WO2022169108A1 - 디스플레이 모듈 및 그 제조 방법 - Google Patents

디스플레이 모듈 및 그 제조 방법 Download PDF

Info

Publication number
WO2022169108A1
WO2022169108A1 PCT/KR2021/020140 KR2021020140W WO2022169108A1 WO 2022169108 A1 WO2022169108 A1 WO 2022169108A1 KR 2021020140 W KR2021020140 W KR 2021020140W WO 2022169108 A1 WO2022169108 A1 WO 2022169108A1
Authority
WO
WIPO (PCT)
Prior art keywords
self
color conversion
display module
light
conversion layer
Prior art date
Application number
PCT/KR2021/020140
Other languages
English (en)
French (fr)
Inventor
서정훈
아오키다이
김성태
Original Assignee
삼성전자주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전자주식회사 filed Critical 삼성전자주식회사
Priority to EP21925004.0A priority Critical patent/EP4187608A4/en
Priority to CN202180071884.8A priority patent/CN116391267A/zh
Priority to US17/863,050 priority patent/US20220352435A1/en
Publication of WO2022169108A1 publication Critical patent/WO2022169108A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/505Wavelength conversion elements characterised by the shape, e.g. plate or foil
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/66Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing germanium, tin or lead
    • C09K11/661Chalcogenides
    • C09K11/663Chalcogenides with alkaline earth metals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7728Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
    • C09K11/7734Aluminates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7728Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
    • C09K11/77348Silicon Aluminium Nitrides or Silicon Aluminium Oxynitrides
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/02Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of crystals, e.g. rock-salt, semi-conductors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/003Light absorbing elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/206Filters comprising particles embedded in a solid matrix
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/208Filters for use with infrared or ultraviolet radiation, e.g. for separating visible light from infrared and/or ultraviolet radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/15Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission
    • H01L27/153Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission in a repetitive configuration, e.g. LED bars
    • H01L27/156Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission in a repetitive configuration, e.g. LED bars two-dimensional arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/44Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials
    • H01L33/504Elements with two or more wavelength conversion materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/16Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits
    • H01L25/167Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits comprising optoelectronic devices, e.g. LED, photodiodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • H01L33/56Materials, e.g. epoxy or silicone resin

Definitions

  • the present disclosure relates to a display module using a self-luminous device for displaying an image and a method for manufacturing the same.
  • a self-luminous device for displaying an image is used in a display panel, an image can be displayed without a backlight.
  • the display panel expresses various colors while operating in units of pixels or sub-pixels made of self-luminous devices. Each pixel or sub-pixel is controlled by a thin film transistor (TFT).
  • TFT thin film transistor
  • an anisotropic conductive film was used instead of the micro-bump for the connection between the self-emitting device and the TFT in order to secure mass productivity.
  • the self-luminous device emits light, light emitted from one sub-pixel within a pixel is guided to an adjacent sub-pixel, and light of different colors is mixed between sub-pixels and between pixels, resulting in a cross-talk phenomenon. .
  • the present disclosure provides a display module that absorbs light emitted from a side surface and a rear surface of a self-luminous device and prevents the light from being reflected to an adjacent sub-pixel, and a method of manufacturing the same.
  • a display module may include a substrate, a conductive light absorption layer provided on one surface of the substrate, and a plurality of pixels electrically connected to the substrate through the conductive light absorption layer.
  • Each of the plurality of pixels includes a first self-emitting device, a second self-emitting device, and a third self-emitting device emitting light of the same color, a first color conversion layer corresponding to a light emitting surface of the first self-emitting device, a second color conversion layer corresponding to the light emitting surface of the second self-luminous element, a first color filter corresponding to the first color conversion layer, and a second color filter corresponding to the second color conversion layer .
  • An area of the first color conversion layer may be greater than an area of the first self-emissive element, and an area of the second color conversion layer may be greater than an area of the second self-emissive element.
  • the conductive light absorption layer may include a transparent resin, a plurality of first conductive balls provided in the transparent resin, and a plurality of light absorption materials provided in the transparent resin.
  • the transparent resin may include an epoxy resin, a polyurethane resin, or an acrylic resin.
  • Each of the plurality of first conductive balls may include a polymer particle and a conductive film coated on a surface of the polymer particle.
  • the conductive layer may include gold (Au), nickel (Ni), or lead (Pd).
  • the plurality of light absorbing materials may include metal nanoparticles formed to absorb light.
  • the metal nanoparticles may include Au, platinum (Pt), silver (Ag), an Au alloy, a Pt alloy, or an Ag alloy.
  • the conductive light absorption layer may include a resin having a black-based color and a plurality of second conductive balls dispersed in the resin having the black-based color.
  • Each of the first self-emitting device, the second self-emitting device, and the third self-emitting device may include a blue micro light emitting diode (LED).
  • LED blue micro light emitting diode
  • the display module may further include a barrier rib separating the first self-luminescence element, the second self-luminescence element, and the third self-luminescence element, wherein the barrier rib separates the first, second and third self-luminescence elements. It may be formed to reflect light emitted from the side surface of the device and the side surfaces of the first and second color conversion layers.
  • the partition wall may have a white color.
  • the barrier rib may include a metal film on a surface of the barrier rib.
  • a side surface of the first self-luminescence element, a side surface of the second self-luminescence element, and a side surface of the third self-luminescence element may be adhered to the barrier rib by an optical adhesive.
  • an area that does not correspond to the light emitting surface of the first self-luminous element in the entire area of one surface of the first color conversion may be in contact with the optical adhesive.
  • the optical adhesive may include UV (ultraviolet) curing silicone rubber.
  • the first color conversion layer may include a color conversion material emitting light of a red wavelength band
  • the second color conversion layer may include a color conversion material emitting light of a green wavelength band.
  • FIG. 1 is a diagram illustrating a display module according to an embodiment of the present disclosure.
  • FIG. 2 is a diagram illustrating a display module according to an embodiment of the present disclosure.
  • FIG. 3 is a diagram illustrating a single pixel of a display module according to an embodiment of the present disclosure.
  • FIG 4 is a view illustrating an example in which a metal film is formed on a side surface of a barrier rib according to an embodiment of the present disclosure.
  • FIG. 5 is an enlarged view of a portion V shown in FIG. 3 according to an embodiment of the present disclosure.
  • FIG. 6 is a diagram schematically illustrating a light path emitted from a self-luminous device of a display module according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic flowchart illustrating a manufacturing process of a display module according to an embodiment of the present disclosure.
  • FIG. 8 is a flowchart illustrating a manufacturing process of a first part of a display module according to an embodiment of the present disclosure.
  • FIG. 9 is a diagram of a manufacturing process of a first part of a display module according to an embodiment of the present disclosure.
  • FIG. 10 is a flowchart of a manufacturing process of a second part of a display module according to an embodiment of the present disclosure.
  • FIG. 11 is a diagram of a manufacturing process of a second part of a display module according to an embodiment of the present disclosure.
  • FIG. 12 is a diagram of a manufacturing process of combining a first part and a second part of a display module according to an embodiment of the present disclosure.
  • FIG. 13 is a diagram illustrating a single pixel of a display module according to an embodiment of the present disclosure.
  • FIG. 14 is a flowchart of a manufacturing process of a first part of a display module according to an embodiment of the present disclosure.
  • 15 is a diagram of a manufacturing process of a first part of a display module according to an embodiment of the present disclosure.
  • 16 is a flowchart of a manufacturing process of a second part of a display module according to an embodiment of the present disclosure.
  • 17 is a diagram of a manufacturing process of a second part of a display module according to an embodiment of the present disclosure.
  • FIG. 18 is a diagram of a manufacturing process of combining a first part and a second part of a display module according to an embodiment of the present disclosure.
  • the expression 'the same' means not only to completely match, but also includes a degree of difference in consideration of the processing error range.
  • the display module may be a display panel including a micro light emitting diode that is a self-luminescence element for displaying an image.
  • the display module is one of the flat panel display panels, consisting of a plurality of inorganic light emitting diodes (LEDs), each less than 100 micrometers, to provide better contrast, response time and energy efficiency compared to liquid crystal display (LCD) panels that require a backlight.
  • the display module does not need to include a separate backlight because the micro light emitting diode used for displaying an image is a self-light emitting device.
  • both an organic LED (OLED) and an inorganic light emitting device, micro LED have good energy efficiency, but the micro LED has longer brightness, luminous efficiency, and lifespan than OLED.
  • a micro LED may be a semiconductor chip that can emit light by itself when power is supplied. Micro LED has fast response speed, low power, and high luminance. For example, micro LEDs are more efficient at converting electricity into photons than LCDs or OLEDs. In other words, it has a higher “brightness per watt” compared to LCD or OLED displays. Accordingly, the micro LED can emit the same brightness with about half the energy compared to an LED (each exceeding 100 ⁇ m in width, length, and height) or OLED.
  • the micro LED is capable of realizing high resolution, excellent color, contrast and brightness, so it can accurately express a wide range of colors and realize a clear screen even outdoors.
  • the micro LED is strong against burn-in and has low heat generation, so a long lifespan is guaranteed without deformation.
  • the micro LED may have a flip chip structure in which an anode and a cathode electrode are formed on the same first surface and a light emitting surface is formed on a second surface opposite to the first surface on which the electrodes are formed.
  • one pixel may include at least three sub-pixels.
  • One sub-pixel is a micro self-luminous device for displaying an image, and may mean, for example, a micro LED, a blue micro LED, or an UV (ultraviolet) micro LED.
  • the blue micro LED may be a self-luminous device emitting light in a blue wavelength band (450 to 490 nm)
  • the UV micro LED may be a self-emitting device emitting light in an ultraviolet wavelength band (360 to 410 nm).
  • One sub-pixel may include a color conversion layer and a color filter corresponding thereto together with one micro self-luminous element.
  • the color conversion layer may be excited by light emitted from the micro light emitting device to emit a color of a predetermined wavelength band.
  • the color conversion layer may be made of a material including nano phosphors or quantum dots.
  • one sub-pixel area means an area in which a color of a corresponding sub-pixel is expressed by light emitted from one sub-pixel.
  • An area (horizontal length ⁇ vertical length) of one surface of the color conversion layer corresponding to the sub-pixel may be greater than the area of the light-emitting surface of the sub-pixel.
  • the sub-pixel area may correspond to the area of the color conversion layer.
  • a TFT layer in which a thin film transistor (TFT) circuit is formed is disposed on a front surface of a substrate, and a power supply circuit for supplying power to the TFT circuit, a data drive driver, and a gate drive on the rear surface
  • a timing controller for controlling the driver and each driving driver may be disposed.
  • a plurality of pixels arranged in the TFT layer can be driven by a TFT circuit.
  • the substrate is a glass substrate, a synthetic resin-based substrate (eg, PI (polyimide), PET (polyethylene terephthalate), PES (polyethersulfone), PEN (polyethylene naphthalate), PC (polycarbonate), etc.) or a ceramic substrate).
  • PI polyimide
  • PET polyethylene terephthalate
  • PES polyethersulfone
  • PEN polyethylene naphthalate
  • PC polycarbonate
  • a TFT layer having a TFT circuit formed thereon may be disposed on the front surface of the substrate, and no circuit may be disposed on the rear surface of the substrate.
  • the TFT layer may be integrally formed on the substrate or may be manufactured in the form of a separate film and attached to one surface of the glass substrate.
  • the front surface of the substrate may be divided into an active area and an inactive area.
  • the active region may correspond to a region occupied by the TFT layer on the front surface of the substrate, and the inactive region may be a region excluding the region occupied by the TFT layer on the front surface of the substrate.
  • the edge region of the substrate may be the outermost region of the glass substrate. Also, the edge region of the substrate may be a region remaining except for a region in which circuits of the substrate are formed. Also, the edge region of the substrate may include a portion of the front surface of the substrate adjacent to the side surface of the substrate and a portion of the rear surface of the substrate adjacent to the side surface of the substrate.
  • the substrate may be formed in a quadrangle type. Specifically, the substrate may be formed in a rectangular shape or a square shape.
  • the edge region of the substrate may include at least one side of the four sides of the glass substrate.
  • the TFT constituting the TFT layer is not limited to a specific structure or type.
  • the TFT cited in the present disclosure is a LTPS TFT (low-temperature polycrystalline silicon TFT) other than It can be implemented as oxide TFT, Si TFT (poly silicon, a-silicon), organic TFT, graphene TFT, etc., and in the Si wafer complementary metal-oxide-semiconductor (CMOS) process, P-type (or N-type) MOSFET It can also be applied by making only a metal-oxide-semiconductor field-effect transistor).
  • CMOS complementary metal-oxide-semiconductor
  • the pixel driving method of the display module may be an active matrix (AM) driving method or a passive matrix (PM) driving method.
  • the display module may form a wiring pattern to which each micro LED is electrically connected according to an AM driving method or a PM driving method.
  • a plurality of pulse amplitude modulation (PAM) control circuits may be disposed in one pixel area. In this case, each sub-pixel disposed in one pixel area may be controlled by a corresponding PAM control circuit.
  • a plurality of pulse width modulation (PWM) control circuits may be disposed in one pixel area. In this case, each sub-pixel disposed in one pixel area may be controlled by a corresponding PWM control circuit.
  • a plurality of PAM control circuits and a plurality of PWM control circuits may be disposed together in one pixel area.
  • some of the sub-pixels disposed in one pixel area may be controlled by the PAM control circuit and the rest may be controlled by the PWM control circuit.
  • each sub-pixel may be controlled by a PAM control circuit and a PWM control circuit.
  • the display module may include a plurality of side wirings having a thin film thickness disposed at regular intervals along the side surface of the TFT substrate.
  • the display module may provide a plurality of through wiring members formed not to be exposed to the side of the TFT substrate instead of to the side wiring exposed to the side of the TFT substrate. Accordingly, by minimizing the non-active area and maximizing the active area on the front surface of the TFT substrate, it is possible to reduce the bezel and increase the mounting density of the micro LED on the display module.
  • a display module implementing bezel-less reduction can provide a large-sized multi-display device capable of maximizing an active area when a plurality of devices are connected.
  • each display module may be formed to maintain a pitch between pixels of an adjacent display module to be the same as a pitch between pixels in a single display module by minimizing an inactive area. Accordingly, it may be a method of preventing a seam from being visually recognized in a connection portion between each display module.
  • the driving circuit may be implemented by a micro IC disposed in a pixel region to control driving of at least 2n pixels.
  • a channel layer connecting the micro IC and each micro LED may be formed in the TFT layer (or backplane) instead of the TFT.
  • the display module is a single unit, a wearable device, a portable device, a handheld device, and various displays that are installed and applied in electronic products or electric fields, and may be applied in a matrix type. As a result, it can be applied to a monitor for a personal computer, a high-resolution TV, and a display device such as a signage (or digital signage), an electronic display, and the like through a plurality of assembly arrangements.
  • 1 is a diagram illustrating a display module according to an embodiment of the present disclosure.
  • 2 is a diagram illustrating a display module according to an embodiment of the present disclosure.
  • the display module 10 includes a TFT substrate 20 on which a plurality of pixel driving circuits 30 are formed, and is arranged on the front surface of the TFT substrate 20 . It may include a plurality of pixels 100 and a panel driver 40 that generates a control signal and provides the generated control signal to the plurality of pixel driving circuits 30 .
  • One pixel may include a plurality of sub-pixels.
  • One sub-pixel may include one light source, a color conversion layer and a color filter corresponding to each light source.
  • the light source may be an inorganic self-light emitting diode, for example, a vertical cavity surface emitting laser (VCSEL) diode or micro LED having a size of 100 ⁇ m or less (eg, 30 ⁇ m or less).
  • VCSEL diodes and micro LEDs may emit light in a blue wavelength band (450 to 490 nm) or light in an ultraviolet wavelength band (360 to 410 nm).
  • the structure of the pixel 100 will be described in detail below with reference to FIG. 3 .
  • the TFT substrate 20 includes a glass substrate 21, a TFT layer 23 including a TFT circuit on the front surface of the glass substrate 21, a TFT circuit of the TFT layer 23, and circuits disposed on the rear surface of the glass substrate. It may include a plurality of side wiring 25 for electrically connecting.
  • a synthetic resin-based substrate having a flexible material eg, PI, PET, PES, PEN, PC, etc.
  • a ceramic substrate may be used.
  • the TFT substrate 20 may include an active area 20a that displays an image and a dummy area 20b that cannot display an image on its entire surface.
  • the active region 20a may be divided into a plurality of pixel regions 24 in which a plurality of pixels are respectively arranged.
  • the plurality of pixel areas 24 may be partitioned in various shapes, and may be partitioned in a matrix shape, for example.
  • One pixel area 24 may include one pixel 100 ( FIG. 3 ).
  • the inactive area 20b may be included in an edge area of the glass substrate, and a plurality of connection pads 28a disposed at regular intervals along the edge area may be formed. Each of the plurality of connection pads 28a may be electrically connected to each pixel driving circuit 30 through a wiring 28b.
  • connection pads 28a formed in the non-active region 20b may vary depending on the number of pixels implemented on the glass substrate and may vary depending on a driving method of the TFT circuit disposed in the active region 20a. For example, compared to the case where the TFT circuit disposed in the active region 20a is a PM driving method in which a plurality of pixels are driven in horizontal and vertical lines, an AM driving method in which each pixel is individually driven is connected with more wiring. Pads may be required.
  • the TFT layer 23 includes a plurality of data signal lines arranged horizontally, a plurality of gate signal lines arranged vertically, and a plurality of pixel driving circuits electrically connected to each line to control the plurality of pixels 100 . 30) may be included.
  • the panel driver 40 is directly connected to the substrate by a chip on glass (COG) or chip on plastic (COP) bonding method, or indirectly to the TFT substrate 20 through a separate FPCB through a film on glass (FOG) bonding method. can be connected
  • the panel driver 40 may drive the plurality of pixel driving circuits 30 to control light emission of a plurality of micro LEDs electrically connected to each of the plurality of pixel driving circuits 30 .
  • the panel driver 40 may control the plurality of pixel driving circuits 30 for each line through the first driver 41 and the second driver 42 .
  • the first driver 41 generates a control signal for sequentially controlling a plurality of horizontal lines formed on the TFT substrate 20 one line per image frame, and applies the generated control signal to a pixel driving circuit connected to the corresponding line, respectively. (30) can be transmitted.
  • the second driver 42 generates a control signal for sequentially controlling a plurality of vertical lines formed on the TFT substrate 20, one line per image frame, and drives the generated control signals to each connected pixel connected to the corresponding line. can be transmitted to circuit 30 .
  • FIG. 3 is a diagram illustrating a single pixel of a display module according to an embodiment of the present disclosure.
  • 4 is a view illustrating an example in which a metal film is formed on a side surface of a barrier rib according to an embodiment of the present disclosure.
  • 5 is an enlarged view of a portion V shown in FIG. 3 according to an embodiment of the present disclosure.
  • one pixel 100 may be included in one pixel area 24 ( FIG. 1 ).
  • the pixel 100 may include at least three micro LEDs 61 , 62 , and 63 that emit light of the same color, for example, light in a blue wavelength band (450 to 490 nm).
  • the first to third micro LEDs 61 , 62 , and 63 may be electrically and physically connected to the TFT substrate 20 through the light absorption layer 50 formed on the front surface of the TFT substrate 20 .
  • the light absorption layer 50 includes a transparent thermosetting resin 51 (hereinafter referred to as 'transparent resin'), a plurality of conductive balls 52 distributed in the transparent thermosetting resin 51 , and a size smaller than the conductive balls 52 . of the light absorber 53 may be included.
  • the transparent resin 51 can be, for example, an epoxy resin, a polyurethane resin, an acrylic resin, or the like.
  • the conductive ball 52 may have a fine diameter (eg, 3 to 15 ⁇ m) and may be a conductor.
  • the conductive balls 52 may include, for example, polymer particles and a conductive film such as gold (Au), nickel (Ni), or lead (Pd) coated on the surface of the polymer particles.
  • the light absorption layer 50 has conductivity in the compression direction and insulation in the vertical direction in the compression direction.
  • the light absorption layer 50 may be an anisotropic conductive film (ACF) including a plurality of light absorption materials 53 in the form of particles.
  • ACF anisotropic conductive film
  • the light absorbing material 53 may be a metal nanoparticle capable of absorbing light.
  • the light absorbing material 53 may be formed of, for example, nano-sized Au, platinum (Pt), or silver (Ag) particles or made of Au alloy, Pt alloy, or Ag alloy particles.
  • the light absorbing layer 50 is a resin having a black color by applying a light absorbing color, for example, a dye or a pigment, instead of the transparent resin 51 and a plurality of conductive balls dispersed in the resin.
  • a resin having a black color may absorb light emitted from the side and rear surfaces of the micro LED.
  • the light absorption layer may include or omit the plurality of light absorption materials 53 .
  • the first to third micro LEDs 61 , 62 , and 63 may have a flip chip structure in which two chip electrodes 61a and 61b that are anode and cathode electrodes are formed on opposite sides of a light emitting surface.
  • the first and second chip electrodes 61a and 61b may be made of any one of aluminum (Al), titanium (Ti), chromium (Cr), Ni, Pd, Ag, germanium (Ge), Au, or an alloy thereof. have.
  • the first to third micro LEDs 61 , 62 , and 63 are transferred to the TFT substrate 20 , they are seated on the surface of the light absorber 53 attached to the TFT substrate 20 . Subsequently, the first to third micro LEDs 61 , 62 , and 63 are inserted into the light absorbing material 53 by a predetermined depth through a thermocompression process. Accordingly, the first to third micro LEDs 61 , 62 , and 63 may be physically fixed to the TFT substrate 20 .
  • the chip electrodes 61a and 61b of the first micro LED 61 are connected to the substrate electrode pads 26a and 26b. may be located adjacent.
  • the chip electrode 61a of the first microLED 61 by the conductive ball 52 located between the chip electrodes 61a and 61b of the first microLED 61 and the substrate electrode pads 26a and 26b. 61b) may be electrically connected to the substrate electrode pads 26a and 26b.
  • the second and third micro LEDs 62 and 63 may also be electrically connected to the substrate electrode pad corresponding to each chip electrode through the conductive ball 52 in the same manner as the first micro LED 61 .
  • the first and second color conversion layers 71 and 72 convert the light emitted from the first and second micro LEDs 61 and 62 into excitation light, respectively, and convert the converted light into light of different wavelength bands. It may include an emitting nano-phosphor. Nano phosphors exhibit different physical properties compared to conventional phosphors having a particle diameter of several ⁇ m. For example, since the gap of the energy band, which is the quantum state energy level structure of electrons in the crystal of the nano-phosphor, is large, the wavelength of the emitted light has high energy, so that the luminous efficiency can be improved. Compared to a phosphor having a bulk structure, the nano phosphor has an increase in particle density of the phosphor, so that electrons collided with it effectively contribute to light emission, thereby improving display efficiency.
  • the first color conversion layer 71 may include a red nano-phosphor capable of emitting light of a red wavelength band by being excited by light of a blue wavelength band emitted from the first microLED 61 .
  • the red nano-phosphor may be SCASN (Si1-xCaxAlSiN3:Eu2+).
  • the red nano-phosphor may have an average particle size distribution (d50) of less than 0.5 ⁇ m (eg, 0.1 ⁇ m ⁇ d50 ⁇ 0.5 ⁇ m).
  • the second color conversion layer 72 may include a green nano phosphor capable of emitting light of a green wavelength band by being excited by light of a blue wavelength band emitted from the second micro LED 62 .
  • the green nano-phosphor may be ⁇ -SiAlON (Si6-zAlzOzN8-z:Eu2+) or SrGa2S4.
  • the green nano-phosphor may have an average particle size distribution (d50) of less than 0.5 ⁇ m (eg, 0.1 ⁇ m ⁇ d50 ⁇ 0.5 ⁇ m).
  • the first color conversion layer 71 may be made of a material including red quantum dots emitting light in a red wavelength band as an alternative to the red nano-phosphor.
  • the second color conversion layer 72 may be made of a material including green quantum dots emitting light of a green wavelength band as an alternative to the green nano-phosphor.
  • the first transparent resin layer 73 may be made of a material that does not affect or minimize the transmittance, reflectivity, and refractive index of light emitted from the third micro LED 63 .
  • the first transparent resin layer 73 may be omitted in some cases, in this case, the air layer is present on the light emitting surface side of the third micro LED (63).
  • the pixel 100 includes first and second color filters 81 and 82 corresponding to the first and second color conversion layers 71 and 72 , respectively, and corresponding to the first transparent resin layer 73 . It may include a second transparent resin layer (83).
  • the first color filter 81 may be a red color filter that passes a wavelength of the same color as that of the light of the red wavelength band emitted from the first color conversion layer 71 .
  • the second color filter 82 may be a green color filter that passes a wavelength of the same color as that of light in a green wavelength band emitted from the second color conversion layer 72 .
  • the second transparent resin layer 83 may be made of a material that does not affect or minimize the transmittance, reflectance, and refractive index of the light passing through the first transparent resin layer 73 .
  • the second transparent resin layer 83 may be an optical film capable of minimizing wasted light and improving luminance by directing the direction of light toward the front through refraction and reflection.
  • the first to third micro LEDs 61 , 62 , 63 may have a predetermined thickness and may be a square having the same width and length, or a rectangle having different widths and lengths. Such a micro LED can realize real high dynamic range (HDR), improve luminance and black expression compared to OLED, and provide a high contrast ratio.
  • the size of the micro LED may be 100 ⁇ m or less or, for example, 30 ⁇ m or less.
  • the light emitting regions of the first to third micro LEDs 61 , 62 , and 63 may be partitioned by a barrier rib 70 .
  • the partition walls 70 may be formed in a substantially lattice shape.
  • Each of the plurality of light emitting areas partitioned by the barrier rib 70 may correspond to one sub-pixel area.
  • the partition wall 70 may have an upper end in close contact with the planarization layer 75 (eg, in direct contact or almost direct contact) and a lower end in close contact with the upper surface of the light absorption layer 50 (eg, in direct contact or almost direct contact). can).
  • a first color conversion layer 71 , a second color conversion layer 72 , and a first transparent resin layer 73 may be disposed in each light emitting region partitioned by the barrier rib 70 .
  • light emitted to the side surface of the first color conversion layer 71 corresponding to the first micro LED 61 may be reflected by the barrier rib 70 and emitted to the first color filter 81 .
  • light emitted to the side surface of the second color conversion layer 72 corresponding to the second micro LED 62 may be reflected by the barrier rib 70 and emitted to the second color filter 82 .
  • the barrier rib 70 may have a white color having excellent light reflectance in order to function as a reflector.
  • the white-based color may include true white and off-white. Off-white means any color close to white.
  • the barrier rib 70 may be formed of a metal material having a high reflectance to function as a reflector.
  • the barrier rib 70 may be formed by laminating a metal film 74 having a high light reflectance on the side thereof as shown in FIG. 4 .
  • the partition wall 70 may not have a white-based color.
  • Light emitting surfaces of the first to third micro LEDs 61 , 62 , and 63 may be positioned at approximately the same height from the upper surface of the TFT substrate 20 .
  • the light emitting surfaces of the first to third micro LEDs 61 , 62 , and 63 may be positioned higher than the lower end of the partition wall 70 .
  • a portion of the side surfaces of the first to third micro LEDs 61 , 62 , and 63 may face the partition wall 70 .
  • the light emitted from the side surfaces of the first to third micro LEDs 61 , 62 , 63 is reflected by the barrier rib 70 , and the first color conversion layer 71 , the second color conversion layer 72 , and the second color conversion layer 72 , Each of the transparent resin layers 73 may be emitted.
  • the barrier rib 70 transmits light emitted from the side surfaces of the first to third micro LEDs 61 , 62 and 63 and light emitted from the side surfaces of the first and second color conversion layers 71 and 72 , respectively.
  • the barrier rib 70 transmits light emitted from the side surfaces of the first to third micro LEDs 61 , 62 and 63 and light emitted from the side surfaces of the first and second color conversion layers 71 and 72 , respectively.
  • a planarization layer 75 may be disposed between the first and second color conversion layers 71 and 72 and the first and second color filters 81 and 82 . Also, the planarization layer 75 may be disposed between the first transparent resin layer 73 and the second transparent resin layer 83 .
  • the first transparent resin layer 73 may be disposed on the same plane as the first and second color conversion layers 71 and 72
  • the second transparent resin layer 83 includes the first and second color filters 81 . , 82) may be disposed on the same plane.
  • the planarization layer 75 is formed with the first and second color filters 81 and 82 and the second transparent water before forming the partition wall 70 when the first part 11 (FIG. 9) of the display module 10 is manufactured. It is laminated on the formation layer 83 .
  • the planarization layer 75 may be made of a material that does not affect or minimize the transmittance, reflectance and refractive index of light passing through the first and second color conversion layers 71 and 72 and the first transparent resin layer 73 . have.
  • Between the first and second color filters 81 and 82 and the second transparent resin layer 83 may be partitioned by a black matrix 77 formed in a grid shape.
  • the shape of the black matrix 77 may be formed in a grid shape to correspond to the shape of the partition wall 70 .
  • the width of the black matrix 77 may be formed to be similar to the width of the partition wall 70 .
  • a transparent cover layer 90 may be formed on the first and second color filters 81 and 82 and the second transparent resin layer 83 .
  • the transparent cover layer 90 may prevent the pixel 100 from being contaminated with foreign substances and protect the pixel 100 from being damaged by an external force.
  • the transparent cover layer 90 may be a glass substrate.
  • the partition wall 70, the planarization layer 75, the black matrix 77, and the transparent cover layer 90 only show portions corresponding to one pixel unit, but the partition wall 70, the planarization layer 75, The black matrix 77 and the transparent cover layer 90 may be formed to have a size approximately corresponding to the size of the TFT substrate 20 .
  • the sizes of the first to third micro LEDs 61 , 62 and 63 are smaller than the sizes of the first color conversion layer 71 , the second color conversion layer 72 , and the first transparent resin layer 73 , respectively. is formed Accordingly, a gap may be formed between the side surfaces of the first to third micro LEDs 61 , 62 , and 63 and the partition wall 70 .
  • this gap is filled with an optical adhesive 65 .
  • the optical adhesive 65 is in close contact with a part of the side surface 61c of the first micro LED 61, a part of the bottom side 70b of the partition wall 70, and a part 50a of the upper surface of the light absorption layer 50, respectively (eg: may be in direct or near direct contact). Accordingly, the barrier rib 70 may be stably fixed to the TFT substrate 20 by firmly bonding with the surrounding structures through the optical adhesive 65 .
  • the optical adhesive 65 is used to bond the first part 11 and the second part 12 of the display module 10 to be described later.
  • FIG. 6 is a diagram schematically illustrating a light path emitted from a self-luminous device of a display module according to an embodiment of the present disclosure.
  • the emitted light is indicated by a black arrow.
  • Most of the light emitted from the light emitting surface of the first micro LED 61 is emitted to the first color conversion layer 71 .
  • the first color conversion layer 71 emits light of a red wavelength band by using the light emitted from the first micro LED 61 as excitation light.
  • most of the light emitted from the first color conversion layer 71 is directly emitted to the first color filter 81 , and the light emitted from the side surface of the first color conversion layer 71 is reflected by the barrier rib 70 . after being discharged to the first color filter 81 .
  • the light emitted to the first color filter 81 passes through the first color filter 81 and is emitted toward the front of the display module 10 .
  • most of the light emitted from the side and rear surfaces of the first micro LED 61 (for example, the surface opposite to the light emitting surface of the first micro LED 61) is emitted to the light absorption layer 50, and the light absorption layer ( As it is absorbed by the plurality of light absorbing materials 53 included in 50 , it is not reflected to adjacent sub-pixels.
  • most of the light emitted from the side and rear surfaces of the second and third micro LEDs 62 and 63 is similar to the light emitted from the side and rear surfaces of the first micro LED 61 , respectively, mostly from the light absorption layer 50 . As it is absorbed by , it is not reflected to adjacent sub-pixels.
  • FIG. 7 is a flowchart of a manufacturing process of a display module according to an embodiment of the present disclosure.
  • FIG. 7 an overall manufacturing process of the display module 10 according to an embodiment of the present disclosure will be schematically described as follows.
  • a color filter, a planarization layer, a barrier rib, and a color conversion layer are sequentially formed on a glass substrate to manufacture the first part 11 (FIG. 9), and in operation S2, a TFT substrate ( 20) by transferring a plurality of micro LEDs to manufacture the second part 12 (FIG. 11).
  • the first part 11 is disposed above the second part 12 at a predetermined interval.
  • the first and second parts 11 and 12 are aligned to bond the first and second parts 11 and 12 to each other.
  • the first part 11 is pressed toward the second part 12 to be bonded together.
  • FIG. 8 is a flowchart of a manufacturing process of a first part of a display module according to an embodiment of the present disclosure.
  • 9 is a diagram of a manufacturing process of a first part of a display module according to an embodiment of the present disclosure. In FIG. 9 , the display does not show the entire first part 11 of the module 10, but enlarges a part corresponding to one pixel.
  • the first part 11 of the display module 10 may be manufactured through the following procedure.
  • a black matrix 77 is formed in a grid shape on one surface of the transparent cover layer 90 .
  • the transparent cover layer 90 may be formed of, for example, a rectangular or rectangular glass substrate having a predetermined thickness.
  • the size of the transparent cover layer 90 may approximately correspond to the size of the TFT substrate 20 .
  • the black matrix 77 is formed in a grid shape, a plurality of cells are formed, and each cell may be a sub-pixel area. In this way, in operation S12, a color filter is formed in a preset cell among a plurality of cells of the black matrix 77.
  • a red material is uniformly applied entirely to one surface of the transparent cover layer 90 on which the black matrix 77 is formed. do. After that, only the areas where red should remain are exposed using a mask, and the red material is removed through the development process in the remaining areas.
  • a green material is uniformly applied entirely to one surface of the transparent cover layer 90 . After that, only the areas where the green color should remain are exposed using a mask, and the green material is removed through the development process in the remaining areas.
  • a transparent resin material is uniformly applied entirely to one surface of the transparent cover layer 90 . After that, only the areas where the transparent resin should remain are exposed using a mask, and the transparent resin material is removed through the developing process in the remaining areas.
  • the method of applying the color filter material and the transparent resin material to the transparent cover layer 90 is a slit method that evenly coats the entire surface using a printer nozzle, and a spin method that sprays liquid in the center and then rotates the plate to apply it. method can be applied.
  • the partition wall 70 can be stacked thereon.
  • a planarization layer 75 covering the first and second color filters 81 and 82 and the second transparent resin layer 83 is formed.
  • the upper surface 75a of the planarization layer 75 has a flatness sufficient to form the partition wall 70 at a uniform height.
  • the planarization layer 75 may be formed of a transparent material that does not affect light transmittance, reflectance, and refractive index.
  • a lattice-shaped barrier rib 70 is formed on the upper surface 75a of the planarization layer 75 .
  • Each cell formed by the partition wall 70 may be formed at a position corresponding to each cell formed by the aforementioned black matrix 77 .
  • each cell formed by the partition wall 70 corresponds to a sub-pixel area.
  • a color conversion material (nano phosphor or quantum dot material) is applied to each cell through an inkjet printing method, the first color conversion layer 71 and the second The two color conversion layers 72 are sequentially patterned.
  • a nano phosphor or quantum dot material is mixed with a photoresist to form through coating, exposure and development, similar to the method of manufacturing the color filter described above.
  • the first color conversion layer 71 may be made of a red nano phosphor capable of emitting light in a red wavelength band, and the second color conversion layer 72 may be formed of a green nano phosphor capable of emitting light in a green wavelength band.
  • the first color conversion layer 71 may be formed of red quantum dots, and the second color conversion layer 72 may be formed of green quantum dots.
  • a transparent resin material is applied to the empty cells in which the first and second color conversion layers 71 and 72 are not formed through inkjet printing.
  • a first transparent resin layer 73 is formed by patterning.
  • the first portion 11 constituting the upper plate of the display module 10 may be formed through the above process.
  • FIG. 10 is a flowchart of a manufacturing process of a second part of a display module according to an embodiment of the present disclosure.
  • 11 is a diagram of a manufacturing process of a second part of a display module according to an embodiment of the present disclosure. In FIG. 11 , the display does not show the entire second part 12 of the module 10, but enlarges a part corresponding to one pixel.
  • the light absorption layer 50 is formed on the front surface of the TFT substrate 20 .
  • the light absorption layer 50 when the light absorption layer 50 is formed in a liquid having a predetermined viscosity, it may be applied to the TFT substrate 20 to a predetermined thickness by inkjet printing. In addition, when the light-moistening layer 50 is in the form of a film, it may be laminated on the entire surface of the TFT substrate 20 .
  • a plurality of micro LEDs are transferred to the TFT substrate 20 .
  • the micro LED transfer process may be performed through a laser transfer method, a rollable transfer method, a pick-and-place transfer method, and the like.
  • the first to third micro LEDs 61 , 62 , 63 are transferred from the epi substrate to the relay substrate (or interposer), respectively, and then from each relay substrate to the target substrate, the TFT substrate 20 . to fight
  • the first to third micro LEDs 61 , 62 , and 63 are transferred to the TFT substrate 20 , they are seated on the surface of the light absorber 53 attached to the TFT substrate 20 . In this state, the first to third micro LEDs 61 , 62 , and 63 are inserted by a predetermined depth into the light absorbing material 53 through a thermocompression process. Accordingly, the first to third micro LEDs 61 , 62 , 63 are physically fixed to the TFT substrate 20 .
  • the chip electrode of each micro LED 61 , 62 , 63 may be electrically connected to a corresponding substrate electrode pad by a plurality of conductive balls 52 distributed in the light absorption layer 50 .
  • the first to third micro LEDs 61 , 62 , and 63 may be blue micro LEDs emitting light of a blue wavelength band.
  • an optical adhesive 65 for bonding the first part 11 and the second part 12 is applied to the entire surface of the TFT substrate 20 .
  • An optical adhesive 65 is applied to the TFT substrate 20 so as to cover all of the plurality of micro LEDs 61 , 62 , 63 .
  • the optical adhesive 65 may be UV-curable silicone rubber (di-methyl siloxane) having a property of being cured after a predetermined time after UV exposure.
  • the optical adhesive 65 is cured by irradiating UV for a preset time.
  • the second part 12 constituting the lower plate of the display module 10 may be formed.
  • FIG. 12 is a diagram of a manufacturing process of combining a first part and a second part of a display module according to an embodiment of the present disclosure.
  • the first part 11 is disposed above the second part 12 at a predetermined interval.
  • the first color conversion layer ( 71 ), the second color conversion layer 72 , and the first transparent resin layer 73 are aligned in the bonding position to correspond to the first to third micro LEDs 61 , 62 , 63 of the second part 12 , respectively. do.
  • first and second portions 11 and 12 may be arranged to be parallel to each other on the same plane.
  • the first and second parts 11 and 12 are aligned to the cemented position, the first and second parts 11 and 12 are brought into close contact with the second part 12 by applying a preset pressure to the first and second parts 11 and 12 . to bond In this case, the first and second parts 11 , 12 are attached to each other by means of an optical adhesive 65 .
  • the photosynthetic adhesive 65 may be cured to strengthen the bond between the first and second parts 11 and 12 .
  • the display module 10 may be manufactured.
  • the above-described display module 10 applies a blue micro LED as a self-luminous device for displaying an image, but the display module 10a ( FIG. 18 ) according to another embodiment of the present disclosure displays an image UV micro LED can be applied as a self-luminous device for
  • FIG. 13 is a diagram illustrating a single pixel of a display module according to an embodiment of the present disclosure.
  • the display module 10a has a TFT substrate 20 and a plurality of pixels 100a are arranged on the TFT substrate 20 .
  • the pixel 100a of the display module 10a includes first to third UV micro LEDs 161 , 162 , and 163 emitting light in an ultraviolet wavelength band (360 to 410 nm).
  • First to third color conversion layers 71 , 72 and 73a may be disposed on the light emitting surfaces of the first to third UV micro LEDs 161 , 162 and 163 , respectively.
  • the first to third color conversion layers 71 , 72 , 73a convert the light emitted from the first to third UV microLEDs 161 , 162 , and 163 into excitation light and convert it into light of different wavelength bands for emission. It may include a nano phosphor.
  • the first color conversion layer 71 may include a red nano-phosphor capable of emitting light of a red wavelength band by being excited by light of an ultraviolet wavelength band emitted from the first UV micro LED 161 .
  • the red nano-phosphor may be SCASN (Si1-xCaxAlSiN3:Eu2+).
  • the red nano-phosphor may have an average particle size distribution (d50) of less than 0.5 ⁇ m (eg, 0.1 ⁇ m ⁇ d50 ⁇ 0.5 ⁇ m).
  • the second color conversion layer 72 may include a green nano-phosphor capable of emitting light of a green wavelength band by being excited by light of an ultraviolet wavelength band emitted from the second UV micro LED 162 .
  • the green nano-phosphor may be ⁇ -SiAlON (Si6-zAlzOzN8-z:Eu2+) or SrGa2S4.
  • the green nano-phosphor may have an average particle size distribution (d50) of less than 0.5 ⁇ m (eg, 0.1 ⁇ m ⁇ d50 ⁇ 0.5 ⁇ m).
  • the third color conversion layer 73a may include a blue nano-phosphor capable of emitting light of a blue wavelength band by being excited by light of an ultraviolet wavelength band emitted from the third UV micro LED 163 .
  • the blue nano-phosphor may be BAM (BaMgxAlyOz:Eun+).
  • the blue nano-phosphor may have an average particle size distribution (d50) of less than 0.5 ⁇ m (preferably 0.1 ⁇ m ⁇ d50 ⁇ 0.5 ⁇ m).
  • the first color conversion layer 71 may be formed of red quantum dots
  • the second color conversion layer 72 may be formed of green quantum dots
  • the third color conversion layer 73a may be formed of blue quantum dots.
  • a first color filter 81 , a second color filter 82 , and a second transparent resin layer 83 may be disposed above the first to third color conversion layers 71 , 72 and 73a , respectively.
  • the sizes of the first to third UV micro LEDs 161 , 162 , and 163 are formed smaller than the sizes of the first to third color conversion layers 71 , 72 and 73a, respectively. Accordingly, a gap may be formed between the side surfaces of the first to third micro LEDs 61 , 62 , and 63 and the partition wall 70 , and the gap is filled with the optical adhesive 65 . Accordingly, the barrier rib 70 may be stably fixed to the TFT substrate 20 by firmly bonding with the surrounding structures through the optical adhesive 65 .
  • a thin film UV blocking filter 91 may be laminated on one surface of the transparent cover layer 90 .
  • the UV blocking filter 91 may block UV rays emitted from the first to third UV micro LEDs 161 , 162 , and 163 .
  • the UV cut filter 91 may have a transmittance of 10% or less with respect to a wavelength of 400 nm or less.
  • FIG. 14 is a flowchart illustrating a manufacturing process of a first part of a display module according to an embodiment of the present disclosure.
  • 15 is a diagram of a manufacturing process of a first part of a display module according to an embodiment of the present disclosure.
  • the display does not show the entire first portion 11a of the module 10a, but enlarges a portion corresponding to one pixel.
  • the first part 11a of the display module 10a may be manufactured through the following procedure.
  • a thin-film UV blocking filter 91 is formed on one surface of the transparent cover layer 90 .
  • the UV blocking filter 91 may block UV rays emitted from the first to third UV micro LEDs 161 , 162 , and 163 .
  • a protective layer 93 is laminated on the UV cut filter 91 to protect the UV cut filter 91 while the first part 11a is manufactured. .
  • a black matrix 77 is formed on the other surface of the transparent cover layer 90 in the form of a grid.
  • the transparent cover layer 90 may use, for example, a rectangular or rectangular glass substrate having a predetermined thickness.
  • the size of the transparent cover layer 90 may approximately correspond to the size of the TFT substrate 20 .
  • the black matrix 77 is formed in a grid shape, a plurality of cells are formed, and each cell may be a sub-pixel area. As described above, referring to FIGS. 15D and 15E in operation S54 , a color filter is formed in a preset cell among a plurality of cells of the black matrix 77 .
  • a red material is uniformly applied entirely to one surface of the transparent cover layer 90 on which the black matrix 77 is formed. After that, only the areas where red should remain are exposed using a mask, and the red material is removed through development in the remaining areas.
  • a green material is uniformly applied entirely to one surface of the transparent cover layer 90 . After that, only the areas where the green color should remain are exposed using a mask, and the green material is removed through development in the remaining areas.
  • the transparent resin material is uniformly applied entirely to one surface of the transparent cover layer 90 . After that, only the areas where the transparent resin should remain are exposed using a mask, and the transparent resin material is removed through development in the remaining areas.
  • the method of applying the color filter material and the transparent resin material to the transparent cover layer 90 is a slit method that coats the entire surface evenly using a printer nozzle, and a spin method that sprays liquid in the center and then rotates the plate to apply it. method can be applied.
  • the partition wall 70 can be stacked thereon.
  • a planarization layer 75 covering the first and second color filters 81 and 82 and the second transparent resin layer 83 is formed.
  • the upper surface 75a of the planarization layer 75 has a flatness sufficient to form the partition wall 70 at a uniform height.
  • the planarization layer 75 may be formed of a transparent material that does not affect light transmittance, reflectance, and refractive index.
  • a lattice-shaped barrier rib 70 is formed on the upper surface 75a of the planarization layer 75 .
  • Each cell formed by the partition wall 70 may be formed at a position corresponding to each cell formed by the aforementioned black matrix 77 .
  • each cell formed by the partition wall 70 corresponds to a sub-pixel area.
  • the first to third color conversion layers 71, 72, 73a) is sequentially patterned.
  • a photoresist mixed with a nano phosphor may be applied, exposed, and developed. .
  • the first color conversion layer 71 may be made of a red nano phosphor capable of emitting light in a red wavelength band
  • the second color conversion layer 72 may be formed of a green nano phosphor capable of emitting light in a green wavelength band.
  • the third color conversion layer 73a may be formed of a blue nano phosphor capable of emitting light of a blue wavelength band.
  • the protective layer 93 is removed from the UV cut filter 91. Accordingly, the first portion 11a constituting the upper plate of the display module 10a may be formed.
  • 16 is a flowchart of a manufacturing process of a second part of a display module according to an embodiment of the present disclosure.
  • 17 is a diagram of a manufacturing process of a second part of a display module according to an embodiment of the present disclosure. In FIG. 17 , the display does not show the entire second part 12a of the module 10a, but enlarges a part corresponding to one pixel.
  • the light absorption layer 50 is formed on the front surface of the TFT substrate 20 .
  • a plurality of substrate electrode pads 26a and 26b are arranged at regular intervals on the front surface of the TFT substrate 20 .
  • a plurality of UV micro LEDs 161, 162, 163 are mounted on the TFT substrate 20 fight in
  • the UV micro LED transfer process may be performed through a laser transfer method, a rollable transfer method, a pick-and-place transfer method, and the like.
  • the first to third UV micro LEDs 161 , 162 , 163 are transferred from the epi substrate to the relay substrate (or interposer), respectively, and then the TFT substrate 20 as the target substrate from each relay substrate. fight with
  • the first to third micro LEDs 61 , 62 , and 63 are transferred to the TFT substrate 20 , they are seated on the surface of the light absorber 53 attached to the TFT substrate 20 . In this state, the first to third micro LEDs 61 , 62 , and 63 are inserted by a predetermined depth into the light absorbing material 53 through a thermocompression process. Accordingly, the first to third micro LEDs 61 , 62 , 63 are physically fixed to the TFT substrate 20 .
  • the chip electrode of each micro LED 61 , 62 , 63 may be electrically connected to a corresponding substrate electrode pad by a plurality of conductive balls 52 distributed in the light absorption layer 50 .
  • an optical adhesive 65 for bonding the first portion 11a and the second portion 12a is applied to the entire surface of the TFT substrate 20 .
  • the optical adhesive 65 is applied to the TFT substrate 20 so as to cover all of the plurality of UV micro LEDs 161 , 162 , 163 .
  • the optical adhesive 65 may be UV-curable silicone rubber (di-methyl siloxane) having a property of being cured after a predetermined time after UV exposure.
  • the optical adhesive 65 is cured by irradiating UV for a preset time.
  • the second portion 12a constituting the lower plate of the display module 10a may be formed.
  • FIG. 18 is a diagram of a manufacturing process of combining a first part and a second part of a display module according to an embodiment of the present disclosure.
  • the first part 11a is disposed above the second part 12a at a predetermined interval.
  • the first to third colors of the first part 11a are inverted by inverting the first part 11a to bond the first and second parts 11a and 12a to each other.
  • the conversion layers 71 , 72 , and 73a are aligned in the bonding position to correspond to the first to third UV micro LEDs 161 , 162 and 163 of the second portion 12a .
  • first and second portions 11a and 12a may be arranged to be parallel to each other on the same plane.
  • first and second parts 11a and 12a are aligned to the cemented positions, the first and second parts 11a and 12a are brought into close contact with the first part 11a by a preset pressure to the second part 12a. to bond In this case, the first and second portions 11a and 12a are attached to each other by means of a photosynthetic adhesive 65 .
  • the photosynthetic adhesive 65 may be cured to strengthen the bond between the first and second parts 11a and 12a.
  • the display module 10a according to another embodiment of the present disclosure may be manufactured.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Optics & Photonics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

디스플레이 모듈이 제공된다. 상기 디스플레이 모듈은 기판과, 기판의 일면에 제공된 도전성 광흡수층과, 도전성 광흡수층을 통해 기판에 전기적으로 연결된 다수의 픽셀을 포함하며, 다수의 픽셀은 각각, 동일한 색상의 광을 발산하는 제1 자발광 소자, 제2 자발광 소자 및 제3 자발광 소자와, 제1 자발광 소자의 발광면에 대응하는 제1 색변환층과, 제2 자발광 소자의 발광면에 대응하는 제2 색변환층과, 제1 색변환층에 대응하는 제1 컬러 필터와, 제2 색변환층에 대응하는 제2 컬러 필터를 포함하며, 제1 색변환층의 면적은 제1 자발광 소자의 면적보다 크고, 제2 색변환층의 면적은 제2 자발광 소자의 면적보다 크다.

Description

디스플레이 모듈 및 그 제조 방법
본 개시는 영상 표시용 자발광 소자를 사용하는 디스플레이 모듈 및 그 제조 방법에 관한 것이다.
디스플레이 패널에 영상 표시용 자발광 소자를 사용하면 백 라이트 없이 영상을 표시할 수 있다. 디스플레이 패널은 자발광 소자로 이루어진 픽셀 또는 서브 픽셀 단위로 동작이 되면서 다양한 색을 표현한다. 각각의 픽셀 또는 서브 픽셀은 TFT(thin film transistor)에 의해 동작이 제어된다.
자발광 소자를 사용하는 디스플레이 패널은 양산성을 확보를 위해 자발광 소자와 TFT 간 연결을 위해 마이크로 범프(micro-bump) 대신 이방성 도전 필름을 사용하여 하였다. 그런데 자발광 소자의 발광 시 픽셀 내에서 하나의 서브 픽셀에서 방출된 광이 인접한 서브 픽셀까지 도파되어 서브 픽셀 간 그리고 픽셀 간 서로 다른 색상의 광이 혼합됨에 따라 크로스 토크(cross-talk) 현상이 나타난다.
본 개시는 자발광 소자의 측면 및 후면에서 방출되는 광을 흡수하여 인접한 서브 픽셀로 광이 반사되는 것을 방지하는 디스플레이 모듈 및 그 제조 방법을 제공한다.
본 개시의 목적에 따르면, 디스플레이 모듈은 기판, 상기 기판의일면에 제공된 도전성 광흡수층, 및 상기 도전성 광흡수층을 통해 상기 기판에 전기적으로 연결된 다수의 픽셀;을 포함할 수 있다. 상기 다수의 픽셀은 각각, 동일한 색상의 광을 발산하는 제1 자발광 소자, 제2 자발광 소자 및 제3 자발광 소자, 상기 제1 자발광 소자의 발광면에 대응하는 제1 색변환층, 상기 제2 자발광 소자의 발광면에 대응하는 제2 색변환층, 상기 제1 색변환층에 대응하는 제1 컬러 필터, 상기 제2 색변환층에 대응하는 제2 컬러 필터를 포함할 수 있다. 상기 제1 색변환층의 면적은 상기 제1 자발광 소자의 면적보다 크고, 상기 제2 색변환층의 면적은 상기 제2 자발광 소자의 면적보다 클 수 있다.
상기 도전성 광흡수층은 투명 수지, 상기 투명 수지 내에 제공된 다수의 제1 도전 볼, 및 상기 투명 수지 내에 제공된 다수의 광흡수재;를 포함할 수 있다.
상기 투명 수지는 에폭시 수지, 폴리우레탄 수지 또는 아크릴 수지를 포함할 수 있다.
상기 다수의 제1 도전 볼은 각각, 폴리머 입자, 및 상기 폴리머 입자의 표면에 코팅된 도전막을 포함할 수 있다. 상기 도전막은 금(Au), 니켈(Ni) 또는 납(Pd)을 포함할 수 있다.
상기 다수의 광흡수재는 광흡수하도록 형성된 메탈 나노 입자(metal nanoparticle)을 포함할 수 있다.
상기 메탈 나노 입자는 Au, 백금(Pt), 은(Ag), Au 합금, Pt 합금 또는 Ag 합금을 포함할 수 있다.
상기 도전성 광흡수층은 블랙 계열의 색상을 가지는 수지, 및 상기 블랙 계열의 색상을 가지는 수지 내에 분산된 다수의 제2 도전 볼을 포함할 수 있다.
상기 제1 자발광 소자, 상기 제2 자발광 소자, 및 상기 제3 자발광 소자 각각은 청색 마이크로 LED(blue micro light emitting diode)를 포함할 수 있다.
상기 디스플레이 모듈은 상기 제1 자발광 소자, 상기 제2 자발광 소자, 및 상기 제3 자발광 소자를 분리하는 격벽을 더 포함할 수 있고, 상기 격벽은 상기 제1, 제2 및 제3 자발광 소자의 측면과 상기 제1 및 제2 색변환층의 측면에서 방출되는 광을 반사하도록 형성될 수 있다.
상기 격벽은 백색 계열의 색상일 수 있다.
상기 격벽은 상기 격벽의 표면에 금속막을 포함할 수 있다.
상기 제1 자발광 소자의 측면, 상기 제2 자발광 소자의 측면, 및 상기 제3 자발광 소자의 측면은 광학 접착제에 의해 상기 격벽에 접착될 수 있다.
상기 제1 색변환층은 상기 제1 색변환의 일면의 전체 영역에서 상기 제1 자발광 소자의 발광면에 대응하지 않는 영역이 상기 광학 접착제와 접촉될 수 있다.
상기 광학 접착제는 UV(ultraviolet) 경화 실리콘 러버를 포함할 수 있다.
상기 제1 색변환층은 적색 파장 대역의 광을 방출하는 색변환 물질을 포함하고, 상기 제2 색변환층은 녹색 파장 대역의 광을 방출하는 색변환 물질을 포함할 수 있다.
본 개시 내용의 특정 실시예의 상기 및 기타 양태, 특징 및 이점은 첨부 도면과 함께 취해진 하기 설명으로부터 더 명백할 것이다.
도 1은 본 개시의 일 실시 예에 따른 디스플레이 모듈을 나타낸 도면이다.
도 2는 본 개시의 일 실시 예에 따른 디스플레이 모듈을 나타낸 도면이다.
도 3은 본 개시의 일 실시 예에 따른 디스플레이 모듈의 단일 픽셀을 나타낸 도면이다.
도 4는 본 개시의 일 실시 예에 따른 격벽의 측면에 금속막이 형성된 예를 나타낸 도면이다.
도 5는 본 개시의 일 실시 예에 따른 도 3에 표시된 Ⅴ 부분을 확대한 도면이다.
도 6은 본 개시의 일 실시 예에 따른 디스플레이 모듈의 자발광 소자에서 방출되는 광 경로를 개략적으로 나타낸 도면이다.
도 7은 본 개시의 일 실시 예에 따른 디스플레이 모듈의 제조 공정을 나타낸 개략적인 흐름도이다.
도 8은 본 개시의 일 실시 예에 따른 디스플레이 모듈의 제1 부분의 제조 공정을 나타낸 흐름도이다.
도 9는 본 개시의 일 실시 예에 따른 디스플레이 모듈의 제1 부분의 제조 공정의 도면이다.
도 10은 본 개시의 일 실시 예에 따른 디스플레이 모듈의 제2 부분의 제조 공정의 흐름도이다.
도 11은 본 개시의 일 실시 예에 따른 디스플레이 모듈의 제2 부분의 제조 공정의 도면이다.
도 12는 본 개시의 일 실시 예에 따른 디스플레이 모듈의 제1 부분과 제2 부분을 결합하는 제조 공정의 도면이다.
도 13은 본 개시의 일 실시 예에 따른 디스플레이 모듈의 단일 픽셀을 나타낸 도면이다.
도 14는 본 개시의 일 실시 예에 따른 디스플레이 모듈의 제1 부분의 제조 공정의 흐름도이다.
도 15는 본 개시의 일 실시 예에 따른 디스플레이 모듈의 제1 부분의 제조 공정의 도면이다.
도 16은 본 개시의 일 실시 예에 따른 디스플레이 모듈의 제2 부분의 제조 공정의 흐름도이다.
도 17은 본 개시의 일 실시 예에 따른 디스플레이 모듈의 제2 부분의 제조 공정의 도면이다.
도 18은 본 개시의 일 실시 예에 따른 디스플레이 모듈의 제1 부분과 제2 부분을 결합하는 제조 공정의 도면이다.
이하에서는 첨부된 도면을 참조하여 다양한 실시 예를 보다 상세하게 설명한다. 본 명세서에 기재된 실시 예는 다양하게 변형될 수 있다. 특정한 실시 예가 도면에서 묘사되고 상세한 설명에서 자세하게 설명될 수 있다. 그러나, 첨부된 도면에 개시된 특정한 실시 예는 다양한 실시 예를 쉽게 이해하도록 하기 위한 것일 뿐이다. 따라서, 첨부된 도면에 개시된 특정 실시 예에 의해 기술적 사상이 제한되는 것은 아니며, 발명의 사상 및 기술 범위에 포함되는 모든 균등물 또는 대체물을 포함하는 것으로 이해되어야 한다.
본 개시에서, 제1, 제2 등과 같이 서수를 포함하는 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 이러한 구성요소들은 상술한 용어에 의해 한정되지는 않는다. 상술한 용어는 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다.
본 개시에서, "포함한다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다. 어떤 구성요소가 다른 구성요소에 "연결되어" 있다거나 "접속되어" 있다고 언급된 때에는, 그 다른 구성요소에 직접적으로 연결되어 있거나 또는 접속되어 있을 수도 있지만, 중간에 다른 구성요소가 존재할 수도 있다고 이해되어야 할 것이다. 반면에, 어떤 구성요소가 다른 구성요소에 "직접 연결되어" 있다거나 "직접 접속되어" 있다고 언급된 때에는, 중간에 다른 구성요소가 존재하지 않는 것으로 이해되어야 할 것이다.
본 개시에서, '동일하다'는 표현은 완전하게 일치하는 것뿐만 아니라, 가공 오차 범위를 감안한 정도의 상이함을 포함한다는 것을 의미한다.
그 밖에도, 본 개시를 설명함에 있어서, 관련된 공지 기능 혹은 구성에 대한 구체적인 설명이 본 개시의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우, 그에 대한 상세한 설명은 축약하거나 생략한다.
본 개시에서, 디스플레이 모듈은 영상 표시용 자발광 소자(self-luminescence element)인 마이크로 발광 다이오드(micro light emitting diode)를 구비한 디스플레이 패널일 수 있다. 디스플레이 모듈은 평판 디스플레이 패널 중 하나로 각각 100 마이크로미터 이하인 복수의 무기 발광 다이오드(LEDs)로 구성되어 백라이트가 필요한 액정 디스플레이(LCD) 패널에 비해 더 나은 대비, 응답 시간 및 에너지 효율을 제공한다. 디스플레이 모듈은 영상 표시용으로 사용되는 마이크로 발광 다이오드가 자발광 소자이므로 별도의 백 라이트를 구비할 필요가 없다.
본 개시에서, 유기 LED(OLED)와 무기 발광 소자인 마이크로 LED는 모두 에너지 효율이 좋지만 마이크로 LED는 OLED보다 밝기, 발광 효율, 수명이 길다. 마이크로 LED는 전원이 공급되는 경우 스스로 광을 방출할 수 있는 반도체 칩일 수 있다. 마이크로 LED는 빠른 반응속도, 낮은 전력, 높은 휘도를 가지고 있다. 예를 들면, 마이크로 LED는 LCD 또는 OLED에 비해 전기를 광자로 변환시키는 효율이 더 높다. 즉, LCD 또는 OLED 디스플레이에 비해 "와트당 밝기"가 더 높다. 이에 따라 마이크로 LED는 LED(가로, 세로, 높이가 각각 100㎛를 초과한다) 또는 OLED에 비해 약 절반 정도의 에너지로도 동일한 밝기를 낼 수 있게 된다. 이외에도 마이크로 LED는 높은 해상도, 우수한 색상, 명암 및 밝기 구현이 가능하여, 넓은 범위의 색상을 정확하게 표현할 수 있으며 야외에서도 선명한 화면을 구현할 수 있다. 그리고 마이크로 LED는 번인(burn in) 현상에 강하고 발열이 적어 변형 없이 긴 수명이 보장된다. 마이크로 LED는 애노드 및 캐소드 전극이 동일한 제1 면에 형성되고 발광면이 상기 전극들이 형성된 제1 면의 반대 측에 위치한 제2 면에 형성된 플립 칩(flip chip) 구조를 가질 수 있다.
본 개시에서, 하나의 픽셀은 적어도 3개의 서브 픽셀을 포함할 수 있다. 하나의 서브 픽셀은 영상 표시용 마이크로 자발광 소자로서, 예를 들면 마이크로 LED, 청색 마이크로 LED 또는 UV(ultraviolet) 마이크로 LED를 의미할 수 있다. 청색 마이크로 LED는 청색 파장 대역(450~490 nm)의 광을 방출하는 자발광 소자이고, UV 마이크로 LED는 자외선 파장 대역(360~410 nm)의 광을 방출하는 자발광 소자일 수 있다.
하나의 서브 픽셀은 하나의 마이크로 자발광 소자와 함께 이에 대응하는 색변환층 및 컬러 필터를 포함할 수 있다. 색변환층은 마이크로 자발광 소자에서 발산되는 광에 의해 여기 되어 소정 파장 대역의 색상을 방출할 수 있다. 색변환층은 나노 형광체 또는 양자점을 포함하는 물질로 이루어질 수 있다.
본 개시에서, 하나의 서브 픽셀 영역은 하나의 서브 픽셀에서 방출되는 광에 의해 해당 서브 픽셀의 색상이 발현되는 영역을 의미한다. 서브 픽셀이 대응하는 색변환층의 일면의 면적(가로 길이 Х 세로 길이)이 서브 픽셀의 발광면의 면적보다 클 수 있다. 이 경우, 서브 픽셀 영역은 색변환층의 면적에 대응할 수 있다.
본 개시에서, 기판은 전면(front surface)에 TFT(thin film transistor) 회로가 형성된 TFT층이 배치되고, 후면(rear surface)에 TFT 회로에 전원을 공급하는 전원 공급 회로와 데이터 구동 드라이버, 게이트 구동 드라이버 및 각 구동 드라이버를 제어하는 타이밍 컨트롤러가 배치될 수 있다. TFT층에 배열된 다수의 픽셀은 TFT 회로에 의해 구동될 수 있다.
본 개시에서, 기판은 글라스 기판, 합성수지 계열(예를 들면, PI(polyimide), PET(polyethylene terephthalate), PES(polyethersulfone), PEN(polyethylene naphthalate), PC(polycarbonate) 등)의 기판이나 세라믹 기판을 사용할 수 있다.
본 개시에서, 기판의 전면(front surface)에는 TFT 회로가 형성된 TFT층이 배치되고, 기판의 후면에는 회로가 배치되지 않을 수 있다. TFT층은 기판 상에 일체로 형성되거나 별도의 필름 형태로 제작되어 글라스 기판의 일면에 부착될 수 있다.
본 개시에서, 기판의 전면은 활성 영역과 비활성 영역으로 구분될 수 있다. 활성 영역은 기판의 전면에서 TFT층이 점유하는 영역에 해당할 수 있고, 비활성 영역은 기판의 전면에서 TFT층이 점유하는 영역을 제외한 영역일 수 있다.
본 개시에서, 기판의 에지 영역은 글라스 기판의 최 외곽 영역일 수 있다. 또한, 기판의 에지 영역은 기판의 회로가 형성된 영역을 제외한 나머지 영역일 수 있다. 또한, 기판의 에지 영역은 기판의 측면에 인접한 기판의 전면 일부와 기판의 측면에 인접한 기판의 후면 일부를 포함할 수 있다. 기판은 사각형(quadrangle type)으로 형성될 수 있다. 구체적으로, 기판은 직사각형(rectangle) 또는 정사각형(square)으로 형성될 수 있다. 기판의 에지 영역은 글라스 기판의 4변 중 적어도 하나의 변을 포함할 수 있다.
본 개시에서, TFT층(또는 백 플레인(backplane))을 구성하는 TFT는 특정 구조나 타입으로 한정되지 않는다, 예를 들면, 본 개시에서 인용된 TFT는 LTPS TFT(low-temperature polycrystalline silicon TFT) 외 oxide TFT 및 Si TFT(poly silicon, a-silicon), 유기 TFT, 그래핀 TFT 등으로도 구현될 수 있으며, Si 웨이퍼 CMOS(complementary metal-oxide-semiconductor) 공정에서 P 타입(or N 타입) MOSFET(metal-oxide-semiconductor field-effect transistor)만 만들어 적용할 수도 있다.
본 개시에서, 디스플레이 모듈의 픽셀 구동 방식은 AM(active matrix) 구동 방식 또는 PM(passive matrix) 구동 방식일 수 있다. 디스플레이 모듈은 AM 구동 방식 또는 PM 구동 방식에 따라 각 마이크로 LED가 전기적으로 접속되는 배선의 패턴을 형성할 수 있다.
본 개시에서, 하나의 픽셀 영역에는 복수의 PAM(pulse amplitude modulation) 제어 회로가 배치될 수 있다. 이 경우, 하나의 픽셀 영역에 배치된 각 서브 픽셀은 대응하는 PAM 제어 회로에 의해 제어될 수 있다. 또한, 하나의 픽셀 영역에는 복수의 PWM(pulse width modulation) 제어 회로가 배치될 수 있다. 이 경우, 하나의 픽셀 영역에 배치된 각 서브 픽셀은 대응하는 PWM 제어 회로에 의해 제어될 수 있다.
본 개시에서, 하나의 픽셀 영역에는 복수의 PAM 제어 회로 및 복수의 PWM 제어 회로가 함께 배치될 수 있다. 이 경우, 하나의 픽셀 영역에 배치된 서브 픽셀들 중 일부는 PAM 제어 회로에 의해 제어되고 나머지는 PWM 제어 회로를 통해 제어될 수 있다. 또한, 각 서브 픽셀은 PAM 제어 회로 및 PWM 제어 회로에 의해 제어될 수 있다.
본 개시에서, 디스플레이 모듈은 TFT 기판의 측면을 따라 일정한 간격으로 배치되는 박막 두께의 다수의 측면 배선을 포함할 수 있다.
본 개시에서, 디스플레이 모듈은 TFT 기판의 측면으로 드러나는 측면 배선을 대신하여 TFT 기판의 측면으로 드러나지 않도록 형성된 다수의 관통 배선 부재를 마련할 수 있다. 이에 따라 TFT 기판의 전면(front surface)에서 비활성 영역을 최소화하고 활성 영역을 최대화함으로써 베젤 리스화 할 수 있고 디스플레이 모듈에 대한 마이크로 LED의 실장 조밀도를 증가시킬 수 있다.
본 개시에서, 베젤 리스화를 구현하는 디스플레이 모듈은 다수를 연결하는 경우 활성 영역을 최대화할 수 있는 대형 사이즈의 멀티 디스플레이 장치를 제공할 수 있다. 이 경우 각 디스플레이 모듈은 비활성 영역을 최소화함에 따라 서로 인접한 디스플레이 모듈의 각 픽셀들 간의 피치를 단일 디스플레이 모듈 내의 각 픽셀들 간의 피치와 동일하게 유지하도록 형성할 수 있다. 이에 따라 각 디스플레이 모듈 사이의 연결부분에서 심(seam)이 시인되지 않도록 하는 하나의 방법일 수 있다.
본 개시에서, 구동 회로는 픽셀 영역에 배치되어 적어도 2n개의 픽셀 구동을 제어하는 마이크로 IC에 의해 구현될 수 있다. 디스플레이 모듈에 마이크로 IC를 적용하는 경우, TFT층(또는 백 플레인)에는 TFT 대신에 마이크로 IC와 각각의 마이크로 LED을 연결하는 채널층만 형성될 수 있다.
본 개시에서, 디스플레이 모듈은 단일 단위로 웨어러블 기기(wearable device), 포터블 기기(portable device), 핸드헬드 기기(handheld device) 및 각종 디스플레이가 필요가 전자 제품이나 전장에 설치되어 적용될 수 있으며, 매트릭스 타입으로 복수의 조립 배치를 통해 퍼스널 컴퓨터용 모니터, 고해상도 TV 및 사이니지(signage)(또는, 디지털 사이니지(digital signage)), 전광판(electronic display) 등과 같은 디스플레이 장치에 적용될 수 있다.
이하, 도면을 참조하여 본 개시의 일 실시 예에 따른 디스플레이 모듈을 설명한다.
도 1은 본 개시의 일 실시 예에 따른 디스플레이 모듈을 나타낸 도면이다. 도 2는 본 개시의 일 실시 예에 따른 디스플레이 모듈을 나타낸 도면이다.
도 1 및 도 2를 참조하면, 본 개시에 따른 디스플레이 모듈(10)은 다수의 픽셀 구동 회로(30)가 형성된 TFT 기판(20)과, TFT 기판(20)의 전면(front surface)에 배열된 다수의 픽셀(100)과, 제어 신호를 생성하고 생성된 제어 신호를 다수의 픽셀 구동 회로(30)로 제공하는 패널 구동부(40)를 포함할 수 있다.
하나의 픽셀은 다수의 서프 픽셀을 포함할 수 있다. 하나의 서브 픽셀은 하나의 광원과 각 광원에 대응하는 색변환층 및 컬러 필터를 포함할 수 있다. 광원은 무기 자발광 다이오드(inorganic self-light emitting diode)로서 예를 들면, 100㎛ 이하(예를 들면, 30㎛ 이하)의 사이즈를 가지는 VCSEL(vertical cavity surface emitting laser) 다이오드 또는 마이크로 LED일 수 있다. VCSEL 다이오드 및 마이크로 LED는 청색 파장 대역(450~490 nm)의 광을 방출하거나 자외선 파장 대역(360~410 nm)의 광을 방출할 수 있다. 픽셀(100)의 구조는 도 3을 참조하여 하기에서 상세히 설명한다.
TFT 기판(20)은 글라스 기판(21)과, 글라스 기판(21)의 전면에 TFT 회로가 포함된 TFT층(23)과, TFT층(23)의 TFT 회로와 글라스 기판의 후면 배치된 회로들을 전기적으로 연결하는 다수의 측면 배선(25)을 포함할 수 있다.
글라스 기판(21)의 대안으로 플렉서블 재질을 가지는 합성수지 계열(예를 들면, PI, PET, PES, PEN, PC 등)의 기판이나 세라믹 기판을 사용할 수 있다.
TFT 기판(20)은 전면에 영상을 표현하는 활성 영역(active area)(20a)과 영상을 표현할 수 없는 비활성 영역(dummy area)(20b)을 포함할 수 있다.
활성 영역(20a)은 다수의 픽셀이 각각 배열되는 다수의 픽셀 영역(24)으로 구획될 수 있다. 다수의 픽셀 영역(24)은 다양한 형태로 구획될 수 있으며, 일 예로서 매트릭스 형태로 구획될 수 있다. 하나의 픽셀 영역(24)에는 하나의 픽셀(100)(도 3)이 포함될 수 있다.
비활성 영역(20b)은 글라스 기판의 에지 영역(edge area)에 포함될 수 있으며, 에지 영역을 따라 일정한 간격을 두고 배치된 다수의 접속 패드(28a)가 형성될 수 있다. 다수의 접속 패드(28a)는 각각 배선(28b)을 통해 각 픽셀 구동 회로(30)와 전기적으로 연결될 수 있다.
비활성 영역(20b)에 형성되는 접속 패드(28a)의 개수는 글라스 기판에 구현되는 픽셀의 개수에 따라 달라질 수 있고, 활성 영역(20a)에 배치된 TFT 회로의 구동 방식에 따라 달라질 수 있다. 예를 들면, 활성 영역(20a)에 배치된 TFT 회로가 가로 라인 및 세로 라인으로 다수의 픽셀을 구동하는 PM 구동 방식인 경우에 비해 각 픽셀을 개별적으로 구동하는 AM 구동 방식이 더 많은 배선과 접속 패드가 필요할 수 있다.
TFT층(23)은 다수의 픽셀(100)을 제어하기 위해 가로로 배치된 다수의 데이터 신호 라인과, 세로로 배치된 다수의 게이트 신호 라인과, 각 라인에 전기적으로 연결된 다수의 픽셀 구동 회로(30)를 포함할 수 있다.
패널 구동부(40)는 COG(chip on glass) 또는 COP(chip on plastic) 본딩 방식으로 직접 기판에 연결되거나, FOG(Film on Glass) 본딩 방식으로 별도의 FPCB를 통해 TFT 기판(20)에 간접적으로 연결될 수 있다. 패널 구동부(40)는 다수의 픽셀 구동 회로(30)를 구동하여 다수의 픽셀 구동 회로(30) 각각에 전기적으로 연결된 다수의 마이크로 LED의 발광을 제어할 수 있다.
패널 구동부(40)는 제1 구동부(41)와 제2 구동부(42)를 통해 다수의 픽셀 구동 회로(30)를 라인별로 제어할 수 있다. 제1 구동부(41)는 TFT 기판(20)에 형성된 다수의 가로 라인들을 영상 프레임당 하나의 라인씩 순차적으로 제어하기 위한 제어 신호를 생성하고, 생성된 제어 신호를 해당 라인에 각각 연결된 픽셀 구동 회로(30)에 전송할 수 있다. 제2 구동부(42)는 TFT 기판(20)에 형성된 다수의 세로라인들을 영상 프레임당 하나의 라인씩 순차적으로 제어하기 위한 제어 신호를 생성하고, 생성된 제어 신호를 해당라인에 연결된 각각 연결된 픽셀 구동 회로(30)로 전송할 수 있다.
도 3은 본 개시의 일 실시 예에 따른 디스플레이 모듈의 단일 픽셀을 나타낸 도면이다. 도 4는 본 개시의 일 실시 예에 따른 격벽의 측면에 금속막이 형성된 예를 나타낸 도면이다. 도 5는 본 개시의 일 실시 예에 따른 도 3에 표시된 Ⅴ 부분을 확대한 도면이다.
도 3을 참조하면, 하나의 픽셀(100)은 하나의 픽셀 영역(24)(도 1)에 포함될 수 있다.
픽셀(100)은 동일한 색상의 광 예를 들면, 청색 파장 대역(450~490 nm)의 광을 방출하는 하는 적어도 3개의 마이크로 LED(61, 62, 63)를 포함할 수 있다.
제1 내지 제3 마이크로 LED(61, 62, 63)는 TFT 기판(20)의 전면(front surface)에 형성된 광흡수층(50)을 통해 TFT 기판(20)에 전기적 및 물리적으로 연결될 수 있다.
광흡수층(50)은 투명한 열경화성 수지(51)(이하, '투명 수지'라 함)와, 투명한 열경화성 수지(51) 내에 분포된 다수의 도전 볼(52)과, 도전 볼(52)보다 작은 크기의 광흡수재(53)를 포함할 수 있다.
투명 수지(51)는 예를 들면, 에폭시 수지, 폴리우레탄 수지, 아크릴 수지 등을 사용할 수 있다.
도전 볼(52)은 미세한 지름(예를 들면, 3~15㎛)을 가지며 도전체일 수 있다. 도전 볼(52)은 예를 들면, 폴리머 입자와 폴리머 입자의 표면에 코팅된 금(Au), 니켈(Ni), 납(Pd) 등의 도전막을 포함할 수 있다. 이 경우, 다수의 도전 볼(52)이 투명 수지(51) 내에 분포됨에 따라, 광흡수층(50)은 압착 방향으로는 전도성을 가지며 압착방향의 수직 방향으로는 절연성을 가진다. 광흡수층(50)은 입자 형태의 다수의 광흡수재(53)를 포함한 이방성 도전 필름(ACF: anisotropic conductive film)일 수 있다.
광흡수재(53)는 광흡수가 가능한 메탈 나노 입자(metal nanoparticle)일 수 있다. 광흡수재(53)는 예를 들면, 나노 크기의 Au, 백금(Pt) 또는 은(Ag) 입자를 사용하거나 Au 합금, Pt 합금 또는 Ag 합금 입자로 이루어질 수 있다.
한편, 광흡수층(50)은 투명 수지(51) 대신 광 흡수 색(light absorbing color) 예를 들면, 염료 또는 안료를 적용하여 블랙 계열의 색상을 가지는 수지와 이 수지 내에 분산된 다수의 도전 볼을 포함할 수 있다. 블랙 계열의 색상을 가지는 수지는 마이크로 LED의 측면 및 후면에서 방출되는 광을 흡수할 수 있다. 이 경우, 광흡수층은 다수의 광흡수재(53)를 포함하거나 생략할 수 있다.
제1 내지 제3 마이크로 LED(61, 62, 63)는 애노드 및 캐소드 전극인 2개의 칩 전극(61a, 61b)이 발광면의 반대 측에 형성된 플립 칩(flip chip) 구조를 가질 수 있다. 제1 및 제2 칩 전극(61a, 61b)은 알루미늄(Al), 티타늄(Ti), 크롬(Cr), Ni, Pd, Ag, 게르마늄(Ge), Au 중 어느 하나 또는 이들의 합금으로 이루어질 수 있다.
제1 내지 제3 마이크로 LED(61, 62, 63)는 TFT 기판(20)에 전사되면 TFT 기판(20)에 부착된 광흡수재(53)의 표면에 안착된다. 이어서 열 압착 공정을 통해 제1 내지 제3 마이크로 LED(61, 62, 63)는 함께 광흡수재(53) 내측으로 소정 깊이만큼 삽입된다. 이에 따라, 제1 내지 제3 마이크로 LED(61, 62, 63)는 TFT 기판(20)에 물리적으로 고정될 수 있다.
또한, 열 압착 공정에 의해 제1 마이크로 LED(61)가 TFT 기판(20)을 향해 가압됨에 따라 제1 마이크로 LED(61)의 칩 전극(61a, 61b)이 기판 전극 패드(26a, 26b)와 인접하게 위치할 수 있다. 이 경우, 제1 마이크로 LED(61)의 칩 전극(61a, 61b)과 기판 전극 패드(26a, 26b) 사이에 위치한 도전 볼(52)에 의해 제1 마이크로 LED(61)의 칩 전극(61a, 61b)은 기판 전극 패드(26a, 26b)와 전기적으로 연결될 수 있다. 마찬가지로 제2 및 제3 마이크로 LED(62, 63) 역시 제1 마이크로 LED(61)와 마찬가지 방식으로 각 칩 전극에 대응하는 기판 전극 패드에 도전 볼(52)을 통해 전기적으로 연결될 수 있다.
제1 및 제2 색변환층(71, 72)은 제1 및 제2 마이크로 LED(61, 62)에서 방출되는 광을 여기광으로 하여, 각각 서로 다른 파장 대역의 광으로 변환하고 변환된 광을 방출하는 나노 형광체를 포함할 수 있다. 나노 형광체는 종래의 입자의 직경이 수 ㎛인 형광체에 비하여 상이한 물리적인 특성을 나타낸다. 예를 들어 나노 형광체의 결정내 전자의 양자상태 에너지 준위 구조인 에너지 밴드의 갭(gap)이 커서 발광하는 광의 파장이 높은 에너지를 가지므로 발광효율을 향상시킬 수 있다. 나노 형광체는 벌크 구조를 가지는 형광체에 비하여 형광체의 입자밀도가 증가함으로써 부딪히는 전자가 효과적으로 발광에 기여하여 디스플레이의 효율을 향상시킬 수 있다.
제1 색변환층(71)은 제1 마이크로 LED(61)에서 방출되는 청색 파장 대역의 광에 의해 여기(excitation)되어 적색 파장 대역의 광을 방출할 수 있는 적색 나노 형광체를 포함할 수 있다. 예를 들면, 적색 나노 형광체는 SCASN(Si1-xCaxAlSiN3:Eu2+)일 수 있다. 이 경우 적색 나노 형광체는 입자 크기 분포 평균값(d50)이 0.5㎛미만(예를 들면, 0.1㎛ < d50 < 0.5㎛)일 수 있다.
제2 색변환층(72)은 제2 마이크로 LED(62)에서 방출되는 청색 파장 대역의 광에 의해 여기(excitation)되어 녹색 파장 대역의 광을 방출할 수 있는 녹색 나노 형광체를 포함할 수 있다. 예를 들면, 녹색 나노 형광체는 β-SiAlON(Si6-zAlzOzN8-z:Eu2+) 또는 SrGa2S4일 수 있다. 이 경우 녹색 나노 형광체는 입자 크기 분포 평균값(d50)이 0.5㎛미만(예를 들면, 0.1㎛ < d50 < 0.5㎛)일 수 있다.
한편, 제1 색변환층(71)은 적색 나노 형광체의 대안으로 적색 파장 대역의 광을 방출하는 적색 양자점(quantum dot)을 포함하는 물질로 이루어질 수 있다. 이 경우, 제2 색변환층(72)은 녹색 나노 형광체의 대안으로 녹색 파장 대역의 광을 방출하는 녹색 양자점을 포함하는 물질로 이루어질 수 있다.
제1 투명수지층(73)은 제3 마이크로 LED(63)에서 방출되는 광의 투과율, 반사율 및 굴절률에 영향을 주지 않거나 최소화할 수 있는 재질로 이루어질 수 있다. 한편, 제1 투명수지층(73)은 경우에 따라 생략될 수 있으며, 이때 제3 마이크로 LED(63)의 발광면 측에는 공기층이 존재하게 된다.
또한, 픽셀(100)은 제1 및 제2 색변환층(71, 72)에 각각 대응하는 제1 및 제2 컬러 필터(81, 82)를 포함하고, 제1 투명수지층(73)에 대응하는 제2 투명수지층(83)을 포함할 수 있다.
제1 컬러 필터(81)는 제1 색변환층(71)에서 방출되는 적색 파장 대역의 광의 색상과 동일한 색상의 파장을 통과시키는 적색 컬러 필터일 수 있다. 제2 컬러 필터(82)는 제2 색변환층(72)에서 방출되는 녹색 파장 대역의 광의 색상과 동일한 색상의 파장을 통과시키는 녹색 컬러 필터일 수 있다.
제2 투명수지층(83)은 제1 투명수지층(73)을 통과한 광의 투과율, 반사율 및 굴절률에 영향을 주지 않거나 최소화할 수 있는 재질로 이루어질 수 있다. 또한, 제2 투명수지층(83)은 굴절 및 반사를 통해 광의 방향을 전면을 향하도록 하여 낭비되는 광을 최소화하고 휘도를 향상시킬 수 있는 광학 필름일 수 있다.
제1 내지 제3 마이크로 LED(61, 62, 63)는 소정의 두께를 가지며 폭과 길이가 동일한 정사각형이거나, 폭과 길이가 상이한 직사각형으로 이루어질 수 있다. 이와 같은 마이크로 LED는 Real HDR(high dynamic range) 구현이 가능하고 OLED 대비 휘도 및 블랙 표현력 향상 및 높은 명암비를 제공할 수 있다. 마이크로 LED의 사이즈는 100㎛이하이거나 예를 들면 30㎛ 이하일 수 있다.
도 3을 참조하면, 픽셀(100)은 격벽(70)에 의해 제1 내지 제3 마이크로 LED(61, 62, 63)의 발광 영역이 구획될 수 있다. 격벽(70)은 대략 격자 형상으로 형성될 수 있다. 격벽(70)에 의해 구획된 다수의 발광 영역은 각각 하나의 서브 픽셀 영역에 대응할 수 있다.
격벽(70)은 상단이 평탄화층(75)에 밀착되고(예: 직접 접촉하거나 거의 직접 접촉하고) 하단이 광흡수층(50)의 상면에 밀착될 수 있다(예: 직접 접촉하거나 거의 직접 접촉될 수 있다). 격벽(70)에 의해 구획된 각 발광 영역에는 제1 색변환층(71), 제2 색변환층(72), 제1 투명수지층(73)이 배치될 수 있다.
이에 따라, 제1 마이크로 LED(61)에 대응하는 제1 색변환층(71)의 측면으로 방출되는 광은 격벽(70)에 의해 반사되어 제1 컬러 필터(81)로 방출될 수 있다. 또한, 제2 마이크로 LED(62)에 대응하는 제2 색변환층(72)의 측면으로 방출되는 광은 격벽(70)에 의해 반사되어 제2 컬러 필터(82)로 방출될 수 있다.
격벽(70)은 반사체로 기능하기 위해 광 반사율이 뛰어난 백색 계열의 색상을 가질 수 있다. 여기서, 백색 계열 색상은 트루 화이트(true white) 및 오프 화이트(off-white)를 포함할 수 있다. 오프 화이트는 백색에 가까운 모든 색상을 의미한다.
격벽(70)은 반사체로서 기능할 수 있도록 높은 반사율을 가지는 금속 재질로 형성될 수도 있다. 또한, 격벽(70)은 도 4와 같이 측면에 높은 광 반사율을 가지는 금속막(74)이 적층 형성될 수 있다. 이 경우, 격벽(70)은 백색 계열 색상을 가지지 않아도 무방하다.
제1 내지 제3 마이크로 LED(61, 62, 63)의 발광면은 TFT 기판(20)의 상면으로부터 대략 동일한 높이에 위치할 수 있다. 또한, 제1 내지 제3 마이크로 LED(61, 62, 63)의 발광면은 격벽(70)의 하단보다 높은 위치에 위치할 수 있다. 이 경우, 제1 내지 제3 마이크로 LED(61, 62, 63)의 측면의 일부는 격벽(70)을 마주할 수 있다. 이에 따라, 제1 내지 제3 마이크로 LED(61, 62, 63)의 측면에서 방출되는 광은 격벽(70)에 반사되어 제1 색변환층(71), 제2 색변환층(72) 및 제1 투명수지층(73)으로 각각 방출될 수 있다.
이와 같이, 격벽(70)은 제1 내지 제3 마이크로 LED(61, 62, 63)의 측면에서 방출되는 광, 제1 및 제2 색변환층(71, 72)의 측면에서 방출되는 광을 각각 반사시켜 디스플레이 모듈(10)의 전면으로 방출시킴으로써 발광 효율을 극대화할 수 있다.
제1 및 제2 색변환층(71, 72)과 제1 및 제2 컬러 필터(81, 82) 사이에는 평탄화층(75)이 배치될 수 있다. 또한, 제1 투명수지층(73)과 제2 투명수지층(83) 사이에도 평탄화층(75)이 배치될 수 있다. 제1 투명수지층(73)은 제1 및 제2 색변환층(71, 72)과 동일한 평면 상에 배치될 수 있고, 제2 투명수지층(83)은 제1 및 제2 컬러 필터(81, 82)와 동일한 평면 상에 배치될 수 있다.
평탄화층(75)은 디스플레이 모듈(10)의 제1 부분(11)(도 9)을 제작할 때 격벽(70)을 형성하기 전에 제1 및 제2 컬러 필터(81, 82)와 제2 투명수지층(83) 위에 적층된다.
평탄화층(75)은 제1 및 제2 색변환층(71, 72)과 제1 투명수지층(73)을 통과한 광의 투과율, 반사율 및 굴절률에 영향을 주지 않거나 최소화할 수 있는 재질로 이루어질 수 있다.
제1 및 제2 컬러 필터(81, 82)과 제2 투명수지층(83)사이에는 격자 형태로 형성된 블랙 매트릭스(77)에 의해 구획될 수 있다. 블랙 매트릭스(77)의 형상은 격벽(70)의 형상에 대응하도록 격자 형태로 형성될 수 있다. 이 경우, 블랙 매트릭스(77)의 폭은 격벽(70)의 폭과 유사하게 형성될 수 있다.
제1 및 제2 컬러 필터(81, 82)와 제2 투명수지층(83)의 상측에는 투명커버층(90)이 형성될 수 있다. 투명커버층(90)은 픽셀(100)이 이물질에 오염되는 것을 방지하고 외력으로부터 픽셀(100)이 파손되는 것을 보호할 수 있다. 투명커버층(90)은 글라스 기판을 적용할 수 있다.
도 3에는 격벽(70), 평탄화층(75), 블랙 매트릭스(77) 및 투명커버층(90)이 하나의 픽셀 단위에 대응하는 부분만 도시하지만, 격벽(70), 평탄화층(75), 블랙 매트릭스(77) 및 투명커버층(90)은 TFT 기판(20)의 사이즈에 대략 대응하는 정도의 사이즈로 형성될 수 있다.
한편, 제1 내지 제3 마이크로 LED(61, 62, 63)의 사이즈는 각각 제1 색변환층(71), 제2 색변환층(72) 및 제1 투명수지층(73)의 사이즈보다 작게 형성된다. 이에 따라, 제1 내지 제3 마이크로 LED(61, 62, 63)의 측면과 격벽(70) 사이에 갭이 형성될 수 있다.
도 5를 참조하면, 이 갭은 광학 접착제(65)로 채워진다. 광학 접착제(65)는 제1 마이크로 LED(61)의 측면 일부(61c), 격벽(70)의 하단 측면 일부(70b) 및 광흡수층(50)의 상면 일부(50a)와 각각 밀착된다(예: 직접 접촉하거나 거의 직접 접촉될 수 있다). 이에 따라 격벽(70)은 광학 접착제(65)를 통해 주변 구조물과 견고하게 결합을 이룸에 따라 TFT 기판(20)에 안정적으로 고정될 수 있다.
광학 접착제(65)는 후술하는 디스플레이 모듈(10)의 제1 부분(11) 및 제2 부분(12)을 상호 합착하기 위해 사용된다.
도 6은 본 개시의 일 실시 예에 따른 디스플레이 모듈의 자발광 소자에서 방출되는 광 경로를 개략적으로 나타낸 도면이다.
도 6을 참조하면, 방출된 광은 검은색 화살표로 표시된다. 제1 마이크로 LED(61)의 발광면에서 방출된 광은 대부분 제1 색변환층(71)으로 방출된다. 제1 색변환층(71)은 제1 마이크로 LED(61)에서 방출된 광을 여기광으로 하여 적색 파장 대역의 광을 방출한다. 이 경우, 제1 색변환층(71)에서 방출된 광은 대부분 직접 제1 컬러 필터(81)로 방출되고, 제1 색변환층(71)의 측면에서 방출된 광은 격벽(70)에 반사된 후 제1 컬러 필터(81)로 방출된다. 제1 컬러 필터(81)로 방출된 광은 제1 컬러 필터(81)를 투과하여 디스플레이 모듈(10) 전방으로 방출된다. 이 경우, 제1 마이크로 LED(61)의 측면과 후면(예를 들면, 제1 마이크로 LED(61)의 발광면의 반대 면)에서 방출된 광은 대부분 광흡수층(50)으로 방출되며 광흡수층(50)에 포함된 다수의 광흡수재(53)로 흡수됨에 따라 인접한 서브 픽셀로 반사되지 않는다.
또한, 제2 및 제3 마이크로 LED(62, 63)의 측면 및 후면에서 각각 방출되는 광 역시 전술한 제1 마이크로 LED(61)의 측면 및 후면에서 각각 방출되는 광과 마찬가지로 대부분 광흡수층(50)으로 흡수됨에 따라 인접한 서브 픽셀로 반사되지 않는다.
따라서, 본 개시에서는, 하나의 픽셀 내에서 서로 다른 광원에서 방출되는 서로 다른 색상의 광이 혼합되는 것을 근본적으로 차단하여 크로스 토크(cross talk)를 방지할 수 있다.
이하, 본 개시의 일 실시예에 따른 디스플레이 모듈의 제조 공정을 설명한다.
도 7은 본 개시의 일 실시 예에 따른 디스플레이 모듈의 제조 공정의 흐름도이다.
도 7을 참조하면, 본 개시의 일 실시 예에 따른 디스플레이 모듈(10)의 전체적인 제작 공정을 개략적으로 설명하면 다음과 같다.
S1 작업에서, 글라스 기판 상에 컬러 필터, 평탄화층, 격벽 및 색변환층을 순차적으로 형성하여 제1 부분(11)(도 9)을 제작하고, S2 작업에서, 제1 부분과 별도로 TFT 기판(20)에 다수의 마이크로 LED를 전사하여 제2 부분(12)(도 11)을 제작한다.
제2 부분(12)을 다이에 안착시킨 후, 제2 부분(12)의 상측에 제1 부분(11)을 소정 간격을 두고 배치한다.
S3 작업에서, 제1 및 제2 부분(11, 12)을 상호 합착하기 위해 제1 및 제2 부분(11, 12)을 정렬한다. S4 작업에서, 제1 부분(11)을 제2 부분(12) 측으로 가압하여 상호 합착한다.
이하, 도면을 참조하여 본 개시의 일 실시 예에 따른 디스플레이 모듈(10)의 제1 및 제2 부분의 제작 공정과 제1 및 제2 부분의 합착 공정을 순차적으로 상세히 설명한다.
도 8은 본 개시의 일 실시 예에 따른 디스플레이 모듈의 제1 부분의 제조 공정의 흐름도이다. 도 9는 본 개시의 일 실시 예에 따른 디스플레이 모듈의 제1 부분의 제조 공정의 도면이다. 도 9에서는 디스플레이이 모듈(10)의 제1 부분(11) 전체를 도시하지 않고 하나의 픽셀에 대응하는 부분을 확대하여 도시한다.
도 8 및 도 9를 참조하면, 디스플레이 모듈(10)의 제1 부분(11)은 하기와 같은 순서를 거쳐 제작될 수 있다.
S11 작업에서, 투명커버층(90)의 일면에 격자 형태로 블랙 매트릭스(77)를 형성한다.
도 9의 (A)를 참조하면, 투명커버층(90)은 예를 들면, 소정 두께를 가지는 사각형 또는 직사각형 글라스 기판을 사용할 수 있다. 투명커버층(90)의 사이즈는 대략 TFT 기판(20)의 사이즈와 대략 대응할 수 있다.
블랙 매트릭스(77)는 격자 형상으로 이루어짐에 따라 다수의 셀을 형성하게 되는데, 각 셀은 서브 픽셀 영역이 될 수 있다. 이와 같이, S12 작업에서, 블랙 매트릭스(77)의 다수의 셀 중에서 미리 설정된 셀에 컬러 필터를 형성한다.
예를 들면, 도 9의 (B)를 참조하면, 제1 컬러 필터(81)를 형성하기 위해, 블랙 매트릭스(77)가 형성된 투명커버층(90)의 일면에 전제적으로 적색 소재를 균일하게 도포한다. 그 후에 마스크를 이용해 적색이 남아있어야 할 곳만 노광시키고 나머지 영역에서는 현상 공정을 통해 적색 소재를 제거한다.
이어서, 도 9의 (C)를 참조하면, 제2 컬러 필터(82)를 형성하기 위해, 투명커버층(90)의 일면에 전제적으로 녹색 소재를 균일하게 도포한다. 그 후에 마스크를 이용해 녹색이 남아있어야 할 곳만 노광시키고 나머지 영역에서는 현상 공정을 통해 녹색 소재를 제거한다.
마지막으로 제2 투명수지층(83)을 형성하기 위해, 투명커버층(90)의 일면에 전제적으로 투명수지 소재를 균일하게 도포한다. 그 후에 마스크를 이용해 투명수지가 남아있어야 할 곳만 노광시키고 나머지 영역에서는 현상 공정을 통해 투명수지 소재를 제거한다.
컬러 필터 소재 및 투명수지 소재를 투명커버층(90)에 도포하는 방식은 프린터 노즐을 이용해 전체 면에 고르게 입히는 슬릿(slit) 방식, 중앙에 액상을 뿌린 후 판을 회전시켜 도포하는 스핀(spin) 방식 등을 적용할 수 있다.
S13 작업에서 도 9의 (D)를 참조하면, 제1 및 제2 컬러 필터(81, 82)와 제2 투명수지층(83)이 형성되면, 그 위에 격벽(70)을 적층할 수 있도록 제1 및 제2 컬러 필터(81, 82)와 제2 투명수지층(83)을 덮는 평탄화층(75)을 형성한다.
평탄화층(75)의 상면(75a)은 격벽(70)을 균일한 높이로 형성할 수 있을 정도의 평탄도를 가진다. 평탄화층(75)는 광의 투과율, 반사율 및 굴절률에 영향을 주지 않는 투명한 소재로 형성할 수 있다.
이어서, S14 작업에서 도 9의 (E)를 참조하면, 평탄화층(75)의 상면(75a)에 격자 형태의 격벽(70)을 형성한다. 격벽(70)에 의해 형성되는 각 셀은 전술한 블랙 매트릭스(77)에 의해 형성된 각 셀에 대응하는 위치에 형성될 수 있다. 이 경우, 격벽(70)에 의해 형성되는 각 셀은 서브 픽셀 영역에 해당한다.
격벽(70)이 형성된 후, S15 작업에서 도 9의 (A)를 참조하면, 각 셀에 색변환 물질(나노 형광체 또는 양자점 물질)을 잉크젯 프린팅 방식을 통해 제1 색변환층(71) 및 제2 색변환층(72)을 순차적으로 패터닝 한다.
제1 및 제2 색변환층(71, 72)을 형성하는 다른 방식으로, 전술한 컬러 필터의 제작 방식과 유사하게 나노 형광체 또는 양자점 물질을 포토 레지스트에 믹싱하여 도포, 노광 및 현상을 거쳐 형성할 수 있다.
제1 색변환층(71)은 적색 파장 대역의 광을 방출할 수 있는 적색 나노 형광체로 이루어질 수 있고, 제2 색변환층(72)은 녹색 파장 대역의 광을 방출할 수 있는 녹색 나노 형광체로 이루어질 수 있다. 대안으로, 제1 색변환층(71)은 적색 양자점으로 이루어질 수 있고, 제2 색변환층(72)은 녹색 양자점으로 이루어질 수 있다.
제1 및 제2 색변환층(71, 72)을 각 셀에 패터닝한 후, 제1 및 제2 색변환층(71, 72)이 형성되지 않은 빈 셀들에 잉크젯 프린팅 방식을 통해 투명수지 소재를 패터닝하여 제1 투명수지층(73)을 형성한다.
상기와 같은 과정을 거쳐 디스플레이 모듈(10)의 상판을 이루는 제1 부분(11)을 형성할 수 있다.
도 10은 본 개시의 일 실시 예에 따른 디스플레이 모듈의 제2 부분의 제조 공정의 흐름도이다. 도 11은 본 개시의 일 실시 예에 따른 디스플레이 모듈의 제2 부분의 제조 공정의 도면이다. 도 11에서는 디스플레이이 모듈(10)의 제2 부분(12) 전체를 도시하지 않고 하나의 픽셀에 대응하는 부분을 확대하여 도시한다.
도 10 및 도 11의 (A)를 참조하면, S21 작업에서, TFT 기판(20)의 전면(front surface)에 광흡수층(50)을 형성한다.
이 경우, 광흡수층(50)은 소정의 점도를 가지는 액상으로 형성되는 경우 잉크젯 프린팅에 의해 TFT 기판(20)에 소정 두께로 도포될 수 있다. 또한, 광습수층(50)이 필름 형태인 경우 TFT 기판(20)의 전면에 라미네이팅 될 수 있다.
TFT 기판(20)에 광흡수층(50)을 형성한 후, S22 작업에서, 다수의 마이크로 LED를 TFT 기판(20)에 전사한다.
마이크로 LED 전사 공정은 레이저 전사 방식, 롤러블 전사 방식, 픽 앤 플레이스 전사 방식 등을 통해 이루어질 수 있다. 이 경우, 제1 내지 제3 마이크로 LED(61, 62, 63)는 각각 에피 기판에서 중계 기판(또는 인터포저(interposer))으로 이송한 후, 각 중계 기판으로부터 타겟 기판인 TFT 기판(20)으로 전사한다.
제1 내지 제3 마이크로 LED(61, 62, 63)가 TFT 기판(20)에 전사되면 TFT 기판(20)에 부착된 광흡수재(53)의 표면에 안착된다. 이 상태에서 제1 내지 제3 마이크로 LED(61, 62, 63)는 열 압착 공정을 통해 광흡수재(53) 내측으로 소정 깊이만큼 삽입된다. 이에 따라, 제1 내지 제3 마이크로 LED(61, 62, 63)는 TFT 기판(20)에 물리적으로 고정된다. 또한, 각 마이크로 LED(61, 62, 63)의 칩 전극은 대응하는 기판 전극 패드와 광흡수층(50) 내에 분포된 다수의 도전 볼(52)에 의해 전기적으로 연결될 수 있다.
제1 내지 제3 마이크로 LED(61, 62, 63)는 청색 파장 대역의 광을 방출하는 청색 마이크로 LED일 수 있다.
이어서, S23 작업에서 도 11의 (B)를 참조하면, 제1 부분(11) 및 제2 부분(12)을 합착하기 위한 광학 접착제(65)를 TFT 기판(20)의 전면에 도포한다.
광학 접착제(65)는 다수의 마이크로 LED(61, 62, 63)를 모두 덮을 수 있도록 TFT 기판(20)에 도포된다. 광학 접착제(65)는 UV 노광 후 일정 시간 후에 경화되는 특성을 가지는 UV 경화 실리콘 러버(di-methyl siloxane)일 수 있다.
이어서, S24 작업에서 도 11의 (C)를 참조하면, 광학 접착제(65)에 미리 설정된 시간동안 UV를 조사하여 경화한다.
상기와 같은 과정을 거쳐 디스플레이 모듈(10)의 하판을 이루는 제2 부분(12)을 형성할 수 있다.
이하에서는 제1 부분(11) 및 제2 부분(12)을 상호 합착하여 디스플레이 모듈(10)을 제작하는 공정을 설명한다.
도 12는 본 개시의 일 실시 예에 따른 디스플레이 모듈의 제1 부분과 제2 부분을 결합하는 제조 공정의 도면이다.
도 12의 (A)를 참조하면, 제2 부분(12)을 다이에 안착시킨 후, 제2 부분(12)의 상측에 제1 부분(11)을 소정 간격을 두고 배치한다.
이어서, 도 12의 (B)를 참조하면, 제1 및 제2 부분(11, 12)을 상호 합착하기 위해 제1 부분(11)을 반전시켜 제1 부분(11)의 제1 색변환층(71), 제2 색변환층(72), 제1 투명수지층(73)이 각각 제2 부분(12)의 제1 내지 제3 마이크로 LED(61, 62, 63)에 대응하도록 합착 위치로 정렬한다.
이 경우 제1 및 제2 부분(11, 12)은 서로 동일 평면에 대하여 평행을 유지하도록 배치될 수 있다.
제1 및 제2 부분(11, 12)이 합착 위치로 정렬된 후, 미리 설정된 압력으로 제1 부분(11)을 제2 부분(12)에 밀착시켜 제1 및 제2 부분(11, 12)을 합착한다. 이 경우, 제1 및 제2 부분(11, 12)은 광학 접착제(65)의해 상호 부착된다.
제1 및 제2 부분(11, 12)을 합착한 후, 광합 접착제(65)를 경화시켜 제1 및 제2 부분(11, 12) 간 결합을 견고하게 할 수 있다.
이러한 공정을 거쳐 본 개시의 일 실시 예에 따른 디스플레이 모듈(10)을 제작할 수 있다.
이하, 본 개시의 일 실시 예에 따른 디스플레이 모듈을 설명한다.
전술한 본 개시의 일 실시 예에 따른 디스플레이 모듈(10)은 영상 표시용 자발광 소자로 청색 마이크로 LED를 적용하였으나, 본 개시의 다른 실시 예에 따른 디스플레이 모듈(10a)(도 18)은 영상 표시용 자발광 소자로 UV 마이크로 LED를 적용할 수 있다.
도 13은 본 개시의 일 실시 예에 따른 디스플레이 모듈의 단일 픽셀을 나타낸 도면이다.
본 개시의 다른 일 예에 따른 디스플레이 모듈을 설명함에 있어, 전술한 디스플레이 모듈(10)과 동일한 구성에 대해서는 동일한 부재번호를 부여하고 설명을 생략하며, 전술한 디스플레이 모듈(10)과 상이한 구성을 중심으로 설명한다.
디스플레이 모듈(10a)은 TFT 기판(20)과, TFT 기판(20)에는 다수의 픽셀(100a)이 배열된다.
도 13을 참조하면, 디스플레이 모듈(10a)의 픽셀(100a)은 자외선 파장 대역(360~410 nm)의 광을 방출하는 제1 내지 제3 UV 마이크로 LED(161, 162, 163)를 포함한다.
제1 내지 제3 UV 마이크로 LED(161, 162, 163)의 발광면에는 각각 제1 내지 제3 색변환층(71, 72, 73a)이 배치될 수 있다.
제1 내지 제3 색변환층(71, 72, 73a)은 제1 내지 제3 UV 마이크로 LED(161, 162, 163)에서 방출되는 광을 여기광으로 하여 서로 다른 파장 대역의 광으로 변환하여 방출하는 나노 형광체를 포함할 수 있다.
제1 색변환층(71)은 제1 UV 마이크로 LED(161)에서 방출되는 자외선 파장 대역의 광에 의해 여기(excitation)되어 적색 파장 대역의 광을 방출할 수 있는 적색 나노 형광체를 포함할 수 있다. 예를 들면, 적색 나노 형광체는 SCASN(Si1-xCaxAlSiN3:Eu2+)일 수 있다. 이 경우 적색 나노 형광체는 입자 크기 분포 평균값(d50)이 0.5㎛미만(예를 들면, 0.1㎛ < d50 < 0.5㎛)일 수 있다.
제2 색변환층(72)은 제2 UV 마이크로 LED(162)에서 방출되는 자외선 파장 대역의 광에 의해 여기(excitation)되어 녹색 파장 대역의 광을 방출할 수 있는 녹색 나노 형광체를 포함할 수 있다. 예를 들면, 녹색 나노 형광체는 β-SiAlON(Si6-zAlzOzN8-z:Eu2+) 또는 SrGa2S4일 수 있다. 이 경우 녹색 나노 형광체는 입자 크기 분포 평균값(d50)이 0.5㎛미만(예를 들면, 0.1㎛ < d50 < 0.5㎛)일 수 있다.
제3 색변환층(73a)은 제3 UV 마이크로 LED(163)에서 방출되는 자외선 파장 대역의 광에 의해 여기(excitation)되어 청색 파장 대역의 광을 방출할 수 있는 청색 나노 형광체를 포함할 수 있다. 예를 들면, 청색 나노 형광체는 BAM(BaMgxAlyOz:Eun+)일 수 있다. 이 경우 청색 나노 형광체는 입자 크기 분포 평균값(d50)이 0.5㎛미만(바람직하게는 0.1㎛ < d50 < 0.5㎛)일 수 있다.
대안으로, 제1 색변환층(71)은 적색 양자점으로 이루어질 수 있고, 제2 색변환층(72)은 녹색 양자점으로 이루어질 수 있고, 제3 색변환층(73a)은 청색 양자점으로 이루어질 수 있다.
제1 내지 제3 색변환층(71, 72, 73a)의 상측에는 각각 제1 컬러 필터(81), 제2 컬러 필터(82) 및 제2 투명수지층(83)이 배치될 수 있다.
한편, 제1 내지 제3 UV 마이크로 LED(161, 162, 163)의 사이즈는 각각 제1 내지 제3 색변환층(71, 72, 73a)의 사이즈보다 작게 형성된다. 이에 따라, 제1 내지 제3 마이크로 LED(61, 62, 63)의 측면과 격벽(70) 사이에 갭이 형성될 수 있으며 이 갭은 광학 접착제(65)로 채워진다. 이에 따라 격벽(70)은 광학 접착제(65)를 통해 주변 구조물과 견고하게 결합을 이룸에 따라 TFT 기판(20)에 안정적으로 고정될 수 있다.
또한, 투명커버층(90)의 일면에는 박막의 UV 차단 필터(91)가 적층 형성될 수 있다. UV 차단 필터(91)는 제1 내지 제3 UV 마이크로 LED(161, 162, 163)에서 방출되는 자외선을 차단할 수 있다. UV 차단 필터(91)는 400 nm 이하 파장에 대하여 10% 이하의 투과율을 가질 수 있다.
이하, 도면을 참조하여 본 개시의 일 실시 예에 따른 디스플레이 모듈(10a)의 제1 및 제2 부분의 제작 공정과 제1 및 제2 부분의 합착 공정을 순차적으로 상세히 설명한다.
도 14는 본 개시의 일 실시 예에 따른 디스플레이 모듈의 제1 부분의 제조 공정을 나타낸 흐름도이다. 도 15는 본 개시의 일 실시 예에 따른 디스플레이 모듈의 제1 부분의 제조 공정의 도면이다. 도 14에서는 디스플레이이 모듈(10a)의 제1 부분(11a) 전체를 도시하지 않고 하나의 픽셀에 대응하는 부분을 확대하여 도시한다.
도 14 및 도 15를 참조하면, 디스플레이 모듈(10a)의 제1 부분(11a)은 하기와 같은 순서를 거쳐 제작될 수 있다.
먼저, S51 작업에서 도 15의 (A)를 참조하면, 투명커버층(90)의 일면에 박막의 UV 차단 필터(91)를 형성한다. UV 차단 필터(91)는 제1 내지 제3 UV 마이크로 LED(161, 162, 163)에서 방출되는 자외선을 차단할 수 있다.
S52 작업에서 도 15의 (B)를 참조하면, 제1 부분(11a)을 제작하는 동안 UV 차단 필터(91)를 보호하기 위해 보호층(93)을 UV 차단 필터(91) 상에 적층 형성한다.
S53 작업에서 도 15의 (C)를 참조하면, 이어서, 투명커버층(90)의 타면에 격자 형태로 블랙 매트릭스(77)를 형성한다.
투명커버층(90)은 예를 들면, 소정 두께를 가지는 사각형 또는 직사각형 글라스 기판을 사용할 수 있다. 투명커버층(90)의 사이즈는 대략 TFT 기판(20)의 사이즈와 대략 대응할 수 있다.
블랙 매트릭스(77)는 격자 형상으로 이루어짐에 따라 다수의 셀을 형성하게 되는데, 각 셀은 서브 픽셀 영역이 될 수 있다. 이와 같이, S54 작업에서 도 15의 (D) 및 (E)를 참조하면, 블랙 매트릭스(77)의 다수의 셀 중에서 미리 설정된 셀에 컬러 필터를 형성한다.
예를 들면, 제1 컬러 필터(81)를 형성하기 위해, 블랙 매트릭스(77)가 형성된 투명커버층(90)의 일면에 전제적으로 적색 소재를 균일하게 도포한다. 그 후에 마스크를 이용해 적색이 남아있어야 할 곳만 노광시키고 나머지 영역에서는 현상을 통해 적색 소재를 제거한다.
이어서, 제2 컬러 필터(82)를 형성하기 위해, 투명커버층(90)의 일면에 전제적으로 녹색 소재를 균일하게 도포한다. 그 후에 마스크를 이용해 녹색이 남아있어야 할 곳만 노광시키고 나머지 영역에서는 현상을 통해 녹색 소재를 제거한다.
또한, 제2 투명수지층(83)을 형성하기 위해, 투명커버층(90)의 일면에 전제적으로 투명수지 소재를 균일하게 도포한다. 그 후에 마스크를 이용해 투명수지가 남아있어야 할 곳만 노광시키고 나머지 영역에서는 현상을 통해 투명수지 소재를 제거한다.
컬러 필터 소재 및 투명수지 소재를 투명커버층(90)에 도포하는 방식은 프린터 노즐을 이용해 전체 면에 고르게 입히는 슬릿(slit) 방식, 중앙에 액상을 뿌린 후 판을 회전시켜 도포하는 스핀(spin) 방식 등을 적용할 수 있다.
S55 작업에서 도 15의 (F)를 참조하면, 제1 및 제2 컬러 필터(81, 82)와 제2 투명수지층(83)이 형성되면, 그 위에 격벽(70)을 적층할 수 있도록 제1 및 제2 컬러 필터(81, 82)와 제2 투명수지층(83)을 덮는 평탄화층(75)을 형성한다.
평탄화층(75)의 상면(75a)은 격벽(70)을 균일한 높이로 형성할 수 있을 정도의 평탄도를 가진다. 평탄화층(75)는 광의 투과율, 반사율 및 굴절률에 영향을 주지 않는 투명한 소재로 형성할 수 있다.
이어서, S56 작업에서 도 15의 (G)를 참조하면, 평탄화층(75)의 상면(75a)에 격자 형태의 격벽(70)을 형성한다. 격벽(70)에 의해 형성되는 각 셀은 전술한 블랙 매트릭스(77)에 의해 형성된 각 셀에 대응하는 위치에 형성될 수 있다. 이 경우, 격벽(70)에 의해 형성되는 각 셀은 서브 픽셀 영역에 해당한다.
격벽(70)이 형성된 후, S57 작업에서 도 15의 (H)를 참조하면, 각 셀에 색변환 물질(나노 형광체)을 잉크젯 프린팅 방식을 통해 제1 내지 제3 색변환층(71, 72, 73a)을 순차적으로 패터닝 한다.
제1 내지 제3 색변환층(71, 72, 73a)을 형성하는 다른 방식으로, 전술한 컬러 필터의 제작 방식과 유사하게 나노 형광체를 믹싱한 포토 레지스트를 도포, 노광 및 현상하여 형성할 수 있다.
제1 색변환층(71)은 적색 파장 대역의 광을 방출할 수 있는 적색 나노 형광체로 이루어질 수 있고, 제2 색변환층(72)은 녹색 파장 대역의 광을 방출할 수 있는 녹색 나노 형광체로 이루어질 수 있다. 제3 색변환층(73a)은 청색 파장 대역의 광을 방출할 수 있는 청색 나노 형광체로 이루어질 수 있다.
이어서, S58 작업에서 도 15의 (I)를 참조하면, 보호층(93)을 UV 차단 필터(91)로부터 제거한다. 이로써 디스플레이 모듈(10a)의 상판을 이루는 제1 부분(11a)을 형성할 수 있다.
도 16은 본 개시의 일 실시 예에 따른 디스플레이 모듈의 제2 부분의 제조 공정의 흐름도이다. 도 17은 본 개시의 일 실시 예에 따른 디스플레이 모듈의 제2 부분의 제조 공정의 도면이다. 도 17에서는 디스플레이이 모듈(10a)의 제2 부분(12a) 전체를 도시하지 않고 하나의 픽셀에 대응하는 부분을 확대하여 도시한다.
도 16 및 도 17의 (A)를 참조하면, S61 작업에서, TFT 기판(20)의 전면(front surface)에 광흡수층(50)을 형성한다. 이 경우, TFT 기판(20)의 전면에는 다수의 기판 전극 패드(26a, 26b)가 일정한 간격을 두고 배열된다.
TFT 기판(20)에 소정 두께의 광흡수층(50)을 형성한 후, S62 작업에서 도 17의 (B)를 참조하면, 다수의 UV 마이크로 LED(161, 162, 163)를 TFT 기판(20)에 전사한다.
UV 마이크로 LED 전사 공정은 레이저 전사 방식, 롤러블 전사 방식, 픽 앤 플레이스 전사 방식 등을 통해 이루어질 수 있다. 이 경우, 제1 내지 제3 UV 마이크로 LED(161, 162, 163)는 각각 에피 기판에서 중계 기판(또는 인터포저(interposer))으로 이송한 후, 각 중계 기판으로부터 타겟 기판인 TFT 기판(20)으로 전사한다.
제1 내지 제3 마이크로 LED(61, 62, 63)가 TFT 기판(20)에 전사되면 TFT 기판(20)에 부착된 광흡수재(53)의 표면에 안착된다. 이 상태에서 제1 내지 제3 마이크로 LED(61, 62, 63)는 열 압착 공정을 통해 광흡수재(53) 내측으로 소정 깊이만큼 삽입된다. 이에 따라, 제1 내지 제3 마이크로 LED(61, 62, 63)는 TFT 기판(20)에 물리적으로 고정된다. 또한, 각 마이크로 LED(61, 62, 63)의 칩 전극은 대응하는 기판 전극 패드와 광흡수층(50) 내에 분포된 다수의 도전 볼(52)에 의해 전기적으로 연결될 수 있다.
이어서, S63 작업에서, 제1 부분(11a) 및 제2 부분(12a)을 합착하기 위한 광학 접착제(65)를 TFT 기판(20)의 전면에 도포한다.
광학 접착제(65)는 다수의 UV 마이크로 LED(161, 162, 163)를 모두 덮을 수 있도록 TFT 기판(20)에 도포된다. 광학 접착제(65)는 UV 노광 후 일정 시간 후에 경화되는 특성을 가지는 UV 경화 실리콘 러버(di-methyl siloxane)일 수 있다.
이어서, S64 작업에서 도 17의 (C)를 참조하면, 광학 접착제(65)에 미리 설정된 시간동안 UV를 조사하여 경화한다.
상기와 같은 과정을 거쳐 디스플레이 모듈(10a)의 하판을 이루는 제2 부분(12a)을 형성할 수 있다.
이하에서는 제1 부분(11a) 및 제2 부분(12a)을 상호 합착하여 디스플레이 모듈(10a)을 제작하는 공정을 설명한다.
도 18은 본 개시의 일 실시 예에 따른 디스플레이 모듈의 제1 부분과 제2 부분을 결합하는 제조 공정의 도면이다.
도 18의 (A)를 참조하면, 제2 부분(12a)을 다이에 안착시킨 후, 제2 부분(12a)의 상측에 제1 부분(11a)을 소정 간격을 두고 배치한다.
이어서, 도 18의 (B)를 참조하면, 제1 및 제2 부분(11a, 12a)을 상호 합착하기 위해 제1 부분(11a)을 반전시켜 제1 부분(11a)의 제1 내지 제3 색변환층(71, 72, 73a)이 제2 부분(12a)의 제1 내지 제3 UV 마이크로 LED(161, 162, 163)에 대응하도록 합착 위치로 정렬한다.
이 경우 제1 및 제2 부분(11a, 12a)은 서로 동일 평면에 대하여 평행을 유지하도록 배치될 수 있다.
제1 및 제2 부분(11a, 12a)이 합착 위치로 정렬된 후, 미리 설정된 압력으로 제1 부분(11a)을 제2 부분(12a)에 밀착시켜 제1 및 제2 부분(11a, 12a)을 합착한다. 이 경우, 제1 및 제2 부분(11a, 12a)은 광합 접착제(65)의해 상호 부착된다.
제1 및 제2 부분(11a, 12a)을 합착한 후, 광합 접착제(65)를 경화시켜 제1 및 제2 부분(11a, 12a) 간 결합을 견고하게 할 수 있다.
이러한 공정을 거쳐 본 개시의 다른 실시 예에 따른 디스플레이 모듈(10a)을 제작할 수 있다.
이상에서는 본 개시의 다양한 실시예를 각각 개별적으로 설명하였으나, 각 실시예들은 반드시 단독으로 구현되어야 하는 것은 아니며, 각 실시예들의 구성 및 동작은 적어도 하나의 다른 실시예들과 조합되어 구현될 수도 있다.
이상에서는 본 개시의 바람직한 실시 예에 대하여 도시하고 설명하였지만, 본 개시는 상술한 특정의 실시 예에 한정되지 아니하며, 청구범위에서 청구하는 본 개시의 요지를 벗어남이 없이 본 개시에 속하는 기술분야에서 통상의 지식을 가진 자에 의해 다양한 변형실시가 가능한 것은 물론이고, 이러한 변형실시들은 본 개시의 기술적 사상이나 전망으로부터 개별적으로 이해해서는 안 될 것이다.

Claims (15)

  1. 기판;
    상기 기판의일면에 제공된 도전성 광흡수층; 및
    상기 도전성 광흡수층을 통해 상기 기판에 전기적으로 연결된 다수의 픽셀;을 포함하며,
    상기 다수의 픽셀은 각각,
    동일한 색상의 광을 발산하는 제1 자발광 소자, 제2 자발광 소자 및 제3 자발광 소자;
    상기 제1 자발광 소자의 발광면에 대응하는 제1 색변환층;
    상기 제2 자발광 소자의 발광면에 대응하는 제2 색변환층;
    상기 제1 색변환층에 대응하는 제1 컬러 필터;
    상기 제2 색변환층에 대응하는 제2 컬러 필터를 포함하며,
    상기 제1 색변환층의 면적은 상기 제1 자발광 소자의 면적보다 크고, 상기 제2 색변환층의 면적은 상기 제2 자발광 소자의 면적보다 큰, 디스플레이 모듈.
  2. 제1항에 있어서,
    상기 도전성 광흡수층은,
    투명 수지;
    상기 투명 수지 내에 제공된 다수의 제1 도전 볼; 및
    상기 투명 수지 내에 제공된 다수의 광흡수재;를 포함하는, 디스플레이 모듈.
  3. 제2항에 있어서,
    상기 투명 수지는 에폭시 수지, 폴리우레탄 수지 또는 아크릴 수지를 포함하는, 디스플레이 모듈.
  4. 제2항에 있어서,
    상기 다수의 제1 도전 볼은 각각,
    폴리머 입자; 및
    상기 폴리머 입자의 표면에 코팅된 도전막;을 포함하고,
    상기 도전막은 금(Au), 니켈(Ni) 또는 납(Pd)을 포함하는, 디스플레이 모듈.
  5. 제2항에 있어서,
    상기 다수의 광흡수재는 광흡수하도록 형성된 메탈 나노 입자(metal nanoparticle)을 포함하는, 디스플레이 모듈.
  6. 제5항에 있어서,
    상기 메탈 나노 입자는 Au, 백금(Pt), 은(Ag), Au 합금, Pt 합금 또는 Ag 합금을 포함하는, 디스플레이 모듈.
  7. 제2항에 있어서,
    상기 도전성 광흡수층은,
    블랙 계열의 색상을 가지는 수지; 및
    상기 블랙 계열의 색상을 가지는 수지 내에 분산된 다수의 제2 도전 볼;이 제공된, 디스플레이 모듈.
  8. 제1항에 있어서,
    상기 제1 자발광 소자, 상기 제2 자발광 소자, 및 상기 제3 자발광 소자 각각은 청색 마이크로 LED(blue micro light emitting diode)를 포함하는, 디스플레이 모듈.
  9. 제1항에 있어서,
    상기 제1 자발광 소자, 상기 제2 자발광 소자, 및 상기 제3 자발광 소자를 분리하는 격벽을 더 포함하며,
    상기 격벽은 상기 제1, 제2 및 제3 자발광 소자의 측면과 상기 제1 및 제2 색변환층의 측면에서 방출되는 광을 반사하도록 형성된, 디스플레이 모듈.
  10. 제9항에 있어서,
    상기 격벽은 백색 계열의 색상을 가지는, 디스플레이 모듈.
  11. 제9항에 있어서,
    상기 격벽은 상기 격벽의 표면에 금속막을 포함하는, 디스플레이 모듈.
  12. 제9항에 있어서,
    상기 제1 자발광 소자의 측면, 상기 제2 자발광 소자의 측면, 및 상기 제3 자발광 소자의 측면은 광학 접착제에 의해 상기 격벽에 접착된, 디스플레이 모듈.
  13. 제12항에 있어서,
    상기 제1 색변환층은 상기 제1 색변환의 일면의 전체 영역에서 상기 제1 자발광 소자의 발광면에 대응하지 않는 영역이 상기 광학 접착제와 접촉된, 디스플레이 모듈.
  14. 제12항에 있어서,
    상기 광학 접착제는 UV(ultraviolet) 경화 실리콘 러버를 포함하는, 디스플레이 모듈.
  15. 제1항에 있어서,
    상기 제1 색변환층은 적색 파장 대역의 광을 방출하는 색변환 물질을 포함하고,
    상기 제2 색변환층은 녹색 파장 대역의 광을 방출하는 색변환 물질을 포함하는, 디스플레이 모듈.
PCT/KR2021/020140 2021-02-02 2021-12-29 디스플레이 모듈 및 그 제조 방법 WO2022169108A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP21925004.0A EP4187608A4 (en) 2021-02-02 2021-12-29 DISPLAY MODULE AND METHOD FOR PRODUCING THEREOF
CN202180071884.8A CN116391267A (zh) 2021-02-02 2021-12-29 显示模块和该显示模块的制造方法
US17/863,050 US20220352435A1 (en) 2021-02-02 2022-07-12 Display module and manufacturing method as the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020210014890A KR20220111809A (ko) 2021-02-02 2021-02-02 디스플레이 모듈 및 그 제조 방법
KR10-2021-0014890 2021-02-02

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/863,050 Continuation US20220352435A1 (en) 2021-02-02 2022-07-12 Display module and manufacturing method as the same

Publications (1)

Publication Number Publication Date
WO2022169108A1 true WO2022169108A1 (ko) 2022-08-11

Family

ID=82742232

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/020140 WO2022169108A1 (ko) 2021-02-02 2021-12-29 디스플레이 모듈 및 그 제조 방법

Country Status (5)

Country Link
US (1) US20220352435A1 (ko)
EP (1) EP4187608A4 (ko)
KR (1) KR20220111809A (ko)
CN (1) CN116391267A (ko)
WO (1) WO2022169108A1 (ko)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI831116B (zh) * 2022-01-17 2024-02-01 欣興電子股份有限公司 封裝結構及其製造方法
KR20240038495A (ko) * 2022-09-16 2024-03-25 삼성전자주식회사 고반사율 이방성 도전 필름 및 이를 포함하는 디스플레이 모듈
KR20240134619A (ko) * 2023-03-02 2024-09-10 삼성전자주식회사 디스플레이 장치

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120076940A (ko) * 2010-12-30 2012-07-10 엘지디스플레이 주식회사 유기 발광장치 및 제조방법
KR20180028822A (ko) * 2016-09-09 2018-03-19 엘지전자 주식회사 반도체 발광소자를 이용한 디스플레이 장치
KR20180131329A (ko) * 2017-05-31 2018-12-10 이노럭스 코포레이션 디스플레이 장치
KR20190046684A (ko) * 2017-10-25 2019-05-07 삼성전자주식회사 엘이디 패널 및 이를 포함하는 엘이디 디스플레이 장치
KR102135352B1 (ko) * 2013-08-20 2020-07-17 엘지전자 주식회사 표시장치

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9478719B2 (en) * 2010-11-08 2016-10-25 Bridgelux, Inc. LED-based light source utilizing asymmetric conductors
KR102364551B1 (ko) * 2015-08-12 2022-02-18 쑤저우 레킨 세미컨덕터 컴퍼니 리미티드 발광 소자 및 이를 구비한 표시 장치
US10340256B2 (en) * 2016-09-14 2019-07-02 Innolux Corporation Display devices
KR102650341B1 (ko) * 2016-11-25 2024-03-22 엘지전자 주식회사 반도체 발광 소자를 이용한 디스플레이 장치 및 이의 제조방법
KR101947643B1 (ko) * 2016-12-02 2019-02-13 엘지전자 주식회사 반도체 발광소자를 이용한 디스플레이 장치
US11088304B2 (en) * 2018-09-05 2021-08-10 Samsung Electronics Co., Ltd. Display device and method for manufacturing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120076940A (ko) * 2010-12-30 2012-07-10 엘지디스플레이 주식회사 유기 발광장치 및 제조방법
KR102135352B1 (ko) * 2013-08-20 2020-07-17 엘지전자 주식회사 표시장치
KR20180028822A (ko) * 2016-09-09 2018-03-19 엘지전자 주식회사 반도체 발광소자를 이용한 디스플레이 장치
KR20180131329A (ko) * 2017-05-31 2018-12-10 이노럭스 코포레이션 디스플레이 장치
KR20190046684A (ko) * 2017-10-25 2019-05-07 삼성전자주식회사 엘이디 패널 및 이를 포함하는 엘이디 디스플레이 장치

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4187608A4 *

Also Published As

Publication number Publication date
EP4187608A1 (en) 2023-05-31
US20220352435A1 (en) 2022-11-03
EP4187608A4 (en) 2024-02-28
KR20220111809A (ko) 2022-08-10
CN116391267A (zh) 2023-07-04

Similar Documents

Publication Publication Date Title
WO2022169108A1 (ko) 디스플레이 모듈 및 그 제조 방법
WO2022169059A1 (ko) 디스플레이 모듈 및 그 제조 방법
WO2021060832A1 (en) Display apparatus and manufacturing method thereof
WO2020122492A1 (en) Display module, display apparatus including the same and method of manufacturing display module
WO2020226369A1 (en) Light emitting diode module
WO2018101539A1 (ko) 반도체 발광소자를 이용한 디스플레이 장치
WO2018084419A1 (en) Light emitting diode panel and manufacturing method thereof
WO2013012172A2 (en) Optical member and display device having the same
WO2022169160A2 (ko) 디스플레이 모듈 및 그 제조 방법
WO2017142315A1 (ko) 반도체 발광 소자를 이용한 디스플레이 장치
WO2012138038A1 (en) Optical member and display device including the same
WO2021029615A1 (en) Display apparatus and manufacturing method thereof
WO2020204356A1 (en) Display module and method of manufacturing the same
WO2018004107A1 (ko) 반도체 발광 소자를 이용한 디스플레이 장치 및 이의 제조방법
WO2020166777A1 (ko) 반도체 발광 소자를 이용한 디스플레이 장치 및 이의 제조 방법
US20220246672A1 (en) Display module and manufacturing method thereof
WO2022065706A1 (ko) 표시 장치 및 그의 제조 방법
WO2022065782A1 (ko) 측면 배선을 구비한 디스플레이 모듈 및 그 제조 방법
WO2020209616A1 (en) Display apparatus and method of manufacturing thereof
WO2022169058A1 (ko) 디스플레이 모듈 및 그 제조 방법
WO2024063557A1 (ko) 자발광 소자 상에 형성된 색 변환 층을 포함하는 디스플레이 모듈 및 그 제조 방법
WO2022145567A1 (ko) 디스플레이 장치 및 그 제조 방법
WO2022039300A1 (ko) 디스플레이 장치의 제조에 사용되는 전사 기판, 디스플레이 장치 및 디스플레이 장치의 제조 방법
WO2024181643A1 (ko) 디스플레이 장치
WO2024181642A1 (ko) 디스플레이 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21925004

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2021925004

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2021925004

Country of ref document: EP

Effective date: 20230224

NENP Non-entry into the national phase

Ref country code: DE