WO2022170980A1 - 货物运输方法、装置、中转装置、仓储系统及存储介质 - Google Patents

货物运输方法、装置、中转装置、仓储系统及存储介质 Download PDF

Info

Publication number
WO2022170980A1
WO2022170980A1 PCT/CN2022/074103 CN2022074103W WO2022170980A1 WO 2022170980 A1 WO2022170980 A1 WO 2022170980A1 CN 2022074103 W CN2022074103 W CN 2022074103W WO 2022170980 A1 WO2022170980 A1 WO 2022170980A1
Authority
WO
WIPO (PCT)
Prior art keywords
goods
cargo
conveying
conveying mechanism
layer
Prior art date
Application number
PCT/CN2022/074103
Other languages
English (en)
French (fr)
Inventor
杨穗梅
谢超
Original Assignee
深圳市海柔创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市海柔创新科技有限公司 filed Critical 深圳市海柔创新科技有限公司
Publication of WO2022170980A1 publication Critical patent/WO2022170980A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G1/00Storing articles, individually or in orderly arrangement, in warehouses or magazines
    • B65G1/02Storage devices
    • B65G1/04Storage devices mechanical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G1/00Storing articles, individually or in orderly arrangement, in warehouses or magazines
    • B65G1/02Storage devices
    • B65G1/04Storage devices mechanical
    • B65G1/137Storage devices mechanical with arrangements or automatic control means for selecting which articles are to be removed
    • B65G1/1373Storage devices mechanical with arrangements or automatic control means for selecting which articles are to be removed for fulfilling orders in warehouses

Definitions

  • the present disclosure relates to the technical field of intelligent storage, and in particular, to a cargo transportation method, device, transfer device, storage system and storage medium.
  • the intelligent warehousing system based on warehousing robots adopts an intelligent operating system, which realizes the automatic extraction, storage and transportation of goods through system instructions. applied and favored.
  • the intelligent warehousing system When the intelligent warehousing system receives an in-warehouse, sorting or out-of-warehouse order, it needs to transport the goods through one or more transportation lines, so as to complete the in-warehousing, sorting or out-of-warehousing of the goods.
  • the transportation line of the warehousing system is usually composed of unloader and conveyor line components, and one unloader can often only transport one size of goods, that is, one transport line can only transport one size of goods during one operation. Inefficient shipping results in inefficient order processing and inability to meet demand.
  • the present disclosure provides a cargo transportation method, device, transfer device, storage system and storage medium, which realizes adaptive matching of transportation lines based on cargo size, and improves the flexibility and efficiency of cargo transportation.
  • an embodiment of the present disclosure provides a method for transporting goods, the method is applied to a transfer device, the transfer device includes a fluent rack, and the fluent rack includes a support and a conveying mechanism disposed on the support, so The conveying mechanism is multi-layered, and the method includes: obtaining size information of the goods; determining the target layer of the conveying mechanism corresponding to the goods according to the size information; transporting the goods through the target layer of the conveying mechanism .
  • the transfer device further includes a cargo lifting assembly, the cargo entrance and exit of the cargo lifting assembly is butted with one end of the conveying mechanism, and the target of the conveying mechanism corresponding to the cargo is determined according to the size information.
  • the method further includes, based on the cargo lift assembly, carrying the cargo to a target layer of the conveyor.
  • obtaining the cargo size of the cargo includes: acquiring size information of the cargo based on the first scan set on the cargo lifting assembly.
  • the transfer device further includes a conveying line assembly, the conveying line assembly is butted with an end of the cargo lifting assembly away from the cargo entrance and exit, so as to transport the cargo to the cargo lifting assembly and obtain the cargo lift assembly.
  • the size of the goods includes: acquiring the size information of the goods based on the first scan set on the conveying line assembly.
  • the size information is acquired based on the second scan piece set on the handling robot.
  • transporting the goods through the target layer of the conveying mechanism includes: determining the conveying direction of the goods; adjusting the conveying mechanism or the target layer of the conveying mechanism based on the conveying direction; The destination layer of the conveyor transports the goods.
  • the transfer mechanism includes an adjustment mechanism, and based on the transfer direction, adjusting the transfer mechanism or the target layer of the transfer mechanism includes: determining the transfer mechanism based on the transfer direction and through the adjustment mechanism The inclination angle of each layer of the mechanism, so that the goods located at the target layer of the conveying mechanism generate a force component along the conveying direction.
  • transporting the goods through the target layer of the conveying mechanism includes: transporting the goods through the inclined target layer of the conveying mechanism.
  • the conveying mechanism includes a first conveying part and a second conveying part
  • adjusting the conveying mechanism or a target layer of the conveying mechanism based on the conveying direction includes: adjusting the conveying direction based on the conveying direction
  • the height of the second conveying part is greater than the height of the first conveying part, and the second conveying part forms an inclined slope.
  • transporting the goods through the target layer of the conveying mechanism includes: transporting the goods through an inclined slope formed by the second conveying portion corresponding to the target layer and a horizontal surface formed by the first conveying portion. goods.
  • the transfer mechanism includes a rolling transfer member, and based on the transfer direction, adjusting the transfer mechanism or a target layer of the transfer mechanism includes: determining the rolling transfer member or the transfer mechanism based on the transfer direction The target layer corresponds to the rotation mode of the rolling transmission member, so that the rolling transmission member or the target layer corresponding rolling transmission member rotates around its own rotation axis in the rotation mode.
  • an embodiment of the present disclosure further provides a cargo transport device, the cargo transport device includes: a first size acquisition module for obtaining size information of the cargo; a first level determination module for according to the size information , determining the target layer of the conveying mechanism corresponding to the goods; a first goods transport module, configured to transport the goods through the target layer of the conveying mechanism.
  • an embodiment of the present disclosure further provides a transit device, which is used for transit transportation of goods during loading or unloading in a storage system, and the transit device includes a fluent shelf and a first main control unit; wherein , the fluent shelf includes a support and a conveying mechanism arranged on the support, the conveying mechanism is multi-layer; the first main control unit is used to generate a control signal, based on the control signal and the fluent shelf.
  • an embodiment of the present disclosure further provides a storage system, where the storage system includes a storage rack and the transfer device provided by the embodiment corresponding to the third aspect of the present disclosure.
  • an embodiment of the present disclosure also provides a computer-readable storage medium, where computer-executable instructions are stored in the computer-readable storage medium, and when a processor of a relay device executes the computer-executable instructions, the goods are transported.
  • the device implements the cargo transportation method provided by any embodiment corresponding to the first aspect of the present disclosure.
  • an embodiment of the present disclosure further provides a computer program product, including a computer program, where the computer program is processed and executed by a transit device or a storage system, enabling the cargo transportation device to implement any implementation corresponding to the first aspect of the present disclosure Example of the method of transportation of goods provided.
  • the cargo transportation method, device, transfer device, storage system, and storage medium provided by the embodiments of the present disclosure are based on multi-layer fluent shelves and match the corresponding transportation lines according to the size information of the goods to be transported, that is, match the transmission of fluent shelves.
  • the target layer of the organization so that the goods are transported through the target layer of the conveying mechanism to transport them to the handling robot or the operating table, so as to complete the corresponding warehousing, outgoing or sorting tasks, and realize the parallel transportation of goods of various sizes.
  • the flexibility and efficiency of cargo transportation are improved, and the order processing efficiency of the warehousing system is improved.
  • the present disclosure also provides a cargo transportation method, device, transfer device, storage system and storage medium, which realizes the temporary storage rack in the transfer device to realize the cache of the cargo, reduces the pressure of cargo transportation on the original conveying line, and improves the cargo transportation. s efficiency.
  • an embodiment of the present disclosure provides a method for transporting goods, the method is applied to a transfer device, the transfer device includes a hoist, a temporary storage rack and a transmission line assembly, the temporary storage rack includes a support frame and a set of The conveying mechanism on the support frame, one end of the conveying mechanism is butted with the goods inlet and outlet of the elevator, and the other end of the conveying mechanism is butted with the goods entrance and exit of the conveying line assembly, and the method includes:
  • the goods to be transported are transported to the transfer line assembly or the elevator, including:
  • the goods to be transported are transported to the conveying line assembly or the elevator by the conveying mechanism.
  • the goods to be transported are transported to the conveying line assembly or the elevator by the conveying mechanism, including:
  • the conveying direction of the goods to be transported is the first direction
  • the goods to be transported are transported to the conveying line assembly based on the conveying mechanism of the temporary storage rack; and/or, when the goods to be transported are transported in the first direction
  • the conveying direction is the second direction
  • the goods to be transported are conveyed to the elevator based on the conveying mechanism of the temporary storage rack; wherein, the first direction and the second direction are two opposite conveying directions direction.
  • the method further includes:
  • the conveying direction of the goods to be transported is determined; based on the conveying direction of the goods to be transported, the preset layer of the conveying mechanism is determined.
  • the method further includes:
  • determining the preset layer of the conveying mechanism corresponding to the goods to be transported includes:
  • a preset layer of the conveying mechanism corresponding to the goods to be transported is determined according to the goods transported by the conveying line assembly.
  • the method further includes:
  • the conveying speed of the conveying mechanism is determined according to the goods corresponding to the hoist or the goods transported by the conveying line assembly.
  • the goods to be transported are transported to the transfer line assembly or the elevator, including:
  • the conveying mechanism is controlled to convey the goods to be transported to the conveying line assembly or elevator based on the conveying speed.
  • determining the conveying speed of the conveying mechanism according to the goods corresponding to the hoist or the goods transported by the conveying line assembly including:
  • the conveying speed of the conveying mechanism is determined according to the position of the goods conveyed by the conveying line assembly and the conveying speed of the conveying line assembly, so as to control the conveying mechanism based on the conveying speed, to convey the goods to be transported to the conveying line assembly; and/or, when the conveying direction of the goods to be transported is the second direction, corresponding to the elevators according to the number of layers of the elevators
  • the position of each goods is determined, and the conveying speed of the conveying mechanism is determined, so as to control the conveying mechanism to transport the goods to be transported to the elevator based on the conveying speed.
  • the method further includes:
  • the detection information of the goods to be transported is collected based on the conveying mechanism; based on the detection information, it is determined whether the goods to be transported meet the transportation conditions ; if so, based on the conveying mechanism, the goods to be transported are transported to the conveying line assembly or the hoist.
  • the detection information is one or more of the cargo identification, cargo size and cargo weight of the cargo to be transported, and based on the detection information, it is determined whether the cargo to be transported meets the transportation conditions, including the following: State at least one of:
  • the method further includes:
  • the direction of the preset layer of the conveying mechanism is determined to be the opposite direction of the conveying direction of the goods to be transported, so as to transport the goods to be transported back along the original route.
  • the method further includes:
  • the control robot transports the goods to be transported to the operation table or the storage location corresponding to the goods to be transported.
  • the method further includes:
  • the goods to be transported are transported to a second preset layer of the conveying mechanism, wherein the second preset layer is opposite to the conveying direction of the preset layer; based on the second preset layer to transport the goods to be transported to the conveyor line assembly.
  • the transfer device further includes a fluent shelf, the cargo entrance and exit of the fluent shelf is docked with the cargo entrance and exit of the elevator at one end of the elevator away from the temporary storage shelf, so that the goods on the elevator can pass through the elevator.
  • the fluent shelf is transferred to the handling robot, or the goods on the handling robot are transferred to the elevator through the fluent shelf.
  • determining the target layer of the fluent shelf corresponding to the goods to be transported including:
  • the target layer of the fluent shelf corresponding to the cargo to be transported is determined.
  • an embodiment of the present disclosure further provides a cargo transport device, the cargo transport device is applied to a transfer device, the transfer device includes a hoist, a temporary storage rack and a transmission line assembly, and the temporary storage rack includes a support A rack and a conveying mechanism arranged on the support frame, one end of the conveying mechanism is butted with the goods entrance and exit of the elevator, the other end of the conveying mechanism is butted with the goods entrance and exit of the conveying line assembly, the goods Transport means include:
  • the goods determination module is used for determining the goods to be transported; the goods transport module is used for transporting the goods to be transported to the conveying line assembly or the elevator based on the conveying mechanism of the temporary storage rack.
  • an embodiment of the present disclosure further provides a transit device for transit transportation of goods during loading or unloading in a storage system, where the transit device includes a hoist, a temporary storage rack, a transmission line assembly, and a main control unit;
  • the temporary storage rack includes a support frame and a conveying mechanism arranged on the support frame, one end of the conveying mechanism is butted with the goods entrance and exit of the elevator, and the other end of the conveying mechanism is connected with the conveying line
  • the cargo entrance and exit of the component are connected;
  • the main control unit is configured to execute the cargo transportation method provided by any embodiment corresponding to the seventh aspect of the present disclosure.
  • an embodiment of the present disclosure further provides a storage system, where the storage system includes a storage rack and the transfer device provided by the embodiment corresponding to the ninth aspect of the present disclosure.
  • an embodiment of the present disclosure further provides a computer-readable storage medium, where computer-executable instructions are stored in the computer-readable storage medium, and when a processor of a relay device executes the computer-executable instructions, the goods
  • the transportation device implements the cargo transportation method provided by any embodiment corresponding to the seventh aspect of the present disclosure.
  • an embodiment of the present disclosure further provides a computer program product, including a computer program.
  • the cargo transportation device can realize any of the corresponding aspects of the seventh aspect of the present disclosure.
  • the cargo transportation method provided by the embodiment is not limited to the embodiment.
  • the cargo transportation method, device, transfer device, storage system, and storage medium provided by the embodiments of the present disclosure are aimed at a transfer device including a hoist, a temporary storage rack, and a transmission line assembly.
  • a transfer device including a hoist, a temporary storage rack, and a transmission line assembly.
  • the goods to be transported are transported to the conveyor line assembly or the elevator through the transmission structure of the temporary storage rack, so as to realize the delivery or storage of the goods to be transported.
  • the temporary storage rack realizes the transfer or buffering of the goods transported on the elevator or the conveyor line assembly.
  • the elevator can transfer the goods to the temporary storage rack to reduce the waiting time of the elevator.
  • the present disclosure also provides a cargo transportation method, a device, a fluent shelf, a storage system and a storage medium, which realize the adaptive adjustment of the width of the fluent shelf based on the size of each item in an order, so that the fluent shelf can transport goods of different sizes at the same time. Flexibility and efficiency of cargo transportation.
  • an embodiment of the present disclosure provides a method for transporting goods, the method comprising: obtaining a transport order for goods; and determining transport for each layer of a conveying mechanism of the Fluent Shelf according to size information of each item in the transport order for goods width for the transport of width-matched goods through the layers of the conveyor.
  • determining the transport width of each layer of the conveying mechanism according to the size information of each cargo in the cargo transport order includes: determining each size class according to the size information of each cargo in the cargo transport order; , to determine the transport width of each layer of the conveying mechanism.
  • determining the transport width of each layer of the conveying mechanism according to each size class including: obtaining the quantity of goods corresponding to each size class; The quantity of goods corresponding to each size grade, the quantity of size grades, the total quantity of goods in the goods transportation order, and the number of layers of the conveying mechanism determine the transport width of each layer of the conveying mechanism.
  • determining the transport width of each layer of the conveying mechanism according to each size class including: determining according to the quantity of goods corresponding to each size class. at least one combined size level, wherein the combined size level consists of at least two of the size levels, the combined size level corresponds to the first preset layer of the conveying mechanism; for each combined size level, according to the Combining each size level corresponding to the size level, determining at least two transport widths of the first preset layer corresponding to the combined size level of the conveying mechanism, wherein the goods whose widths match the first preset layer are corresponding The cargo corresponding to the combined size class.
  • the method further includes: for each of the size classes except the combined size class, determining the size of the conveying mechanism corresponding to the size class. at least one second preset layer.
  • determining the transport width of each layer of the conveying mechanism according to each size class includes: for the size classes other than the combined size class, determining at least one second preset layer according to the size class shipping width.
  • determining at least one combined size class according to the quantity of goods corresponding to each size class includes: dividing each of the size classes into a first ratio of the quantity of the goods corresponding to each size class to a preset quantity.
  • a size class and a second size class wherein the preset quantity is the ratio of the total quantity of goods in the cargo transportation order to the number of layers of the conveying mechanism, and the ratio corresponding to the first size class is greater than or equal to 1, the ratio corresponding to the second size level is less than 1;
  • the second quantity is determined according to the first difference between the number of layers of the conveying mechanism and the first quantity, wherein the first quantity is the first size the number of levels, the first difference is at least 1;
  • at least one combined size level is determined according to the second number and the number of the second size levels, wherein the combined size level is composed of at least two of the Composition of the second size class.
  • the fluent rack further includes a limit component
  • the method further includes: determining the limit of the limit component according to the transport width of each layer of the transfer mechanism. bit parameters to adjust the transport width of each layer of the conveying mechanism based on the limit parameters.
  • each layer of the conveying mechanism is provided with at least one of the limiting components, each of the limiting components includes two limiting pieces, and the two limiting pieces are respectively located at the bottom of the conveying mechanism.
  • determining the limiting parameters of the limiting component including: determining at least one of the corresponding layers of the transport mechanism according to the transport width of each layer The distance between the two limiting members of the limiting assembly.
  • obtaining a freight transportation order includes: obtaining each first freight order; and determining each of the freight transportation orders according to the quantity of the first freight order and the quantity of the goods corresponding to each of the first freight orders, wherein , the freight shipping order includes one or more of the first freight orders.
  • acquiring each first goods order includes: acquiring each first goods order corresponding to the preset time interval according to a preset time interval.
  • the method further includes: based on the handling robot, transporting the goods corresponding to each of the cargo transportation orders to the corresponding ones of the conveying mechanism of the fluent shelf. or, based on the cargo lifting assembly, transport the cargo corresponding to each of the cargo transportation orders to the corresponding layer of the conveyor mechanism of the fluent rack, wherein the cargo entrance and exit of the cargo lifting assembly is connected to one end of the conveyor mechanism docking; or, based on the conveyor line assembly and the cargo lift assembly, transport the cargo corresponding to each of the cargo transportation orders to the corresponding layer of the conveyor mechanism of the fluent rack, wherein the conveyor line assembly and the cargo lift assembly One end away from the cargo inlet and outlet is butted.
  • the method further includes: collecting second size information of each cargo in the cargo transport order based on the scanned parts; for each cargo and determining a target layer of the conveying mechanism corresponding to the goods according to the second size information of the goods, so as to transport the goods based on the target layer of the conveying mechanism.
  • an embodiment of the present disclosure further provides a cargo transport device, the cargo transport device includes: an order acquisition module, configured to acquire a cargo transport order; and a transport width determination module, configured to The size information of the goods determines the transport width of each layer of the conveying mechanism of the fluent rack, so that each layer of the conveying mechanism can be used to transport each goods whose widths are matched.
  • an embodiment of the present disclosure further provides a fluent shelf, including a conveying mechanism and a second main control unit; wherein the conveying mechanism includes multiple layers; the second main control unit is used to execute the first control unit of the present disclosure.
  • a cargo transportation method provided by any embodiment corresponding to the thirteenth aspect.
  • an embodiment of the present disclosure further provides a storage system, where the storage system includes a storage rack and the fluent rack provided by the embodiment corresponding to the fifteenth aspect of the present disclosure.
  • the embodiments of the present disclosure further provide another storage system, the storage system includes a fluent rack and at least one processor; wherein the fluent rack includes a multi-layered conveying mechanism; the at least one processor is used for executing A cargo transportation method provided by any embodiment corresponding to the thirteenth aspect of the present disclosure.
  • an embodiment of the present disclosure further provides a computer-readable storage medium, where computer-executable instructions are stored in the computer-readable storage medium.
  • a processor executes the computer-executable instructions, the tenth embodiment of the present disclosure is implemented.
  • the cargo transportation method provided by any embodiment corresponding to the three aspects.
  • an embodiment of the present disclosure further provides a computer program product, including a computer program, where the computer program is executed by a processor of a transit device or a storage system, so that the cargo transportation device can implement the corresponding aspects of the thirteenth aspect of the present disclosure.
  • a method of transporting goods provided by any embodiment of .
  • the cargo transportation method, device, fluent rack, storage system, and storage medium provided by the embodiments of the present disclosure adaptively determine the transportation width of each layer of the delivery mechanism of the fluent rack based on the size information of each item in the cargo transportation order, so that the transportation width of each layer of the delivery mechanism of the fluent rack is adaptively determined based on the size information of each item in the cargo transportation order.
  • Each layer of the organization carries out the transportation of the goods whose widths match in the goods transportation order at the same time, so that the fluent shelf has the ability to transport goods of different sizes at the same time, which improves the efficiency of goods transportation and the efficiency of order processing.
  • the present disclosure also provides a cargo transportation method, device, fluent rack, transfer device and storage system. Based on the calibration device of the fluent rack, the position correction of the goods in transit is realized, and the safety of the transportation of the goods is improved.
  • an embodiment of the present disclosure provides a method for transporting goods, the method is applied to a fluent shelf, the medium fluent shelf includes a bracket, a conveying mechanism and a calibration device disposed on the bracket, and the method includes : the goods are transported along the conveying direction based on the fluent shelf; when the goods on the conveying mechanism of the fluent shelf are transported to a preset area, position correction is performed on the goods based on the correction device.
  • the correction device includes two clamping structures located on both sides of the conveying direction and oppositely arranged, and performing position correction on the goods includes: based on the two clamping structures, according to a preset mode The goods are clamped so that they are centered perpendicular to the conveying direction.
  • the clamping structure is an arc structure or a straight plate structure.
  • the conveying mechanism includes a rolling conveying member, the rolling conveying member has an outer contour surface that is in rolling contact with the goods, and the goods are transported along the conveying direction based on the fluent rack, comprising: wrapping around the rolling conveying member based on the rolling conveying member.
  • the goods are transported in the conveying direction in such a way that their own axis of rotation rotates.
  • the conveying mechanism is multi-layered, and before performing position correction on the goods, the method further includes: determining the quantity of goods being transported on each layer of the conveying mechanism; for each layer of the conveying mechanism, if The quantity of the goods in the preset area of the current layer is greater than 1, the rolling conveyor corresponding to the current layer is controlled to stop rotating, so as to perform position correction on each of the goods in the current layer.
  • clamping the goods according to a preset mode based on the two clamping structures includes: controlling the two clamping structures to perform relative movement from their respective default positions until the goods are clamped; when After clamping the goods for a preset time, the two clamping structures are controlled to move to a default position.
  • performing position correction on the goods includes: acquiring the position information of the goods; and performing position correction on the goods according to the position information.
  • an embodiment of the present disclosure further provides a cargo transport device, the cargo transport device comprising: a cargo transport module for transporting cargo in a conveying direction based on the fluent rack; a cargo correction module for when the fluent When the goods on the conveying mechanism of the rack are transported to a preset area, the position correction of the goods is performed.
  • an embodiment of the present disclosure further provides a fluent shelf, the fluent shelf includes a bracket, a transmission mechanism disposed on the bracket, a calibration device, and a third main control unit; wherein the third main control unit The control unit is configured to generate a control signal, so as to control the conveying mechanism and the correction device based on the control signal to implement the cargo transportation method provided by any embodiment corresponding to the twentieth aspect of the present disclosure.
  • an embodiment of the present disclosure further provides a transit device, which is used for transit transportation of goods during loading or unloading in a storage system.
  • the transit device includes a cargo lifting assembly and the second disclosed device.
  • the fluent shelf provided by the embodiment corresponding to the twelve aspects.
  • an embodiment of the present disclosure further provides a storage system, where the storage system includes a storage rack and the transfer device provided by the embodiment corresponding to the twenty-third aspect of the present disclosure.
  • an embodiment of the present disclosure further provides a computer-readable storage medium, where computer-executable instructions are stored in the computer-readable storage medium, and when a processor executes the computer-executable instructions, the implementation of the present disclosure
  • a cargo transportation method provided by any embodiment corresponding to the twentieth aspect.
  • an embodiment of the present disclosure further provides a computer program product, including a computer program, which, when the computer program is located is executed by the processor of the Fluent Shelf, enables the cargo transport device to implement any of the corresponding aspects of the twenty-first aspect of the present disclosure.
  • the cargo transportation method provided by the embodiment is not limited to the embodiment.
  • the cargo transportation method, device, fluent shelf, transit device, and storage system provided by the embodiments of the present disclosure are aimed at the situation of cargo transportation based on fluent shelf, when the goods on the conveying mechanism of fluent shelf are transported to a preset area, the fluent shelf is passed through.
  • the correction device provided on the upper part corrects the position of the goods, realizes the position correction of the goods in transportation, and improves the safety of the goods transportation.
  • FIG. 1 is a first structural schematic diagram of a mid-installation device provided in Embodiment 1 of the present disclosure
  • FIG. 2 is a schematic diagram of a second structure of the mid-installation device provided in Embodiment 1 of the present disclosure
  • FIG. 3 is a third structural schematic diagram of the mid-installation device provided in Embodiment 1 of the present disclosure.
  • FIG. 4 is a schematic diagram of a fourth structure of the mid-installation device provided in Embodiment 1 of the present disclosure.
  • FIG. 5 is a fifth structural schematic diagram of the mid-installation device provided in the first embodiment of the present disclosure.
  • FIG. 6 is a schematic diagram of a sixth structure of the mid-installation device provided in Embodiment 1 of the present disclosure.
  • FIG. 7 is a schematic side view of a fluent shelf in the transit device provided in Embodiment 1 of the present disclosure.
  • Embodiment 8 is a schematic structural diagram of a fluent shelf provided in Embodiment 1 of the present disclosure.
  • FIG. 9 is another schematic structural diagram of the fluent shelf provided in the first embodiment of the present disclosure.
  • FIG. 10 is a schematic structural diagram of a relay device provided in Embodiment 2 of the present disclosure.
  • FIG. 11 is a schematic structural diagram of a fluent shelf in a transit device provided in Embodiment 2 of the present disclosure.
  • FIG. 12 is a first structural schematic diagram of a handling robot in a transfer device provided in Embodiment 3 of the present disclosure
  • FIG. 13 is a partial schematic diagram of the second structure of the handling robot in the transfer device provided in Embodiment 3 of the present disclosure
  • FIG. 14 is a schematic diagram of the first state of the fork assembly in the handling robot provided in Embodiment 3 of the present disclosure
  • FIG. 15 is a schematic diagram of a second state of the fork assembly in the handling robot provided in Embodiment 3 of the present disclosure.
  • FIG. 16 is a schematic diagram of the first state of the handling robot provided in Embodiment 3 of the present disclosure.
  • FIG. 17 is a schematic diagram of a second state of the handling robot provided in Embodiment 3 of the present disclosure.
  • 19 is another state schematic diagram of the first structure of the fork assembly in the handling robot according to the fourth embodiment of the present disclosure.
  • FIG. 20 is a schematic diagram of a third structure of the handling robot provided in Embodiment 4 of the present disclosure.
  • Fig. 21 is a first state schematic diagram of the top-view structure of the fork assembly in Fig. 20;
  • Fig. 22 is a schematic diagram of the second state of the top-view structure of the fork assembly in Fig. 20;
  • Fig. 23 is a schematic diagram of the third state of the top-view structure of the fork assembly in Fig. 20;
  • Fig. 24 is a schematic diagram of the fourth state of the top-view structure of the fork assembly in Fig. 20;
  • FIG. 25 is a schematic top view of the fourth structure of the handling robot provided in Embodiment 5 of the present disclosure.
  • FIG. 26 is a schematic structural diagram of a partition in a handling robot provided in Embodiment 5 of the present disclosure.
  • FIG. 27 is another schematic structural diagram of the partition plate in the handling robot provided in Embodiment 5 of the present disclosure.
  • FIG. 28 is another schematic structural diagram of the partition plate in the handling robot provided in Embodiment 5 of the present disclosure.
  • FIG. 29 is a schematic top view of the fifth structure of the handling robot provided in Embodiment 5 of the present disclosure.
  • FIG. 30 is an application scenario diagram of the method for transporting a container provided by an embodiment of the present disclosure.
  • FIG. 31 is a flowchart of a method for transporting goods provided by an embodiment of the present disclosure.
  • FIG. 32 is a flowchart of a method for transporting goods provided by another embodiment of the present disclosure.
  • 35 is a flowchart of a method for transporting goods provided by another embodiment of the present disclosure.
  • 36 is a flowchart of a method for transporting goods provided by another embodiment of the present disclosure.
  • Fig. 37 is a flowchart of step S704 in the embodiment shown in Fig. 36 of the present disclosure.
  • FIG. 38 is a flowchart of a cargo transportation method provided by another embodiment of the present disclosure.
  • 39 is a flowchart of a method for transporting goods provided by another embodiment of the present disclosure.
  • FIG. 40 is a schematic structural diagram of a cargo transportation device provided by an embodiment of the present disclosure.
  • FIG. 41 is a schematic structural diagram of a cargo transportation device provided by another embodiment of the present disclosure.
  • FIG. 42 is a schematic structural diagram of a cargo transportation device provided by another embodiment of the present disclosure.
  • FIG. 43 is a schematic structural diagram of a fluent shelf provided by another embodiment of the present disclosure.
  • 45 is a schematic structural diagram of a relay device provided by an embodiment of the present disclosure.
  • FIG. 46 is a schematic structural diagram of a storage system according to an embodiment of the present disclosure.
  • 1141-Clamping part 1141a-First clamping part; 1141b-Second clamping part; 1142-Telescopic piece; 115-Bracket; 116-Rotating mechanism; Fork plate; 12-mobile chassis; 13-lifting assembly; 14-support frame; 141-partition; 1411-groove; 1412-avoidance groove; 15-calibration assembly; 151-calibration part; elastic limiter;
  • 3-Cargo lifting assembly 31-Body; 32-Conveying mechanism; 321-Rolling parts; 33-Lifting mechanism;
  • 5-cargo storage device 51-frame body; 52-pallet.
  • FIG. 1 is a schematic diagram of the first structure of the mid-installation device provided in the first embodiment of the present disclosure
  • FIG. 2 is a schematic diagram of the second structure of the mid-installation device provided in the first embodiment of the present disclosure
  • Fig. 4 is a schematic diagram of a fourth structure of a mid-installation device provided in Embodiment 1 of the present disclosure
  • Fig. 5 is a schematic structural diagram of a fifth type of mid-installation device provided in Embodiment 1 of the present disclosure
  • 6 is a schematic diagram of the sixth structure of the middle-mounted device provided in the first embodiment of the present disclosure
  • FIG. 7 is a schematic side view of the fluent shelf in the transit device provided in the first embodiment of the present disclosure.
  • the transfer device 100 provided by the embodiment of the present disclosure is used for the transfer and transportation of goods when loading or unloading the handling robot 1, wherein the transfer device 100 includes a fluent rack 2 and a cargo lifting assembly 3;
  • the rack 2 includes a support 21 and a conveying mechanism 22 arranged on the support 21.
  • One end of the conveying mechanism 22 is docked with the cargo entrance and exit of the handling robot 1, and the other end of the conveying mechanism 22 is docked with the cargo entrance and exit of the cargo lifting assembly 3.
  • the goods are transferred through the transfer device 100, the goods can be transferred from the worktable/sorting station to the robot, and the goods carried by the robot can also be transferred to the worktable/sorting station, and the robot and the worktable are completed. Goods out/in operations between sorting stations.
  • the conveying mechanisms 22 may be arranged in multiple layers, wherein the conveying directions of the multiple layers of conveying mechanisms 22 may be the same, so that all the multiple conveying mechanisms 22 can be used for conveying goods at the same time, thereby improving the
  • the efficiency of loading or unloading of the handling robot 1 can also be improved to improve the efficiency of the outbound/inbound operation of goods; in another optional embodiment, it can also be the conveying direction of the conveying mechanism 22 of at least one layer. Contrary to the conveying direction of other conveying mechanisms 22 , in this way, simultaneous loading and unloading can be realized, and the outbound/inbound paths of goods can be integrated, thereby improving work efficiency and simplifying the design of outbound/inbound paths. with configuration.
  • the conveying mechanism 22 is provided with a rolling conveying member 23, the rolling conveying member 23 has an outer contour surface capable of rolling contact with the goods, and the rolling conveying member 23 is used for rotating along its own axis of rotation toward the goods.
  • the conveying direction is rotated to convey the goods in the conveying direction.
  • the rolling conveying member 23 may be a structure such as a rotating roller.
  • each layer of conveying mechanism 22 there are multiple rolling conveyors 23 in each layer of conveying mechanism 22 , the multiple rolling conveyors 23 are arranged side by side along the conveying direction of the goods, and the rotation axes of the multiple rolling conveyors 23 are parallel to each other, and the rolling conveyors 23 wrap around themselves.
  • the traction force generated when the axis of the machine rotates along the conveying direction can drive the goods to move along the conveying direction, so as to realize the conveying of the goods.
  • the conveying mechanism 22 includes a first conveying part 221 and a second conveying part 222.
  • the first ends of the two transfer parts 222 are connected, and the second ends of the second transfer parts 222 are butted with the cargo lifting assembly 3 .
  • both the first conveying part 221 and the second conveying part 222 include a plurality of rolling conveying members 23 arranged in parallel.
  • the first conveying part 221 and the second conveying part 222 can be arranged horizontally, the conveying mechanism 22 is further provided with a first driving mechanism, and the first driving mechanism is connected to the first conveying part 221 and the second conveying part 222.
  • the rolling conveying member 23 is connected to the first driving mechanism, and the first driving mechanism will drive the rolling conveying member 23 to rotate around its own rotation axis in the conveying direction toward the goods, so as to convey the goods on the rolling conveying member 23 along the conveying direction.
  • the fluent shelf 2 further includes a control switch, the control switch is electrically connected to the first driving mechanism, and the control switch is used to control the rotation direction of the first driving mechanism, so as to control the rotation direction of the rolling conveying member 23 to The conveying direction of the goods is changed, so that the conveying mechanism 22 of each layer in the fluent shelf 2 can not only be used for loading, but also can be used for unloading, which diversifies the functions of the fluent shelf 2 and simplifies the overall structure of the transfer device 100 , so that the overall volume of the relay device 100 is small and occupies a small space.
  • an inclined angle may also be formed between the first conveying part 221 and the second conveying part 222 , for example, the first end of the first conveying part 221 corresponds to the cargo entrance and exit of the cargo handling robot 1
  • the height of the second transfer part 222 is higher than the height of the second end of the second transfer part 222 butt joint with the goods entrance and exit of the lifting assembly;
  • the second end of the lift assembly is connected to the height of the goods entrance and exit of the lifting assembly, so that the goods on the first conveying part 221 and/or the second conveying part 222 will generate a component force along the conveying direction of the goods, and the goods will change from height to
  • the automatic sliding along the conveying direction can realize the conveying of goods without external driving force (such as the driving force provided by the first driving mechanism), the structure of the transfer device 100 is simplified, and electric energy is saved, thereby reducing the cost.
  • the fluent shelf 2 further includes an adjustment mechanism, which is connected with the first conveying part 221 and the second conveying part 222 respectively, and the adjustment mechanism can be used to adjust the inclination angle of the first conveying part 221 or the second conveying part 222 so as to make the The goods on the first conveying part 221 and/or the second conveying part 222 can generate a component force along the conveying direction of the goods, so that the goods can automatically slide along the conveying direction from high to low by this component force.
  • the height at which the second conveying part 222 is connected to the cargo inlet and outlet of the cargo lifting assembly 3 can be adjusted to be greater than the height at which the second conveying part 222 is connected to the first conveying part 221 by the adjustment mechanism, so that the second conveying part 222 forms an inclined slope.
  • the first conveying part 221 is arranged horizontally, so that when the goods on the goods lifting assembly 3 slide to the first conveying part 221 along the inclined slope of the second conveying part 222, since the goods slide down along the inclined slope There will be a large inertial force when the first transmission part 221 is in a horizontal state.
  • the inertial force gradually decreases, so that the goods are in the horizontal state.
  • the sliding speed on the first conveying part 221 gradually decreases until it stops.
  • the first conveying part 221 is equivalent to a temporary storage shelf, and the goods are temporarily stored on the first conveying part 221.
  • the conveying part 221 is docked, and the robot only needs to remove the goods on the first conveying part 221 when needed. In this way, it can avoid occupying the conveying robot 1 all the time, avoid waste of resources, reduce costs, and improve work efficiency.
  • both the first transfer part 221 and the second transfer part 222 can be adjusted to be inclined slopes through the adjustment mechanism, and the first transfer part 221 and the second transfer part 222 222 forms a slope with an inclined surface, wherein the height of the first conveying part 221 and the cargo docking interface of the handling robot 1 is higher than the height of the second conveying part 222 and the cargo docking interface of the cargo lifting assembly 3, and the cargo moves along the inclined slope.
  • the first conveying part 221 and the second conveying part 222 slide to the butt joint between the second conveying part 222 and the cargo lifting assembly 3, wait for the cargo lifting assembly 3 to be docked with the second conveying part 222, and then transfer the The goods are conveyed out through the goods lifting assembly 3 .
  • the adjustment mechanism may be a manual adjustment mechanism or an electronically controlled adjustment mechanism.
  • the fluent shelf 2 further includes a controller, the controller is electrically connected to the adjustment mechanism, and the controller is used to control the adjustment mechanism, so that the adjustment mechanism adjusts the first conveying part 221 and/or the second conveying part
  • the inclination angle of the part 222 is convenient to operate and has a high degree of automation.
  • a limit gate 25 is provided at the goods entrance and exit of the conveying mechanism 22.
  • the limit gate 25 can be blocked on the conveying path of the cargo to prevent the cargo from sliding out along the inclined slope.
  • the limit gate 25 is opened again to allow the goods to slide out onto the goods lifting assembly 3 , thereby improving the reliability of the conveying mechanism 22 for conveying the goods.
  • the limit gate 25 includes a limit rod, the first end of the limit rod is rotatably connected to the transmission mechanism 22, the second end of the limit rod is a free end, and the limit rod It can be rotated relative to the conveying mechanism 22 so that the limit rod can be in an unfolded or folded state.
  • the limit rod is rotated to a horizontal position, the limit rod is in an unfolded state and is blocked on the conveying path of the goods to prevent the goods from tilting The slope slides out, thereby improving the reliability of the conveying mechanism 22 to convey the goods.
  • the limit gate 25 includes a stop plate with an up-down telescopic capability, which is blocked on the goods conveying path when extended, and opens the goods conveying path when retracted.
  • the transmission mechanism 22 is also provided with an electric control, which is connected to the limit gate 25, and the electric control is used to control the stop or opening of the limit gate 25 to the transmission path.
  • the electric control By setting the electric control, the limit can be realized.
  • the automatic stop and/or opening of the gate 25 has a high degree of automation.
  • the electrical control can be a self-induction switch or the like.
  • the first conveying part 221 and the second conveying part 222 can also drive the first conveying part 221 and the second conveying part 221 and the second conveying part 221 by means of external driving force.
  • the rolling conveying member 23 in the portion 222 rotates along the conveying direction, as long as the goods can be smoothly driven to convey along the conveying direction, which is not specifically limited in this embodiment.
  • At least one set of limit assemblies is provided on the conveying mechanism 22, and each set of limit assemblies includes two limit pieces 24, two limit elements
  • the positioning members 24 are located on two sides of the conveying mechanism 22 respectively, so that the two limiting members 24 form a conveying channel of the goods along the conveying direction of the goods, and the width of the conveying channel matches the width of the goods.
  • the widths of the conveying passages in the conveying mechanisms 22 of each layer can be different, so that the conveying mechanisms 22 of each layer can convey goods of different sizes.
  • the limiter 24 can limit the goods in transit, so as to prevent the goods from shifting in position or falling from the side during the transmission process.
  • the distance between the two limit members 24 can be adjustable, so that the limit members 24 in the limit assembly can adjust the width of the conveying channel according to the size of the goods to be conveyed , so that the width of the conveying channel matches the width of the conveyed goods, and while ensuring the passability of the goods, the goods can be prevented from shifting during the conveying process.
  • the adjustable distance between the two limiting members 24 may be mechanical adjustment or electric drive adjustment.
  • each set of limit components further includes two telescopic mechanisms, and the two telescopic mechanisms are respectively connected with two limit members 24, wherein one telescopic mechanism corresponds to one limit member 24,
  • the telescopic mechanism drives the limiter 24 to expand and contract along the direction perpendicular to the conveying direction of the goods, so that the two limiters 24 move in the direction of approaching each other or away from each other, so as to realize the adjustable distance between the two limiters 24.
  • the structure Simple, easy to operate and low cost.
  • the two telescopic mechanisms may be elastic telescopic mechanisms.
  • the elastic telescopic mechanism may include a support plate, a guide and a spring.
  • the support plate is provided with a through hole, the guide is inserted through the through hole, and the spring is sleeved on the guide. It is located between the support plate and the limiter 24.
  • One end of the spring is connected to the limiter 24, so that the expansion and contraction of the spring drives the limiter 24 to move, and the elastic force of the spring drives the limiter 24 to move, thereby adjusting the two The distance between the limiting members 24 .
  • the limiting assembly further includes a second driving mechanism, the second driving mechanism is respectively connected with each telescopic mechanism, and the second driving mechanism is used to drive the telescopic mechanism to expand and contract.
  • the second driving mechanism may include a motor, and the telescopic mechanism may include a push rod, the motor is connected to the push rod, and the push rod is connected to the limiter 24, so that the motor drives the pushrod to drive the limiter 24 to move, so as to realize the limiter 24 position adjustable purpose.
  • At least two sets of limit assemblies there are at least two sets of limit assemblies, at least two sets of limit assemblies are arranged on the conveying mechanism 22 at intervals along the conveying direction of the goods, and each limit assembly is detachably connected to the conveying mechanism 22, so that when one of the limit assemblies is limited When the position component fails and needs to be replaced, it is only necessary to disassemble and replace the position limit assembly, thereby reducing the maintenance cost of the fluent shelf 2 .
  • the limiting member 24 may be a structure such as a limiting block or a limiting plate, which is not specifically limited in this embodiment.
  • the transfer device 100 further includes a conveying line assembly 4, which is butted with the other end of the goods lifting assembly 3, so that the goods lifting assembly 3 is located between the conveying line assembly 4 and the fluent rack 2.
  • the conveying line assembly 4 is used to transfer the goods on the goods lifting assembly 3; or, transfer the goods to the goods lifting assembly 3.
  • the conveying line assembly 4 includes a base body 41 and a conveying line 42 provided on the base body 41, and the conveying line 42 is used for conveying the goods along the conveying direction of the goods.
  • the transmission lines 42 may be one layer or at least two layers.
  • the transmission directions of the transmission lines 42 of each layer may be the same; or, at least one layer of the transmission lines 42 of each layer
  • the transmission direction of the transmission line 42 is opposite to the transmission direction of the other transmission lines 42 .
  • the goods can be conveyed to the goods lifting assembly 3 and the goods on the goods lifting assembly 3 to the outside of the conveying line 42 at the same time, In this way, the conveying efficiency of the goods can be improved.
  • the transmission line 42 may be a conveyor belt or other transmission structure, which is not specifically limited in this embodiment.
  • the cargo lifting assembly 3 includes a main body 31, a conveying mechanism 32 and a lifting mechanism 33 disposed on the main body 31, the conveying mechanism 32 is used for conveying goods, the lifting mechanism 33 is connected with the conveying mechanism 32, and the lifting mechanism 33 is connected to the conveying mechanism 32, and the lifting mechanism 33 is used to drive the conveying mechanism 32 to move up and down along the vertical direction of the main body 31, so that the conveying mechanism 32 can selectively select a conveying mechanism that matches the size of the conveyed goods on the conveying mechanism 32.
  • the level of 22 is docked, so that the goods are smoothly conveyed without being deflected to both sides.
  • the lifting mechanism 33 may include a driving wheel, a driven wheel and a belt annularly sleeved on the driving wheel and the driven wheel, the lifting mechanism 33 may also include a motor, the motor is connected with the driving wheel, and the conveying mechanism 32 is fixedly connected with the belt.
  • the driving wheel drives the belt to drive the conveying mechanism 32 to rise and fall;
  • the lifting mechanism 33 can also be a sprocket structure, etc., as long as it can drive the conveying mechanism 32 to rise and fall, which is not specifically limited in this embodiment.
  • the conveying mechanism 32 is provided with a rolling member 321, and the cargo lifting assembly 3 further includes a third driving mechanism, and the third driving mechanism is connected with the rolling member 321, so that the third driving mechanism drives the rolling member 321 rotates about its own axis of rotation in the direction of conveyance towards the goods.
  • the third driving mechanism may be a motor.
  • the rolling element 321 can be a roller, wherein there can be multiple rollers, and the multiple rollers are arranged side by side and the central axes of each roller are parallel to each other, and the third driving mechanism drives each roller to rotate around its own axis toward the conveying direction of the goods;
  • the rolling element 321 can also be a transmission belt, and the conveyor belt drives the goods to move along the conveying direction.
  • the conveying line assembly 4 or the cargo lifting assembly 3 is provided with a first scanning element 43 , for example, the first scanning element 43 may be a structure such as a camera, and the first scanning element 43 is used to obtain the conveying mechanism 32
  • the size information of the goods to be transmitted on, the size information of the goods may include information such as the width and height of the goods, and the conveying mechanism 32 can selectively connect with the level of the matching transmission mechanism 22 according to the size information of the goods.
  • the size information such as the width and height of the level 22 should match the width, height and other information of the goods, so as to avoid the situation that the goods cannot be delivered due to the mismatch between the size of the goods on the conveying mechanism 32 and the size of the conveying channel in the conveying mechanism 22 occurs, thereby improving the reliability of the delivery of goods.
  • a second scanner may be provided on the transfer robot 1, and the second scanner is used to obtain the size information of the goods on the transfer robot 1.
  • the size information of the transport robot 1 can be selectively docked with the level of the corresponding conveying mechanism 22.
  • the second scan is used to determine the loading and unloading of the transport robot 1.
  • the size information of the goods is then selectively docked with the level of the conveying mechanism 22 that matches the size of the goods according to the size information of the goods.
  • the handling robot 1 includes a fork assembly 11, and the fork assembly 11 has a fork 112 for picking up and placing goods.
  • the fork assembly 11 may be a plug-in fork assembly 11, and the fork 112 may be a fork tines , the fork tines can be single or double fork tines. When the fork tines take the goods, the fork tines are inserted into the bottom of the goods and lift the goods to move the goods.
  • an avoidance structure 26 is provided on one end of the conveying mechanism 22 close to the handling robot 1 .
  • the avoidance structure 26 is used to avoid the handling robot 1 . Fork tines on the forklift, so that the forklift can be inserted into the bottom of the cargo and moved after lifting the cargo.
  • the avoidance structure 26 can be the avoidance slot 1412 or the avoidance hole, as long as the avoidance structure 26 can avoid the fork tines, so that the fork tines can be smoothly inserted into the bottom of the goods and the goods can be lifted and moved, this embodiment does not make specific restrictions.
  • the fork assembly 11 can also be a push rod assembly or the like.
  • the components push and pull the goods to push the goods on the handling robot to the conveying mechanism, or pull the goods on the conveying mechanism to the handling robot.
  • the overall operation of the above-mentioned robot 1, fluent shelf 2, cargo lifting assembly 3 and transmission line assembly 4 can be controlled as a whole by the server; One or more of the returned cargo information will issue corresponding control instructions; or, the server only provides the analysis results to one or more of the robot 1, the fluent shelf 2, the cargo lifting component 3 and the conveyor line component 4, and the server that receives the analysis results The device will trigger the working mechanism accordingly.
  • FIG. 8 is a schematic structural diagram of the fluent shelf provided by the first embodiment of the present disclosure
  • FIG. 9 is another structural schematic diagram of the fluent shelf provided by the first embodiment of the present disclosure.
  • the transfer device 100 further includes a correction device 27, which is used to correct the goods on the conveying mechanism 22, so that the goods are centered along the conveying direction perpendicular to the goods.
  • the calibration device 27 is directly arranged on the fluent shelf 2, wherein the fluent shelf 2 includes a bracket 21 and a transmission mechanism 22 arranged on the bracket 21, and the calibration device 27 can be arranged on the bracket 21;
  • the correction device 27 may be provided on the conveying mechanism 22 .
  • the transfer device 100 includes a support, the correction device 27 is mounted on the support, and the correction device 27 is vertically higher than the upper end surface of the conveying mechanism 22, so that the correction device 27
  • the goods conveyed by the conveying mechanism 22 can be centered and calibrated.
  • the calibration device 27 is an independent structure with the fluent shelf 2, and the calibration device 27 is not installed on the fluent shelf 2. In this way, the calibration device 27 can be adjusted and placed according to needs. position in order to correct the goods at different positions on the fluent shelf 2.
  • correction device 27 The specific structure of the correction device 27 will be introduced below:
  • the correcting device 27 includes two clamping structures 271 located on opposite sides of the conveying direction, respectively, and the two clamping structures 271 can move toward or away from each other.
  • the two clamping structures 271 are used to clamp the goods, so that the goods are centered along the conveying direction perpendicular to the goods, so as to avoid the goods from being offset during the conveying process.
  • the two clamping structures 271 move in a direction away from each other to release the goods, so that the goods can continue to move in the conveying direction.
  • the transfer device 100 further includes a driving device, and the driving device is respectively connected with the two clamping structures 271 , so that the driving device is used to drive the two clamping structures 271 to move toward or away from each other. direction move.
  • the driving device may be a motor, and the motor can move the two clamping structures 271 toward the direction of approaching or deviating from each other through forward and reverse rotation.
  • each clamping structure 271 includes at least two clamping members 2711, the at least two clamping members 2711 are arranged side by side and spaced apart along the conveying direction of the goods, and two adjacent clamping members 2711 are arranged side by side and spaced apart.
  • a buffer member 2712 is provided between the holding members 2711, and the buffer member 2712 between two adjacent holding members 2711 can slow down the clamping force of the holding member 2711 to the goods, so as to avoid the jamming between the holding member 2711 and the goods.
  • the holding force is too large to center the cargo, thereby increasing the reliability of the cargo grip centering.
  • the buffer member 2712 may be a spring or other elastic elastic member or the like.
  • the contour shape of the side of the clamping member 2711 close to the goods that faces the goods matches the outer contour shape of the goods.
  • the accuracy with which the gripper 2711 corrects the center of the goods for example, when the goods conveyed by the conveying mechanism 22 are tires, the contour shape of the side of the gripper 2711 close to the goods toward the goods may be the same as the outer contour shape of the tires.
  • the matching arc-shaped structure improves the correcting accuracy of the position of the goods by the clamping piece 2711 .
  • the two clamping structures 271 can also be rotated in opposite directions around the vertical direction.
  • the buffer member 2712 between the two clamping members 2711 slows down the clamping force of the goods, so that the goods located between the two clamping structures 271 are displaced, so that the center of the two clamping structures 271 and the goods (eg tires) are displaced. ) are coincident, thus improving the accuracy of cargo centering correction.
  • the contour shape of the side of the clamping member 2711 close to the goods facing the goods can also be a straight plate structure, and the straight plate structure is used to correct the goods whose position is shifted on the conveying mechanism 22. Simple, processing cost.
  • the fluent shelf 2 further includes a start switch, which is used to control the start and stop of the conveying mechanism 22.
  • the start switch can be selectively started or stopped.
  • the start switch can stop the conveying mechanism 22 first, and the clamping structure 271 adjusts the item and releases the item, and then starts the switch and then starts the conveying mechanism 22 to continue running.
  • the conveying mechanism 22 may also choose not to stop, however, when multiple items are continuously conveyed on the conveying mechanism 22, in order to improve the centering accuracy of each item on the conveying mechanism 22
  • the start switch can first control the conveying mechanism 22 to stop it. When the adjustment is completed and the item is released, the start switch controls the conveying mechanism 22 to start and continue conveying the item.
  • the transfer device 100 provided in the embodiment of the present disclosure includes a fluent shelf 2 and a cargo lifting assembly 3 , and the fluent cargo includes a bracket 21 and a conveying mechanism 22 arranged on the bracket 21 .
  • the other end of the mechanism 22 is docked with the cargo inlet and outlet of the cargo lifting assembly 3 to complete the transit transportation of the cargo when loading or unloading to the handling robot 1 , without manual loading or unloading, with a high degree of automation and high operating efficiency.
  • FIG. 10 is a schematic structural diagram of a relay device provided in Embodiment 2 of the present disclosure
  • FIG. 11 is a schematic structural diagram of a fluent shelf in the relay device provided in Embodiment 2 of the present disclosure.
  • the transfer device 100 provided by the embodiment of the present disclosure includes a fluent rack 2 and a cargo lifting assembly 3 , one end of the fluent rack 2 is docked with the cargo storage device 5 , and the other end of the fluent rack 2 is docked with the cargo lifting assembly 3 , wherein the cargo storage device 5 may be a storage rack or a handling robot 1 or the like.
  • one end of the fluent shelf 2 close to the cargo storage device 5 is provided with a cargo handling assembly, and the cargo handling assembly is used to transfer the goods between the fluent shelf 2 and the cargo storage device 5.
  • the cargo handling assembly is used to transfer the goods between the fluent shelf 2 and the cargo storage device 5.
  • the Fluent Shelf 2 can also be used as a feeding or unloading device, and at least one cargo is placed on the storage rack or the shelf of the handling robot 1 through the cargo loading and unloading components; Alternatively, at least one cargo is placed on the fluent shelf 2 from the storage shelf or the clapboard 141 used by the handling robot 1 for placing the goods through the cargo handling assembly, so as to realize the diversification of the uses of the fluent shelf 2 without the need for separate settings for loading or
  • the unloading device has the advantages of simple structure, convenient operation, low cost and small occupied space.
  • the cargo handling assembly is a push rod assembly 28, the push rod assembly 28 can be telescopically moved relative to the conveying mechanism 22 along the conveying direction, and the push rod assembly 28 is used to move the goods between the fluent shelf 2 and the cargo storage device 5 through its own telescopic movement. to transfer.
  • the push rod assembly 28 includes a telescopic arm 281 and a movable push rod 282 located at the front end of the telescopic arm 281.
  • the movable push rod 282 is rotatable relative to the telescopic arm 281.
  • the movable push rod 282 is in a horizontal position.
  • the movable push rod 282 is in the horizontal position.
  • the movable push rod 282 is blocked on the conveying path of the goods.
  • the telescopic arm 281 moves relative to the conveying mechanism 22 along the conveying direction of the goods, the movable push rod 282 abuts against the goods and pushes the goods to the goods storage. or the movable push rod 282 is used to pull the goods into the conveying mechanism 22, and when the movable push rod 282 does not move the goods, the movable push rod 282 can be folded to reduce the take up space.
  • the telescopic arm 281 can be telescopic in both directions along the conveying direction of the goods, as long as the goods can be taken, which is not specifically limited in this embodiment.
  • the cargo storage device 5 may include a rack body 51, and the rack body 51 is provided with a plurality of pallets 52, the pallets 52 are used for placing goods, and the pallets 52 are arranged at intervals in the vertical direction on the rack body 51,
  • the conveying mechanism 22 can be multi-layered. When the fluent rack 2 is docked with the goods storage device 5, one layer of the conveying mechanism 22 is docked with a pallet 52, and the conveying mechanism 22 is flush with the goods in the horizontal plane.
  • the push rod assembly 28 can be The goods on the fluent shelf 2 are directly pushed into the pallet 52 to complete the loading of the goods storage device 5 , or the push rod assembly 28 pulls the goods on the pallet 52 into the fluent shelf 2 to complete the goods storage device 5
  • the push rod assemblies 28 on each layer of the conveying mechanism 22 can simultaneously perform loading or unloading to the cargo storage device 5, thereby improving the loading and unloading performance. efficiency of loading or unloading.
  • the height of the cargo inlet and outlet at one end of the conveying mechanism 22 close to the cargo storage device 5 is equal to the height of the corresponding pallet 52, so that the height of the cargo inlet and outlet of the conveying mechanism 22 can be avoided.
  • the heights of the corresponding pallets 52 are not equal, so that the loading or unloading cannot be performed, thereby improving the reliability of loading and unloading.
  • the width of the conveying mechanism 22 along the conveying direction perpendicular to the goods is larger than the width of the goods, so as to improve the speed of the goods on the conveying mechanism 22 along the conveying direction passability.
  • a cargo loading and unloading assembly is provided at the end of the fluent shelf 2 close to the cargo storage device 5 , so that the fluent shelf 2 has the function of loading and unloading in addition to the function of conveying goods. , no additional feeding and unloading devices are required, the structure is simple, the space is small, and the cost is low.
  • FIG. 12 is a schematic diagram of the first structure of the handling robot in the transfer device provided by the third embodiment of the present disclosure
  • FIG. 13 is a partial schematic diagram of the second structure of the handling robot in the transfer device provided by the third embodiment of the present disclosure.
  • an embodiment of the present disclosure further provides a handling robot 1 , which includes a mobile chassis 12 , a lift assembly 13 and a fork assembly 11 .
  • the mobile chassis 12 is used to carry the lift assembly 13 and the fork assembly 11 , and the cargo
  • the fork assembly 11 is connected with the lift assembly 13, so that the lift assembly 13 drives the fork assembly 11 to rise and fall in the vertical direction.
  • the transport robot 1 further includes a support frame 14 , the support frame 14 is installed on a mobile base, and the mobile base abuts on a support surface (eg, the ground) of the transport robot 1 to support the support frame 14 , and the lifting assembly 13 and the fork assembly 11 is installed on the support frame 14, and the lift assembly 13 is connected with the fork assembly 11.
  • the lift assembly 13 drives the fork assembly 11 to rise and fall along the vertical direction of the support frame 14, so that the lift assembly 13 can take different heights goods, or place the goods at different heights.
  • the lifting assembly 13 may be a structure such as chain drive or belt drive.
  • the structure of the fork assembly 11 will be introduced below, and in this embodiment, the goods picked up and placed by the fork assembly 11 are described by taking tires as an example:
  • the fork assembly 11 includes a fork body 111 and a fork 112 located on the fork body 111.
  • the fork 112 can pick up and place tires by clamping, inserting, or pushing and pulling. Corresponding space needs to be reserved for the forks 112 on both sides of the tire.
  • the forks 112 can be fork tines, which can be directly inserted into the bottom of the tire. and move the tire up. Wherein, the tines may be single tines or multiple tines.
  • FIG. 14 is a schematic diagram of the first state of the fork assembly in the handling robot provided by the third embodiment of the present disclosure
  • FIG. 15 is a schematic diagram of the second state of the fork assembly in the handling robot provided by the third embodiment of the present disclosure
  • FIG. 16 is a schematic diagram of a first state of the handling robot provided in Embodiment 3 of the present disclosure
  • FIG. 17 is a schematic diagram of a second state of the handling robot provided in Embodiment 3 of the present disclosure.
  • the fork 112 is provided with a clamping mechanism 113.
  • the clamping mechanism 113 is inserted into the inner ring of the tire and clamped with the inner ring of the tire to During the movement of the fork 112 , the position of the tire on the fork 112 is prevented from being shifted, thereby improving the stability and reliability of the fork 112 driving the tire to move.
  • the catching mechanism 113 includes at least two catching parts 1131 , the at least two catching parts 1131 are arranged at intervals along the circumferential direction of the tire, and the at least two catching parts 1131 can be along the tire
  • the radial direction of the tire shrinks toward the center of the tire or expands away from the center of the tire.
  • each embedding part 1131 is clamped with the inner ring of the tire.
  • at least two catching portions 1131 are shrunk toward the center of the tire along the radial direction of the tire, so that each catching portion 1131 releases the tire.
  • the fork assembly 11 further includes a driving member, which is respectively connected with each catching portion 1131 , so that the driving member drives each catching portion 1131 to shrink toward the center of the tire or expand away from the center of the tire in the radial direction of the tire.
  • the driving member may be a motor, and the motor rotates forward and reverse to realize the shrinkage of each embedding portion 1131 toward the center of the tire or expansion away from the center of the tire.
  • the contour shape of the side of each catching part 1131 close to the inner ring of the tire can be matched with the contour shape of the inner ring of the tire.
  • the arc-shaped structure with the same contour and shape of the inner ring improves the fit between each catching portion 1131 and the inner ring of the tire, thereby improving the clamping reliability between each catching portion 1131 and the tire.
  • each engaging portion 1131 is a rod-shaped structure extending in the vertical direction, and the clamping between each rod-shaped structure and the inner ring of the tire can improve the speed of the fork 112 in driving the tire. Mobile stability and reliability.
  • each embedding portion 1131 when each embedding portion 1131 is embedded in the inner ring of the tire, the top of each embedding portion 1131 is connected to the tire. or the top of each embedding portion 1131 is higher than the top of the tire, so that the clamping area between each embedding portion 1131 and the inner ring of the tire can be increased, thereby increasing the gap between each embedding portion 1131 and the tire. card reliability.
  • each embedding portion 1131 is provided with an elastic hook extending away from the center of the tire.
  • the elastic hook is locked in The top of the tire, in this way, in addition to the clamping parts 1131 and the inner ring of the tire, the elastic hooks also have a pressing effect on the tire in the vertical direction, so that the gap between the embedding parts 1131 and the tire can be further improved. card reliability.
  • the clamping mechanism 113 further includes at least two telescopic parts 1132, each telescopic part 1132 is located between each clamping part 1131 and the driving member, wherein one telescopic part 1132 corresponds to one clamping part 1131, and the driving member drives each telescopic part 1131
  • the expansion and contraction parts 1132 are stretched, so that the expansion and contraction parts 1132 drive the insertion parts 1131 to shrink toward the center of the tire or expand away from the center of the tire in the radial direction of the tire.
  • each telescopic portion 1132 may be a telescopic rod.
  • the fork assembly 11 further includes a lifting device, the lifting device is connected with the clamping mechanism 113, and the lifting device is used to drive the clamping mechanism 113 to ascend and descend along the axis direction of the tire.
  • the clamping structure when the fork 112 inserts and lifts the tire, the clamping structure is in a retracted state, that is, the top of the clamping structure is flush with the upper end surface of the fork 112 , and after the fork 112 is inserted into the tire, the lifting device drives the The clamping mechanism 113 rises so that the clamping structure and the inner ring of the tire are clamped, and the fork 112 drives the tire to move.
  • the lifting device drives the clamping mechanism 113 to descend, so that the clamping mechanism
  • the top of the fork 113 is flush with the upper end surface of the fork 112, and the fork 112 puts down the tire to realize the pick and place of the tire by the fork 112.
  • the lifting device includes a motor and a driving rod connected to the motor, and the driving rod is connected to the clamping mechanism 113, so that the motor drives the driving rod to drive the clamping mechanism 113 to ascend and descend along the axis direction of the tire.
  • the lifting device may also have other structures, which are not specifically limited in this embodiment.
  • FIG. 18 is a schematic state diagram of the first structure of the fork assembly in the handling robot provided by the fourth embodiment of the present disclosure
  • FIG. 19 is another schematic diagram of the first structure of the fork assembly in the handling robot provided by the fourth embodiment of the present disclosure.
  • a schematic diagram of a state FIG. 20 is a schematic diagram of the third structure of the handling robot provided in Embodiment 4 of the present disclosure
  • FIG. 21 is a schematic diagram of the first state of the top-view structure of the fork assembly in FIG. 20
  • Figure 23 is a schematic diagram of the third state of the top-view structure of the fork assembly in Figure 20
  • Figure 24 is a schematic diagram of the fourth state of the top-view structure of the fork assembly in Figure 20.
  • the embodiment of the present disclosure further provides another fork assembly 11 , which includes a bracket 115 , a rotating mechanism 116 and a telescopic fork 117 located on the rotating mechanism 116 , and the telescopic fork 117 is rotated by rotating
  • the mechanism 116 is installed on the bracket 115, and the rotation mechanism 116 is used to drive the telescopic fork 117 to rotate relative to the bracket 115 around a vertical axis, so that the telescopic fork 117 can be oriented in different directions, so as to pick and place in different directions and location of goods.
  • the telescopic fork 117 is provided with a clamping assembly 114.
  • the clamping assembly 114 is locked with the outer side wall of the goods, so as to prevent the goods from moving after the telescopic fork 117 has inserted the goods.
  • the position of the telescopic fork 117 is offset, thereby improving the stability and reliability of the telescopic fork 117 when the goods are inserted and moved.
  • the clamping assembly 114 includes at least two clamping parts 1141 , the at least two clamping parts 1141 are spaced apart along the circumference of the goods, and at least one of the at least two clamping parts 1141 The clamping parts 1141 can move toward or away from the direction of the goods, so that at least two clamping parts 1141 are locked or detached from the outer side walls of the goods.
  • the clamping assembly 114 includes two clamping parts 1141.
  • the two clamping parts 1141 are respectively represented by a first clamping part 1141a and a second clamping part 1141b, wherein the first clamping part 1141a and the The second clamping parts 1141b may be disposed opposite to each other.
  • the telescopic fork 117 inserts the goods, one clamping part 1141 moves toward each other relative to the other clamping part 1141 , or the two clamping parts 1141 move toward each other at the same time.
  • the first clamping portion 1141a and the second clamping portion 1141b are located at two ends of the telescopic fork 117, respectively.
  • the goods are clamped between the first clamping part 1141a and the second clamping part 1141b, thereby improving the stability and reliability of the telescopic fork 117 when the goods are inserted and moved.
  • the telescopic fork 117 includes a bottom plate 1171 disposed on the rotating mechanism 116 and a fork plate 1172 that can slide relative to the bottom plate 1171, that is, the fork plate 1172 can be extended or retracted relative to the bottom plate 1171, and the fork plate 1172 is used for Insert cargo.
  • the first clamping portion 1141 a is disposed on the bottom plate 1171 near the rear end of the fork plate 1172
  • the second clamping portion 1141 b is disposed at the front end of the fork plate 1172 up, so that the first clamping portion 1141a and the second clamping portion 1141b are moved toward or away from each other due to the picking or releasing action of the fork plate 1172 .
  • the front end of the fork plate 1172 is the end of the fork plate 1172 that first approaches the goods when the fork plate 1172 moves toward the goods and inserts the goods, and the other end that is symmetrical to the fork plate 1172 is the rear end of the fork plate 1172 .
  • the second clamping part 1141b moves toward the fluent shelf 2 together with the fork plate 1172, in order to make the fork plate 1172 and the first on the fork plate 1172 move towards the fluent shelf 2.
  • a first avoidance gap is provided at the end of the fluent shelf 2 and the transport robot 1, and the depth of the first avoidance gap in the vertical direction is greater than that of the fork plate 1172 and The total height of the second clamping portion 1141b on the fork plate 1172.
  • the fork plate 1172 is inserted into the bottom of the cargo and is lifted and then retracted backward.
  • the second clamping portion 1141b will follow the fork plate. 1172 move together toward a direction close to the first gripping portion 1141a, so that the goods are gripped between the first gripping portion 1141a and the second gripping portion 1141b.
  • the rotating mechanism 116 first drives the telescopic fork 117 to rotate around a vertical axis, so that the fork plate is rotated 1172 is aligned with the partition 141 where the goods are to be placed, and the partition 141 is provided with a second avoidance notch for avoiding the fork plate 1172 and the second clamping portion 1141b on the fork plate 1172.
  • the retractable fork 117 moves down a preset distance in the vertical direction, at this time, the goods on the fork plate 1172 are placed on the partition plate 141, and the fork plate 1172 drives the second clamping part 1141b toward the first clamping part 1141b.
  • the direction of the part 1141a is retracted, so as to realize the transfer of the goods on the fluent shelf 2 to the partition 141 on the transport robot 1 .
  • a telescopic piece 1142 is provided on the telescopic fork 117, and the telescopic piece 1142 is connected with the first clamping part 1141a and/or the second clamping part 1141b, so that the telescopic piece 1142 drives the
  • the first gripping portion 1141a and/or the second gripping portion 1141b can be telescopically moved in the direction of approaching or away from each other, that is to say, the first gripping portion 1141a and/or the second gripping portion 1141b can be connected with the retractable cargo.
  • There is relatively independent movement between the forks 117 so that the size of the goods that can be clamped between the first clamping part 1141a and the second clamping part 1141b can be larger or smaller.
  • the telescopic member 1142 may be a telescopic rod.
  • the fork assembly 11 further includes a driving structure, and the driving structure is connected with the telescopic member 1142, so that the driving structure drives the telescopic member 1142 to drive the first clamping part 1141a and/or the second clamping part 1141b to approach each other or away from each other
  • the driving structure can be a motor, and the motor rotates forwardly or reversely, so that the telescopic element 1142 can achieve the purpose of expanding or retracting, and the structure is simple and the cost is low.
  • the fork assembly 11 further includes a lifting device, the lifting device is connected with the second clamping portion 1141b, and the retractable fork 117 is provided with an escape groove 1412 for avoiding the second clamping portion 1141b or an escape groove 1412 for avoiding the second clamping portion 1141b.
  • the lifting device drives the second clamping part 1141b to lift and lower in the vertical direction.
  • the lifting device can first drive the second clamping portion 1141b to descend into the avoidance groove 1412 or the avoidance hole in the vertical direction, so as to avoid the second clamping portion 1141b Interfering with the fluent shelf 2, etc., when the retractable fork 117 is inserted into the bottom of the cargo and lifted, the lifting device drives the second gripping portion 1141b to rise. At this time, the second gripping portion 1141b can follow the retractable cargo.
  • the forks 117 move together toward the direction close to the first gripping portion 1141a, or the first gripping portion 1141a and/or the second gripping portion 1141b move toward each other with the retraction movement of the telescopic member 1142, thereby allowing the goods It is clamped between the first clamping portion 1141a and the second clamping portion 1141b, thereby improving the stability and reliability of the telescopic fork 117 when the goods are inserted and moved.
  • the contour shape of the clamping part 1141 facing the goods when clamping the goods can be matched with the outer contour shape of the goods, so as to improve the clamping part 1141
  • the fit between the 1141 and the goods further improves the clamping reliability of the clamping part 1141 when clamping the goods.
  • the contour shape of the gripping portion 1141 facing the tire is an arc-shaped structure that matches the outer contour shape of the tire.
  • the retractable fork 117 is provided with a clamping assembly 114.
  • the clamping assembly 114 is clamped with the outer sidewall of the cargo, so as to The position of the goods is prevented from being shifted when the telescopic forks 117 move after lifting the goods, thereby improving the stability and reliability of the telescopic forks 117 when the telescopic forks 117 are inserting and moving the goods.
  • FIG. 25 is a schematic top view of the fourth structure of the handling robot according to Embodiment 5 of the present disclosure.
  • an embodiment of the present disclosure provides a handling robot 1 , which includes a support frame 14 , a partition 141 is provided on the support frame 14 , the partition 141 is used for placing goods, and a calibration component 15 is arranged on the partition 141 .
  • the calibration assembly 15 is used to correct the goods on the partition 141 , so that the goods are located in the center of the partition 141 .
  • the correction component 15 by arranging the correction component 15 on the partition 141, so that the goods are located in the center of the partition 141, the position of the goods on the partition 141 is avoided due to the inertia force of the transport robot 1 or other reasons.
  • the offset causes the forks 112 and the like to be unable to accurately position and pick up the goods on the bulkhead 141 when transporting the goods.
  • the correction component 15 by arranging the correction component 15 , the positional accuracy of the goods in the bulkhead 141 can be improved.
  • the calibration assembly 15 includes at least two calibration parts 151 , the at least two calibration parts 151 are arranged at intervals along the circumferential direction of the partition plate 141 , and the at least two calibration parts 151 can be spaced toward or away from each other. The center position of the plate 141 is moved so that each correction portion 151 is used to correct the position of the goods on the partition plate 141 .
  • each correcting part 151 moves toward the center of the partition 141. At this time, if the goods are not located at the center of the partition 141, The goods will move to the center position of the partition board 141 under the pushing of each correction part 151 , so as to complete the correction of the position of the goods on the partition board 141 . After the goods are adjusted, each correction part 151 will face away from the partition board 141 move at the center position.
  • each correction part 151 may be a plate-like structure or a block-like structure, as long as the position of the goods can be corrected.
  • the contour shape of each correcting part 151 facing the cargo side matches the shape of the contour segment of the outer side wall of the cargo corresponding to each correcting part 151, so that the correcting part 151 can be improved.
  • the degree of fit between the correcting part 151 and the goods can be adjusted, so as to improve the accuracy of the correcting part 151 when correcting the position of the goods.
  • the partition plate 141 is provided with at least two telescopic structures, and the at least two telescopic structures are respectively connected with at least two correcting parts 151 , wherein one telescopic structure is connected with one correcting part 151 , and the telescopic structure can be Extends and contracts toward the center close to or away from the partition 141 , so that each telescopic structure drives each correcting part 151 to correct the goods on the partition 141 .
  • the telescopic structure may be an elastic telescopic member 1142, such as a spring.
  • the telescopic structure can also be a pneumatic telescopic element 1142 , and the telescopic element 1142 drives each correcting part 151 to move with the compression and release of the air pressure, so that each correcting part 151 can be used to correct the position of the goods on the partition 141 .
  • the partition plate 141 is also provided with a source element, and the source element is connected to each telescopic structure, so that the source element drives each telescopic structure to expand and contract toward or away from the center of the partition plate 141, wherein the source element can be a motor other structures, as long as it can provide power for each telescopic structure, which is not specifically limited in this embodiment.
  • the support frame 14 is further provided with a detection member 16 and a control component electrically connected to the detection member 16.
  • the detection member 16 is used to detect the placement of the goods on the partition 141, and the detection member 16 transmits the detected placement situation of the goods to the control component, which is connected with the correction component 15, and the control component is used for controlling the correction component 15, so that the correction component 15 adjusts the position of the goods.
  • the detection element 16 when the detection element 16 detects that the goods placed on the partition 141 are not located at the center of the partition 141, the information is uploaded to the control component, and the control component controls the correction component 15 to perform correction according to the information, so as to The goods are adjusted to the center position of the partition plate 141; if the detection element 16 detects that the goods placed on the partition plate 141 are located at the center position of the partition plate 141, the control component will not start the calibration component 15 to carry out the adjustment of the goods on the partition plate 141. Therefore, the working accuracy of the calibration assembly 15 is improved, and the situation that the position of the goods on the partition 141 does not shift but the calibration assembly 15 is activated for calibration is avoided.
  • the detection member 16 may be a camera or other detection device that may be used to detect the placement of the goods on the partition 141 , which is not specifically limited in this embodiment.
  • FIG. 26 is a schematic structural diagram of a partition in a handling robot provided in Embodiment 5 of the present disclosure
  • FIG. 27 is another structural schematic diagram of a partition in a handling robot provided in Embodiment 5 of the present disclosure
  • FIG. 28 is an embodiment of the present disclosure
  • Fifth another structural schematic diagram of the partition plate in the handling robot is provided.
  • the partition 141 in order to make the partition 141 suitable for placing goods of different sizes, and the goods will not be displaced in the process of moving with the transport robot 1 , in this embodiment , the partition 141 is provided with a groove 1411, the diameter of the groove 1411 decreases sequentially from the notch of the groove 1411 to the bottom of the groove 1411, and the goods on the partition 141 will be clamped in the groove due to its own gravity. 1411, in this way, the partition 141 is not only suitable for placing goods of different sizes, but also when the goods move with the handling robot 1, the position of the goods on the partition 141 will not be offset due to inertial force and other reasons. .
  • the diameter of the groove 1411 decreases in steps from the notch of the groove 1411 to the groove bottom of the groove 1411, so that the contact between the outer side wall of the goods and the inner wall of the groove 1411 can be achieved. area, thereby improving the stability and reliability of the goods that can be held in the groove 1411 .
  • the diameter of the groove 1411 decreases gradually from the notch of the groove 1411 to the groove bottom of the groove 1411, so that more goods of different sizes can be used, thereby improving the partition wall.
  • 141 can carry the range of cargo.
  • the cross-sectional shape of the space in the groove of the groove 1411 along the horizontal plane may be a square, a rectangle or a polygon surrounded by a plurality of straight lines; or, the space in the groove of the groove 1411 along the horizontal plane
  • the cross-sectional shape may be formed by a plurality of arcs, or a regular shape or an irregular rectangular shape formed by a combination of arcs and straight lines.
  • the inner space of the groove 1411 is in the shape of a funnel. It can be understood that the inner space of the groove 1411 is in the shape of a funnel, that is, the radial dimension of the inner space in the vertical direction is from the top It gradually decreases from bottom to bottom, so that when the cargo is located in the groove 1411, the cargo in the groove 1411 will be stuck in the groove due to its own gravity and the friction between the cargo and the groove wall of the groove 1411. 1411, so that the goods can be prevented from being offset when the transport robot 1 travels, and the structure is simple and the cost is low.
  • the space in the groove 1411 is in the shape of at least two layers of funnels, so that the size range of the suitable goods in the groove 1411 is increased, thereby improving the use range of the partition 141 .
  • the bulkhead 141 is provided with a cargo inlet and outlet, and the cargo inlet and outlet communicate with the groove 1411, and the fork 112 on the handling robot 1 can place the cargo in the groove 1411 or from the cargo through the cargo inlet and outlet. The goods are taken out from the groove 1411.
  • the side of the groove 1411 close to the fork 112 in the handling robot 1 can be an open structure, and the open structure forms the import and export of goods. Therefore, the import and export of goods and the groove 1411 can be integrally formed, which reduces processing steps and costs.
  • the inner bottom wall of the groove 1411 is provided with a space for avoiding the forks.
  • the avoidance groove 1412 of 112 the avoidance groove 1412 is communicated with the import and export of the goods, when the fork 112 places the goods in the groove 1411 or takes the goods from the groove 1411, the fork 112 is inserted into the avoidance groove 1412 first, and then lifted by Or move down to pick up and place goods.
  • the depth of the avoidance groove 1412 in the vertical direction is greater than the thickness of the fork 112, so that the fork 112 can ascend or move down in the avoidance groove 1412, so as to realize the picking and placing of goods by inserting and lifting.
  • a guide portion is provided on the inner bottom wall of the avoidance groove 1412, and the guide portion is used for The fork 112 is guided along the in-and-out direction of the goods, so as to improve the accuracy of the goods entering the avoidance groove 1412 , thereby improving the guiding reliability of the goods entering the avoidance groove 1412 .
  • the bottom of the avoidance groove 1412 is an inclined plane, and along the insertion direction of the fork 112, the height of the inclined plane decreases sequentially from the inside of the avoidance groove 1412 to the inlet and outlet of the goods.
  • the inclined surface can guide the fork 112. Therefore, in this embodiment, the inclined surface can form a guide portion for guiding the fork 112, so that the guide portion can be connected with the groove 1411.
  • One-piece molding reduces processing steps and costs.
  • the avoidance groove 1412 can be an avoidance gap without a bottom plate part, and the two sides of the gap are regarded as guide parts, which can increase the movable space for the fork 112 to be inserted, and avoid the insufficient depth of the avoidance groove 1412 , the gripping part is too high, causing the gripping part to interfere with the goods when the fork is withdrawn, resulting in the failure of the cargo placement operation.
  • the number of partitions 141 may be multiple, and the multiple partitions 141 are arranged on the support frame 14 at intervals in the vertical direction, so that the handling robot 1 can handle multiple goods at one time, thereby improving the efficiency of the handling robot. 1 handling efficiency, saving time.
  • FIG. 29 is a schematic top view of the fifth structure of the handling robot according to the fifth embodiment of the present disclosure.
  • the partition plate 141 is provided with an elastic limiter 2417 .
  • the elastic limiting member 2417 limits the cargo, the elastic limiting member 2417 will be squeezed and deformed by the cargo, thereby preventing the cargo from shifting on the partition 141 .
  • the elastic stopper 2417 is provided on the inner side wall of the partition plate 141.
  • the elastic stopper 2417 on the inner side wall of the partition plate 141 is squeezed by the goods. In this way, the goods and the elastic limiting member 2417 are clamped tightly, so as to prevent the goods from shifting, and improve the stability and reliability of the goods in the moving process of the transport robot 1 .
  • the elastic limiters 2417 there may be a plurality of elastic limiters 2417, and the plurality of elastic limiters 2417 are arranged at intervals on the inner side wall of the partition plate 141. In this way, while avoiding the deviation of the goods, the elastic limiters 2417 do not need to cover the entire The inner side wall of the partition 141 can improve economy and save cost.
  • a plurality of elastic limiters 2417 can be arranged on the side wall of the partition plate 141 at equal intervals along the circumferential direction of the partition plate 141. In this way, each elastic limiter 2417 can maintain the same degree of compression and deformation by the goods. This further improves the stability and reliability of the cargo accompanying robot 1 in the moving process.
  • the elastic limiting member 2417 may be a rubber strip, or may be other elastic elastic members, which are not specifically limited in this embodiment.
  • the elastic limiting member 2417 may also include a plurality of springs and pads, the plurality of springs are arranged at intervals on the partition plate 141, the pads are laid on the plurality of springs, and the pads The pad is located at one end of the spring close to the cargo.
  • the pad is sandwiched between a plurality of springs and the cargo. In this way, the contact area between the spring and the cargo can be increased through the pad, thereby increasing the contact area between the spring and the cargo. Improve the reliability of the elastic limiter 2417 to limit the goods.
  • the partition 141 when the partition 141 is provided with a groove 1411 for placing goods, the goods are clamped in the groove 1411, and in addition, the elastic stopper 2417 is provided on the groove wall of the groove 1411, so that, While the groove 1411 prevents the goods from shifting during the movement of the handling robot 1, the elastic stopper 2417 on the groove wall will further prevent the goods from being offset with the groove 1411, thereby improving the limitation of the goods. bit reliability.
  • the partition 141 is provided with a cargo inlet and outlet, and the cargo inlet and outlet communicate with the groove 1411.
  • the groove 1411 The elastic stopper 2417 on the inner wall is clamped with the goods, so as to prevent the goods from shifting when moving with the handling robot 1; and when the forks 112 take the goods out of the grooves 1411, the forks 112 pass the goods into the grooves.
  • the outlet is inserted into the bottom of the cargo and lifted.
  • the lifting force of the fork 112 to lift the cargo only needs to be greater than the frictional force between the elastic limiter 2417 and the cargo. , the goods can be taken out from the groove 1411 smoothly, the structure is simple and the operation is convenient.
  • the handling robot 1 provided by the embodiment of the present disclosure, by disposing an elastic limiter 2417 on the partition 141, the goods placed on the partition 141 are limited by the elastic limiter 2417, so as to prevent the goods from being transported with the handling robot 1.
  • the offset occurs during the moving process, which improves the stability and reliability of the goods in the moving process with the handling robot 1 .
  • the embodiments of the present disclosure further provide a storage system, including the above-mentioned transfer device 100 and the handling robot 1, wherein the structures of the transfer device 100 and the handling robot 1 have been described in detail in the above-mentioned embodiments, and are not repeated here. Describe them one by one.
  • FIG. 30 is an application scenario diagram of the container transportation method provided by the embodiment of the present disclosure.
  • an order task such as a warehousing task, a sorting task, and a warehousing task
  • the goods in the order task need to be transported through the transportation line 120 of the storage system.
  • the transportation robot 1 needs to transport the various goods on the transportation line 120 to the corresponding storage location of the warehouse shelf;
  • each item needs to be transported to the operation station through the transport line 120, so as to carry out sorting or outgoing of each item.
  • the conveying line 120 is composed of an unloader 121, an elevator 122 and a conveyor belt.
  • the order task is a warehousing task
  • the transport robot 1 When the order task is an outbound task or a sorting task, the transport robot 1 needs to transport the goods corresponding to the order task from its storage location to each layer of the storage rack 131 of the transport robot 1, and then transport it to the unloader 121, so that the unloader 121 unloads the goods on each layer of the storage rack 130 to each layer of the unloader 121, and the elevator 122 transports the goods placed on each layer of the unloader 121 to the conveyor line assembly 123 in turn, Then, through the conveying line assembly 123, the goods are sequentially transported to the operation station to complete the order task.
  • Each layer of the existing unloader 121 can only hold goods of the same size, resulting in that goods of different sizes need to be transported through different unloaders and their corresponding conveying lines, resulting in low transportation efficiency and high cost.
  • the method for transporting goods is based on the transfer device for cargo transportation, and the fluent shelves of the transfer device can place goods of different sizes, so that the corresponding size information of the goods can be determined adaptively based on the size information of the goods.
  • the target layer of the fluent shelf and then realize the transportation of goods based on the corresponding conveyor line of the target layer.
  • the cargo transportation method is applied to a transfer device 100, and the transfer device 100 is used for the transfer of goods when loading or unloading the handling robot 1, including fluent
  • the shelf 2 the fluent shelf 2 includes a bracket 21 and a transmission mechanism 22 arranged on the bracket 21.
  • the transmission mechanism 22 is multi-layered, and the width of each layer of the transmission mechanism 22 is fixed, and the width of at least two layers of the transmission mechanism 22 is different, as shown in the figure
  • the cargo transportation method includes the following steps:
  • step S201 the size information of the goods is obtained.
  • the goods can be any kind of items, such as tires, building materials, etc., and can also be a material box provided by the storage system.
  • the material box can be placed in one or more items that the user needs to store, which can be clothing, cosmetics, porcelain, etc. Wait.
  • the size information may be the width of the goods, and may also include one or both of height or length.
  • an upstream device such as a warehouse management device of a warehousing system, that sends the pre-stored size information of the goods to the transit device 100 .
  • the transfer device 100 can monitor the size information of the goods in real time, so as to improve the accuracy of the size of the goods.
  • the size information of the goods can be acquired in real time through the scanner set on the transfer device 100 or other devices of the storage system.
  • the size information of each item corresponding to the set time can be obtained.
  • the set time may be a fixed time period, such as 10 minutes, 1 hour, or other time periods, or may be an adaptively adjusted time period, for example, it may be determined according to the order volume of the storage system.
  • the size information of a preset number of goods can be obtained, and the preset number can be the number of layers of the conveying mechanism.
  • the size information is obtained based on the second scan piece set on the handling robot 1 .
  • the second scanning element may be a camera or a camera, an ultrasonic sensor, a laser sensor and other sensors, and may also be a scanning device that can identify the cargo code.
  • the cargo identification code is set to the preset position of the cargo, and the cargo identification code It can be in any form such as two-dimensional code, barcode, coding, etc.
  • the transport robot 1 when the transport robot 1 transports the goods to its storage rack, it can scan the goods based on the second scan to obtain the size information of the goods, and send the size information to the multi-layer elevator or storage system .
  • Step S202 determine the target layer of the conveying mechanism 22 corresponding to the goods.
  • the target layer is a certain layer of the conveying mechanism 22 for transporting the goods.
  • the conveying mechanism 22 includes multiple layers, and at least two layers of the conveying mechanism 22 can accommodate goods with different size information.
  • a layer of the conveying mechanism 22 that matches the size information can be determined as the target layer.
  • the target layer of the conveying mechanism 22 corresponding to each item can be determined according to the size information of each item, so that each item can be transported based on each determined target layer.
  • the size information of multiple goods may be sorted from large to small, and based on the sorting result and the size information of each item, the target layer of the conveying mechanism 22 corresponding to each item is sequentially determined.
  • step S203 the goods are transported through the target layer of the conveying mechanism 22 .
  • the goods can be placed on the target layer of the conveying mechanism 22, and then the goods are transported by the target layer of the conveying mechanism 22 to complete the corresponding order.
  • the goods are goods that need to be put into storage
  • the goods need to be transported to the corresponding layer of the storage rack of the handling robot 1 through the target layer of the conveying mechanism 22, and then the handling robot 1 will place the goods on the shelves of the storage system. on the corresponding storage location.
  • the goods are goods that need to be shipped out or sorted
  • the goods need to be transported to the operating table through the target layer of the conveying mechanism 22, and then the goods can be sorted or shipped out.
  • the cargo transportation method provided by the embodiment of the present disclosure is based on the multi-layer fluent rack, and according to the size information of the goods to be transported, it matches the corresponding transportation line, that is, matches the target layer of the conveyor mechanism of the fluent rack, so as to pass the target layer of the conveyor mechanism.
  • the goods are transported in layers to transport them to the handling robot 1 or the operating table, so as to complete the corresponding warehousing, outbound or sorting tasks, realize the parallel transportation of goods of various sizes, and improve the flexibility and efficiency of cargo transportation. , which improves the order processing efficiency of the warehousing system.
  • FIG. 32 is a cargo transportation method provided by another embodiment of the present disclosure. This embodiment is directed to the case where the transfer device 100 unloads and transports the handling robot 1.
  • the transfer device 100 further includes a cargo lifting assembly 3.
  • step S201 is further refined, and after step S202, the step of transporting the goods to the target layer is added.
  • the method for transporting goods provided by this embodiment is Include the following steps:
  • Step S301 based on the first scanning element 43 set on the cargo lifting assembly 3 or the conveying line assembly 4 , obtain the size information of the cargo.
  • the first scanning element 43 may be a scanning sensor such as an ultrasonic sensor, a laser sensor, an infrared sensor, or the like, or an image capturing device such as a camera or a camera.
  • the lifting assembly scans the goods based on the first scanning element 43 provided thereon, such as scanning the position where the goods identification code is set, so as to obtain the size information of the goods.
  • the goods when the goods need to be stored in the warehouse of the storage system, the goods can be transported to the conveyor line assembly 4 after being processed by the operating table.
  • the preset range is the size of the conveyor assembly 4
  • the scanning area of the first scanning element obtains the size information of the goods based on the first scanning element 43 provided on the conveying line assembly.
  • Step S302 according to the size information, determine the target layer of the conveying mechanism 22 corresponding to the goods.
  • Step S303 based on the cargo lifting assembly, transport the cargo to the target layer of the conveying mechanism 22 .
  • the cargo lifting assembly 3 transports the cargo to the target layer of the conveying mechanism 22 .
  • the cargo lifting assembly 3 may include a conveying mechanism 32 and a lifting mechanism 33.
  • the lifting instruction of the lifting mechanism 33 is determined based on the target layer, so as to control the lifting mechanism 33 to be lifted to a position corresponding to the target layer, so that the lifting mechanism 33 can be lifted to a position corresponding to the target layer.
  • the mechanism 32 transports the goods placed thereon to the destination level of the transfer mechanism 22 .
  • Step S304 the goods are transported to the transport robot 1 through the target layer of the transport mechanism 22 .
  • each layer of the storage shelves of the transfer robot 1 is connected to each layer of the conveying mechanism 22 .
  • the goods can be transported to the corresponding levels of the storage shelves of the handling robot 1 based on the target level of the transfer mechanism 22 .
  • the handling robot 1 can move to a corresponding position of the conveying mechanism 22 , such as a set distance in front, and then the handling robot 1 can move the goods placed on the target layer of the conveying mechanism 22 to the corresponding floor of the storage rack of the handling robot 1 . .
  • the size of the goods is automatically obtained through the transfer mechanism 22 of the fluent rack 2 of the transfer device 100 or the first scanner 43 provided on the transfer line assembly 4 information, and then determine the matching target layer of the conveying mechanism 22 based on the size information, transport the goods to the target layer of the conveying mechanism 22 through the cargo lifting assembly 3, and transport the goods to the transfer robot 1 through the target layer of the conveying mechanism 22 , in order to complete the warehousing of goods through the handling robot 1, and based on the multi-layer fluent shelves 2 that can be placed in different sizes, the adaptive transportation of goods of different sizes is realized, and the flexibility and efficiency of goods transportation are improved.
  • Fig. 33 is a flowchart of a method for transporting goods provided by another embodiment of the present disclosure. This embodiment further refines step S203 on the basis of the embodiment shown in Fig. 31. As shown in Fig. 33, this embodiment Provided methods of transportation of goods, including the following steps:
  • step S401 the size information of the goods is obtained.
  • Step S402 according to the size information, determine the target layer of the conveying mechanism 22 corresponding to the goods.
  • Step S403 determining the conveying direction of the goods.
  • the conveying direction may include two opposite directions, a first direction and a second direction, so as to transport the goods from the operating table to the handling robot 1 or transport the goods on the handling robot 1 to the operating table, so as to realize the transfer of the goods from the handling robot 1 to the operating table. loading or unloading.
  • the first direction is the direction corresponding to when the transport robot 1 is loaded
  • the second direction is the direction corresponding to when the transport robot 1 is unloaded.
  • the goods can be transported to the fluent rack 2 and the goods on the fluent rack 2 can be transported to the operating table through the conveying line assembly 4 and the goods lifting assembly 3 .
  • the conveying direction of the goods can be determined based on the type of the order.
  • the conveying direction is the first direction
  • the conveying direction is the second direction. direction.
  • the conveying direction may also be determined according to the state parameters of the conveying robot 1 .
  • the transfer direction is the second direction
  • the transfer direction is the first direction.
  • Step S404 based on the conveying direction, adjust the conveying mechanism 22 or the target layer of the conveying mechanism 22 .
  • the conveying mechanism 22 when the conveying mechanism 22 is only adjustable as a whole, that is, the conveying direction of each layer of the conveying mechanism 22 is the same, after the conveying direction is determined, the conveying mechanism 22 can be adjusted based on the conveying direction, so that each layer of the conveying mechanism 22 has the same conveying direction. Layers, including the target layer, carry out cargo transport along the transport direction.
  • the target layer of the conveying mechanism 22 can be adjusted individually, so that the target layer can carry goods along the conveying direction. send.
  • the conveying direction corresponding to the target layer may be different from the conveying direction of at least one of the remaining layers of the conveying mechanism 22 .
  • each layer of the conveying mechanism 22 can be individually adjusted, different layers of the conveying mechanism 22 may have different conveying directions according to transportation requirements, thereby improving the efficiency of cargo transportation.
  • the conveying mechanism 22 includes a rolling conveying member 23 , and based on the conveying direction, the conveying mechanism 22 or the target layer of the conveying mechanism 22 is adjusted, including:
  • the rotation mode of the rolling conveying member 23 or the corresponding rolling conveying member 23 of the target layer is determined, so that the rolling conveying member 23 or the corresponding rolling conveying member 23 of the target layer revolves around itself in the rotating mode.
  • the axis of rotation rotates so that the goods are transported in this conveying direction.
  • the rotation mode includes the rotation direction of the rolling conveying member 23, such as clockwise rotation or counterclockwise rotation.
  • each layer of the conveying mechanism 22 can control the conveying direction of the goods on each layer through only one rolling conveying member 23 , so that the conveying direction of the goods in each layer of the conveying mechanism 22 is the same.
  • the rotation mode of the rolling conveying member 23 is determined, so that the rolling conveying member 23 rotates around its own rotation axis in the rotating mode, so that each layer of the conveying mechanism 22, including the target layer,
  • the transport direction of the goods is the conveying direction.
  • the rotation mode of the target layer corresponding to the rolling conveying member 23 can be determined based on the conveying direction, so as to control the rolling conveyance corresponding to the target layer.
  • the member 23 rotates about its own axis of rotation in this rotation mode, so that the target layer of the conveying mechanism 22 can transport the goods in this conveying direction.
  • step S405 the goods are transported through the target layer of the conveying mechanism 22 .
  • the goods are transported along the transfer direction based on the adjusted target layer of the transfer mechanism 22 .
  • the direction in which the goods are transported on the target layer that is, the conveying direction, may be different from the direction in which the goods are transported on at least one of the other layers of the conveying mechanism 22 .
  • the conveying mechanism 22 includes an adjusting mechanism, and based on the conveying direction, adjusting the conveying mechanism 22 or the target layer of the conveying mechanism 22 includes: determining, based on the conveying direction, through the adjusting mechanism, various parameters of the conveying mechanism 22 .
  • the angle of inclination of the layers is such that the goods on the target layer of the conveying mechanism 22 generate a force component along the conveying direction.
  • the inclination angle may be 30°, 45° or other angles.
  • transporting the goods through the target layer of the conveying mechanism 22 includes: transporting the goods through the target layer of the inclined conveying mechanism 22 .
  • the conveying mechanism 22 includes a first conveying part 221 and a second conveying part 222 , and based on the conveying direction, adjusting the conveying mechanism 22 or the target layer of the conveying mechanism 22 includes: According to the conveying direction, the second conveying part 222 of the conveying mechanism 22 is adjusted so that the height of the second conveying part 222 is greater than that of the first conveying part 221 and the second conveying part 222 forms an inclined slope.
  • transporting the goods through the target layer of the conveying mechanism 22 includes: transporting the goods through the inclined slope formed by the second transmission part 222 corresponding to the target layer and the horizontal plane formed by the first transmission part 221 .
  • the conveying direction of the conveying mechanism 22 of the fluent shelf 2 can be adjusted, so that the fluent shelf 2 can process different orders at the same time, so as to complete various types of goods transportation such as outbound, inbound, and sorting of goods.
  • the target layer or The entire conveying mechanism 22 is adjusted to realize the transportation of goods in this conveying direction, so that the fluent shelf 2 can not only handle the transportation of goods of different sizes at the same time, but also can handle the transportation of goods in different conveying directions at the same time, which further improves the transportation of goods. efficiency.
  • Fig. 34 is a flowchart of a method for transporting goods provided by another embodiment of the present disclosure. This embodiment is aimed at the case where the width of the conveying mechanism 22 of the fluent shelf 2 is adjustable. As shown in Fig. 34, the method for transporting goods provided in this embodiment include the following steps:
  • step S501 a cargo transportation order is obtained.
  • the cargo transportation order may be an order such as a cargo warehousing order, a cargo warehousing order, or a cargo sorting order.
  • the goods inbound order is an order that needs to transport each goods in the order to the warehouse of the warehousing system through the fluent shelf 2 and the handling robot 1.
  • the handling robot 1 and the fluent shelf 2 are transported to the operating table for outbound and sorting orders.
  • each goods order may be generated by the warehouse management device of the warehousing system, and then each goods order may be sent to the fluent shelf 2 .
  • the Fluent Shelf 2 can obtain a cargo transportation order based on the respective cargo order, and the cargo transportation order can include one or more cargo orders.
  • the fluent shelf 2 can obtain the goods transportation order according to the order level and the deadline of each goods order.
  • one or more cargo orders with a high order level and a deadline close to the current time can be preferentially selected as cargo transportation orders.
  • the cargo transportation capacity of the Fluent Shelf 2 that is, the quantity of goods that can be transported on the Fluent Shelf 2
  • one or more cargo orders can be combined into one cargo transportation order.
  • the quantity of goods that can be transported on the fluent shelf 2 is 10; the order level of goods order A is level 1, the deadline is 5:00 pm today, and 6 goods need to be transported; the order of goods order B is The level is level 3, the deadline is 3:00 pm today, and 5 goods need to be transported; the order level of cargo order C is level 3, the deadline is 3:20 this afternoon, and 4 goods need to be transported; Then, the goods order B and the goods order C are determined as the goods transportation orders.
  • Step S502 according to the size information of each item in the freight transport order, determine the transport width of each layer of the conveying mechanism 22 of the fluent shelf 2 , so as to transport goods with matching widths through each layer of the conveying mechanism 22 .
  • the size information of the goods may include the width of the goods, and may also include one or both of the height and the length of the goods.
  • the conveying width of each layer of the conveying mechanism 22 of the fluent shelf 2 can be adjusted, for example, by electric control or mechanical adjustment.
  • the size information of each cargo in the cargo transportation order can be sorted, and based on the sorting result and the number of layers of the conveyor mechanism 22 of the fluent rack 2, the transportation width of each layer of the conveyor mechanism 22 can be determined, so as to be based on the transmission of the fluent rack 2.
  • Each level of the facility 22 transports one or more shipments in the shipment order corresponding to each level.
  • the cargo transportation order includes 100 tires, including 25 tires of 21 inches, 50 tires of 19 inches, and 25 tires of 17 inches.
  • 22 includes 3 layers, then the width of the first layer can be set to the width required for 17-inch tires, the width of the second layer can be set to the required width of 19-inch tires, and the width of the third layer can be set to the required width of 21-inch tires. It is thus possible to transport tires of 3 medium sizes at the same time based on 3 layers of the transfer mechanism 22 . You can also set the width of the first layer to the width required for 17-inch tires, the width of the second layer to the width required for 19-inch tires, and the third layer to be set to 21-inch tires and 19-inch tires. required width so that 25 17-inch tires can be transported based on the first tier of conveyor 22, 40 19-inch tires on the second tier, and 25 21-inch tires on the third tier, followed by 10 19 inch tires.
  • the method further includes: based on the handling robot 1, transporting the goods corresponding to each of the goods transportation orders to the corresponding positions of the conveying mechanism 22 of the Liuli Shelf 2. or, based on the cargo lifting assembly 3, transport the goods corresponding to each of the cargo transportation orders to the corresponding layer of the conveying mechanism 22 of the fluent rack 2, wherein the goods entrance and exit of the cargo lifting assembly 3 are connected with the conveying mechanism.
  • One end is butted; or, based on the conveying line assembly 4 and the goods lifting assembly 3, the goods corresponding to each said freight transportation order are transported to the corresponding layer of the conveying mechanism 22 of the fluent rack 2, wherein the conveying line assembly 4 and the goods lifting assembly are 3. Butt the end away from the cargo entrance and exit.
  • the transport width of each layer of the conveying mechanism 22 of the fluent shelf 2 is adaptively determined, so as to simultaneously carry out the cargo transportation based on each layer of the conveying mechanism 22
  • the transportation of goods with matching widths in the transportation order enables the Liuli Shelf 2 to have the ability to transport goods of different sizes at the same time, which improves the efficiency of goods transportation and order processing.
  • Fig. 35 is a flow chart of a method for transporting goods provided by another embodiment of the present disclosure. This embodiment further refines steps S501 and S502 on the basis of the embodiment shown in Fig. 34, and adds transport after step S502 The steps of adjusting the transport width of each layer of the mechanism are shown in Figure 35.
  • the cargo transport method provided in this embodiment includes the following steps:
  • Step S601 acquiring each first goods order.
  • the first goods order is an order corresponding to one or more users, which may be multiple orders sent by one user at different times, or multiple orders sent by multiple users within a period of time.
  • Each first goods order may be an order of the same kind of goods, or may be an order of different kinds of goods.
  • each order that needs to be processed currently received by the warehousing system can be acquired as each first goods order.
  • acquiring each first goods order includes: acquiring each first goods order corresponding to the preset time interval according to a preset time interval.
  • the preset time interval may be 1 hour, 6 hours, 12 hours, 24 hours or other time intervals.
  • the preset time interval may be determined based on the historical daily order volume of the warehousing system.
  • each order that has not been processed by the warehousing system can be obtained once every preset time interval as each first goods order.
  • Step S602 Determine each of the cargo transportation orders according to the quantity of the first cargo order and the quantity of the cargo corresponding to each of the first cargo orders.
  • the cargo transportation order includes one or more of the first cargo orders.
  • first cargo orders of the first quantity may be combined into one cargo transportation order by default.
  • individual freight shipping orders may be determined based on the quantity of goods in each first freight order and the quantity of the first freight order.
  • each cargo transportation order can be determined based on the upper limit value of the goods that can be transported simultaneously on the Fluent Shelf 2 of the storage system, the quantity of the first cargo order, and the quantity of the goods corresponding to each first cargo order, so that the Fluent Shelf 2. Within the upper limit of the goods it can transport, transport as many goods as possible to improve the transportation efficiency of goods.
  • order A there are 3 orders that have not yet been processed by the warehousing system, namely order A, order B, and order C, wherein the quantity of goods in order A is 12, the quantity of goods in order B is 20, and the quantity of goods in order C is 20.
  • the number is 45. If the total quantity of goods that can be transported in parallel on the fluent shelf 2 of the storage system is 36, order A and order B can be combined into one freight transport order, and order C can be regarded as another freight transport order.
  • the transportation order of each freight transportation order may be determined based on the transportation priority of the freight transportation order, so as to sequentially transport the goods in each freight transportation order based on the transportation order.
  • Step S603 Determine each size class according to the size information of each cargo in the cargo transportation order.
  • the size grade is a parameter describing the size of the goods. The higher the size grade, the larger the size of the corresponding goods.
  • one or more size classes are determined according to the size information of each cargo in the cargo transportation order.
  • each size level may be determined according to the width of each cargo in the cargo transportation order.
  • each width threshold may be set, and the size information of each item in the freight transportation order may be divided into one or more size classes based on each width threshold.
  • step S604 the transport width of each layer of the conveying mechanism 22 is determined according to each size level.
  • the first correspondence between each layer of the conveying mechanism and each size level may be determined first, and then the transport width of each layer of the conveying mechanism 22 may be determined based on the first correspondence.
  • layers with higher conveyor heights correspond to smaller size classes. That is, the size levels from high to low correspond to the lowest layer to the highest layer of the conveying mechanism 22 in sequence.
  • determining the transport width of each layer of the conveying mechanism 22 according to each size class including: obtaining the quantity of goods corresponding to each size class; The quantity of goods corresponding to the grades, the quantity of size grades, the total quantity of goods in the goods transportation order, and the number of layers of the conveying mechanism 22 determine the transportation width of each layer of the conveying mechanism 22 .
  • the number of size classes is less than the number of layers of the conveying mechanism 22 , that is, if each layer of the conveying mechanism 22 corresponds to one size class, one or more layers of the conveying mechanism 22 will be in an idle state, resulting in each layer of the conveying mechanism 22 being in an idle state. Therefore, one or more size classes with a large number of goods need to be split, so that two or more layers of the conveying mechanism 22 can transport the size classes of the size class. goods.
  • the difference between the number of layers of the conveying mechanism 22 and the number of size grades is calculated, and based on the difference, the total quantity of goods in the freight transportation order, and the quantity of goods corresponding to each size grade, the items that need to be split are determined.
  • One or more target size classes are split to obtain each split size class, wherein the sum of the number of each split size class and each unsplit size class is transmitted and transmitted.
  • the number of layers of the mechanism 22 is equal. Based on each split size class and each size class that is not split, the transport width of each layer of the conveyor mechanism 22 is determined.
  • the size levels corresponding to the cargo transportation order are 4 levels
  • the quantity of goods corresponding to size level 1 to size level 4 is 10, 10, 25 and 55 in sequence
  • the conveying mechanism 22 is 6 layers. Since the quantity of goods corresponding to size class 4 is greater than the average of the four size classes, determine size class 4 as the target size class, and divide it into 3 parts, that is, three split size classes are obtained, including For 15, 20 and 20 cargoes, the transport width of each layer of the conveyor mechanism 22 is determined according to the 3 split size classes and each unsplit size class, namely size class 1 to size class 3, a total of 6 size classes. .
  • Step S605 according to the transport width of each layer of the transport mechanism 22, determine the limit parameters of the limit component, so as to adjust the transport width of each layer of the transport mechanism 22 based on the limit parameters and carry out the process based on the adjusted transport mechanism 22. Shipping of goods with matching widths.
  • the limit component is arranged on the fluent shelf 2 and is used to adjust the width of each layer of the conveying mechanism 22 of the fluent shelf 2 .
  • the limit parameter may include the movement distance of the limit component.
  • each layer of the conveying mechanism 22 is provided with one or more limiting components to adjust the width of each layer to the determined transport width.
  • the limit parameters of the limit component can be determined based on the difference between the transport width determined for the layer and the current width of the layer , so as to control the limit component based on the limit parameter, so as to adjust the width of the layer of the conveying mechanism 22 to the determined transport width, so that the goods with matching width can be transported based on the layer.
  • each layer of the conveying mechanism 22 is provided with at least one limiting component, and each limiting component includes two limiting members 24, and the two limiting members 24 are respectively located on both sides of the corresponding layer of the conveying mechanism 22,
  • determining the limit parameters of the limiting member includes: according to the transport width of each layer of the conveying mechanism 22 , determining two of the at least one limit component corresponding to each layer. Spacing of the stopper.
  • the method further includes:
  • the second size information of each item in the freight transportation order is collected; for each item, according to the second size information of the item, the target layer of the conveying mechanism 22 corresponding to the item is determined, so that the target layer of the conveying mechanism 22 corresponding to the item is determined based on the The cargo is transported at the destination layer of the conveying mechanism.
  • the scanning element may be the above-mentioned first scanning element 43 or the second scanning element.
  • the second size information is the size information of each item collected based on the scan item after each item in the freight transport order is transported to the scanning range of the scan item.
  • the transport mechanism 22 determines and adjusts the transport width based on the second size information of the goods in the transport order, so that each layer of the transport mechanism 22 is used to transport its corresponding each cargo.
  • the scanner can scan the preset position of the goods, so as to determine the second size information of each goods based on the scanning results, the second size information is the same as the size information, and then based on the collected second size information, determine the second size information that is the same as the size information.
  • the size of the item matches the target level of the conveyor mechanism 22 to place the item on the target level for transport of the item through the destination level of the conveyor mechanism 22 .
  • the cargo identification code of the cargo can also be obtained based on the scanned part, and the cargo identification code is used instead of the second size information to determine the target level of cargo matching.
  • each goods transportation order processed by Fluent Shelf is determined each time; and then for each goods transportation order , based on the size information of the corresponding goods, determine one or more size grades, determine the transport width of each layer of the conveying mechanism according to each size grade, and then determine the limit of the limit components corresponding to each layer of the conveying mechanism based on each transport width. Bit parameters, so that the width of each layer of the conveying mechanism is adjusted to the transport width, so as to transport goods of different sizes in each cargo transportation order, realizing the simultaneous transport of goods of different sizes in the order based on one conveying mechanism, and improving the transportation efficiency of goods. efficiency.
  • FIG. 36 is a flowchart of a method for transporting goods provided by another embodiment of the present disclosure.
  • this embodiment is based on the embodiment shown in FIG. 35 .
  • Further refinement of S604, as shown in Figure 36, the cargo transportation method provided in this embodiment includes the following steps:
  • Step S701 acquiring each first goods order.
  • Step S702 Determine each of the goods transportation orders according to the quantity of the first goods order and the quantity of goods corresponding to each of the first goods orders.
  • Step S703 Determine each size class according to the size information of each cargo in the cargo transportation order.
  • Step S704 when the number of the size classes is greater than the number of layers of the conveying mechanism 22, at least one combined size class is determined according to the quantity of goods corresponding to each size class.
  • the combined size grade consists of at least two of the size grades, and the combined size grade corresponds to the first preset layer of the conveying mechanism.
  • At least two size classes with the least quantity of goods corresponding to the size classes can be combined into at least one combined size class.
  • L1 and L3 with a smaller number of goods can be combined into a combined size level, so that one layer of the conveying mechanism 22 transports 80 goods corresponding to L2, while the other layer of the conveying mechanism 22 transports L1 and L2. 60 goods corresponding to L2.
  • At least one combined size grade may be determined according to the quantity of goods corresponding to each size grade and the quantity threshold.
  • the quantity threshold may be a user-defined value, or may be a value determined according to the upper limit of the transport quantity corresponding to each layer of the conveying mechanism 22 .
  • the difference between the quantity of goods corresponding to each combined size level and the quantity threshold should be as close to 0 as possible, so as to improve the efficiency of goods transportation in the freight transportation order.
  • At least one combined size level can be determined according to the difference between the number of size levels and the number of layers of the conveying mechanism 22 and the quantity of goods corresponding to each size level.
  • the number of combined size levels may be determined according to the difference between the number of size levels and the number of layers of the conveying mechanism 22 , and each size level corresponding to each combined size level may be determined based on the number of goods corresponding to each size level.
  • FIG. 37 is a flowchart of step S704 in the embodiment shown in FIG. 36 of the present disclosure. As shown in FIG. 37 , step S704 includes the following steps:
  • Step S7041 according to the first ratio between the quantity of goods corresponding to each size grade and the preset quantity, divide each of the size grades into a first size grade and a second size grade.
  • the preset quantity is the ratio of the total quantity of goods in the goods transportation order to the number of layers of the conveying mechanism 22 , the ratio corresponding to the first size level is greater than or equal to 1, and the ratio corresponding to the second size level The ratio is less than 1.
  • the first ratio is the average value of the number of goods transported on each layer of the conveying mechanism 22
  • the first size class is the size class whose number of goods is greater than or equal to the average value of each layer of transportation
  • the second size class is the number of goods.
  • the conveying mechanism is 5 layers and the total number of tires in the cargo transportation order is 100, the average number of tires transported per layer is 20, the number of 17-inch tires is 10, and the number of 19-inch tires is 10. If there are 30 pieces, then 17 inches is the second size class above, and 19 inches is the first size class above.
  • Step S7042 Determine the second quantity according to the first difference between the number of layers of the conveying mechanism 22 and the first quantity.
  • the first number is the number of the first size level, and the first difference is at least 1.
  • the second quantity is the number of layers remaining after the conveying mechanism 22 removes each layer corresponding to the first size level.
  • Step S7043 Determine at least one combined size level according to the second number and the number of the second size levels.
  • the combined size class consists of at least two of the second size classes.
  • the two second size levels with a smaller number among the 3 size levels may be determined as a combined size level, and the remaining one Two size grades do not need to be combined.
  • Step S705 for each combined size level, determine at least two transport widths of the first preset layer corresponding to the combined size level of the conveying mechanism according to the respective size levels corresponding to the combined size level.
  • the goods whose widths of the first preset layer are matched are the goods corresponding to the corresponding combined size grades.
  • the layer corresponding to the combined size level of the conveying mechanism 22 needs to transport goods of at least two sizes and the like, and its transport width is at least two.
  • the goods of each size level corresponding to the combined size level may be transported in sequence according to the set transport sequence. That is, after the goods of the previous size level of the combined size level are transported, the goods of the next size level are transported. Specifically, size classes with larger sizes may be shipped first.
  • Step S706 for each of the size levels except the combined size level, determine at least one second preset layer of the conveying mechanism corresponding to the size level.
  • Step S707 for each of the size classes except the combined size class, according to the size class, determine the transport width of at least one second preset layer.
  • step S708 goods with matching widths are transported through each layer of the conveying mechanism.
  • the size class is more than the number of layers of the conveying mechanism 22
  • the size grades are combined to combine size grades with a smaller number of goods, so that each layer of the conveying mechanism 22 can transport a uniform quantity of goods, and further improve the transportation efficiency of the goods transportation order.
  • Fig. 38 is a flow chart of a method for transporting goods provided by another embodiment of the present disclosure.
  • the method for transporting goods provided by this embodiment can be executed by Fluent Shelf 2.
  • the method for transporting goods includes the following steps:
  • step S901 the goods are transported along the conveying direction based on the fluent rack 2.
  • the conveying direction can be the first direction or the second direction, wherein the first direction and the second direction are opposite directions, the first direction is the direction corresponding to the feeding of the handling robot 1, and the second direction is It is the corresponding direction when unloading the transfer robot 1.
  • the fluent shelf 2 includes a bracket 21, a transmission mechanism 22 arranged on the bracket 21, and a correction device 27.
  • a bracket 21 a transmission mechanism 22 arranged on the bracket 21, and a correction device 27.
  • transporting goods along the conveying direction based on the fluent rack 2 includes: transporting each item along the first direction or the second direction based on the conveying mechanism 22 of the fluent rack 2 .
  • the conveying mechanism 22 of the fluent shelf 2 can be multi-layered, the conveying direction of each layer can be different, each layer can transport multiple goods, and a preset safety distance is maintained between adjacent goods.
  • the goods are transported along the conveying direction based on the fluent rack 2, including:
  • the goods corresponding to each layer are transported along the corresponding conveying direction of each layer.
  • the conveying mechanism 22 includes a rolling conveying member 23, and the rolling conveying member 23 has an outer contour surface that is in rolling contact with the goods.
  • transporting the goods along the conveying direction based on the fluent rack 2 includes: transporting the goods along the conveying direction based on the manner in which the rolling conveying member 23 rotates around its own axis of rotation.
  • Step S902 when the goods on the conveying mechanism 22 of the fluent shelf 2 are transported to the preset area, the position of the goods is corrected based on the correction device 27 .
  • the preset area may be a working area corresponding to the calibration device.
  • the position correction can be to adjust the cargo to a centered state, or to adjust the orientation or posture of the cargo to the default orientation or default posture.
  • the correction device 27 may also move within the preset area to perform position correction on the goods within the preset area.
  • There may be a plurality of correction devices 27 which are arranged at even intervals in the conveying direction of the conveying mechanism 22 .
  • a cargo detection sensor is set in the preset area to detect whether there is a cargo in the preset area, and when there is a cargo, the position of the cargo is corrected based on the correction device 27 .
  • the correction device 27 includes two clamping structures 271 located on both sides of the conveying direction and disposed opposite to each other.
  • performing position correction on the goods includes: clamping the goods according to a preset mode based on the two clamping structures 271 , so that the goods are centered along a direction perpendicular to the conveying direction.
  • the clamping structure 271 is an arc structure or a straight plate structure.
  • the conveying mechanism 22 is controlled to stop the conveying of the layer, and further, the position correction is performed on each of the goods in the layer based on the correction device 27, After the calibration is completed, the layer controlling the conveying mechanism 22 continues to transport its corresponding goods along its corresponding conveying direction.
  • performing position correction on the goods includes: acquiring the position information of the goods; and performing position correction on the goods according to the position information.
  • the position information of the preset point of the goods can be acquired based on the image sensor.
  • the preset point may be the center point of the goods, the center point of the upper surface, the four vertices corresponding to the upper surface, etc.
  • the image sensor may be a camera, a 2D camera, a 3D camera, or other image sensors.
  • the position correction of the goods is performed based on the correction device 27 .
  • the position of the goods is corrected by the correction device provided on the fluent shelf, The position correction of the goods in transportation is realized, and the safety of the goods transportation is improved.
  • Fig. 39 is a flowchart of a method for transporting goods provided by another embodiment of the present disclosure. This embodiment further refines step S902 on the basis of the embodiment shown in Fig. 38, and adds a control transmission mechanism before step S902 22.
  • the step of stopping transmission, as shown in Figure 39, the cargo transportation method provided by this embodiment includes the following steps:
  • step S1001 the goods are transported along the conveying direction based on the fluent rack 22.
  • step S1002 the quantity of goods being transported on each floor of the conveying mechanism 2 is determined.
  • the quantity of goods being transported on each layer can be recorded.
  • Step S1003 for each layer of the conveying mechanism 22 , if the quantity of goods in the preset area of the current layer is greater than 1, the rolling conveying member 23 corresponding to the current layer is controlled to stop rotating.
  • Step S1004 for each item of each current layer, control the two clamping structures 271 to perform relative movement from their respective default positions until the item is clamped, so that the item is centered perpendicular to the conveying direction .
  • Step S1005 after holding the goods for a preset time, control the two holding structures to move to a default position.
  • the rolling conveyor 23 corresponding to the current layer is controlled to stop rotating, so as to suspend the transportation of the current layer of goods, and control the two clamps
  • the structure 271 performs clamping correction for each cargo on the current layer, so as to realize the centering correction of each cargo on the current layer.
  • the current layer continues to carry out cargo transportation, and when there are multiple cargoes transported on a certain layer, the cargo transportation is suspended. , calibrating each cargo, improving the safety of the calibration process and the accuracy of the calibration.
  • FIG. 40 is a schematic structural diagram of a cargo transport device provided by an embodiment of the disclosure. As shown in FIG. 40 , the cargo transport device includes: a first size acquisition module 1110 , a first level determination module 1120 and a first cargo transport module 1130 .
  • the first size acquisition module 1110 is used to obtain the size information of the goods; the first level determination module 1120 is used to determine the target layer of the conveying mechanism corresponding to the goods according to the size information; the first goods transportation module 1130 , for transporting the goods through the destination layer of the conveyor.
  • the transfer device further includes a cargo lifting assembly, and the cargo entrance and exit of the cargo lifting assembly is butted with one end of the conveying mechanism, and the device further includes: a target layer handling module, configured to , after determining the target layer of the conveying mechanism corresponding to the goods, based on the goods lifting assembly, the goods are transported to the target layer of the conveying mechanism.
  • a target layer handling module configured to , after determining the target layer of the conveying mechanism corresponding to the goods, based on the goods lifting assembly, the goods are transported to the target layer of the conveying mechanism.
  • the first size obtaining module 1110 is specifically configured to: obtain size information of the cargo based on the first scan set on the cargo lifting assembly.
  • the transfer device further includes a transmission line assembly, the transmission line assembly is butted with an end of the cargo lifting assembly away from the cargo entrance and exit, so as to transport the cargo to the cargo lifting assembly, the first dimension is
  • the obtaining module 1110 is specifically configured to: obtain the size information of the goods based on the first scan set on the conveying line assembly.
  • the size information is acquired based on the second scan piece set on the handling robot.
  • the first cargo transportation module 1130 includes: a direction determination unit, configured to determine the conveying direction of the cargo; an adjustment unit, configured to adjust the conveying mechanism or the target of the conveying mechanism based on the conveying direction a layer; a first transport unit for transporting the goods through the target layer of the conveying mechanism.
  • the conveying mechanism includes an adjusting mechanism and an adjusting unit, which is specifically configured to: based on the conveying direction, through the adjusting mechanism, determine the inclination angle of each layer of the conveying mechanism, so that the The target layer of goods generates a force component along the conveying direction.
  • the first cargo transport module 1130 is specifically configured to transport the cargo through the inclined target layer of the conveying mechanism.
  • the conveying mechanism includes a first conveying part and a second conveying part
  • the adjustment unit is specifically configured to: based on the conveying direction, adjust the second conveying part of the conveying mechanism, so that the second conveying part is adjusted.
  • the height of the part is greater than that of the first conveying part, and the second conveying part forms an inclined slope.
  • the first cargo transport module 1130 is specifically configured to transport the cargo through the inclined slope formed by the second transfer portion corresponding to the target layer and the horizontal plane formed by the first transfer portion.
  • the conveying mechanism includes a rolling conveying member, and an adjusting unit is specifically configured to: determine a rotation mode of the rolling conveying member or the target layer corresponding to the rolling conveying member based on the conveying direction, so as to make the rolling conveyance
  • the conveyor or the target layer corresponding rolling conveyor rotates around its own axis of rotation in the rotation mode.
  • the cargo transportation device provided in this embodiment can execute the cargo transportation method provided in any of the embodiments corresponding to FIGS. 31 to 33 of the present disclosure, and has functional modules and beneficial effects corresponding to the execution method.
  • FIG. 41 is a cargo transportation device provided by another embodiment of the present disclosure. As shown in FIG. 41 , the cargo transportation device includes: an order acquisition module 1210 and a transportation width determination module 1220 .
  • the order acquisition module 1210 is used to acquire the goods transportation order;
  • the transportation width determination module 1220 is used to determine the transportation width of each layer of the conveying mechanism of the fluent shelf according to the size information of each goods in the goods transportation order, so as to pass all the goods.
  • the layers of the conveying mechanism carry out the transportation of the respective goods whose widths are matched.
  • the transport width determination module 1220 includes: a size level determination unit for determining each size level according to the size information of each item in the cargo transport order; a transport width determination unit for determining each size level according to each size level. The transport width of each layer of the transport mechanism.
  • the transport width determination unit is specifically used to: obtain the quantity of goods corresponding to each size class; The number of size classes, the total number of shipments in the shipment order, and the number of layers of the conveyor determine the shipping width of each layer of the conveyor.
  • the transport width determination unit includes: a combination class determination subunit for determining at least one combination according to the quantity of goods corresponding to each size class. a size level, wherein the combined size level consists of at least two of the size levels, the combined size level corresponds to the first preset layer of the conveying mechanism; a combined width determination subunit is used for each combined size level, according to each size level corresponding to the combined size level, to determine at least two transport widths of the first preset layer corresponding to the combined size level of the conveying mechanism, wherein the width of the first preset layer matches The goods are the goods corresponding to the corresponding said combined size class.
  • the device when the quantity of goods corresponding to the size level is greater than a preset value, the device further includes: a second preset level determination module, configured for each of the sizes other than the combined size level level, and at least one second preset layer of the conveying mechanism corresponding to the size level is determined.
  • a second preset level determination module configured for each of the sizes other than the combined size level level, and at least one second preset layer of the conveying mechanism corresponding to the size level is determined.
  • the transport width determination unit is further configured to: for the size levels other than the combined size level, determine the transport width of at least one second preset layer according to the size level.
  • the size class determination unit is specifically configured to: divide each of the size classes into a first size class and a second size class according to a first ratio between the quantity of goods corresponding to each size class and a preset quantity, wherein , the preset quantity is the ratio of the total quantity of goods in the goods transportation order to the number of layers of the conveying mechanism, the ratio corresponding to the first size level is greater than or equal to 1, and the ratio corresponding to the second size level The ratio is less than 1; the second quantity is determined according to the first difference between the number of layers of the conveying mechanism and the first quantity, wherein the first quantity is the quantity of the first size class, and the first difference is At least 1; at least one combined size level is determined according to the second number and the number of the second size levels, wherein the combined size level consists of at least two of the second size levels.
  • the fluent shelf further includes a limit component
  • the device further includes: a transmission mechanism adjustment module, configured to determine the transportation width of each layer of the transmission mechanism according to the transportation width of each layer of the transmission mechanism after determining the transportation width of each layer of the transmission mechanism.
  • the limit parameters of the limit component are used to adjust the transport width of each layer of the conveying mechanism based on the limit parameters.
  • each layer of the conveying mechanism is provided with at least one of the limiting components, each of the limiting components includes two limiting pieces, and the two limiting pieces are respectively located at the bottom of the conveying mechanism.
  • the transfer mechanism adjustment module is specifically used for:
  • the distance between the two limit members of at least one of the limit components corresponding to each layer is determined, so as to be based on the two The spacing of the limiters adjusts the transport width of each layer of the conveying mechanism.
  • obtaining a freight transportation order includes: obtaining each first freight order; and determining each of the freight transportation orders according to the quantity of the first freight order and the quantity of the goods corresponding to each of the first freight orders, wherein , the freight shipping order includes one or more of the first freight orders.
  • the order obtaining module 1210 is specifically configured to: obtain each first goods order corresponding to the preset time interval according to a preset time interval.
  • the device further includes: a second cargo transport module, configured to transport the cargo corresponding to each of the cargo transport orders to the a corresponding layer of the conveyor mechanism of the fluent rack; or, based on the cargo lifting assembly, transporting the goods corresponding to each of the cargo transportation orders to the corresponding layer of the conveyor mechanism of the fluent rack, wherein the goods of the cargo lifting assembly
  • the entrance and exit are butted with one end of the conveying mechanism; or, based on the conveying line assembly and the goods lifting assembly, the goods corresponding to each of the freight transportation orders are transported to the corresponding layer of the conveying mechanism of the fluent rack, wherein the conveying The wire assembly is butted with an end of the cargo lift assembly away from the cargo entrance.
  • the device further includes: a target layer determination module, configured to collect the second data of each cargo in the cargo transport order based on the scanned parts after adjusting the transport width of each layer of the conveying mechanism based on the limit parameter. Size information; for each item, according to the second size information of the item, a target layer of the conveying mechanism corresponding to the item is determined, so as to transport the item based on the target level of the conveying mechanism.
  • the cargo transportation device provided in this embodiment can execute the cargo transportation method provided by any of the embodiments corresponding to FIGS. 34 to 37 of the present disclosure, and has functional modules and beneficial effects corresponding to the execution method.
  • FIG. 42 is a schematic structural diagram of a cargo transport device provided by another embodiment of the present disclosure. As shown in FIG. 42 , the cargo transport device includes: a cargo transport module 1310 and a cargo calibration module 1320 .
  • the goods transport module 1310 is used to transport goods along the conveying direction based on the fluent rack; the goods correction module 1320 is used to carry out the goods when the goods on the conveying mechanism of the fluent rack are transported to a preset area. Position correction.
  • the correction device includes two clamping structures located on both sides of the conveying direction and oppositely arranged.
  • the cargo correction module 1320 is specifically used for: based on the two clamping structures, according to a preset mode of clamping The cargo is held so that the cargo is centered perpendicular to the conveying direction.
  • the clamping structure is an arc structure or a straight plate structure.
  • the transfer mechanism includes a rolling transfer member, the rolling transfer member has an outer contour surface that is in rolling contact with the goods, and the cargo transport module 1310 is specifically configured to: based on the rotation axis of the rolling transfer member around itself In a rotating manner, the goods are transported in the conveying direction.
  • the conveying mechanism is multi-layered, and the device further includes: a conveying pause module, configured to determine the quantity of goods being transported on each layer of the conveying mechanism before performing position correction on the goods; For each layer of the mechanism, if the number of goods in the preset area on the current layer is greater than 1, the rolling conveyors corresponding to the current layer are controlled to stop rotating, so as to perform position correction on each of the goods on the current layer.
  • a conveying pause module configured to determine the quantity of goods being transported on each layer of the conveying mechanism before performing position correction on the goods
  • the cargo correction module 1320 is specifically configured to: control the two clamping structures to move relative to each other from their respective default positions until the cargo is clamped; when the cargo is clamped for a preset time, control the two Each of the gripping structures is moved to a default position.
  • the cargo correction module 1320 is specifically configured to: obtain the position information of the cargo; and perform position correction on the cargo according to the position information.
  • the cargo transportation device provided in this embodiment can execute the cargo transportation method provided in any of the embodiments corresponding to FIGS. 9 to 10 of the present disclosure, and has functional modules and beneficial effects corresponding to the execution method.
  • FIG. 43 is a schematic structural diagram of a fluent shelf provided by another embodiment of the present disclosure. As shown in FIG. 43 , the fluent shelf 2 includes a conveying mechanism 22 and a second main control unit 1410 .
  • the second main control unit 1410 is used for the cargo transportation method provided by the embodiments corresponding to FIGS. 34 to 37 of the present disclosure.
  • FIG. 44 is a schematic structural diagram of a fluent shelf provided by another embodiment of the present disclosure. As shown in FIG. 44 , the fluent shelf 2 includes a conveying mechanism 22 and a third main control unit 1510 .
  • the third main control unit 1510 is used for the cargo transportation method provided by the embodiments corresponding to FIGS. 38 to 39 of the present disclosure.
  • Fig. 45 is a schematic structural diagram of a transfer device provided by an embodiment of the present disclosure.
  • the transfer device is used for the transfer and transportation of goods during loading or unloading in a storage system.
  • the transfer device 100 includes a fluent rack 2 and a first A main control unit 1610 .
  • the first main control unit 1610 is configured to generate a control signal, so as to implement the cargo transportation method provided by the embodiments corresponding to FIGS. 31 to 33 of the present disclosure based on the control signal and the fluent shelf 2 .
  • An embodiment of the present disclosure further provides a transfer device.
  • the cargo lifting assembly 3 and the transfer device include the fluent rack provided by the embodiment shown in FIG. 43 or FIG. 44 of the present disclosure.
  • An embodiment of the present disclosure further provides a storage system, the storage system includes a storage rack and the transfer device 100 provided in any embodiment of the present disclosure or the fluent rack 2 provided in any embodiment.
  • Fig. 46 is a schematic structural diagram of a storage system provided by an embodiment of the present disclosure.
  • the storage system includes a fluent shelf 2 and at least one processor 1710, and the fluent shelf 2 includes a multi-layered conveying mechanism 22;
  • a processor 1710 is configured to execute the cargo transportation method provided by any of the embodiments corresponding to FIGS. 34 to 37 of the present disclosure.
  • An embodiment of the present disclosure provides a computer-readable storage medium on which a computer program is stored, and the computer program is executed by a processor to implement the cargo transportation provided by any one of the embodiments corresponding to FIG. 31 to FIG. 39 of the present disclosure method.
  • the computer-readable storage medium may be ROM, random access memory (RAM), CD-ROM, magnetic tape, floppy disk, optical data storage device, and the like.
  • the present disclosure also provides a program product including executable instructions stored in a readable storage medium.
  • At least one processor of the storage system, the fluent rack or the transit device can read the execution instruction from the readable storage medium, and the at least one processor executes the execution instruction to make the cargo transportation device implement the embodiments corresponding to FIGS. 31 to 39 of the present disclosure
  • the cargo transportation method provided by any one of the embodiments.
  • the disclosed apparatus and method may be implemented in other manners.
  • the device embodiments described above are only illustrative.
  • the division of the modules is only a logical function division. In actual implementation, there may be other division methods.
  • multiple modules may be combined or integrated. to another system, or some features can be ignored, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or modules, and may be in electrical, mechanical or other forms.
  • modules described as separate components may or may not be physically separated, and components shown as modules may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the modules may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
  • each functional module in each embodiment of the present disclosure may be integrated in one processing unit, or each module may exist physically alone, or two or more modules may be integrated in one unit.
  • the units formed by the above modules can be implemented in the form of hardware, or can be implemented in the form of hardware plus software functional units.
  • the above-mentioned integrated modules implemented in the form of software functional modules may be stored in a computer-readable storage medium.
  • the above-mentioned software function modules are stored in a storage medium, and include several instructions to enable a computer device (which may be a personal computer, a server, or a network device, etc.) or a processor (English: processor) to execute the various embodiments of the present disclosure. part of the method.
  • processor may be a central processing unit (Central Processing Unit, referred to as CPU), or other general-purpose processors, digital signal processors (Digital Signal Processor, referred to as DSP), application specific integrated circuit (Application Specific Integrated Circuit, Referred to as ASIC) and so on.
  • CPU Central Processing Unit
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • a general purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the steps of the method disclosed in conjunction with the invention can be directly embodied as executed by a hardware processor, or executed by a combination of hardware and software modules in the processor.
  • the memory may include high-speed RAM memory, and may also include non-volatile storage NVM, such as at least one magnetic disk memory, and may also be a U disk, a removable hard disk, a read-only memory, a magnetic disk or an optical disk, and the like.
  • NVM non-volatile storage
  • the bus can be an Industry Standard Architecture (ISA for short) bus, a Peripheral Component (PCI for short) bus, or an Extended Industry Standard Architecture (EISA for short) bus or the like.
  • ISA Industry Standard Architecture
  • PCI Peripheral Component
  • EISA Extended Industry Standard Architecture
  • the bus can be divided into address bus, data bus, control bus and so on.
  • the buses in the drawings of the present disclosure are not limited to only one bus or one type of bus.
  • the above-mentioned storage medium may be implemented by any type of volatile or non-volatile storage device or a combination thereof, such as static random access memory (SRAM), electrically erasable programmable read only memory (EEPROM), erasable Except programmable read only memory (EPROM), programmable read only memory (PROM), read only memory (ROM), magnetic memory, flash memory, magnetic disk or optical disk.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read only memory
  • EPROM erasable except programmable read only memory
  • PROM programmable read only memory
  • ROM read only memory
  • magnetic memory flash memory
  • flash memory magnetic disk or optical disk.
  • a storage medium can be any available medium that can be accessed by a general purpose or special purpose computer.
  • An exemplary storage medium is coupled to the processor, such that the processor can read information from, and write information to, the storage medium.
  • the storage medium can also be an integral part of the processor.
  • the processor and the storage medium may be located in Application Specific Integrated Circuits (ASIC for short).
  • ASIC Application Specific Integrated Circuits
  • the processor and the storage medium may also exist in the electronic device or the host device as discrete components.

Abstract

一种货物运输方法、装置、中转装置、仓储系统及存储介质,该货物运输方法应用于中转装置(100),该中转装置(100)包括流利货架(2),流利货架(2)包括支架(21)和设置在支架(21)上的传送机构(22),传送机构(22)为多层,该方法包括:得到货物的尺寸信息;根据尺寸信息,确定货物对应的传送机构(22)的目标层;通过传送机构(22)的目标层运输货物,实现了基于货物的尺寸信息确定其对应的运输线,以基于该运输线进行货物运输,提高了货物运输的灵活性、安全性和效率。

Description

货物运输方法、装置、中转装置、仓储系统及存储介质
本申请要求于2021年02月09日提交中国专利局、申请号为202110178254.2、申请名称为“货物运输方法、装置、中转装置、仓储系统及存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及智能仓储技术领域,尤其涉及一种货物运输方法、装置、中转装置、仓储系统及存储介质。
背景技术
基于仓储机器人的智能仓储系统采用智能操作系统,通过系统指令实现货物的自动提取、存放和运输,同时可以24小时不间断运行,代替了人工管理和操作,提高了仓储的效率,受到了广泛的应用和青睐。
当智能仓储系统接收到入库、分拣或出库订单时,需要通过一条或多条运输线进行货物运输,从而完成货物的入库、分拣或出库。仓储系统的运输线通常由卸料机和传送线组件组成,而一个卸料机往往仅能运输一种尺寸的货物,即一个运输线在一次作业时,仅能运输一种尺寸的货物,货物运输效率较低,导致订单处理效率低下,无法满足需求。
发明内容
本公开提供一种货物运输方法、装置、中转装置、仓储系统及存储介质,实现了基于货物尺寸自适应匹配运输线,提高了货物运输的灵活性和效率。
第一方面,本公开实施例提供了一种货物运输方法,所述方法应用于中转装置,所述中转装置包括流利货架,所述流利货架包括支架和设置在所述支架上的传送机构,所述传送机构为多层,所述方法包括:得到货物的尺寸信息;根据所述尺寸信息,确定所述货物对应的所述传送机构的目标层;通过所述传送机构的目标层运输所述货物。
可选的,所述中转装置还包括货物提升组件,所述货物提升组件的货物出入口与所述传送机构的一端对接,在根据所述尺寸信息,确定所述货物对应的所述传送机构的目标层之后,所述方法还包括:基于所述货物提升组件,将所述货物搬运至所述传送机构的目标层。
可选的,得到货物的货物尺寸,包括:基于货物提升组件上设置的第一扫描件,获取所述货物的尺寸信息。
可选的,所述中转装置还包括传送线组件,所述传送线组件与所述货物提升组件远离所述货物出入口的一端对接,以将所述货物运输至所述货物提升组件,得到货物的货物尺寸,包括:基于传送线组件上设置的第一扫描件,获取所述货物的尺寸信息。
可选的,所述尺寸信息为基于搬运机器人上设置的第二扫描件获取的。
可选的,通过所述传送机构的目标层运输所述货物,包括:确定所述货物的传送方向;基于所述传送方向,调整所述传送机构或所述传送机构的目标层;通过所述传送机构的目标层运输所述货物。
可选的,所述传送机构包括调整机构,基于所述传送方向,调整所述传送机构或所述传送机构的目标层,包括:基于所述传送方向,通过所述调整机构,确定所述传送机构的各层的倾斜角度,以使位于所述传送机构的目标层的货物产生沿所述传送方向的分力。
相应的,通过所述传送机构的目标层运输所述货物,包括:通过倾斜的所述传送机构的目标层,运输所述货物。
可选的,所述传送机构包括第一传送部和第二传送部,基于所述传送方向,调整所述传送机构或所述传送机构的目标层,包括:基于所述传送方向,调整所述传送机构的第二传送部,以使所述第二传送部的高度大于所述第一传送部的高度,且使所述第二传送部形成倾斜坡面。
相应的,通过所述传送机构的目标层运输所述货物,包括:通过所述目标层对应的所述第二 传送部形成的倾斜坡面以及所述第一传送部形成的水平面,运输所述货物。
可选的,所述传送机构包括滚动传送件,基于所述传送方向,调整所述传送机构或所述传送机构的目标层,包括:基于所述传送方向,确定所述滚动传送件或所述目标层对应滚动传送件的转动模式,以使所述滚动传送件或所述目标层对应滚动传送件在所述转动模式下绕自身的转动轴线转动。
第二方面,本公开实施例还提供了一种货物运输装置,该货物运输装置包括:第一尺寸获取模块,用于得到货物的尺寸信息;第一层级确定模块,用于根据所述尺寸信息,确定所述货物对应的传送机构的目标层;第一货物运输模块,用于通过所述传送机构的目标层运输所述货物。
第三方面,本公开实施例还提供了一种中转装置,该中转装置用于仓储系统中上料或者卸料时货物的中转运输,所述中转装置包括流利货架和第一主控单元;其中,所述流利货架包括支架和设置在所述支架上的传送机构,所述传送机构为多层;所述第一主控单元用于生成控制信号,以基于所述控制信号以及所述流利货架实现本公开第一方面对应的任意实施例提供的货物运输方法。
第四方面,本公开实施例还提供了一种仓储系统,该仓储系统包括仓储货架和本公开第三方面对应的实施例提供的中转装置。
第五方面,本公开实施例还提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机执行指令,当中转装置的处理器执行所述计算机执行指令时,使得货物运输装置实现如本公开第一方面对应的任意实施例提供的货物运输方法。
第六方面,本公开实施例还提供了一种计算机程序产品,包括计算机程序,所处计算机程序被中转装置或仓储系统的处理执行时,使得货物运输装置实现本公开第一方面对应的任意实施例提供的货物运输方法。
本公开实施例提供的货物运输方法、装置、中转装置、仓储系统及存储介质,基于多层流利货架,根据需要运输的货物的尺寸信息,为其匹配相应的运输线,即匹配流利货架的传送机构的目标层,从而通过传送机构的目标层运输货物,以将其运输至搬运机器人或操作台,从而完成相应的入库、出库或者分拣任务,实现了多种尺寸货物的并行运输,提高了货物运输的灵活性以及运输效率,提高了仓储系统的订单处理效率。
本公开还提供一种货物运输方法、装置、中转装置、仓储系统及存储介质,实现了中转装置中的暂存货架实现了货物的缓存,减轻了原输送线货物运输的压力,提高了货物运输的效率。
第七方面,本公开实施例提供了一种货物运输方法,所述方法应用于中转装置,所述中转装置包括提升机、暂存货架和传送线组件,所述暂存货架包括支撑架和设置在所述支撑架上的传送机构,所述传送机构的一端与所述提升机的货物出入口对接,所述传送机构的另一端与所述传送线组件的货物出入口对接,所述方法包括:
确定待运输货物;基于所述暂存货架的传送机构,将所述待运输货物运输至所述传送线组件或提升机。
可选的,基于所述暂存货架的传送机构,将所述待运输货物运输至所述传送线组件或提升机,包括:
基于所述待运输货物的传送方向,通过所述传送机构将所述待运输货物运输至所述传送线组件或提升机。
可选的,基于所述待运输货物的传送方向,通过所述传送机构将所述待运输货物运输至所述传送线组件或提升机,包括:
当所述待运输货物的传送方向为第一方向时,基于所述暂存货架的传送机构,将所述待运输货物运输至所述传送线组件;和/或,当所述待运输货物的传送方向为第二方向时,基于所述暂存货架的传送机构,将所述待运输货物运输至所述提升机;其中,所述第一方向与所述第二方向为相反的两个运输方向。
可选的,在确定待运输货物之后,所述方法还包括:
根据所述待运输货物的运输任务和/或所述待运输货物的位置,确定所述待运输货物的传送方向;基于所述待运输货物的传送方向,确定所述传送机构的预设层的传送方向,以基于所述传送机构的预设层将所述待运输货物运输至所述传送线组件或提升机。
可选的,所述方法还包括:
确定所述待运输货物对应的所述传送机构的预设层,以基于所述预设层沿所述待运输货物的传送方向,将所述待运输货物运输至所述传送线组件或提升机。
可选的,确定所述待运输货物对应的所述传送机构的预设层,包括:
当所述待运输货物的传送方向为第一方向时,根据所述传送线组件运输的货物,确定所述待运输货 物对应的所述传送机构的预设层。
可选的,在确定所述待运输货物之后,所述方法还包括:
根据所述提升机对应的货物或所述传送线组件运输的货物,确定所述传送机构的传送速度。
相应的,基于所述暂存货架的传送机构,将所述待运输货物运输至所述传送线组件或提升机,包括:
控制所述传送机构基于所述传送速度,将所述待运输货物运输至所述传送线组件或提升机。
可选的,根据所述提升机对应的货物或所述传送线组件运输的货物,确定所述传送机构的传送速度,包括:
当待运输货物的传送方向为第一方向时,根据所述传送线组件运输的货物的位置以及所述传送线组件的运输速度,确定所述传送机构的传送速度,以控制所述传送机构基于所述传送速度,将所述待运输货物运输至所述传送线组件;和/或,当待运输货物的传送方向为第二方向时,根据所述提升机的层数和所述提升机对应的各个货物的位置,确定所述传送机构的传送速度,以控制所述传送机构基于所述传送速度,将所述待运输货物运输至所述提升机。
可选的,所述方法还包括:
当所述待运输货物放置于所述传送机构的预设层时,基于所述传送机构,采集所述待运输货物的检测信息;基于所述检测信息,判断所述待运输货物是否满足运输条件;若是,则基于所述传送机构,将所述待运输货物运输至所述传送线组件或提升机。
可选的,所述检测信息为所述待运输货物的货物标识、货物尺寸和货物重量中的一项或多项,基于所述检测信息,判断所述待运输货物是否满足运输条件,包括下述至少一项:
判断所述待运输货物的货物标识是否为预设标识;判断所述货物尺寸是否在预设尺寸范围内;判断所述货物重量是否在预设重量范围内;若上述至少一项为否,则确定所述待运输货物不满足所述运输条件。
可选的,当所述待运输货物不满足所述运输条件时,所述方法还包括:
确定所述传送机构的预设层的方向为所述待运输货物的传送方向的反方向,以将所述待运输货物沿原路运回。
可选的,当所述待运输货物的传送方向为第一方向,且所述待运输货物不满足所述运输条件时,所述方法还包括:
控制机器人将所述待运输货物搬运至操作台或所述待运输货物对应的库位。
可选的,当所述待运输货物的传送方向为第二方向,且所述待运输货物不满足所述运输条件时,所述方法还包括:
通过提升机,将所述待运输货物运输至所述传送机构的第二预设层,其中,所述第二预设层与所述预设层的传送方向相反;基于所述第二预设层,将所述待运输货物运输至所述传送线组件。
可选的,所述中转装置还包括流利货架,所述流利货架的货物出入口与所述提升机远离所述暂存货架一端的货物出入口对接,以将所述提升机上的所述货物通过所述流利货架传送至搬运机器人,或者将搬运机器人上的货物通过所述流利货架传送至所述提升机,当所述待运输货物的传送方向为第二方向时,所述方法还包括:
确定所述待运输货物对应的所述流利货架的目标层;基于所述目标层,生成所述提升机的提升控制信号,以基于所述提升控制信号控制所述提升机将所述待运输货物提升至所述流利货架的目标层。
可选的,确定所述待运输货物对应的所述流利货架的目标层,包括:
根据所述待运输货物的货物尺寸,确定所述待运输货物对应的所述流利货架的目标层。
第八方面,本公开实施例还提供了一种货物运输装置,所述货物运输装置应用于中转装置,所述中转装置包括提升机、暂存货架和传送线组件,所述暂存货架包括支撑架和设置在所述支撑架上的传送机构,所述传送机构的一端与所述提升机的货物出入口对接,所述传送机构的另一端与所述传送线组件的货物出入口对接,所述货物运输装置包括:
货物确定模块,用于确定待运输货物;货物运输模块,用于基于所述暂存货架的传送机构,将所述待运输货物运输至所述传送线组件或提升机。
第九方面,本公开实施例还提供了一种中转装置,用于仓储系统中上料或者卸料时货物的中转运输,所述中转装置包括提升机、暂存货架、传送线组件和主控单元;所述暂存货架包括支撑架和设置在所述支撑架上的传送机构,所述传送机构的一端与所述提升机的货物出入口对接,所述传送机构的另一端与所述传送线组件的货物出入口对接;所述主控单元用于执行本公开第七方面对应的任意实施例提供的货物运输方法。
第十方面,本公开实施例还提供了一种仓储系统,该仓储系统包括仓储货架和本公开第九方面对应的实施例提供的中转装置。
第十一方面,本公开实施例还提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机执行指令,当中转装置的处理器执行所述计算机执行指令时,使得货物运输装置实现如本公开第七方面对应的任意实施例提供的货物运输方法。
第十二方面,本公开实施例还提供了一种计算机程序产品,包括计算机程序,所处计算机程序被中转装置或仓储系统的处理执行时,使得货物运输装置实现本公开第七方面对应的任意实施例提供的货物运输方法。
本公开实施例提供的货物运输方法、装置、中转装置、仓储系统及存储介质,针对包括提升机、暂存货架和传送线组件的中转装置,当存在需要通过该中转装置进行运输的待运输货物时,通过暂存货架的传送结构,将该待运输货物运输至传送线组件或者提升机,从而实现待运输货物的出库或入库。通过该暂存货架实现了提升机或者传送线组件上运输的货物的中转或缓存,当运输的货物数量较多时,提升机可以通过将货物转运至该暂存货架,而减少提升机的等待时间,使得提升机无需等待其上全部货物被传送线组件运输之后,再进行下一批次的货物的运输,提高了提升机的工作效率以及货物运输的效率;同时,当运输的货物数量较多时,通过将传送线组件上运输的货物缓存至暂存货架,从而无需减慢传送线组件的传输速度,以保持传送线组件上运输的货物之间的间距,提高了传送线组件的工作效率以及货物运输的效率。
本公开还提供一种货物运输方法、装置、流利货架、仓储系统及存储介质,实现了基于订单中各个货物尺寸自适应调整流利货架的宽度,从而使得流利货架可以同时运输不同尺寸的货物,提高了货物运输的灵活性和效率。
第十三方面,本公开实施例提供了一种货物运输方法,所述方法包括:获取货物运输订单;根据所述货物运输订单中各个货物的尺寸信息,确定流利货架的传送机构各层的运输宽度,以通过所述传送机构的各层进行宽度匹配的货物的运输。
可选的,根据所述货物运输订单中各个货物的尺寸信息,确定传送机构各层的运输宽度,包括:根据所述货物运输订单中各个货物的尺寸信息,确定各个尺寸等级;根据各个尺寸等级,确定所述传送机构各层的运输宽度。
可选的,当所述尺寸等级的数量小于所述传送机构的层数时,根据各个尺寸等级,确定所述传送机构各层的运输宽度,包括:获取各个尺寸等级对应的货物的数量;根据各个尺寸等级对应的货物的数量、尺寸等级的数量、所述货物运输订单中货物的总数量以及所述传送机构的层数,确定所述传送机构的各层的运输宽度。
可选的,当所述尺寸等级的数量大于所述传送机构的层数时,根据各个尺寸等级,确定所述传送机构各层的运输宽度,包括:根据各个尺寸等级对应的货物的数量,确定至少一个组合尺寸等级,其中,所述组合尺寸等级由至少两个所述尺寸等级组成,所述组合尺寸等级对应所述传送机构的第一预设层;针对每个组合尺寸等级,根据所述组合尺寸等级对应的各个尺寸等级,确定所述传送机构的所述组合尺寸等级对应的第一预设层的至少两个运输宽度,其中,所述第一预设层宽度匹配的货物为相应的所述组合尺寸等级对应的货物。
当所述尺寸等级对应的货物的数量大于预设值时,所述方法还包括:针对除所述组合尺寸等级之外的各个所述尺寸等级,确定所述尺寸等级对应的所述传送机构的至少一个第二预设层。
相应的,根据各个尺寸等级,确定所述传送机构各层的运输宽度,包括:针对除所述组合尺寸等级之外的所述尺寸等级,根据所述尺寸等级,确定至少一个第二预设层的运输宽度。
可选的,根据各个尺寸等级对应的货物的数量,确定至少一个组合尺寸等级,包括:根据各个尺寸等级对应的货物的数量与预设数量的第一比值,将各个所述尺寸等级划分为第一尺寸等级和第二尺寸等级,其中,所述预设数量为所述货物运输订单中货物的总数量与所述传送机构的层数的比值,所述第一尺寸等级对应的比值大于或等于1,所述第二尺寸等级对应的比值小于1;根据所述传送机构的层数和第一数量的第一差值,确定第二数量,其中,所述第一数量为所述第一尺寸等级的数量,所述第一差值至少为1;根据所述第二数量以及所述第二尺寸等级的数量,确定至少一个组合尺寸等级,其中,所述组合尺寸等级由至少两个所述第二尺寸等级组成。
可选的,所述流利货架还包括限位组件,在确定传送机构各层的运输宽度之后,所述方法还包括:根据所述传送机构各层的运输宽度,确定所述限位组件的限位参数,以基于所述限位参数调整传送机构各层的运输宽度。
可选的,所述传送机构的每层均设置有至少一个所述限位组件,每一所述限位组件包括两个限位件,两个所述限位件分别位于所述传送机构的相应层的两侧,根据所述传送机构各层的运输宽度,确定所述限位组件的限位参数,包括:根据所述传送机构各层的运输宽度,确定各层对应的至少一个所述限位组件的两个所述限位件的间距。
可选的,获取货物运输订单,包括:获取各个第一货物订单;根据所述第一货物订单的数量以及各个所述第一货物订单对应的货物的数量,确定各个所述货物运输订单,其中,所述货物运输订单包括一个或多个所述第一货物订单。
可选的,获取各个第一货物订单,包括:按照预设时间间隔,获取所述预设时间间隔对应的各个第一货物订单。
可选的,在确定流利货架的传送机构各层的运输宽度之后,所述方法还包括:基于搬运机器人,将各个所述货物运输订单对应的货物运输至所述流利货架的传送机构的相应的层;或,基于货物提升组件,将各个所述货物运输订单对应的货物运输至所述流利货架的传送机构的相应的层,其中,所述货物提升组件的货物出入口与所述传送机构的一端对接;或,基于传送线组件以及货物提升组件,将各个所述货物运输订单对应的货物运输至所述流利货架的传送机构的相应的层,其中,所述传送线组件与所述货物提升组件远离所述货物出入口的一端对接。
可选的,在基于所述限位参数调整传送机构各层的运输宽度之后,所述方法还包括:基于扫描件,采集所述货物运输订单中各个货物的第二尺寸信息;针对每个货物,根据所述货物的第二尺寸信息,确定所述货物对应的所述传送机构的目标层,以基于所述传送机构的目标层运输所述货物。
第十四方面,本公开实施例还提供了一种货物运输装置,该货物运输装置包括:订单获取模块,用于获取货物运输订单;运输宽度确定模块,用于根据所述货物运输订单中各个货物的尺寸信息,确定流利货架的传送机构各层的运输宽度,以通过所述传送机构的各层进行宽度匹配的各个货物的运输。
第十五方面,本公开实施例还提供了一种流利货架,包括传送机构以及第二主控单元;其中,所述传送机构包括多层;所述第二主控单元用于执行本公开第十三方面对应的任意实施例提供的货物运输方法。
第十六方面,本公开实施例还提供了一种仓储系统,该仓储系统包括仓储货架和本公开第十五方面对应的实施例提供的流利货架。
第十七方面,本公开实施例还提供另一种仓储系统,该仓储系统包括流利货架和至少一个处理器;其中,所述流利货架包括多层的传送机构;所述至少一个处理器用于执行本公开第十三方面对应的任意实施例提供的货物运输方法。
第十八方面,本公开实施例还提供一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机执行指令,当处理器执行所述计算机执行指令时,实现如本公开第十三方面对应的任意实施例提供的货物运输方法。
第十九方面,本公开实施例还提供了一种计算机程序产品,包括计算机程序,所处计算机程序被中转装置或仓储系统的处理器执行时,使得货物运输装置实现本公开第十三方面对应的任意实施例提供的货物运输方法。
本公开实施例提供的货物运输方法、装置、流利货架、仓储系统及存储介质,基于货物运输订单中各个货物的尺寸信息,自适应确定流利货架的传送机构的各层的运输宽度,从而基于传送机构的各层,同时进行货物运输订单中宽度匹配的各个货物的运输,使得流利货架具备同时运输不同尺寸的货物的能力,提高了货物运输的效率以及订单处理的效率。
本公开还提供一种货物运输方法、装置、流利货架、中转装置及仓储系统,基于流利货架的校正装置,实现了对运输中的货物的位置校正,提高了货物运输的安全性。
第二十方面,本公开实施例提供了一种货物运输方法,所述方法应用于流利货架,所述中流利货架包括支架、设置于所述支架上的传送机构和校正装置,所述方法包括:基于所述流利货架沿传送方向运输货物;当所述流利货架的所述传送机构上的货物运输至预设区域时,基于所述校正装置对所述货物进行位置校正。
可选的,所述校正装置包括位于所述传送方向的两侧且相对设置的两个夹持结构,对所述货物进行位置校正,包括:基于两个所述夹持结构,按照预设模式夹持所述货物,以使所述货物沿垂直于所述传送方向上居中。
可选的,所述夹持结构为弧形结构或直板结构。
可选的,所述传送机构包括滚动传送件,所述滚动传送件具有与所述货物滚动接触的外轮廓面,基于所述流利货架沿传送方向运输货物,包括:基于所述滚动传送件绕自身的转动轴线转动的方式,沿所述传送方向运输所述货物。
可选的,所述传送机构为多层,在对所述货物进行位置校正之前,所述方法还包括:确定所述传送机构每层正在运输的货物的数量;针对传送机构的每层,若当前层处于预设区域的货物的 数量大于1,则控制当前层对应的所述滚动传送件停止转动,以对当前层的各个所述货物进行位置校正。
可选的,基于两个所述夹持结构,按照预设模式夹持所述货物,包括:控制两个所述夹持结构由各自的默认位置进行相对运动,直至夹持所述货物;当夹持所述货物预设时间后,控制两个所述夹持结构移动至默认位置。
可选的,对所述货物进行位置校正,包括:获取的所述货物的位置信息;根据所述位置信息,对所述货物进行位置校正。
第二十一方面,本公开实施例还提供了一种货物运输装置,该货物运输装置包括:货物运输模块,用于基于流利货架沿传送方向运输货物;货物校正模块,用于当所述流利货架的所述传送机构上的货物运输至预设区域时,对所述货物进行位置校正。
第二十二方面,本公开实施例还提供了一种流利货架,该流利货架包括支架、设置于所述支架上的传送机构、校正装置和第三主控单元;其中,所述第三主控单元用于生成控制信号,以基于所述控制信号控制所述传送机构和校正装置实现本公开第二十方面对应的任意实施例提供的货物运输方法。
第二十三方面,本公开实施例还提供了一种中转装置,该中转装置用于仓储系统中上料或者卸料时货物的中转运输,所述中转装置包括货物提升组件以及本公开第二十二方面对应的实施例提供的流利货架。
第二十四方面,本公开实施例还提供了一种仓储系统,该仓储系统包括仓储货架和本公开第二十三方面对应的实施例提供的中转装置。
第二十五方面,本公开实施例还提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机执行指令,当处理器执行所述计算机执行指令时,实现如本公开第二十方面对应的任意实施例提供的货物运输方法。
第二十六方面,本公开实施例还提供了一种计算机程序产品,包括计算机程序,所处计算机程序被流利货架的处理器执行时,使得货物运输装置实现本公开第二十方面对应的任意实施例提供的货物运输方法。
本公开实施例提供的货物运输方法、装置、流利货架、中转装置及仓储系统,针对基于流利货架进行货物运输的情况,当流利货架的传送机构上的货物运输至预设区域时,通过流利货架上设置的校正装置对货物进行位置校正,实现了运输中的货物的位置校正,提高了货物运输的安全性。
附图说明
为了更清楚地说明本公开实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本公开实施例一提供的中装装置的第一种结构示意图;
图2为本公开实施例一提供的中装装置的第二种结构示意图;
图3为本公开实施例一提供的中装装置的第三种结构示意图;
图4为本公开实施例一提供的中装装置的第四种结构示意图;
图5为本公开实施例一提供的中装装置的第五种结构示意图;
图6为本公开实施例一提供的中装装置的第六种结构示意图;
图7为本公开实施例一提供的中转装置中的流利货架的侧视示意图;
图8为本公开实施例一提供的流利货架的一种结构示意图;
图9为本公开实施例一提供的流利货架的另一种结构示意图;
图10为本公开实施例二提供的中转装置的结构示意图;
图11为本公开实施例二提供的中转装置中的流利货架的结构示意图;
图12为本公开实施例三提供的中转装置中的搬运机器人的第一种结构示意图;
图13为本公开实施例三提供的中转装置中的搬运机器人的第二种结构的局部示意图;
图14为本公开实施例三提供的搬运机器人中的货叉组件的第一种状态示意图;
图15为本公开实施例三提供的搬运机器人中的货叉组件的第二种状态示意图;
图16为本公开实施例三提供的搬运机器人的第一种状态示意图;
图17为本公开实施例三提供的搬运机器人的第二种状态示意图;
图18为本公开实施例四提供的搬运机器人中货叉组件的第一种结构的一种状态示意图;
图19为本公开实施例四提供的搬运机器人中货叉组件的第一种结构的另一种状态示意图;
图20为本公开实施例四提供的搬运机器人的第三种结构示意图;
图21为图20中货叉组件的俯视结构的第一种状态示意图;
图22为图20中货叉组件的俯视结构的第二种状态示意图;
图23为图20中货叉组件的俯视结构的第三种状态示意图;
图24为图20中货叉组件的俯视结构的第四种状态示意图;
图25为本公开实施例五提供的搬运机器人的第四种结构的俯视示意图;
图26为本公开实施例五提供的搬运机器人中隔板的一种结构示意图;
图27为本公开实施例五提供的搬运机器人中隔板的另一种结构示意图;
图28为本公开实施例五提供的搬运机器人中隔板的又一种结构示意图;
图29为本公开实施例五提供的搬运机器人的第五种结构的俯视示意图;
图30为本公开实施例提供的货箱运输方法的一种应用场景图;
图31为本公开一个实施例提供的货物运输方法的流程图;
图32为本公开另一个实施例提供的货物运输方法的流程图;
图33为本公开另一个实施例提供的货物运输方法的流程图;
图34为本公开另一个实施例提供的货物运输方法的流程图;
图35为本公开另一个实施例提供的货物运输方法的流程图;
图36为本公开另一个实施例提供的货物运输方法的流程图;
图37为本公开图36所示实施例中步骤S704的流程图;
图38为本公开另一个实施例提供的货物运输方法的流程图;
图39为本公开另一个实施例提供的货物运输方法的流程图;
图40为本公开一个实施例提供的货物运输装置的结构示意图;
图41为本公开另一个实施例提供的货物运输装置的结构示意图;
图42为本公开另一个实施例提供的货物运输装置的结构示意图;
图43为本公开另一个实施例提供的流利货架的结构示意图;
图44为本公开另一个实施例提供的流利货架的结构示意图;
图45为本公开一个实施例提供的中转装置的结构示意图;
图46为本公开一个实施例提供的仓储系统的结构示意图。
附图标记:
100-中转装置;
1-搬运机器人;11-货叉组件;111-货叉本体;112-货叉;
113-嵌位机构;1131-嵌位部;1132-伸缩部;114-夹持组件;
1141-夹持部;1141a-第一夹持部;1141b-第二夹持部;1142-伸缩件;115-托架;116-旋转机构;117-可伸缩货叉;1171-底板;1172-叉板;12-移动底盘;13-升降组件;14-支撑架;141-隔板;1411-凹槽;1412-避让槽;15-校正组件;151-校正部;16-检测件;17-弹性限位件;
2-流利货架;21-支架;22-传送机构;221-第一传送部;
222-第二传送部;23-滚动传送件;24-限位件;25-限位闸;
26-避让结构;27-校正装置;271-夹持结构;2711-夹持件;
2712-缓冲件;28-推杆组件;281-伸缩臂;282-活动推杆。
3-货物提升组件;31-本体;32-输送机构;321-滚动件;33-升降机构;
4-传送线组件;41-基体;42-传送线;43-第一扫描件;
5-货物存放装置;51-架体;52-货板。
具体实施方式
为了使本公开实施例的上述目的、特征和优点能够更加明显易懂,下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本公开的一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有作出创造性劳动的前提下所获得的所有其它实施例,均属于本公开保护的范围。
下面结合附图和具体实施例对本公开进行详细说明。
实施例一
图1为本公开实施例一提供的中装装置的第一种结构示意图;图2为本公开实施例一提供的中装装置的第二种结构示意图;图3为本公开实施例一提供的中装装置的第三种结构示意图;图 4为本公开实施例一提供的中装装置的第四种结构示意图;图5为本公开实施例一提供的中装装置的第五种结构示意图;图6为本公开实施例一提供的中装装置的第六种结构示意图;图7为本公开实施例一提供的中转装置中的流利货架的侧视示意图.
参见图1至图7,本公开实施例提供的中转装置100,用于对搬运机器人1上料或者卸料时货物的中转运输,其中,中转装置100包括流利货架2以及货物提升组件3;流利货架2包括支架21和设置在支架21上的传送机构22,传送机构22的一端与搬运机器人1的货物出入口对接,传送机构22的另一端与货物提升组件3的货物出入口对接,通过传送机构22的牵引力,将货物提升组件3上的货物传送至搬运机器人1,完成向搬运机器人1上料;或者将搬运机器人1上的货物传送至货物提升组件3上,以完成搬运机器人1的卸料,无需人工上料或卸料,自动化程度高,作业效率高。在一些实施例中,货物通过中转装置100的中转运输,货物得以从工作台/分拣站中转至机器人,也得以将机器人搬运来的货物中转至工作台/分拣站,完成机器人与工作台/分拣站之间的货物出库/入库作业。
在一种可选的实施例中,传送机构22可以设置为多层,其中,多层的传送机构22的传送方向可以相同,这样,多层传送机构22均可以同时用于传送货物,从而提高搬运机器人1上料或卸料的效率;,亦得以是提升货物出库/入库作业的效率;在另一种可选的实施例中,也可以是至少一层的传送机构22的传送方向与其他的传送机构22的传送方向相反,这样,可以实现同时上料和卸料,亦得以是将货物出库/入库路径整合,进而提升作业效率,同时简化出库/入库路径的设计与配置。
在一种可能的实施例中,传送机构22上设置有滚动传送件23,滚动传送件23具有能够与货物滚动接触的外轮廓面,滚动传送件23用于绕自身的转动轴线沿朝向货物的传送方向转动,以将货物沿传送方向传送。其中,滚动传送件23可以是转动辊等结构。
其中,每层传送机构22中的滚动传送件23为多个,多个滚动传送件23沿货物的传送方向并列设置,且多个滚动传送件23的转动轴线相互平行,滚动传送件23绕自身的轴线沿传送方向转动时产生的牵引力可带动货物沿传送方向移动,从而实现货物的传送。
在上述实施例的基础上,传送机构22包括第一传送部221和第二传送部222,第一传送部221的第一端与搬运机器人1对接,第一传送部221的第二端与第二传送部222的第一端连接,第二传送部222的第二端与货物提升组件3对接。其中,第一传送部221和第二传送部222中均包括多个并列设置的滚动传送件23。
可选的,第一传送部221和第二传送部222可以呈水平状设置,传送机构22上还设有第一驱动机构,第一驱动机构与第一传送部221以及第二传送部222上的滚动传送件23连接,第一驱动机构会驱动滚动传送件23绕自身的转动轴线沿朝向货物的传送方向转动,以将滚动传送件23上的货物沿传送方向进行传送。
在一种可能的实施例中,流利货架2还包括控制开关,控制开关与第一驱动机构电连接,控制开关用于控制第一驱动机构的转动方向,从而控制滚动传送件23的转动方向来改变货物的传送方向,这样,流利货架2中每一层的传送机构22不仅可以进行上料,也可以用于卸料,使流利货架2的功能多样化,且能够简化中转装置100的整体结构,使中转装置100的整机体积较小,占用空间小。
在另一种可选的实施例中,第一传送部221和第二传送部222之间也可以形成倾斜夹角,例如,第一传送部221的第一端对应货物搬运机器人1的货物出入口的高度高于第二传送部222的第二端对接提升组件的货物出入口的高度;或者,第一传送部221的第一端对应货物搬运机器人1的货物出入口的高度低于第二传送部222的第二端对接提升组件的货物出入口的高度,这样,第一传送部221和/或第二传送部222上的货物会产生沿货物的传送方向的分力,货物靠这个分力由高到低沿传送方向进行自动滑动,可以不用借助外界的驱动力(例如第一驱动机构提供的驱动力)便可实现货物的传送,中转装置100的结构得到简化,且节省电能,从而降低了成本。
其中,流利货架2还包括调整机构,调整机构分别与第一传送部221和第二传送部222连接,调整机构可以用于调整第一传送部221或者第二传送部222的倾斜角度,以使第一传送部221和/或第二传送部222上的货物能够产生沿货物的传送方向的分力,从而使货物可以靠这个分力由高到低沿传送方向进行自动滑动。
例如,可以通过调整机构将第二传送部222对接货物提升组件3的货物出入口的高度调整为大于第二传送部222对接第一传送部221的高度,以使第二传送部222形成倾斜坡面,而第一传送部221呈水平设置,这样,当货物提升组件3上的货物沿第二传送部222的倾斜坡面滑移到第一传送部221上,由于货物沿倾斜坡面向下滑移时会有一个较大的惯性力,而于第一传送部221处于水平状态,因此,在第一传送部221与货物之间的摩擦力的影响下,惯性力逐渐减小,从而使货物在第一传送部221上的滑移速度逐渐减小直到停止,此时,第一传送部221相当于一个暂存货架,货物暂存在第一传送部221上,搬运机器人1不需要一直和第一传送部221进行对接,机器人只需要在需要的时候将第一传送部221 上的货物搬离即可,这样,可以避免一直占用搬运机器人1,避免资源浪费,降低成本,提高工作效率。
若将搬运机器人1上的货物传送至货物提升组件3时,可以通过调整机构将第一传送部221和第二传送部222均调整为倾斜坡面,而且第一传送部221和第二传送部222形成一个倾斜面的斜坡,其中,第一传送部221与搬运机器人1的货物对接口的高度高于第二传送部222与货物提升组件3的货物对接口的高度,货物沿倾斜坡面从第一传送部221和第二传送部222滑移至第二传送部222与货物提升组件3的对接处,等待货物提升组件3与第二传送部222对接后,将第二传送部222上的货物通过货物提升组件3传送出去。
其中,调整机构可以为手动的调整机构,也可以是电控的调整机构。
当调整机构为电控的调整机构时,流利货架2还包括控制器,控制器与调整机构电连接,控制器用于控制调整机构,以使调整机构调整第一传送部221和/或第二传送部222的倾斜角度,操作方便,自动化程度高。
为了避免货物在沿倾斜坡面滑移时从传送机构22上滑移出去,因此,在本实施例中,在传送机构22的货物出入口处设置有限位闸25,当传送机构22的货物出入口没有对接搬运机器人1和/或货物提升组件3时,限位闸25可以挡设在货物的传送路径上,以避免货物沿倾斜坡面滑移出去,当货物提升组件3与传送机构22对接时,限位闸25再打开让货物滑出至货物提升组件3上,从而提高了传送机构22传送货物的可靠性。
在一种可选的实施例中,限位闸25包括限位杆,限位杆的第一端可转动的连接于传送机构22上,限位杆的第二端为自由端,限位杆可相对传送机构22转动,以使限位杆可呈展开或折叠状态,当限位杆转动至水平位置时,限位杆呈展开状态并挡设在货物的传送路径上,以避免货物沿倾斜坡面滑移出去,从而提高了传送机构22传送货物的可靠性。
在一种可选的实施例中,限位闸25包括具上下伸缩能力的止挡板,在伸出时挡设于货物传送路径上,缩回时开放货物传送路径。
可选的,传送机构22上还设有电控件,电控件与限位闸25连接,电控件用于控制限位闸25对传送路径的止挡或开放,通过设置电控件,可实现限位闸25的自动止挡和或开放,自动化程度高。其中,电控件可以为自感应开关等。
当然,第一传送部221和第二传送部222之间具有倾斜夹角时,第一传送部221和第二传送部222也可以借助外界的驱动力来驱动第一传送部221和第二传送部222中的滚动传送件23沿传送方向转动,只要能够顺利的驱动货物沿传送方向进行传送即可,对此,本实施例不做具体限制。
为了避免传送机构22在传输货物时货物发生偏斜,在本实施例中,传送机构22上设有至少一组限位组件,每一组限位组件包括两个限位件24,两个限位件24分别位于传送机构22的两侧,以使两个限位件24沿货物的传送方向形成货物的传送通道,且传送通道的宽度与货物的宽度相匹配。这样,每一层的传送机构22中的传送通道的宽度可以不同,从而实现每层传送机构22可以传送尺寸不同的货物,当不同尺寸的货物沿对应的传送通道移动时,位于货物两侧的限位件24可以对传送中的货物进行限位,避免货物在传输过程中位置发生偏移或从侧面掉落。
另外,同一组限位组件中,两个限位件24之间的间距可以是可调的,这样,限位组件中的限位件24可以根据要传送的货物的尺寸来调节传送通道的宽度,以使传送通道的宽度与传送货物的宽度相匹配,在保证货物通过性的同时,可以避免货物在传送过程中发生偏移。
其中,两个限位件24之间的间距可调可以是机械式调整或者电驱式调整。
例如,在一种可能的实施例中,每一组限位组件还包括两个伸缩机构,两个伸缩机构分别与两个限位件24连接,其中,一个伸缩机构对应一个限位件24,伸缩机构带动限位件24沿垂直于货物的传送方向伸缩,以使两个限位件24朝向互相靠近或者相互背离的方向移动,从而实现两个限位件24之间的间距可调,结构简单,操作方便,成本低。
其中,两个伸缩机构可以为弹性伸缩机构,例如,弹性伸缩机构可以包括支撑板、导向件和弹簧,支撑板上设有通孔,导向件穿设在通孔中,弹簧套设在导向件上且位于支撑板和限位件24之间,弹簧的一端与限位件24连接,以使弹簧的伸缩带动限位件24移动,通过弹簧的弹性力驱动限位件24移动,从而调整两个限位件24之间的间距。
在另一种可能的实施例中,限位组件还包括第二驱动机构,第二驱动机构分别与各伸缩机构连接,第二驱动机构用于驱动伸缩机构伸缩。
其中,第二驱动机构可以包括电机,伸缩机构可以包括推杆,电机与推杆连接,推杆与限位件24连接,从而使电机驱动推杆带动限位件24移动,以实现限位件24的位置可调的目的。
此外,限位组件为至少两组,至少两组限位组件在传送机构22上沿货物的传送方向间隔排布,且各限位组件与传送机构22可拆卸连接,这样,当其中一组限位组件出现故障需要更换时,只需要将限 位组件进行拆卸更换即可,从而降低了流利货架2的维修成本。
需要说明是的是,限位件24可以是限位块或者限位板等结构,对此,本实施例不做具体限制。
在本公开中,中转装置100还包括传送线组件4,传送线组件4与货物提升组件3的另一端对接,以使货物提升组件3位于传送线组件4和流利货架2之间,传送线组件4用于传送货物提升组件3上的货物;或者,将货物传送至货物提升组件3上。
下面对传送线组件4和货物提升组件3的结构进行介绍:
传送线组件4包括基体41和设置于基体41上的传送线42,传送线42用于沿货物的传送方向传送货物。
其中,传送线42可以为一层,也可以为至少两层,当传送线42为至少两层时,各层传送线42的传送方向可以相同;或者,各层传送线42中的至少一层的传送线42的传送方向与其它传送线42的传送方向相反。
当至少一层的传送线42的传送方向与其他传送线42的传送方向相反时,可以同时实现将货物传送至货物提升组件3上以及将货物提升组件3上的货物传送至传送线42外,这样,可以提高货物的传送效率。
其中,传送线42可以为传送带或者其他传送结构,对此,本实施例不做具体限制。
在一种可能的实施例中,货物提升组件3包括本体31和设置于本体31上的输送机构32以及升降机构33,输送机构32用于传送货物,升降机构33与输送机构32连接,升降机构33与输送机构32连接,升降机构33用于驱动输送机构32沿本体31的竖直方向升降移动,这样,输送机构32可选择性的选择与输送机构32上输送货物的尺寸相匹配的传送机构22的层级对接,以便货物顺利传送的同时不向两侧发生偏斜。
其中,升降机构33可以包括主动轮、从动轮以及环形套设在主动轮和从动轮上的皮带,升降机构33还包括可以电机,电机与主动轮连接,输送机构32与皮带固定连接,当电机驱动主动轮转动时,主动轮驱动皮带带动输送机构32升降;或者,升降机构33也可以是链轮结构等,只要能够带动输送机构32升降即可,对此,本实施例不做具体限制。
在一种可选的实施例中,输送机构32上设有滚动件321,货物提升组件3还包括第三驱动机构,第三驱动机构与滚动件321连接,以使第三驱动机构驱动滚动件321绕自身的转动轴线沿朝向货物的传送方向转动。其中,第三驱动机构可以为电机。
另外,滚动件321可以为滚筒,其中,滚筒可以为多个,且多个滚筒并列设置且各滚筒的中心轴线相互平行,第三驱动机构驱动各滚筒绕自身的轴线朝向货物的传送方向转动;或者,滚动件321也可以为传动带,传送带带动货物沿传送方向移动。
在上述实施例的基础上,传送线组件4或者货物提升组件3上设有第一扫描件43,例如,第一扫描件43可以为摄像头等结构,第一扫描件43用于获取输送机构32上传送的货物的尺寸信息,该货物的尺寸信息可以包括货物的宽度以及高度等信息,输送机构32根据货物的尺寸信息可选择性的与其相匹配的传送机构22的层级进行对接,该传送机构22的层级的宽度以及高度等尺寸信息应与该货物的宽度、高度等信息相匹配,从而避免因输送机构32上的货物尺寸与传送机构22中传送通道尺寸不匹配而导致货物无法传送的情况发生,从而提高货物的传送可靠性。
此外,为了提高搬运机器人1与传送机构22之间的对接可靠性,可以在搬运机器人1上设有第二扫描件,第二扫描件用于获取搬运机器人1上的货物的尺寸信息,根据货物的尺寸信息,搬运机器人1的货物出入口可选择性的与对应的传送机构22的层级进行对接,例如,当需要对搬运机器人1进行卸料时,首先通过第二扫描件来确定搬运机器人1上货物的尺寸信息,然后根据货物的尺寸信息选择性的与该货物的尺寸相匹配的传送机构22的层级进行对接。
其中,搬运机器人1包括货叉组件11,货叉组件11具有用于取放货物的货叉112,例如,货叉组件11可以为插举货叉组件11,其中,货叉112可以为叉齿,叉齿可以为单叉齿或者双叉齿,当叉齿拿取货物时,叉齿插入货物的底部并将货物举起后并带动货物移动。
当搬运机器人1为插举货叉组件时,传送机构22靠近搬运机器人1的一端上设有避让结构26,当叉齿插举传送机构22上的货物时,避让结构26用于避让搬运机器人1上的叉齿,以便于叉车插入货物底部并将货物举起后移动。
其中,避让结构26可以为避让槽1412或者避让孔,只要避让结构26能够避让叉齿,使叉齿能够顺利的插入货物的底部并将货物举起后移动即可,对此,本实施例不做具体限制。
需要说明的是,传送机构在传送货物时,若货物的宽度小于传送机构的宽度,即在货物的两侧有预设的间距,则货叉组件11也可以为推杆组件等结构,推杆组件通过推拉货物,以将搬运机器人上的货物推至传送机构上,或者将传送机构上的货物拉入搬运机器人上。
上述机器人1、流利货架2、货物提升组件3与传送线组件4的整体运作,可以通过服务器作整体控制;或者,服务器可分析机器人1、流利货架2、货物提升组件3与传送线组件4中一者以上所返馈的货物信息,发出相应控制指示;或者,服务器仅将分析结果提供给机器人1、流利货架2、货物提升组件3与传送线组件4中一者以上,接收到分析结果的设备会对应触发工作机制。
图8为本公开实施例一提供的流利货架的一种结构示意图;图9为本公开实施例一提供的流利货架的另一种结构示意图。
参加图8和图9,在上述实施例的基础上,为了对传送机构22上的货物进行居中校正,以避免传送机构22上的货物因发生位置偏移而无法与搬运机器人1或者货物提升组件3进行对接的情况发生,在本实施例中,中转装置100还包括校正装置27,校正装置27用于校正传送机构22上的货物,以使货物在沿垂直于货物的传送方向上居中。
下面结合流利货架2的结构,对校正装置27的具体位置进行说明。
在一种可选的实施方式中,校正装置27直接设置于流利货架2上,其中,流利货架2包括支架21和设置于支架21上的传送机构22,校正装置27可以设置于支架21上;或者,校正装置27也可以设置于传送机构22上。
在另一种可选的实施方式中,中转装置100包括支座,校正装置27安装在支座上,且校正装置27在竖直方向上高于传送机构22的上端面,以使校正装置27能够对传送机构22传送的货物进行居中校正,可以理解的是,校正装置27与流利货架2为独立的结构,校正装置27没有安装在流利货架2上,这样,校正装置27可以根据需要调整放置位置,以便校正流利货架2上不同位置处的货物。
下面对校正装置27的具体结构进行介绍:
沿货物的传送方向,校正装置27包括分别位于传送方向的两侧且相对设置的两个夹持结构271,两个夹持结构271可以朝向相互靠近或相互背离的方向移动,当两个夹持结构271朝向相互靠近的方向移动时,两个夹持结构271用于夹持货物,以使货物在沿垂直于货物的传送方向上居中,从而避免货物在传送过程中发生偏移,当对货物居中校正结束后,两个夹持结构271再朝向相互背离的方向移动,松开货物,以使货物能够继续沿传送方向移动。
在一种可选的实施方式中,中转装置100还包括驱动装置,驱动装置分别与两个夹持结构271连接,以使驱动装置用于驱动两个夹持结构271朝向相互靠近或相互背离的方向移动。其中,驱动装置可以为电机,电机通过正反转可以使两个夹持结构271朝向相互靠近或相互背离的方向移动。
在一种可选的实施方式中,每一个夹持结构271包括至少两个夹持件2711,至少两个夹持件2711沿垂直于货物的传送方向并列且间隔设置,相邻的两个夹持件2711之间设有缓冲件2712,相邻两个夹持件2711之间的缓冲件2712可以减缓夹持件2711对货物的夹持力量,以避免夹持件2711与货物之间的卡持力太大而无法使货物调整居中,从而提高了货物夹持居中的可靠性。
其中,缓冲件2712可以为弹簧或者其他具有弹性的弹性件等。
为了使夹持件2711对货物能够更好的进行校正居中,在本实施例中,靠近货物的夹持件2711朝向货物的一侧的轮廓形状与货物的外轮廓形状相匹配,这样,能够提高夹持件2711将货物进行居中校正的精确度,例如,当传送机构22传送的货物为轮胎时,靠近货物的夹持件2711朝向货物的一侧的轮廓形状可以为与轮胎的外轮廓形状相匹配的弧形结构,从而提高夹持件2711对货物的位置的校正精确性。
为了进一步提高居中校正的精确性,在本实施例中,两个夹持结构271之间还可以绕竖直方向对向旋转,通过两个夹持结构271的对向旋转,再配合相邻两个夹持件2711之间的缓冲件2712减缓对货物的夹持力量,这样,位于两个夹持结构271之间的货物进行位移,以使两个夹持结构271的中心和货物(例如轮胎)的中心重合,从而提高了货物居中校正的精确度。
在另一种可选的实施例中,靠近货物的夹持件2711朝向货物的一侧的轮廓形状也可以为直板结构,通过直板结构将传送机构22上位置发生偏移的货物进行校正,结构简单,加工成本。
在上述实施例的基础上,流利货架2还包括启动开关,启动开关用于控制传送机构22的启动和停止,当夹持结构271对货物夹持校正时,启动开关可选择性的启动或停止传送机构22,例如,当传送机构22上只传送一个货物时,启动开关可以先使传送机构22停止,夹持结构271对货物进行校正后并松开货物,启动开关再启动传送机构22继续运行;不过,当传送机构22上只传送一个货物时,传送机构22也可以选择不停止,但是,当传送机构22上连续传送多个货物时,为了提高传送机构22上每一个货物的居中精确度,当夹持结构271夹持校正每一个货物时,启动开关可以先控制传送机构22使其停止,当校正完毕并松开货物时,启动开关再控制传送机构22使其启动继续传送货物。
本公开实施例提供的中转装置100包括流利货架2以及货物提升组件3,流利货物包括支架21和设置在支架21上的传送机构22,传送机构22的一端与搬运机器人1的货物出入口对接,传送机构22的另一端与货物提升组件3的货物出入口对接,以完成向搬运机器人1上料或卸料时货物的中转运输, 且无需人工上料或卸料,自动化程度高,作业效率高。
实施例二
图10为本公开实施例二提供的中转装置的结构示意图;图11为本公开实施例二提供的中转装置中的流利货架的结构示意图。
参见图10和图11,本公开实施例提供的中转装置100包括流利货架2和货物提升组件3,流利货架2的一端与货物存放装置5对接,流利货架2的另一端与货物提升组件3对接,其中,货物存放装置5可以为仓储货架或者搬运机器人1等。
其中,流利货架2和货物提升组件3的基本结构在上述实施例的基础上已进行详细的说明,在此,不再一一进行赘述。
在上述实施例的基础上,流利货架2靠近货物存放装置5的一端设有货物装卸组件,货物装卸组件用于将货物在流利货架2和货物存放装置5之间进行转移,通过在流利货物上设置货物装卸组件,此时,流利货架2除了传送货物以外,流利货架2还可以当做上料或卸料装置使用,通过货物装卸组件将至少一个货物置入仓储货架或者搬运机器人1的货架上;或者,通过货物装卸组件将至少一个货物从仓储货架或者搬运机器人1用于放置货物的隔板141上置入流利货架2上,从而实现流利货架2的用途多样化,不用单独的设置上料或卸料装置,结构简单,操作方便,成本低,且占用空间小。
其中,货物装卸组件为推杆组件28,推杆组件28可相对传送机构22沿传送方向伸缩移动,推杆组件28用于通过自身的伸缩移动将货物在流利货架2和货物存放装置5之间进行转移。
具体的,推杆组件28包括伸缩臂281和位于伸缩臂281的前端的活动推杆282,活动推杆282可相对伸缩臂281转动,当活动推杆282位于水平位置时,活动推杆282呈展开状态,此时,活动推杆282挡设在货物的传送路径上,当伸缩臂281相对传送机构22沿货物的传送方向移动时,活动推杆282与货物抵接并将货物推至货物存储装置或货物提升组件3上;或者,活动推杆282用于将货物拉入传送机构22内,而当活动推杆282不用移动货物时,活动推杆282可以收起呈折叠状态,以减小占用空间。
其中,伸缩臂281可以是沿货物的传送方向双向伸缩,只要能够拿取货物即可,对此,本实施例不做具体限制。
此外,货物存放装置5可以包括架体51,架体51上设有多个货板52,货板52用于放置货物,多个货板52在架体51上沿竖直方向间隔排布,传送机构22可以为多层,当流利货架2与货物存放装置5对接时,一层传送机构22对接一个货板52,且传送机构22与货物在水平面内平齐,这样,推杆组件28可以直接将流利货架2上的货物推入货板52上,以完成货物存放装置5的上料,或者推杆组件28将货板52上的货物拉入流利货架2上,以完成货物存放装置5的卸料,且多层传送机构22与多层货板52分别进行对接时,各层传送机构22上的推杆组件28可以同时向货物存放装置5上进行上料或者卸料,从而提高上料或卸料的效率。
在一种可选的实施方式中,传送机构22靠近货物存放装置5的一端的货物进出口的高度与其对应的货板52的高度相等,这样,可以避免因传送机构22的货物进出口的高度与其对应的货板52的高度不相等而导致无法上料或卸料的情况发生,从而提高了上料和卸料的可靠性。
为了使货物能够在传送机构22上顺畅的沿传送方向移动,在本实施例中,传送机构22沿垂直于货物的传送方向的宽度大于货物的宽度,从而提高货物在传送机构22上沿传送方向的通过性。
本公开实施例提供的中转装置100,通过在流利货架2靠近货物存放装置5的一端设置货物装卸组件,这样,流利货架2除了具有传送货物的功能之外,还具有上料和卸料的功能,不用再额外的设置上料和卸料装置,结构简单,占用空间小,成本低。
实施例三
图12为本公开实施例三提供的中转装置中的搬运机器人的第一种结构示意图;图13为本公开实施例三提供的中转装置中的搬运机器人的第二种结构的局部示意图。
参见图12和图13,本公开实施例还提供一种搬运机器人1,其包括移动底盘12、升降组件13以及货叉组件11,移动底盘12用于承载升降组件13和货叉组件11,货叉组件11与升降组件13连接,以使升降组件13带动货叉组件11沿竖直方向升降。
在本公开中,搬运机器人1还包括支撑架14,支撑架14安装在移动底座上,移动底座与搬运机器人1的支撑面(例如地面)抵接,从而对支撑架14进行支撑,升降组件13和货叉组件11安装在支撑架14,且升降组件13与货叉组件11连接,升降组件13带动货叉组件11沿支撑架14的竖直方向升降,以使升降组件13可以拿取不同高度的货物,或者将货物放置不同高度处。其中,升降组件13可以为链条传动或带传动等结构。
下面对货叉组件11的结构进行介绍,且在本实施例中,货叉组件11取放的货物以轮胎为例进行说明:
货叉组件11包括货叉本体111和位于货叉本体111上的货叉112,货叉112可以通过夹抱、插举或者推拉等方式取放轮胎,由于夹抱或者推拉式在取放轮胎时均需要在轮胎的两侧给货叉112预留相应的空间,为了减小空间,使结构更加紧凑,因此,在本实施例中,货叉112可以为叉齿,叉齿可以直接插入轮胎底部并将轮胎举起后移动。其中,叉齿可以为单叉齿,也可以为多叉齿。
图14为本公开实施例三提供的搬运机器人中的货叉组件的第一种状态示意图;图15为本公开实施例三提供的搬运机器人中的货叉组件的第二种状态示意图;图16为本公开实施例三提供的搬运机器人的第一种状态示意图;图17为本公开实施例三提供的搬运机器人的第二种状态示意图。
参见图14至图17,货叉112上设有嵌位机构113,当货叉112插举轮胎时,嵌位机构113插设在轮胎的内圈中,并与轮胎的内圈卡制,以避免货叉112在移动过程中,轮胎在货叉112上的位置发生偏移,从而提高了货叉112带动轮胎移动的稳定可靠性。
在一种可选的实施例中,嵌位机构113包括至少两个嵌位部1131,至少两个嵌位部1131沿轮胎的周向间隔排布,且至少两个嵌位部1131可沿轮胎的径向朝向轮胎的中心收缩或者背离轮胎的中心扩张,当至少两个嵌位部1131沿轮胎的径向朝向背离轮胎的中心扩张时,各嵌位部1131与轮胎的内圈卡制,当轮胎需要从货叉112上取下时,至少两个嵌位部1131沿轮胎的径向朝向轮胎的中心收缩,以使各嵌位部1131松开轮胎。
货叉组件11还包括驱动件,驱动件分别于各嵌位部1131连接,以使驱动件驱动各嵌位部1131沿轮胎的径向朝向轮胎的中心收缩或者背离轮胎的中心扩张。
其中,驱动件可以为电机,电机通过正反转以实现各嵌位部1131朝向轮胎的中心收缩或者背离轮胎的中心扩张。
为了提高各嵌位部1131与轮胎之间的卡制可靠性,各嵌位部1131靠近轮胎内圈的一侧的轮廓形状可以与轮胎的内圈轮廓形状相匹配,例如,可以为与轮胎的内圈的轮廓形状相一致的弧形结构,从而提高各嵌位部1131与轮胎内圈之间的贴合度,进而提高各嵌位部1131与轮胎之间的卡制可靠性。
在另一种可选的实施例中,各嵌位部1131为沿竖直方向延伸的杆状结构,通过各杆状结构与轮胎内圈之间的卡制,以提高货叉112在带动轮胎移动的稳定可靠性。
为了进一步提高各嵌位部1131与轮胎之间的卡制的可靠性,在本实施例中,当各嵌位部1131嵌设在轮胎的内圈中时,各嵌位部1131的顶部与轮胎的顶部齐平,或者,各嵌位部1131的顶部高于轮胎的顶部,这样,可以提高各嵌位部1131与轮胎的内圈的卡制面积,从而提高各嵌位部1131与轮胎之间的卡制可靠性。
在上述实施例的基础上,各嵌位部1131的顶部设有朝向远离轮胎的中心延伸的弹性卡勾,当各嵌位部1131嵌设在轮胎的内圈中时,弹性卡勾卡制在轮胎的顶部,这样,除了各嵌位部1131与轮胎的内圈卡制以外,各弹性卡勾还对轮胎沿竖直方向具有压紧作用,从而能够进一步提高各嵌位部1131与轮胎之间的卡制可靠性。
此外,嵌位机构113还包括至少两个伸缩部1132,各伸缩部1132分别位于各嵌位部1131和驱动件之间,其中,一个伸缩部1132对应一个嵌位部1131,驱动件驱动各伸缩部1132伸缩,以使各伸缩部1132带动各嵌位部1131沿轮胎的径向朝向轮胎的中心收缩或者背离轮胎的中心扩张。
其中,各伸缩部1132可以为伸缩杆。
在一个实施例中,嵌位部1131为四个,四个嵌位部1131沿轮胎的周向等间隔排布,这个,在满足货叉112带动轮胎在移动时的稳定可靠性的同时,嵌位部1131的数量越少,则结构越简单,加工以及安装成本越低。
货叉组件11还包括升降装置,升降装置与嵌位机构113连接,升降装置用于驱动嵌位机构113沿轮胎的轴线方向升降。
在具体实现时,货叉112在插举轮胎时,嵌位结构处于收缩状态,即嵌位结构的顶部与货叉112的上端面平齐,当货叉112插举上轮胎后,升降装置驱动嵌位机构113上升,以使嵌位结构与轮胎的内圈进行卡制,货叉112带动轮胎移动,当货叉112需要放下轮胎时,升降装置驱动嵌位机构113下降,以使嵌位机构113的顶部与货叉112的上端面平齐,货叉112再将轮胎放下,以实现货叉112对轮胎的取放。
其中,升降装置包括电机和与电机连接的驱动杆,驱动杆与嵌位机构113连接,以使电机驱动驱动杆带动嵌位机构113沿轮胎的轴线方向升降。
升降装置也可以为其他结构,对此,本实施例不做具体限制。
实施例四
图18为本公开实施例四提供的搬运机器人中货叉组件的第一种结构的一种状态示意图;图19为本公开实施例四提供的搬运机器人中货叉组件的第一种结构的另一种状态示意图;图20为本公开实施例 四提供的搬运机器人的第三种结构示意图;图21为图20中货叉组件的俯视结构的第一种状态示意图;图22为图20中货叉组件的俯视结构的第二种状态示意图;图23为图20中货叉组件的俯视结构的第三种状态示意图;图24为图20中货叉组件的俯视结构的第四种状态示意图。
参见图18至图24,本公开实施例还提供另一种货叉组件11,其包括托架115、旋转机构116和位于旋转机构116上的可伸缩货叉117,可伸缩货叉117通过旋转机构116安装于托架115上,旋转机构116用于带动可伸缩货叉117相对于托架115绕一竖直轴线旋转,以使可伸缩货叉117可朝向不同的方向,以便取放不同方向及位置的货物。
可伸缩货叉117上设有夹持组件114,在可伸缩货叉117插举货物时,夹持组件114与货物的外侧壁卡制,以避免可伸缩货叉117插举货物后移动时货物的位置发生偏移,从而提高了可伸缩货叉117插举货物并移动时的稳定可靠性。
在一种可选的实施例中,夹持组件114包括至少两个夹持部1141,至少两个夹持部1141沿货物的周向间隔设置,且至少两个夹持部1141中的至少一个夹持部1141可朝向或者背离货物的方向移动,以使至少两个夹持部1141与货物的外侧壁卡制或脱落。
例如,夹持组件114包括两个夹持部1141,为了便于描述,两个夹持部1141分别用第一夹持部1141a和第二夹持部1141b表示,其中,第一夹持部1141a和第二夹持部1141b可以相对设置,当可伸缩货叉117插举货物后,一个夹持部1141相对另一个夹持部1141朝向相互靠近的方向移动,或者两个夹持部1141同时朝向相互靠近的方向移动,以使货物被夹持在两个夹持部1141之间,以使两个夹持部1141与货物的外侧壁卡制,从而提高可伸缩货叉117插举货物并移动时的稳定可靠性。
在一种可选的实施例中,沿货物的传送方向,第一夹持部1141a和第二夹持部1141b分别位于可伸缩货叉117的两端,当可伸缩货叉117缩回时,货物夹持在第一夹持部1141a和第二夹持部1141b之间,从而提高可伸缩货叉117插举货物并移动时的稳定可靠性。
其中,可伸缩货叉117包括设置在旋转机构116上的底板1171以及可与底板1171之间相对滑动的叉板1172,即叉板1172可相对底板1171伸出或缩回,叉板1172用于插举货物。
在一种可选的实施例中,沿叉板1172的滑动方向,第一夹持部1141a设置在靠近叉板1172的后端的底板1171上,第二夹持部1141b设置在叉板1172的前端上,以使第一夹持部1141a和第二夹持部1141b因叉板1172的取货或放货动作而朝向相互靠近或相互背离的方向移动。
可以理解的是,叉板1172的前端为叉板1172在朝向货物移动并插举货物时,最先靠近货物的一端,而与其对称的另一端则为叉板1172的后端。
在具体实现时,以叉板1172要从流利货架2上插举货物为例,第二夹持部1141b随叉板1172一起朝向流利货架2移动,为了使叉板1172以及叉板1172上的第二夹持部1141b与流利货架2之间不发生干涉,在流利货架2与搬运机器人1对接的一端会设有第一避让豁口,该第一避让豁口沿竖直方向的深度大于叉板1172以及叉板1172上第二夹持部1141b的总高度,叉板1172插入货物的底部并举起后向后缩回,而叉板1172在缩回的过程中,第二夹持部1141b会随叉板1172一起朝向靠近第一夹持部1141a的方向移动,以使货物被夹持在第一夹持部1141a和第二夹持部1141b之间。
此外,若要将叉板1172上的货物置入搬运机器人1上用于放置货物的隔板141上时,旋转机构116首先驱动可伸缩货叉117绕一竖直轴线进行旋转,以使叉板1172对准货物要放置的隔板141,且隔板141上设有用于避让叉板1172以及叉板1172上第二夹持部1141b的第二避让豁口,叉板1172插入第二避让豁口内后,可伸缩货叉117沿竖直方向向下移动预设距离,此时,叉板1172上的货物被放置在隔板141上,叉板1172再带动第二夹持部1141b朝向第一夹持部1141a的方向回缩,从而实现将流利货架2上货物转移至搬运机器人1上的隔板141上。
在另一种可选的实施例中,可伸缩货叉117上设有伸缩件1142,伸缩件1142与第一夹持部1141a和/或第二夹持部1141b连接,以使伸缩件1142带动第一夹持部1141a和/或第二夹持部1141b朝向相互靠近或相互背离的方向伸缩移动,也就是说,第一夹持部1141a和/或第二夹持部1141b可以与可伸缩货叉117之间具有相对独立的运动,这样,第一夹持部1141a和第二夹持部1141b之间可以被卡制的货物的尺寸可以更大或者更小,在满足可伸缩货叉117插举货物并移动时的稳定可靠性的同时,增大了适用范围。其中,伸缩件1142可以为伸缩杆。
另外,货叉组件11还包括驱动结构,驱动结构与伸缩件1142连接,以使驱动结构驱动伸缩件1142带动第一夹持部1141a和/或第二夹持部1141b可朝向相互靠近或相互背离的方向移动,其中,驱动结构可以为电机,电机通过正转或者反转,以使伸缩件1142实现伸缩或者回缩的目的,结构简单,成本低。
在上述实施例的基础上,货叉组件11还包括升降装置,升降装置与第二夹持部1141b连接,可伸缩货叉117上设有用于避让第二夹持部1141b的避让槽1412或避让孔,当可伸缩货叉117取放货物时, 升降装置驱动第二夹持部1141b沿竖直方向升降。
在具体实现时,若可伸缩货叉117需取放货物时,升降装置可先驱动第二夹持部1141b沿竖直方向下降至避让槽1412或避让孔内,以避免第二夹持部1141b与流利货架2等之间发生干涉,当可伸缩货叉117插入货物的底部举起后,升降装置再驱动第二夹持部1141b上升,此时,第二夹持部1141b可以随可伸缩货叉117一起朝向靠近第一夹持部1141a的方向移动,或者,第一夹持部1141a和/或第二夹持部1141b随伸缩件1142的收缩移动朝向彼此相互靠近的方向移动,从而使货物被夹持在第一夹持部1141a和第二夹持部1141b之间,进而提高可伸缩货叉117插举货物并移动时的稳定可靠性。
为了提高夹持部1141夹持货物的可靠性,在本实施例中,夹持部1141在夹持货物时朝向货物一侧的轮廓形状可与货物的外轮廓形状相匹配,从而提高夹持部1141与货物之间的贴合度,进而提高夹持部1141在夹持货物时的夹持可靠性。
例如,当货物为轮胎时,则夹持部1141朝向轮胎一侧的轮廓形状为与轮胎的外轮廓形状相匹配的弧形结构,
本公开实施例提供的货叉组件11,通过在可伸缩货叉117上设有夹持组件114,当可伸缩货叉117插举货物时,夹持组件114与货物的外侧壁卡制,以避免可伸缩货叉117插举货物后移动时货物的位置发生偏移,从而提高了可伸缩货叉117插举货物并移动时的稳定可靠性。
实施例五
图25为本公开实施例五提供的搬运机器人的第四种结构的俯视示意图。
参见图25,本公开实施例提供一种搬运机器人1,其包括支撑架14,支撑架14上设有隔板141,隔板141用于放置货物,隔板141上设有校正组件15,当货物放置在隔板141上时,校正组件15用于校正隔板141上的货物,以使货物位于隔板141的居中位置。
在本公开中,通过在隔板141上设置校正组件15,以使货物位于隔板141的居中位置,避免因搬运机器人1的行进惯性力或其他原因而使货物在隔板141上的位置发生偏移,导致货叉112等搬运隔板141上的货物时无法准确的定位并拿取货物,而通过设置校正组件15,能够提高货物在隔板141中的位置精确度。
在一种可选的实施例中,校正组件15包括至少两个校正部151,至少两个校正部151沿隔板141的周向间隔设置,且至少两个校正部151可朝向靠近或背离隔板141的居中位置移动,以使各校正部151用于校正隔板141上的货物的位置。
在具体实现时,当货叉组件11将货物放置在隔板141上后,各校正部151则朝向靠近隔板141的中心位置移动,此时,若货物没有位于隔板141的居中位置处,货物会在各校正部151的推移下移动至隔板141的居中位置处,从而完成对隔板141上货物的位置的校正,当对货物校正完毕后,各校正部151再朝向背离隔板141的中心位置处移动。
其中,各校正部151可以为板状结构,也可以为块状结构,只要能够校正货物的位置即可。
为了提高各校正部151在校正货物时的精确度,各校正部151朝向货物一侧的轮廓形状与各校正部151对应的货物的外侧壁的轮廓段的形状相匹配,这样,可以提高校正部151在校正货物的位置时,校正部151与货物之间的贴合度,从而提高校正部151校正货物的位置时的精确度。
在上述实施例的基础上,隔板141上设有至少两个伸缩结构,至少两个伸缩结构分别与至少两个校正部151连接,其中,一个伸缩结构与一个校正部151连接,伸缩结构可朝向靠近或背离隔板141的中心伸缩,以使各伸缩结构带动各校正部151校正隔板141上的货物。
其中,伸缩结构可以为弹性伸缩件1142,例如弹簧等。
或者,伸缩结构也可以为气压伸缩件1142,伸缩件1142随气压的压缩和释放带动各校正部151进行移动,以使各校正部151可用于校正隔板141上货物的位置。
此外,隔板141上还设有源动件,源动件与各伸缩结构连接,以使源动件驱动各伸缩结构朝向靠近或远离隔板141的中心伸缩,其中,源动件可以为电机等结构,只要能够为各伸缩结构提供动力即可,对此,本实施例不做具体限制。
在一种可选的实施例中,支撑架14上还设有检测件16和与检测件16电连接的控制组件,检测件16用于检测隔板141上的货物的放置情形,且检测件16将检测到的货物的放置情形传输给控制组件,控制组件与校正组件15连接,控制组件用于控制校正组件15,以使校正组件15调整货物的位置。
在具体实现时,当检测件16检测到隔板141上放置的货物没有位于隔板141的中心位置时,则将该信息上传至控制组件,控制组件根据该信息控制校正组件15进行校正,以使货物被调整至隔板141的中心位置;若检测件16检测到隔板141上放置的货物位于隔板141的中心位置,则控制组件不会启动校正组件15对隔板141上的货物进行校正,从而提高了校正组件15工作的准确度,避免货物在隔板141上的位置没有发生偏移却启动校正组件15进行校正的情况发生。
其中,检测件16可以为摄像头或者其他可以用于检测隔板141上货物放置情形的检测装置,对此,本实施例不做具体限制。
图26为本公开实施例五提供的搬运机器人中隔板的一种结构示意图;图27为本公开实施例五提供的搬运机器人中隔板的另一种结构示意图;图28为本公开实施例五提供的搬运机器人中隔板的又一种结构示意图。
参见图26至28,在上实施例的基础上,为了使隔板141适用放置尺寸大小不同的货物,且该货物在随搬运机器人1行进过程中不会发生位置的偏移,在本实施例中,隔板141上设有凹槽1411,凹槽1411的口径从凹槽1411的槽口至凹槽1411的槽底依次减小,隔板141上的货物会因自身重力卡持在凹槽1411内,这样,该隔板141不仅适合放置尺寸大小不同的货物外,且货物在随搬运机器人1行进过程中,也不会因惯性力等原因使货物在隔板141上的位置发生偏移。
在一种可选的实施例中,凹槽1411的口径从凹槽1411的槽口至凹槽1411的槽底呈阶梯式递减,这样,可以货物的外侧壁与凹槽1411内壁之间的接触面积,从而提高可货物卡持在该凹槽1411中的稳定可靠性。
在另一种可选的实施例中,凹槽1411的口径从凹槽1411的槽口至凹槽1411的槽底呈斜坡面递减,这样,可以适用更多尺寸不同的货物,从而提高隔板141可承载货物的范围。
在一种可选的实施例中,凹槽1411的槽内空间沿水平面的截面形状可以是由多条直线围设形成的正方形、矩形或者多边形;或者,凹槽1411的槽内空间沿水平面的截面形状可以是由多段弧线形成的,或者是由弧线和直线共同围设形成的规则形状或不规矩形状等。
在一个可能实现的实施例中,凹槽1411的槽内空间呈漏斗状,能够理解的是,凹槽1411的槽内空间呈漏斗状,即槽内空间沿竖直方向的径向尺寸从上至下逐渐减小,这样,当货物位于凹槽1411内时,凹槽1411内的货物因自身的重力以及货物与凹槽1411的槽壁之间的摩擦力,货物会卡持在该凹槽1411中,从而可以避免货物在随搬运机器人1行进时而发生偏移,结构简单,成本低。
可选的,凹槽1411的槽内空间呈至少两层漏斗状,这样,凹槽1411内可以适合的货物的尺寸范围增大,从而提高了隔板141的使用范围。
在上述实施例的基础上,隔板141上设有货物进出口,货物进出口与凹槽1411连通,搬运机器人1上的货叉112可通过货物进出口将货物放置在凹槽1411内或者从凹槽1411内取出货物。
其中,凹槽1411靠近搬运机器人1中货叉112一侧可以为开口结构,开口结构形成货物进出口,因此,货物进出口与凹槽1411可一体成型,减少加工工序,降低成本。
当搬运机器人1中的货叉112是通过插举的方式取放货物时,为了便于货叉112插入货物的底部,在本实施例中,凹槽1411的内底壁上设有用于避让货叉112的避让槽1412,避让槽1412与货物进出口连通,货叉112向凹槽1411内放置货物或从凹槽1411内拿取货物时,货叉112先插入避让槽1412内,再通过举起或下移的方式取放货物。
其中,避让槽1412沿竖直方向的深度大于货叉112的厚度,以使货叉112可在避让槽1412内上升或下移,从而实现通过插举的方式取放货物。
为了避免货叉112进入避让槽1412时与避让槽1412的槽壁之间发生卡滞或碰撞,因此,在本实施例中,避让槽1412的内底壁上设有导向部,导向部用于对货叉112沿货物的进出方向进行导向,以提高货物进入避让槽1412内的准确度,从而提高货物进入避让槽1412内的导向可靠性。
在一种可选的实施例中,避让槽1412的底部为斜面,沿货叉112的插入方向,斜面的高度从避让槽1412的内部到货物进出口依次减小,当货叉112沿货物的进出方向插入避让槽1412内时,斜面可以对货叉112进行导向,因此,在本实施例中,该斜面可以形成用于为货叉112导向的导向部,这样,导向部可以与凹槽1411一体成型,减少了加工工序,降低了成本。
在一种可选的实施例中,避让槽1412可以为没有底板部分的避让豁口,豁口两边则视为导引部,如此可以增大货叉112插入的可活动空间,避免避让槽1412深度不足,夹持部过高,造成货叉退出时,夹持部干涉货物而造成货物置放作业无法完成。
在上述实施例的基础上,隔板141可以为多个,多个隔板141在支撑架14上沿竖直方向间隔设置,这样,搬运机器人1可以一次搬运多个货物,从而提高了搬运机器人1的搬运效率,节省时间。
图29为本公开实施例五提供的搬运机器人的第五种结构的俯视示意图。
参见图29,为了进一步避免货物在隔板141上的位置发生偏移,在本实施例中,隔板141上设有弹性限位件2417,弹性限位件2417用于对放置在隔板141上的货物进行限位,当弹性限位件2417对货物进行限位时,弹性限位件2417会受货物的挤压变形,从而避免货物在隔板141上发生偏移。
在一种可选的实施例中,弹性限位件2417设置在隔板141的内侧壁上,当货物放置在隔板141上时,隔板141内侧壁上的弹性限位件2417被货物挤压,这样,货物与弹性限位件2417之间卡紧,从而 避免货物发生偏移,提高了货物随搬运机器人1在移动过程中的稳定可靠性。
其中,弹性限位件2417可以为多个,多个弹性限位件2417在隔板141的内侧壁上间隔排布,这样,在避免货物发生偏移的同时,弹性限位件2417不用覆盖整个隔板141的内侧壁,从而提高经济性,节约成本。
此外,多个弹性限位件2417可以在隔板141的侧壁上沿隔板141的周向等间隔排布,这样,各弹性限位件2417在受货物的挤压变形程度能够保持一致,进一步提高了货物随搬运机器人1在移动过程中的稳定可靠性。
在一种可选的实施例中,弹性限位件2417可以为橡胶条,也可以是其他具有弹性的弹性件,对此,本实施例不做具体限制。
在另一种可选的实施例中,弹性限位件2417也可以包括多个弹簧和衬垫,多个弹簧在隔板141上呈间隔排布,衬垫铺设在多个弹簧上,且衬垫位于弹簧靠近货物的一端,当货物放置在隔板141上时,衬垫夹设在多个弹簧和货物之间,这样,这样,通过衬垫可以提高弹簧与货物之间的接触面积,从而提高弹性限位件2417对货物的限位可靠性。
在本公开中,当隔板141上设有用于放置货物的凹槽1411时,货物卡持在该凹槽1411内,另外,弹性限位件2417设置在凹槽1411的槽壁上,这样,凹槽1411在避免货物在随搬运机器人1移动过程中发生偏移的同时,槽壁上的弹性限位件2417会进一步避免货物与凹槽1411之间发生偏移,从而提高了对货物的限位可靠性。
在具体实现时,隔板141上设有货物进出口,货物进出口与凹槽1411连通,当搬运机器人1上的货叉112将货物经货物进出口放入凹槽1411内时,凹槽1411内壁上的弹性限位件2417与货物之间卡紧,从而避免货物在随搬运机器人1移动时发生偏移;而当货叉112将货物从凹槽1411中取出时,货叉112经货物进出口插入货物的底部并举起,由于货物与弹性限位件2417之间为弹性卡紧,因此,货叉112举起货物的举力只要大于弹性限位件2417与货物之间的摩擦力即可,便可顺利的将货物从凹槽1411中取出,结构简单,操作方便。
本公开实施例提供的搬运机器人1,通过在隔板141上设置弹性限位件2417,通过弹性限位件2417对放置在隔板141上的货物进行限位,从而避免货物在随搬运机器人1移动过程中发生偏移,提高了货物随搬运机器人1在移动过程中的稳定可靠性。
实施例六
本公开实施例还提供一种仓储系统,包括上述提供的中转装置100和搬运机器人1,其中,中转装置100以及搬运机器人1的结构在上述实施例中已进行了详细说明,在此,不再一一进行赘述。
实施例七
下面对本公开实施例的应用场景进行解释:
图30为本公开实施例提供的货箱运输方法的一种应用场景图,如图30所示,当仓储系统的仓储管理设备110接收到订单任务,如入库任务、分拣任务、出库任务等,需要通过仓储系统的运输线120运输订单任务中的各个货物,对于入库任务,需要通过搬运机器人1将运输线120上的各个货物搬运至仓库货架的相应库位;而对于出库任务或分拣任务,则需要通过运输线120将各个货物运输至操作台,从而进行各个货物的分拣或出库。
具体的,运输线120由卸料机121、提升机122和传送带组成。当订单任务为入库任务时,需要通过传送带将入库任务的各个货物通过提升机122运输至卸料机121的各层,进而由搬运机器人1将卸料机121各层放置的货物搬运至其存储货架130的各层,并搬运至各个货物对应的库位。而当订单任务为出库任务或分拣任务时,则需要搬运机器人1将订单任务对应的各个货物从其库位上搬运至搬运机器人1的存储货架131的各层,进而运输至卸料机121,从而由卸料机121将存储货架130的各层的货物卸载至卸料机121的各层,并通过提升机122将卸料机121各层放置的货物依次搬运至传送线组件123,进而通过传送线组件123依次将各个货物运输至操作台,以完成订单任务。
现有的卸料机121的每层仅可以放置相同尺寸的货物,导致不同尺寸的货物需要通过不同卸料机及其对应的输送线进行运输,运输效率低,成本高。
为了提高货物的运输效率,本公开实施例提供的货物运输方法,基于中转装置进行货物运输,中转装置的流利货架可以放置不同尺寸的货物,从而可以基于货物的尺寸信息,自适应确定其对应的流利货架的目标层,进而基于该目标层对应的输送线实现货物的运输。
图31为本公开一个实施例提供的货物运输方法的流程图,该货物运输方法应用于中转装置100,该中转装置100用于对搬运机器人1上料或者卸料时货物的中转运输,包括流利货架2,流利货架2包括支架21以及设置在支架21上的传送机构22,该传送机构22为多层,且传送机构22各层的宽度固定,传送机构22至少两层的宽度不同,如图31所示,该货物运输方法包括以下步骤:
步骤S201,得到货物的尺寸信息。
其中,货物可以是任意一种物品,如轮胎、建材等,还可以是仓储系统提供的料箱,该料箱中可以放置有一个或多个用户需要仓储的物品,可以是衣物、化妆品、瓷器等。
其中,尺寸信息可以为货物的宽度,还可以包括高度或者长度中的一项或两项。
具体的,可以有上游设备,如仓储系统的仓库管理设备,将预先存储的该货物的尺寸信息发送至中转装置100。或者中转装置100可以实时监测货物的尺寸信息,以提高货物尺寸的准确性。
进一步地,可以通过中转装置100或者仓储系统其他装置上设置的扫描件,实时获取货物的尺寸信息。
进一步地,可以得到设定时间对应的各个货物的尺寸信息。该设定时间可以是一个固定的时间段,如10分钟、1小时或者其他时间段,还可以是一个可以适应性调整的时间段,如可以根据仓储系统的订单量确定。
进一步地,可以得到预设个数的货物的尺寸信息,该预设个数可以是传送机构的层数。
可选的,当中转装置100用于对搬运机器人1进行卸料时,所述尺寸信息为基于搬运机器人1上设置的第二扫描件获取的。
其中,第二扫描件可以为摄像头或相机,还可以为超声传感器、激光传感器等传感器,还可以是可以识别货物码的扫描设备,该货物标识码设置与货物的预设位置,该货物标识码可以为二维码、条形码、编码等任意一种形式。
具体的,搬运机器人1在将货物搬运至其存储货架上时,可以基于该第二扫描件对货物进行扫描,从而获得该货物的尺寸信息,并将该尺寸信息发送至多层提升机或仓储系统。
步骤S202,根据所述尺寸信息,确定所述货物对应的传送机构22的目标层。
其中,目标层是用于运输该货物的传送机构22的某一层。
其中,传送机构22包括多层,且传送机构22的至少两层可以放置尺寸信息不同的货物。
具体的,可以根据货物的尺寸信息,确定与该尺寸信息匹配的传送机构22的一层为该目标层。
进一步地,当得到多个货物的尺寸信息时,可以根据各个货物的尺寸信息,确定各个货物对应的传送机构22的目标层,以便于可以基于所确定的各个目标层进行各个货物的运输。
具体的,可以对多个货物的尺寸信息进行从大到小排序,基于排序结果以及各个货物的尺寸信息,依次确定各个货物对应的所述传送机构22的目标层。
步骤S203,通过传送机构22的目标层运输所述货物。
具体的,当确定货物对应的目标层之后,便可以将货物放置于该传送机构22的目标层上,进而由该传送机构22的目标层进行货物运输,以完成相应的订单。
进一步地,当货物为需要入库的货物时,则需要通过传送机构22目标层将货物运输至搬运机器人1的存储货架的相应的层,进而由搬运机器人1将该货物放置与仓储系统的货架的相应库位上。
进一步地,当货物为需要出库或进行分拣的货物时,则需要通过传送机构22的目标层,将货物运输至操作台,进而进行货物分拣或出库。
本公开实施例提供的货物运输方法,基于多层流利货架,根据需要运输的货物的尺寸信息,为其匹配相应的运输线,即匹配流利货架的传送机构的目标层,从而通过传送机构的目标层运输货物,以将其运输至搬运机器人1或操作台,从而完成相应的入库、出库或者分拣任务,实现了多种尺寸货物的并行运输,提高了货物运输的灵活性以及运输效率,提高了仓储系统的订单处理效率。
图32为本公开另一个实施例提供的货物运输方法,本实施例针对的是中转装置100对搬运机器人1进行卸料和运输的情况,该中转装置100还包括货物提升组件3,本实施例是在图31所示实施例的基础上,对步骤S201进行进一步细化,以及在步骤S202之后增加,将货物搬运至目标层的步骤,如图32所示,本实施例提供的货物运输方法包括以下步骤:
步骤S301,基于货物提升组件3或传送线组件4上设置的第一扫描件43,获取所述货物的尺寸信息。
其中,货物提升组件3的货物出入口与传送机构22的一端对接。传送线组件4与货物提升组件3远离所述货物出入口的一端对接,以将货物运输至货物提升组件3。第一扫描件43可以是超声传感器、激光传感器、红外传感器等扫描传感器,或者摄像头、相机等图像采集设备。
具体的,当货物运输至提升组件3时,提升组件基于其上设置的第一扫描件43对货物进行扫描,如扫描货物设置货物标识码的位置,从而获取货物的尺寸信息。
具体的,当货物需要存储至仓储系统的仓库时,该货物可以经过操作台的处理之后,被运输至传送线组件4,当运输至预设范围时,该预设范围为传送件组件4的第一扫描件的扫描区域,基于传送线组件上设置的第一扫描件43,获取货物的尺寸信息。
步骤S302,根据所述尺寸信息,确定所述货物对应的传送机构22的目标层。
步骤S303,基于所述货物提升组件,将所述货物搬运至传送机构22的目标层。
具体的,当基于第一扫描件43确定货物的尺寸信息之后,当该货物被运输至货物提升组件3时,由货物提升组件3将货物搬运至传送机构22的目标层。
具体的,货物提升组件3可以包括输送机构32和升降机构33,当确定目标层之后,基于目标层确定升降机构33的升降指令,以控制升降机构33提升至目标层对应的位置,从而由输送机构32将放置于其上的货物搬运至传送机构22的目标层。
步骤S304,通过传送机构22的目标层将所述货物运输至搬运机器人1。
具体的,搬运机器人1的存储货架的各层与传送机构22的各层对接。进而可以基于传送机构22的目标层将货物运输至搬运机器人1的存储货架的相应层。
具体的,搬运机器人1可以移动至传送机构22相应的位置,如正前方设定距离,进而,由搬运机器人1将传送机构22的目标层放置的货物搬运至搬运机器人1的存储货架的相应层。
在本实施例,针对通过中转装置100对搬运机器人1上料的情况,通过中转装置100的流利货架2的传送机构22或者传送线组件4上设置的第一扫描件43,自动获取货物的尺寸信息,进而基于该尺寸信息确定与之匹配的传送机构22的目标层,通过货物提升组件3将该货物搬运至传送机构22的目标层,通过传送机构22的目标层将货物运输至搬运机器人1,以通过搬运机器人1完成货物的入库,基于可以放置不同尺寸的多层流利货架2,实现了对不同尺寸的货物的自适应运输,提高了货物运输的灵活性和效率。
图33为本公开另一个实施例提供的货物运输方法的流程图,本实施例是在图31所示实施例的基础上,对步骤S203进行进一步细化,如图33所示,本实施例提供的货物运输方法,包括以下步骤:
步骤S401,得到货物的尺寸信息。
步骤S402,根据所述尺寸信息,确定所述货物对应的传送机构22的目标层。
步骤S403,确定所述货物的传送方向。
其中,传送方向可以包括两个相反的方向,第一方向和第二方向,从而将操作台出的货物运输至搬运机器人1或者将搬运机器人1上的货物运输至操作台,实现对搬运机器人1的上料或卸料。第一方向为对搬运机器人1进行上料时对应的方向,第二方向则为对搬运机器人1进行卸料时对应的方向。
具体的,可以通过传送线组件4和货物提升组件3将货物运输至流利货架2以及将流利货架2上的货物运输至操作台。
具体的,可以基于订单的类型确定货物的传送方向,当订单类型为入库类型时,则传送方向为第一方向,而当订单类型为出库类型或分拣类型时,传送方向为第二方向。
具体的,还可以根据搬运机器人1的状态参数,确定传送方向。如当货物放置于搬运机器人1的存储货架上时,传送方向为第二方向,而当搬运机器人1的存储货架上未放置该货物时,传送方向为第一方向。
步骤S404,基于所述传送方向,调整传送机构22或传送机构22的目标层。
具体的,当传送机构22仅整体可调时,即传送机构22的各层的传送方向均相同,在确定传送方向之后,可以基于该传送方向,调整传送机构22,以使传送机构22的各层,包括该目标层,沿该传送方向进行货物传送。
具体的,当传送机构22的各层均可单独调整,或者至少目标层可单独调整时,在确定传送方向之后,可以单独调整传送机构22的目标层,从而使得该目标层沿传送方向进行货物传送。其中,目标层对应的传送方向可以与传送机构22其余各层中的至少一个的货物运输方向不同。
进一步地,当传送机构22的各层均可单独调整时,根据运输需求,传送机构22的不同层会存在传送方向不同的情况,从而提高货物运输的效率。
可选的,结合图1、图6或图8可知,传送机构22包括滚动传送件23,基于所述传送方向,调整传送机构22或传送机构22的目标层,包括:
基于所述传送方向,确定滚动传送件23或所述目标层对应滚动传送件23的转动模式,以使滚动传送件23或所述目标层对应滚动传送件23在所述转动模式下绕自身的转动轴线转动,从而实现沿该传送方向运输货物。
其中,转动模式包括滚动传送件23的转动方向,如顺时针转动或逆时针转动。
具体的,当传送机构22仅整体可调时,传送机构22的各层可以仅通过一个滚动传送件23控制各层货物的传送方向,从而使得传送机构22各层的货物的传送方向相同。在确定传送方向之后,基于该传送方向,确定滚动传送件23的转动模式,以使滚动传送件23在该转动模式下绕自身的转动轴线转动,从而使得传送机构22各层,包括目标层,的货物运输方向为该传送方向。
具体的,当传送机构22的各层均可以单独调整,或者至少目标层可单独调整时,可以基于该传送方向,确定目标层对应滚动传送件23的转动模式,从而控制目标层对应的滚动传送件23在该转动模式下绕自身的转动轴线转动,从而实现传送机构22的目标层可以沿该传送方向运输货物。
步骤S405,通过传送机构22的目标层运输所述货物。
具体的,在调整传送机构22或传送机构22的目标层之后,基于调整后的传送机构22的目标层,沿该传送方向运输货物。其中,目标层的货物运输的方向,即该传送方向,可以与传送机构22其余各层中的至少一层的货物运输的方向不同。
可选的,传送机构22包括一个调整机构,基于所述传送方向,调整传送机构22或传送机构22的目标层,包括:基于所述传送方向,通过所述调整机构,确定传送机构22的各层的倾斜角度,以使位于传送机构22的目标层的货物产生沿所述传送方向的分力。其中,该倾斜角度可以为30°、45°或者其他角度。相应的,通过传送机构22的目标层运输所述货物,包括:通过倾斜的传送机构22的目标层,运输所述货物。
可选的,结合图1至图6可知,传送机构22包括第一传送部221和第二传送部222,基于所述传送方向,调整传送机构22或传送机构22的目标层,包括:基于所述传送方向,调整传送机构22的第二传送部222,以使第二传送部222的高度大于第一传送部221的高度,且使第二传送部222部形成倾斜坡面。相应的,通过传送机构22的目标层运输所述货物,包括:通过所述目标层对应的第二传送部222形成的倾斜坡面以及第一传送部221形成的水平面,运输所述货物。
在本实施例中,流利货架2的传送机构22的传送方向可调,从而使得流利货架2可以同时处理不同的订单,以完成货物的出库、入库、分拣等各种类型的货物运输任务,提高流利货架2的货物运输能力;当得到需要运输的货物的尺寸信息并基于尺寸信息确定流利货架2的传送机构22的目标层之后,还可以进一步基于货物的传送方向,对目标层或者整个传送机构22进行调整,从而实现该传送方向的货物的运输,使得流利货架2不仅可以同时处理不同尺寸的货物的运输,还可以同时处理不同传送方向的货物的运输,进一步提高了货物运输的效率。
图34为本公开另一个实施例提供的货物运输方法的流程图,本实施例针对流利货架2的传送机构22的宽度可调的情况,如图34所示,本实施例提供的货物运输方法包括以下步骤:
步骤S501,获取货物运输订单。
其中,货物运输订单可以是货物入库订单、货物出库订单或者货物分拣订单等订单。货物入库订单为需要将订单中的各个货物通过流利货架2以及搬运机器人1运输至仓储系统的仓库中的订单,货物出库订单和货物分拣订单则分别为需要将订单中的各个货物通过搬运机器人1以及流利货架2运输至操作台进行出库和分拣的订单。
具体的,可以由仓储系统的仓库管理设备生成各个货物订单,进而将各个货物订单发送至流利货架2。流利货架2在获取各个货物订单之后,可以基于该各个货物订单得到货物运输订单,该货物运输订单可以包括一个或多个货物订单。
进一步地,流利货架2可以根据各个货物订单的订单等级以及截止时间,得到货物运输订单。如可以优先选择订单等级高、截止时间距离当前时间接近的一个或多个货物订单为货物运输订单。还可以结合流利货架2的货物运输能力,即流利货架2上能够运输的货物的数量,基于各个货物订单的订单等级以及截止时间,将一个或多个货物订单感组合为一个货物运输订单。
示例性的,假设流利货架2上可以运输的货物的数量为10个;货物订单A的订单等级为一级,截止时间为今天下午五点,需要运输的货物为6个;货物订单B的订单等级为三级,截止时间为今天下午三点,需要运输的货物为5个;货物订单C的订单等级为三级,截止时间为今天下午三点二十分,需要运输的货物为4个;则将货物订单B和货物订单C确定为货物运输订单。
步骤S502,根据所述货物运输订单中各个货物的尺寸信息,确定流利货架2的传送机构22各层的运输宽度,以通过传送机构22的各层进行宽度匹配的货物的运输。
其中,货物的尺寸信息可以包括货物的宽度,还可以包括货物的高度和长度中的一项或两项。流利货架2的传送机构22各层的运输宽度可以进行调节,如通过电控方式或机械方式调节。
具体的,可以对货物运输订单中的各个货物的尺寸信息进行排序,基于排序结果以及流利货架2的传送机构22的层数,确定传送机构22各层的运输宽度,从而基于流利货架2的传送机构22的每层,运输每层对应的货物运输订单中的一个或多个货物。
示例性的,假设货物运输订单中包括100个轮胎,其中,21寸的轮胎25个,19寸的轮胎50个,17寸的轮胎25个,流利货架2的传送机构22包括3层,传送机构22包括3层,则可以将第一层的宽度设置为17寸轮胎所需的宽度,第二层的宽度设置19寸轮胎所需的宽度,第三层设置为21寸轮胎所需的宽度,从而可以基于传送机构22的3层,同时运输3中尺寸的轮胎。还可以将第一层的宽度设置 为17寸的轮胎所需的宽度,第二层的宽度设置19寸的轮胎所需的宽度,第三层先后设置为21寸的轮胎以及19寸的轮胎所需的宽度,从而可以基于传送机构22的第一层运输25个17寸的轮胎,第二层运输40个19寸的轮胎,以及由第三层先运输25个21寸轮胎,再运输10个19寸的轮胎。
可选的,在确定流利货架的传送机构各层的运输宽度之后,所述方法还包括:基于搬运机器人1,将各个所述货物运输订单对应的货物运输至流利货架2的传送机构22的相应的层;或,基于货物提升组件3,将各个所述货物运输订单对应的货物运输至流利货架2的传送机构22的相应的层,其中,货物提升组件3的货物出入口与所述传送机构的一端对接;或,基于传送线组件4以及货物提升组件3,将各个所述货物运输订单对应的货物运输至流利货架2的传送机构22的相应的层,其中,传送线组件4与货物提升组件3远离所述货物出入口的一端对接。
本公开实施例提供的货物运输方法,基于货物运输订单中各个货物的尺寸信息,自适应确定流利货架2的传送机构22的各层的运输宽度,从而基于传送机构22的各层,同时进行货物运输订单中宽度匹配的各个货物的运输,使得流利货架2具备同时运输不同尺寸的货物的能力,提高了货物运输的效率以及订单处理的效率。
图35为本公开另一个实施例提供的货物运输方法的流程图,本实施例是在图34所示实施例的基础上,对步骤S501和S502进行进一步细化,以及在步骤S502之后增加传送机构各层的运输宽度调整的步骤,如图35所示,本实施例提供的货物运输方法包括以下步骤:
步骤S601,获取各个第一货物订单。
其中,第一货物订单为一个或多个用户对应的订单,可以是一个用户不同时间发送的多个订单,也可以是多个用户在一段时间发送的多个订单。各个第一货物订单,可以是同一种货物的订单,也可以是不同种货物的订单。
具体的,可以获取仓储系统当前接收到的需要处理的各个订单为各个第一货物订单。
可选的,获取各个第一货物订单,包括:按照预设时间间隔,获取所述预设时间间隔对应的各个第一货物订单。其中,预设时间间隔可以为1小时、6小时、12小时、24小时或者其他时间间隔。该预设时间间隔可以基于仓储系统的历史每天的订单量确定。
具体的,可以每隔预设时间间隔,便获取一次仓储系统当前尚未处理的各个订单为各个第一货物订单。
步骤S602,根据所述第一货物订单的数量以及各个所述第一货物订单对应的货物的数量,确定各个所述货物运输订单。
其中,所述货物运输订单包括一个或多个所述第一货物订单。
具体的,可以默认将第一数量的第一货物订单组合为一个货物运输订单。或者可以基于每个第一货物订单中货物的数量以及第一货物订单的数量,确定各个货物运输订单。
进一步地,可以基于仓储系统的流利货架2上能够同时运输的货物的上限值、第一货物订单的数量以及各个第一货物订单对应的货物的数量,确定各个货物运输订单,以使流利货架2在其能够运输的货物的上限值之内,尽可能多地运输货物,以提高货物的运输效率。
示例性的,仓储系统当前尚未处理的订单为3个,分别为订单A、订单B和订单C,其中,订单A中货物的数量为12,订单B中货物的数量为20,订单C中货物的数量为45。仓储系统的流利货架2上能够并行运输的货物的总数量为36,则可以将订单A和订单B组合为一个货物运输订单,而将订单C作为另一个货物运输订单。
当存在多个货物运输订单时,可以基于货物运输订单的运输优先级,确定各个货物运输订单的运输顺序,以基于该运输顺序依次运输各个货物运输订单中的货物。
步骤S603,根据所述货物运输订单中各个货物的尺寸信息,确定各个尺寸等级。
其中,尺寸等级为描述货物尺寸大小的参数,尺寸等级越高,其对应的货物的尺寸就越大。
具体的,针对每个货物运输订单,根据货物运输订单中各个货物的尺寸信息确定一个或多个尺寸等级。
具体的,针对每个货物运输订单,可以根据该货物运输订单中各个货物的宽度,确定各个尺寸等级。如可以设置各个宽度阈值,基于各个宽度阈值将货物运输订单中各个货物的尺寸信息,划分为一个或多个尺寸等级。
步骤S604,根据各个尺寸等级,确定传送机构22各层的运输宽度。
具体的,可以先确定传送机构的各层与各个尺寸等级的第一对应关系,进而基于该第一对应关系,确定传送机构22的各层的运输宽度。
示例性的,传送机构高度越高的层对应的尺寸等级越小。即尺寸等级由高到低,依次对应传送机构22的最低层至最高层。
可选的,当所述尺寸等级的数量小于传送机构22的层数时,根据各个尺寸等级,确定传送机构22各层的运输宽度,包括:获取各个尺寸等级对应的货物的数量;根据各个尺寸等级对应的货物的数量、尺寸等级的数量、所述货物运输订单中货物的总数量以及传送机构22的层数,确定传送机构22的各层的运输宽度。
具体的,当尺寸等级的数量小于传送机构22的层数时,即若传送机构22的每层对应一个尺寸等级,则传送机构22会存在一层或多层处于空闲状态,导致传送机构各层的利用率较低,导致货物运输的效率不够高,因此,需要对一个或多个货物数量较多的尺寸等级进行拆分,以由传送机构22的两层或更多层运输该尺寸等级的货物。
具体的,计算传送机构22的层数与尺寸等级的数量的差值,基于该差值、所述货物运输订单中货物的总数量以及各个尺寸等级对应的货物的数量,确定需要进行拆分的一个或多个目标尺寸等级,对该一个或多个目标尺寸等级进行拆分,得到各个拆分尺寸等级,其中,各个拆分尺寸等级与未进行拆分的各个尺寸等级的数量之和与传送机构22的层数相等。基于各个拆分尺寸等级以及未进行拆分的各个尺寸等级,确定传送机构22的各层的运输宽度。
示例性的,货物运输订单对应的尺寸等级为4个等级,尺寸等级1至尺寸等级4对应的货物的数量依次为:10、10、25和55,传送机构22为6层。由于尺寸等级4对应的货物的数量大于四个尺寸等级的货物数量的平均值,则确定尺寸等级4为目标尺寸等级,将其拆分为3份,即得到3个拆分尺寸等级,分别包括15、20和20个货物,则根据3个拆分尺寸等级以及未拆分的各个尺寸等级,即尺寸等级1至尺寸等级3,总共6个尺寸等级,分别确定传送机构22各层的运输宽度。
步骤S605,根据传送机构22各层的运输宽度,确定限位组件的限位参数,以基于所述限位参数调整传送机构22各层的运输宽度以及基于调整后的传送机构22的各层进行宽度匹配的货物的运输。
其中,限位组件设置在流利货架2上,用于对流利货架2的传送机构22的各层进行宽度调整。限位参数可以包括限位组件的移动距离。
具体的,传送机构22的每层均设置有一个或多个限位组件,以调整每层的宽度为所确定的运输宽度。
具体的,在确定传送机构22各层的运输宽度之后,针对传送机构的每层,可以基于该层确定的运输宽度以及该层当前的宽度之间的差值,确定限位组件的限位参数,从而基于该限位参数控制限位组件,以将传送机构22该层的宽度调整为所确定的运输宽度,从而可以基于该层进行与之宽度匹配的货物的运输。
可选的,传送机构22的每层均设置有至少一个限位组件,每一限位组件包括两个限位件24,两个限位件24分别位于传送机构22的相应层的两侧,根据传送机构22各层的运输宽度,确定所述限位件的限位参数,包括:根据传送机构22各层的运输宽度,确定各层对应的至少一个所述限位组件的两个所述限位件的间距。
可选的,在基于所述限位参数调整传送机构各层的运输宽度之后,所述方法还包括:
基于扫描件,采集所述货物运输订单中各个货物的第二尺寸信息;针对每个货物,根据所述货物的第二尺寸信息,确定所述货物对应的传送机构22的目标层,以基于所述传送机构的目标层运输所述货物。
其中,扫描件可以为上述第一扫描件43或第二扫描件。第二尺寸信息为货物运输订单中各个货物运输至扫描件的扫描范围后,基于该扫描件采集的各个货物的尺寸信息。
具体的,在货物运输之前,基于货物运输订单中的各个货物的第二尺寸信息,进行传送机构22进行运输宽度的确定以及调整,从而使得调整后传送机构22的每层用于运输其对应的各个货物。当货物运输时,扫描件可以扫描货物的预设位置,从而基于扫描结果确定各个货物的第二尺寸信息,该第二尺寸信息与尺寸信息相同,进而基于采集的第二尺寸信息,确定与该货物的尺寸匹配的传送机构22的目标层,从而将该货物放置于该目标层,以通过传送机构22的目标层进行货物运输。
进一步地,针对每个货物还可以基于扫描件,获取货物的货物标识码,采用该货物标识码代替第二尺寸信息,进行货物匹配的目标层的确定。
在本实施例中,基于仓储系统接收到的各个第一货物订单的数量以及每个第一货物订单中货物的数量,确定流利货架每次处理的各个货物运输订单;进而针对每个货物运输订单,基于其对应的各个货物的尺寸信息,确定一个或多个尺寸等级,根据各个尺寸等级确定传送机构各层的运输宽度,进而基于各个运输宽度,确定传送机构各层对应的限位组件的限位参数,从而将传送机构的各层的宽度调整为该运输宽度,以运输各个货物运输订单中不同尺寸的货物,实现了基于一个传送机构同时运输订单中不同尺寸的货物,提高了货物运输的效率。
图36为本公开另一个实施例提供的货物运输方法的流程图,针对尺寸等级的数量大于所述传送机 构的层数的情况,本实施例是在图35所示实施例的基础上对步骤S604的进一步细化,如图36所示,本实施例提供的货物运输方法包括以下步骤:
步骤S701,获取各个第一货物订单。
步骤S702,根据所述第一货物订单的数量以及各个所述第一货物订单对应的货物的数量,确定各个所述货物运输订单。
步骤S703,根据所述货物运输订单中各个货物的尺寸信息,确定各个尺寸等级。
步骤S704,当所述尺寸等级的数量大于传送机构22的层数时,根据各个尺寸等级对应的货物的数量,确定至少一个组合尺寸等级。
其中,所述组合尺寸等级由至少两个所述尺寸等级组成,所述组合尺寸等级对应所述传送机构的第一预设层。
具体的,可以将尺寸等级对应的货物的数量最少的至少两个尺寸等级,组合为至少一个组合尺寸等级。
示例性的,当尺寸等级的数量为3个,分别为L1、L2和L3,L1对应的货物数量为18个,L2对应的货物数量为80个,L3对应的货物数量为42个,传送机构22为2层,则可以将货物数量较少的L1和L3组合为一个组合尺寸等级,从而使得传送机构22的一层运输L2对应的80个货物,而传送机构22的另一层运输L1和L2对应的60个货物。
具体的,可以根据各个尺寸等级对应的货物的数量以及数量阈值,确定至少一个组合尺寸等级。
其中,数量阈值可以是自定义的数值,还可以是根据传送机构22的各层对应的运输数量上限确定的值。
具体的,各个组合尺寸等级对应的货物数量与该数量阈值的差值应尽可能接近0,以提高货物运输订单中货物运输的效率。
具体的,可以根据尺寸等级的数量与传送机构22的层数的差值,以及各个尺寸等级对应的货物的数量,确定至少一个组合尺寸等级。
进一步地,可以根据尺寸等级的数量与传送机构22的层数的差值确定组合尺寸等级的数量,基于各个尺寸等级对应的货物的数量确定每个组合尺寸等级对应的各个尺寸等级。
可选的,图37为本公开图36所示实施例中步骤S704的流程图,如图37所示,步骤S704包括以下步骤:
步骤S7041,根据各个尺寸等级对应的货物的数量与预设数量的第一比值,将各个所述尺寸等级划分为第一尺寸等级和第二尺寸等级。
其中,所述预设数量为所述货物运输订单中货物的总数量与传送机构22的层数的比值,所述第一尺寸等级对应的比值大于或等于1,所述第二尺寸等级对应的比值小于1。
具体的,第一比值为传送机构22每层运输的货物的数量的平均值,第一尺寸等级为货物数量大于或等于每层运输的平均值的尺寸等级,而第二尺寸等级则为货物数量小于每层运输的平均值的尺寸等级。
示例性的,假设传送机构为5层,货物运输订单中轮胎的总数量为100,则每层运输的轮胎的数量的平均值为20,17寸轮胎的数量为10个,19寸轮胎的数量为30个,则17寸为上述第二尺寸等级,19寸则为上述第一尺寸等级。
步骤S7042,根据所述传送机构22的层数和第一数量的第一差值,确定第二数量。
其中,所述第一数量为所述第一尺寸等级的数量,所述第一差值至少为1。
具体的,当每个第一尺寸等级对应传送机构22的一层时,第二数量为传送机构22除去第一尺寸等级对应的各层之后剩余的层数。
步骤S7043,根据所述第二数量以及所述第二尺寸等级的数量,确定至少一个组合尺寸等级。
其中,所述组合尺寸等级由至少两个所述第二尺寸等级组成。
示例性的,假设第二数量为2,第二尺寸等级的数量为3,在可以将3个尺寸等级中数量较少的两个第二尺寸等级确定为一个组合尺寸等级,剩余的1个第二尺寸等级则无需进行组合。
步骤S705,针对每个组合尺寸等级,根据所述组合尺寸等级对应的各个尺寸等级,确定所述传送机构的所述组合尺寸等级对应的第一预设层的至少两个运输宽度。
其中,所述第一预设层宽度匹配的货物为相应的所述组合尺寸等级对应的货物。
具体的,由于组合尺寸等级包括至少两个尺寸等级,因此,传送机构22与组合尺寸等级对应的层需要运输至少两个尺寸等的货物,其运输宽度至少为两个。
进一步地,为了减少传送机构22的宽度调整次数,针对每个组合尺寸等级,可以按照设定的运输顺序,依次运输组合尺寸等级对应的各个尺寸等级的货物。即当组合尺寸等级的上一尺寸等级的各个货物运输之后方进行下一尺寸等级的各个货物的运输。具体的,可以先运输尺寸较大的尺寸等级。
步骤S706,针对除所述组合尺寸等级之外的各个所述尺寸等级,确定所述尺寸等级对应的所述传送机构的至少一个第二预设层。
步骤S707,针对除所述组合尺寸等级之外的各个所述尺寸等级,根据所述尺寸等级,确定至少一个第二预设层的运输宽度。
步骤S708,通过所述传送机构的各层进行宽度匹配的货物的运输。
在本实施例中,针对尺寸等级多于传送机构22的层数时的情况,基于各个尺寸等级对应的货物数量、传送机构22的层数与尺寸等级的数量的差值等因素,综合确定各个组合尺寸等级,以将货物数量较少的尺寸等级进行组合,从而使得传送机构22的各层得以运输均匀数量的货物,进一步提高货物运输订单的运输效率。
图38为本公开另一个实施例提供的货物运输方法的流程图,本实施例提供的货物运输方法可以由流利货架2执行,如图38所示,该货物运输方法包括以下步骤:
步骤S901,基于流利货架2沿传送方向运输货物。
其中,传送方向可以是第一方向或第二方向,其中,第一方向和第二方向为相反的两个方向,第一方向为对搬运机器人1进行上料时对应的方向,第二方向则为对搬运机器人1进行卸料时对应的方向。
结合图8和图9可知,该流利货架2包括支架21、设置在支架21上的传送机构22以及校正装置27,各个部件的位置和连接关系详见图8和图9对应的实施例的描述,在此不再赘述。
具体的,基于流利货架2沿传送方向运输货物,包括:基于流利货架2的传送机构22沿第一方向或第二方向运输各个货物。
进一步地,流利货架2的传送机构22可以为多层,每层的传送方向可以不同,每层可以运输多个货物,相邻货物之间保持预设安全间距。相应的,基于流利货架2沿传送方向运输货物,包括:
基于流利货架2的传送机构22的各层,沿各层对应的传送方向运输各层对应的各个货物。
可选的,传送机构22包括滚动传送件23,滚动传送件23具有与货物滚动接触的外轮廓面。相应的,基于流利货架2沿传送方向运输货物,包括:基于滚动传送件23绕自身的转动轴线转动的方式,沿所述传送方向运输所述货物。
步骤S902,当流利货架2的传送机构22上的货物运输至预设区域时,基于校正装置27对所述货物进行位置校正。
其中,预设区域可以是校正装置对应的工作区域。位置校正可以是将货物调整为居中状态,还可以是将货物的朝向或位姿调整为默认朝向或默认位姿。
具体的,校正装置27还可以在该预设区域内移动,以对预设区域内的货物进行位置校正。校正装置27可以为多个,在传送机构22的传送方向均匀间隔设置。
具体的,在预设区域设置货物检测传感器,以检测预设区域是否存在货物,当存在时,基于校正装置27对货物进行位置校正。
可选的,结合图8和图9可知,该校正装置27包括位于所述传送方向的两侧且相对设置的两个夹持结构271。相应的,对所述货物进行位置校正,包括:基于两个所述夹持结构271,按照预设模式夹持所述货物,以使所述货物沿垂直于所述传送方向上居中。
可选的,夹持结构271为弧形结构或直板结构。
进一步地,当传送机构22的某一层正在运输的货物的数量超过预设数值时,则控制传送机构22停止该层的传送,进而,基于校正装置27对该层的各个货物进行位置校正,校正完成之后,控制传送机构22的该层继续沿其对应的传送方向运输其对应的各个货物。
可选的,对所述货物进行位置校正,包括:获取的所述货物的位置信息;根据所述位置信息,对所述货物进行位置校正。
具体的,可以基于图像传感器,获取货物预设点的位置信息。其中,预设点可以是货物的中心点、上表面的中心点、上表面对应的四个顶点等,图像传感器可以是摄像头、2D相机、3D相机或者其他图像传感器。
具体的,通过采集货物的实时位置信息,进而基于该位置信息判断货物是否处于偏移状态,若是,则基于校正装置27对货物进行位置校正。
通过对货物实时位置的检测,避免了对未发生偏移的货物进行校正,降低了校正成本。
本公开实施例提供的货物运输方法,针对基于流利货架进行货物运输的情况,当流利货架的传送机构上的货物运输至预设区域时,通过流利货架上设置的校正装置对货物进行位置校正,实现了运输中的货物的位置校正,提高了货物运输的安全性。
图39为本公开另一个实施例提供的货物运输方法的流程图,本实施例是在图38所示实施例的基础上,对步骤S902进行进一步细化,以及在步骤S902之前增加控制传送机构22停止传送的步骤,如图 39所示,本实施例提供的货物运输方法包括以下步骤:
步骤S1001,基于流利货架22沿传送方向运输货物。
步骤S1002,确定传送机构2每层正在运输的货物的数量。
具体的,可以在传送机构2沿传送方向的两端,记录每层正在运输的货物的数量。
步骤S1003,针对传送机构22的每层,若当前层处于预设区域的货物的数量大于1,则控制当前层对应的滚动传送件23停止转动。
具体的,当滚动传送件23停止转动时,当前层上的各个货物便停止运输。
步骤S1004,针对每个当前层的每个货物,控制两个夹持结构271由各自的默认位置进行相对运动,直至夹持所述货物,以使所述货物沿垂直于所述传送方向上居中。
步骤S1005,当夹持所述货物预设时间后,控制两个所述夹持结构移动至默认位置。
在本实施例中,当传送机构22的当前层运输的货物的数量为多个时,则控制当前层对应的滚动传送件23停止转动,以暂停当前层货物的运输,并控制两个夹持结构271对当前层的各个货物进行夹持校正,从而实现当前层的各个货物的居中校正,校正完毕之后,当前层继续进行货物运输,当某一层运输的货物为多个时,暂停货物运输,对各个货物进行校正,提高了校正过程的安全性以及校正的准确度。
图40为本公开一个实施例提供的货物运输装置的结构示意图,如图40所示,该货物运输装置包括:第一尺寸获取模块1110、第一层级确定模块1120和第一货物运输模块1130。
其中,第一尺寸获取模块1110,用于得到货物的尺寸信息;第一层级确定模块1120,用于根据所述尺寸信息,确定所述货物对应的传送机构的目标层;第一货物运输模块1130,用于通过所述传送机构的目标层运输所述货物。
可选的,所述中转装置还包括货物提升组件,所述货物提升组件的货物出入口与所述传送机构的一端对接,所述装置还包括:目标层搬运模块,用于在根据所述尺寸信息,确定所述货物对应的所述传送机构的目标层之后,基于所述货物提升组件,将所述货物搬运至所述传送机构的目标层。
可选的,第一尺寸获取模块1110,具体用于:基于货物提升组件上设置的第一扫描件,获取所述货物的尺寸信息。
可选的,所述中转装置还包括传送线组件,所述传送线组件与所述货物提升组件远离所述货物出入口的一端对接,以将所述货物运输至所述货物提升组件,第一尺寸获取模块1110,具体用于:基于传送线组件上设置的第一扫描件,获取所述货物的尺寸信息。
可选的,所述尺寸信息为基于搬运机器人上设置的第二扫描件获取的。
可选的,第一货物运输模块1130,包括:方向确定单元,用于确定所述货物的传送方向;调整单元,用于基于所述传送方向,调整所述传送机构或所述传送机构的目标层;第一运输单元,用于通过所述传送机构的目标层运输所述货物。
可选的,所述传送机构包括调整机构,调整单元,具体用于:基于所述传送方向,通过所述调整机构,确定所述传送机构的各层的倾斜角度,以使位于所述传送机构的目标层的货物产生沿所述传送方向的分力。
相应的,第一货物运输模块1130,具体用于:通过倾斜的所述传送机构的目标层,运输所述货物。
可选的,所述传送机构包括第一传送部和第二传送部,调整单元,具体用于:基于所述传送方向,调整所述传送机构的第二传送部,以使所述第二传送部的高度大于所述第一传送部的高度,且使所述第二传送部形成倾斜坡面。
相应的,第一货物运输模块1130,具体用于:通过所述目标层对应的所述第二传送部形成的倾斜坡面以及所述第一传送部形成的水平面,运输所述货物。
可选的,所述传送机构包括滚动传送件,调整单元,具体用于:基于所述传送方向,确定所述滚动传送件或所述目标层对应滚动传送件的转动模式,以使所述滚动传送件或所述目标层对应滚动传送件在所述转动模式下绕自身的转动轴线转动。
本实施例提供的货物运输装置可执行本公开图31至图33对应的任意实施例所提供的货物运输方法,具备执行方法相应的功能模块和有益效果。
图41为本公开另一个实施例提供的货物运输装置,如图41所示,该货物运输装置包括:订单获取模块1210和运输宽度确定模块1220。
其中,订单获取模块1210,用于获取货物运输订单;运输宽度确定模块1220,用于根据所述货物运输订单中各个货物的尺寸信息,确定流利货架的传送机构各层的运输宽度,以通过所述传送机构的各层进行宽度匹配的各个货物的运输。
可选的,运输宽度确定模块1220,包括:尺寸等级确定单元,用于根据所述货物运输订单中各个货物的尺寸信息,确定各个尺寸等级;运输宽度确定单元,用于根据各个尺寸等级,确定所述传送机构 各层的运输宽度。
可选的,当所述尺寸等级的数量小于所述传送机构的层数时,运输宽度确定单元,具体用于:获取各个尺寸等级对应的货物的数量;根据各个尺寸等级对应的货物的数量、尺寸等级的数量、所述货物运输订单中货物的总数量以及所述传送机构的层数,确定所述传送机构的各层的运输宽度。
可选的,当所述尺寸等级的数量大于所述传送机构的层数时,运输宽度确定单元,包括:组合等级确定子单元,用于根据各个尺寸等级对应的货物的数量,确定至少一个组合尺寸等级,其中,所述组合尺寸等级由至少两个所述尺寸等级组成,所述组合尺寸等级对应所述传送机构的第一预设层;组合宽度确定子单元,用于针对每个组合尺寸等级,根据所述组合尺寸等级对应的各个尺寸等级,确定所述传送机构的所述组合尺寸等级对应的第一预设层的至少两个运输宽度,其中,所述第一预设层宽度匹配的货物为相应的所述组合尺寸等级对应的货物。
可选的,当所述尺寸等级对应的货物的数量大于预设值时,所述装置还包括:第二预设层确定模块,用于针对除所述组合尺寸等级之外的各个所述尺寸等级,确定所述尺寸等级对应的所述传送机构的至少一个第二预设层。
相应的,运输宽度确定单元,还用于:针对除所述组合尺寸等级之外的所述尺寸等级,根据所述尺寸等级,确定至少一个第二预设层的运输宽度。
可选的,尺寸等级确定单元,具体用于:根据各个尺寸等级对应的货物的数量与预设数量的第一比值,将各个所述尺寸等级划分为第一尺寸等级和第二尺寸等级,其中,所述预设数量为所述货物运输订单中货物的总数量与所述传送机构的层数的比值,所述第一尺寸等级对应的比值大于或等于1,所述第二尺寸等级对应的比值小于1;根据所述传送机构的层数和第一数量的第一差值,确定第二数量,其中,所述第一数量为所述第一尺寸等级的数量,所述第一差值至少为1;根据所述第二数量以及所述第二尺寸等级的数量,确定至少一个组合尺寸等级,其中,所述组合尺寸等级由至少两个所述第二尺寸等级组成。
可选的,所述流利货架还包括限位组件,所述装置还包括:传送机构调整模块,用于在确定传送机构各层的运输宽度之后,根据所述传送机构各层的运输宽度,确定所述限位组件的限位参数,以基于所述限位参数调整传送机构各层的运输宽度。
可选的,所述传送机构的每层均设置有至少一个所述限位组件,每一所述限位组件包括两个限位件,两个所述限位件分别位于所述传送机构的相应层的两侧,传送机构调整模块,具体用于:
在确定传送机构各层的运输宽度之后,根据所述传送机构各层的运输宽度,确定各层对应的至少一个所述限位组件的两个所述限位件的间距,以基于两个所述限位件的间距调整传送机构各层的运输宽度。
可选的,获取货物运输订单,包括:获取各个第一货物订单;根据所述第一货物订单的数量以及各个所述第一货物订单对应的货物的数量,确定各个所述货物运输订单,其中,所述货物运输订单包括一个或多个所述第一货物订单。
可选的,订单获取模块1210,具体用于:按照预设时间间隔,获取所述预设时间间隔对应的各个第一货物订单。
可选的,所述装置还包括:第二货物运输模块,用于在确定流利货架的传送机构各层的运输宽度之后,基于搬运机器人,将各个所述货物运输订单对应的货物运输至所述流利货架的传送机构的相应的层;或,基于货物提升组件,将各个所述货物运输订单对应的货物运输至所述流利货架的传送机构的相应的层,其中,所述货物提升组件的货物出入口与所述传送机构的一端对接;或,基于传送线组件以及货物提升组件,将各个所述货物运输订单对应的货物运输至所述流利货架的传送机构的相应的层,其中,所述传送线组件与所述货物提升组件远离所述货物出入口的一端对接。
可选的,所述装置还包括:目标层确定模块,用于在基于所述限位参数调整传送机构各层的运输宽度之后,基于扫描件,采集所述货物运输订单中各个货物的第二尺寸信息;针对每个货物,根据所述货物的第二尺寸信息,确定所述货物对应的所述传送机构的目标层,以基于所述传送机构的目标层运输所述货物。
本实施例提供的货物运输装置可执行本公开图34至图37对应的任意实施例所提供的货物运输方法,具备执行方法相应的功能模块和有益效果。
图42为本公开另一个实施例提供的货物运输装置的结构示意图,如图42所示,该货物运输装置包括:货物运输模块1310和货物校正模块1320。
其中,货物运输模块1310,用于基于流利货架沿传送方向运输货物;货物校正模块1320,用于当所述流利货架的所述传送机构上的货物运输至预设区域时,对所述货物进行位置校正。
可选的,所述校正装置包括位于所述传送方向的两侧且相对设置的两个夹持结构,货物校正模块1320,具体用于:基于两个所述夹持结构,按照预设模式夹持所述货物,以使所述货物沿垂直于所述传 送方向上居中。
可选的,所述夹持结构为弧形结构或直板结构。
可选的,所述传送机构包括滚动传送件,所述滚动传送件具有与所述货物滚动接触的外轮廓面,货物运输模块1310,具体用于:基于所述滚动传送件绕自身的转动轴线转动的方式,沿所述传送方向运输所述货物。
可选的,所述传送机构为多层,所述装置还包括:传送暂停模块,用于在对所述货物进行位置校正之前,确定所述传送机构每层正在运输的货物的数量;针对传送机构的每层,若当前层处于预设区域的货物的数量大于1,则控制当前层对应的所述滚动传送件停止转动,以对当前层的各个所述货物进行位置校正。
可选的,货物校正模块1320,具体用于:控制两个所述夹持结构由各自的默认位置进行相对运动,直至夹持所述货物;当夹持所述货物预设时间后,控制两个所述夹持结构移动至默认位置。
可选的,货物校正模块1320,具体用于:获取的所述货物的位置信息;根据所述位置信息,对所述货物进行位置校正。
本实施例提供的货物运输装置可执行本公开图9至图10对应的任意实施例所提供的货物运输方法,具备执行方法相应的功能模块和有益效果。
图43为本公开另一个实施例提供的流利货架的结构示意图,如图43所示,该流利货架2包括传送机构22以及第二主控单元1410。
其中,第二主控单元1410用于本公开图34至图37对应的实施例提供的货物运输方法。
图44为本公开另一个实施例提供的流利货架的结构示意图,如图44所示,该流利货架2包括传送机构22以及第三主控单元1510。
其中,第三主控单元1510用于本公开图38至图39对应的实施例提供的货物运输方法。
图45为本公开一个实施例提供的中转装置的结构示意图,该中转装置于仓储系统中上料或者卸料时货物的中转运输,如图45所示,该中转装置100包括流利货架2和第一主控单元1610。
其中,第一主控单元1610用于生成控制信号,以基于所述控制信号以及流利货架2实现本公开图31至图33对应的实施例提供的货物运输方法。
本公开一个实施例还提供了一种中转装置,该货物提升组件3以及中转装置包括本公开图43或图44所示实施例提供的流利货架。
本公开一个实施例还提供一种仓储系统,该仓储系统包括仓储货架以及本公开任意实施例提供的中转装置100或任意实施例提供的流利货架2。
图46为本公开一个实施例提供的仓储系统的结构示意图,如图46所示,该仓储系统包括流利货架2和至少一个处理器1710,流利货架2包括多层的传送机构22;所述至少一个处理器1710用于执行本公开图34至图37对应的任意实施例提供的货物运输方法。
本公开一个实施例提供一种计算机可读存储介质,其上存储有计算机程序,计算机程序被处理器执行以实现本公开图31至图39所对应的实施例中任一实施例提供的货物运输方法。
其中,计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
本公开还提供一种程序产品,该程序产品包括可执行指令,该可执行指令存储在可读存储介质中。仓储系统、流利货架或中转装置的至少一个处理器可以从可读存储介质读取该执行指令,至少一个处理器执行该执行指令使得货物运输装置实施本公开图31至图39所对应的实施例中任一实施例提供的货物运输方法。
在本公开所提供的几个实施例中,应该理解到,所揭露的设备和方法,可以通过其它的方式实现。例如,以上所描述的设备实施例仅仅是示意性的,例如,所述模块的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个模块可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或模块的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的模块可以是或者也可以不是物理上分开的,作为模块显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。
另外,在本公开各个实施例中的各功能模块可以集成在一个处理单元中,也可以是各个模块单独物理存在,也可以两个或两个以上模块集成在一个单元中。上述模块成的单元既可以采用硬件的形式实现,也可以采用硬件加软件功能单元的形式实现。
上述以软件功能模块的形式实现的集成的模块,可以存储在一个计算机可读取存储介质中。上述软 件功能模块存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器(英文:processor)执行本公开各个实施例所述方法的部分步骤。
应理解,上述处理器可以是中央处理单元(Central Processing Unit,简称CPU),还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,简称DSP)、专用集成电路(Application Specific Integrated Circuit,简称ASIC)等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合发明所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。
存储器可能包含高速RAM存储器,也可能还包括非易失性存储NVM,例如至少一个磁盘存储器,还可以为U盘、移动硬盘、只读存储器、磁盘或光盘等。
总线可以是工业标准体系结构(Industry Standard Architecture,简称ISA)总线、外部设备互连(Peripheral Component,简称PCI)总线或扩展工业标准体系结构(Extended Industry Standard Architecture,简称EISA)总线等。总线可以分为地址总线、数据总线、控制总线等。为便于表示,本公开附图中的总线并不限定仅有一根总线或一种类型的总线。
上述存储介质可以是由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。存储介质可以是通用或专用计算机能够存取的任何可用介质。
一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于专用集成电路(Application Specific Integrated Circuits,简称ASIC)中。当然,处理器和存储介质也可以作为分立组件存在于电子设备或主控设备中。
本领域普通技术人员可以理解:实现上述各方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成。前述的程序可以存储于一计算机可读取存储介质中。该程序在执行时,执行包括上述各方法实施例的步骤;而前述的存储介质包括:ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
本说明书中各实施例或实施方式采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分相互参见即可。
在本说明书的描述中,参考术语“一个实施方式”、“一些实施方式”、“示意性实施方式”、“示例”、“具体示例”、或“一些示例”等的描述意指结合实施方式或示例描述的具体特征、结构、材料或者特点包含于本公开的至少一个实施方式或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施方式或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施方式或示例中以合适的方式结合。
最后应说明的是:以上各实施例仅用以说明本公开的技术方案,而非对其限制;尽管参照前述各实施例对本公开进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本公开各实施例技术方案的范围。

Claims (10)

  1. 一种货物运输方法,其特征在于,所述方法应用于中转装置,所述中转装置包括流利货架,所述流利货架包括支架和设置在所述支架上的传送机构,所述传送机构为多层,所述方法包括:
    得到货物的尺寸信息;
    根据所述尺寸信息,确定所述货物对应的所述传送机构的目标层;
    通过所述传送机构的目标层运输所述货物。
  2. 根据权利要求1所述的方法,其特征在于,所述中转装置还包括货物提升组件,所述货物提升组件的货物出入口与所述传送机构的一端对接,在根据所述尺寸信息,确定所述货物对应的所述传送机构的目标层之后,所述方法还包括:
    基于所述货物提升组件,将所述货物搬运至所述传送机构的目标层。
  3. 根据权利要求2所述的方法,其特征在于,得到货物的货物尺寸,包括:
    基于货物提升组件上设置的第一扫描件,获取所述货物的尺寸信息。
  4. 根据权利要求1所述的方法,其特征在于,所述尺寸信息为基于搬运机器人上设置的第二扫描件获取的。
  5. 根据权利要求1-4任一项所述的方法,其特征在于,通过所述传送机构的目标层运输所述货物,包括:
    确定所述货物的传送方向;
    基于所述传送方向,调整所述传送机构或所述传送机构的目标层;
    通过所述传送机构的目标层运输所述货物。
  6. 一种货物运输装置,其特征在于,包括:
    第一尺寸获取模块,用于得到货物的尺寸信息;
    第一层级确定模块,用于根据所述尺寸信息,确定所述货物对应的传送机构的目标层;
    第一货物运输模块,用于通过所述传送机构的目标层运输所述货物。
  7. 一种中转装置,其特征在于,用于仓储系统中上料或者卸料时货物的中转运输,所述中转装置包括流利货架和第一主控单元;
    其中,所述流利货架包括支架和设置在所述支架上的传送机构,所述传送机构为多层;
    所述第一主控单元用于生成控制信号,以基于所述控制信号以及所述流利货架实现权利要求1-5任一项所述的货物运输方法。
  8. 一种仓储系统,其特征在于,包括仓储货架和权利要求7所述的中转装置。
  9. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有计算机执行指令,当处理器执行所述计算机执行指令时,实现如权利要求1-5任一项所述的货物运输方法。
  10. 一种计算机程序产品,其特征在于,包括计算机程序,所述计算机程序被处理器执行时实现如权利要求1-5任一项所述的货物运输方法。
PCT/CN2022/074103 2021-02-09 2022-01-26 货物运输方法、装置、中转装置、仓储系统及存储介质 WO2022170980A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110178254.2A CN112896895B (zh) 2021-02-09 2021-02-09 货物运输方法、装置、中转装置、仓储系统及存储介质
CN202110178254.2 2021-02-09

Publications (1)

Publication Number Publication Date
WO2022170980A1 true WO2022170980A1 (zh) 2022-08-18

Family

ID=76123104

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/074103 WO2022170980A1 (zh) 2021-02-09 2022-01-26 货物运输方法、装置、中转装置、仓储系统及存储介质

Country Status (2)

Country Link
CN (1) CN112896895B (zh)
WO (1) WO2022170980A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112896895B (zh) * 2021-02-09 2022-10-21 深圳市海柔创新科技有限公司 货物运输方法、装置、中转装置、仓储系统及存储介质
WO2022262735A1 (zh) * 2021-06-17 2022-12-22 深圳市海柔创新科技有限公司 货物运输方法、装置、中转装置、仓储系统及存储介质
CN115092708A (zh) * 2022-07-14 2022-09-23 中国农业大学 一种智能装车系统和方法

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090129902A1 (en) * 2006-05-24 2009-05-21 Gerhard Schafer Rack Warehouse and Order-Picking Method
WO2013004712A1 (de) * 2011-07-05 2013-01-10 SSI Schäfer Noell GmbH Lager- und Systemtechnik Lager- und kommissioniersystem und verfahren zum automatisierten kommissionieren mit einem kanallager
WO2020004920A1 (en) * 2018-06-27 2020-01-02 Cj Logistics Corporation Automatic sorting apparatus and system for delivery goods on unloading conveyor belt
CN111017460A (zh) * 2019-12-31 2020-04-17 北京极智嘉科技有限公司 一种货物入库方法、系统、自动送货车和服务器
CN111605942A (zh) * 2020-05-26 2020-09-01 隆链智能科技(上海)有限公司 一种物流仓储库房及其装卸货方法
CN112896896A (zh) * 2021-02-09 2021-06-04 深圳市海柔创新科技有限公司 货物运输方法、装置、流利货架、中转装置及仓储系统
CN112896895A (zh) * 2021-02-09 2021-06-04 深圳市海柔创新科技有限公司 货物运输方法、装置、中转装置、仓储系统及存储介质
CN112896894A (zh) * 2021-02-09 2021-06-04 深圳市海柔创新科技有限公司 货物运输方法、装置、流利货架、仓储系统及存储介质
CN214358252U (zh) * 2021-02-09 2021-10-08 深圳市海柔创新科技有限公司 货叉组件、搬运机器人及仓储系统
CN214358255U (zh) * 2021-02-09 2021-10-08 深圳市海柔创新科技有限公司 搬运机器人及仓储系统
CN214358253U (zh) * 2021-02-09 2021-10-08 深圳市海柔创新科技有限公司 货叉组件、搬运机器人及仓储系统
CN214358251U (zh) * 2021-02-09 2021-10-08 深圳市海柔创新科技有限公司 中转装置及仓储系统

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITPR20120027A1 (it) * 2012-05-07 2013-11-08 Gea Procomac Spa Metodo e sistema di formazione di uno strato di pacchi da pallettizzare
JP6536218B2 (ja) * 2015-06-26 2019-07-03 村田機械株式会社 昇降搬送装置
CN204896485U (zh) * 2015-09-02 2015-12-23 江苏六维物流设备实业有限公司 一种全流利条货架
JP6995466B2 (ja) * 2015-11-11 2022-01-14 トーヨーカネツ株式会社 立体自動倉庫
CN211186593U (zh) * 2019-09-18 2020-08-07 苏州俊天工贸有限公司 一种流利条货架
CN212280754U (zh) * 2019-10-22 2021-01-05 河北省地龙物联科技发展有限公司 一种灵活方便的货架
CN111631562A (zh) * 2020-05-18 2020-09-08 广州市宇艺包装材料有限公司 一种方便移动的流利架

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090129902A1 (en) * 2006-05-24 2009-05-21 Gerhard Schafer Rack Warehouse and Order-Picking Method
WO2013004712A1 (de) * 2011-07-05 2013-01-10 SSI Schäfer Noell GmbH Lager- und Systemtechnik Lager- und kommissioniersystem und verfahren zum automatisierten kommissionieren mit einem kanallager
WO2020004920A1 (en) * 2018-06-27 2020-01-02 Cj Logistics Corporation Automatic sorting apparatus and system for delivery goods on unloading conveyor belt
CN111017460A (zh) * 2019-12-31 2020-04-17 北京极智嘉科技有限公司 一种货物入库方法、系统、自动送货车和服务器
CN111605942A (zh) * 2020-05-26 2020-09-01 隆链智能科技(上海)有限公司 一种物流仓储库房及其装卸货方法
CN112896896A (zh) * 2021-02-09 2021-06-04 深圳市海柔创新科技有限公司 货物运输方法、装置、流利货架、中转装置及仓储系统
CN112896895A (zh) * 2021-02-09 2021-06-04 深圳市海柔创新科技有限公司 货物运输方法、装置、中转装置、仓储系统及存储介质
CN112896894A (zh) * 2021-02-09 2021-06-04 深圳市海柔创新科技有限公司 货物运输方法、装置、流利货架、仓储系统及存储介质
CN214358252U (zh) * 2021-02-09 2021-10-08 深圳市海柔创新科技有限公司 货叉组件、搬运机器人及仓储系统
CN214358255U (zh) * 2021-02-09 2021-10-08 深圳市海柔创新科技有限公司 搬运机器人及仓储系统
CN214358253U (zh) * 2021-02-09 2021-10-08 深圳市海柔创新科技有限公司 货叉组件、搬运机器人及仓储系统
CN214358251U (zh) * 2021-02-09 2021-10-08 深圳市海柔创新科技有限公司 中转装置及仓储系统

Also Published As

Publication number Publication date
CN112896895A (zh) 2021-06-04
CN112896895B (zh) 2022-10-21

Similar Documents

Publication Publication Date Title
WO2022170980A1 (zh) 货物运输方法、装置、中转装置、仓储系统及存储介质
US7726460B2 (en) Tray transfer system
CN112896896A (zh) 货物运输方法、装置、流利货架、中转装置及仓储系统
US11964303B2 (en) Methods, devices and systems for cargo sorting
US20120201642A1 (en) Article Transfer Device and Stacker Crane Having Same
WO2023061223A1 (zh) 容器装卸装置、仓储系统及取放容器方法
CN112896894B (zh) 货物运输方法、装置、流利货架、仓储系统及存储介质
CN214358253U (zh) 货叉组件、搬运机器人及仓储系统
CN217147261U (zh) 中转装置及仓储系统
CN214358255U (zh) 搬运机器人及仓储系统
JP2023115274A (ja) 取出装置
CN211594187U (zh) 送料装置
TWI834117B (zh) 貨物運輸方法及裝置、中轉裝置、倉儲系統、儲存媒體及計算機程式產品
CN214358252U (zh) 货叉组件、搬运机器人及仓储系统
TW202237509A (zh) 貨物運輸方法、裝置、中轉裝置、倉儲系統及儲存媒體
CN215477999U (zh) 上下料设备
CN113084913A (zh) 载板收板机
CN214358256U (zh) 中转装置及仓储系统
CN214358257U (zh) 中转装置及仓储系统
CN214358254U (zh) 搬运机器人及仓储系统
CN214932935U (zh) 搬运机器人及仓储系统
JP3207862U (ja) 製品ストック装置
US11833633B2 (en) Tray and magazine for handling profiles
JP5532340B2 (ja) 物品搬送設備
CN212502909U (zh) 拆层码垛系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22752141

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22752141

Country of ref document: EP

Kind code of ref document: A1