WO2022170931A1 - 套筒组件、摄像模组及其运行方法和移动电子设备 - Google Patents

套筒组件、摄像模组及其运行方法和移动电子设备 Download PDF

Info

Publication number
WO2022170931A1
WO2022170931A1 PCT/CN2022/072710 CN2022072710W WO2022170931A1 WO 2022170931 A1 WO2022170931 A1 WO 2022170931A1 CN 2022072710 W CN2022072710 W CN 2022072710W WO 2022170931 A1 WO2022170931 A1 WO 2022170931A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens barrel
sleeve
sleeve assembly
resonator
lens
Prior art date
Application number
PCT/CN2022/072710
Other languages
English (en)
French (fr)
Inventor
黄桢
胡贤杰
王凯昊
赵瑜
曾俊杰
方银丽
陈枫生
Original Assignee
宁波舜宇光电信息有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁波舜宇光电信息有限公司 filed Critical 宁波舜宇光电信息有限公司
Publication of WO2022170931A1 publication Critical patent/WO2022170931A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/55Optical parts specially adapted for electronic image sensors; Mounting thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/57Mechanical or electrical details of cameras or camera modules specially adapted for being embedded in other devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/67Focus control based on electronic image sensor signals

Definitions

  • the present invention relates to a sleeve assembly, a camera module and its operation method, and a mobile electronic device.
  • a camera module configured in a mobile electronic device eg, a smart phone
  • a mobile electronic device eg, a smart phone
  • the increase of the zoom factor will increase the total focal length of the telephoto camera module, thereby leading to an increase in the overall height and size of the camera module, and it is difficult to adapt to the development trend of thinner and lighter electronic devices.
  • the periscope camera module changes the imaging optical path by providing light-reversing elements such as prisms and mirrors, thereby reducing the overall height and size of the camera module and meeting the large effective focal length. optical design requirements.
  • the periscope camera module has a more complicated structure, which leads to an increase in cost and an increase in process difficulty; in terms of optical performance, although the periscope camera module has a larger effective focal length, However, its effective focal length is a fixed value, and the adjustability of optical performance is poor. Therefore, it is usually necessary to configure multiple periscope camera modules for electronic equipment to cooperate with each other to meet people's diverse needs for camera functions, which further increases the cost and process difficulty. .
  • the purpose of the present invention is to provide a retractable sleeve assembly, a camera module including the sleeve assembly, a mobile electronic device including the camera module, and an operating method of the camera module.
  • a sleeve assembly including a lens barrel unit, wherein the lens barrel unit includes:
  • a lens barrel configured to carry an optical lens
  • a driving mechanism which is configured to drive the reciprocating motion of the lens barrel for carrying the optical lens, wherein the driving mechanism includes:
  • a follower that is movable relative to the resonator, wherein the follower is fixedly connected to the bottom of the lens barrel.
  • the resonator by applying different pulse voltages to the piezoelectric element, the resonator can generate an interaction force with the follower in different vibration modes.
  • the resonator can drive the follower and be fixedly connected to the follower by the interaction force between the resonator and the follower the reciprocating motion of the lens barrel.
  • the sleeve assembly further includes a base for accommodating the lens barrel unit, wherein the resonator of the driving mechanism of the lens barrel unit is fixed on the lens barrel unit. on the base.
  • the sleeve assembly further includes a sleeve in which the lens barrel of the lens barrel unit is nested, and the drive mechanism can drive the lens barrel.
  • the lens barrel of the lens barrel unit reciprocates relative to the sleeve, so that the lens barrel of the lens barrel unit is extended from the sleeve and retracted into the sleeve, wherein the drive mechanism of the lens barrel unit The resonator is fixed on the sleeve.
  • the sleeve assembly includes a plurality of sleeves that are nested with each other and can be telescopically moved relative to each other, wherein the lens barrel of the lens barrel unit Nested in the innermost sleeve, and the resonator of the drive mechanism of the lens barrel unit is fixed on the innermost sleeve.
  • each sleeve is respectively provided with a driver configured to drive the corresponding sleeve for telescopic movement.
  • the driver of the sleeve is constructed of the same type as the drive mechanism of the lens barrel unit, wherein the resonator of the driver of each inner sleeve is fixed in the adjacent on the outer sleeve.
  • the sleeve assembly further comprises a base for accommodating the sleeve, wherein the outermost sleeve is nested in the base and is capable of telescopic movement relative to the base, The resonator of the driver of the outermost sleeve is fixed on the base.
  • the drive of the at least one sleeve and the drive mechanism of the barrel unit are constructed of different types.
  • the resonator of the driving mechanism can step the lens barrel by a distance of 1 ⁇ 3 ⁇ m.
  • the lens barrel of the lens barrel unit and all sleeves of the sleeve assembly are relative to the adjacent outer sleeve or The base reaches the maximum extended position.
  • the lens barrel of the lens barrel unit and all sleeves of the sleeve assembly are completely retracted to the adjacent outer sleeves into the barrel or seat, and the outermost sleeve is fully retracted into the seat of the sleeve assembly.
  • the sleeve assembly includes a first sleeve and a second sleeve, wherein the second sleeve, the first sleeve and the mirror of the lens barrel unit
  • the diameters of the cylinders are reduced in sequence and are stacked and nested sequentially from the outer layer to the inner layer.
  • the sleeve assembly further includes a drive circuit for supplying power and/or a drive mechanism of the lens barrel unit and/or a driver of the sleeve Provides control signals.
  • a separate drive circuit is provided for the lens barrel unit, and the separate drive circuit is used to provide piezoelectric elements of the drive mechanism of the lens barrel unit with different frequencies of pulse voltage.
  • a follower of the driving mechanism is L-shaped, and an end of the follower away from the resonator is connected to the lens barrel.
  • the outer side walls of the bottom are connected.
  • a follower of the driving mechanism is an I-shaped member, and an end of the follower away from the resonator is connected with the lens barrel.
  • the outer side walls of the bottom are tangent and connected.
  • the resonator of the driving mechanism has at least two resonating arms arranged in an axis-symmetrical manner.
  • each resonating arm is provided with a contact portion for movably clamping and driving the follower.
  • the sleeve assembly further includes a motion guide device, the motion guide device defines a movement trajectory of the telescopic motion of the lens barrel and/or the sleeve of the lens barrel unit .
  • the motion guide device includes balls and guide rails, or the motion guide device includes sliders and guide rails.
  • the overall structural height of a device including such a sleeve assembly, such as a camera module, can be effectively reduced.
  • this sleeve assembly can not only respond quickly to adjustment needs, but also drive heavier lens components, achieve micron-level precise motion control of the lens barrel and a large adjustment stroke of the lens barrel, so that the lens can be adjusted quickly and accurately.
  • the focal plane is roughly coincident with the photosensitive chip (imaging plane), which meets the requirements of the back focus of the work and ensures high imaging quality.
  • a camera module comprising:
  • the optical lens is installed in the lens barrel of the lens barrel unit of the sleeve assembly, and its optical axis is coaxial with the optical axis of the photosensitive chip.
  • the camera module further includes a circuit board, and the photosensitive chip is disposed on the circuit board.
  • the drive circuit of the sleeve assembly is disposed on the circuit board and is electrically connected to the circuit board.
  • the optical lens includes a plurality of sub-lenses, wherein at least one sub-lens is mounted in a barrel of a barrel unit of the sleeve assembly, and/or at least one sub-lens is mounted in the sleeve of the sleeve assembly.
  • a mobile electronic device which includes the aforementioned camera module.
  • a method for operating the camera module which includes the following steps:
  • a pulse voltage of the first frequency is applied to the piezoelectric element of the driving mechanism of the lens barrel unit, so that the resonator is in the first vibration mode and the lens barrel is driven toward the optical lens through the follower fixedly connected with the bottom of the lens barrel.
  • the object side movement of the optical lens relative to the photosensitive chip is made to extend toward the object side of the optical lens along the optical axis direction of the optical lens;
  • a pulse voltage of the second frequency is applied to the piezoelectric element of the driving mechanism of the lens barrel unit, so that the resonator is in the second vibration mode and the lens barrel is driven toward the optical lens through the follower fixedly connected with the bottom of the lens barrel.
  • the image side of the optical lens is moved relative to the photosensitive chip, and the optical lens is retracted toward the image side of the optical lens along the optical axis direction of the optical lens.
  • the driving mechanism of the lens barrel unit of the sleeve assembly and the driver of the sleeve of the sleeve assembly are controlled, so that the lens barrel of the lens barrel unit and the sleeve are controlled
  • the sleeves of the cartridge assembly all reach the maximum extension position and enter the working state of the sleeve assembly.
  • the driving mechanism of the lens barrel unit of the sleeve assembly and the driver of the sleeve of the sleeve assembly are controlled, so that the lens barrel of the lens barrel unit and the sleeve are controlled
  • the sleeves of the cartridge assembly all reach the fully retracted position, entering the inoperative state of the sleeve assembly.
  • the overall structural height of the camera module is significantly reduced, and at the same time, it is ensured that the camera module can quickly respond to the adjustment requirements of imaging and focal length, etc., even for heavier lens components, It can also efficiently realize the precise motion control of the lens barrel at the micron level and the large adjustment stroke of the lens barrel, so that the focal plane of the lens can be quickly and accurately adjusted so that it roughly coincides with the photosensitive chip (imaging plane) to meet the back focus requirements of the work. Make sure the camera module has high image quality.
  • FIG. 1 is a simplified schematic cross-sectional view of some embodiments of the sleeve assembly proposed in the present application
  • FIG. 2 is a simplified schematic cross-sectional view of other embodiments of the sleeve assembly proposed by the application, wherein the sleeve assembly is in a fully extended working state;
  • FIG. 3 is a simplified schematic cross-sectional view of another state of the sleeve assembly shown in FIG. 2, wherein the sleeve assembly is in a fully retracted non-operating state;
  • FIG. 4 is a top view of some embodiments of the lens barrel unit of the sleeve assembly proposed by the application;
  • FIG. 5 is a top view of other embodiments of the lens barrel unit of the sleeve assembly proposed by the application;
  • FIG. 6 is a top view of other embodiments of the lens barrel unit of the sleeve assembly proposed by the application;
  • FIG. 7 is a perspective view of some embodiments of the barrel unit of the sleeve assembly proposed by the application.
  • FIG. 8 is a perspective view of some embodiments of the sleeve assembly proposed by the application.
  • FIG. 9 is a schematic structural diagram of some embodiments of the driving mechanism proposed by the application.
  • Figure 10 is a simplified schematic cross-sectional view of the drive mechanism shown in Figure 9;
  • 11-13 are schematic diagrams of the working principle of the resonator of the driving mechanism proposed by the application.
  • FIG. 14 is a schematic structural diagram of some embodiments of the driving mechanism proposed by the application.
  • FIG. 15 is a schematic structural diagram of other embodiments of the driving mechanism proposed by the application.
  • 16 is a schematic structural diagram of other embodiments of the driving mechanism proposed by the application.
  • 17 is a schematic structural diagram of the multilayer piezoelectric element of the driving mechanism proposed by the application.
  • 19 is a simplified schematic cross-sectional view of other embodiments of the camera module proposed by the application, wherein the sleeve assembly of the camera module is in a fully extended working state;
  • FIG. 20 is a simplified schematic cross-sectional view of another state of the camera module shown in FIG. 19 , wherein the sleeve assembly of the camera module is in a fully retracted non-working state.
  • Multilayer piezoelectric element 22. Mounting port;
  • the sleeve assembly proposed in the present application includes a lens barrel unit, wherein the lens barrel unit includes a lens barrel and a driving mechanism.
  • the lens barrel is arranged to carry the optical lens.
  • the driving mechanism is configured to drive the lens barrel for carrying the optical lens to reciprocate.
  • the drive mechanism may include a resonator, a piezoelectric element disposed on the resonator, and a follower.
  • the follower can be fixedly connected with the lens barrel, in particular with the bottom of the lens barrel.
  • the resonator can be fixedly connected to the lens barrel, in particular to the bottom of the lens barrel.
  • the resonator By applying different pulse voltages to the piezoelectric element, the resonator can generate an interaction force with the follower in different vibration modes. Through the interaction force between the resonator and the follower, relative motion can be generated between the resonator and the follower, so the mirror can be driven by the follower or the resonator fixedly connected to the lens barrel.
  • the cylinder reciprocates.
  • the follower is fixedly connected with the lens barrel and drives the lens barrel to move as an example, but obviously, the position and connection relationship between the resonator and the follower can also be exchanged, and the resonator and the lens barrel can be used as an example.
  • the way of fixedly connecting and driving the lens barrel to move is within the scope of the disclosure of the present application.
  • FIG. 1 is a schematic cross-sectional view of some embodiments of the sleeve assembly proposed in the present application.
  • the sleeve assembly 1 includes a lens barrel unit 10 , wherein the lens barrel unit 10 includes a lens barrel 11 and a driving mechanism 12 .
  • the optical lens 3 is mounted in the lens barrel 11 .
  • the driving mechanism 12 is configured to drive the lens barrel 11 for carrying the optical lens 3 to reciprocate, usually along the optical axis of the optical lens 3 .
  • the driving mechanism 12 includes a resonator 122 and a piezoelectric element 123 provided on the resonator 122 .
  • the piezoelectric element 123 can be excited to generate piezoelectric effect, and the resonator 122 can enter different vibration modes.
  • the driving mechanism 12 further includes a follower 121 , one end of which is fixedly connected to the lens barrel 11 , and the other end is movably connected to the resonator 122 .
  • the resonator 122 can drive the follower 121 and the lens barrel 11 fixedly connected with the follower 121 to reciprocate.
  • the sleeve assembly 1 may further include a base 20 for accommodating the lens barrel unit 10 .
  • the resonator 122 of the driving mechanism 12 can be fixed on the base 20 of the sleeve assembly 1 , for example, on the inner bottom 21 of the base 20 by the end away from the follower 121 .
  • the resonator 122 of the driving mechanism 12 drives the follower 121 and the lens barrel 11 fixedly connected with the follower 121 to reciprocate relative to the base 20, preferably along the optical axis direction of the optical lens 3, so as to realize the complete or Partially extends from the base 20 , or retracts into the base 20 .
  • the follower 121 can especially be fixedly connected to the bottom of the lens barrel 11 , where the bottom refers to the end of the lens barrel 11 along the optical axis of the optical lens 3 that is close to the image side, that is, the end close to the base 20 .
  • the bottom of the lens barrel 11 may be either the end face region of the lens barrel, or the side surface portion adjacent to the end face.
  • the follower 121 is fixedly connected to the bottom of the lens barrel 11 , which facilitates the realization of the maximum telescopic movement stroke of the lens barrel 11 by the driving mechanism 12 , and the follower 121 forms an optimized driving force arm.
  • the sleeve assembly 1 may also not include the base 20 .
  • the resonator 122 of the driving mechanism 12 can also be fixed on other basic structures that do not need to move with the optical lens, so as to drive the follower 121 and the lens barrel 11 fixedly connected with the follower 121 to reciprocate
  • the reciprocating motion is preferably along the optical axis direction of the optical lens 3, so that the distance between the lens barrel 11 and the optical lens 3 carried by the photosensitive chip 2 of the camera module can be adjusted relative to, for example, the photosensitive chip 2 of the camera module.
  • One end of the follower 121 is drivingly connected with the resonator 122 , and the other end is connected with the lens barrel 11 , for example, connected with the bottom 21 of the lens barrel 11 in the schematic embodiment of FIG. 1 .
  • the resonator 122 can drive the follower 121 and the lens barrel 11 fixedly connected to the follower 121 in different vibration modes. Reciprocating movement, whereby the lens barrel 11 can be fully or partially extended out of the base 20 and retracted into the base 20 . In this way, the overall structural height of a device including such a sleeve assembly 1 , such as a camera module, can be effectively reduced.
  • the driving mechanism 12 of the lens barrel unit 10 can quickly respond to the adjustment requirements of, for example, the focal plane or focal length of the lens, and on the other hand, it can realize precise step control at the micron level.
  • the resonator 122 of the driving mechanism 12 can step the lens barrel 11 by a small distance of about 1 to 3 ⁇ m using the piezoelectric effect.
  • the focal plane of the lens can be adjusted so that it roughly coincides with the photosensitive chip (imaging plane), so as to meet the back focus requirements of the work.
  • a plurality of driving mechanisms 12 can also be optionally arranged to jointly drive one lens barrel 11 as required. For example, 2, 3, 4 and more drive mechanisms 12 are contemplated.
  • a plurality of driving mechanisms 12 can be evenly arranged around the lens barrel 11 to achieve balanced and more precise motion control.
  • Figures 2 and 3 are simplified schematic cross-sectional views of other embodiments of the sleeve assembly proposed in the present application.
  • the sleeve assembly 1 may also include one or more sleeves configured as one or more layers of nested sleeves, surrounding and accommodating the lens barrel unit 10, and extending and retracting relative to each other .
  • only one sleeve may be provided, in the form of a concentric sleeve on the outside, surrounding the lens barrel 11 of the lens barrel unit 10 and capable of reciprocating relative to the lens barrel 11 .
  • the lens barrel 11 of the lens barrel unit 10 can be fully or partially extended out of the sleeve and retracted into the sleeve, forming a telescopic sleeve assembly as a whole.
  • the lens barrel 11 of the lens barrel unit 10 is nested in the sleeve, and the lens barrel 11 of the lens barrel unit 10 can be driven by the driving mechanism 12 Reciprocating movement relative to this sleeve enables the extension and retraction of the lens barrel 11 of the lens barrel unit 10 from this sleeve into this sleeve.
  • the resonator 122 of the drive mechanism 12 of the barrel unit 10 can be fastened to a single sleeve, for example to the inner bottom of this sleeve.
  • this sleeve can have its own driver 32, see the following description for details.
  • the resonator 122 of the driver 32 can be fixed on the base 20 of the sleeve assembly 1, or in the case where the base 20 is not included , directly fixed on other fixed infrastructure.
  • a plurality of sleeves can also be provided, these sleeves being configured, for example, as a series of circular or square sleeves with different diameters, these sleeves can be installed concentrically with each other layer by layer, forming a nested layer
  • the innermost sleeve may nest and surround the lens barrel unit 10 , especially the lens barrel 11 of the lens barrel unit 10 is nested.
  • the resonator 122 of the drive mechanism 12 of the lens barrel unit 10 may be fixed to the innermost sleeve.
  • the resonator of the driver of the outermost sleeve can be fixed on the base 20 of the sleeve assembly 1, or directly fixed on other fixed base structures if the base 20 is not included.
  • the sleeve assembly 1 includes a first sleeve 13 and a second sleeve 14 , wherein the second sleeve 14 , the first sleeve 13 and the mirror of the lens barrel unit 10
  • the diameters of the cylinders 11 are decreased in sequence, and are stacked and nested in sequence from the outer layer to the inner layer.
  • Figure 2 shows the sleeve assembly 1 comprising two sleeves 13, 14 in a fully extended working state.
  • Figure 3 shows the corresponding sleeve assembly 1 in a fully retracted inoperative state.
  • the barrel unit 10 of the sleeve assembly 1 is nested in the inner sleeve 13
  • the inner sleeve 13 is nested in the outer sleeve 14
  • the outer sleeve 14 is nested in the base 20
  • the lens barrel 11 , the inner sleeve 13 , the outer sleeve 14 and the base 20 of the lens barrel unit 10 are adjacent to each other and can reciprocate relative to each other.
  • Each sleeve can be equipped with a separate driver 32, which can drive the corresponding sleeve to reciprocate relative to the sleeve or base of the adjacent outer layer, so as to realize the transmission from the sleeve or base of the adjacent outer layer. Extends and retracts into the sleeve or base of the adjacent outer layer.
  • the driver 32 may be a conventional magnet driver or an electromagnetic driver for driving a lens, such as a voice coil motor or the like.
  • the drives of the sleeves 13 and 14 may both use conventional drives, and only the lens barrel 11 of the lens barrel unit 10 is driven by the drive mechanism 12 proposed in the present application.
  • only the lens barrel unit 10 of the sleeve assembly 1 includes the driving mechanism 12 utilizing the piezoelectric effect.
  • the traditional driver is fully utilized to achieve rapid and coarse adjustment of large step distances, and on the other hand, the driving mechanism is fully utilized. 12
  • the driver 32 of a part or all of the sleeve can be configured to have the same configuration as the driving mechanism 12 of the lens barrel unit 10 , that is, the driver 32 can also include the resonator 122 , a slave movably connected to the resonator 122 . 121 and the piezoelectric element 123 provided on the resonator 122. See the embodiment shown in FIGS. 2 and 3 .
  • one end of the resonator 122 of the driver 32 can be fixed on the sleeve of the adjacent outer layer, and the other end can be movably connected with the follower 121, and the follower 121 is far away from the resonance.
  • the other end of the device 122 can be fixedly connected to the sleeve itself, in particular to the bottom of the sleeve.
  • the resonator 122 of the driver 32 of each inner sleeve 13 can be fixed on the adjacent outer sleeve 14, while the follower 121 is fixedly connected to the sleeve itself, and the structural arrangement rules are also applicable For use with 3, 4 or more sockets.
  • the resonator 122 of its own driver 32 can be fixed on the base 20 of the sleeve assembly 1, or directly to other fixed base structures if the base 20 is not included.
  • one end of the follower 121 is movably connected to the resonator 122 of its own driver 32, and the other end is fixedly connected to the outermost sleeve itself, especially to the bottom of the sleeve.
  • the piezoelectric element 123 can be excited to generate piezoelectric effect, and the resonator 122 can enter different vibration modes.
  • the resonator 122 of the driver 32 of the inner sleeve 13 can drive the follower 121 and the inner sleeve 13 fixedly connected with the follower 121 to reciprocate relative to the adjacent outer sleeve 14, preferably along the optical axis.
  • the optical axis direction of the lens 3 enables the inner sleeve 13 to extend completely or partially from the outer sleeve 14 , or shrink into the outer sleeve 14 .
  • the outer sleeve 14 may extend fully or partially from the base 20 , or retract into the base 20 .
  • the lens barrel 11 of the lens barrel unit 10 and all sleeves of the sleeve assembly 1 reach the maximum extension position relative to the adjacent outer sleeve or base 20 .
  • the lens barrel 11 of the lens barrel unit 10 is fully extended from the sleeve 13
  • the sleeve 13 is fully extended from the sleeve 14
  • the sleeve 14 is fully extended from the base 20 .
  • the sleeve assembly 1 includes 2 sleeves, so the extended length extending outward from the base 20 to the maximum extended position ranges from about 18.6 mm to 28.6 mm.
  • the lens barrel 11 of the lens barrel unit 10 and all sleeves of the sleeve assembly 1 are completely retracted into the adjacent outer sleeve or base 20 .
  • the lens barrel 11 of the lens barrel unit 10 is fully retracted into the sleeve 13
  • the sleeve 13 is fully retracted into the sleeve 14
  • the sleeve 14 is fully retracted into the base 20 .
  • the lens barrel 11 of the lens barrel unit 10 and all sleeves are completely accommodated in the base 20 , especially the lens barrel 11 , the sleeves of each layer and the sleeves of the base 20 .
  • the outer surface is flush.
  • the lens barrel 11 of the lens barrel unit 10 drives the optical lens 3 to expand and contract, thereby adjusting the focal plane of the optical lens 3 to substantially coincide with the photosensitive chip (imaging plane), so as to meet the back focus requirement of the work.
  • the optical lens 3 is a fixed-focus lens, so the lens barrel 11 is in a working state when it is fully extended. At this time, the optical lens 3 reaches a fixed focal length and is in a non-working state when it is fully retracted, thereby reducing the total module size. high.
  • the sleeve assembly 1 further includes a drive circuit for supplying power and/or control signals to the drive mechanism 12 of the lens barrel unit 10 and/or the drive 32 of the sleeve .
  • the drive mechanism 12 of the lens barrel unit 10 and/or the driver 32 of the sleeve may also be provided with separate drive circuits, and the separate drive circuits may provide different power supply modes for the corresponding drive mechanisms 12 and/or 32 . and/or control signals.
  • the first electrode of the piezoelectric element 123 may be electrically connected to the first end of the drive circuit, and the second electrode may be electrically connected to the second end of the drive circuit, and the drive circuit is used to supply the piezoelectric element 123 provides pulse voltages of different frequencies.
  • the sleeve assembly may further comprise a motion guide device, the motion guide device defines the movement trajectory of the telescopic motion of the lens barrel 11 of the lens barrel unit 10 and/or the sleeve, especially the linear reciprocating motion .
  • the motion guiding means may comprise balls and rails, or sliders and rails.
  • the follower 121 is fixedly connected to the bottom of the lens barrel 11 and drives the lens barrel 11 to move telescopically, while the resonator 122 is fixed on the adjacent outer sleeve, or directly It is fixed on the base 20 of the sleeve assembly 1, or directly fixed on other fixed basic structures.
  • the position and connection relationship between the resonator 122 and the follower 121 can also be exchanged, that is, the resonator 122 is fixedly connected to the bottom of the lens barrel 11 and drives the lens barrel 11 to telescopically move, while the follower 121 is fixed on the adjacent outer On the sleeve, or directly fixed on the base 20 of the sleeve assembly 1, or directly fixed on other fixed basic structures, which can also drive the corresponding functions of the mechanism 12, and can be combined with other technical features described above and below complete technical solutions, and these technical solutions are all within the disclosure scope of this application.
  • FIGS. 4 to 6 are top views of some embodiments of the lens barrel unit 10 of the sleeve assembly 1 proposed by the present application.
  • the follower 121 of the driving mechanism 12 is L-shaped.
  • the follower 121 of the driving mechanism 12 is I-shaped, and one end of the follower 121 away from the resonator 122 is tangent to and connected to the outer side wall of the bottom of the lens barrel 11 . .
  • the follower 121 of the driving mechanism 12 is I-shaped, and one end of the follower 121 away from the resonator 122 is connected to the bottom of the lens barrel 11 through the transmission member 1212.
  • the transmission member 1212 may take a suitable form according to structural requirements.
  • FIG. 7 shows a perspective view of some embodiments of the barrel unit 10 of the sleeve assembly.
  • the lens barrel 11 of the lens barrel unit 10 is configured in a cylindrical shape, for example, and the follower 121 can be configured in a suitable form as described above, and is fixedly connected with the lens barrel 11 .
  • the follower 121 can be indirectly fixedly connected to the lens barrel 11 through the transmission member 1212 , which facilitates flexible assembly with lens barrels of different specifications.
  • the follower 121 together with the lens barrel 11 can be driven by the resonator 122 to reciprocate, such as upward movement or downward (Y-direction) movement in the plane of the drawing.
  • the driver 32 of the sleeve is constructed in the same structure as the drive mechanism 12 of the lens barrel unit 10
  • the cylinder originally representing the lens barrel 11 of the lens barrel unit 10 in FIG. 7 can also be the sleeve assembly 1 sleeve.
  • the resonator 122 drives the follower 121 together with the sleeve to reciprocate, so as to realize the extension and contraction of the sleeve.
  • Figure 8 shows a perspective view of some embodiments of the sleeve assembly, where the cylindrical shape shown in dashed lines may represent the barrel 11 of the barrel unit 10, and the follower 121 may be constructed in a suitable form as described above, and in combination with The lens barrel 11 is fixedly connected.
  • the follower 121 together with the barrel 11 can be driven by the resonator 122, such as moving upward in the plane of the drawing, representing extension, or moving downward in the plane of the drawing, representing retraction.
  • one or more sleeves may be nested externally around the lens barrel unit 10 according to design or performance requirements. Therefore, the outer sleeve surrounds the inner sleeve or the lens barrel 11, and can reciprocate relative to each other to realize the extension and contraction of the sleeve combination.
  • a larger number of outer sleeves can be arranged around the inner sleeve in a layer-by-layer nested structure, where the sleeve is not limited to a cylindrical shape, but can also be a cube shape as shown in the figure, or other suitable shapes. Regular or irregular shape.
  • FIG. 9 is a schematic structural diagram of some embodiments of the driving mechanism proposed by the application
  • FIG. 10 is a simplified schematic cross-sectional view of the driving mechanism shown in FIG. 9
  • the resonator 122 may comprise a plurality of resonating arms 1221 which are connected to each other by connecting portions, and as a whole have at least two resonating arms 1221 arranged axially symmetrically, eg configured in the shape of a tuning fork.
  • Each resonating arm 1221 is provided with a contact portion 1222 and a piezoelectric element 123 , and the contact portions 1222 of the plurality of resonating arms 1221 are used to movably clamp the follower 121 .
  • the piezoelectric element 123 is made of a material having a piezoelectric effect, such as single crystal or polycrystalline ceramic.
  • a material having a piezoelectric effect such as single crystal or polycrystalline ceramic.
  • the number of the piezoelectric elements 123 of the driving mechanism 12 may also be correspondingly multiple.
  • the first electrodes of the plurality of piezoelectric elements 123 are connected in parallel and then electrically connected to the first electrodes of the driving circuit, and the second electrodes of the plurality of piezoelectric elements 123 are connected in parallel and then electrically connected to the second electrodes of the driving circuit.
  • the follower 121 is configured as a round rod, one end of which is movably clamped by the contact portions 1222 of the plurality of resonating arms 1221, so that under the force of the resonating arms 1221, along the illustrated Reciprocating motion in the Y-axis direction of the Cartesian coordinate system.
  • the curvature of the contact surface 1223 is smaller than the curvature of the side peripheral surface of the follower 121, so that there is not only a sufficient preload force therebetween, but also a sufficient friction force for the follower 121 to drive the follower 121.
  • the moving member 121 moves.
  • the follower 121 can be configured as an L-shaped round rod, and the other free end of the follower 121 away from the resonator 122 can be fixedly connected with the lens barrel 11 of the lens barrel unit 10 or fixed with the sleeve of the sleeve assembly 1 connected, thereby driving it to reciprocate in the direction of the Y-axis of the illustrated Cartesian coordinate system.
  • the follower 121 may be a polygonal rod, or have a special-shaped cross section or the like.
  • the specific structural forms of the resonator 122, the piezoelectric element 123 and the follower 121 and their mutual positional relationship can be reasonably selected according to the design structure and product performance, and are not limited to the examples illustrated here. form.
  • Figure 11 shows a typical state at the first excitation frequency.
  • the resonating arms 1221 vibrate in the longitudinal direction (Y direction), and on the other hand, vibrate close to or apart from each other (X direction).
  • the contact portion 1222 is caused to perform an elliptical motion with a corresponding rotational direction.
  • the contact portion 1222 can thus exert a force in the positive or negative Y direction on the follower 121 .
  • FIG. 12 corresponds to a state at a second excitation frequency different from the first excitation frequency.
  • the contact portions 1222 mainly vibrate in the X direction and collide with each other.
  • the follower 121 can thus be guided movably and can be moved by an external force.
  • FIG. 13 corresponds to different third excitation frequencies, at which time the resonant arm 1221 can perform torsional motion around the longitudinal direction (Y direction), and drive the follower 121 in a corresponding manner.
  • the surface of the contact portion 1222 of the resonance arm 1221 in contact with the follower 121 is the contact surface 1223 .
  • the shape of the contact surface 1223 may match the shape of the side peripheral surface of the corresponding follower 121 , so as to achieve more precise force transmission and motion control between the follower 121 and the resonance arm 1221 .
  • the number of the resonance arms 1221 is two, and the two resonance arms 1221 are disposed opposite to each other at intervals.
  • the follower 121 is rod-shaped and is arranged perpendicular to the resonance arm 1221 . In other embodiments, the number of resonance arms 1221 may be three, four or more.
  • FIG. 14 shows a schematic structural diagram of some embodiments of the drive mechanism 12 .
  • one end of the follower 121 of the driving mechanism 12 close to the resonator 122 is configured with a plurality of sub-rods 1211 , for example, including the sub-rods 1211 corresponding to the number of the resonating arms 1221 of the driving mechanism 12 , such as sub-rods
  • the number of parts 1211 is two.
  • the acting force and reaction force generated between each sub-rod portion 1211 and the corresponding resonating arm 1221 can be formed between the sub-rod portion 1211 and the resonating arm 1221. Form an interference fit. Therefore, even when the driving mechanism 12 is not powered on, a self-locking effect can be formed between the follower 121 and the resonating arm 1221 , which is beneficial to achieve precise control and adjustment of the motion mode.
  • FIG. 15 shows a schematic structural diagram of other embodiments of the driving mechanism 12 .
  • piezoelectric elements 123 may be disposed on the inner side and the outer side of the resonating arm 1221, for example, in a symmetrical arrangement, which is conducive to driving the follower 121 uniformly and balancedly to achieve different movement modes.
  • FIG. 16 shows a schematic structural diagram of other embodiments of the driving mechanism 12 , in which the piezoelectric element 123 is disposed outside the resonance arm 1221 .
  • the piezoelectric element 123 may be a single-layer piezoelectric element.
  • the piezoelectric element 123 may be connected to the resonant arm 1221 through a conductive adhesive, and the conductive adhesive may be an adhesive added with silver epoxy or conductive micro-metal balls.
  • the piezoelectric element 123 may be coated or formed layer by layer on the resonance arm 1221, or the piezoelectric element 123 may be conductively connected to the resonance arm 1221 through an electrolytic technique.
  • FIG. 17 shows a schematic structural diagram of the multilayer piezoelectric element of the driving mechanism 12 .
  • the piezoelectric element may be a multilayer piezoelectric element 124, and the multilayer piezoelectric element 124 includes a plurality of piezoelectric units 1241, and conductive electrodes made of silver, nickel or platinum are arranged between each two piezoelectric units 1241.
  • Floor A plurality of piezoelectric units 1241 are arranged alternately and have a thickness in the range of 10-20 ⁇ m, and the multilayer piezoelectric element 124 has the advantage of lower operating voltage than the single-layer piezoelectric element.
  • a single-layer piezoelectric element with a thickness of 0.25mm needs a voltage of 100V to reach the working electric field, while a 20-layer multilayer piezoelectric element with a thickness of 12.5 ⁇ m can operate at a voltage of 5V, which is more convenient to use.
  • Some embodiments of the camera module according to the present application are exemplarily described below with reference to FIG. 18 , FIG. 19 and FIG. 20 .
  • the relevant features, structural forms, action modes and technical effects of the sleeve described above in conjunction with the sleeve assembly 1 are also applicable to the following camera modules including the sleeve assembly 1 .
  • FIG. 18 shows a schematic cross-sectional view of some embodiments of a camera module, where the camera module includes the aforementioned sleeve assembly 1 with only one lens barrel unit 10 and no additional sleeve.
  • the lens barrel unit 10 is accommodated in the base 20 .
  • the resonator 122 of the drive mechanism 12 can be fixed on the base 20 of the sleeve assembly 1 .
  • the base 20 includes a bottom 21 .
  • the base 20 also includes a sufficient accommodating space for accommodating at least one lens barrel unit 10 .
  • the base 20 is further provided with a mounting opening 22 , through which the lens barrel 11 of at least one lens barrel unit 10 can extend out of the base 20 or retract into the base 20 through the mounting opening 22 .
  • the shape and size of the mounting opening 22 match the shape and size of the lens barrel 11 of the lens barrel unit 10 to facilitate the mounting of the lens barrel 11 and other sleeves through the mounting opening 22 .
  • the lens barrel 11 and the mounting opening 22 are circular.
  • the base 20 may be a suitable shape such as a square or a circle.
  • the photosensitive chip 2 for processing light and forming image signals can be mounted on the bottom 21 of the base 20 .
  • the camera module may further include a circuit board, and the photosensitive chip 2 is disposed on the circuit board.
  • the circuit board can also be disposed on the bottom 21 of the base 20, or fixed in the camera module in other conventional ways.
  • the drive circuit of the sleeve assembly 1 can also be disposed on the circuit board together and electrically connected with the circuit board.
  • the optical lens 3 is mounted in the lens barrel 11 of the lens barrel unit 10 .
  • the optical lens 3 can be installed in the lens barrel 11 of the lens barrel unit 10 by a common method such as screwing, clamping or gluing.
  • the optical axis of the optical lens 3 is coaxial with the optical axis of the photosensitive chip 2 .
  • the lens barrel 11 of the lens barrel unit 10 is retracted into the base 20 .
  • there is a safety gap between the optical lens 3 and the photosensitive chip 2 there is still a certain distance between the optical lens 3 and the photosensitive chip 2 to avoid interference affecting the imaging function.
  • FIGS. 19 and 20 show other embodiments of the camera module, where the camera module includes the aforementioned sleeve assembly 1 , which not only includes the lens barrel unit 10 , but may also include one or more additional sleeves 13, 14.
  • the optical lens 3 is installed in the lens barrel 11 of the lens barrel unit 10 of the sleeve assembly 1 , and the optical lens 3 can be driven along the optical axis of the optical lens 3 by the lens barrel 11 of the lens barrel unit 10 Extends toward the object side of the optical lens 3 or contracts toward the image side of the optical lens 3 .
  • the sleeves 13 and 14 of the sleeve assembly 1 can be extended or retracted synchronously or asynchronously, so that the distance between the optical lens 3 of the camera module and the photosensitive chip 2 is increased or decreased, thereby realizing the camera module Group multiple zoom to meet more photography needs.
  • the camera module shown in FIG. 19 is in a working state, and all the first sleeves 13 and the second sleeves 14 and the lens barrels 11 of the lens barrel unit 10 are all extended. Specifically, the lens barrel 11 of the lens barrel unit 10 is fully extended from the sleeve 13 , the sleeve 13 is fully extended from the sleeve 14 , and the sleeve 14 is fully extended from the base 20 .
  • the shape and size of the outermost sleeve 14 may be smaller than or equal to the shape and size of the mounting opening 22 of the base 20 , so that the lens barrel unit 10 and the sleeve of the sleeve assembly 1 can be extended or retracted through the mounting opening 22 Back to base 20.
  • the maximum height dimension of the telescopic sleeve assembly is about 18.6 mm to 28.6mm.
  • the maximum height dimension of a camera module including such a sleeve assembly may be approximately 23mm to 31mm.
  • the minimum height dimension of the telescopic sleeve assembly is in the range of 6mm to 9mm.
  • the minimum height dimension of a camera module including such a sleeve assembly may be about 8mm to 12mm.
  • the sleeve assembly of the camera module shown in FIG. 20 is in a non-working state.
  • the first sleeve 13 and the second sleeve 14 and the lens barrel 11 of the lens barrel unit 10 are all retracted.
  • the lens barrel 11 of the lens barrel unit 10 is fully retracted into the sleeve 13
  • the sleeve 13 is fully retracted into the sleeve 14
  • the sleeve 14 is fully retracted into the base 20 .
  • the outer surfaces of the lens barrel 11 , the sleeves of each layer, the base 20 and the corresponding housing surface of the camera module are all flush, which is beneficial to simplify the structure of the camera module and realize modular design.
  • the sleeve assembly 1 includes a first sleeve 13 and a second sleeve 14 , wherein the second sleeve 14 , the first sleeve 13 and the lens barrel 11 of the lens barrel unit 10 are
  • the calibers decrease in sequence and are stacked and nested sequentially from the outer layer to the inner layer.
  • the number of the sleeves of the sleeve assembly is not limited to 1 or 2, but can include a larger number of sleeves according to the detailed description of the nested sleeve structure.
  • the sleeve 13 may exemplarily represent the inner sleeve or the innermost sleeve
  • the sleeve 14 may exemplarily represent the outermost sleeve.
  • the above-mentioned features described in connection with the two sleeves 13, 14 are therefore equally applicable to other sleeve assemblies comprising more than 2 sleeves, for example 3, 4, 5 or even more sleeves, in particular for the corresponding most Inner sleeve and outermost sleeve.
  • the sleeve assembly 1 includes a first sleeve 13 and a second sleeve 14 .
  • the first sleeve 13 includes and a first driver, and the first driver includes a first follower 131 and a first resonator 132 .
  • the second sleeve 14 includes a second driver including a second follower 141 and a second resonator 142 .
  • the diameters of the second sleeve 14 , the first sleeve 13 and the lens barrel 11 are decreased in sequence and are arranged in layers and nests from the outer layer to the inner layer.
  • the first sleeve 13 and the second sleeve 14 may be respectively configured with appropriate through holes at both ends to facilitate the nesting and telescopic movement of the sleeves.
  • first follower 131 is connected to the first sleeve 13 , and the first resonator 132 is fixedly connected to the inner bottom of the second sleeve 14 .
  • the piezoelectric elements of the first resonator 132 are provided with pulse voltages of different frequencies, so that the first follower 131 drives the first sleeve 13 to extend or retract into the second sleeve 14 through the installation opening 22 .
  • a pulse voltage of the first frequency is provided to the piezoelectric element of the first resonator 132, the first resonator 132 is in the first vibration mode, and the first resonator 132 drives the first sleeve 13 along the
  • the movement in the first direction means that the first sleeve 13 protrudes from the second sleeve 14 .
  • a pulse voltage of the second frequency is provided to the piezoelectric element of the first resonator 132, the first resonator 132 is in the second vibration mode, and the first resonator 132 drives the first sleeve 13 along the second vibration mode through the first follower 131.
  • directional movement ie the first sleeve 13 retracts the second sleeve 14 .
  • the piezoelectric elements of the second resonator 142 are provided with pulse voltages of different frequencies, so that the second follower 141 drives the second sleeve 14 to extend or retract the base 20 .
  • a pulse voltage of a third frequency is provided to the piezoelectric element of the second resonator 142 , the second resonator 142 is in the first vibration mode, and the second resonator 142 drives the second sleeve 14 along the edge of the second sleeve 14 through the second follower 141 .
  • the movement in the first direction means that the second sleeve 14 protrudes from the base 20 .
  • the piezoelectric element of the second resonator 142 is provided with a pulse voltage of the fourth frequency, the second resonator 142 is in the second vibration mode, and the second resonator 142 drives the second sleeve 14 along the second directional movement, ie the second sleeve 14 retracts into the base 20 .
  • the aforementioned first frequency, second frequency, third frequency and fourth frequency can be selected to be the same or different according to design requirements.
  • Each sleeve may be provided with a separate driver 32, for details, please refer to the above description of the characteristics of the driver of the sleeve.
  • the sleeve assembly of the camera module further includes a motion guide device, and the motion guide device defines the movement trajectory of the telescopic motion of the lens barrel 11 of the lens barrel unit 10 and/or the sleeve.
  • the motion guiding means may comprise balls and rails, or sliders and rails.
  • balls and guide rails, or sliders and guide rails, respectively can be provided, so as to pass the balls and the guide rails.
  • the kinematic cooperation of the guide rails, or the kinematic cooperation of the slider and the guide rails for example, realizes the relative reciprocating motion between the linear guide lens barrel 11 and the innermost sleeve or between sleeves.
  • the optical lens 3 is a fixed focus lens.
  • the camera module When the lens barrel 11 and all the sleeves 13 and 14 are fully extended, the camera module is in the working state, reaching the fixed focal length of the optical lens 3, and when the lens barrel 11 and all the sleeves 13 and 14 are fully extended, the camera module is in the non-working state, thereby reducing the The total height of the module and the use of limited structural space to achieve different focal length requirements.
  • the optical lens 3 may include a plurality of sub-lenses, wherein at least one sub-lens is installed in the lens barrel 11 of the lens barrel unit 10 of the sleeve assembly 1, and other sub-lenses may be required according to optical performance Installed in one or more other sleeves, for example in the innermost sleeve 13 , or in the outermost sleeve 14 .
  • the optical lens 3 can also be a zoom lens, so that the camera module can be zoomed by the combined action of the lens barrel 11 and/or the sleeve.
  • the present application also relates to a mobile electronic device, which includes the aforementioned camera module.
  • a pulse voltage of the first frequency is applied to the piezoelectric element 123 of the driving mechanism 12 of the lens barrel unit 10 , so that the corresponding resonator 122 is in the first vibration mode and is driven by the corresponding follower 121 and the follower 121
  • the fixedly connected lens barrel 11 moves toward the object side of the optical lens 3, thereby causing the optical lens 3 to protrude toward the object side of the optical lens 3 relative to the photosensitive chip 2 along the optical axis of the optical lens 3, and the mechanical The back focus is increased to reach the working focal length;
  • a pulse voltage of the second frequency is applied to the piezoelectric element 123 of the driving mechanism 12 of the lens barrel unit 10 , so that the corresponding resonator 122 is in the second vibration mode and is driven by the corresponding follower 121 and the follower 121
  • the fixedly connected lens barrel 11 moves toward the image side of the optical lens 3, thereby causing the optical lens 3 to retract relative to the photosensitive chip 2 along the optical axis of the optical lens 3 toward the image side of the optical lens 3, mechanically
  • the back focus is reduced, the TTL (Total Track Length) of the lens is reduced, and the overall height size is reduced.
  • the drive mechanism 12 of the barrel unit 10 of the sleeve assembly 1 and the driver 32 of the sleeve of the sleeve assembly 1 are controlled to make the lens barrel of the lens barrel unit 10 11 and the sleeve of the sleeve assembly 1 both reach the maximum extension position and enter the working state of the sleeve assembly 1 .
  • the drive mechanism 12 of the lens barrel unit 10 of the sleeve assembly 1 and the driver 32 of the sleeve of the sleeve assembly 1 can also be controlled, so that the lens barrel 11 of the lens barrel unit 10 and the sleeve assembly 1 All sleeves reach the fully retracted position and enter the non-working state of sleeve assembly 1
  • the driver of the sleeve and/or the drive mechanism of the lens barrel are controlled, so as to realize the extension and shortening of the control sleeve assembly 1, thereby adjusting
  • the focal plane of the optical lens 3 is roughly coincident with the photosensitive chip (imaging plane), which meets the requirements of the back focus of the work and ensures high-quality imaging.
  • a pulse voltage of the first frequency can be applied to the piezoelectric element 123 of the driving mechanism 12 of the lens barrel unit 10 at a certain time interval, so that all sleeves of the sleeve assembly 1 and the lens barrel unit 10
  • the lens barrel 11 extends from the inner layer to the outer layer or from the outer layer to the inner layer in sequence.
  • the piezoelectric element 123 of the driving mechanism 12 of the lens barrel unit 10 can also be applied with a pulse voltage of the second frequency at a certain time interval, so that all the sleeves and the lens barrel of the sleeve assembly 1
  • the lens barrel 11 of the unit 10 is retracted sequentially from the inner layer to the outer layer or from the outer layer to the inner layer.
  • the pulse voltage of the first frequency and the pulse voltage of the second frequency may be reasonably selected according to the structure and performance, and may be the same or different.
  • all sleeves of the sleeve assembly and the lens barrels 11 of the lens barrel unit 10 can also be extended and/or retracted simultaneously.
  • the camera module can still be ensured to perform fast and accurate response actions and high imaging quality under the condition of significantly reducing the overall structural height of the camera module.
  • the control of the lens barrel unit 10 of the sleeve assembly can quickly respond to adjustment requirements, and at the same time, it can achieve micron-level precise motion control to drive heavier lens components.
  • the camera module can step the lens barrel 11 by a distance of about 1-3 ⁇ m.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Lens Barrels (AREA)

Abstract

本发明涉及一种套筒组件、摄像模组及其运行方法和移动电子设备。套筒组件(1)包括镜筒单元(10),镜筒单元(10)包括用于承载光学镜头(3)的镜筒(11)和用于驱动用于承载光学镜头(3)的镜筒(11)往复运动的驱动机构(12)。驱动机构(12)包括谐振器(122)、设置在谐振器(122)上的压电元件(123)以及能够相对于谐振器(122)运动的从动件(121),其中从动件(121)与镜筒(11)的底部固定连接。通过本申请提出的方案,显著减小了摄像模组的总结构高度,同时确保摄像模组可以快速响应成像和焦距等的调整需求,即便对于较重的镜头零部件,也能高效实现微米级的镜筒精确动作控制和较大调整行程,由此高效焦平面调整和高成像质量。

Description

套筒组件、摄像模组及其运行方法和移动电子设备 技术领域
本发明涉及一种套筒组件、摄像模组及其运行方法和移动电子设备。
背景技术
这里的描述仅提供与本发明有关的背景信息,而不必然地构成现有技术。
现今社会,人们的生活已离不开例如手机、平板电脑等移动设备。其中,用于获取视频或图像的摄像模组技术也得到了迅猛的发展和进步。
目前在市场中,配置于移动电子设备(例如,智能手机)的摄像模组需要实现多倍变焦拍摄功能。为了实现多倍变焦拍摄,需要配置有效焦距较大的长焦摄像模组。但是,变焦倍数的增加会增加长焦摄像模组的总焦距,从而导致摄像模组的整体高度尺寸的增高,难以适配电子设备轻薄化的发展趋势。
为了解决摄像模组的高度设计和高倍变焦拍摄功能之间的技术矛盾,大多数厂商采用潜望式摄像模组来替代传统的直立式摄像模组。相较于传统的直立式摄像模组,潜望式摄像模组通过设有例如棱镜、反射镜等光转折元件来改变成像光学路径,从而在降低摄像模组整体高度尺寸的同时满足大有效焦距的光学设计需求。
然而,潜望式摄像模组在结构方面,由于其具有更为复杂的结构导致了成本的上升和工艺难度的增加;在光学性能方面,虽然潜望式摄像模组具有较大的有效焦距,但其有效焦距为固定值,光学性能的可调整性差,从而通常需要为电子设备配置多个潜望式摄像模组相互配合才能满足人们对摄像功能多样化的需求,进一步增加了成本和工艺难度。
发明内容
本发明的目的在于提出一种可伸缩的套筒组件、包括这种套筒组件的摄像模组、包括这种摄像模组的移动电子设备,以及所述摄像模组的运行方法。
根据本发明的第一方面,提出一种套筒组件,包括镜筒单元,其中所述镜筒单元包括:
镜筒,其设置用于承载光学镜头;和
驱动机构,其设置用于驱动所述用于承载光学镜头的镜筒往复运动,其中所述驱动机构包括:
谐振器,
设置在所述谐振器上的压电元件,和
能够相对于谐振器运动的从动件,其中所述从动件与镜筒的底部固定连接。
根据本发明的第一方面的一些实施方式,通过在所述压电元件上施加不同的脉冲电压,所述谐振器能够在不同的振动模式下与所述从动件产生相互作用力。
根据本发明的第一方面的一些实施方式,通过所述谐振器与所述从动件之间的相互作用力,所述谐振器能够驱动所述从动件和与所述从动件固定连接的镜筒往复运动。
根据本发明的第一方面的一些实施方式,所述套筒组件还包括用于容纳所述镜筒单元的 底座,其中所述镜筒单元的驱动机构的谐振器固定在所述镜筒单元的底座上。
根据本发明的第一方面的一些实施方式,所述套筒组件还包括一个套筒,所述镜筒单元的镜筒嵌套在所述套筒中,并能够通过所述驱动机构驱动所述镜筒单元的镜筒相对于所述套筒进行往复运动,实现所述镜筒单元的镜筒从所述套筒伸出和收缩到所述套筒中,其中所述镜筒单元的驱动机构的谐振器固定在所述套筒上。
根据本发明的第一方面的一些实施方式,所述套筒组件包括多个套筒,所述多个套筒彼此层层嵌套并能够相对彼此伸缩移动,其中所述镜筒单元的镜筒嵌套在最内层套筒中,并且所述镜筒单元的驱动机构的谐振器固定在所述最内层套筒上。
根据本发明的第一方面的一些实施方式,每个套筒分别配有驱动器,所述驱动器设置用于驱动对应的套筒进行伸缩移动。
根据本发明的第一方面的一些实施方式,所述套筒的驱动器构造成与所述镜筒单元的驱动机构相同类型的,其中每个内层套筒的驱动器的谐振器固定在相邻的外层套筒上。
根据本发明的第一方面的一些实施方式,所述套筒组件还包括用于容纳所述套筒的底座,其中最外层套筒嵌套在所述底座中并能够相对于底座伸缩移动,其中最外层套筒的驱动器的谐振器固定在所述底座上。
根据本发明的第一方面的一些实施方式,至少一个套筒的驱动器与所述镜筒单元的驱动机构构造成不同类型的。
根据本发明的第一方面的一些实施方式,在所述镜筒单元中,所述驱动机构的谐振器能够使镜筒步进1~3μm的距离。
根据本发明的第一方面的一些实施方式,在所述套筒组件的工作状态下,所述镜筒单元的镜筒和套筒组件的所有套筒都相对于相邻的外层套筒或底座达到最大伸出位置。
根据本发明的第一方面的一些实施方式,在所述套筒组件的非工作状态下,所述镜筒单元的镜筒和套筒组件的所有套筒都完全收缩到相邻的外层套筒或底座中,并且最外层套筒完全收缩到所述套筒组件的底座中。
根据本发明的第一方面的一些实施方式,所述套筒组件包括第一套筒和第二套筒,其中所述第二套筒、所述第一套筒和所述镜筒单元的镜筒的口径按照顺序依次减小并由外层向内层依次层叠嵌套设置。
根据本发明的第一方面的一些实施方式,所述套筒组件还包括驱动电路,所述驱动电路用于给所述镜筒单元的驱动机构和/或所述套筒的驱动器供电和/或提供控制信号。
根据本发明的第一方面的一些实施方式,为所述镜筒单元设有单独的驱动电路,所述单独的驱动电路用于给所述镜筒单元的驱动机构的压电元件提供不同频率的脉冲电压。
根据本发明的第一方面的一些实施方式,在所述镜筒单元中,所述驱动机构的从动件呈L型,所述从动件远离所述谐振器的一端与所述镜筒的底部的外侧壁相连接。
根据本发明的第一方面的一些实施方式,在所述镜筒单元中,所述驱动机构的从动件呈I型,所述从动件远离所述谐振器的一端与所述镜筒的底部的外侧壁相切并连接。
根据本发明的第一方面的一些实施方式,在所述镜筒单元中,所述驱动机构的谐振器具有至少两个呈轴对称设置的谐振臂。
根据本发明的第一方面的一些实施方式,在每个谐振臂上设有接触部,所述接触部用于活动地夹持和驱动所述从动件。
根据本发明的第一方面的一些实施方式,所述套筒组件还包括运动引导装置,所述运动 引导装置限定所述镜筒单元的镜筒和/或所述套筒的伸缩运动的移动轨迹。
根据本发明的第一方面的一些实施方式,所述运动引导装置包括滚珠和导轨,或所述运动引导装置包括滑块和导轨。
通过本申请提出的套筒组件,能够有效减小包括这种套筒组件的装置,例如摄像模组的总结构高度。此外,这种套筒组件不但可以快速响应调整需求,而且能够驱动较重的镜头零部件,实现微米级的镜筒精确动作控制和镜筒较大调整行程,由此可以快速和准确调整镜头的焦平面使其大致与感光芯片(成像面)重合,达到工作的后焦要求,确保具有高成像质量。
根据本发明的第二方面,提出一种摄像模组,包括:
前述的套筒组件,;
感光芯片,用于处理光线并形成图像信号;和
光学镜头,安装于所述套筒组件的镜筒单元的镜筒内并且其并光轴与所述感光芯片的光轴同轴。
根据本发明的第二方面的一些实施方式,所述摄像模组还包括线路板,所述感光芯片设在所述线路板上。
根据本发明的第二方面的一些实施方式,所述套筒组件的驱动电路设置在所述线路板上并与所述线路板电连接。
根据本发明的第二方面的一些实施方式,所述光学镜头包括多个子镜头,其中至少一个子镜头安装在所述套筒组件的镜筒单元的镜筒内,和/或至少一个子镜头安装在所述套筒组件的套筒中。
根据本发明的第二方面的一些实施方式,在所述套筒组件的非工作状态下,所述光学镜头和所述感光芯片之间具有安全间隙。
根据本发明的第三方面,提出一种移动电子设备,其包括前述的摄像模组。
根据本发明的第四方面,提出一种所述摄像模组的运行方法,其包括以下步骤:
给所述镜筒单元的驱动机构的压电元件施加第一频率的脉冲电压,从而使谐振器处于第一振动模式并通过与镜筒的底部固定连接的从动件带动镜筒朝着光学镜头的物侧运动,由此使所述光学镜头相对于感光芯片沿着光学镜头的光轴方向朝着光学镜头的物侧伸出;
给所述镜筒单元的驱动机构的压电元件施加第二频率的脉冲电压,从而使谐振器处于第二振动模式并通过与镜筒的底部固定连接的从动件带动镜筒朝着光学镜头的像侧运动,由此使所述光学镜头相对于感光芯片沿着光学镜头的光轴方向朝着光学镜头的像侧缩回。
根据本发明的第四方面的一些实施方式,控制所述套筒组件的镜筒单元的驱动机构和所述套筒组件的套筒的驱动器,使所述镜筒单元的镜筒和所述套筒组件的套筒都达到最大伸出位置,进入套筒组件的工作状态。
根据本发明的第四方面的一些实施方式,控制所述套筒组件的镜筒单元的驱动机构和所述套筒组件的套筒的驱动器,使所述镜筒单元的镜筒和所述套筒组件的套筒都达到完全收缩位置,进入套筒组件的非工作状态。
通过本申请提出的摄像模组及其运行方法,显著减小了摄像模组的总结构高度,同时确保摄像模组可以快速响应成像和焦距等的调整需求,即便对于较重的镜头零部件,也能高效实现微米级的镜筒精确动作控制和镜筒较大调整行程,由此可以快速和准确调整镜头的焦平面使其大致与感光芯片(成像面)重合,达到工作的后焦要求,确保摄像模组具有高成像质量。
附图说明
以下将结合附图和实施例来对本发明的技术方案作进一步的详细描述。在附图中,除非另有说明,相同的附图标记用于表示相同的部件。其中:
图1为本申请提出的套筒组件的一些实施例的简化的示意剖视图;
图2为本申请提出的套筒组件的另一些实施例的简化的示意剖视图,其中套筒组件处在全部伸出的工作状态;
图3为图2中所示的套筒组件的另一状态的简化的示意剖视图,其中套筒组件处在全部收缩的非工作状态;
图4为本申请提出的套筒组件的镜筒单元的一些实施例的俯视图;
图5为本申请提出的套筒组件的镜筒单元的另一些实施例的俯视图;
图6为本申请提出的套筒组件的镜筒单元的另一些实施例的俯视图;
图7为本申请提出的套筒组件的镜筒单元的一些实施例的立体图;
图8为本申请提出的套筒组件的一些实施例的立体图;
图9为本申请提出的驱动机构的一些实施例的结构示意图;
图10为图9所示驱动机构的简化的示意横截面图;
图11-13为本申请提出的驱动机构的谐振器的作用原理示意图;
图14为本申请提出的驱动机构的一些实施例的结构示意图;
图15为本申请提出的驱动机构的另一些实施例的结构示意图;
图16为本申请提出的驱动机构的另一些实施例的结构示意图;
图17为本申请提出的驱动机构的多层压电元件的结构示意图;
图18为本申请提出的摄像模组的一些实施例的示意剖视图;
图19为本申请提出的摄像模组的另一些实施例的简化的示意剖视图,其中摄像模组的套筒组件处在全部伸出的工作状态;
图20为图19所示的摄像模组的另一状态的简化的示意剖视图,其中摄像模组的套筒组件处在全部收缩的非工作状态。
附图标记列表
1、套筒组件                 125、第一接头;
10、镜筒单元;              126、第二接头;
11、镜筒;                  2、感光芯片;
12、驱动机构;              13、第一套筒;
121、从动件;               131、第一从动件;
1211、分杆部;              132、第一谐振器;
1212、传动件;              14、第二套筒;
                            141、第二从动件;
122、谐振器;
1221、谐振臂;              142、第二谐振器;
1222、接触部;              20、底座;
1223、接触面;              32、驱动器
123、压电元件;             21、底部;
124、多层压电元件;         22、安装口;
1241、压电单元;            3、光学镜头
具体实施方式
下面参照具体实施例,对本发明的构思进一步详细说明。需要指出,这里列举的实施例仅仅用于清楚地阐述本发明的发明构思,而不应理解成对本发明的限制。在此涉及的套筒组件、摄像模组、移动电子设备和摄像模组的运行方法的技术特征,只要没有违背自然规律或者技术规范,都可以在本发明构思的框架内任意组合或者替换,都在本发明的构思范围内。
需要指出,附图示出的实施例仅作为示例用于具体和形象地解释和说明本发明的构思,其在尺寸结构方面既不必然按照比例绘制,也不构成对本发明构思的限制。
在本说明书中提到或者可能提到的上、下、左、右、前、后、正面、背面、顶部、底部等方位用语是相对于各个附图中所示的构造进行定义的,它们是相对的概念,因此有可能会根据其所处不同位置、不同使用状态而进行相应地变化。所以,也不应当将这些或者其他的方位用语解释为限制性用语。
本申请提出的套筒组件包括镜筒单元,其中所述镜筒单元包括镜筒和驱动机构。镜筒设置用于承载光学镜头。驱动机构设置用于驱动所述用于承载光学镜头的镜筒往复运动。
驱动机构可以包括谐振器、设置在所述谐振器上的压电元件以及从动件。从动件可以与镜筒固定连接,尤其与镜筒的底部固定连接。替代地,谐振器可以与镜筒固定连接,尤其与镜筒的底部固定连接。
通过在所述压电元件上施加不同的脉冲电压,所述谐振器能够在不同的振动模式下与所述从动件产生相互作用力。通过所述谐振器与所述从动件之间的相互作用力,能够在谐振器与从动件之间产生相对运动,因此可以借助与镜筒固定连接的从动件或谐振器,带动镜筒进行往复运动。
在随后的实施例中,以从动件与镜筒固定连接并带动镜筒移动的方式作为示例,但是显然,也可以交换谐振器与从动件的位置和连接关系,采用谐振器与镜筒固定连接并带动镜筒移动的方式,都在本申请公开的范围内。
图1为本申请提出的套筒组件的一些实施例的示意剖视图。
如图1所示,在本实施例中,套筒组件1包括一个镜筒单元10,其中该镜筒单元10包括镜筒11和驱动机构12。在镜筒11中安装光学镜头3。驱动机构12设置用于驱动所述用于承载光学镜头3的镜筒11进行往复运动,通常是沿着光学镜头3的光轴方向往复运动。
具体地,驱动机构12包括谐振器122和设置在所述谐振器122上的压电元件123。利用不同的脉冲电压,例如不同频率的脉冲电压,可以激励压电元件123产生压电效应,并使谐振器122进入不同的振动模式。驱动机构12还包括从动件121,其一端与所述镜筒11固定连接,另一端与谐振器122活动连接。所述谐振器122可以驱动所述从动件121和与所述从动件121固定连接的镜筒11往复运动。
如图1所示,套筒组件1还可以包括用于容纳所述镜筒单元10的底座20。驱动机构12的谐振器122可以固定在套筒组件1的底座20上,例如通过远离从动件121的那一端固定在底座20的内侧底部21上。驱动机构12的谐振器122驱动从动件121和与所述从动件121固定连接的镜筒11相对于底座20往复运动,优选沿光学镜头3的光轴方向,从而实现镜筒11完全或部分地从底座20伸出,或者收缩到底座20中。在此,从动件121尤其可以与镜筒 11的底部固定连接,这里底部是指镜筒11的沿光学镜头3的光轴方向靠近像侧的端部,亦即靠近底座20方向的端部。此外,镜筒11的底部既可以是镜筒端面区域,也可以是临近端面的侧面部分。通过从动件121与镜筒11的底部固定连接,有利于通过驱动机构12实现镜筒11的最大伸缩移动行程,以及从动件121形成优化的驱动力臂。
可选地,套筒组件1也可以不包括底座20。在这种情况下,驱动机构12的谐振器122也可以固定在其他无需随光学镜头移动的基础结构上,从而驱动从动件121和与所述从动件121固定连接的镜筒11往复运动,例如相对于摄像模组的感光芯片往复运动,优选沿光学镜头3的光轴方向,从而实现镜筒11以及承载的光学镜头3相对于例如摄像模组的感光芯片2调整距离。
从动件121的一端与谐振器122传动连接,另一端与镜筒11连接,在图1的示意实施例中例如与镜筒11的底部21连接。通过给驱动机构12的压电元件123施加例如不同频率的脉冲电压,所述谐振器122能够以不同的振动模式驱动所述从动件121和与所述从动件121固定连接的镜筒11往复运动,由此镜筒11能够完全或部分地伸出底座20和收缩到底座20内。通过这种方式,能够有效减小包括这种套筒组件1的装置、例如摄像模组的总结构高度。此外,通过镜筒单元10的驱动机构12,一方面可以快速响应例如镜头焦平面或者焦距的调整需求,另一方面能够实现微米级的精确步进控制。例如,所述驱动机构12的谐振器122利用压电效应能够使镜筒11步进大约1~3μm的微小距离。
通过调整镜筒11,使镜头伸缩,可以调整镜头的焦平面使其大致与感光芯片(成像面)重合,达到工作的后焦要求。为实现更高质量的调节,根据需要,也可以选择设置多个驱动机构12共同驱动一个镜筒11。例如,可以考虑设置2、3、4个以及更多驱动机构12。多个驱动机构12可以围绕镜筒11均匀布置,实现均衡和更加精确的运动控制。
图2和图3为本申请提出的套筒组件的另一些实施例的简化的示意剖视图。根据本申请的构思,套筒组件1还可以包括一个或者多个套筒,其构造成一层或者多层嵌套的套筒,包围并容纳镜筒单元10,并可以相对彼此伸出和缩回。
根据一些实施例,可以设置仅一个套筒,其在外部以同心套筒的形式,包围镜筒单元10的镜筒11,并能够相对镜筒11往复运动。通过镜筒单元10的驱动机构12,镜筒单元10的镜筒11能够完全或部分地伸出这个套筒和收缩到这个套筒内,总体形成一种伸缩式套筒组件。
在套筒组件1包括仅一个套筒的情况下,镜筒单元10的镜筒11嵌套在所述套筒中,并能够通过所述驱动机构12驱动所述镜筒单元10的镜筒11相对于这个套筒进行往复运动,实现所述镜筒单元10的镜筒11从这个套筒伸出和收缩到这个套筒中。在此,镜筒单元10的驱动机构12的谐振器122可以固定在唯一的套筒上,例如固定在这个套筒的内侧底部上。相应地,这个套筒可以具有自身的驱动器32,具体请参见后面的描述。如果这个套筒的驱动器32采用与镜筒单元10的驱动机构12相同的结构形式,则驱动器32的谐振器122可以固定在套筒组件1的底座20上,或者在不包括底座20的情况下,直接固定在其他固定的基础结构上。
根据另一些实施例,也可以设置多个套筒,这些套筒例如构造成一系列直径不同的圆形或方形套筒,这些套筒可以一层套一层彼此同心地安装,形成层层嵌套的套筒组合,其中套筒可以相对彼此伸缩移动,例如内侧套筒从相邻外层套筒伸出和收缩到相邻外层套筒中。最内层套筒可以嵌套和包围镜筒单元10,尤其是嵌套镜筒单元10的镜筒11。在此,镜筒单 元10的驱动机构12的谐振器122可以固定在最内层套筒上。最外层套筒的驱动器的谐振器可以固定在套筒组件1的底座20上,或者在不包括底座20的情况下,直接固定在其他固定的基础结构上。
在图2和图3的实施例中,以2个套筒13、14为例说明套筒组件的一些实施例的结构。但是显然,套筒组件的套筒的数量不限于1个或者2个,而是可以根据详细描述的层层嵌套的套筒结构形式包括更多数量的套筒。在示出的实施例中,套筒组件1包括第一套筒13和第二套筒14,其中所述第二套筒14、所述第一套筒13和所述镜筒单元10的镜筒11的口径按照顺序依次减小,并由外层向内层依次层叠嵌套设置。
图2示出套筒组件1包括2个套筒13、14,并处在全部伸出的工作状态。图3示出对应的套筒组件1处在全部收缩的非工作状态。如图所示,套筒组件1的镜筒单元10嵌套在内层套筒13中,内层套筒13嵌套在外层套筒14中,而外层套筒14嵌套在底座20中,其中镜筒单元10的镜筒11、内层套筒13、外层套筒14和底座20俩俩相邻,并能够相对彼此往复运动。
每个套筒可以分别配有单独的驱动器32,所述驱动器32能够驱动对应的套筒相对于相邻外层的套筒或底座进行往复运动,从而实现从相邻外层的套筒或底座伸出和收缩到相邻外层的套筒或底座中。根据一些实施例,驱动器32可以是传统的用于驱动镜头的磁石驱动器或电磁驱动器,例如音圈马达等。
例如,套筒13、14的驱动器可以都采用传统的驱动器,只有镜筒单元10的镜筒11利用本申请提出的驱动机构12来驱动。在此情况下,只有套筒组件1的镜筒单元10包括利用压电效应的驱动机构12,这一方面充分利用了传统驱动器实现大步进距离的快速粗调,另一方面充分利用驱动机构12细微步进距离的精细微调,再结合驱动机构12适于驱动较重的零部件的特性,由此总体上实现摄像模组迅速、精确和稳定的镜头调整,确保高质量的成像。
可选地,部分或者全部套筒的驱动器32可以构造成与所述镜筒单元10的驱动机构12具有相同构造,即驱动器32也可以包括谐振器122、与谐振器122可动连接的从动件121和设置在所述谐振器122上的压电元件123。参见图2和3示出的实施例。
具体地,对于内层套筒,自身驱动器32的谐振器122的一端可以固定在相邻外层的套筒上,另一端可与从动件121活动地连接,而从动件121在远离谐振器122的另一端可以与套筒本身固定连接,尤其是与套筒的底部固定连接。换句话说,每个内层套筒13的驱动器32的谐振器122都可以固定在相邻的外层套筒14上,而从动件121与套筒本身固定连接,如此结构布置规则同样适用于使用3个、4个或者更多数量套筒的情况。
对于最外层套筒,自身驱动器32的谐振器122可以固定在套筒组件1的底座20上,或者在不包括底座20的情况下直接固定到其他固定的基础结构上。同样,从动件121一端与自身驱动器32的谐振器122可动地连接,另一端与最外层套筒本身固定连接,尤其是与套筒的底部固定连接。前面结合驱动机构12的从动件121与镜筒11的连接方式所描述的特征和技术效果,在此同样适用于驱动器32,在此不再赘述。
前面关于镜筒单元10的驱动机构12的工作过程和技术效果的描述同样适用于套筒自身的驱动器32。利用不同的脉冲电压,例如不同频率的脉冲电压,可以激励压电元件123产生压电效应,并使谐振器122进入不同的振动模式。内层套筒13的驱动器32的谐振器122可以驱动从动件121和与所述从动件121固定连接的内层套筒13相对于相邻的外层套筒14往复运动,优选沿光学镜头3的光轴方向,实现内层套筒13完全或部分地从外层套筒14伸出, 或者收缩到外层套筒14中。同样,外层套筒14可以完全或部分地从底座20伸出,或者收缩到底座20中。
在所述套筒组件1的工作状态下,所述镜筒单元10的镜筒11和套筒组件1的所有套筒都相对于相邻的外层套筒或底座20达到最大伸出位置。具体地,在图2的实施例中,镜筒单元10的镜筒11从套筒13完全伸出,套筒13从套筒14完全伸出,而套筒14从底座20完全伸出。在图2和图3的实施例中,套筒组件1包括2个套筒,因此从底座20向外伸出达到最大伸出位置的伸长长度范围大约为18.6mm至28.6mm。
在套筒组件1的非工作状态下,所述镜筒单元10的镜筒11和套筒组件1的所有套筒都完全收缩到相邻的外层套筒或底座20中。具体地,在图3的实施例中,镜筒单元10的镜筒11完全收缩到套筒13中,套筒13完全收缩到套筒14中,而套筒14完全收缩到底座20中。根据一些实施例,在套筒组件1的非工作状态下,镜筒单元10的镜筒11以及所有套筒都完全收纳在底座20中,尤其是镜筒11、各层套筒以及底座20的外表面齐平。
根据一些实施例,镜筒单元10的镜筒11带动光学镜头3伸缩,由此调整光学镜头3的焦平面,使其大致与感光芯片(成像面)重合,达到工作的后焦要求。可选地,光学镜头3是定焦镜头,因此镜筒11全部伸出时为工作状态,此时光学镜头3达到固定焦距,而全部缩回时为非工作状态,由此减小模组总高度。定焦的光学镜头3的这些特征同样适用于下述套筒组件还包括一个或者多个套筒的情况。
根据一些实施例,所述套筒组件1还包括驱动电路,所述驱动电路用于给所述镜筒单元10的驱动机构12和/或所述套筒的驱动器32供电和/或提供控制信号。
镜筒单元10的驱动机构12和/或所述套筒的驱动器32也可以分别设有单独的驱动电路,所述单独的驱动电路可以给对应的驱动机构12和/或32提供不同的供电模式和/或控制信号。
例如,在套筒组件1中,压电元件123的第一电极可以与驱动电路的第一端电连接,第二电极可以与驱动电路的第二端电连接,驱动电路用于给压电元件123提供不同频率的脉冲电压。
根据一些实施例,套筒组件还可以包括运动引导装置,所述运动引导装置限定所述镜筒单元10的镜筒11和/或所述套筒的伸缩运动的移动轨迹,尤其是直线往复运动。例如,运动引导装置可以包括滚珠和导轨,或者包括滑块和导轨。
需要指出,在图1至图3的实施例中,从动件121与镜筒11的底部固定连接并带动镜筒11伸缩移动,而谐振器122固定在相邻的外部套筒上,或者直接固定在套筒组件1的底座20上,或者直接固定在其他固定的基础结构上。但是,也可以交换谐振器122与从动件121的位置和连接关系,即谐振器122与镜筒11的底部固定连接并带动镜筒11伸缩移动,而从动件121固定在相邻的外部套筒上,或者直接固定在套筒组件1的底座20上,或者直接固定在其他固定的基础结构上,这同样可以驱动机构12的相应功能,并且能够与前面以及后面描述的其他技术特征组合成完整的技术方案,这些技术方案都在本申请的公开范围内。
图4至图6为本申请提出的套筒组件1的镜筒单元10的一些实施例的俯视图。
如图4所示,在所述镜筒单元10中,驱动机构12的从动件121呈L型,从动件121远离谐振器122的一端与镜筒11的底部的外侧壁相连接。
如图5所示,在所述镜筒单元10中,驱动机构12的从动件121呈I型,从动件121远离谐振器122的一端与镜筒11的底部的外侧壁相切并连接。
如图6所示,在所述镜筒单元10中,驱动机构12的从动件121呈I型,从动件121远 离谐振器122的一端通过传动件1212与镜筒11的底部相连接。传动件1212可以根据结构需求采用合适的形式。
图7示出了套筒组件的镜筒单元10的一些实施例的立体图。在此,镜筒单元10的镜筒11例如构造为圆柱体形状,从动件121可以如上所述构造为合适的形式,并与镜筒11固定连接。可选地,从动件121可以通过传动件1212间接地与镜筒11固定连接,这有利于与不同规格的镜筒灵活组装。在谐振器122的不同的振动模式下,从动件121连同镜筒11能够被谐振器122驱动进行往复运动,例如在图纸平面内向上运动或者向下(Y向)运动。
显然,在套筒的驱动器32构造成与所述镜筒单元10的驱动机构12相同结构的情况下,图7中原本表示镜筒单元10的镜筒11的圆柱体也可以是套筒组件1的套筒。同样,在不同的振动模式下,谐振器122驱动从动件121连同套筒可以进行往复运动,实现套筒的伸出和收缩。
图8示出了套筒组件的一些实施例的立体图,其中虚线所示的圆柱体形状可以表示镜筒单元10的镜筒11,从动件121可以如上所述构造为合适的形式,并与镜筒11固定连接。在谐振器122的不同的振动模式下,从动件121连同镜筒11能够被谐振器122驱动,例如在图纸平面内向上运动,代表伸出,或者在图纸平面内向下运动,代表收缩。
如图所示,可以根据设计或者性能需要,在外部围绕镜筒单元10嵌套安装一个或者多个套筒。因此,外层套筒包围内层套筒或者镜筒11,并可以彼此相对往复运动,实现套筒组合的伸出和收缩。尤其是可以围绕内层套筒以层层嵌套的结构形式设置更多数量的外部套筒,在此套筒不限于圆柱体形状,也可以如图所示为立方体形状,或者为其他合适的规则或不规则形状。
下面结合图9和图10,示例性地说明驱动机构的结构形式。图9为本申请提出的驱动机构的一些实施例的结构示意图,图10为图9所示驱动机构的简化的示意横截面图。如图所示,谐振器122可以包括多个谐振臂1221,其通过连接部彼此连接,整体上具有至少两个呈轴对称设置的谐振臂1221,例如构造成音叉状。每个谐振臂1221上设有接触部1222和压电元件123,多个谐振臂1221的接触部1222用于活动地夹持从动件121。
压电元件123由具有压电效应的材料制成,例如单晶或多晶陶瓷。当外电场的频率与压电元件123的固有频率一致时,压电元件123进入谐振状态,引起谐振臂1221振动,谐振臂1221于是通过接触部1222与从动件121之间的力作用,带动从动件121产生位移。通过施加不同的脉冲电压,可以产生不同的振动模式,由此实现不同的运动方式,后面还将结合附图描述具体的作用原理。
具体地,由于谐振臂1221的数量为多个,进而驱动机构12的压电元件123的数量也可以为对应多个。可选地,多个压电元件123的第一电极并联后再与驱动电路的第一电极电连接,多个压电元件123的第二电极并联后再与驱动电路的第二电极电连接。
在示出的实施例中,从动件121构造成圆杆,其一端被多个谐振臂1221的接触部1222活动地夹持,从而能够在谐振臂1221的力用作下,沿着所示直角坐标系的Y轴方向往复运动。可选地,接触面1223的曲率小于从动件121的侧周表面的曲率,使得二者之间既能有足够的预紧力,又能对从动件121产生足够的摩擦力以带动从动件121运动。
例如,在此从动件121可以构造成L形的圆杆,其远离谐振器122的另一自由端可以与镜筒单元10的镜筒11固定连接,或者与套筒组件1的套筒固定连接,从而驱动其沿着所示直角坐标系的Y轴方向往复运动。
可选地,从动件121可以为多棱柱杆,或者具有异型横截面等。
显然,在本申请的构思中,谐振器122、压电元件123和从动件121的具体结构形式及其相互位置关系,可以根据设计结构和产品性能合理选择,而不限于在此举例说明的形式。
随后结合图11、图12和图13简要说明谐振器122在压电元件123的激励下可能产生的作用形态和原理。简而言之,利用压电元件123激励谐振器122,可以使其处于不同的振动状态。
图11示出在第一激励频率时的典型状态。—方面,谐振臂1221在纵向(Y向)振动,另一方面,相互靠近或相互离开地(X向)振动。根据两种振动中哪个振动优先于另一振动,使接触部1222执行具有相应旋转方向的椭圆运动。由此接触部1222可以将在正的或负的Y向上的作用力施加到从动件121上。
图12对应于不同于第一激励频率的第二激励频率时的状态。此时,接触部1222主要在X向振动并且相互撞击。由此从动件121可以活动地引导,并可以通过外部作用力移动。
图13对应于不同的第三激励频率,此时谐振臂1221可以围绕纵向(Y向)进行扭转运动,并以相应的方式驱动从动件121。
谐振臂1221的接触部1222与从动件121相接触的表面为接触面1223。可选地,接触面1223的形状可以匹配对应从动件121的侧周表面的形状,从而从动件121与谐振臂1221之间实现更精确的力传递和运动控制。
在本实施例中,谐振臂1221的数量为两个且两个谐振臂1221间隔相对设置。从动件121呈杆状并与谐振臂1221相垂直设置。在其他实施例中,谐振臂1221的数量可以为三个、四个或者更多。
通过选择不同的脉冲电压,尤其是具有不同频率的电压,可以实现谐振臂1221不同的振动激励模式,进而驱动从动件121实现不同的运动方式,包括运动方向、速度、步进距离和动作频率等方面的变化。本申请不限于作为示例的实施例给出的驱动机构12的具体形式,而是可以根据设计和性能合理选择结构形式及其组合。
图14示出了驱动机构12的一些实施例的结构示意图。如图14所示,驱动机构12的从动件121靠近谐振器122的一端构造有多个分杆部1211,例如包括与驱动机构12的谐振臂1221数量相应的分杆部1211,例如分杆部1211的数量为两个。可选地,例如通过预先成型的形状或者材料特性形成的预应力,使每个分杆部1211与对应的谐振臂1221之间产生的作用力与反作用力可以在分杆部1211与谐振臂1221之间形成过盈配合。由此,即使在驱动机构12不通电时,也能在从动件121与谐振臂1221之间形成自锁效果,这有利于实现运动模式的精确控制和调整。
图15示出了驱动机构12的另一些实施例的结构示意图。如图所示,谐振臂1221的内侧和外侧可以分别设置有压电元件123,例如采用对称布置的方式,这有利于均匀和平衡地驱动从动件121实现不同的运动方式。
图16示出了驱动机构12的另一些实施例的结构示意图,在此压电元件123设置于谐振臂1221的外侧。压电元件123可以是单层压电元件。压电元件123可以通过导电粘接剂连接于谐振臂1221上,导电粘接剂可以为添加环氧银或导电微金属球的粘接剂。可选地,压电元件123可以涂覆或逐层形成于谐振臂1221上,或压电元件123通过电解技术可导电地连接于谐振臂1221上。
图17示出了驱动机构12的多层压电元件的结构示意图。在此,压电元件可以是多层压 电元件124,多层压电元件124包括多个压电单元1241,每两个压电单元1241之间设有由银、镍或铂制成的导电层。多个压电单元1241交错设置并厚度在10~20μm范围内,多层压电元件124具有比单层压电元件运行电压更低的优点。例如0.25mm厚的单层压电元件需要100V电压才能达到工作电场,而12.5μm厚度的20层多层压电元件可以在5V电压下即可运行,使用更方便。
下面结合图18、图19和图20示例性地描述本申请出的摄像模组的一些实施例。如未特别说明,前面结合套筒组件1所描述的关于套筒的相关特征、结构形式、作用方式和技术效果等,同样适用于包括套筒组件1的下述摄像模组。
图18示出了摄像模组的一些实施例的示意剖视图,在此摄像模组包括前述的套筒组件1,其仅具有一个镜筒单元10,而不包括额外的套筒。镜筒单元10容纳在底座20中。驱动机构12的谐振器122可以固定在套筒组件1的底座20上。
底座20包括底部21。底座20还包括足够的容纳空间,以便于容纳至少一个镜筒单元10。底座20还开设有安装口22,至少一个镜筒单元10的镜筒11能够通过该安装口22伸出底座20或缩回底座20。安装口22的形状和尺寸匹配镜筒单元10的镜筒11的形状和大小,以方便通过安装口22安装镜筒11和其他套筒。在本实施例中,镜筒11和安装口22为圆形。底座20可以为方形或者圆形等合适形状。
如图所示,用于处理光线并形成图像信号的感光芯片2可以安装在底座20的底部21上。可选地,所述摄像模组还可以包括线路板,所述感光芯片2设在所述线路板上。所述线路板也可以设置在底座20的底部21上,或者以其他传统方式固定在摄像模组中。套筒组件1的驱动电路也可以一同设置在所述线路板上并与线路板电连接。
在镜筒单元10的镜筒11中安装光学透镜3。例如,光学镜头3可以通过螺接、卡接或胶接等常用方式安装于镜筒单元10的镜筒11内。
光学透镜3的光轴与所述感光芯片2的光轴同轴。在摄像模组的非工作状态下,镜筒单元10的镜筒11收缩到底座20中。此时,所述光学镜头3和所述感光芯片2之间具有安全间隙。换句话说,在套筒组件1缩到最短时,光学镜头3和感光芯片2之间仍具有一段距离,避免干涉影响成像功能。
图19和图20示出了摄像模组的另一些实施例,在此摄像模组包括前述的套筒组件1,其不仅包括镜筒单元10,而且还可以包括额外的一个或者多个套筒13、14。
如图所示,光学镜头3安装于套筒组件1的镜筒单元10的镜筒11内,并且光学镜头3可以在镜筒单元10的镜筒11的带动下沿着光学镜头3的光轴朝光学镜头3的物侧伸出或朝光学镜头3的像侧收缩。相应地,套筒组件1的的套筒13、14可以同步或者异步地伸出或者收缩,由此摄像模组的光学镜头3与感光芯片2之间的距离变大或缩小,从而实现摄像模组的多倍变焦,满足更多的拍照需求。
图19所示的摄像模组处在工作状态中,此时所有第一套筒13和第二套筒14以及镜筒单元10的镜筒11全部伸出。具体地,镜筒单元10的镜筒11从套筒13完全伸出,套筒13从套筒14完全伸出,而套筒14从底座20完全伸出。
在此,最外层套筒14的形状和尺寸可以小于等于底座20的安装口22的形状和大小,以使套筒组件1的镜筒单元10以及套筒能够通过安装口22伸出或缩回底座20。
根据本申请,在摄像模组的套筒组件包括2个套筒、即第一套筒13和第二套筒14的情况下,所述可伸缩套筒组件的最大高度尺寸的范围为大约18.6mm至28.6mm。包括这种套筒 组件的摄像模组的最大高度尺寸可以为大约23mm至31mm。而当处于非工作状态时,所述可伸缩套筒组件的最小高度尺寸的范围为6mm至9mm。包括这种套筒组件的摄像模组的最小高度尺寸可以为大约8mm至12mm。
图20所示的摄像模组的套筒组件处在非工作状态中,此时第一套筒13和第二套筒14以及镜筒单元10的镜筒11全部收缩。具体地,镜筒单元10的镜筒11完全收缩到套筒13中,套筒13完全收缩到套筒14中,而套筒14完全收缩到底座20中。可选地,镜筒11、各层套筒、底座20的外表面以及摄像模组的对应外壳表面都是齐平的,这有利于简化摄像模组结构和实现模块化设计。
在图19和图20的实施例中,以2个套筒、即第一套筒13和第二套筒14为例说明套筒组件的一些实施例的结构。在此,所述套筒组件1包括第一套筒13和第二套筒14,其中所述第二套筒14、所述第一套筒13和所述镜筒单元10的镜筒11的口径按照顺序依次减小并由外层向内层依次层叠嵌套设置。但是显然,套筒组件的套筒的数量不限于1个或者2个,而是可以根据详细描述的层层嵌套的套筒结构形式包括更多数量的套筒。
需要指出,在此套筒13可以示例性地表示内层套筒或者最内层套筒,而套筒14可以示例性地表示最外层套筒。因此结合两个套筒13、14描述的上述特征同样适用于包括多于2个套筒,例如3个、4个、5个甚至更多套筒的其他套筒组件,尤其是适用于相应最内层套筒和最外层套筒。
在图19和图20的实施例中,套筒组件1包括第一套筒13和第二套筒14。其中第一套筒13包括和第一驱动器,第一驱动器包括第一从动件131和第一谐振器132。第二套筒14包括第二驱动器,第二驱动器包括第二从动件141和第二谐振器142。第二套筒14、第一套筒13和镜筒11的口径按照顺序依次减小并由外层向内层依次层叠嵌套设置。此外,第一套筒13和第二套筒14可以分别在两端构造有合适的通孔,方便实现套筒嵌套和伸缩运动。
如图所示,第一从动件131的一端与第一套筒13相连接,第一谐振器132固定连接于第二套筒14的内侧底部。给第一谐振器132的压电元件提供不同频率的脉冲电压,使得第一从动件131带动第一套筒13通过安装口22伸出或缩回第二套筒14内。例如,给第一谐振器132的压电元件提供第一频率的脉冲电压,第一谐振器132处于第一振动模式,第一谐振器132通过第一从动件131带动第一套筒13沿第一方向运动,即第一套筒13伸出第二套筒14。给第一谐振器132的压电元件提供第二频率的脉冲电压,第一谐振器132处于第二振动模式,第一谐振器132通过第一从动件131带动第一套筒13沿第二方向运动,即第一套筒13缩回第二套筒14。
第二从动件141的一端与第二套筒14相连接,第二谐振器142固定连接于底座20的底部21。给第二谐振器142的压电元件提供不同频率的脉冲电压,使得第二从动件141带动第二套筒14伸出或缩回底座20。例如,给第二谐振器142的压电元件提供第三频率的脉冲电压,第二谐振器142处于第一振动模式,第二谐振器142通过第二从动件141带动第二套筒14沿第一方向运动,即第二套筒14伸出底座20。给第二谐振器142的压电元件提供第四频率的脉冲电压,第二谐振器142处于第二振动模式,第二谐振器142通过第二从动件141带动第二套筒14沿第二方向运动,即第二套筒14缩回底座20。前述第一频率、第二频率、第三频率和第四频率可以根据设计需要选择为相同或者不同的。
每个套筒可以分别配有单独的驱动器32,具体请参见前面关于套筒的驱动器的特征描述。
根据一些实施例,摄像模组的套筒组件还包括运动引导装置,所述运动引导装置限定所 述镜筒单元10的镜筒11和/或所述套筒的伸缩运动的移动轨迹。例如,运动引导装置可以包括滚珠和导轨,或者包括滑块和导轨。可选地,可以在两个相邻套筒上,或者在镜筒单元10的镜筒11与最内层套筒上,分别设置滚珠和导轨,或者分别设置滑块和导轨,从而通过滚珠和导轨的运动配合,或者滑块和导轨的运动配合,例如实现直线引导镜筒11与最内层套筒之间或者套筒之间的相对往复运动。
根据一些实施例,光学镜头3是定焦镜头。在镜筒11和所有套筒13、14全部伸出时为摄像模组的工作状态,达到光学镜头3的固定焦距,而在全部缩回时为摄像模组的非工作状态,由此减小模组总高度,并利用有限的结构空间实现不同的焦距需求。
根据另一些实施例,所述光学镜头3可以包括多个子镜头,其中至少一个子镜头安装在所述套筒组件1的镜筒单元10的镜筒11内,而其他子镜头可以根据光学性能需要安装在其他一个或者多个套筒中,例如安装在最内层套筒13中,或者安装在最外层套筒14中。在此情况下,光学镜头3也可以是变焦镜头,由此通过镜筒11和/或套筒的组合动作,实现摄像模组变焦。
此外,本申请还涉及一种移动电子设备,其包括前述的摄像模组。
根据本申请提出的摄像模组的运行方法,可以根据需要按照任意顺序实施以下方法步骤:
给所述镜筒单元10的驱动机构12的压电元件123施加第一频率的脉冲电压,从而使对应的谐振器122处于第一振动模式并通过对应的从动件121带动与从动件121固定连接的镜筒11朝着光学镜头3的物侧运动,由此使所述光学镜头3相对于感光芯片2沿着光学镜头3的光轴方向朝着光学镜头3的物侧伸出,机械后焦增大,达到工作焦距;
给所述镜筒单元10的驱动机构12的压电元件123施加第二频率的脉冲电压,从而使对应的谐振器122处于第二振动模式并通过对应的从动件121带动与从动件121固定连接的镜筒11朝着光学镜头3的像侧运动,由此使所述光学镜头3相对于感光芯片2沿着光学镜头3的光轴方向朝着光学镜头3的像侧缩回,机械后焦减小,降低镜头总长TTL(Total Track Length),减小整体高度尺寸。
根据提出的运行方法的一些实施例,控制所述套筒组件1的镜筒单元10的驱动机构12和所述套筒组件1的套筒的驱动器32,使所述镜筒单元10的镜筒11和所述套筒组件1的套筒都达到最大伸出位置,进入套筒组件1的工作状态。
还可以控制所述套筒组件1的镜筒单元10的驱动机构12和所述套筒组件1的套筒的驱动器32,使所述镜筒单元10的镜筒11和所述套筒组件1的套筒都达到完全收缩位置,进入套筒组件1的非工作状态
通过执行本申请提出的摄像模组的运行方法,例如通过施加合适的脉冲电压,控制套筒的驱动器和/或镜筒的驱动机构,实现控制套筒组件1的伸长和缩短,由此调整光学镜头3的焦平面,使其大致与感光芯片(成像面)重合,达到工作的后焦要求,确保高质量的成像。
在一些实施例中,可以给所述镜筒单元10的驱动机构12的压电元件123以一定时间间隔施加第一频率的脉冲电压,从而使套筒组件1的所有套筒和镜筒单元10的镜筒11从内层向外层或者从外层向内层依次伸出。
在另一些实施例中,也可以给所述镜筒单元10的驱动机构12的压电元件123以一定时间间隔施加第二频率的脉冲电压,从而使套筒组件1的所有套筒和镜筒单元10的镜筒11从内层向外层或者从外层向内层依次缩回。第一频率的脉冲电压和第二频率的脉冲电压可以根据结构和性能合理地选择,也可以是相同或者不同的。
可选地,还可以使套筒组件的所有套筒和镜筒单元10的镜筒11同时伸出和/或缩回。
通过本申请提出的摄像模组的运行方法,能够在显著减小摄像模组的总结构高度的情况下,仍然确保摄像模组执行快速和准确的响应动作,并确保高成像质量。尤其是,对套筒组件的镜筒单元10的控制可以快速响应调整需求,同时能够实现微米级的精确动作控制,驱动较重的镜头零部件。例如,摄像模组能够使镜筒11步进大约1~3μm的距离。
需要指出,在此提出的技术方案不仅仅局限于上述说明中的内容,本领域技术人员可以在不脱离本发明的发明思想的前提下,对上述实施例进行多种变型和修改,而这些变型和修改均属于本发明的保护范围。

Claims (30)

  1. 一种套筒组件(1),其特征在于,所述套筒组件(1)包括镜筒单元(10),其中所述镜筒单元(10)包括:
    镜筒(11),其设置用于承载光学镜头(3);和
    驱动机构(12),其设置用于驱动所述用于承载光学镜头(3)的镜筒(11)往复运动,其中所述驱动机构(12)包括:
    谐振器(122),
    设置在所述谐振器(122)上的压电元件(123),和
    能够相对于谐振器(122)运动的从动件(121),其中所述从动件(121)与镜筒(11)的底部固定连接。
  2. 根据权利要求1所述的套筒组件(1),其中,通过在所述压电元件(123)上施加不同的脉冲电压,所述谐振器(122)能够在不同的振动模式下与所述从动件(121)产生相互作用力。
  3. 根据权利要求2所述的套筒组件(1),其中,通过所述谐振器(122)与所述从动件(121)之间的相互作用力,所述谐振器(122)能够驱动所述从动件(121)和与所述从动件(121)固定连接的镜筒(11)往复运动。
  4. 根据权利要求1到3中任一项所述的套筒组件(1),其中,所述套筒组件(1)还包括用于容纳所述镜筒单元(10)的底座(20),其中所述镜筒单元(10)的驱动机构(12)的谐振器(122)固定在所述镜筒单元(10)的底座(20)上。
  5. 根据权利要求1到4中任一项所述的套筒组件(1),其中,所述套筒组件(1)还包括一个套筒,所述镜筒单元(10)的镜筒(11)嵌套在所述套筒中,并能够通过所述驱动机构(12)驱动所述镜筒单元(10)的镜筒(11)相对于所述套筒进行往复运动,实现所述镜筒单元(10)的镜筒(11)从所述套筒伸出和收缩到所述套筒中,其中所述镜筒单元(10)的驱动机构(12)的谐振器(122)固定在所述套筒上。
  6. 根据权利要求1到4中任一项所述的套筒组件(1),其中,所述套筒组件(1)包括多个套筒(13,14),所述多个套筒(13,14)彼此层层嵌套并能够相对彼此伸缩移动,其中所述镜筒单元(10)的镜筒(11)嵌套在最内层套筒中,并且所述镜筒单元(10)的驱动机构(12)的谐振器(122)固定在所述最内层套筒上。
  7. 根据权利要求5或6所述的套筒组件(1),其中,每个套筒分别配有驱动器(32),所述驱动器(32)设置用于驱动对应的套筒进行伸缩移动。
  8. 根据权利要求7所述的套筒组件(1),其中,所述套筒的驱动器(32)构造成与所述镜筒单元(10)的驱动机构(12)相同类型的,其中每个内层套筒的驱动器(32)的谐振器固定在相邻的外层套筒上。
  9. 根据权利要求7或8所述的套筒组件(1),其中,所述套筒组件(1)还包括用于容纳所述套筒的底座(20),其中最外层套筒嵌套在所述底座(20)中并能够相对于底座(20) 伸缩移动,并且最外层套筒的驱动器(32)的谐振器固定在所述底座(20)上。
  10. 根据权利要求7所述的套筒组件(1),其中,至少一个套筒的驱动器(32)与所述镜筒单元(10)的驱动机构(12)构造成不同类型的。
  11. 根据权利要求1到10中任一项所述的套筒组件(1),其中,在所述镜筒单元(10)中,所述驱动机构(12)的谐振器(122)能够使镜筒(11)步进1~3μm的距离。
  12. 根据权利要求5到11中任一项所述的套筒组件(1),其中,在所述套筒组件(1)的工作状态下,所述镜筒单元(10)的镜筒(11)和套筒组件(1)的所有套筒都相对于相邻的外层套筒或底座(20)达到最大伸出位置。
  13. 根据权利要求5到12中任一项所述的套筒组件(1),其中,在所述套筒组件(1)的非工作状态下,所述镜筒单元(10)的镜筒(11)和套筒组件(1)的所有套筒都完全收缩到相邻的外层套筒或底座中,并且最外层套筒完全收缩到所述套筒组件(1)的底座(20)中。
  14. 根据权利要求6到13中任一项所述的套筒组件(1),其中,所述套筒组件(1)包括第一套筒(13)和第二套筒(14),其中所述第二套筒(14)、所述第一套筒(13)和所述镜筒单元(10)的镜筒(11)的口径按照顺序依次减小并由外层向内层依次层叠嵌套设置。
  15. 根据权利要求1到14中任一项所述的套筒组件(1),其中,所述套筒组件(1)还包括驱动电路,所述驱动电路用于给所述镜筒单元(10)的驱动机构(12)和/或所述套筒的驱动器(32)供电和/或提供控制信号。
  16. 根据权利要求1到15中任一项所述的套筒组件(1),其中,为所述镜筒单元(10)设有单独的驱动电路,所述单独的驱动电路用于给所述镜筒单元(10)的驱动机构(12)的压电元件(123)提供不同频率的脉冲电压。
  17. 根据权利要求1到16中任一项所述的套筒组件(1),其中,在所述镜筒单元(10)中,所述驱动机构(12)的从动件(121)呈L型,所述从动件(121)远离所述谐振器(122)的一端与所述镜筒(11)的底部的外侧壁相连接。
  18. 根据权利要求1到16中任一项所述的套筒组件(1),其中,在所述镜筒单元(10)中,所述驱动机构(12)的从动件(121)呈I型,所述从动件(121)远离所述谐振器(122)的一端与所述镜筒(11)的底部的外侧壁相切并连接。
  19. 根据权利要求1到18中任一项所述的套筒组件(1),其中,在所述镜筒单元(10)中,所述驱动机构(12)的谐振器(122)具有至少两个呈轴对称设置的谐振臂(1221)。
  20. 根据权利要求19所述的套筒组件(1),其中,在每个谐振臂(1221)上设有接触部(1222),所述接触部(1222)用于活动地夹持和驱动所述从动件(121)。
  21. 根据权利要求5到20中任一项所述的套筒组件(1),其中,所述套筒组件(1)还包括运动引导装置,所述运动引导装置限定所述镜筒单元(10)的镜筒(11)和/或所述套筒的伸缩运动的移动轨迹。
  22. 根据权利要求21所述的套筒组件(1),其中,所述运动引导装置包括滚珠和导轨, 或所述运动引导装置包括滑块和导轨。
  23. 一种摄像模组,其特征在于,包括:
    如权利要求1至22中任一所述的套筒组件(1);
    感光芯片(2),用于处理光线并形成图像信号;和
    光学镜头(3),安装于所述套筒组件(1)的镜筒单元(10)的镜筒(11)内并且其并光轴与所述感光芯片(2)的光轴同轴。
  24. 根据权利要求23所述的摄像模组,其中,所述摄像模组还包括线路板,所述感光芯片(2)设在所述线路板上。
  25. 根据权利要求24所述的摄像模组,其中,所述套筒组件(1)的驱动电路设置在所述线路板上并与所述线路板电连接。
  26. 根据权利要求23到25中任一项所述的摄像模组,其中,所述光学镜头(3)包括多个子镜头,其中至少一个子镜头安装在所述套筒组件(1)的镜筒单元(10)的镜筒(11)内,和/或至少一个子镜头安装在所述套筒组件(1)的套筒中。
  27. 根据权利要求2到26中任一项3所述的摄像模组,其中,在所述套筒组件(1)的非工作状态下,所述光学镜头(3)和所述感光芯片(2)之间具有安全间隙。
  28. 一种移动电子设备,其特征在于,包括如权利要求23至27中任一项所述的摄像模组。
  29. 一种如权利要求23至27中任一项所述的摄像模组的运行方法,其特征在于,包括以下步骤:
    给所述镜筒单元(10)的驱动机构(12)的压电元件(123)施加第一频率的脉冲电压,从而使谐振器(122)处于第一振动模式并通过与镜筒(11)的底部固定连接的从动件(121)带动镜筒(11)朝着光学镜头(3)的物侧运动,由此使所述光学镜头(3)相对于感光芯片(2)沿着光学镜头(3)的光轴方向朝着光学镜头(3)的物侧伸出;
    给所述镜筒单元(10)的驱动机构(12)的压电元件(123)施加第二频率的脉冲电压,从而使谐振器(122)处于第二振动模式并通过与镜筒(11)的底部固定连接的从动件(121)带动镜筒(11)朝着光学镜头(3)的像侧运动,由此使所述光学镜头(3)相对于感光芯片(2)沿着光学镜头(3)的光轴方向朝着光学镜头(3)的像侧缩回。
  30. 根据权利要求29所述的套筒组件(1)的运行方法,其中,控制所述套筒组件(1)的镜筒单元(10)的驱动机构(12)和所述套筒组件(1)的套筒的驱动器(32),使所述镜筒单元(10)的镜筒(11)和所述套筒组件(1)的套筒都达到最大伸出位置,进入套筒组件(1)的工作状态,和/或
    控制所述套筒组件(1)的镜筒单元(10)的驱动机构(12)和所述套筒组件(1)的套筒的驱动器(32),使所述镜筒单元(10)的镜筒(11)和所述套筒组件(1)的套筒都达到完全收缩位置,进入套筒组件(1)的非工作状态。
PCT/CN2022/072710 2021-02-09 2022-01-19 套筒组件、摄像模组及其运行方法和移动电子设备 WO2022170931A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110175046.7A CN114915704B (zh) 2021-02-09 2021-02-09 套筒组件、摄像模组及其运行方法和移动电子设备
CN202110175046.7 2021-02-09

Publications (1)

Publication Number Publication Date
WO2022170931A1 true WO2022170931A1 (zh) 2022-08-18

Family

ID=82762323

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/072710 WO2022170931A1 (zh) 2021-02-09 2022-01-19 套筒组件、摄像模组及其运行方法和移动电子设备

Country Status (2)

Country Link
CN (1) CN114915704B (zh)
WO (1) WO2022170931A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101728970A (zh) * 2008-10-10 2010-06-09 德昌电机(深圳)有限公司 压电式运动系统及具有所述压电式运动系统的镜头驱动装置
US20170054387A1 (en) * 2015-08-18 2017-02-23 Canon Kabushiki Kaisha Driving circuit for a vibration type actuator, vibration device, image blur correction apparatus, replacement lens, image pickup apparatus, and automatic stage
CN110031948A (zh) * 2017-11-08 2019-07-19 佳能株式会社 在光轴方向上可移动地保持透镜组的摄像单元和摄像设备
CN211352077U (zh) * 2019-08-30 2020-08-25 华为技术有限公司 压电驱动结构、摄像机镜头及电子设备

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002072063A (ja) * 2000-08-24 2002-03-12 Tamron Co Ltd 焦点検出センサを備えた一眼レフカメラおよびファインダー
CH696993A5 (de) * 2004-06-24 2008-02-29 Miniswys Sa Antriebseinheit.
KR100550907B1 (ko) * 2004-09-02 2006-02-13 삼성전기주식회사 카메라모듈의 렌즈 이송장치
JP2006113131A (ja) * 2004-10-12 2006-04-27 Seiko Precision Inc 光学モジュールおよびこれを備えた撮像装置
KR100799867B1 (ko) * 2006-02-20 2008-01-31 삼성전기주식회사 렌즈 이송장치
US7872820B2 (en) * 2008-07-16 2011-01-18 Canon Kabushiki Kaisha Lens barrel and image pickup apparatus
CN101951467B (zh) * 2009-07-10 2013-08-28 鸿富锦精密工业(深圳)有限公司 相机模组
KR101044109B1 (ko) * 2009-08-18 2011-06-28 삼성전기주식회사 렌즈 구동 모듈
CN210626755U (zh) * 2019-07-30 2020-05-26 南昌欧菲光电技术有限公司 摄像模组及其镜头组件以及移动终端
CN211531170U (zh) * 2020-03-25 2020-09-18 南昌欧菲光电技术有限公司 镜头组件、摄像模组及电子设备
CN111552135B (zh) * 2020-05-18 2021-10-26 Oppo广东移动通信有限公司 摄像头模组及电子设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101728970A (zh) * 2008-10-10 2010-06-09 德昌电机(深圳)有限公司 压电式运动系统及具有所述压电式运动系统的镜头驱动装置
US20170054387A1 (en) * 2015-08-18 2017-02-23 Canon Kabushiki Kaisha Driving circuit for a vibration type actuator, vibration device, image blur correction apparatus, replacement lens, image pickup apparatus, and automatic stage
CN110031948A (zh) * 2017-11-08 2019-07-19 佳能株式会社 在光轴方向上可移动地保持透镜组的摄像单元和摄像设备
CN211352077U (zh) * 2019-08-30 2020-08-25 华为技术有限公司 压电驱动结构、摄像机镜头及电子设备

Also Published As

Publication number Publication date
CN114915704B (zh) 2023-04-21
CN114915704A (zh) 2022-08-16

Similar Documents

Publication Publication Date Title
WO2022170931A1 (zh) 套筒组件、摄像模组及其运行方法和移动电子设备
KR20050074266A (ko) 구동 장치, 렌즈 유닛 및 카메라
CN103176260B (zh) 驱动装置
CN117203583A (zh) 潜望式摄像模组和可变焦摄像模组
CN111479047B (zh) 一种摄像组件和电子设备
CN114879336A (zh) 可变焦摄像模组
WO2022218079A1 (zh) 可伸缩式摄像模组和电子设备
WO2023197994A1 (zh) 驱动组件和电子设备
CN114942505B (zh) 可变焦摄像模组
CN115086509B (zh) 潜望式摄像模组
CN115268008B (zh) 可变焦摄像模组
WO2022166677A1 (zh) 摄像模组及其光学防抖方法和电子设备
WO2022033356A1 (zh) 超声波压电马达、摄像头模组及电子设备
WO2022184089A1 (zh) 感光组件、摄像模组、移动电子设备以及光学防抖方法
CN114942504A (zh) 可变焦摄像模组
CN109061829B (zh) 镜头驱动装置和摄像模组
US20240094602A1 (en) Retractable Camera Module and Electronic Device
CN116149007A (zh) 子母式光学镜头及摄像模组
CN115052082B (zh) 潜望式摄像模组和电子设备
CN115379072B (zh) 光学致动器及相应的摄像模组
CN114915700B (zh) 摄像模组及终端设备
WO2022166924A1 (zh) 摄像模组及终端设备
WO2024104112A1 (zh) 驱动组件和电子设备
WO2024061006A1 (zh) 驱动组件和电子设备
WO2023061479A1 (zh) 压电驱动器、成像模组及电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22752093

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22752093

Country of ref document: EP

Kind code of ref document: A1