(P-matrix)进行发射。
示例性的,该P矩阵可以如公式(5)所示:
Figure PCTCN2022074884-appb-000024
可理解,由于上述公式(5)中的第一行和第二行相同,第三行和第四行相同,第五行和第六行相同,第七行和第八行相同,因此上述公式(5)还可以等效表示为如下所示:
Figure PCTCN2022074884-appb-000025
结合公式(5)或公式(6),图4c示出的是进行信道估计的CE序列的发射示意图。图4c中,横坐标可以表示时间(time),纵坐标可以表示空时流(space time stream)(也可以简称为流,如图4c中简称为流),同时图4c示出的是结合P矩阵的CE序列的发射示意图。
如图4c所示,当发射2流进行信道估计时,可以如图4d所示,Gu 1、Gv 1分别是根据golay互补序列
Figure PCTCN2022074884-appb-000026
得到,Gu 2、Gv 2分别是根据golay互补序列
Figure PCTCN2022074884-appb-000027
得到。同时,2流的CE序列具有相同的符号结构,或者,也可以称为具有相同的构造方式。本申请所示的符合结构或构造方式指的是构成CE序列的golay互补序列的正负符号。例如,CE1序列的符号结构指的是
Figure PCTCN2022074884-appb-000028
的正负符号。又例如,CE2序列的符号结构指的是
Figure PCTCN2022074884-appb-000029
的正负符号。为便于描述,下文以具有相同的构造方式来说明本申请提供的CE序列。
以下详细说明接收端设备根据CE1序列(也可以简称为CE1)和CE2序列(也可以简称为CE2)进行信道估计的方法。
如设C i(n)为循环前缀(cydic prefix)与CEi的组合序列,U i(n)为与C i(n)相同但循环前缀和循环后缀均为0的序列。U i(n)也可以为与C i(n)相同但是不包含循环前缀和循环后缀的 序列。信道估计过程中,U i(n)可以作为参考序列,进行信道估计。例如,C 1(n)表示循环前缀与CE1的组合序列,C 2(n)表示循环前缀与CE2的组合序列,U 1(n)表示循环前缀为0,以及CE1的组合序列,该CE1序列中的循环后缀为0,U 2(n)表示循环前缀为0,以及CE2的组合序列,该CE2序列中的循环后缀为0。又例如,C 1(n)表示循环前缀与CE1的组合序列,C 2(n)表示循环前缀与CE2的组合序列,U 1(n)与CE1的序列相同,但不含循环后缀,U 2(n)与CE2的序列相同,但不含循环后缀。
则发送端设备发射2流时,如在时域进行信道估计时,第一个天线接收到的信息可以如下所示:
Figure PCTCN2022074884-appb-000030
其中,h 11、h 12分别表示第1流和第2流的信道响应,z 1表示噪声,
Figure PCTCN2022074884-appb-000031
表示卷积运算。例如,利用匹配滤波器(或相关器等)求解可以得到以下公式(8):
Figure PCTCN2022074884-appb-000032
根据卷积运算的性质,可以得出
Figure PCTCN2022074884-appb-000033
实际上是求C 1(n)和U 1(n)的相关,设τ为进行相关时进行平移的值,如在-128≤τ≤128(即零相关区域)时,根据golay互补序列的性质,可以得知
Figure PCTCN2022074884-appb-000034
在-128≤τ≤128仅在τ=0的点有值,
Figure PCTCN2022074884-appb-000035
在-128≤τ≤128的区域内全为0。
类似的,也可以使用匹配滤波器对h 12进行信道估计,如下所示:
Figure PCTCN2022074884-appb-000036
以上是发射2流的CE序列的信道估计方法。然而,当发射2流以上的CE序列时,由于在格雷互补序列的长度范围(如-128至+128)内CE序列之间不再具有ZCC特性,此时需要结合P-matrix进行发射。当发射3流或4流时,如图4c所示,结合P-matrix在两个周期进行信道估计,此时P-matrix如下所示:
Figure PCTCN2022074884-appb-000037
可理解,由于CE1与CE2的符号结构相同,以及CE3与CE4的符号结构相同,因此上述公式(10)还可以表示为:
Figure PCTCN2022074884-appb-000038
当发射5流、6流、7流或8流的CE序列时,如图4c所示,结合P-matrix在四个周期进行信道估计,此时P-matrix如上述公式(5)或公式(6)所示。
以上过程说明了如何通过CE序列和P-matrix实现MIMO信道估计。如前文所述,本申请所涉及的序列除了可以用于信道估计之外,还可以用于对环境中的目标进行感知(如上文所示的WLAN感知)。当对环境中的目标进行感知时,可以按照上述流程进行信道估计,然后在信道估计的结果上,进一步进行多径消除,目标参数(时间,距离,角度)估计等处理,从而实现目标的感知。
可理解,对于信道估计或目标感知的具体流程或方法等可以参考相关标准或协议,本申请不再一一详述。
从上述分析可以看出,CE序列的正交个数会导致P矩阵有所不同,如上述所示的方法以及图4c所示,发射2流以上的CE序列时,如发射3流或4流的CE序列时,P矩阵如公式(10)或公式(11)所示,即发送端设备需要通过两个周期如T1和T2来发送CE序列,以保证接收端设备能够正确进行信道估计。可理解,如果发送端设备在发送4流的CE序列时,不结合P矩阵来发送,如通过一个周期来发送该4流的CE序列,则会导致如CE1序列与CE3(或CE4)序列之间产生干扰,以及CE2序列与CE3(或CE4)序列之间产生干扰,从而导致接收端设备无法正确进行信道估计。因此,发送端设备在发送4流的CE序列时,需要结合P矩阵如上述公式(10)所示,通过两个周期来发送该4流的CE序列,以保证发送端设备所发送的四个序列之间能够保证两两正交。可理解,本申请所示的两个序列之间正交,也可以理解为这两个序列在格雷互补序列的长度范围内互相关能量为零。
又如,发射5流或6流的CE序列时,P矩阵如公式(5)或公式(6)所示,即发送端设备需要通过四个周期如T1、T2、T3和T4来发送CE序列,以保证接收端设备能够正确进行信道估计。又如,发射7流或8流的CE序列时,P矩阵如公式(5)或公式(6)所示,即发送端设备需要通过四个周期如T1至T4来发送CE序列,以保证接收端设备能够正确进行信道估计。
也就是说,通过上述方法发送CE序列,导致发送端设备需要更多的发送周期(或称为发送时间),以保证接收端设备能够正确进行多流信道估计。即利用CE序列进行信道估计包括MIMO信道估计,以及目标感知时,为使得接收端设备能够准确地进行信道估计,发送端设备不仅需要结合P矩阵发送CE序列,而且还需要通过至少两个周期来发送CE序列。
鉴于此,本申请提供了一种信号处理方法及装置,在接收端设备能够正确进行信道估计的基础上,减少发送端设备发送CE序列的发射时间,从而提高目标感知(包括WLAN感知)或MIMO信道估计的效率。同时,本申请提供的方法,通过重新构造CE序列,可以实现4流CE序列在格雷互补序列的长度范围内具有ZCC特性,从而在进行信道估计时,可改善P-matrix的维度(如对P-matrix进行降维),还能够减少发送CE序列的周期。尤其是对于WLAN感知而言,通过降低P-matrix的维度,还可以减少感知脉冲重复时间,由于脉冲重复时间和和脉冲重复频率存在倒数关系,因此本申请提供的方法有效提高了感知的脉冲重复频率(pulse repetition frequency,PRF),提高了感知中的最大可探测多普勒/速度,能够有效优化感知性能。
示例性的,如发送3流或4流的CE序列时,本申请所提供的CE1序列和CE2序列在格雷互补序列的长度范围内互相关能量为零,CE3序列和CE4序列在格雷互补序列的长度范围内互相关能量为零;而且CE1序列和CE3(或CE4)序列在格雷互补序列的长度范围内互相关能量为量,以及CE2序列和CE3(或CE4)序列在格雷互补序列的长度范围内互相关能量为零。本申请所提供的CE1序列、CE2序列、CE3序列和CE4序列之间两两正交,因此,发送端设备在发送四流的CE序列时,无需再结合P矩阵便可以使得上述四个CE序列之间两两正交。从而,发送端设备仅在一个周期内就可以发送4流的CE序列,有效提高了发送CE序列的效率,进而提高了接收端设备进行信道估计的效率以及目标感知的PRF等。
示例性的,如发送6流的CE序列时,本申请所提供的CE1序列至少与三个序列(如CE2序列、CE5序列和CE6序列)在格雷互补序列的长度范围内互相关能量为零。该情况下,由 于CE1序列与CE3序列在格雷互补序列的长度范围内互相关能量不为零,如果在同一个周期内发送CE1序列和CE3序列,会导致该CE1序列与CE3序列之间产生干扰,导致接收端设备无法有效进行信道估计等。因此,该情况下,发送端设备可以结合P矩阵来发送该6流的CE序列,如通过两个周期发送该6流的CE序列。从而,发送端设备在两个周期内就可以发送6流的CE序列,相对于上述所示的发送端设备需要通过4个周期来发送6流的CE序列来说,本申请所提供的方法,有效提高了发送CE序列的效率,提高了接收端设备进行信道估计的效率以及目标感知的PRF等。
在介绍本申请提供的信号处理方法之前,以下将对本申请所涉及的CE序列的自相关和互相关的性质进行分析,以便于说明本申请构造的CE序列的理论基础。
本申请所涉及的格雷互补序列的长度N=128,或者,N=256,或者,N=512等,本申请对于N的取值不作限定。或者,N也可以等于32或64等。
示例性的,当N=128时,格雷互补序列的长度范围则可以为-128至+128(可以包括-128和/或+128)。例如,格雷互补序列如
Figure PCTCN2022074884-appb-000039
Figure PCTCN2022074884-appb-000040
Figure PCTCN2022074884-appb-000041
Figure PCTCN2022074884-appb-000042
Figure PCTCN2022074884-appb-000043
Figure PCTCN2022074884-appb-000044
Figure PCTCN2022074884-appb-000045
Figure PCTCN2022074884-appb-000046
Figure PCTCN2022074884-appb-000047
Figure PCTCN2022074884-appb-000048
的单元长度(表示一个单元的长度)分别为128。上述各个格雷互补序列的长度范围为-128至+128。
即当N=128时,CE序列自相关旁瓣能量为零的范围可以为-128至+128。不同CE序列互相关能量为零的范围为-128至+128(可以包括-128和/或+128)。
示例性的,当N=256时,格雷互补序列的长度范围可以为-256至+256(可以包括-256和/或+256)。即当N=256时,CE序列自相关旁瓣能量为零的范围可以为-256至+256。不同CE序列互相关能量为零的范围可以为-256至+256(可以包括-256和/或+256)。示例性的,当N=512时,格雷互补序列的长度范围可以为-512至+512(可以包括-512和/或+512)。即当N=512时,CE序列自相关旁瓣能量为零的范围可以为-512至+512,不同CE序列互相关能量为零的范围可以为-512至+512(可以包括-512和/或+512)。为便于描述,下文将以N=128为例说明本申请提供的方法,但是不应将N=128理解为对本申请的限定。可理解,本申请所示的格雷互补序列的长度范围也可以理解为格雷互补序列的单元长度的范围。例如,图5a所示的每个虚框可以表示格雷互补序列的单元长度。可理解,图5a仅示例性地示出了三个单元长度,对于图5a所示的其他长度单位未在图5a中一一示出。
1、CE序列的自相关
从图4b所示的CE序列的自相关的结果示意图可以看出:在-128至+128范围内,除了范围0之外,该-128至+128除了0之外的其他范围的能量为0。由此,将循环前缀替换为0 128(即长度为128的全0序列),以及将CE序列的循环后缀替换为0 128后,将其与CE序列的对应部分相乘求和为零。
如以图5a为例,序列2为原CE序列,将与其进行相关的序列两端的格雷互补序列的单元长度(如循环前缀对应的单元长度和循环后缀对应的单元长度)替换成0,得到序列1和序列3。也就是说,序列1之于序列2向左平移了n(0<n<128)个码元,序列3之于序列2向右平移了n(0<n<128)个码元。
将序列1与序列2的对应码元相乘,得到公式(12)和公式(13)。可理解,本申请所示的序列均可以理解为行向量。如
Figure PCTCN2022074884-appb-000049
可以表示
Figure PCTCN2022074884-appb-000050
的转置向量。
Figure PCTCN2022074884-appb-000051
其中,m=128-n,本申请公式(12)、公式(13)、公式(14)以及公式(16)中的上标表示CE序列中的位置。即这里所示的上标与本申请其他实施例中所示的上标有所不同。如上文公式(2)和公式(3)的上标表示的是构成CE序列的golay互补序列,上标不同即表示golay互补序列不同。而本申请公式(12)、公式(13)、公式(14)以及公式(16)中的上标表示的是CE序列中的位置,上标不同表示CE序列的位置不同。
Figure PCTCN2022074884-appb-000052
由golay互补序列性质可得4Gb m·Gb m+4Ga m·Ga m=0。
同理,将序列3与序列2对应码元相乘并取和,得到公式(14)。
Figure PCTCN2022074884-appb-000053
由此可得,若需要实现CE序列在格雷互补序列的长度范围内自相关旁瓣能量为零,则需同时满足公式(12)和公式(14)。假设,用于构造CE序列的格雷互补序列的符号序列(即正负符号)为x(n)={a 1,a 2,a 3,a 4,a 5,a 6,a 7,a 8,a 9,a 10},其中,a 2-a 10是格雷互补序列的每个单元长度的正负符号,如a 1对应着循环前缀,a 10对应着循环后缀,同时a 1=a 9,a 2=a 10。则根据上述情况,若需要实现CE序列在格雷互补序列的长度范围内自相关旁瓣能量为零的特性,则上述符号序列需要满足公式(15)中的至少一项。
Figure PCTCN2022074884-appb-000054
其中,a 1至a 10的取值分别为-1或1,例如,a 1为-1或1,a 2为-1或1,以此类推,a 10为-1或1。
以上推导的参考序列(如图5a中的序列1)是由为0的循环前缀和循环后缀为0的CE序列组成,若参考序列为无循环后缀的CE序列,以上推导也成立。例如,本申请所示的参考序列可以为设备(如接收端设备)自身中存储的序列或存储于云端中的序列,而不是由其他设备(如发送端设备)发送的序列。
需要说明的是,符号序列y(n)={-a 1,-a 2,-a 3,-a 4,-a 5,-a 6,-a 7,-a 8,-a 9,-a 10},也属于本申请的保护范围。该y(n)与x(n)的区别仅在于相位相反,同时,根据该y(n)所构造出的CE序列与x(n)所构造出的CE序列的效果相同。
示例性的,a 1表示循环前缀的正负符号,a 2-a 5表示Gu单元对应的正负符号,a 6-a 9表示Gv单元对应的正负符号,a 10表示循环后缀的符号,CE序列由Gu、Gv和循环后缀组成,由此a 2-a 10可以对应格雷互补序列的每个单元长度的正负符号,则a 1-a 10的取值如表1所示。
表1
编号 a 1 a 2 a 3 a 4 a 5 a 6 a 7 a 8 a 9 a 10
1 1 1 -1 1 -1 1 1 1 1 1
2 1 1 -1 1 1 -1 1 1 1 1
3 1 1 1 -1 1 -1 1 1 1 1
4 1 1 -1 1 1 1 -1 1 1 1
5 1 1 1 -1 1 1 -1 1 1 1
6 1 1 1 1 -1 1 -1 1 1 1
7 1 1 -1 -1 -1 1 -1 1 1 1
8 1 1 -1 -1 1 -1 -1 1 1 1
9 1 1 -1 1 -1 -1 -1 1 1 1
10 1 1 -1 1 1 1 1 -1 1 1
11 1 1 1 -1 1 1 1 -1 1 1
12 1 1 1 1 -1 1 1 -1 1 1
13 1 1 -1 -1 -1 1 1 -1 1 1
14 1 1 1 1 1 -1 1 -1 1 1
15 1 1 1 -1 -1 -1 1 -1 1 1
16 1 1 1 -1 -1 1 -1 -1 1 1
17 1 1 -1 1 1 -1 -1 -1 1 1
18 1 1 1 -1 1 -1 -1 -1 1 1
19 -1 1 -1 1 1 1 1 1 -1 1
20 -1 1 1 -1 1 1 1 1 -1 1
21 -1 1 1 1 -1 1 1 1 -1 1
22 -1 1 -1 -1 -1 1 1 1 -1 1
23 -1 1 1 1 1 -1 1 1 -1 1
24 -1 1 1 -1 -1 -1 1 1 -1 1
25 -1 1 1 1 1 1 -1 1 -1 1
26 -1 1 1 1 -1 -1 -1 1 -1 1
27 -1 1 -1 -1 -1 -1 -1 1 -1 1
28 -1 1 -1 -1 1 1 1 -1 -1 1
29 -1 1 1 1 -1 -1 1 -1 -1 1
30 -1 1 -1 -1 -1 -1 1 -1 -1 1
31 -1 1 -1 1 1 1 -1 -1 -1 1
32 -1 1 1 -1 1 1 -1 -1 -1 1
33 -1 1 1 1 -1 1 -1 -1 -1 1
34 -1 1 -1 -1 -1 1 -1 -1 -1 1
35 -1 1 -1 -1 1 -1 -1 -1 -1 1
36 -1 1 -1 1 -1 -1 -1 -1 -1 1
37 1 -1 1 -1 1 1 1 1 1 -1
38 1 -1 1 1 -1 1 1 1 1 -1
39 1 -1 1 1 1 -1 1 1 1 -1
40 1 -1 -1 -1 1 -1 1 1 1 -1
41 1 -1 -1 1 -1 -1 1 1 1 -1
42 1 -1 1 -1 -1 -1 1 1 1 -1
43 1 -1 1 1 1 1 -1 1 1 -1
44 1 -1 -1 -1 1 1 -1 1 1 -1
45 1 -1 1 1 -1 -1 -1 1 1 -1
46 1 -1 1 1 1 1 1 -1 1 -1
47 1 -1 -1 -1 1 1 1 -1 1 -1
48 1 -1 -1 -1 -1 -1 1 -1 1 -1
49 1 -1 -1 1 1 1 -1 -1 1 -1
50 1 -1 -1 -1 -1 1 -1 -1 1 -1
51 1 -1 1 1 1 -1 -1 -1 1 -1
52 1 -1 -1 -1 1 -1 -1 -1 1 -1
53 1 -1 -1 1 -1 -1 -1 -1 1 -1
54 1 -1 1 -1 -1 -1 -1 -1 1 -1
55 -1 -1 -1 1 -1 1 1 1 -1 -1
56 -1 -1 1 -1 -1 1 1 1 -1 -1
57 -1 -1 -1 1 1 -1 1 1 -1 -1
58 -1 -1 -1 1 1 1 -1 1 -1 -1
59 -1 -1 -1 -1 -1 1 -1 1 -1 -1
60 -1 -1 1 1 1 -1 -1 1 -1 -1
61 -1 -1 -1 -1 1 -1 -1 1 -1 -1
62 -1 -1 -1 1 -1 -1 -1 1 -1 -1
63 -1 -1 1 -1 -1 -1 -1 1 -1 -1
64 -1 -1 1 -1 1 1 1 -1 -1 -1
65 -1 -1 1 1 -1 1 1 -1 -1 -1
66 -1 -1 1 1 1 -1 1 -1 -1 -1
67 -1 -1 -1 -1 1 -1 1 -1 -1 -1
68 -1 -1 -1 1 -1 -1 1 -1 -1 -1
69 -1 -1 1 -1 -1 -1 1 -1 -1 -1
70 -1 -1 -1 1 -1 1 -1 -1 -1 -1
71 -1 -1 1 -1 -1 1 -1 -1 -1 -1
72 -1 -1 1 -1 1 -1 -1 -1 -1 -1
结合a 1-a 10以及Ga 128和Gb 128,则CE序列可以如图5b所示。
示例性的,a 1-a 10的取值分别为{1,1,-1,1,-1,1,1,1,1,1}(即表1中的编号1对应的取值),则CE序列可以如图5c所示。结合图4c,如以发送端设备发送2流CE序列为例,则发送端设备发送的CE1序列和CE2序列可以均如图5d所示,如以CE1表示CE1序列,CE2表示CE2序列,则
Figure PCTCN2022074884-appb-000055
Figure PCTCN2022074884-appb-000056
Figure PCTCN2022074884-appb-000057
该CE1序列在格雷互补序列的长度范围内自相关旁瓣能量为零,CE2序列在格雷互补序列的长度范围内自相关旁瓣能量为零,同时CE1序列与CE2序列在格雷互补序列的长度范围内互相关能量为零。
示例性的,a 1-a 10的取值分别为{1,1,-1,1,1,-1,1,1,1,1}(即表1中的编号2对应的取值),则发送端设备发送2流的CE序列时,
Figure PCTCN2022074884-appb-000058
Figure PCTCN2022074884-appb-000059
示例性的,a 1-a 10的取值分别为{1,1,1,-1,1,-1,1,1,1,1}(即表1中的编号3对应的取值),则发送端设备发送2流的CE序列时,
Figure PCTCN2022074884-appb-000060
Figure PCTCN2022074884-appb-000061
示例性的,a 1-a 10的取值分别为{1,1,-1,1,1,1,-1,1,1,1}(即表1中的编号4对应的取值),则发送端设备发送2流的CE序列时,
Figure PCTCN2022074884-appb-000062
Figure PCTCN2022074884-appb-000063
可理解,以上仅示例性的给出了a 1-a 10的取值所对应的四种CE序列,根据表1所示的a 1-a 10的取值构造出的CE序列均属于本申请的保护范围,这里不再一一列举。可理解,以上仅示例性的示出了2流的CE序列,对于1流的CE序列,上述所示的方法同样适用。可理解,以上所示的a 1-a 10的取值也可以用于构造3流的CE序列(或4流的CE序列或5流的CE序列等)中的单个CE序列。例如,以上所示的a 1-a 10的取值可以用于构造3流的CE序列中的CE3序列。又例如,以上所示的a 1-a 10的取值也可以用于构造5流的CE序列中的CE5序列。又例如,以上所示的a 1-a 10的取值也可以用于构造7流的CE序列中的CE7序列等,这里不再一一详述。也就是说,以上所示的方法适用于单流的CE序列,只是在发送2流以上的CE序列时,该2流以上的CE序列之间的关系,本申请不作限定。示例性的,在发送2流以上的CE序列时,该2流以上的CE序列之间的关系可以参考下文所示的不同CE序列的互相关的描述。
可以理解的是,若是用于WLAN感知中,则表1中所有序列可以运用到TRN中进行感知。若是用于MIMO信道估计中,由于EDMG-STF是以-Ga 128结尾的(即是以负号结尾),为了保持兼容,则根据负号形成的循环前缀的序列可以应用于EDMG-STF序列之后的EDMG-CEF,如表2所示。同时,在MIMO信道估计中,在第一时刻CE序列可以没有循环前缀(即可以没有表1或表2中的a 1)。当然,如果需要多个时刻(即两个时刻或两个以上时刻)才能完成MIMO信道估计,则从第二时刻开始可以有循环前缀。
表2
编号 a 1 a 2 a 3 a 4 a 5 a 6 a 7 a 8 a 9 a 10
1 -1 1 -1 1 1 1 1 1 -1 1
2 -1 1 1 -1 1 1 1 1 -1 1
3 -1 1 1 1 -1 1 1 1 -1 1
4 -1 1 -1 -1 -1 1 1 1 -1 1
5 -1 1 1 1 1 -1 1 1 -1 1
6 -1 1 1 -1 -1 -1 1 1 -1 1
7 -1 1 1 1 1 1 -1 1 -1 1
8 -1 1 1 1 -1 -1 -1 1 -1 1
9 -1 1 -1 -1 -1 -1 -1 1 -1 1
10 -1 1 -1 -1 1 1 1 -1 -1 1
11 -1 1 1 1 -1 -1 1 -1 -1 1
12 -1 1 -1 -1 -1 -1 1 -1 -1 1
13 -1 1 -1 1 1 1 -1 -1 -1 1
14 -1 1 1 -1 1 1 -1 -1 -1 1
15 -1 1 1 1 -1 1 -1 -1 -1 1
16 -1 1 -1 -1 -1 1 -1 -1 -1 1
17 -1 1 -1 -1 1 -1 -1 -1 -1 1
18 -1 1 -1 1 -1 -1 -1 -1 -1 1
19 -1 -1 -1 1 -1 1 1 1 -1 -1
20 -1 -1 1 -1 -1 1 1 1 -1 -1
21 -1 -1 -1 1 1 -1 1 1 -1 -1
22 -1 -1 -1 1 1 1 -1 1 -1 -1
23 -1 -1 -1 -1 -1 1 -1 1 -1 -1
24 -1 -1 1 1 1 -1 -1 1 -1 -1
25 -1 -1 -1 -1 1 -1 -1 1 -1 -1
26 -1 -1 -1 1 -1 -1 -1 1 -1 -1
27 -1 -1 1 -1 -1 -1 -1 1 -1 -1
28 -1 -1 1 -1 1 1 1 -1 -1 -1
29 -1 -1 1 1 -1 1 1 -1 -1 -1
30 -1 -1 1 1 1 -1 1 -1 -1 -1
31 -1 -1 -1 -1 1 -1 1 -1 -1 -1
32 -1 -1 -1 1 -1 -1 1 -1 -1 -1
33 -1 -1 1 -1 -1 -1 1 -1 -1 -1
34 -1 -1 -1 1 -1 1 -1 -1 -1 -1
35 -1 -1 1 -1 -1 1 -1 -1 -1 -1
36 -1 -1 1 -1 1 -1 -1 -1 -1 -1
可理解,图5a至图5c示出的单元中的序列是以Ga 128和Gb 128为例,并没有区分是
Figure PCTCN2022074884-appb-000064
Figure PCTCN2022074884-appb-000065
还是
Figure PCTCN2022074884-appb-000066
这是因为本申请上文所示的方法是为了说明CE序列的自相关特性,并不在于重点强调某个CE序列。
2、不同CE序列的互相关
示例性的,如以表1所示的编号1对应的取值为图6a或图6b所示的排列1的正负符号,以表1所示的编号16对应的取值为图6a或图6b所示的排列16的正负符号。排列16为参考序列,实际过程中进行相关时,参考序列不含循环前缀和循环后缀,故此处将其替换为0。需要说明的是,与不含循环前缀和循环后缀的参考序列进行相关操作时,下文推导依然成立。如图6a或图6b所示,由于Ga 1与Gb 3、Ga 3与Gb 1不是golay互补序列,因此,需要将其看成无关系的序列进行消除,即对应部分的乘积相加为零,以便于达到在格雷互补序列的长度范围内互相关能量为零的结果。可理解,这里所示的Ga 1与Gb 3、Ga 3与Gb 1仅为示例,如该Ga 1和Gb 1可以构成一个CE序列,该Ga 3和Gb 3可以构成另一个CE序列。也就是说,下文所示的公式(15)中的下标与本申请上文所示的公式(2)或公式(3)中的上标1或2的含义相同,只是下文所示的公式(15)省略了格雷互补序列的长度N。可理解,本申请中的Ga 1与Gb 3、Ga 3与Gb 1可以理解为行向量。
因此,根据图6a对应码元相乘取和为0,以及图6b对应码元相乘取和为0,则Ga 1、Gb 1、Ga 3、Gb 3可以满足如下至少一项:
Figure PCTCN2022074884-appb-000067
其中,上标表示位置,乘(如 ×)表示两个向量相乘。
也就是说,如果满足了上述关系,则可以实现两个无关系的序列在格雷互补序列的长度范围内互相关具有ZCC特性。设用于构造一个CE序列的格雷互补序列的正负符号为a(n)={a 1,a 2...a 10},用于构造另一个CE序列的格雷互补序列的正负符号为b(n)={b 1,b 2...b 10},同时a 1=a 9,a 2=a 10,b 1=b 9,b 2=b 10。其中a 1至a 10、b 1至b 10取值分别为1和-1。因此,如果满足如下公式(17)中的至少一项,则可以使得两个CE序列(如CE1序列和CE3序列)在格雷互补序列的长度范围内具有互相关能量为零,即实现两个CE序列在格雷互补序列的长度范围内具有ZCC特性。
Figure PCTCN2022074884-appb-000068
公式(17)中点乘(如·)表示序列对应位置相乘取和。可理解,本申请所示的点乘还可以称为点积、内积或数量积等。
如图6c所示,尽管Ga 1与Gb 3不是格雷互补序列,Ga 3与Gb 1不是格雷互补序列,但是通过上述公式(17),可使得在格雷互补序列的长度范围内本不具有ZCC特性的两个CE序列具有ZCC特性。同时,该两个CE序列中的任一CE序列在格雷互补序列的长度范围内自相关旁瓣能量为零的特性。可理解,图6c所示的CE1序列和CE3序列仅为示例,不应将图6c所示的CE1序列和CE3序列理解为对本申请的限定。
示例性的,上述a 1至a 10与b 1至b 10的关系可以如表3所示。
表3
编号1 编号2
1 16
1 28
1 45
1 57
3 17
3 29
3 44
3 56
6 13
6 32
6 41
6 60
8 14
8 36
8 37
8 59
13 19
13 54
13 67
14 24
14 49
14 65
16 25
16 48
16 72
17 27
17 46
17 70
19 32
19 41
19 60
24 36
24 37
24 59
25 28
25 45
25 57
27 29
27 44
27 56
28 48
28 72
29 46
29 70
32 54
32 67
36 49
36 65
37 49
37 65
41 54
41 67
44 46
44 70
45 48
45 72
46 56
48 57
49 59
54 60
56 70
57 72
59 65
60 67
可理解,表3中的编号1和编号2指的都是表1中的编号。示例性的,如以编号1为1和编号2为16为例,则a 1至a 10的取值可以分别为表1中的编号1即{1,1,-1,1,-1,1,1,1,1,1},b 1至b 10的取值分别为表1中的编号16即{1,1,1,-1,-1,1,-1,-1,1,1}。又如,b 1至b 10的取值可以分别为表1中的编号1即{1,1,-1,1,-1,1,1,1,1,1},a 1至a 10的取值分别为表1中的编号16即{1,1,1,-1,-1,1,-1,-1,1,1}。
换句话说,通过表3所构造出的CE序列可以使得两个本来在格雷互补序列的长度范围内不具有ZCC特性的CE序列,具有ZCC特性,即可以使得两个CE序列在格雷互补序列的长度范围内互相关能量为零。可以理解的是,表3中的编号1可以对应上述a 1至a 10,编号2可以对应上述b 1至b 10。或者,表3中的编号1可以对应上述b 1至b 10,编号2对应上述a 1至a 10
示例性的,a 1-a 10的取值分别为{1,1,-1,1,-1,1,1,1,1,1}(即表1中的编号1对应的取值),b 1-b 10的取值分别为{1,1,1,-1,-1,1,-1,-1,1,1}(即表1中的编号16对应的取值),则发送端设备发送四流的CE序列时,
Figure PCTCN2022074884-appb-000069
Figure PCTCN2022074884-appb-000070
Figure PCTCN2022074884-appb-000071
或者,
Figure PCTCN2022074884-appb-000072
Figure PCTCN2022074884-appb-000073
示例性的,a 1-a 10的取值分别为{1,1,1,-1,1,-1,1,1,1,1}(即表1中的编号3对应的取值),b 1-b 10的取值分别为{1,1,-1,1,1,-1,-1,-1,1,1}(即表1中的编号17对应的取值),则发送端设备发送四流的CE序列时,
Figure PCTCN2022074884-appb-000074
Figure PCTCN2022074884-appb-000075
Figure PCTCN2022074884-appb-000076
Figure PCTCN2022074884-appb-000077
或者,
Figure PCTCN2022074884-appb-000078
Figure PCTCN2022074884-appb-000079
可理解,以上所示的CE序列仅为示例,关于a(n)和b(n)的不同取值多对应的CE序列这里不再一一列举。同样的,发送端设备发送5流的CE序列、6流的CE序列、7流的CE序列或8流的CE序列的具体说明,还可以参考下文,这里不再一一详述。
以下将详细说明本申请实施例提供的信号处理方法。
可理解,对于本申请提供的信号处理方法的通信装置以及通信系统的描述,可以参考上文,这里不再详述。可理解,下文将以通信装置包括发送端设备和接收端设备为例说明本申请实施例提供的方法。下文示出的发送端设备可以理解为发送PPDU的设备,接收端设备可以理解为接收PPDU的设备。
图7是本申请实施例提供的一种信号处理方法的流程示意图,如图7所示,该方法包括:
701、发送端设备生成PPDU,该PPDU包括第一字段,该第一字段用于承载M个序列,该M个序列对应M个空时流,一个序列对应一个空时流,该M个序列包括第一序列,当M大于2时,该第一序列至少与M个序列中的两个序列在格雷互补序列的长度范围内互相关能量为零,该第一序列在格雷互补序列的长度范围内自相关旁瓣能量为零,该第一序列根据CE序列得到,格雷互补序列用于构造该CE序列。
本申请实施例中,M个序列中的每个序列可以基于CE序列得到,该CE序列可以根据格雷互补序列得到。可理解,本申请实施例所示的第一序列根据CE序列得到可以理解为:第一序列为CE序列,或者,第一序列与CE序列不同,而是根据该CE序列得到。该CE序列在格雷互补序列的长度范围内自相关旁瓣能量为零,对于自相关的描述可以参考上文,这里不再详述。可理解,M=1时,第一字段用于承载1个序列,如第一序列,该第一序列可以为CE1序列,CE1序列可以由第一格雷互补序列如
Figure PCTCN2022074884-appb-000080
得到。M=2时,第一字段用于承载2个序列,如序列1和序列2,序列1可以为CE1序列,CE1序列可以根据格雷互补序列如
Figure PCTCN2022074884-appb-000081
得到,序列2可以为CE2序列,CE2序列可以根据格雷互补序列如
Figure PCTCN2022074884-appb-000082
Figure PCTCN2022074884-appb-000083
得到。当M=2时,如序列1可以称为第一序列,
Figure PCTCN2022074884-appb-000084
可以称为第一格雷互补序列。或者,又如序列2可以称为第一序列,
Figure PCTCN2022074884-appb-000085
可以称为第一格雷互补序列。也就是说,第一序列可以为序列1或序列2中的任一项。可理解,关于
Figure PCTCN2022074884-appb-000086
的正负符号(如第一符号序列)以及
Figure PCTCN2022074884-appb-000087
的正负符号的说明可以参考本申请其他地方的描述,这里不再赘述。
以下将详细描述本申请实施例所述的互相关。
示例性的,M=3时,第一字段可以用于承载3个序列,如该3个序列分别为序列1、序列2和序列3,如该序列1可以为CE1序列,序列2可以为CE2序列,序列3可以为CE3序列。本申请实施例中,CE1序列和CE2序列在格雷互补序列的长度范围内互相关能量为零,或者,也可以称为CE1序列和CE2序列在格雷互补序列的长度范围内具有ZCC特性,或者, 也可以称为CE1序列和CE2序列在格雷互补序列的长度范围内正交。由此,序列1和序列2在格雷互补序列的长度范围内互相关能量为零。CE1序列和CE3序列在格雷互补序列的长度范围内互相关能量为零,由此,序列1和序列3在格雷互补序列的长度范围内互相关能量为零。CE2序列和CE3序列在格雷互补序列的长度范围内互相关能量为零,由此,序列2和序列3在格雷互补序列的长度范围内互相关能量为零。可理解,序列1可以称为第一序列,序列3可以称为第二序列,如序列3可以为CE3序列,该CE3序列可以根据第二格雷互补序列如
Figure PCTCN2022074884-appb-000088
得到。关于
Figure PCTCN2022074884-appb-000089
的正负符号(如第一符号序列)、
Figure PCTCN2022074884-appb-000090
的正负符号以及
Figure PCTCN2022074884-appb-000091
的正负符号(如第二符号序列)的说明可以参考本申请其他地方的描述,这里不再赘述。
示例性的,M=4时,第一字段可以用于承载4个序列,如该4个序列分别为序列1、序列2、序列3和序列4,该序列4为CE4序列,关于序列1至序列3的描述可以参考上述说明,这里不再详述。本申请实施例中,CE1序列和CE4序列在格雷互补序列的长度范围内互相关能量为零,CE2序列和CE4序列在格雷互补序列的长度范围内互相关能量为零,CE3序列和CE4序列在格雷互补序列的长度范围内互相关能量为零,由此,序列1和序列4在格雷互补序列的长度范围内互相关能量为零,序列2和序列4在格雷互补序列的长度范围内互相关能量为零,序列3和序列4在格雷互补序列的长度范围内互相关能量为零。可理解,序列3或序列4中的任一项可以称为第二序列。需要说明的是,本申请实施例所示的第一序列和第二序列的说明仅为示例,如M=4时,序列3或序列4中的任一项可以称为第一序列,而序列1或序列2中的任一项称为第二序列。
可理解,当M=1、M=2、M=3或M=4时,之所以序列1为CE1序列,序列2为CE2序列,序列3为CE3序列,序列4为CE4序列,是因为:本申请所提供的CE1序列至CE4序列之间任意两个CE序列在格雷互补序列的长度范围内互相关能量为零,发送端设备发送序列时,P矩阵可以如下文所示的公式(18)所示,即P矩阵的每一行元素为+1。由此,发送端设备在获取到CE1序列至CE4序列后,可以直接发送该CE1序列至CE4序列。
而当M大于4时,如M=5时,之所以称序列5根据CE5序列得到,是因为发送端设备发送该序列5时,需要结合P矩阵来发送。该情况下,如P矩阵为下文所示的公式(19)时,序列5可以根据CE5序列得到,序列6可以根据CE6序列得到。或者,P矩阵为下文所示的公式(20)时,序列3可以根据CE3序列得到,序列4可以根据CE4序列得到,序列5为CE5序列,序列6为CE6序列。或者,P矩阵为下文所示的公式(21)时,序列3可以根据CE3序列得到,序列4可以根据CE4序列得到,序列5可以根据CE5序列得到,序列6可以根据CE6序列得到。可理解,为避免赘述,关于序列与CE序列之间的关系,下文不再一一详述。为简洁起见,本申请以序列根据CE序列得到为例说明本申请实施例提供的方法。
示例性的,M=5时,第一字段可以用于承载5个序列,如该5个序列分别为序列1至序列5,该序列5可以由CE5序列得到,该CE5序列可以根据
Figure PCTCN2022074884-appb-000092
得到。示例性的,CE5序列可以分别与CE4序列、CE3序列、CE1序列在格雷互补序列的长度范围内互相关能量为零,则序列5可以分别与序列4、序列3、序列1在格雷互补序列的长度范围内互相关能量为零。可理解,这里所示的CE5序列分别与CE4序列、CE3序列、CE1序列在格雷互补序列的长度范围内互相关能量为零仅为示例。如CE5序列还可以分别与CE1序列、CE2序列在格雷互补序列的长度范围内互相关能量为零。又如CE5序列还可以分别与CE3序列、CE4序列在格雷互补序列的长度范围内互相关能量为零。这里不再详述。
示例性的,M=6时,第一字段可以用于承载6个序列,如该6个序列分别为序列1至序 列6,该序列6可以根据CE6序列得到,该CE6序列可以根据
Figure PCTCN2022074884-appb-000093
得到。例如,CE6序列可以分别与CE3序列、CE4序列、CE5序列在格雷互补序列的长度范围内互相关能量为零,序列6可以分别与序列3、序列4、序列5在格雷互补序列的长度范围内互相关能量为零。如序列1称为第一序列,则序列3至序列6中的任一项可以称为第二序列。需要说明的是,本申请所示的第一序列和第二序列仅为示例,对于M个序列中的其他序列的具体名称,本申请实施例不作限定。例如,该M个序列中的名称还可以如上述所示为序列1、序列2、序列3等。可理解,对于第一序列和第二序列的说明,下文不再一一详述。关于M=6的具体说明可以参考M=5的描述,本申请实施例不作详述。
示例性的,M=8时,第一字段可以用于8个序列,如该8个序列分别为序列1至序列8,如序列7可以由CE7序列得到,CE7序列可以根据格雷互补序列
Figure PCTCN2022074884-appb-000094
得到,序列8可以由CE8序列得到,CE8序列可以根据格雷互补序列
Figure PCTCN2022074884-appb-000095
得到。示例性的,如CE8序列可以分别与CE7序列、CE1序列、CE2序列在格雷互补序列的长度范围内互相关能量为零,因此,序列8可以分别与序列7、序列1、序列2在格雷互补序列的长度范围内互相关能量为零。又例如,CE8序列可以分别与CE5序列、CE6序列、CE7序列在格雷互补序列的长度范围内互相关能量为零,因此序列8可以分别与序列5、序列6、序列7在格雷互补序列的长度范围内互相关能量为零。又例如,CE8序列可以分别与CE7序列、CE3序列、CE4序列在格雷互补序列的长度范围内互相关能量为零,因此,序列8可以分别与序列7、序列3、序列4在格雷互补序列的长度范围内互相关能量为零。可理解,这里所示的CE8仅为示例,对于CE1至CE7的具体说明还可以参考CE8的说明等,本申请实施例不作详述。对于上述各个格雷互补序列的正负符号的说明,可以参考本申请其他地方的描述,这里不再赘述。可理解,关于上述CE1序列至CE8序列的具体说明,还可以参考本申请其他地方的说明,这里不再一一详述。
示例性的,关于各个CE序列的自相关特性,或者不同CE序列的互相关特性的具体说明还可以参考前述实施例等。同样的,关于上述M个序列中各个序列的自相关特性,或者,M个序列中不同的序列之间的互相关特性的说明也可以参考上述关于CE序列的说明,这里不再详述。示例性的,关于各个CE序列的具体序列还可以参考前述实施例以及下文所示的实施例等。
本申请实施例中,当M大于4时,发送端设备还可以结合P矩阵来发送CE序列,即当M大于4时,第一序列可以根据CE序列和P矩阵得到。关于该P矩阵的具体说明还可以参考本申请其他地方的说明等,这里不再一一详述。
本申请实施例中,第一字段可以为PPDU中的TRN,或者,该第一字段可以为PPDU中的EDMG-CEF,或者,该第一字段可以为PPDU中的LTF。示例性的,如CE序列可以承载于802.11ay SC PHY中的TRN,该TRN可以用于目标感知,波束训练等。又如,CE序列可以承载于802.11ay SC PHY中的EDMG-CEF,该EDMG-CEF可以用于用于(MIMO)信道估计。又如,CE序列可以承载于802.11ad中的TRN,该TRN可以用于目标感知,波束训练。又如,CE序列可以承载于802.11ad中的DMG-CEF,该DMG-CEF可以用于信道估计。
本申请所示的M个序列可以用于信道估计或目标感知等,关于该M个序列的具体作用可以参考本申请其他地方所描述的CE序列的作用,这里不再详述。
702、发送端设备发送PPDU。相应的,接收端设备接收PPDU。
703、接收端设备根据M个序列进行信号处理。
如接收端设备根据该M个序列进行信道估计或目标感知等,这里不再详述。
示例性的,如当M=1或M=2时,接收端设备可以对CE序列进行信道估计或目标感知等。又如当M=5或M=6时,接收端设备可以根据其所接收到的M个序列进行信道估计或目标感知等。
本申请实施例所提供的方法,不仅可以有效缩短发送端设备发送序列的时间,而且还可以提高接收端设备进行信道估计的效率或提高目标感知的PRF等。
以下将结合不同的流数对本申请实施例提供的CE序列分别进行描述。
一、一个空间流/二个空间流(以下简称为一流/二流)
本申请实施例中,发送端设备可以发送一个CE序列如CE1序列(即一个流),也可以发送两个CE序列(即两个流)如CE1序列和CE2序列。构成该CE1序列的正负符号可以根据表1获得,即本申请所提供的CE1序列的正负符号可以有72种选择。
通过上述CE序列的自相关的介绍可知,即使是同时发送CE1序列和CE2序列,该CE1序列在格雷互补序列的长度范围内具有自相关旁瓣能量为零的特性,以及该CE2序列也具有在格雷互补序列的长度范围内自相关旁瓣能量为零的特性。因此,接收端设备接收到PPDU之后,可以根据其获取到的CE1序列和CE2序列进行信道估计,信道估计的方法可以参考上述公式(7)至公式(9)的说明,这里不再详述。
可理解,关于CE1序列和CE2序列的具体说明还可以参考上文关于图5d的描述,这里不再赘述。
本申请实施例中,发送端设备生成并发送物理层协议数据单元PPDU,所述PPDU包括第一字段,所述第一字段用于承载M个序列;所述M个序列对应M个空时流,一个所述序列对应一个所述空时流,所述M为正整数;接收端设备接收PPDU并根据M个序列进行信号处理。
示例性的,M=1时,第一字段中所承载的一个序列可以与CE1序列相同,如
Figure PCTCN2022074884-appb-000096
Figure PCTCN2022074884-appb-000097
(如表1中的编号1对应的a 1-a 10取值)。又如,
Figure PCTCN2022074884-appb-000098
Figure PCTCN2022074884-appb-000099
(如表1中的编号2对应的a 1-a 10取值)。又如,
Figure PCTCN2022074884-appb-000100
Figure PCTCN2022074884-appb-000101
(如表1中的编号3对应的a 1-a 10取值)。又如,
Figure PCTCN2022074884-appb-000102
Figure PCTCN2022074884-appb-000103
(如表1中的编号4对应的a 1-a 10取值)。
示例性的,M=2时,第一字段中可以承载2个序列,如该2个序列可以为序列1和序列2,
Figure PCTCN2022074884-appb-000104
(如表1中的编号37对应的a 1-a 10取值),
Figure PCTCN2022074884-appb-000105
Figure PCTCN2022074884-appb-000106
又如,
Figure PCTCN2022074884-appb-000107
Figure PCTCN2022074884-appb-000108
(如表1中的编号38对应的a 1-a 10取值),
Figure PCTCN2022074884-appb-000109
又如,
Figure PCTCN2022074884-appb-000110
(如表1中的编号39对应的a 1-a 10取值),
Figure PCTCN2022074884-appb-000111
Figure PCTCN2022074884-appb-000112
又如,
Figure PCTCN2022074884-appb-000113
Figure PCTCN2022074884-appb-000114
(如表1中的编号40对应的a 1-a 10取值),
Figure PCTCN2022074884-appb-000115
需要说明的是,这里所示的M个序列的描述仅为示例,对于M=1或M=2时,第一字段 中所承载的序列的具体例子还可以根据上述表1以及格雷互补序列得到。可理解,上述序列1或序列2可以称为第一序列,例如,序列1称为第一序列,则
Figure PCTCN2022074884-appb-000116
Figure PCTCN2022074884-appb-000117
可以称为第一格雷互补序列。又如,当序列2称为第一序列,则
Figure PCTCN2022074884-appb-000118
Figure PCTCN2022074884-appb-000119
可以称为第一格雷互补序列。
二、三流/四流
本申请实施例中,发送端设备可以发送三个CE序列如CE1序列、CE2序列和CE3序列(即三流),或者,也可以发送四个CE序列,如CE1序列、CE2序列、CE3序列和CE4序列(即四流)。
以下主要以CE1序列至CE4序列为例说明本申请实施例提供的CE序列的构造方法。
示例性的,CE1序列与CE2序列的构造方式相同(即CE1序列和CE2序列的符号序列相同),CE3序列与CE4序列的构造方式相同(即CE3序列和CE4序列的符号序列相同)。根据表1和表2,例如,CE1序列与CE2序列的符号序列对应表1中的编号1,则CE3序列与CE4序列的符号序列可以对应表1中的编号16(如图8a所示)、编号28、编号45或编号57。
本申请实施例中,发送端设备生成并发送物理层协议数据单元PPDU,所述PPDU包括第一字段,所述第一字段用于承载M个序列;所述M个序列对应M个空时流,一个所述序列对应一个所述空时流,所述M为正整数;接收端设备接收PPDU并根据M个序列进行信号处理;例如,M=4时的四个CE序列以及4个序列如下:
Figure PCTCN2022074884-appb-000120
Figure PCTCN2022074884-appb-000121
(即对应表1中的编号16),
Figure PCTCN2022074884-appb-000122
Figure PCTCN2022074884-appb-000123
该情况下,第一字段中所承载的4个序列,如
Figure PCTCN2022074884-appb-000124
Figure PCTCN2022074884-appb-000125
或者,
Figure PCTCN2022074884-appb-000126
Figure PCTCN2022074884-appb-000127
Figure PCTCN2022074884-appb-000128
(即对应表1中的编号28)。该情况下,第一字段中所承载的4个序列,如
Figure PCTCN2022074884-appb-000129
Figure PCTCN2022074884-appb-000130
或者,
Figure PCTCN2022074884-appb-000131
Figure PCTCN2022074884-appb-000132
Figure PCTCN2022074884-appb-000133
(即对应表1中的编号45)。该情况下,第一字段中所承载的4个序列,如
Figure PCTCN2022074884-appb-000134
Figure PCTCN2022074884-appb-000135
或者,
Figure PCTCN2022074884-appb-000136
Figure PCTCN2022074884-appb-000137
Figure PCTCN2022074884-appb-000138
(即对应表1中的编号57)。该情况下,第一字段中所承载的4个序列,如
Figure PCTCN2022074884-appb-000139
Figure PCTCN2022074884-appb-000140
Figure PCTCN2022074884-appb-000141
可 理解,关于序列1和序列2的具体说明可以参考上述描述,这里不再赘述。可理解,上述序列1或序列2可以称为第一序列,
Figure PCTCN2022074884-appb-000142
Figure PCTCN2022074884-appb-000143
(即上文示出的Ga和Gb)可以称为第一格雷互补序列,或者,
Figure PCTCN2022074884-appb-000144
Figure PCTCN2022074884-appb-000145
可以称为第一格雷互补序列。则上述序列3或序列4可以称为第二序列,
Figure PCTCN2022074884-appb-000146
Figure PCTCN2022074884-appb-000147
(即上文示出的Ga’和Gb’)可以称为第而格雷互补序列,或者,
Figure PCTCN2022074884-appb-000148
Figure PCTCN2022074884-appb-000149
可以称为第二格雷互补序列。
又例如,CE1序列与CE2序列的符号序列对应表1中的编号3,则CE3序列与CE4序列的符号序列可以对应表1中的编号17、编号29、编号44或编号56。
Figure PCTCN2022074884-appb-000150
Figure PCTCN2022074884-appb-000151
Figure PCTCN2022074884-appb-000152
(即对应表1中的编号17)。该情况下,第一字段中所承载的4个序列,如
Figure PCTCN2022074884-appb-000153
Figure PCTCN2022074884-appb-000154
或者,
Figure PCTCN2022074884-appb-000155
Figure PCTCN2022074884-appb-000156
Figure PCTCN2022074884-appb-000157
(即对应表1中的编号29)。该情况下,第一字段中所承载的4个序列,如
Figure PCTCN2022074884-appb-000158
Figure PCTCN2022074884-appb-000159
或者,
Figure PCTCN2022074884-appb-000160
Figure PCTCN2022074884-appb-000161
Figure PCTCN2022074884-appb-000162
(即对应表1中的编号44)。该情况下,第一字段中所承载的4个序列,如
Figure PCTCN2022074884-appb-000163
Figure PCTCN2022074884-appb-000164
或者,
Figure PCTCN2022074884-appb-000165
Figure PCTCN2022074884-appb-000166
Figure PCTCN2022074884-appb-000167
(即对应表1中的编号56)。该情况下,第一字段中所承载的4个序列,如
Figure PCTCN2022074884-appb-000168
Figure PCTCN2022074884-appb-000169
Figure PCTCN2022074884-appb-000170
可理解,关于序列1和序列2的说明可以参考上述描述,这里不再赘述。
又例如,CE1序列与CE2序列的符号序列对应表1中的编号6,则CE3序列与CE4序列的符号序列可以对应表1中的编号13或编号32。又例如,CE1序列与CE2序列的符号序列对应表1中的编号8,则CE3序列与CE4序列的符号序列可以对应表1中的编号14或编号36。可理解,对于CE1序列至CE4序列的符号序列可以参考上述表1和表2,这里不再一一列举。可理解,图8a仅示例性给出了CE1序列和CE2序列的符号序列,以及CE3序列和CE4序列的符号序列,对于图8a的具体说明还可以参考上文,这里不再详述。关于序列1至序列4的具体说明可以参考CE1至CE4的描述等,这里不再详述。
可理解,这里仅示例性给出了M=4时的四个CE序列以及4个序列,对于M=3时的三个CE序列以及3个序列的具体描述,这里不再赘述。
根据上述CE序列的互相关的介绍可知,CE1序列至CE4序列可以达到两两之间均具备在格雷互补序列的长度范围内互相关能量为零的特性。示例性的,这四个CE序列在格雷互补序列的长度范围如-128至+128内互相关的峰值(即最大能量)如表4所示。
表4
  CE1 CE2 CE3 CE4
CE1 1024 0 0 0
CE2 0 1024 0 0
CE3 0 0 1024 0
CE4 0 0 0 1024
在一种可能的实现方式中,在三流或四流的情况下进行MIMO信道估计时,P矩阵可以如下公式(18)所示:
Figure PCTCN2022074884-appb-000171
即发送端设备在一个周期内就可以发送三流或四流,而且接收端设备还可以在一个周期内完成信道估计或目标感知等。如图8b-图8e所示,图8b示出的是CE1序列自相关的结果示意图,图8c示出的是CE3自相关的结果示意图,图8d示出的是不具有局部ZCC特性的CE1序列和CE3互相关的结果示意图,图8e示出的是本申请所提供的具有局部ZCC特性的CE1序列和CE3序列互相关的结果示意图。从图8b至图8e可以看出,本申请所构造的CE1序列和CE3序列单流均具有在格雷互补序列的长度范围内自相关旁瓣能量为零的特性,而对于互相关特性来说,相对于802.11ad中示出的CE1序列和CE3序列在格雷互补序列的长度范围内互相关能量不为零,即不具有局部区域ZCC特性而言,本申请所构造的CE1序列和CE3序列在格雷互补序列的长度范围内具有互相关能量为零的特性,即本申请所构造的CE1序列和CE3序列具有格雷互补序列的长度范围ZCC特性。
可理解,关于CE1序列至CE4序列的说明还可以参考上文关于表3的描述等,这里不再一一详述。
通过本申请实施例提供的方法,发送端设备在发送三流或四流时,发送端设备只需一个周期就可以同时发送三流或四流,如图9所示。从而,不仅可以有效缩短了信道估计的时间(也可以称为缩短了信道估计的时长),而且还提高了信道估计的效率。同时,如果应用于目标感知,本申请实施例提供的方法,还可以缩短目标感知的时间,提高目标感知的效率。进一步地,由于周期和频率之间的关系,本申请实施例提供的方法还有效提高了感知的PRF,提高了感知中的最大可探测多普勒和/或速度。
三、五流/六流
本申请实施例中,发送端设备生成并发送物理层协议数据单元PPDU,所述PPDU包括第一字段,所述第一字段用于承载M个序列;所述M个序列对应M个空时流,一个所述序列对应一个所述空时流,所述M为正整数;接收端设备接收PPDU并根据M个序列进行信号处理;例如,M=5或6。
本申请实施例中,发送端设备可以发送五个CE序列,如CE1序列至CE5序列,或者, 也可以发送六个CE序列,如CE1序列至CE6序列。
示例性的,CE1序列与CE2序列的构造方式相同,CE3序列、CE4序列、CE5序列、CE6序列的构造方式相同。也就是说,CE1序列和CE2序列所对应的符号序列相同,CE3序列至CE6序列所对应的符号序列相同。对于这两个符号序列的具体取值可以如表1和表2所示。图10a示例性的示出了CE1序列至CE6序列。示例性的,这六个CE序列在格雷互补序列的长度范围-128至+128之间互相关的峰值如表5所示。
表5
  CE1 CE2 CE3 CE4 CE5 CE6
CE1 1024 0 0 0 0 0
CE2 0 1024 0 0 0 0
CE3 0 0 1024 0 160 288
CE4 0 0 0 1024 288 160
CE5 0 0 160 288 1024 0
CE6 0 0 288 160 0 1024
结合图10b至图10e,图10b示出的是本申请所提供的CE3序列和CE5序列互相关的结果示意图,图10c是802.11ad中示出的CE3序列和CE5序列互相关的结果示意图,图10d是本申请所提供的CE1序列和CE3序列互相关的结果示意图,图10e是802.11ad中示出的CE1序列和CE3序列互相关的结果示意图。从图中可以看出,本申请所示出的CE1序列和CE3序列具有局部ZCC特性。
在一种可能的实现方式中,由于CE3和CE5序列不具有局部ZCC特性,因此,发送端设备可以结合P-matrix来确定CE序列。如图9所示,发送端设备可以结合P矩阵来发送CE序列,该P矩阵可以为下文所示的公式(19):
Figure PCTCN2022074884-appb-000172
示例性的,如CE1和CE2的构造方式相同,CE3至CE6的构造方式相同。例如,CE1和CE2的符号序列对应表1中的编号1,CE3至CE6的符号序列对应表1中的编号16、编号28、编号45或编号57。
可理解,本申请实施例中,关于CE1至CE4、以及序列1至序列4的说明可以参考上述关于三流/四流的描述,这里不再一一赘述。以下将重点说明CE5和CE6,以及序列6和序列7。
Figure PCTCN2022074884-appb-000173
(即对应表1中的编号16),
Figure PCTCN2022074884-appb-000174
Figure PCTCN2022074884-appb-000175
该情况下,
Figure PCTCN2022074884-appb-000176
Figure PCTCN2022074884-appb-000177
或者,
Figure PCTCN2022074884-appb-000178
Figure PCTCN2022074884-appb-000179
Figure PCTCN2022074884-appb-000180
(即对应表1中的编号28)。该情况下,
Figure PCTCN2022074884-appb-000181
Figure PCTCN2022074884-appb-000182
或者,
Figure PCTCN2022074884-appb-000183
Figure PCTCN2022074884-appb-000184
Figure PCTCN2022074884-appb-000185
(即对应表1中的编号45)。该情况下,
Figure PCTCN2022074884-appb-000186
Figure PCTCN2022074884-appb-000187
或者,
Figure PCTCN2022074884-appb-000188
Figure PCTCN2022074884-appb-000189
Figure PCTCN2022074884-appb-000190
(即对应表1中的编号57)。该情况下,
Figure PCTCN2022074884-appb-000191
Figure PCTCN2022074884-appb-000192
可理解,以上仅为示例,对于CE1至CE6以及序列1至序列6的具体说明还可以参考本申请示出的其他实施例,这里不再一一赘述。
在一种可能的实现方式中,CE1序列、CE2序列、CE5序列和CE6序列的构造方式相同,CE3序列和CE4序列的构造方式相同。
发送端设备也可以结合P矩阵来发送CE序列,该P矩阵可以如上述公式(19)所示。
在一种可能的实现方式中,CE1序列、CE2序列、CE3序列和CE4序列的构造方式相同,CE5序列和CE6序列的构造方式相同。
发送端设备也可以结合P矩阵来发送CE序列,该P矩阵可以如公式(20)或公式(21)所示:
Figure PCTCN2022074884-appb-000193
Figure PCTCN2022074884-appb-000194
可理解,关于CE1至CE6,以及序列1至序列6的具体说明还可以参考上述关于公式(19)的描述,这里不再赘述。
本申请实施例中,接收端设备结合P-matrix在两个周期内就可以进行信道估计或目标感 知,不仅减少了发送端设备发送CE序列的时间,而且还缩短了接收端设备信道估计的时间或缩短了接收端设备感知的时间。
四、七流/八流
本申请实施例中,发送端设备生成并发送物理层协议数据单元PPDU,所述PPDU包括第一字段,所述第一字段用于承载M个序列;所述M个序列对应M个空时流,一个所述序列对应一个所述空时流,所述M为正整数;接收端设备接收PPDU并根据M个序列进行信号处理;例如,M=7或8。
本申请实施例中,发送端设备可以发送七个CE序列,如CE1序列至CE7序列,或者,也可以发送八个CE序列,如CE1序列至CE8序列。
示例性的,CE1序列、CE2序列、CE7序列、CE8序列的构造方式相同,CE3序列、CE4序列、CE5序列、CE6序列的构造方式相同。也就是说,CE1序列、CE2序列、CE7序列、CE8序列所对应的符号序列相同,CE3序列、CE4序列、CE5序列、CE6序列所对应的符号序列相同。对于这两个符号序列的具体取值可以如表1和表2所示。示例性的,图11示例性的示出了CE1序列至CE8序列。
示例性的,本申请所提供的这八个CE序列在格雷互补序列的长度范围如-128至+128之间互相关的峰值如表6所示。
表6
  CE1 CE2 CE3 CE4 CE5 CE6 CE7 CE8
CE1 1024 0 0 0 0 0 512 128
CE2 0 1024 0 0 0 0 128 512
CE3 0 0 1024 0 160 288 0 0
CE4 0 0 0 1024 288 160 0 0
CE5 0 0 160 288 1024 0 0 0
CE6 0 0 288 160 0 1024 0 0
CE7 512 128 0 0 0 0 1024 0
CE8 128 512 0 0 0 0 0 1024
示例性的,802.11ad中示出的CE1序列至CE8序列互相关的峰值可以如表7所示。
表7
  CE1 CE2 CE3 CE4 CE5 CE6 CE7 CE8
CE1 1024 0 256 160 256 160 512 128
CE2 0 1024 160 256 160 256 128 512
CE3 256 160 1024 0 160 288 512 144
CE4 160 256 0 1024 288 160 144 512
CE5 256 160 160 288 1024 0 512 144
CE6 160 256 288 160 0 1024 144 512
CE7 512 128 512 144 512 144 1024 0
CE8 128 512 144 512 144 512 0 1024
相对于表7来说,本申请提供的CE序列有明显地提升。从表6可以看出,CE1序列和CE7序列互相关的结果不为0,同时,CE1序列与CE8序列互相关的结果也不为0等,因此,发送端设备可以结合公式(22)所示的P-matrix来发送CE序列。该情况下,接收端设备结合P-matrix在两个周期内就可以完成信道估计或WLAN感知,从而不仅减少了发送端设备发送CE序列的时间,而且还缩短了接收端设备信道估计的时间,或者,缩短了接收端设备感知的时间。
例如,P矩阵可以如下公式(22)所示:
Figure PCTCN2022074884-appb-000195
可理解,五流或六流时所适用的P矩阵也可以是上述公式(22),如上述五流/六流时所示出的公式(19)也可以替换为公式(22)。
示例性的,CE1序列、CE2序列、CE7序列、CE8序列的构造方式相同,CE3序列、CE4序列、CE5序列、CE6序列的构造方式相同。例如,CE1、CE2、CE7和CE8的符号对应对应表1中的编号1,CE3至CE6对应表1中的编号16、编号28、编号45或编号57。可理解,由于上述所示的例子中,CE3至CE6的构造方式相同,CE1和CE2的构造方式相同,因此本申请实施例中关于CE1至CE6、以及序列1至序列6的说明可以参考上述关于五流/六流的描述,这里不再一一赘述。以下将重点说明CE7和CE8,以及序列7和序列8。
例如,
Figure PCTCN2022074884-appb-000196
Figure PCTCN2022074884-appb-000197
(即对应表1中的编号1)。该情况下,
Figure PCTCN2022074884-appb-000198
Figure PCTCN2022074884-appb-000199
可理解,关于CE1至CE8,序列1至序列8的具体说明可以参考本申请其他地方的描述,这里不再赘述。
示例性的,CE1序列至CE4序列的构造方式相同,CE5序列至CE8序列的构造方式相同。该情况下,发送端设备也可以结合P矩阵进行信道估计或目标感知,该P矩阵可以如下公式(23)或公式(24)所示:
Figure PCTCN2022074884-appb-000200
Figure PCTCN2022074884-appb-000201
可理解,五流或六流时所适用的P矩阵也可以是上述公式(23),如上述五流/六流时所示出的公式(21)也可以替换为公式(23)。
示例性的,CE1至CE4的符号序列对应表1中的编号1,CE5至CE8的符号序列对应表1中的编号16,则
Figure PCTCN2022074884-appb-000202
Figure PCTCN2022074884-appb-000203
Figure PCTCN2022074884-appb-000204
即对应表1中的编号1。
Figure PCTCN2022074884-appb-000205
Figure PCTCN2022074884-appb-000206
Figure PCTCN2022074884-appb-000207
即对应表1中的编号16。
如公式(23)所示的P矩阵,则第一字段中承载的8个序列,如
Figure PCTCN2022074884-appb-000208
Figure PCTCN2022074884-appb-000209
示例性的,CE1序列、CE2序列、CE5序列、CE6序列的构造方式相同,CE3序列、CE4序列、CE7序列、CE8序列的构造方式相同等,这里不再一一详述。该情况下,发送端设备也可以结合P矩阵进行信道估计或目标感知,该P矩阵可以如上述公式(23)或公式(24)所示。可理解,关于CE1至CE8,序列1至序列8的具体说明,可以参考上文,这里不再赘述。
本申请实施例中,接收端设备结合P-matrix在两个周期内就可以完成信道估计或WLAN感知,从而不仅减少了发送端设备发送CE序列的时间,而且还缩短了接收端设备信道估计的时间,或者,缩短了接收端设备感知的时间。
需要说明的是,本申请上文图3a和图3b所示的PPDU仅为示例,但凡具有与本申请实施例所示的PPDU功能类似的PPDU均属于本申请的保护范围。如图3a和/或图3b所示的PPDU仅为示例,随着标准的演进,PPDU的形式可能也会变化,但是只要该PPDU中的某个字段或某些字段符合本申请所示的第一字段的特征,均属于本申请的保护范围。
需要说明的是,上述仅示例性给出了一种类型的格雷互补序列即
Figure PCTCN2022074884-appb-000210
如上文所示的格雷互补序列的说明同样适用于另一种类型的格雷互补序列如
Figure PCTCN2022074884-appb-000211
当然,随着标准的演进,可能还会出现其他类型的与上述格雷互补序列功能相似的格雷互补类型,本申请实施例对此不作限定。
根据上文记载:本申请所涉及的格雷互补序列的长度N=128,或者,N=256,或者,N=512等,本申请对于N的取值不作限定。或者,N也可以等于32或64等。
示例性的,当N=128时,从图4b所示的CE序列的自相关的结果可以看出,由于0表示为完全重叠的时候,因此上文所示的格雷互补序列的长度范围还可以是-127至+127。因此,当N=128时,一个CE序列的自相关旁瓣能量为零的范围可以为-127至+127(包括-127和/或+127,不包括0)。不同CE序列互相关能量为零的范围为-127至+127(包括-127和/或+127,包括0)。
类似的,当N=64时,格雷互补序列的长度范围可以为-63至+63(可以包括-63和/或+63)。当N=64时,一个CE序列的自相关旁瓣能量为零的范围可以为-63至+63(包括-63和/或+63,不包括0)。不同CE序列互相关能量为零的范围可以为-63至+63(包括-63和/或+63,包括0)。
类似的,当N=256时,格雷互补序列的长度范围可以为-255至+255(可以包括-255和/或+255)。当N=256时,一个CE序列的自相关旁瓣能量为零的范围可以为-255至+255(包括-255和/或+255,不包括0)。不同CE序列互相关能量为零的范围可以为-255至+255(包括-255和/或+255,包括0)。
类似的,当N=512时,格雷互补序列的长度范围可以为-511至+511(可以包括-511和/或+511)。即当N=512时,一个CE序列的自相关旁瓣能量为零的范围可以为-511至+511(包括-511和/或+511,不包括0),不同CE序列互相关能量为零的范围可以为-511至+511(包括-511和/或+511,包括0)。
可理解,这里不再一一列举N的取值与格雷互补序列的长度范围之间的关系。关于N的其他取值的说明可以参考上文。关于CE格雷互补序列的长度范围的说明同样适用于上文所示的M个序列,这里不再一一详述。
本申请所示的循环前缀的英文名称为cyclic prefix,循环后缀的英文名称为cyclic suffix。
本申请所示的如图4b、图8b至图8e、图10b至图10e所示的横坐标除了可以表示为样本、码元或延迟索引之外,还可以表示元素或位。如图4b、图8b至图8e、图10b至图10e所示的纵坐标还可以表示相关值(correlation)。
可理解,本申请上文所示的两个CE序列在格雷互补序列的长度范围内互相关能量为零还可以称为:该两个CE序列在格雷互补序列的长度范围内互相关为零。一个CE序列在格雷互补序列的长度范围内自相关旁瓣能量为零还可以称为:该一个CE序列在格雷互补序列的长度范围内自相关旁瓣为零。同样的,本申请上文所示的第一序列至少与M个序列中的两个序列在格雷互补序列的长度范围内互相关能量为零,还可以称为:该第一序列至少与M个序列中的两个序列在格雷互补序列的长度范围内互相关为量。第一序列在格雷互补序列的长度范围内自相关旁瓣能量为零,还可以称为:该第一序列在格雷互补序列的长度范围内自相关旁瓣为零。也就是说,本申请上文所示的自相关旁瓣能量为零还可以称为:自相关旁瓣为零;互相关能量为零还可以称为:互相关为零。
以下将介绍本申请实施例提供的通信装置。
本申请根据上述方法实施例对通信装置进行功能模块的划分,例如,可以对应各个功能 划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。下面将结合图12至图14详细描述本申请实施例的通信装置。
图12是本申请实施例提供的一种通信装置的结构示意图,如图12所示,该通信装置包括处理单元120l和收发单元1202。
在本申请的一些实施例中,该通信装置可以是上文示出的发送端设备或发送端设备中的芯片等。即该通信装置可以用于执行上文方法实施例中由发送端设备执行的步骤或功能等。
处理单元120l,用于生成PPDU;收发单元1202,用于输出该PPDU。
可理解,本申请实施例示出的收发单元和处理单元的具体说明仅为示例,对于收发单元和处理单元的具体功能或执行的步骤等,可以参考上述方法实施例,这里不再详述。示例性的,处理单元120l可以用于执行图7所示的步骤70l。该收发单元1202可以用于执行图7所示的步骤702中的发送步骤。
复用图12,在本申请的另一些实施例中,该通信装置可以是上文示出的接收端设备或接收端设备中的芯片等。即该通信装置可以用于执行上文方法实施例中由接收端设备执行的步骤或功能等。
如收发单元1202,用于输入PPDU;处理单元120l,用于对该PPDU中承载的M个序列进行处理。
例如,处理单元120l,可以根据该M个序列进行信道估计,或根据该M个序列进行目标感知等。对于该M个序列的具体作用可以参考上文,这里不再赘述。
可理解,本申请实施例示出的收发单元和处理单元的具体说明仅为示例,对于收发单元和处理单元的具体功能或执行的步骤等,可以参考上述方法实施例,这里不再详述。示例性的,收发单元1202还可以用于执行图7所示的步骤702中的接收步骤。该处理单元120l还可以用于执行图7所示的步骤703。
上个各个实施例中,关于PPDU、M个序列、第一序列、格雷互补序列(如包括
Figure PCTCN2022074884-appb-000212
Figure PCTCN2022074884-appb-000213
Figure PCTCN2022074884-appb-000214
Figure PCTCN2022074884-appb-000215
Figure PCTCN2022074884-appb-000216
Figure PCTCN2022074884-appb-000217
Figure PCTCN2022074884-appb-000218
Figure PCTCN2022074884-appb-000219
Figure PCTCN2022074884-appb-000220
Figure PCTCN2022074884-appb-000221
Figure PCTCN2022074884-appb-000222
)、CE序列(如包括CEl序列至CE8序列)等说明还可以参考上文方法实施例中的介绍,这里不再一一详述。
以上介绍了本申请实施例的发送端设备和接收端设备,以下介绍所述发送端设备和接收端设备可能的产品形态。应理解,但凡具备上述图12所述的发送端设备的功能的任何形态的产品,或者,但凡具备上述图12所述的接收端设备的功能的任何形态的产品,都落入本申请实施例的保护范围。还应理解,以下介绍仅为举例,不限制本申请实施例的发送端设备和接收端设备的产品形态仅限于此。
在一种可能的实现方式中,图12所示的通信装置中,处理单元120l可以是一个或多个处理器,收发单元1202可以是收发器,或者收发单元1202还可以是发送单元和接收单元,发送单元可以是发送器,接收单元可以是接收器,该发送单元和接收单元集成于一个器件,例如收发器。本申请实施例中,处理器和收发器可以被耦合等,对于处理器和收发器的连接方式,本申请实施例不作限定。
如图13所示,该通信装置130包括一个或多个处理器1320和收发器1310。
示例性的,当该通信装置用于执行上述发送端设备执行的步骤或方法或功能时,处理器 1320,用于生成PPDU;收发器1310,用于向接收端设备发送PPDU。
示例性的,当该通信装置用于执行上述接收端设备执行的步骤或方法或功能时,收发器1310,用于接收来自发送端设备的PPDU;处理器1320,用于对PPDU中承载的M个序列进行处理。
本申请实施例中,关于PPDU、M个序列、第一序列、格雷互补序列(如包括
Figure PCTCN2022074884-appb-000223
Figure PCTCN2022074884-appb-000224
Figure PCTCN2022074884-appb-000225
Figure PCTCN2022074884-appb-000226
Figure PCTCN2022074884-appb-000227
Figure PCTCN2022074884-appb-000228
Figure PCTCN2022074884-appb-000229
Figure PCTCN2022074884-appb-000230
Figure PCTCN2022074884-appb-000231
Figure PCTCN2022074884-appb-000232
Figure PCTCN2022074884-appb-000233
)、CE序列(如包括CEl序列至CE8序列)等说明还可以参考上文方法实施例中的介绍,这里不再一一详述。
可理解,对于处理器和收发器的具体说明还可以参考图12所示的处理单元和收发单元的介绍,这里不再赘述。
在图13所示的通信装置的各个实现方式中,收发器可以包括接收机和发射机,该接收机用于执行接收的功能(或操作),该发射机用于执行发射的功能(或操作)。以及收发器用于通过传输介质和其他设备/装置进行通信。
可选的,通信装置130还可以包括一个或多个存储器1330,用于存储程序指令和/或数据等。存储器1330和处理器1320耦合。本申请实施例中的耦合是装置、单元或模块之间的间接耦合或通信连接,可以是电性,机械或其它的形式,用于装置、单元或模块之间的信息交互。处理器1320可能和存储器1330协同操作。处理器1320可可以执行存储器1330中存储的程序指令。可选的,上述一个或多个存储器中的至少一个可以包括于处理器中。
本申请实施例中不限定上述收发器1310、处理器1320以及存储器1330之间的具体连接介质。本申请实施例在图13中以存储器1330、处理器1320以及收发器1310之间通过总线13120连接,总线在图13中以粗线表示,其它部件之间的连接方式,仅是进行示意性说明,并不引以为限。所述总线可以分为地址总线、数据总线、控制总线等。为便于表示,图13中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
在本申请实施例中,处理器可以是通用处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等,可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成等。
本申请实施例中,存储器可包括但不限于硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD)等非易失性存储器,随机存储记忆体(Random Access Memory,RAM)、可擦除可编程只读存储器(Erasable Programmable ROM,EPROM)、只读存储器(Read-Only Memory,ROM)或便携式只读存储器(Compact Disc Read-Only Memory,CD-ROM)等等。存储器是能够用于携带或存储具有指令或数据结构形式的程序代码,并能够由计算机(如本申请示出的通信装置等)读和/或写的任何存储介质,但不限于此。本申请实施例中的存储器还可以是电路或者其它任意能够实现存储功能的装置,用于存储程序指令和/或数据。
示例性的,处理器1320主要用于对通信协议以及通信数据进行处理,以及对整个通信装置进行控制,执行软件程序,处理软件程序的数据。存储器1330主要用于存储软件程序和数据。收发器1310可以包括控制电路和天线,控制电路主要用于基带信号与射频信号的转换以及对射频信号的处理。天线主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。
当通信装置开机后,处理器1320可以读取存储器1330中的软件程序,解释并执行软件 程序的指令,处理软件程序的数据。当需要通过无线发送数据时,处理器1320对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到通信装置时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器1320,处理器1320将基带信号转换为数据并对该数据进行处理。
在另一种实现中,所述的射频电路和天线可以独立于进行基带处理的处理器而设置,例如在分布式场景中,射频电路和天线可以与独立于通信装置,呈拉远式的布置。
可理解,本申请实施例示出的通信装置还可以具有比图13更多的元器件等,本申请实施例对此不作限定。以上所示的处理器和收发器所执行的方法仅为示例,对于该处理器和收发器具体所执行的步骤可参照上文介绍的方法。
在另一种可能的实现方式中,图12所示的通信装置中,处理单元120l可以是一个或多个逻辑电路,收发单元1202可以是输入输出接口,又或者称为通信接口,或者接口电路,或接口等等。或者收发单元1202还可以是发送单元和接收单元,发送单元可以是输出接口,接收单元可以是输入接口,该发送单元和接收单元集成于一个单元,例如输入输出接口。如图14所示,图14所示的通信装置包括逻辑电路140l和接口1402。即上述处理单元120l可以用逻辑电路140l实现,收发单元902可以用接口1402实现。其中,该逻辑电路140l可以为芯片、处理电路、集成电路或片上系统(system on chip,SoC)芯片等,接口1402可以为通信接口、输入输出接口、管脚等。示例性的,图14是以上述通信装置为芯片为例出的,该芯片包括逻辑电路140l和接口1402。
本申请实施例中,逻辑电路和接口还可以相互耦合。对于逻辑电路和接口的具体连接方式,本申请实施例不作限定。
示例性的,当通信装置用于执行上述发送端设备执行的方法或功能或步骤时,逻辑电路140l,用于生成PPDU;接口1402,用于输出该PPDU。
示例性的,当通信装置用于执行上述接收端设备执行的方法或功能或步骤时,接口1402,用于输入PPDU;逻辑电路140l,用于对PPDU中承载的M个序列进行处理。
可理解,本申请实施例示出的通信装置可以采用硬件的形式实现本申请实施例提供的方法,也可以采用软件的形式实现本申请实施例提供的方法等,本申请实施例对此不作限定。
本申请实施例中,关于PPDU、M个序列、第一序列、格雷互补序列(如包括
Figure PCTCN2022074884-appb-000234
Figure PCTCN2022074884-appb-000235
Figure PCTCN2022074884-appb-000236
Figure PCTCN2022074884-appb-000237
Figure PCTCN2022074884-appb-000238
Figure PCTCN2022074884-appb-000239
Figure PCTCN2022074884-appb-000240
Figure PCTCN2022074884-appb-000241
Figure PCTCN2022074884-appb-000242
Figure PCTCN2022074884-appb-000243
Figure PCTCN2022074884-appb-000244
)、CE序列(如包括CEl序列至CE8序列)等说明还可以参考上文方法实施例中的介绍,这里不再一一详述。
对于图14所示的各个实施例的具体实现方式,还可以参考上述各个实施例,这里不再详述。
本申请实施例还提供了一种无线通信系统,该无线通信系统包括发送端设备和接收端设备,该发送端设备和该接收端设备可以用于执行前述任一实施例(如图7)中的方法。
此外,本申请还提供一种计算机程序,该计算机程序用于实现本申请提供的方法中由发送端设备执行的操作和/或处理。
本申请还提供一种计算机程序,该计算机程序用于实现本申请提供的方法中由接收端设备执行的操作和/或处理。
本申请还提供一种计算机可读存储介质,该计算机可读存储介质中存储有计算机代码, 当计算机代码在计算机上运行时,使得计算机执行本申请提供的方法中由发送端设备执行的操作和/或处理。
本申请还提供一种计算机可读存储介质,该计算机可读存储介质中存储有计算机代码,当计算机代码在计算机上运行时,使得计算机执行本申请提供的方法中由接收端设备执行的操作和/或处理。
本申请还提供一种计算机程序产品,该计算机程序产品包括计算机代码或计算机程序,当该计算机代码或计算机程序在计算机上运行时,使得本申请提供的方法中由发送端设备执行的操作和/或处理被执行。
本申请还提供一种计算机程序产品,该计算机程序产品包括计算机代码或计算机程序,当该计算机代码或计算机程序在计算机上运行时,使得本申请提供的方法中由接收端设备执行的操作和/或处理被执行。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口、装置或单元的间接耦合或通信连接,也可以是电的,机械的或其它的形式连接。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本申请实施例提供的方案的技术效果。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以是两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分,或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个可读存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的可读存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (30)

  1. 一种信号处理方法,其特征在于,所述方法包括:
    生成物理层协议数据单元PPDU,所述PPDU包括第一字段,所述第一字段用于承载M个序列,所述M个序列对应M个空时流,一个所述序列对应一个所述空时流,所述M为正整数,所述M个序列中包括第一序列,所述M大于2时,所述第一序列至少与所述M个序列中的两个序列在格雷互补序列的长度范围内互相关能量为零,所述第一序列在所述格雷互补序列的长度范围内自相关旁瓣能量为零,所述第一序列根据信道估计CE序列得到,所述格雷互补序列用于构造所述CE序列;
    发送所述PPDU。
  2. 一种信号处理方法,其特征在于,所述方法包括:
    接收物理层协议数据单元PPDU,所述PPDU包括第一字段,所述第一字段用于承载M个序列,所述M个序列对应M个空时流,一个所述序列对应一个所述空时流,所述M为正整数,所述M个序列中包括第一序列,所述M大于2时,所述第一序列至少与所述M个序列中的两个序列在格雷互补序列的长度范围内互相关能量为零,所述第一序列在所述格雷互补序列的长度范围内自相关旁瓣能量为零,所述第一序列根据信道估计CE序列得到,所述格雷互补序列用于构造所述CE序列;
    根据所述M个序列进行信号处理。
  3. 根据权利要求1或2所述的方法,其特征在于,所述M个序列用于信道估计,或者,所述M个序列用于目标感知。
  4. 根据权利要求1-3任一项所述的方法,其特征在于,所述M大于4时,所述第一序列至少与所述M个序列中的三个序列在所述格雷互补序列的长度范围内互相关能量为零。
  5. 根据权利要求4所述的方法,其特征在于,所述第一序列根据P矩阵以及所述CE序列得到,所述P矩阵为:
    Figure PCTCN2022074884-appb-100001
  6. 根据权利要求1-5任一项所述的方法,其特征在于,所述格雷互补序列包括第一格雷互补序列Ga和Gb,所述第一序列根据所述Ga、所述Gb以及第一符号序列得到,所述第一符号序列用于表示所述Ga和所述Gb的正负符号。
  7. 根据权利要求6所述的方法,其特征在于,所述第一符号序列 a(n)={a 1,a 2,a 3,a 4,a 5,a 6,a 7,a 8,a 9,a 10},所述a 1等于所述a 9,所述a 2等于所述a 10,所述a(n)中各元素的取值为1或-1。
  8. 根据权利要求7所述的方法,其特征在于,所述a(n)满足如下至少一项:
    Figure PCTCN2022074884-appb-100002
  9. 根据权利要求7或8所述的方法,其特征在于,所述a 1至所述a 10的取值为以下任一项,且横向顺序依次对应所述a 1至所述a 10
    Figure PCTCN2022074884-appb-100003
    Figure PCTCN2022074884-appb-100004
  10. 根据权利要求1-7任一项所述的方法,其特征在于,M大于2时,所述M个序列还包括第二序列,所述第二序列与所述第一序列在所述格雷互补序列的长度范围内互相关能量为零,所述格雷互补序列还包括第二格雷互补序列Ga’和Gb’;
    其中,所述第二序列根据所述Ga’、所述Gb’以及第二符号序列b(n)={b 1,b 2,b 3,b 4,b 5,b 6,b 7,b 8,b 9,b 10}得到,所述第二符号序列用于表示所述Ga’和所述Gb’的正负符号,所述b 1等于所述b 9,所述b 2等于所述b 10,所述b(n)中各元素的取值为1或-1,所述b(n)不等于所述a(n)。
  11. 根据权利要求10所述的方法,其特征在于,所述a(n)与所述b(n)满足如下至少一项:
    Figure PCTCN2022074884-appb-100005
  12. 根据权利要求10或11所述的方法,其特征在于,
    所述a(n)={1,1,-1,1,-1,1,1,1,1,1}时,所述b(n)={1,1,1,-1,-1,1,-1,-1,1,1},或者,所述b(n)={-1,1,-1,-1,1,1,1,-1,-1,1};或者,
    所述a(n)={1,1,1,-1,1,-1,1,1,1,1}时,所述b(n)={1,1,-1,1,1,-1,-1,-1,1,1},或者,所述b(n)={-1,1,1,1,-1,-1,1,-1,-1,1};或者,
    所述a(n)={1,1,1,1,-1,1,-1,1,1,1}时,所述b(n)={1,1,-1,-1,-1,1,1,-1,1,1},或者,所述b(n)={-1,1,1,-1,1,1,-1,-1,-1,1};或者,
    所述a(n)={1,1,-1,-1,1-,1,-1,1,1,1}时,所述b(n)={1,1,1,1,1,-1,1,-1,1,1},或者,所述b(n)={-1,1,-1,1,-1,-1,-1,-1,-1,1};或者,
    所述a(n)={1,1,-1,-1,-1,1,1,-1,1,1}时,所述b(n)={-1,1,-1,1,1,1,1,1,-1,1};或者,
    所述a(n)={1,1,1,1,1,-1,1,-1,1,1}时,所述b(n)={-1,1,1,-1,-1,-1,1,1,-1,1};或者,
    所述a(n)={1,1,1,-1,-1,1,-1,-1,1,1}时,所述b(n)={-1,1,1,1,1,1,-1,1,-1,1};或者,
    所述a(n)={1,1,-1,1,1,-1,-1,-1,1,1}时,所述b(n)={-1,1,-1,-1,-1,-1,-1,1,-1,1};或者,
    所述a(n)={-1,1,-1,1,1,1,1,1,-1,1}时,所述b(n)={-1,1,1,-1,1,1,-1,-1,-1,1};或者,
    所述a(n)={-1,1,1,-1,-1,-1,1,1,-1,1}时,所述b(n)={-1,1,-1,1,-1,-1,-1,-1,-1,1};或者,
    所述a(n)={-1,1,1,1,1,1,-1,1,-1,1}时,所述b(n)={-1,1,-1,-1,1,1,1,-1,-1,1};或者,
    所述a(n)={-1,1,-1,-1,-1,-1,-1,1,-1,1}时,所述b(n)={-1,1,1,1,-1,-1,1,-1,-1,1}。
  13. 根据权利要求1-12任一项所述的方法,其特征在于,所述第一字段为所述PPDU中的训练字段单元;或者,
    所述第一字段为所述PPDU中的增强定向多千兆信道估计字段;或者,
    所述第一字段为所述PPDU中的长训练字段。
  14. 一种通信装置,其特征在于,所述通信装置包括:
    处理单元,用于生成物理层协议数据单元PPDU,所述PPDU包括第一字段,所述第一字段用于承载M个序列,所述M个序列对应M个空时流,一个所述序列对应一个所述空时流,所述M为正整数,所述M个序列中包括第一序列,所述M大于2时,所述第一序列至少与所述M个序列中的两个序列在格雷互补序列的长度范围内互相关能量为零,所述第一序列在所述格雷互补序列的长度范围内自相关旁瓣能量为零,所述第一序列根据信道估计CE序列得到,所述格雷互补序列用于构造所述CE序列;
    收发单元,用于发送所述PPDU。
  15. 一种通信装置,其特征在于,所述通信装置包括:
    收发单元,用于接收物理层协议数据单元PPDU,所述PPDU包括第一字段,所述第一字段用于承载M个序列,所述M个序列对应M个空时流,一个所述序列对应一个所述空时流,所述M为正整数,所述M个序列中包括第一序列,所述M大于2时,所述第一序列至少与所述M个序列中的两个序列在格雷互补序列的长度范围内互相关能量为零,所述第一序列在所述格雷互补序列的长度范围内自相关旁瓣能量为零,所述第一序列根据信道估计CE序列得到,所述格雷互补序列用于构造所述CE序列;
    处理单元,用于根据所述M个序列进行信号处理。
  16. 根据权利要求14或15所述的通信装置,其特征在于,所述M个序列用于信道估计,或者,所述M个序列用于目标感知。
  17. 根据权利要求14-16任一项所述的通信装置,其特征在于,所述M大于4时,所述第一序列至少与所述M个序列中的三个序列在所述格雷互补序列的长度范围内互相关能量为零。
  18. 根据权利要求17所述的通信装置,其特征在于,所述第一序列根据P矩阵以及所述CE序列得到,所述P矩阵为:
    Figure PCTCN2022074884-appb-100006
  19. 根据权利要求14-18任一项所述的通信装置,其特征在于,所述格雷互补序列包括第一格雷互补序列Ga和Gb,所述第一序列根据所述Ga、所述Gb以及第一符号序列得到,所述第一符号序列用于表示所述Ga和所述Gb的正负符号。
  20. 根据权利要求19所述的通信装置,其特征在于,所述第一符号序列a(n)={a 1,a 2,a 3,a 4,a 5,a 6,a 7,a 8,a 9,a 10},所述a 1等于所述a 9,所述a 2等于所述a 10,所述a(n)中各元素的取值为1或-1。
  21. 根据权利要求20所述的通信装置,其特征在于,所述a(n)满足如下至少一项:
    Figure PCTCN2022074884-appb-100007
  22. 根据权利要求20或21所述的通信装置,其特征在于,所述a 1至所述a 10的取值为以下任一项,且横向顺序依次对应所述a 1至所述a 10
    Figure PCTCN2022074884-appb-100008
    Figure PCTCN2022074884-appb-100009
  23. 根据权利要求14-20任一项所述的通信装置,其特征在于,M大于2时,所述M个序列还包括第二序列,所述第二序列与所述第一序列在所述格雷互补序列的长度范围内互相关能量为零,所述格雷互补序列还包括第二格雷互补序列Ga’和Gb’;
    其中,所述第二序列根据所述Ga’、所述Gb’以及第二符号序列b(n)={b 1,b 2,b 3,b 4,b 5,b 6,b 7,b 8,b 9,b 10}得到,所述第二符号序列用于表示所述Ga’和所述Gb’的正负符号,所述b 1等于所述b 9,所述b 2等于所述b 10,所述b(n)中各元素的取值为1或-1,所述b(n)不等于所述a(n)。
  24. 根据权利要求23所述的通信装置,其特征在于,所述a(n)与所述b(n)满足如下至少一项:
    Figure PCTCN2022074884-appb-100010
  25. 根据权利要求23或24所述的通信装置,其特征在于,
    所述a(n)={1,1,-1,1,-1,1,1,1,1,1}时,所述b(n)={1,1,1,-1,-1,1,-1,-1,1,1},或者,所述b(n)={-1,1,-1,-1,1,1,1,-1,-1,1};或者,
    所述a(n)={1,1,1,-1,1,-1,1,1,1,1}时,所述b(n)={1,1,-1,1,1,-1,-1,-1,1,1},或者,所述b(n)={-1,1,1,1,-1,-1,1,-1,-1,1};或者,
    所述a(n)={1,1,1,1,-1,1,-1,1,1,1}时,所述b(n)={1,1,-1,-1,-1,1,1,-1,1,1},或者,所述b(n)={-1,1,1,-1,1,1,-1,-1,-1,1};或者,
    所述a(n)={1,1,-1,-1,1-,1,-1,1,1,1}时,所述b(n)={1,1,1,1,1,-1,1,-1,1,1},或者,所述b(n)={-1,1,-1,1,-1,-1,-1,-1,-1,1};或者,
    所述a(n)={1,1,-1,-1,-1,1,1,-1,1,1}时,所述b(n)={-1,1,-1,1,1,1,1,1,-1,1};或者,
    所述a(n)={1,1,1,1,1,-1,1,-1,1,1}时,所述b(n)={-1,1,1,-1,-1,-1,1,1,-1,1};或者,
    所述a(n)={1,1,1,-1,-1,1,-1,-1,1,1}时,所述b(n)={-1,1,1,1,1,1,-1,1,-1,1};或者,
    所述a(n)={1,1,-1,1,1,-1,-1,-1,1,1}时,所述b(n)={-1,1,-1,-1,-1,-1,-1,1,-1,1};或者,
    所述a(n)={-1,1,-1,1,1,1,1,1,-1,1}时,所述b(n)={-1,1,1,-1,1,1,-1,-1,-1,1};或者,
    所述a(n)={-1,1,1,-1,-1,-1,1,1,-1,1}时,所述b(n)={-1,1,-1,1,-1,-1,-1,-1,-1,1};或者,
    所述a(n)={-1,1,1,1,1,1,-1,1,-1,1}时,所述b(n)={-1,1,-1,-1,1,1,1,-1,-1,1};或者,
    所述a(n)={-1,1,-1,-1,-1,-1,-1,1,-1,1}时,所述b(n)={-1,1,1,1,-1,-1,1,-1,-1,1}。
  26. 根据权利要求14-25任一项所述的通信装置,其特征在于,所述第一字段为所述PPDU中的训练字段单元;或者,
    所述第一字段为所述PPDU中的增强定向多千兆信道估计字段;或者,
    所述第一字段为所述PPDU中的长训练字段。
  27. 一种通信装置,其特征在于,包括处理器和存储器;
    所述处理器用于存储计算机执行指令;
    所述处理器用于执行所述计算机执行指令,以使权利要求1-13任一项所述的方法被执行。
  28. 一种通信装置,其特征在于,包括逻辑电路和接口,所述逻辑电路和接口耦合;
    所述接口用于输入和/或输出代码指令,所述逻辑电路用于执行所述代码指令,以使权利要求1-13任一项所述的方法被执行。
  29. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质用于存储计算机程序,当所述计算机程序被执行时,权利要求1-13任一项所述的方法被执行。
  30. 一种计算机程序,其特征在于,所述计算机程序被执行时,权利要求1-13任一项所述的方法被执行。
PCT/CN2022/074884 2021-02-10 2022-01-29 信号处理方法及装置 WO2022171021A1 (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2023548634A JP2024506652A (ja) 2021-02-10 2022-01-29 信号処理方法及び装置
AU2022220522A AU2022220522A1 (en) 2021-02-10 2022-01-29 Signal processing method and apparatus
KR1020237030379A KR20230144579A (ko) 2021-02-10 2022-01-29 신호 처리 방법 및 장치
MX2023009343A MX2023009343A (es) 2021-02-10 2022-01-29 Metodo y aparato de procesamiento de se?ales.
CA3210915A CA3210915A1 (en) 2021-02-10 2022-01-29 Signal processing method and apparatus
EP22752182.0A EP4284060A4 (en) 2021-02-10 2022-01-29 METHOD AND APPARATUS FOR PROCESSING SIGNAL
US18/446,764 US20240031050A1 (en) 2021-02-10 2023-08-09 Signal processing method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110184266.6A CN114916009A (zh) 2021-02-10 2021-02-10 信号处理方法及装置
CN202110184266.6 2021-02-10

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/446,764 Continuation US20240031050A1 (en) 2021-02-10 2023-08-09 Signal processing method and apparatus

Publications (3)

Publication Number Publication Date
WO2022171021A1 true WO2022171021A1 (zh) 2022-08-18
WO2022171021A9 WO2022171021A9 (zh) 2023-09-28
WO2022171021A8 WO2022171021A8 (zh) 2023-11-02

Family

ID=82760793

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/074884 WO2022171021A1 (zh) 2021-02-10 2022-01-29 信号处理方法及装置

Country Status (9)

Country Link
US (1) US20240031050A1 (zh)
EP (1) EP4284060A4 (zh)
JP (1) JP2024506652A (zh)
KR (1) KR20230144579A (zh)
CN (1) CN114916009A (zh)
AU (1) AU2022220522A1 (zh)
CA (1) CA3210915A1 (zh)
MX (1) MX2023009343A (zh)
WO (1) WO2022171021A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024124412A1 (zh) * 2022-12-13 2024-06-20 华为技术有限公司 一种序列传输方法及装置
CN118337317A (zh) * 2023-01-12 2024-07-12 华为技术有限公司 发送和接收物理层协议数据单元的方法和装置
CN118631289A (zh) * 2023-03-10 2024-09-10 华为技术有限公司 基于uwb的ppdu传输方法及装置
WO2024197534A1 (zh) * 2023-03-27 2024-10-03 华为技术有限公司 一种序列传输方法及装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5786788A (en) * 1996-10-08 1998-07-28 Raytheon Company Radar system and method for reducing range sidelobes
CN104714231A (zh) * 2015-02-01 2015-06-17 中国传媒大学 一种基于完全互补序列和相位补偿的mimo sar成像方法
WO2017189143A2 (en) * 2016-04-28 2017-11-02 Intel IP Corporation Channel estimation fields for wireless networks
CN110531323A (zh) * 2019-08-27 2019-12-03 武汉大学深圳研究院 一种适用于mimo/ofdm外辐射源雷达的参考信号重构方法
CN110824436A (zh) * 2019-11-20 2020-02-21 中国人民解放军国防科技大学 时空互补编码雷达通信一体化系统信号生成与处理方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MY193402A (en) * 2016-07-21 2022-10-11 Interdigital Patent Holdings Inc Multiple input multiple output (mimo) setup in millimeter wave (mmw) wlan systems

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5786788A (en) * 1996-10-08 1998-07-28 Raytheon Company Radar system and method for reducing range sidelobes
CN104714231A (zh) * 2015-02-01 2015-06-17 中国传媒大学 一种基于完全互补序列和相位补偿的mimo sar成像方法
WO2017189143A2 (en) * 2016-04-28 2017-11-02 Intel IP Corporation Channel estimation fields for wireless networks
CN110531323A (zh) * 2019-08-27 2019-12-03 武汉大学深圳研究院 一种适用于mimo/ofdm外辐射源雷达的参考信号重构方法
CN110824436A (zh) * 2019-11-20 2020-02-21 中国人民解放军国防科技大学 时空互补编码雷达通信一体化系统信号生成与处理方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4284060A4

Also Published As

Publication number Publication date
CA3210915A1 (en) 2023-08-09
US20240031050A1 (en) 2024-01-25
CN114916009A (zh) 2022-08-16
KR20230144579A (ko) 2023-10-16
MX2023009343A (es) 2023-10-25
WO2022171021A9 (zh) 2023-09-28
AU2022220522A1 (en) 2023-08-31
JP2024506652A (ja) 2024-02-14
WO2022171021A8 (zh) 2023-11-02
EP4284060A1 (en) 2023-11-29
EP4284060A4 (en) 2024-08-21

Similar Documents

Publication Publication Date Title
WO2022171021A1 (zh) 信号处理方法及装置
WO2022166644A1 (zh) 基于mimo波束赋形的感知方法及相关装置
US20230318880A1 (en) Signal processing method and apparatus
WO2016055020A2 (en) System and method for space-time block coded communications
WO2023029939A1 (zh) 波束成型报告的反馈方法及装置
WO2023109773A1 (zh) 信号处理方法及装置
WO2021179893A1 (zh) 传输参数的确定方法及传输设备
Chen et al. Multiplexing-diversity medium access for multi-user MIMO networks
WO2024051821A1 (zh) 信道状态信息的处理方法和装置
WO2022063096A1 (zh) 一种循环移位延迟值csd的确定方法及通信装置
WO2022179515A1 (zh) 基于循环移位分集的通信方法、装置及系统
WO2023216886A1 (zh) 基于物理层协议数据单元的通信方法及装置
WO2024197534A1 (zh) 一种序列传输方法及装置
WO2023131241A1 (zh) 通信方法及装置
WO2022022725A1 (zh) 传输eht-ltf序列的方法及相关装置
WO2023202430A1 (zh) 通信方法、装置及系统
Shih et al. Angle-of-Arrival Estimation with Practical Phone Antenna Configurations
WO2023093747A1 (zh) 一种通信方法及装置
CN118869399A (zh) 通信方法及装置
WO2023160467A1 (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
WO2024213107A1 (zh) 通信方法与通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22752182

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: MX/A/2023/009343

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 2023548634

Country of ref document: JP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112023016027

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: 202317056304

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2022752182

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022752182

Country of ref document: EP

Effective date: 20230824

ENP Entry into the national phase

Ref document number: 2022220522

Country of ref document: AU

Date of ref document: 20220129

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112023016027

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20230809

ENP Entry into the national phase

Ref document number: 20237030379

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020237030379

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 11202306023S

Country of ref document: SG