WO2022218079A1 - 可伸缩式摄像模组和电子设备 - Google Patents

可伸缩式摄像模组和电子设备 Download PDF

Info

Publication number
WO2022218079A1
WO2022218079A1 PCT/CN2022/080640 CN2022080640W WO2022218079A1 WO 2022218079 A1 WO2022218079 A1 WO 2022218079A1 CN 2022080640 W CN2022080640 W CN 2022080640W WO 2022218079 A1 WO2022218079 A1 WO 2022218079A1
Authority
WO
WIPO (PCT)
Prior art keywords
camera module
conductive
electrical connection
peripheral wall
retractable camera
Prior art date
Application number
PCT/CN2022/080640
Other languages
English (en)
French (fr)
Inventor
钱佳敏
王慧
戎琦
叶林敏
袁栋立
陈飞帆
阙嘉耀
Original Assignee
宁波舜宇光电信息有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁波舜宇光电信息有限公司 filed Critical 宁波舜宇光电信息有限公司
Priority to CN202280027261.5A priority Critical patent/CN117296330A/zh
Publication of WO2022218079A1 publication Critical patent/WO2022218079A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B13/00Viewfinders; Focusing aids for cameras; Means for focusing for cameras; Autofocus systems for cameras
    • G03B13/32Means for focusing
    • G03B13/34Power focusing

Definitions

  • the present application relates to the field of camera modules, in particular to a retractable camera module and electronic equipment.
  • the telephoto camera module refers to a camera module with a larger effective focal length.
  • the total focal length of the telephoto camera module will increase accordingly, which leads to the continuous increase of the overall height and size of the camera module, which is difficult to adapt to the development trend of thin and light electronic devices.
  • the periscope camera module In order to solve the technical contradiction between the high design of the camera module and the high-magnification zoom shooting function, most manufacturers currently use the periscope camera module to replace the traditional vertical camera module. Compared with the traditional upright camera module, the periscope camera module is provided with light turning elements (for example, prisms, mirrors, etc.) to change the imaging optical path, thereby reducing the overall height and size of the camera module at the same time. To meet the optical design requirements with a large effective focal length.
  • light turning elements for example, prisms, mirrors, etc.
  • the periscope camera module Compared with the traditional vertical camera module, the periscope camera module has a relatively small height dimension, but it has a relatively larger length and width dimensions. That is, in essence, the reduction in the height dimension of the periscope camera module is obtained at the expense of the increase in the dimension in the length and width directions. Moreover, after the focusing and/or anti-shake mechanism is configured, the size of the periscope camera module in the length and width directions is further increased, which is not perfectly in line with the development trend of miniaturization and thinning of the camera module.
  • An advantage of the present application is to provide a retractable camera module and an electronic device, wherein, through the drive assembly and the conductive retractable sleeve assembly, the optical lens of the retractable camera module can be relative to its photosensitive chip It can be moved telescopically, and through such a structural configuration, the technical contradiction between the overall height size and the larger effective focal length of the traditional vertical camera module is solved.
  • Another advantage of the present application is to provide a retractable camera module and an electronic device, wherein the retractable camera module can be relatively small in size in three dimensions of length, width and height, and also That is, the retractable camera module can relatively better meet the development trend of miniaturization and thinning of the camera module.
  • Another advantage of the present application is to provide a retractable camera module and an electronic device, wherein the driving assembly selects a piezoelectric actuator as a driving element to drive the conductive telescopic sleeve assembly, so as to pass the
  • the piezoelectric actuator has the characteristic of relatively more driving linearity to improve the telescopic precision of the conductive telescopic sleeve assembly. That is, the driving component selects the piezoelectric actuator as the driving element to improve the telescopic control precision of the conductive telescopic sleeve component, so as to improve the focusing precision of the telescopic camera module.
  • Yet another advantage of the present application is to provide a retractable camera module and electronic equipment, wherein the conductive retractable sleeve assembly itself forms an electrical conduction element, so that when the piezoelectric actuator is set In the case of the telescopic sleeve assembly, the piezoelectric actuator can be electrically connected through the conductive telescopic sleeve assembly.
  • the electrically conductive telescopic sleeve assembly is not only a telescopic structural support, but also an electrically conducting element.
  • the connection relationship between the supporting sleeve units of the conductive telescopic sleeve assembly includes not only a movable physical connection but also a conductive electrical connection relationship.
  • a retractable camera module which includes:
  • a photosensitive assembly comprising: a circuit board and a photosensitive chip electrically connected to the circuit board;
  • the conductive telescopic sleeve assembly includes a lens carrying sleeve and at least one supporting sleeve unit nested inside and outside;
  • optical lens wherein the optical lens is held on the photosensitive path of the photosensitive chip by being mounted on the lens carrying sleeve of the conductive telescopic sleeve assembly;
  • a drive assembly for driving the conductive telescopic sleeve assembly to perform telescopic motion relative to the photosensitive chip
  • the optical lens is adapted to move telescopically relative to the photosensitive chip to switch between the first state and the second state, wherein when in the In the first state, the conductive telescopic sleeve assembly is driven to move upward relative to the photosensitive chip to drive the optical lens to move upward relative to the photosensitive chip to increase the distance between the optical lens and the photosensitive chip. distance; when in the second state, the conductive telescopic sleeve assembly is driven to move downward relative to the photosensitive chip to drive the optical lens to move downward relative to the photosensitive chip, so as to reduce the the distance between the optical lens and the photosensitive chip;
  • the conductive telescopic sleeve assembly further includes a conductive circuit formed on the support sleeve unit;
  • the driving assembly includes at least one piezoelectric for driving the conductive telescopic sleeve assembly to move telescopically The actuator, wherein the at least one piezoelectric actuator is electrically connected to the circuit board of the photosensitive component through the conductive circuit.
  • the conductive lines are integrally formed with the corresponding single supporting sleeve through a laser direct molding technology.
  • the supporting sleeve unit is made of laser-activated plastic, wherein the wire lines are processed by laser direct molding technology after the supporting sleeve unit is formed made.
  • the at least one supporting sleeve unit includes a first supporting sleeve unit and a second supporting sleeve unit that are nested with each other, and the lens carrying sleeve is inside Embedded in the first support sleeve unit, wherein the conductive line formed in the first support sleeve unit is electrically connected to the conductive line formed in the second support sleeve unit to form an electrical conduction line , wherein the at least one piezoelectric actuator is electrically connected to the circuit board of the photosensitive component through the electrical conduction line.
  • the at least one piezoelectric actuator includes a single piece of the first support sleeve for driving the lens carrying sleeve to move telescopically.
  • a first piezoelectric actuator, and a second piezoelectric actuator disposed on the second support sleeve unit and used to drive the first support sleeve unit to move telescopically.
  • the first support sleeve unit has a first peripheral wall and a first bottom wall extending inward from a lower end of the first peripheral wall, the first peripheral wall
  • the two supporting sleeve units have a second peripheral wall and a second bottom wall extending inward from the lower end of the second peripheral wall, wherein the first piezoelectric actuator is disposed on the first bottom wall and is configured to drive the lens-carrying sleeve to move telescopically, the second piezoelectric actuator is disposed on the second bottom wall and configured to drive the first support sleeve unit to telescopically move.
  • the conductive line formed on the first support sleeve unit passes through the upper surface of the first bottom wall and the first peripheral wall.
  • the conductive circuit forms at least one first electrical connection end on the upper surface of the first bottom wall, and the first piezoelectric actuator is electrically connected to the the first electrical connection end.
  • the first electrical connection end is a circular area.
  • the portion of the conductive line extending from the first electrical connection end is tangent to the outer peripheral surface of the first electrical connection end.
  • the conductive lines extend from the outer side surface of the first peripheral wall to the lower surface of the first bottom wall, and then from the lower surface of the first bottom wall extends to the upper surface of the first bottom wall.
  • the conductive line extends from the outer side of the first peripheral wall to the inner side of the first peripheral wall, and then from the inner side of the first peripheral wall extends to the upper surface of the first bottom wall.
  • the portion of the conductive circuit extending on the outer side of the first peripheral wall forms an electrical connector.
  • the conductive line formed on the second support sleeve unit passes through the upper surface of the second bottom wall of the second support sleeve unit, the The outer side of the second peripheral wall and the inner side of the second peripheral wall, wherein the portion of the conductive line extending on the outer side of the second peripheral wall forms an electrical connection section, and the electrical connector is electrically connected to the Electrical connection segment.
  • the length dimension of the electrical connection section is greater than or equal to the stroke length of the upward movement of the first support sleeve unit.
  • the electrical connection head when in the first state, slides upward along the electrical connection segment in a manner of being electrically connected to the electrical connection segment; when in the second state In the state, the electrical connector interacts downward along the electrical connecting section in a manner of being electrically connected to the electrical connecting section.
  • the electrical connection head is formed protrudingly on the outer side of the first peripheral wall, and the electrical connection section is recessed on the inner side of the second peripheral wall.
  • the electrical connection section and the electrical connection head have an adapted width dimension.
  • the portion of the conductive line extending on the upper surface of the second bottom wall forms at least one second electrical connection end, and the second piezoelectric actuator is electrically connected to at the second electrical connection end.
  • the second electrical connection end is a circular area.
  • the portion of the conductive line extending from the second electrical connection end is tangent to the outer peripheral surface of the second electrical connection end.
  • the conductive lines extend from the upper surface of the second bottom wall to the inner side of the second peripheral wall, and then extend from the inner side of the second peripheral wall to the outer side of the second peripheral wall.
  • the conductive lines extend from the outer side of the second peripheral wall to the inner side of the second peripheral wall, and then extend from the inner side of the second peripheral wall to the inner side of the second peripheral wall. the upper surface of the second bottom wall.
  • the conductive line forms a third electrical connection end on the outer side surface of the second peripheral wall
  • the photosensitive component further includes an extension extending from the third electrical connection end and the third electrical connection end.
  • a flexible board connecting board between the circuit boards is used to electrically connect the at least one piezoelectric actuator to the circuit board through the flexible board connecting board and the electrical conduction line.
  • the portion of the conductive line extending on the outer surface of the second peripheral wall forms a third electrical connection end
  • the retractable camera module further includes a package for packaging The casing of the optical lens, the conductive telescopic sleeve assembly and the photosensitive assembly, and the connecting line formed on the inner surface of the casing, wherein the third electrical connection end is electrically connected to the The connecting line is electrically connected to the circuit board of the photosensitive component, and in this way, the at least one piezoelectric actuator is electrically connected to the circuit board.
  • an electronic device which includes: the above-mentioned retractable camera module.
  • FIG. 1 is a schematic structural diagram of a retractable camera module in its working state according to an embodiment of the present application.
  • FIG. 2 is a schematic structural diagram of the retractable camera module in its non-working state according to an embodiment of the present application.
  • FIG. 3 illustrates a schematic exploded perspective view of the retractable camera module according to an embodiment of the present application.
  • FIG. 4A illustrates one of the schematic diagrams of the drive assembly and the conductive telescopic sleeve assembly of the retractable camera module according to an embodiment of the present application.
  • FIG. 4B illustrates the second schematic diagram of the drive assembly and the conductive telescopic sleeve assembly of the retractable camera module according to an embodiment of the present application.
  • FIG. 4C illustrates the third schematic diagram of the drive assembly and the conductive telescopic sleeve assembly of the retractable camera module according to an embodiment of the present application.
  • FIG. 4D illustrates the fourth schematic diagram of the drive assembly and the conductive telescopic sleeve assembly of the retractable camera module according to an embodiment of the present application.
  • 4E illustrates the fifth schematic diagram of the drive assembly and the conductive telescopic sleeve assembly of the retractable camera module according to an embodiment of the present application.
  • 4F illustrates the sixth schematic diagram of the drive assembly and the conductive telescopic sleeve assembly of the retractable camera module according to an embodiment of the present application.
  • FIG. 5 illustrates a schematic diagram of a conductive trace formed on the first support sleeve unit according to an embodiment of the present application.
  • FIG. 6 illustrates a schematic diagram of a casing of the retractable camera module according to an embodiment of the present application.
  • FIG. 7A illustrates a schematic diagram of a variant implementation of the electrically conductive telescopic sleeve assembly according to an embodiment of the present application.
  • FIG. 7B illustrates a schematic diagram of another variant implementation of the electrically conductive telescopic sleeve assembly according to an embodiment of the present application.
  • FIG. 8 illustrates a schematic diagram of an electronic device according to an embodiment of the present application.
  • FIG. 9 illustrates another schematic diagram of an electronic device according to an embodiment of the present application.
  • FIG. 10 illustrates another schematic view of the electronic device illustrated in FIG. 9 .
  • a camera module configured in a mobile electronic device needs to realize a multi-zoom shooting function.
  • a mobile electronic device eg, a smart phone
  • at least one telephoto camera module needs to be configured.
  • the total focal length of the telephoto camera module will increase accordingly, which leads to the continuous increase of the overall height and size of the camera module, which is difficult to adapt to the development trend of thin and light electronic devices.
  • the periscope camera module In order to solve the technical contradiction between the height design of the camera module and the high-magnification zoom shooting function, most manufacturers use the periscope camera module to replace the traditional vertical camera module. Compared with the traditional upright camera module, the periscope camera module is provided with light turning elements (for example, prisms, mirrors, etc.) to change the imaging optical path, thereby reducing the overall height and size of the camera module at the same time. To meet the optical design requirements with a large effective focal length.
  • light turning elements for example, prisms, mirrors, etc.
  • the periscope camera module has a relatively small height dimension compared to the traditional vertical camera module, it has a relatively larger length and width dimensions. That is, in essence, the reduction in the height dimension of the periscope camera module is obtained at the expense of the increase in the dimension in the length and width directions.
  • the size of the periscope camera module in the length and width directions is further increased, which is not perfectly in line with the development trend of miniaturization and thinning of the camera module.
  • the inventor of the present application proposes a technical route for a retractable camera module, which has the same characteristics as the existing vertical camera module and periscope camera module.
  • the camera module has a completely different structure and working mechanism.
  • the optical lens of the retractable camera module is retractable relative to its photosensitive chip to switch between a working state and a non-working state, wherein, in the working state, the retractable The optical lens of the retractable camera module is extended for imaging, and in the non-working state, the optical lens of the retractable camera module is retracted to reduce the overall height dimension of the retractable camera module.
  • the inventor of the present application uses the retractable sleeve assembly to drive the movement of the optical lens to realize the expansion and contraction of the optical lens.
  • the telescopic sleeve assembly includes multi-segment sleeve units that are movably connected to each other, so as to drive the optical lens away from or close to the photosensitive chip through the movement between the multi-segment sleeve units.
  • a piezoelectric actuator is selected as a driving element to drive each sleeve unit of the telescopic sleeve assembly to perform telescopic motion .
  • piezoelectric actuators Compared with traditional electromagnetic motors (eg, voice coil motors, memory alloy motors), piezoelectric actuators have relatively better driving linearity characteristics. Therefore, the driving components are selected to use piezoelectric actuators. The driver can improve the telescopic precision of the telescopic sleeve assembly, so as to improve the focusing precision of the telescopic camera module.
  • the piezoelectric actuator After the piezoelectric actuator is selected as the driving element, the piezoelectric actuator can be installed on each segment of the sleeve, that is, the physical installation point of the piezoelectric actuator is set on each on the single-piece sleeve. It should be understood that the piezoelectric actuator needs power supply to work, and because the piezoelectric actuator is not directly mounted on the circuit board, therefore, in the technical solution of the present application, the piezoelectric actuator needs to be An electrical connection line is erected between the circuit board and the circuit board, so as to electrically connect the piezoelectric actuators mounted on each segment of the sleeve monomer to the circuit board through the electrical connection line.
  • an electrical connection line can be directly arranged between the piezoelectric actuator and the circuit board, for example, the electrical connection between the piezoelectric actuator and the circuit board is realized through a flexible board or a metal wire.
  • this solution realizes the electrical connection between the piezoelectric actuator and the circuit board, this solution is not effective in practical application.
  • the piezoelectric actuator partially mounted on the sleeve unit first is moved along with the movement of the sleeve unit.
  • the electrical connection line between the piezoelectric actuator and the circuit board is also stretched or compressed, that is, the connection between the piezoelectric actuator and the circuit board is also stretched or compressed.
  • the electrical connection is not stable enough.
  • the piezoelectric actuator is located in the sleeve unit, most of the electrical connection lines are routed from top to bottom along the interior of the retractable sleeve assembly.
  • the light from the outside is also transmitted from the inside of the retractable sleeve assembly to the photosensitive chip, that is, if the wiring of the electrical connection line is not good, the electrical connection line will also affect the imaging performance of the camera module. .
  • the inventors of the present application choose to optimize the electrical connection mode of the piezoelectric actuator.
  • the electrical conduction lines of the piezoelectric actuator are integrally arranged in the retractable sleeve assembly, so as to simplify wiring and avoid crosstalk between the lines.
  • the telescopic sleeve assembly itself is a conductive telescopic sleeve assembly, which is not only a telescopic structural support, but also an electrical conduction element, or in other words, the The connection relationship between the supporting sleeve units of the conductive telescopic sleeve assembly includes not only a movable physical connection but also a conductive electrical connection relationship.
  • a retractable camera module which includes: a photosensitive assembly, including: a circuit board and a photosensitive chip electrically connected to the circuit board; a conductive telescopic sleeve assembly; an optical lens, wherein, The optical lens is installed in the conductive telescopic sleeve assembly to be held on the photosensitive path of the photosensitive chip; the optical lens is used to drive the conductive telescopic sleeve assembly to perform telescopic motion relative to the photosensitive chip A drive assembly; wherein, through the conductive telescopic sleeve assembly and the drive assembly, the optical lens is adapted to move telescopically relative to the photosensitive chip to switch between a first state and a second state, wherein , when in the first state, the conductive telescopic sleeve assembly is driven to move upward relative to the photosensitive chip to drive the optical lens to move upward relative to the photosensitive chip, so as to increase the relationship between the optical lens and the photosensitive chip
  • the retractable camera module based on the embodiment of the present application is illustrated, wherein the retractable camera module 100 includes: a photosensitive component 10 , which is held in the photosensitive component 10 .
  • the optical lens 20 includes a lens barrel 21 and at least one optical lens 22 installed in the lens barrel 21 .
  • the resolving power of the optical lens 20 is proportional to the number of optical lenses within a certain range, that is to say, within a certain number of optical lenses 22, the greater the number of optical lenses, the higher the resolving power. higher. Therefore, preferably, in the embodiment of the present application, the optical lens 20 includes multiple pieces of optical lenses 22 , for example, 4 pieces, 5 pieces or 6 pieces of optical lenses 22 .
  • the optical lens 20 has a larger effective focal length, so that the retractable camera module 100 can be applied as a telephoto camera module. More specifically, in the embodiments of the present application, the effective focal length of the optical lens 20 ranges from 19 mm to 29 mm.
  • the range of the effective focal length of the optical lens 20 is 19mm to 23mm, preferably, the range of the effective focal length of the optical lens 20 is 20mm to 22mm.
  • the range of the effective focal length of the optical lens 20 is 26mm to 30mm, preferably, the range of the effective focal length of the optical lens 20 27mm to 29mm.
  • the type of the optical lens 20 is not limited by the present application, and it can be implemented as an integrated optical lens 20 or as a split optical lens 20 .
  • the lens barrel 21 has an integrated structure, and a plurality of the optical lenses 22 are assembled in the lens barrel 21 .
  • the lens barrel 21 includes at least two cylindrical units, and a plurality of the optical lenses 22 are assembled in the at least two cylindrical units respectively to form a plurality of lenses A single unit, the plurality of lens units are assembled together by means of active alignment to form the optical lens 20 .
  • the photosensitive assembly 10 includes: a circuit board, a photosensitive chip, a bracket and a filter element.
  • the photosensitive chip is electrically connected to the circuit board (for example, the photosensitive chip is electrically connected to the circuit board through wires), so as to provide work for the photosensitive chip through the circuit board The required control circuits and power.
  • the bracket is arranged on the circuit board to support other components, wherein the bracket has a light window corresponding to at least a photosensitive area of the photosensitive chip.
  • the filter element can be mounted on the bracket, so that the filter element is kept on the light-sensing path of the photosensitive chip, so that when the external light passes through During the process of passing through the filter element to reach the photosensitive chip, the stray light in the external light can be filtered by the filter element, so as to improve the imaging quality.
  • the filter element can also be mounted on the bracket in other ways, for example, a filter element bracket is firstly arranged on the bracket, and then the filter element The light element is mounted on the filter element holder, ie, in this example, the filter element can be indirectly mounted on the holder via other supports.
  • the filter element can also be installed in other positions of the retractable camera module 100, for example, the filter element can be implemented as a filter film and attached to The surface of a certain optical lens 22 of the optical lens 20 is not limited by this application.
  • the photosensitive assembly 10 further includes a reinforcing plate 15 disposed on the lower surface of the circuit board, for example, it can be under the circuit board A steel plate is provided on the surface, so that the strength of the circuit board is strengthened by the steel plate.
  • the reinforcing plate 15 may be configured to have the same shape and size as the wiring board, so as to reinforce the entirety of the wiring board after being stacked on the lower surface of the wiring board.
  • the size of the reinforcing plate 15 may be smaller than that of the circuit board, so as to strengthen the part of the circuit board.
  • the size of the reinforcing plate 15 may be larger than that of the circuit board, so that after being stacked on the back of the circuit board, a part of the area of the reinforcing plate 15 is removed from the circuit board.
  • the side part of the circuit board protrudes, wherein the area where the reinforcing plate 15 protrudes from the circuit board can be used as an installation support part.
  • the telescopic assembly 30 includes: a conductive telescopic sleeve assembly 33 and a driving assembly 31 , wherein the optical lens 20 is mounted on the conductive telescopic sleeve assembly 33 .
  • the drive assembly 31 is used to drive the conductive telescopic sleeve assembly 33 to perform telescopic motion to drive the optical lens 20 to perform telescopic motion, so as to properly fit the optical lens 20 and the photosensitive assembly The phase position relationship between 10 is adjusted.
  • the conductive telescopic sleeve assembly 33 is installed on the installation area of the photosensitive assembly 10, for example, it can be installed on the circuit board, Alternatively, it is mounted on the area of the reinforcing plate 15 protruding from the circuit board.
  • the lower end 332 of the electrically conductive telescopic sleeve assembly 33 is installed on the area of the reinforcing plate 15 that protrudes from the circuit board, so as to pass through the reinforcing plate 15
  • Providing a conductive telescoping sleeve assembly 33 provides a flat mounting base with sufficient strength.
  • the central axis of the conductive telescopic sleeve assembly 33 is preferably aligned with the central axis of the photosensitive chip, that is, preferably Therefore, after being mounted on the mounting substrate of the photosensitive assembly 10 , the conductive telescopic sleeve assembly 33 is also held on the photosensitive path of the photosensitive chip.
  • the optical lens 20 is installed in the conductive telescopic sleeve assembly 33 to be held on the photosensitive path of the photosensitive chip. Specifically, in the examples shown in FIGS.
  • the optical lens 20 is mounted on the upper end 331 of the conductive telescopic sleeve assembly 33 , so that when the conductive telescopic sleeve assembly 33 When driven to move telescopically relative to the photosensitive chip, the optical lens 20 installed in the conductive telescopic sleeve assembly 33 can follow the movement of the conductive telescopic sleeve assembly 33 to adjust the optical lens The relative positional relationship between the lens 20 and the photosensitive chip.
  • the optical lens 20 may be installed at other positions of the conductive telescopic sleeve assembly 33 , for example, installed on the conductive telescopic sleeve assembly 33 adjacent to the The position of the upper end portion 331, or the position of the middle portion of the conductive telescopic sleeve assembly 33, is not limited by this application.
  • the lens barrel 21 may not be configured for the optical lens 20 , and the conductive retractable sleeve assembly 33 may be selected to be The barrel serves as the barrel 21 of the at least one optical lens 22 , which is also not limited by the present application.
  • the optical lens 20 can be adjusted relative to the photosensitive chip. telescopically moves to switch between a first state and a second state, wherein, when in the first state, the conductive telescopic sleeve assembly 33 is driven by the driving assembly 31 to be upward relative to the photosensitive chip The movement drives the optical lens 20 to move upward relative to the photosensitive chip, so as to increase the distance between the optical lens 20 and the photosensitive chip, as shown in FIG. 1 . As shown in FIG.
  • the conductive telescopic sleeve assembly 33 is driven by the driving assembly 31 to be moved downward relative to the photosensitive chip to drive the optical lens 20 relative to the The photosensitive chip moves downward to reduce the distance between the optical lens 20 and the photosensitive chip.
  • the first state is the working state of the retractable camera module 100
  • the second state is the non-working state of the retractable camera module 100 .
  • the retractable camera module 100 has two states: a working state and a non-working state, wherein, when in the working state, The optical lens 20 is extended as the conductive telescopic sleeve assembly 33 is stretched upward, so that the distance between the optical lens 20 and the photosensitive chip meets the shooting requirements (here, the shooting requirements represent all The total optical length between the optical lens 20 and the photosensitive chip meets the shooting requirements); when in the non-working state, the optical lens 20 is retracted downward as the conductive telescopic sleeve assembly 33 is retracted downward.
  • the overall height dimension of the retractable camera module 100 is reduced, so as to meet the size requirements for assembling the retractable camera module 100 in a terminal device. That is, in the working state and the non-working state, the distance between the optical lens 20 and the photosensitive chip is adjusted by the conductive telescopic sleeve assembly 33, so that when the optical lens 20 is in the working state, the distance between the optical lens 20 and the photosensitive chip is adjusted. The distance between the optical lens 20 and the photosensitive chip meets the shooting requirements, and in the non-working state, the distance between the optical lens 20 and the photosensitive chip is shortened as much as possible, so that the retractable camera mode The overall height dimension of the group 100 can be reduced as much as possible.
  • the conductive retractable sleeve assembly 33 is driven to be extended upward in the direction away from the photosensitive chip. At this time, the retractable The overall height dimension of the telescopic camera module 100 gradually increases. Correspondingly, when the conductive telescopic sleeve assembly 33 is fully extended, the overall height dimension of the telescopic camera module 100 reaches the maximum value.
  • the maximum value is defined as the maximum height dimension
  • the height dimension of the retractable camera module 100 represents the distance between the top surface and the bottom surface of the retractable camera module 100 .
  • the conductive retractable sleeve assembly 33 when the retractable camera module 100 is in a non-working state, the conductive retractable sleeve assembly 33 is driven to be retracted downward in a direction close to the photosensitive chip.
  • the overall height dimension of the telescopic camera module 100 is gradually reduced.
  • the conductive telescopic sleeve assembly 33 when the conductive telescopic sleeve assembly 33 is fully retracted, the overall height dimension of the telescopic camera module 100 reaches the minimum value.
  • the minimum value is defined as the minimum height dimension
  • the height dimension of the retractable camera module 100 represents the distance between the top surface and the bottom surface of the retractable camera module 100 .
  • the minimum The height dimension is basically the same as the thickness dimension of the terminal device.
  • the minimum height dimension is substantially consistent with the thickness dimension of the terminal device, indicating that after the retractable camera module 100 is installed in the terminal device, its upper end surface is flush with the back of the terminal device, or, slightly below the back of the terminal device.
  • the upper end surface of the retractable camera module 100 can also be higher than the back surface of the terminal device, but generally speaking, for the sake of beauty, the protruding height cannot be too large, and can generally be controlled between 0mm and between 5mm.
  • the retractable camera module 100 when configured as a rear camera module of a terminal device, in the working state, the optical lens 20 of the retractable camera module 100 will be extended out, so that the distance between the optical lens 20 and the photosensitive chip meets the requirement of the optical back focus value for zoom shooting, so that the imaging quality can be guaranteed.
  • the height of the retractable camera module 100 in a working state, is significantly larger than the thickness of the terminal device. It should be understood that, in a specific implementation, the maximum height size and the minimum height size depend on the requirements of the terminal device for the optical zoom magnification.
  • the range of the minimum height size is 8mm-11mm, preferably, the range of the minimum height size is 9mm-10mm;
  • the range of the maximum height dimension is 23mm-26mm, preferably, the range of the maximum height dimension is 24mm-25mm.
  • the range of the minimum height size is 9mm-12mm, preferably, the range of the minimum height size is 10mm-11mm;
  • the maximum height The size is in the range of 28mm-32mm, preferably, the maximum height dimension is in the range of 29mm-31mm.
  • the optical back focus value of the retractable camera module 100 when in the working state, the optical back focus value of the retractable camera module 100 is the largest, and when in the non-working state, the optical back focus value of the retractable camera module 100 is the smallest. More specifically, taking the retractable camera module 100 being used for 5x optical zoom as an example, in the working state, the optical back focus value of the retractable camera module 100 ranges from 13mm to 17mm. , preferably 14 to 16 mm; in a non-working state, the optical back focus value of the retractable camera module 100 ranges from 1 mm to 3 mm, preferably 1.5 mm to 2.5 mm.
  • the mechanical back focus of the retractable camera module 100 when in the working state, the mechanical back focus of the retractable camera module 100 is the largest, and when the retractable camera module 100 is in the non-working state, the mechanical back focus of the retractable camera module 100 is the smallest.
  • the mechanical back focus of the retractable camera module 100 represents the distance from the cut plane of the lower surface of the last optical lens 22 in the optical lens 20 to the image plane.
  • the value of the mechanism back focus is relatively close to the optical back focus value of the retractable camera module 100 , and is basically reduced by about 0.5 mm on the basis of the optical back focus value.
  • the conductive retractable sleeve assembly 33 when the retractable camera module 100 is in a working state, the conductive retractable sleeve assembly 33 is driven to be extended upward in a direction away from the photosensitive chip. At this time, the The overall height dimension of the conductive telescopic sleeve assembly 33 gradually increases, and accordingly, when the conductive telescopic sleeve assembly 33 is fully extended, the overall height dimension of the conductive telescopic sleeve assembly 33 reaches a maximum value.
  • the retractable camera module 100 when the retractable camera module 100 is in a non-working state, the conductive retractable sleeve assembly 33 is driven to be retracted downward in a direction close to the photosensitive chip.
  • the overall height dimension of the conductive telescopic sleeve assembly 33 is gradually reduced.
  • the overall height dimension of the conductive telescopic sleeve assembly 33 reaches a minimum value.
  • the minimum height dimension of the conductive telescopic sleeve assembly 33 ranges from 6 mm to 9 mm
  • the maximum height dimension of the conductive telescopic sleeve assembly 33 ranges from 18.6 mm to 28.6 mm. mm.
  • the conductive telescopic sleeve assembly 33 has a multi-section structure.
  • the telescopic sleeve assembly 33 includes a multi-section mutual Removable sleeve unit.
  • the multi-section support sleeves can interact with each other, so that after being driven by the driving assembly 31 , they can extend or retract relative to the photosensitive chip.
  • the multi-section sleeve units can interact with each other, which means that there is force transmission or direct contact between the multi-section sleeve units.
  • two adjacent support sleeve units in the multi-segment sleeve units are movably connected to each other, for example, they are arranged in a nested manner of inner and outer layers and pass through
  • the guide grooves are movably connected to each other to form the conductive telescopic sleeve assembly 33 , as shown in FIGS. 1 to 3 .
  • the single sleeve of the multi-section sleeve for mounting the optical lens 20 is defined as the lens carrying sleeve 333, and the other sleeves are defined as For the support sleeve unit.
  • the driving assembly 31 includes a plurality of driving elements, so as to drive each of the supporting sleeve units to move separately through the driving elements.
  • the conductive telescopic sleeve assembly 33 includes the lens carrying sleeve 333 , the first support sleeve unit 334 , and the second support, which are nested inside and outside of each other.
  • the sleeve unit 335 wherein the lens carrying sleeve 333 is used for installing the optical lens 20 .
  • the conductive telescopic sleeve assembly 33 has three sleeve units as an example, two of which are supporting sleeve units, and the other is the lens carrying sleeve 333 .
  • the driving assembly 31 includes two driving elements: a first driving element and a second driving element, wherein the first driving element is used to drive the lens carrying sleeve 333 relative to the The first support sleeve unit 334 linearly moves up or down; the second drive element is used to drive the first support sleeve unit 334 up or down relative to the second support sleeve unit 335 move linearly.
  • the first support sleeve unit 334 has a first peripheral wall 3341 and a first peripheral wall 3341 extending inward from the lower end of the first peripheral wall 3341 A first bottom wall 3342, wherein the first driving element is disposed on the first bottom wall 3342 and configured to drive the lens carrying sleeve 333 to telescopically move to bring the optical lens 30 relative to the first bottom wall 3342.
  • the photosensitive assembly 10 can move telescopically. As shown in FIG.
  • the second support sleeve unit 335 has a second peripheral wall 3351 and a second bottom wall 3352 extending inward from the lower end of the second peripheral wall 3351 , wherein the second driving element is disposed on the second bottom wall 3352 and configured to drive the first support sleeve unit 334 to move telescopically.
  • the first drive element and the second drive element are implemented as piezoelectric actuators, ie the first drive element is implemented as the first piezoelectric actuator 311 ,
  • the second drive element is implemented as a second piezoelectric actuator 312 .
  • the piezoelectric actuator can provide a relatively large driving force, and specifically, the piezoelectric actuator can provide a driving force in the range of 0.6N to 2N , which is sufficient to drive components weighing more than 100 mg.
  • the piezoelectric actuator In addition to being able to provide a relatively large driving force, the piezoelectric actuator also has other advantages compared to traditional electromagnetic motor solutions and memory alloy motor solutions, including but not limited to: relatively small size (with thin Long shape), better response accuracy, relatively simpler structure, relatively simpler drive control, high product consistency, no electromagnetic interference, relatively larger stroke, short stabilization time, relatively small weight, etc.
  • the piezoelectric actuator utilizes the friction force and inertia during vibration to push the object to be pushed to perform micron-scale motion in a frictional contact manner. Compared with the electromagnetic scheme, the non-contact way to drive the object to be pushed needs to be offset by electromagnetic force.
  • the method of gravity and friction has the advantages of greater thrust, greater displacement and lower power consumption, and at the same time, the control precision is higher, and high-precision continuous zoom can be achieved.
  • the piezoelectric actuator does not have a magnet coil structure, so there is no problem of magnetic interference.
  • the piezoelectric actuator can be self-locked by the friction between the components, so the abnormal shaking noise of the retractable camera module during focusing can be reduced.
  • first support sleeve unit 334 and the second support sleeve unit 335 are driven by the first piezoelectric actuator 311 and the second piezoelectric actuator 322 to drive the lens carrier
  • the manner of the sleeve 333 can improve the control accuracy of the conductive telescopic sleeve assembly 33 , that is, the distance between the optical lens 20 and the photosensitive chip can be adjusted more accurately.
  • a guide mechanism may be configured for the piezoelectric actuator, so that The guiding structure improves the smoothness of the telescopic movement of each sleeve unit (including the lens carrying sleeve 333 , the first support sleeve unit 334 and the second support sleeve unit 335 ). and stability, to prevent each section of the sleeve monomer from tilting during the expansion and contraction process. That is, in some examples of the present application, the drive assembly 31 further includes a guide mechanism for optimizing the telescopic motion of the sleeve unit.
  • the driving assembly 31 includes at least one first guide mechanism 313, and the at least one first guide mechanism 313 and the first piezoelectric actuator 311 are relatively
  • the axis set by the conductive telescopic sleeve assembly 33 is evenly arranged along the first bottom wall 3342 .
  • the driving assembly 31 further includes two first guiding mechanisms 313 , wherein the two first guiding mechanisms 313 and the first piezoelectric
  • the axis of the actuator 311 relative to the set axis of the conductive telescopic sleeve assembly 33 is evenly arranged along the first bottom wall 3342.
  • the two first guiding mechanisms 313 can guide the lens carrying sleeve 333 to move in a specific direction, In order to avoid unnecessary inclination of the lens carrying sleeve 333 during the telescopic movement.
  • the first guide mechanism 313 includes a guide rod 3131 installed on the first bottom wall 3342 and a guide rod 3131 installed on the lens carrying sleeve 333
  • the guide head 3132 on the outer side of the guide head 3132 has a guide hole, the guide rod 3131 passes through the guide hole, in this way, when the first piezoelectric actuator 311 drives the lens carrier
  • the first guide mechanism 313 is adapted to guide the second lens carrying sleeve 333 to move along the moving direction defined by the guide rod 3131 and the guide hole.
  • the guide head 3132 can be integrally formed on the outer side of the lens carrying sleeve 333 , that is, the guide head 3132 is a part of the lens carrying sleeve 333 .
  • the guide head 3132 may also be a separate component mounted on the outer side surface of the second support sleeve unit 335, which is not limited by the present application.
  • the telescopic movement of the first support sleeve unit 334 can also be optimized by the guiding structure.
  • the driving assembly 31 includes at least one second guiding mechanism 314 , and the at least one second guiding mechanism 314 is opposite to the at least one second piezoelectric actuator 312
  • the axis set on the electrically conductive telescopic sleeve assembly 33 is evenly arranged along the second bottom wall 3352, as shown in FIG. 4A to FIG. 4F .
  • the second guide mechanism 314 includes a guide rod 3131 installed on the second bottom wall 3352 and a guide head 3132 installed on the outer side of the first support sleeve unit 334,
  • the guide head 3132 has a guide hole through which the guide rod 3131 passes.
  • the second guide mechanism 314 is adapted to guide the first support sleeve unit 334 to move along the moving direction defined by the guide rod 3131 and the guide hole.
  • the guide head 3132 is integrally formed on the outer side of the first support sleeve unit 334 .
  • the telescopic movement of the first support sleeve unit 334 and the lens carrying sleeve 333 may also be optimized in other ways.
  • the driving assembly 31 includes a larger number of piezoelectric actuators.
  • the driving assembly 31 includes at least two of the first piezoelectric actuators 311 , the The at least two first piezoelectric actuators 311 are evenly arranged along the first bottom wall 3342 relative to the axis set by the conductive telescopic sleeve assembly 33, so as to pass the at least two first piezoelectric actuators
  • the actuator 311 drives the lens carrying sleeve 333 at the same time, so that the telescopic movement of the lens carrying sleeve 333 is smoother and more stable.
  • the telescopic motion of the first support sleeve unit 334 can also be optimized in this way, that is, the drive assembly 31 includes at least two second piezoelectric actuators 312, and the at least two second piezoelectric actuators 312
  • the electric actuator 312 is evenly arranged along the second bottom wall 3352 with respect to the axis set by the electrically conductive telescopic sleeve assembly 33 .
  • first piezoelectric actuator 311 and the second piezoelectric actuator 312 After arranging the first piezoelectric actuator 311 and the second piezoelectric actuator 312 on the first supporting sleeve unit 334 and the second supporting sleeve unit 334 of the conductive telescopic sleeve assembly 33 After supporting the sleeve unit 335, it should be understood that the first piezoelectric actuator 311 and the second piezoelectric actuator 312 need power supply to work, and because the first piezoelectric actuator 311 and the second piezoelectric actuator 312 are not directly mounted on the circuit board, therefore, in the technical solution of the present application, it is necessary to install the first piezoelectric actuator 311 and the second piezoelectric actuator An electrical connection line is set up between the device 312 and the circuit board, so that the first support sleeve unit 334 and the second support sleeve unit 335 are mounted on the first support sleeve unit 335 through the electrical connection line. The piezoelectric actuator 311
  • the conductive telescopic sleeve assembly 33 further includes a unit 334 formed on the first support sleeve and the second support sleeve The conductive traces 336 of the unit 335, wherein the conductive traces 336 formed on the first support sleeve unit 334 are electrically connected to the conductive traces 336 formed on the second support sleeve unit 335 to form an electrical conduction circuit 337.
  • first piezoelectric actuator 311 and the second piezoelectric actuator 312 arranged on the conductive telescopic sleeve assembly 33 are electrically connected to the circuit board through the electrical conduction line 337 , so that the electrical energy from the circuit board can be conducted to the first piezoelectric actuator 311 and the second piezoelectric actuator 312 through the electrical conduction line 337 .
  • the conductive line 336 is integrally formed on the first support sleeve unit 334 and the second support sleeve unit 335, that is, in the technical solution of the present application , the conductive lines 336 of the piezoelectric actuator are integrally arranged in the conductive telescopic sleeve assembly 33 to simplify wiring and avoid crosstalk between the lines.
  • connection relationship between each support sleeve unit of the conductive telescopic sleeve assembly 33 includes not only a movable physical connection but also a conductive electrical connection relationship, or
  • the conductive telescopic sleeve assembly 33 is not only a telescopic structural support, but also an electrical conduction element.
  • the first support sleeve unit 334 and the second support sleeve unit 335 are made of laser-activated plastic, that is, the first support sleeve unit
  • the body 334 and the second support sleeve unit 335 are made of a laser-activated plastic of a metal composition.
  • the laser-activated plastic material is made into a sleeve shape through an integral molding process (eg, injection molding process); then, after the sleeve is formed, further laser-activated processing is performed to make the first support sleeve.
  • an integral molding process eg, injection molding process
  • further laser-activated processing is performed to make the first support sleeve.
  • the laser activation process refers to the material of the first support sleeve unit 334 and the second support sleeve unit 335 under the irradiation of a certain intensity of laser light, that is, the metal in the plastic containing the dopant
  • the tissue compound is separated to expose metal atoms to integrally form conductive traces 336 in the first support sleeve cells 334 and the second support sleeve cells 335 . That is, in the embodiment of the present application, the first support sleeve unit 334 and the second support sleeve unit 335 are formed on the laser irradiation path without adding additional materials without electroplating or other means.
  • the conductive lines 336 have a width of 5-10um.
  • the conductive lines 336 that meet the preset requirements can be formed by different laser irradiation paths.
  • the conductive lines 336 formed on the first support sleeve unit 334 pass through the upper surface of the first bottom wall 3342 and all the The first peripheral wall 3341, wherein the conductive line 336 forms at least one first electrical connection end 3371 on the upper surface of the first bottom wall 3342, and the first piezoelectric actuator 311 is electrically connected to the The first electrical connection terminal 3371.
  • the portion of the conductive trace 336 extending on the outer surface of the first peripheral wall 3341 forms an electrical connector 3372 .
  • the first electrical connection end 3371 is a circular area, and the portion of the conductive trace 336 extending from the first electrical connection end 3371 is connected to the first electrical connection end
  • the perimeter of 3371 is tangent.
  • the first electrical connection terminal 3371 with a circular shape can be formed on the upper surface of the first bottom wall 3342 by a laser activation process.
  • the indented circle forms the first electrical connection end 3371 having a circular structure.
  • a metal layer extends outward from the outer periphery of the first electrical connection end 3371 , and the metal layer extends along the first electrical connection end
  • the arc of 3371 is smoothly derived, avoiding blunt turns (such as right angles, large turning angles, etc.).
  • the conductive lines 336 extend from the outer surface of the first peripheral wall 3341 to the lower surface of the first bottom wall 3342 , and then extend from the lower surface of the first bottom wall 3342 extending to the upper surface of the first bottom wall 3342 .
  • the conductive lines 336 formed on the first support sleeve unit 334 can also be routed in other ways, for example, the conductive lines 336 can be routed from the first peripheral wall
  • the outer side of the 3341 extends to the inner side of the first peripheral wall 3341, and then extends from the inner side of the first peripheral wall 3341 to the upper surface of the first bottom wall 3342. A condition that the conductive line 336 of a supporting sleeve unit 334 passes through the upper surface of the first bottom wall 3342 and the first peripheral wall 3341 is sufficient.
  • the conductive lines 336 formed on the second support sleeve unit 335 pass through the upper surface of the second bottom wall 3352 of the second support sleeve unit 335 , the outer side surface of the second peripheral wall 3351 and the inner side surface of the second peripheral wall 3351, wherein the portion of the conductive line 336 extending on the upper surface of the second bottom wall 3352 forms at least one second electrical connection terminal 3373 , the second piezoelectric actuator 312 is electrically connected to the second electrical connection end 3373 .
  • the second electrical connection end 3373 can also be implemented as a circular area, and the portion of the conductive trace 336 extending from the second electrical connection end 3373 is the same as the The outer peripheral surfaces of the second electrical connection ends 3373 are tangent to each other.
  • the second electrical connection terminal 3373 in the shape of a circle can be formed on the upper surface of the first bottom wall 3342 by a laser activation process, for example, by drawing multiple circles with a center of a circle similar to a small circle The inwardly constricted circle forms the second electrical connection terminal 3373 having a circular structure.
  • a metal layer extends outward from the outer periphery of the second electrical connection end 3373 , and the metal layer extends along the second electrical connection end.
  • the arc of 3373 is exported smoothly, avoiding blunt turns (such as right angles, large turning angles, etc.).
  • the second support sleeve unit 335 A relative movement occurs between the first support sleeve unit 334 and the first support sleeve unit 334 , that is, the first support sleeve unit 334 performs telescopic motion with respect to the second support sleeve unit 335 .
  • the relative positions of the conductive lines 336 formed on the first support sleeve unit 334 and the conductive lines 336 formed on the second support sleeve unit 335 will change.
  • the conductive line 336 is located on the second peripheral wall
  • the portion extending on the outer side of the 3351 forms an electrical connection segment 3374
  • the electrical connector 3372 is electrically connected to the electrical connection segment 3374 .
  • the length dimension of the electrical connection segment 3374 is greater than or equal to the first support sleeve unit The stroke size of the upward movement of 334, so that when in the first state, the electrical connector 3372 moves upward along the electrical connection segment 3374 in a manner of being electrically connected to the electrical connection segment 3374; when in the second state When the electrical connector 3372 is electrically connected to the electrical connecting section 3374, the electrical connecting head 3372 moves downward along the electrical connecting section 3374.
  • the conductive lines 336 formed on the second support sleeve unit 335 are routed as follows: the conductive lines 336 extend from the second bottom wall 3352 The upper surface of the second peripheral wall 3351 extends to the inner side of the second peripheral wall 3351 , and then extends from the inner side of the second peripheral wall 3351 to the outer side of the second peripheral wall 3351 .
  • the conductive lines 336 extend from the outer side of the second peripheral wall 3351 to the inner side of the second peripheral wall 3351, and then extend from the inner side of the second peripheral wall 3351 to the inner side of the second peripheral wall 3351.
  • the upper surface of the second bottom wall 3352 only needs to satisfy the requirement that the conductive lines 336 formed on the second support sleeve unit 335 pass through the upper surface of the second bottom wall 3352 of the second support sleeve unit 335
  • the conditions of the surface, the outer surface of the second peripheral wall 3351 and the inner surface of the second peripheral wall 3351 are sufficient.
  • FIG. 7A illustrates a schematic diagram of a variant implementation of the electrically conductive telescopic sleeve assembly 33 according to an embodiment of the present application.
  • the electrical connection head 3372 is formed protrudingly on the outer side of the first peripheral wall 3341 , and the electrical connection end is recessed inside the second peripheral wall 3351
  • the electrical connector 3372 is fitted into the electrical connection section 3374 to ensure When the relative positions of the first support sleeve unit 334 and the second support sleeve unit 335 change, the electrical connector 3372 is always in contact with and electrically connected to the electrical connection segment 3374 .
  • FIG. 7B illustrates a schematic diagram of another modified implementation of the electrically conductive telescopic sleeve assembly 33 according to an embodiment of the present application.
  • the electrical connection head 3372 is formed concavely on the outer side surface of the first peripheral wall 3341
  • the electrical connection section 3374 is formed protrudingly on the second peripheral wall 3351 .
  • the electrical connection section 3374 is fitted into the electrical connector 3372 to ensure When the relative positions of the first support sleeve unit 334 and the second support sleeve change, the electrical connector 3372 is always in contact with and electrically connected to the electrical connection segment 3374 .
  • the conductive line 336 is on the first peripheral wall.
  • the outer side surface of 3341 forms a third electrical connection terminal 3375 .
  • the retractable camera module further includes a housing 40 for encapsulating the optical lens 20 , the conductive retractable sleeve assembly 33 and the photosensitive assembly 10 , and , the connection line 338 formed on the inner surface of the casing 40 (for example, the connection line 338 can also be formed by a laser activation process), wherein the third electrical connection terminal 3375 is electrically connected to the connection line 338 , the connection line 338 is electrically connected to the circuit board of the photosensitive assembly 10, and in this way, the at least one piezoelectric actuator is electrically connected to the circuit board.
  • the piezoelectric actuator may also be electrically connected to the circuit board in other ways.
  • the photosensitive assembly 10 further includes a flexible board connecting board (not shown in the figure) extending between the third electrical connecting end 3375 and the circuit board, so as to pass the The flexible board connection board and the electrical conduction line 337 electrically connect the at least one piezoelectric actuator to the circuit board.
  • the retractable camera module based on the embodiment of the present application is explained, wherein, through the drive assembly 31 and the conductive retractable sleeve assembly 33 , the optical lens 20 of the retractable camera module can be sensitive to relative to the optical lens 20 of the retractable camera module.
  • the chip is moved telescopically, and in this way, the technical contradiction between the overall height size and the larger effective focal length of the traditional vertical camera module is solved.
  • the driving assembly 31 selects a piezoelectric actuator as a driving element to drive each sleeve unit of the conductive telescopic sleeve assembly 33 to perform telescopic movement, so as to improve the precision of telescopic control.
  • the conductive telescopic sleeve assembly 33 itself forms an electrical conduction element, so as to simplify the circuit laying for conducting the driving assembly 31 .
  • an electronic device is also provided.
  • FIG. 8 illustrates a schematic diagram of an electronic device according to an embodiment of the present application.
  • the electronic device 200 according to the embodiment of the present application includes an electronic device body 210 and the above-mentioned retractable camera module 100 assembled in the electronic device body 210 .
  • the minimum height dimension of the conductive telescopic sleeve assembly 33 is less than or equal to the thickness dimension of the electronic device 200 .
  • the retractable camera module 100 can be deployed on the back of the electronic device body 210 to be used as a rear camera module. Of course, it can also be set as the front of the electronic device body 210 to be applied as a front camera module.
  • the specific installation position of the retractable camera module 100 on the electronic device body 210 is not limited by this application.
  • the retractable camera module 100 can extend its optical lens 20 in its working state to increase its total optical length until it meets the shooting requirements.
  • FIG. 9 illustrates another schematic diagram of an electronic device 200 according to an embodiment of the present application.
  • the electronic device 200 according to an embodiment of the present application includes an electronic device body 210 , the above-mentioned retractable camera module 100 assembled in the electronic device body 210 , and assembled in the electronic device body 210 .
  • the second camera module 220 of the electronic device body 210 compared with the retractable camera module 100 , the second camera module 220 has a relatively smaller effective focal length.
  • the electronic device 200 is configured with a multi-camera camera module, that is, the retractable camera module 100 and the existing short-focus camera module are applied together as an image sensor of the electronic device 200 .
  • the retractable camera module 100 and the second camera module 220 can cooperate with each other to provide more abundant imaging functions.
  • FIG. 10 illustrates another schematic view of the electronic device 200 illustrated in FIG. 9 .
  • the retractable camera module 100 can extend its optical lens 20 to increase its total optical length until the shooting requirements are met.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Camera Bodies And Camera Details Or Accessories (AREA)

Abstract

公开了一种可伸缩式摄像模组和电子设备,其中,通过驱动组件和可导电伸缩套筒组件,所述可伸缩式摄像模组的光学镜头能够相对于其感光芯片被可伸缩地移动,通过这样的方式,解决传统直立式摄像模组在整体高度尺寸和较大有效焦距之间的技术矛盾。特别地,所述驱动组件选择以压电致动器作为驱动元件来驱动所述可伸缩套筒组件的各个套筒单体进行伸缩运动,以提高伸缩控制的精度。并且,在本申请中,所述可导电伸缩套筒组件本身形成一个电导通元件,以简化用于导通所述驱动组件的电路铺设。

Description

可伸缩式摄像模组和电子设备 技术领域
本申请涉及摄像模组领域,尤其涉及可伸缩式摄像模组和电子设备。
背景技术
随着移动电子设备的普及,被应用于移动电子设备的用于帮助使用者获取影像(例如,视频或者图像)的摄像模组的相关技术得到了迅猛的发展和进步。目前在市场中,配置于移动电子设备(例如,智能手机)的摄像模组需要实现多倍变焦拍摄功能。
为了实现多倍变焦拍摄,需要配置至少一长焦摄像模组,这里,长焦摄像模组指的是具有较大有效焦距的摄像模组。并且,随着变焦倍数的增加,长焦摄像模组的总焦距会随之增大,这导致摄像模组的整体高度尺寸不断增高,难以适配电子设备轻薄化的发展趋势。
为了解决摄像模组的高度设计和高倍变焦拍摄功能之间的技术矛盾,目前大多数厂商采用潜望式摄像模组来替代传统的直立式摄像模组。相较于传统的直立式摄像模组,潜望式摄像模组中设有光转折元件(例如,棱镜、反射镜等)来改变成像光学路径,从而实现摄像模组整体高度尺寸的降低的同时满足具有较大有效焦距的光学设计需求。
相较于传统的直立式摄像模组,潜望式摄像模组具有相对较小的高度尺寸,但其具有相对更大的长宽尺寸。也就是,本质上潜望式摄像模组在其高度尺寸上的缩减,是通过在其长宽方向的尺寸的增大作为代价获得的。并且,在配置上对焦和/或防抖机构后,潜望式摄像模组在其长宽方向的尺寸也进一步地增加,不是很完美地符合摄像模组小型化和薄型化的发展趋势。
因此,需要一种新型的摄像模组,以相对更加地满足摄像模组小型化和薄型化的发展趋势。
发明内容
本申请的一优势在于提供了一种可伸缩式摄像模组和电子设备,其中, 通过驱动组件和可导电伸缩套筒组件,所述可伸缩式摄像模组的光学镜头能够相对于其感光芯片被可伸缩地移动,通过这样的结构配置,解决传统直立式摄像模组在整体高度尺寸和较大有效焦距之间的技术矛盾。
本申请的另一优势在于提供了一种可伸缩式摄像模组和电子设备,其中,所述可伸缩式摄像模组在其长、宽、高三个维度上的尺寸都能够相对较小,也就是,所述可伸缩式摄像模组能相对更佳地符合摄像模组小型化和薄型化的发展趋势。
本申请的又一优势在于提供了一种可伸缩式摄像模组和电子设备,其中,所述驱动组件选择以压电致动器作为驱动元件来驱动所述可导电伸缩套筒组件,以通过所述压电致动器具有相对更加的驱动线性度的特性来提高所述可导电伸缩套筒组件的伸缩精度。也就是,所述驱动组件选择以压电致动器作为驱动元件来提升所述可导电伸缩套筒组件的伸缩控制精度,以提高所述可伸缩式摄像模组的调焦精度。
本申请的又一优势在于提供了一种可伸缩式摄像模组和电子设备,其中,所述可导电伸缩套筒组件自身形成一个电导通元件,以使得当所述压电致动器被设置于所述可伸缩套筒组件时,所述压电致动器能够通过所述可导电伸缩套筒组件实现电导通,通过这样的方式,简化了布线且能够避免各线路之间发生串扰。也就是,在本申请中,所述可导电伸缩套筒组件不仅是一个可伸缩的结构支撑件,还是,一个电导通元件。或者说,所述可导电伸缩套筒组件的各支撑套筒单体之间的连接关系不仅包括可活动的物理连接还包括可导通的电连接关系。
通过下面的描述,本申请的其它优势和特征将会变得显而易见,并可以通过权利要求书中特别指出的手段和组合得到实现。
为实现上述至少一优势,本申请提供一种可伸缩式摄像模组,其包括:
感光组件,包括:线路板和电连接于所述电路板的感光芯片;
可导电伸缩套筒组件,所述可导电伸缩套筒组件包括内外嵌套的镜头承载套筒和至少一支撑套筒单体;
光学镜头,其中,所述光学镜头以被安装于所述可导电伸缩套筒组件的所述镜头承载套筒的方式被保持于所述感光芯片的感光路径上;
用于驱动所述可导电伸缩套筒组件相对于所述感光芯片做伸缩运动的驱动组件;
其中,通过所述可导电伸缩套筒组件和所述驱动组件,所述光学镜头适于相对于所述感光芯片可伸缩地移动以在第一状态和第二状态之间切换,其中,当处于第一状态时,所述可导电伸缩套筒组件被驱动相对于所述感光芯片向上移动以带动光学镜头相对于所述感光芯片向上移动,以增大所述光学镜头与所述感光芯片之间的距离;当处于第二状态时,所述可导电伸缩套筒组件被驱动相对于所述感光芯片被向下移动以带动所述光学镜头相对于所述感光芯片向下移动,以减小所述光学镜头与所述感光芯片之间的距离;
其中,所述可导电伸缩套筒组件进一步包括形成于所述支撑套筒单体的导电线路;所述驱动组件包括用于驱动所述可导电伸缩套筒组件可伸缩地移动的至少一压电致动器,其中,所述至少一压电致动器通过所述导电线路电连接于所述感光组件的线路板。
在根据本申请的可伸缩式摄像模组中,所述导电线路通过激光直接成型技术一体成型于对应的所述支撑套筒单体。
在根据本申请的可伸缩式摄像模组中,所述支撑套筒单体由激光激活塑料制成,其中,所述导线线路通过在所述支撑套筒单体成型后以激光直接成型技术加工而成。
在根据本申请的可伸缩式摄像模组中,所述至少一支撑套筒单体包括相互嵌套的第一支撑套筒单体和第二支撑套筒单体,所述镜头承载套筒内嵌于所述第一支撑套筒单体,其中,形成于所述第一支撑套筒单体的导电线路电连接于形成于所述第二支撑套筒单体的导电线路以形成电导通线路,其中,所述至少一压电致动器通过所述电导通线路电连接于所述感光组件的线路板。
在根据本申请的可伸缩式摄像模组中,所述至少一压电致动器包括被设置于所述第一支撑套筒单体且用于驱动所述镜头承载套筒可伸缩地移动的第一压电致动器,以及,被设置于所述第二支撑套筒单体且用于驱动所述第一支撑套筒单体可伸缩地移动的第二压电致动器。
在根据本申请的可伸缩式摄像模组中,所述第一支撑套筒单体具有第一周壁和自所述第一周壁的下端部向内延伸的第一底壁,所述第二支撑套筒单体具有第二周壁和自所述第二周壁的下端部向内延伸的第二底壁,其中,所述第一压电致动器被设置于所述第一底壁并被配置为驱动所述镜头承载套筒可伸缩地移动,所述第二压电致动器被设置于所述第二底壁并被配置为驱 动所述第一支撑套筒单体可伸缩地移动。
在根据本申请的可伸缩式摄像模组中,形成于所述第一支撑套筒单体的所述导电线路经过所述第一底壁的上表面和所述第一周壁。
在根据本申请的可伸缩式摄像模组中,所述导电线路在所述第一底壁的上表面形成至少一第一电连接端,所述第一压电致动器电连接于所述第一电连接端。
在根据本申请的可伸缩式摄像模组中,所述第一电连接端为圆形区域。
在根据本申请的可伸缩式摄像模组中,所述导电线路中从所述第一电连接端延伸的部分与所述第一电连接端的外周面相切。
在根据本申请的可伸缩式摄像模组中,所述导电线路从所述第一周壁的外侧面延伸至所述第一底壁的下表面,再从所述第一底壁的下表面延伸至所述第一底壁的上表面。
在根据本申请的可伸缩式摄像模组中,所述导电线路从所述第一周壁的外侧面延伸至所述第一周壁的内侧面,再从所述第一周壁的内侧面延伸至所述第一底壁的上表面。
在根据本申请的可伸缩式摄像模组中,所述导电线路中在所述第一周壁的外侧面上延伸的部分形成电连接头。
在根据本申请的可伸缩式摄像模组中,形成于所述第二支撑套筒单体的所述导电线路经过所述第二支撑套筒单体的第二底壁的上表面、所述第二周壁的外侧面和所述第二周壁的内侧面,其中,所述导电线路在所述第二周壁的外侧面上延伸的部分形成电连接段,所述电连接头电连接于所述电连接段。
在根据本申请的可伸缩式摄像模组中,所述电连接段的长度尺寸大于等于所述第一支撑套筒单体向上运动的行程大小。
在根据本申请的可伸缩式摄像模组中,当处于第一状态时,所述电连接头以电连接于所述电连接段的方式沿着所述电连接段向上滑动;当处于第二状态时,所述电连接头以电连接于所述电连接段的方式沿着所述电连接段向下互动。
在根据本申请的可伸缩式摄像模组中,所述电连接头突出地形成于所述第一周壁的外侧面,所述电连接段凹陷地形成于所述第二周壁的内侧面。
在根据本申请的可伸缩式摄像模组中,所述电连接段和所述电连接头具有适配的宽度尺寸。
在根据本申请的可伸缩式摄像模组中,所述导电线路在所述第二底壁的上表面延伸的部分形成至少一第二电连接端,所述第二压电致动器电连接于所述第二电连接端。
在根据本申请的可伸缩式摄像模组中,所述第二电连接端为圆形区域。
在根据本申请的可伸缩式摄像模组中,所述导电线路中从所述第二电连接端延伸的部分与所述第二电连接端的外周面相切。
在根据本申请的可伸缩式摄像模组中,所述导电线路从所述第二底壁的上表面延伸至所述第二周壁的内侧面,再从所述第二周壁的内侧面延伸至所述第二周壁的外侧面。
在根据本申请的可伸缩式摄像模组中,所述导电线路从所述第二周壁的外侧面延伸至所述第二周壁的内侧面,再从所述第二周壁的内侧面延伸至所述第二底壁的上表面。
在根据本申请的可伸缩式摄像模组中,所述导电线路在所述第二周壁的外侧面形成第三电连接端,所述感光组件进一步包括延伸于所述第三电连接端和所述线路板之间的软板连接板,以通过所述软板连接板和所述电导通线路将所述至少一压电致动器电连接于所述线路板。
在根据本申请的可伸缩式摄像模组中,所述导电线路在所述第二周壁的外侧面上延伸的部分形成第三电连接端,所述可伸缩式摄像模组进一步包括用于封装所述光学镜头、所述可导电伸缩套筒组件和所述感光组件的壳体,以及,形成于所述壳体的内表面的连接线路,其中,所述第三电连接端电连接于所述连接线路,所述连接线路电连接于所述感光组件的线路板,通过这样的方式,将所述至少一压电致动器电连接于所述线路板。
根据本申请的另一方面,还提供了一种电子设备,其包括:如上所述的可伸缩式摄像模组。
通过对随后的描述和附图的理解,本申请进一步的目的和优势将得以充分体现。
本申请的这些和其它目的、特点和优势,通过下述的详细说明,附图和权利要求得以充分体现。
附图说明
通过结合附图对本申请实施例进行更详细的描述,本申请的上述以及其 他目的、特征和优势将变得更加明显。附图用来提供对本申请实施例的进一步理解,并且构成说明书的一部分,与本申请实施例一起用于解释本申请,并不构成对本申请的限制。在附图中,相同的参考标号通常代表相同部件或步骤。
图1图示了根据本申请实施例的可伸缩式摄像模组在其工作状态的结构示意图。
图2图示了根据本申请实施例的所述可伸缩式摄像模组在其非工作状态的结构示意图。
图3图示了根据本申请实施例的所述可伸缩式摄像模组的立体爆炸示意图。
图4A图示了根据本申请实施例的所述可伸缩式摄像模组的驱动组件和可导电伸缩套筒组件的示意图之一。
图4B图示了根据本申请实施例的所述可伸缩式摄像模组的驱动组件和可导电伸缩套筒组件的示意图之二。
图4C图示了根据本申请实施例的所述可伸缩式摄像模组的驱动组件和可导电伸缩套筒组件的示意图之三。
图4D图示了根据本申请实施例的所述可伸缩式摄像模组的驱动组件和可导电伸缩套筒组件的示意图之四。
图4E图示了根据本申请实施例的所述可伸缩式摄像模组的驱动组件和可导电伸缩套筒组件的示意图之五。
图4F图示了根据本申请实施例的所述可伸缩式摄像模组的驱动组件和可导电伸缩套筒组件的示意图之六。
图5图示了根据本申请实施例的形成于所述第一支撑套筒单体的导电线路的示意图。
图6图示了根据本申请实施例的所述可伸缩式摄像模组的壳体的示意图。
图7A图示了根据本申请实施例的所述可导电伸缩套筒组件的一个变形实施的示意图。
图7B图示了根据本申请实施例的所述可导电伸缩套筒组件的另一个变形实施的示意图。
图8图示了根据本申请实施例的电子设备的示意图。
图9图示了根据本申请实施例的电子设备的另一示意图。
图10图示了图9中所示意的所述电子设备的另一示意图。
具体实施方式
下面,将参考附图详细地描述根据本申请的示例实施例。显然,所描述的实施例仅仅是本申请的一部分实施例,而不是本申请的全部实施例,应理解,本申请不受这里描述的示例实施例的限制。
申请概述
如前所述,目前在市场中,配置于移动电子设备(例如,智能手机)的摄像模组需要实现多倍变焦拍摄功能。为了实现多倍变焦拍摄,需要配置至少一长焦摄像模组。然而,随着变焦倍数的增加,长焦摄像模组的总焦距会随之增大,这导致摄像模组的整体高度尺寸不断增高,难以适配电子设备轻薄化的发展趋势。
为了解决摄像模组的高度设计和高倍变焦拍摄功能之间的技术矛盾,大多数厂商采用潜望式摄像模组来替代传统的直立式摄像模组。相较于传统的直立式摄像模组,潜望式摄像模组中设有光转折元件(例如,棱镜、反射镜等)来改变成像光学路径,从而实现摄像模组整体高度尺寸的降低的同时满足具有较大有效焦距的光学设计需求。
虽然相较于传统的直立式摄像模组,潜望式摄像模组具有相对较小的高度尺寸,但其具有相对更大的长宽尺寸。也就是,本质上潜望式摄像模组在其高度尺寸上的缩减,是通过在其长宽方向的尺寸的增大作为代价获得的。并且,在配置上对焦和/或防抖机构后,潜望式摄像模组在其长宽方向的尺寸也进一步地增加,不是很完美地符合摄像模组小型化和薄型化的发展趋势
为了满足用户的拍摄需求且终端设备厂商对于模组的组装要求,本申请发明人提出了一种可伸缩式摄像模组的技术路线,其具有与现有的直立式摄像模组和潜望式摄像模组完全不同的结构形态和工作机理。
具体地,在本申请中,所述可伸缩式摄像模组的光学镜头相对于相对于其感光芯片可伸缩以在工作状态和非工作状态下切换,其中,在工作状态下,所述可伸缩式摄像模组的光学镜头被伸出以用于成像,在非工作状态下,所述可伸缩式摄像模组的光学镜头被缩回以缩小所述可伸缩式摄像模组的整体高度尺寸。
在上述可伸缩式摄像模组的研发过程中,一个技术重点在于如何实现光学镜头相对于感光芯片的伸缩运动。在一个可行的方案中,本申请发明人使用可伸缩套筒组件带动光学镜头运动的方式来实现光学镜头的伸缩。具体地,所述可伸缩套筒组件包括相互可活动连接的多节套筒单体,以通过多节套筒单体之间的移动来带动所述光学镜头远离或靠近感光芯片。
为了提升所述可伸缩套筒组件的伸缩控制精度,在本申请的技术方案中,选择以压电致动器作为驱动元件来驱动所述可伸缩套筒组件的各个套筒单体进行伸缩运动。相较于传统的电磁式马达(例如,音圈马达、记忆合金马达),压电致动器具有相对更加的驱动线性度的特性,也因此,所述驱动组件选择以压电致动器作为驱动器能够提高其对所述可伸缩套筒组件的伸缩精度,以提高所述可伸缩式摄像模组的调焦精度。
在选择以压电致动器作为驱动元件后,可将所述压电致动器安装于各节套筒单体上,也就是,将所述压电致动器的物理安装点设置于各节套筒单体上。应可以理解,压电致动器需要供电才能工作,而因为所述压电致动器并非直接安装于线路板上,因此,在本申请的技术方案中,需要在所述压电致动器和线路板之间架设电连接线路,以通过所述电连接线路将安装于各节套筒单体上的压电致动器电连接于线路板。
在一种可行的方案中,可直接在压电致动器和线路板之间布置电连接线路,例如,通过软板或者金属导线实现压电致动器和线路板之间的电连接。然而,这种方案虽然实现了压电致动器和线路板之间的电连接,但是在实际应用中这种方案却效果不佳。
具体地,首先部分安装于套筒单体的压电致动器会随着套筒单体的移动而被移动。相应地,在压电致动器被移动时,架设于压电致动器和线路板之间的电连接线路也会被拉伸或者压缩,也就是,压电致动器和线路板之间的电连接不够稳定。
其次,由于压电致动器位于套筒单体内,因此,大部分电连接线路的走线的方式是沿着所述可伸缩套筒组件的内部自上而下的走线。相应地,来自外界的光线也从所述可伸缩套筒组件的内部被传播至感光芯片,也就是,如果电连接线路的走线方式不佳,电连接线路还会影响摄像模组的成像性能。
还有,如果压电致动器的数量较多,则需要布置相对较多的电连接线路,这些电连接线路之间会发生串扰。并且,随着电连接线路的数量的增加,还 会导致走线的复杂度不断地提升。
因此,本申请发明人选择对所述压电致动器的电连接方式进行优化。具体地,在本申请的技术方案中,将所述压电致动器的电导通线路一体集成地布置于所述可伸缩套筒组件,以简化布线且能够避免各线路之间发生串扰。也就是,在本申请实施例中,所述可伸缩套筒组件自身为可导电伸缩式套筒组件,其不仅是一个可伸缩的结构支撑件,还是,一个电导通元件,或者说,所述可导电伸缩套筒组件的各支撑套筒单体之间的连接关系不仅包括可活动的物理连接还包括可导通的电连接关系。
基于此,本申请提出了一种可伸缩式摄像模组,其包括:感光组件,包括:线路板和电连接于所述电路板的感光芯片;可导电伸缩套筒组件;光学镜头,其中,所述光学镜头被安装于所述可导电伸缩套筒组件内以被保持于所述感光芯片的感光路径上;用于驱动所述可导电伸缩套筒组件相对于所述感光芯片做伸缩运动的驱动组件;其中,通过所述可导电伸缩套筒组件和所述驱动组件,所述光学镜头适于相对于所述感光芯片可伸缩地移动以在第一状态和第二状态之间切换,其中,当处于第一状态时,所述可导电伸缩套筒组件被驱动相对于所述感光芯片向上移动以带动光学镜头相对于所述感光芯片向上移动,以增大所述光学镜头与所述感光芯片之间的距离;当处于第二状态时,所述可导电伸缩套筒组件被驱动相对于所述感光芯片被向下移动以带动所述光学镜头相对于所述感光芯片向下移动,以减小所述光学镜头与所述感光芯片之间的距离;其中,所述可导电伸缩套筒组件包括至少一支撑套筒单体、内嵌于所述支撑套筒单体的镜头承载套筒和形成于所述至少一支撑套筒单体的导电线路,所述光学镜头被安装于所述镜头承载套筒内;其中,所述驱动组件包括用于驱动所述支撑套筒单体向上或向下移动的至少一压电致动器,其中,所述压电致动器通过所述导电线路电连接于所述感光组件的所述线路板。
在介绍了本申请的基本原理之后,下面将参考附图来具体介绍本申请的各种非限制性实施例。
示例性可伸缩式摄像模组
如图1至图3所示,基于本申请实施例的可伸缩式摄像模组被阐明,其中,所述可伸缩式摄像模组100,包括:感光组件10、被保持于所述感光组 件10的感光路径上的光学镜头20,以及,用于调整所述光学镜头20与所述感光组件10之间的相对位置关系的伸缩组件30。
更具体地,在本申请实施例中,所述光学镜头20包括镜筒21和安装于所述镜筒21内的至少一光学透镜22。本领域普通技术人员应知晓,所述光学镜头20的解像力在一定的范围内,与光学透镜的数量成正比,也就是说,在一定光学透镜22的数量内,光学透镜的数量越多,解像力越高。因此,优选地,在本申请实施例中,所述光学镜头20包含多片光学透镜22,例如,4片、5片或者6片光学透镜22。
并且,在本申请实施例中,所述光学镜头20具有较大的有效焦距,以使得所述可伸缩式摄像模组100能够作为长焦摄像模组被应用。更明确地,在本申请实施例中,所述光学镜头20的有效焦距的范围为19mm至29mm。例如,当所述可伸缩式摄像模组100用于实现5倍光学变焦时,所述光学镜头20的有效焦距的范围为19mm至23mm,优选地,所述光学镜头20的有效焦距的范围为20mm至22mm。再如,当所述可伸缩式摄像模组100用于实现10倍光学变焦时,所述光学镜头20的有效焦距的范围为26mm至30mm,优选地,所述光学镜头20的有效焦距的范围为27mm至29mm。
值得一提的是,在本申请实施例中,所述光学镜头20的类型并不为本申请所局限,其可被实施为一体式光学镜头20,也可以被实施为分体式光学镜头20。具体地,当所述光学镜头20被实施为一体式光学镜头20时,所述镜筒21具有一体式结构,多片所述光学透镜22被组装于所述镜筒21内。当所述光学镜头20被实施为分体式镜头时,所述镜筒21包括至少二筒体单元,多片所述光学透镜22被分别组装于所述至少二筒体单元中以形成多个镜头单体,所述多个镜头单体通过主动校准的方式被组装在一起,以形成所述光学镜头20。
如图1至图3所示,在本申请实施例中,所述感光组件10,包括:线路板,感光芯片、支架和滤光元件。在本申请实施例中,所述感光芯片电连接于所述线路板(例如,所述感光芯片通过引线电连接于所述线路板),以藉由所述线路板为所述感光芯片提供工作所需要的控制电路和电能。所述支架被设置于所述线路板上,以用于支撑其他部件,其中,所述支架具有对应于所述感光芯片的至少感光区域的光窗。例如,在本申请的一些具体示例中,所述滤光元件可被安装于所述支架上,以使得所述滤光元件被保持于所述感 光芯片的感光路径上,这样,在外界光线穿过所述滤光元件以抵达所述感光芯片的过程中,该外界光线中的杂散光能够被所述滤光元件所过滤,以提高成像质量。
值得一提的是,在本申请其他示例中,所述滤光元件还能够以其他方式被安装于所述支架上,例如,先在所述支架上设置滤光元件支架,进而将所述滤光元件安装在所述滤光元件支架上,也就是,在该示例中,所述滤光元件可通过其他支撑件被间接地安装于所述支架上。当然,在本申请的其他示例中,所述滤光元件还能够被安装于所述可伸缩式摄像模组100的其他位置,例如,所述滤光元件可被实施为滤光膜并附着于所述光学镜头20的某一片光学透镜22的表面,对此,并不为本申请所局限。
为了增加所述感光组件10的底部强度,在本申请的一些示例中,所述感光组件10进一步包括设置于所述线路板的下表面的加强板15,例如,可在所述线路板的下表面设置钢板,以通过所述钢板来加强所述线路板的强度。相应地,所述加强板15可被配置为与所述线路板具有相一致的形状和尺寸,以在被叠置于所述线路板的下表面后,对所述线路板的整体进行加强。当然,在本申请的一些示例中,所述加强板15的尺寸可小于所述线路板,以对所述线路板的局部进行加强。当然,在本申请的另外一些示例中,所述加强板15的尺寸可大于所述线路板,以使得在被叠置于所述线路板的背部后,所述加强板15的部分区域自所述线路板的侧部伸出,其中,所述加强板15伸出所述线路板的区域可作为安装支撑部使用。
如图1至图3所示,在本申请实施例中,所述伸缩组件30,包括:可导电伸缩套筒组件33和驱动组件31,其中,所述光学镜头20被安装于所述可导电伸缩套筒组件33内,所述驱动组件31用于驱动所述可导电伸缩套筒组件33做伸缩运动以带动所述光学镜头20做伸缩运动,以适当所述光学镜头20与所述感光组件10之间的相位位置关系发生调整。
在本申请一个示例中,如图1至图3所示,所述可导电伸缩套筒组件33被安装于所述感光组件10的安装区域上,例如,可被安装于所述线路板上,或者,被安装于所述加强板15中伸出所述线路板的区域上。优选地,在本申请实施例中,将所述可导电伸缩套筒组件33的下端部332安装于所述加强板15中伸出所述线路板的区域上,以通过所述加强板15为提供可导电伸缩套筒组件33提供平整且具有足够强度的安装基面。并且,在所述可导电 伸缩套筒组件33被安装于所述加强板15时,所述可导电伸缩套筒组件33的中轴线优选地与所述感光芯片的中轴线对齐,也就是,优选地,在被安装于所述感光组件10的安装基板后,所述可导电伸缩套筒组件33同样被保持于所述感光芯片的感光路径上。
进一步地,如图1至3所示,在本申请实施例中,所述光学镜头20被安装于所述可导电伸缩套筒组件33内以被保持于所述感光芯片的感光路径上。具体地,在如图1至图3所示意的示例中,所述光学镜头20被安装于所述可导电伸缩套筒组件33的上端部331,以使得当所述可导电伸缩套筒组件33被驱动相对于所述感光芯片可伸缩地移动时,安装于所述可导电伸缩套筒组件33内的所述光学镜头20能跟随所述可导电伸缩套筒组件33运动,以调整所述光学镜头20与所述感光芯片之间的相对位置关系。
值得一提的是,在本申请其他示例中,所述光学镜头20可安装于所述可导电伸缩套筒组件33的其他位置,例如,安装于所述可导电伸缩套筒组件33的邻近于其上端部331的位置,或者,安装于所述可导电伸缩套筒组件33的中部位置,对此,并不为本申请所局限。并且,在本申请的一些示例中,为了缩减可伸缩式摄像模组100的横向尺寸,可不为所述光学镜头20配置所述镜筒21,而选择将所述可导电伸缩套筒组件33的筒体作为所述至少一光学透镜22的镜筒21,对此,同样并不为本申请所局限。
相应地,在本申请实施例中,如图1和图2所示,通过所述可导电伸缩套筒组件33和所述驱动组件31,所述光学镜头20能够相对于所述感光芯片做可伸缩地移动以在第一状态和第二状态之间切换,其中,当处于第一状态时,所述可导电伸缩套筒组件33被所述驱动组件31所驱动以相对于所述感光芯片向上移动以带动光学镜头20相对于所述感光芯片向上移动,以增大所述光学镜头20与所述感光芯片之间的距离,如图1所示。如图2所示,当处于第二状态时,所述可导电伸缩套筒组件33被所述驱动组件31驱动以相对于所述感光芯片被向下移动以带动所述光学镜头20相对于所述感光芯片向下移动,以减小所述光学镜头20与所述感光芯片之间的距离。应可以理解,所述第一状态为所述可伸缩式摄像模组100的工作状态,所述第二状态为所述可伸缩式摄像模组100的非工作状态。
也就是,在本申请实施例中,相较于传统的直立式摄像模组,所述可伸缩式摄像模组100具有两种状态:工作状态和非工作状态,其中,当处于工 作状态时,所述光学镜头20随着所述可导电伸缩套筒组件33被向上伸展而被伸出,以使得所述光学镜头20与所述感光芯片之间的距离符合拍摄需求(这里,拍摄需求表示所述光学镜头20与所述感光芯片之间的总光学长度符合拍摄要求);当处于非工作状态时,所述光学镜头20随着所述可导电伸缩套筒组件33被向下缩回而被缩回,以使得所述可伸缩式摄像模组100的整体高度尺寸得以缩减,从而满足将所述可伸缩式摄像模组100组装于终端设备的尺寸要求。也就是,在工作状态和非工作状态,所述光学镜头20与所述感光芯片之间的距离被所述可导电伸缩套筒组件33所调整,以在处于工作状态时,所述光学镜头20与所述感光芯片之间的距离满足拍摄需求,而在处于非工作状态时,所述光学镜头20与所述感光芯片之间的距离被尽可能地缩短,以使得所述可伸缩式摄像模组100的整体高度尺寸可尽可能地缩减。
更具体地,当所述可伸缩式摄像模组100处于工作状态时,所述可导电伸缩套筒组件33被驱动以远离所述感光芯片的方向被向上伸出,此时,所述可伸缩式摄像模组100的整体高度尺寸逐渐增加,相应地,当所述可导电伸缩套筒组件33被完全伸出时,所述可伸缩式摄像模组100的整体高度尺寸达到最大值,这里,为了便于描述,将该最大值定义为最大高度尺寸,并且,所述可伸缩式摄像模组100的高度尺寸表示所述可伸缩式摄像模组100顶表面与其底表面之间的距离。
相应地,当所述可伸缩式摄像模组100处于非工作状态时,所述可导电伸缩套筒组件33被驱动以靠近所述感光芯片的方向被向下缩回,此时,所述可伸缩式摄像模组100的整体高度尺寸逐渐减小,相应地,当所述可导电伸缩套筒组件33被完全缩回时,所述可伸缩式摄像模组100的整体高度尺寸达到最小值,这里,为了便于描述,将该最小值定义为最小高度尺寸,并且,所述可伸缩式摄像模组100的高度尺寸表示所述可伸缩式摄像模组100顶表面与其底表面之间的距离。
具体地,当所述可伸缩式摄像模组100被配置为终端设备的后置摄像模组时,也就是,所述可伸缩式摄像模组100被安装于终端设备的背部时,所述最小高度尺寸与所述终端设备的厚度尺寸基本一致。这里,所述最小高度尺寸与所述终端设备的厚度尺寸基本一致表示当所述可伸缩式摄像模组100被安装于终端设备后,其上端面与所述终端设备的背面齐平,或者,略低于 所述终端设备的背面。当然,根据实际需求,所述可伸缩式摄像模组100的上端面也可以高于所述终端设备的背面,但是一般来讲,为了美观,突出的高度不能过大,一般可控制在0mm至5mm之间。
相应地,当所述可伸缩式摄像模组100被配置为终端设备的后置摄像模组时,在处于工作状态时,所述可伸缩式摄像模组100的所述光学镜头20会被伸出,以使得所述光学镜头20与所述感光芯片之间的距离符合变焦拍摄对光学后焦值的要求,使得成像质量能够得以保证。如图1所示,在处于工作状态时,所述可伸缩式摄像模组100的高度会明显地大于所述终端设备的厚度尺寸。应可以理解,在具体实施中,所述最大高度尺寸和所述最小高度尺寸取决于所述终端设备对于光学变焦倍率的要求。
具体地,以所述可伸缩式神像模组用于实现5倍光学变焦为例,所述最小高度尺寸的范围为8mm-11mm,优选地,所述最小高度尺寸的范围为9mm-10mm;所述最大高度尺寸的范围为23mm-26mm,优选地,所述最大高度尺寸的范围为24mm-25mm。以所述可伸缩式神像模组用于实现10倍光学变焦为例,所述最小高度尺寸的范围为9mm-12mm,优选地,所述最小高度尺寸的范围为10mm-11mm;所述最大高度尺寸的范围为28mm-32mm,优选地,所述最大高度尺寸的范围为29mm-31mm。
此外,当处于工作状态时,所述可伸缩式摄像模组100的光学后焦值最大,当处于非工作状态时,所述可伸缩式摄像模组100的光学后焦值最小。更具体地,以所述可伸缩式摄像模组100被用于5倍光学变焦为例,在处于工作状态时,所述可伸缩式摄像模组100的光学后焦值的范围为13mm至17mm,优选地为14至16mm;在处于非工作状态时,所述可伸缩式摄像模组100的光学后焦值的范围为1mm至3mm,优选地为1.5mm至2.5mm。
此外,当处于工作状态时,所述可伸缩式摄像模组100的机构后焦最大,当处于非工作状态时,所述可伸缩式摄像模组100的机构后焦最小。这里,所述可伸缩式摄像模组100的机械后焦表示所述光学镜头20中最后一片光学透镜22的下表面的切面至像面的距离。所述机构后焦的取值与所述可伸缩式摄像模组100的光学后焦值较为接近,基本上在光学后焦值的基础上减少0.5mm左右。
此外,应可以理解,当所述可伸缩式摄像模组100处于工作状态时,所述可导电伸缩套筒组件33被驱动以远离所述感光芯片的方向被向上伸出, 此时,所述可导电伸缩套筒组件33的整体高度尺寸逐渐增加,相应地,当所述可导电伸缩套筒组件33被完全伸出时,所述可导电伸缩套筒组件33的整体高度尺寸达到最大值。相应地,当所述可伸缩式摄像模组100处于非工作状态时,所述可导电伸缩套筒组件33被驱动以靠近所述感光芯片的方向被向下缩回,此时,所述可导电伸缩套筒组件33的整体高度尺寸逐渐减小,相应地,当所述可导电伸缩套筒组件33被完全缩回时,所述可导电伸缩套筒组件33的整体高度尺寸达到最小值。具体地,在本申请实施例中,所述可导电伸缩套筒组件33的最小高度尺寸的范围为6mm至9mm,所述可导电伸缩套筒组件33的最大高度尺寸的范围为18.6mm至28.6mm。
进一步地,如图1至3所示,在本申请一个具体的示例中,所述可导电伸缩套筒组件33具有多节结构,具体地,所述可伸缩式套筒组件33包括多节相互可活动连接的套筒单体。所述多节支撑套筒单体之间能够相互作用,以在被所述驱动组件31驱动后能够相对于所述感光芯片做伸出移动或者相对于所述感光芯片做缩回移动。这里,所述多节套筒单体之间能够相互作用,表示所述多节套筒单体之间具有力的传导或者直接接触。优选地,在本申请实施例中,所述多节套筒单体中相邻两节支撑套筒单体之间相互可活动地连接,例如,以内外逐层嵌套的方式进行布置并通过导槽进行相互可活动地连接,以形成所述可导电伸缩套筒组件33,如图1至图3所示。
为了便于理解和说明,在本申请实施例中,将所述多节套筒单体中用于安装光学镜头20的套筒单体定义为镜头承载套筒333,而将其他套筒单体定义为支撑套筒单体。
在如图1至图3所示意的示例中,所述驱动组件31包括多个驱动元件,以通过所述驱动元件分别驱动每一所述支撑套筒单体移动。例如,在如图1至图3所示的示例中,所述可导电伸缩套筒组件33包括相互内外嵌套的所述镜头承载套筒333、第一支撑套筒单体334、第二支撑套筒单体335,其中,所述镜头承载套筒333用于安装所述光学镜头20。也就是,在该示例中,以所述可导电伸缩套筒组件33具有三节套筒单体为示例,其中,两节为支撑套筒单体,另外一节为所述镜头承载套筒333。相应地,在该示例中,所述驱动组件31包括两驱动元件:第一驱动元件和第二驱动元件,其中,所述第一驱动元件用于驱动所述镜头承载套筒333相对于所述第一支撑套筒单体334向上或向下地线性移动;所述第二驱动元件用于驱动所述第一支撑套筒 单体334相对于所述第二支撑套筒单体335向上或者向下线性地移动。
更具体地,在该示例中,如图4A至图4F所示,所述第一支撑套筒单体334具有第一周壁3341和自所述第一周壁3341的下端部向内延伸的第一底壁3342,其中,所述第一驱动元件被设置于所述第一底壁3342并被配置为驱动所述镜头承载套筒333可伸缩地移动以带到所述光学镜头30相对于所述感光组件10可伸缩的移动。如图4C所示,所述第二支撑套筒单体335具有第二周壁3351和自所述第二周壁3351的下端部向内延伸的第二底壁3352,其中,所述第二驱动元件被设置于所述第二底壁3352并被配置为驱动所述第一支撑套筒单体334可伸缩地移动。
特别地,在该示例中,所述第一驱动元件和所述第二驱动元件被实施为压电致动器,即,所述第一驱动元件被实施为第一压电致动器311,所述第二驱动元件被实施为第二压电致动器312。相较于传统的电磁式马达和记忆合金马达,所述压电致动器能提供相对较大的驱动力,具体地,所述压电致动器能够提供的驱动力大小为0.6N至2N,其足以驱动重量大于100mg的部件。
除了能够提供相对较大的驱动力以外,相较于传统的电磁式马达方案和记忆合金马达方案,所述压电致动器还具有其他优势,包括但不限于:尺寸相对较小(具有细长状),响应精度更佳,结构相对更为简单,驱动控制相对更为简单,产品一致性高,没有电磁干扰,具有相对更大的行程,稳定时间短,重量相对较小等。所述压电致动器利用振动时的摩擦力和惯性,以摩擦接触的方式推动待推动对象进行微米级运动,其相较于电磁式方案非接触的方式驱动待推动对象需要依靠电磁力抵消重力,摩擦力的方式,具有更大推力,更大位移和更低功耗的优势,同时控制精度更高,可实现高精度连续变焦。而且在存在多个马达机构时,所述压电致动器不存在磁铁线圈结构,无磁干扰问题。另外,所述压电致动器可依靠部件之间的摩擦力自锁,因此可以降低所述可伸缩式摄像模组在进行调焦时的晃动异响。
应可以理解,通过第一压电致动器311和所述第二压电致动器322驱动所述第一支撑套筒单体334、所述第二支撑套筒单体335所述镜头承载套筒333的方式,可提高所述可导电伸缩套筒组件33的控制精度,即,使得所述光学镜头20与所述感光芯片之间的距离调控可更为精准。
为了进一步地提高所述可伸缩式摄像模组的伸缩控制精度,如图4A至 图4F所示,在本申请的一些示例中,可为所述压电致动器配置导引机构,以所述导引结构提高各节套筒单体(包括所述镜头承载套筒333、所述第一支撑套筒单体334和所述第二支撑套筒单体335)的伸缩运动时的平滑度和稳定性,防止各节套筒单体在伸缩过程中发生倾斜。也就是,在本申请的一些示例中,所述驱动组件31进一步包括用于优化所述套筒单体的伸缩运动的导引机构。
具体地,在本申请的一些示例中,所述驱动组件31包括至少一第一导引机构313,所述至少一第一导引机构313和所述第一压电致动器311相对于所述可导电伸缩套筒组件33所设定的轴线均匀地沿着所述第一底壁3342布置。例如,在如图4A至图4C所示意的示例中,所述驱动组件31进一步包括两个第一导引机构313,其中,所述两个第一导引机构313与所述第一压电致动器311相对于所述可导电伸缩套筒组件33所设定的轴线均匀地沿着所述第一底壁3342布置,通过这样的方式,在所述镜头承载套筒333被所述第一压电致动器311所驱动以向上伸出或向下缩回的过程中,两个所述第一导引机构313能够引导所述所述镜头承载套筒333沿着特定的方向移动,以避免所述所述镜头承载套筒333在伸缩运动的过程中发生不必要的倾斜。
具体地,在如图4A至图4F所示意的示例中,所述第一导引机构313包括被安装于所述第一底壁3342的引导杆3131和被设置于所述镜头承载套筒333的外侧面的引导头3132,所述引导头3132具有引导孔,所述引导杆3131穿过所述引导孔,通过这样的方式,当所述第一压电致动器311驱动所述镜头承载套筒333向上或向下移动时,所述第一导引机构313适于引导所述第二镜头承载套筒333沿着所述引导杆3131和所述引导孔所限定的移动方向移动。
在具体实施中,所述引导头3132可一体成型于所述镜头承载套筒333的外侧面,也就是,所述引导头3132为所述镜头承载套筒333的一部分。当然,在本申请其他示例中,所述引导头3132也可以是安装于所述第二支撑套筒单体335的外侧面的一个单独的部件,对此,并不为本申请所局限。
相应地,也可以通过导引结构来优化所述第一支撑套筒单体334的伸缩运动。例如,在本申请的一个具体示例中,所述驱动组件31包括至少一第二导引机构314,所述至少一第二导引机构314和所述至少一第二压电致动器312相对于所述可导电伸缩套筒组件33所设定的轴线均匀地沿着所述第 二底壁3352布置,如图4A至图4F所示。在该示例中,所述第二导引机构314包括被安装于所述第二底壁3352的引导杆3131和被设置于所述第一支撑套筒单体334的外侧面的引导头3132,所述引导头3132具有引导孔,所述引导杆3131穿过所述引导孔,通过这样的方式,当所述第二压电致动器312驱动所述第一支撑套筒单体334向上或向下移动时,所述第二导引机构314适于引导所述第一支撑套筒单体334沿着所述引导杆3131和所述引导孔所限定的移动方向移动。特别地,所述引导头3132一体成型于所述第一支撑套筒单体334的外侧面。
值得一提的是,在本申请的其他示例中,还可以通过其他方式来优化所述第一支撑套筒单体334和所述镜头承载套筒333的伸缩运动。例如,在本申请的其他一些示例中,所述驱动组件31包括更多数量的压电致动器,例如,所述驱动组件31包括至少二所述第一压电致动器311,所述至少二第一压电致动器311相对于所述可导电伸缩套筒组件33所设定的轴线均匀地沿着所述第一底壁3342布置,以通过所述至少二第一压电致动器311同时驱动所述镜头承载套筒333的方式以使得所述镜头承载套筒333的伸缩运动更为平滑和稳定。当然,所述第一支撑套筒单体334的伸缩运动也可以通过此方式来进行优化,即,所述驱动组件31包括至少二第二压电致动器312,所述至少二第二压电致动器312相对于所述可导电伸缩套筒组件33所设定的轴线均匀地沿着所述第二底壁3352布置。
在将所述第一压电致动器311和所述第二压电致动器312布置于所述可导电伸缩套筒组件33的所述第一支撑套筒单体334和所述第二支撑套筒单体335后,应可以理解,所述第一压电致动器311和所述第二压电致动器312需要供电才能工作,而因为所述第一压电致动器311和所述第二压电致动器312并非直接安装于线路板上,因此,在本申请的技术方案中,需要在所述第一压电致动器311和所述第二压电致动器312和所述线路板之间架设电连接线路,以通过所述电连接线路将安装于所述第一支撑套筒单体334和所述第二支撑套筒单体335的所述第一压电致动器311和所述第二压电致动器312电连接于线路板。
具体地,如图4A至图4F所示,在本申请实施例中,所述可导电伸缩套筒组件33进一步包括形成于所述第一支撑套筒单体334和所述第二支撑套筒单体335的导电线路336,其中,形成于所述第一支撑套筒单体334的导 电线路336电连接于形成于所述第二支撑套筒单体335的导电线路336以形成电导通线路337。相应地,布置于所述可导电伸缩套筒组件33的所述第一压电致动器311和所述第二压电致动器312通过所述电导通线路337电连接于所述线路板,以使得来自所述线路板的电能能够通过所述电导通线路337被传导至所述第一压电致动器311和所述第二压电致动器312。
特别地,在本申请实施例中,所述导电线路336一体地形成于所述第一支撑套筒单体334和所述第二支撑套筒单体335,即,在本申请的技术方案中,将所述压电致动器的导电线路336一体地集成布置于所述可导电伸缩套筒组件33,以简化布线且能够避免各线路之间发生串扰。也就是,在本申请实施例中,所述可导电伸缩套筒组件33的各支撑套筒单体之间的连接关系不仅包括可活动的物理连接而且还包括可导通的电连接关系,或者说,所述可导电伸缩套筒组件33不仅是一个可伸缩的结构支撑件,还是,一个电导通元件。
更具体地,在本申请实施例中,所述第一支撑套筒单体334和所述第二支撑套筒单体335由激光激活塑料制成,即所述所述第一支撑套筒单体334和所述第二支撑套筒单体335的制成材料为一种金属组合物的激光激活塑料。在制备过程中,其首先通过一体成型工艺(例如,注塑工艺)将激光激活塑料材料制成套筒形状;接着,在所述套筒成型后,进一步进行激光激活加工使得所述第一支撑套筒单体334和所述第二支撑套筒单体335本身实现电路导通功能,即所述第一支撑套筒单体334和所述第二支撑套筒单体335一方面是结构件,一方面也可以是认为是电气元件。
激光激活工艺指的是在一定强度的激光照射下,所述第一支撑套筒单体334和所述第二支撑套筒单体335的制成材料,即含有掺杂物的塑料中的金属组织化合物被分离以暴露出金属原子,以在所述第一支撑套筒单体334和所述第二支撑套筒单体335一体形成导电线路336。也就是,在本申请实施例中,在无需电镀或者其他手段下,无需添加额外材料,所述第一支撑套筒单体334和所述第二支撑套筒单体335在激光照射路径上形成宽为5~10um的所述导电线路336。
相应地,可通过激光照射路径的不同来形成满足预设要求的导电线路336。具体地,如图4A至图4F所示,在本申请实施例中,形成于所述第一支撑套筒单体334的所述导电线路336经过所述第一底壁3342的上表面和 所述第一周壁3341,其中,所述导电线路336在所述第一底壁3342的上表面形成至少一第一电连接端3371,所述第一压电致动器311电连接于所述第一电连接端3371。并且,所述导电线路336中在所述第一周壁3341的外侧面上延伸的部分形成电连接头3372。
特别地,如图5所示,所述第一电连接端3371为圆形区域,并且,所述导电线路336中从所述第一电连接端3371延伸的部分与所述第一电连接端3371的外周面相切。在具体实施中,可通过激光激活工艺在所述第一底壁3342的上表面形成形状为圆形的所述第一电连接端3371,例如,通过类似小圆面以一圆心绘制多圈向内收缩的圆圈形成具有圆形结构的所述第一电连接端3371。进一步地,在完成所述第一电连接端3371的激活后,从所述第一电连接端3371的外周缘沿往外再延伸出一金属层,所述金属层沿所述第一电连接端3371的圆弧平滑的导出,避免生硬的转折(如直角、大转折角等)。
在本申请的一个具体示例中,所述导电线路336从所述第一周壁3341的外侧面延伸至所述第一底壁3342的下表面,再从所述第一底壁3342的下表面延伸至所述第一底壁3342的上表面。当然,在本申请其他示例中,形成于所述第一支撑套筒单体334的所述导电线路336还能够以其他方式进行走线,例如,所述导电线路336从所述第一周壁3341的外侧面延伸至所述第一周壁3341的内侧面,再从所述第一周壁3341的内侧面延伸至所述第一底壁3342的上表面,只需要满足形成于所述第一支撑套筒单体334的所述导电线路336经过所述第一底壁3342的上表面和所述第一周壁3341的条件即可。
进一步地,如图4A至图4F所示,形成于所述第二支撑套筒单体335的所述导电线路336经过所述第二支撑套筒单体335的第二底壁3352的上表面、所述第二周壁3351的外侧面和所述第二周壁3351的内侧面,其中,所述导电线路336在所述第二底壁3352的上表面延伸的部分形成至少一第二电连接端3373,所述第二压电致动器312电连接于所述第二电连接端3373。
相类似地,在该实施例中,所述第二电连接端3373也可被实施为圆形区域,并且,所述导电线路336中从所述第二电连接端3373延伸的部分与所述第二电连接端3373的外周面相切。在具体实施例中,可通过激光激活工艺在所述第一底壁3342的上表面形成形状为圆形的所述第二电连接端 3373,例如,通过类似小圆面以一圆心绘制多圈向内收缩的圆圈形成具有圆形结构的所述第二电连接端3373。进一步地,在完成所述第二电连接端3373的激活后,从所述第二电连接端3373的外周缘沿往外再延伸出一金属层,所述金属层沿所述第二电连接端3373的圆弧平滑的导出,避免生硬的转折(如直角、大转折角等)。
应注意到,在所述可导电伸缩套筒组件33被所述第一压电致动器311和所述第二压电致动器312所驱动时,所述第二支撑套筒单体335和所述第一支撑套筒单体334之间会发生相对运动,即,所述第一支撑套筒单体334相对于所述第二支撑套筒单体335做伸缩运动。此时,形成于所述第一支撑套筒单体334的导线线路与形成于所述第二支撑套筒单体335的导电线路336之间的相对位置会发生变化。为了确保所述第一支撑套筒单体334和所述第二支撑套筒单体335在移动时能始终保持电连接,在本申请实施例中,所述导电线路336在所述第二周壁3351的外侧面上延伸的部分形成电连接段3374,所述电连接头3372电连接于所述电连接段3374。
相应地,为了确保所述电连接头3372能够始终电连接于所述电连接段3374,在本申请实施例中,所述电连接段3374的长度尺寸大于等于所述第一支撑套筒单体334向上运动的行程大小,这样,当处于第一状态时,所述电连接头3372以电连接于所述电连接段3374的方式沿着所述电连接段3374向上移动;当处于第二状态时,所述电连接头3372以电连接于所述电连接段3374的方式沿着所述电连接段3374向下移动。
更具体地,在本申请的一个具体示例中,形成于所述第二支撑套筒单体335的所述导电线路336的走线方式为:所述导电线路336从所述第二底壁3352的上表面延伸至所述第二周壁3351的内侧面,再从所述第二周壁3351的内侧面延伸至所述第二周壁3351的外侧面。当然,在本申请其他示例中,所述导电线路336从所述第二周壁3351的外侧面延伸至所述第二周壁3351的内侧面,再从所述第二周壁3351的内侧面延伸至所述第二底壁3352的上表面,只需要满足形成于所述第二支撑套筒单体335的所述导电线路336经过所述第二支撑套筒单体335的第二底壁3352的上表面、所述第二周壁3351的外侧面和所述第二周壁3351的内侧面的条件即可。
图7A图示了根据本申请实施例的所述可导电伸缩套筒组件33的一个变形实施的示意图。如图7A所示,在该实施例中,所述电连接头3372突出地 形成于所述第一周壁3341的外侧面,所述电连接端凹陷地形成于所述第二周壁3351的内侧面,其中,当所述第一支撑套筒单体334嵌合于所述第二支撑套筒单体335时,所述电连接头3372嵌合于所述电连接段3374内,以确保在所述第一支撑套筒单体334和所述第二支撑套筒单体335的相对位置发生变化时,所述电连接头3372始终接触并电连接于所述电连接段3374。
图7B图示了根据本申请实施例的所述可导电伸缩套筒组件33的另一个变形实施的示意图。如图7B所示,在该实施例中,所述电连接头3372凹陷地形成于所述第一周壁3341的外侧面,所述电连接段3374突出地形成于所述第二周壁3351的内侧面,其中,当所述第一支撑套筒单体334嵌合于所述第二支撑套筒单体335时,所述电连接段3374嵌合于所述电连接头3372内,以确保在所述第一支撑套筒单体334和所述第二支撑套筒的相对位置发生变化时,所述电连接头3372始终接触并电连接于所述电连接段3374。
为了真正地实现所述压电致动器和所述线路板之间的电连接,如图4A至图4C所示,在本申请实施例中,所述导电线路336在所述第一周壁3341的外侧面形成第三电连接端3375。进一步地,在本申请实施例中,所述可伸缩式摄像模组进一步包括用于封装所述光学镜头20、所述可导电伸缩套筒组件33和所述感光组件10的壳体40,以及,形成于所述壳体40的内表面的连接线路338(例如,同样可通过激光激活工艺形成所述连接线路338),其中,所述第三电连接端3375电连接于所述连接线路338,所述连接线路338电连接于所述感光组件10的线路板,通过这样的方式,将所述至少一压电致动器电连接于所述线路板。
当然,在本申请其他实施例中,还可以通过其他方式将所述压电致动器电连接于所述线路板。例如,在本申请另外一个示例中,所述感光组件10进一步包括延伸于所述第三电连接端3375和所述线路板之间的软板连接板(未有图示意图),以通过所述软板连接板和所述电导通线路337将所述至少一压电致动器电连接于所述线路板。
综上,基于本申请实施例的可伸缩式摄像模组被阐明,其中,通过驱动组件31和可导电伸缩套筒组件33,所述可伸缩式摄像模组的光学镜头20能够相对于其感光芯片被可伸缩地移动,通过这样的方式,解决传统直立式摄像模组在整体高度尺寸和较大有效焦距之间的技术矛盾。特别地,所述驱动组件31选择以压电致动器作为驱动元件来驱动所述可导电伸缩套筒组件 33的各个套筒单体进行伸缩运动,以提高伸缩控制的精度。并且,在本申请中,所述可导电伸缩套筒组件33本身形成一个电导通元件,以简化用于导通所述驱动组件31的电路铺设。
示例性电子设备
根据本申请的另一方面,还提供了一种电子设备。
图8图示了根据本申请实施例的电子设备的示意图。如图8所示,根据本申请实施例的所述电子设备200,包括电子设备本体210和被组装于所述电子设备本体210的如上所述的可伸缩式摄像模组100。特别地,所述可导电伸缩套筒组件33的最小高度尺寸小于等于所述电子设备200的厚度尺寸。
在具体实施中,所述可伸缩式摄像模组100可被部署于所述电子设备本体210的背部,以作为后置摄像模组被应用。当然,其也可被设置为所述电子设备本体210的前部,以作为前置摄像模组被应用。对于所述可伸缩式摄像模组100在所述电子设备本体210的具体安装位置,并不为本申请所局限。
特别地,相较于常规的直立式摄像模组,所述可伸缩式摄像模组100在其工作状态下,能够将其光学镜头20伸出以增大其总光学长度直至满足拍摄需求。
图9图示了根据本申请实施例的电子设备200的另一示意图。图9所示,根据本申请实施例的所述电子设备200,包括电子设备本体210、被组装于所述电子设备本体210的如上所述的可伸缩式摄像模组100,以及,被组装于所述电子设备本体210的第二摄像模组220。特别地,相较于所述可伸缩式摄像模组100,所述第二摄像模组220具有相对较小的有效焦距长度。
也就是,在如图9所示意的所述电子设备200中,所述电子设备200被配置多摄摄像模组,即,所述可伸缩式摄像模组100与现有的短焦摄像模组一起被应用于为所述电子设备200的图像传感器。在工作过程中,所述可伸缩式摄像模组100与所述第二摄像模组220能够相互配合,以提供更为丰富的成像功能。
图10图示了图9中所示意的所述电子设备200的另一示意图。如图10所示,在工作工程中,所述可伸缩式摄像模组100能够将其光学镜头20伸出以增大其总光学长度直至满足拍摄需求。
本领域的技术人员应理解,上述描述及附图中所示的本发明的实施例只作为举例而并不限制本发明。本发明的目的已经完整并有效地实现。本发明的功能及结构原理已在实施例中展示和说明,在没有背离所述原理下,本发明的实施方式可以有任何变形或修改。

Claims (26)

  1. 一种可伸缩式摄像模组,其特征在于,包括:
    感光组件,包括:线路板和电连接于所述电路板的感光芯片;
    可导电伸缩套筒组件,所述可导电伸缩套筒组件包括内外嵌套的镜头承载套筒和至少一支撑套筒单体;
    光学镜头,其中,所述光学镜头以被安装于所述可导电伸缩套筒组件的所述镜头承载套筒的方式被保持于所述感光芯片的感光路径上;
    用于驱动所述可导电伸缩套筒组件相对于所述感光芯片做伸缩运动的驱动组件;
    其中,通过所述可导电伸缩套筒组件和所述驱动组件,所述光学镜头适于相对于所述感光芯片可伸缩地移动以在第一状态和第二状态之间切换,其中,当处于第一状态时,所述可导电伸缩套筒组件被驱动相对于所述感光芯片向上移动以带动光学镜头相对于所述感光芯片向上移动,以增大所述光学镜头与所述感光芯片之间的距离;当处于第二状态时,所述可导电伸缩套筒组件被驱动相对于所述感光芯片被向下移动以带动所述光学镜头相对于所述感光芯片向下移动,以减小所述光学镜头与所述感光芯片之间的距离;
    其中,所述可导电伸缩套筒组件进一步包括形成于所述支撑套筒单体的导电线路;所述驱动组件包括用于驱动所述可导电伸缩套筒组件可伸缩地移动的至少一压电致动器,其中,所述至少一压电致动器通过所述导电线路电连接于所述感光组件的线路板。
  2. 根据权利要求1所述的可伸缩式摄像模组,其中,所述导电线路通过激光直接成型技术一体成型于对应的所述支撑套筒单体。
  3. 根据权利要求1所述的可伸缩式摄像模组,其中,所述支撑套筒单体由激光激活塑料制成,其中,所述导线线路通过在所述支撑套筒单体成型后以激光直接成型技术加工而成。
  4. 根据权利要求3所述的可伸缩式摄像模组,其中,所述至少一支撑套筒单体包括相互嵌套的第一支撑套筒单体和第二支撑套筒单体,所述镜头 承载套筒内嵌于所述第一支撑套筒单体,其中,形成于所述第一支撑套筒单体的导电线路电连接于形成于所述第二支撑套筒单体的导电线路以形成电导通线路,其中,所述至少一压电致动器通过所述电导通线路电连接于所述感光组件的线路板。
  5. 根据权利要求4所述的可伸缩式摄像模组,其中,所述至少一压电致动器包括被设置于所述第一支撑套筒单体且用于驱动所述镜头承载套筒可伸缩地移动的第一压电致动器,以及,被设置于所述第二支撑套筒单体且用于驱动所述第一支撑套筒单体可伸缩地移动的第二压电致动器。
  6. 根据权利要求5所述的可伸缩式摄像模组,其中,所述第一支撑套筒单体具有第一周壁和自所述第一周壁的下端部向内延伸的第一底壁,所述第二支撑套筒单体具有第二周壁和自所述第二周壁的下端部向内延伸的第二底壁,其中,所述第一压电致动器被设置于所述第一底壁并被配置为驱动所述镜头承载套筒可伸缩地移动,所述第二压电致动器被设置于所述第二底壁并被配置为驱动所述第一支撑套筒单体可伸缩地移动。
  7. 根据权利要求6所述的可伸缩式摄像模组,其中,形成于所述第一支撑套筒单体的所述导电线路经过所述第一底壁的上表面和所述第一周壁。
  8. 根据权利要求7所述的可伸缩式摄像模组,其中,所述导电线路在所述第一底壁的上表面形成至少一第一电连接端,所述第一压电致动器电连接于所述第一电连接端。
  9. 根据权利要求8所述的可伸缩式摄像模组,其中,所述第一电连接端为圆形区域。
  10. 根据权利要求9所述的可伸缩式摄像模组,其中,所述导电线路中从所述第一电连接端延伸的部分与所述第一电连接端的外周面相切。
  11. 根据权利要求8所述的可伸缩式摄像模组,其中,所述导电线路从 所述第一周壁的外侧面延伸至所述第一底壁的下表面,再从所述第一底壁的下表面延伸至所述第一底壁的上表面。
  12. 根据权利要求8所述的可伸缩式摄像模组,其中,所述导电线路从所述第一周壁的外侧面延伸至所述第一周壁的内侧面,再从所述第一周壁的内侧面延伸至所述第一底壁的上表面。
  13. 根据权利要求8所述的可伸缩式摄像模组,其中,所述导电线路中在所述第一周壁的外侧面上延伸的部分形成电连接头。
  14. 根据权利要求13所述的可伸缩式摄像模组,其中,形成于所述第二支撑套筒单体的所述导电线路经过所述第二支撑套筒单体的第二底壁的上表面、所述第二周壁的外侧面和所述第二周壁的内侧面,其中,所述导电线路在所述第二周壁的外侧面上延伸的部分形成电连接段,所述电连接头电连接于所述电连接段。
  15. 根据权利要求14所述的可伸缩式摄像模组,其中,所述电连接段的长度尺寸大于等于所述第一支撑套筒单体向上运动的行程大小。
  16. 根据权利要求15所述的可伸缩式摄像模组,其中,当处于第一状态时,所述电连接头以电连接于所述电连接段的方式沿着所述电连接段向上滑动;当处于第二状态时,所述电连接头以电连接于所述电连接段的方式沿着所述电连接段向下互动。
  17. 根据权利要求16所述的可伸缩式摄像模组,其中,所述电连接头突出地形成于所述第一周壁的外侧面,所述电连接段凹陷地形成于所述第二周壁的内侧面。
  18. 根据权利要求17所述的可伸缩式摄像模组,其中,所述电连接头和所述电连接段具有适配的宽度尺寸。
  19. 根据权利要求14所述的可伸缩式摄像模组,其中,所述导电线路在所述第二底壁的上表面延伸的部分形成至少一第二电连接端,所述第二压电致动器电连接于所述第二电连接端。
  20. 根据权利要求19所述的可伸缩式摄像模组,其中,所述第二电连接端为圆形区域。
  21. 根据权利要求20所述的可伸缩式摄像模组,其中,所述导电线路中从所述第二电连接端延伸的部分与所述第二电连接端的外周面相切。
  22. 根据权利要求19所述的可伸缩式摄像模组,其中,所述导电线路从所述第二底壁的上表面延伸至所述第二周壁的内侧面,再从所述第二周壁的内侧面延伸至所述第二周壁的外侧面。
  23. 根据权利要求19所述的可伸缩式摄像模组,其中,所述导电线路从所述第二周壁的外侧面延伸至所述第二周壁的内侧面,再从所述第二周壁的内侧面延伸至所述第二底壁的上表面。
  24. 根据权利要求23所述的可伸缩式摄像模组,其中,所述导电线路在所述第二周壁的外侧面上延伸的部分形成第三电连接端,所述感光组件进一步包括延伸于所述第三电连接端和所述线路板之间的软板连接板,以通过所述软板连接板和所述电导通线路将所述至少一压电致动器电连接于所述线路板。
  25. 根据权利要求23所述的可伸缩式摄像模组,其中,所述导电线路在所述第二周壁的外侧面上延伸的部分形成第三电连接端,所述可伸缩式摄像模组进一步包括用于封装所述光学镜头、所述可导电伸缩套筒组件和所述感光组件的壳体,以及,形成于所述壳体的内表面的连接线路,其中,所述第三电连接端电连接于所述连接线路,所述连接线路电连接于所述感光组件的线路板,通过这样的方式,将所述至少一压电致动器电连接于所述线路板。
  26. 一种电子设备,其特征在于,包括:如权利要求1至25任一所述的可伸缩式摄像模组。
PCT/CN2022/080640 2021-04-14 2022-03-14 可伸缩式摄像模组和电子设备 WO2022218079A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280027261.5A CN117296330A (zh) 2021-04-14 2022-03-14 可伸缩式摄像模组和电子设备

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110401408.X 2021-04-14
CN202110401408.XA CN115277987A (zh) 2021-04-14 2021-04-14 可伸缩式摄像模组和电子设备

Publications (1)

Publication Number Publication Date
WO2022218079A1 true WO2022218079A1 (zh) 2022-10-20

Family

ID=83640177

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/080640 WO2022218079A1 (zh) 2021-04-14 2022-03-14 可伸缩式摄像模组和电子设备

Country Status (2)

Country Link
CN (2) CN115277987A (zh)
WO (1) WO2022218079A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012042979A (ja) * 2011-11-14 2012-03-01 Konica Minolta Opto Inc 撮像装置
CN105744127A (zh) * 2015-11-13 2016-07-06 宁波舜宇光电信息有限公司 摄像模组及其电气支架和组装方法
CN111447351A (zh) * 2020-05-18 2020-07-24 Oppo广东移动通信有限公司 摄像头模组及电子设备
CN112532840A (zh) * 2020-11-25 2021-03-19 维沃移动通信有限公司 电子设备

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101196600B (zh) * 2006-12-08 2010-05-19 鸿富锦精密工业(深圳)有限公司 具有自动对焦功能的镜头模组及数码相机
CN101196601B (zh) * 2006-12-08 2010-07-21 鸿富锦精密工业(深圳)有限公司 镜头模组
CN101964864B (zh) * 2009-07-21 2013-04-10 鸿富锦精密工业(深圳)有限公司 相机模组
CN102053336B (zh) * 2009-10-31 2013-08-07 比亚迪股份有限公司 一种可自动调焦的摄像头模组
CN211266979U (zh) * 2020-03-19 2020-08-14 南昌欧菲光电技术有限公司 摄像头模组及电子设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012042979A (ja) * 2011-11-14 2012-03-01 Konica Minolta Opto Inc 撮像装置
CN105744127A (zh) * 2015-11-13 2016-07-06 宁波舜宇光电信息有限公司 摄像模组及其电气支架和组装方法
CN111447351A (zh) * 2020-05-18 2020-07-24 Oppo广东移动通信有限公司 摄像头模组及电子设备
CN112532840A (zh) * 2020-11-25 2021-03-19 维沃移动通信有限公司 电子设备

Also Published As

Publication number Publication date
CN115277987A (zh) 2022-11-01
CN117296330A (zh) 2023-12-26

Similar Documents

Publication Publication Date Title
US20150381861A1 (en) Camera module
US10976639B2 (en) Lens assembly driving module and electronic device
US20180259740A1 (en) Lens actuator
KR101190254B1 (ko) 멤스 액추에이터를 포함하는 카메라 모듈
WO2022218079A1 (zh) 可伸缩式摄像模组和电子设备
CN114879336A (zh) 可变焦摄像模组
WO2022188641A1 (zh) 可伸缩式摄像模组和电子设备
WO2022170931A1 (zh) 套筒组件、摄像模组及其运行方法和移动电子设备
WO2023016276A1 (zh) 摄像模组
WO2022151914A1 (zh) 可伸缩式摄像模组和电子设备
CN115086509B (zh) 潜望式摄像模组
CN114942505B (zh) 可变焦摄像模组
WO2022166924A1 (zh) 摄像模组及终端设备
WO2022166677A1 (zh) 摄像模组及其光学防抖方法和电子设备
WO2022166922A1 (zh) 可变焦摄像模组和潜望式摄像模组
CN114942504A (zh) 可变焦摄像模组
CN115202130A (zh) 潜望式摄像模组
CN116661088A (zh) 伸缩镜头和带有伸缩镜头的摄像模组
CN115118841A (zh) 光学致动器、摄像模组以及压电驱动组件的安装方法
CN116668568A (zh) 伸缩镜头和带有伸缩镜头的摄像模组
CN114879335A (zh) 潜望式摄像模组
CN115529399A (zh) 摄像模组及终端设备
CN115442497A (zh) 镜头组件和摄像模组
CN117970590A (zh) 一种可变光圈镜头以及摄像模组
CN116802538A (zh) 可变焦摄像模组

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22787309

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280027261.5

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22787309

Country of ref document: EP

Kind code of ref document: A1