WO2022168717A1 - Laser processing method, processing program creation method, and laser processor - Google Patents

Laser processing method, processing program creation method, and laser processor Download PDF

Info

Publication number
WO2022168717A1
WO2022168717A1 PCT/JP2022/002997 JP2022002997W WO2022168717A1 WO 2022168717 A1 WO2022168717 A1 WO 2022168717A1 JP 2022002997 W JP2022002997 W JP 2022002997W WO 2022168717 A1 WO2022168717 A1 WO 2022168717A1
Authority
WO
WIPO (PCT)
Prior art keywords
parts
sheet metal
closed
cutting path
processing
Prior art date
Application number
PCT/JP2022/002997
Other languages
French (fr)
Japanese (ja)
Inventor
晴雄 宮本
真庸 成田
Original Assignee
株式会社アマダ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アマダ filed Critical 株式会社アマダ
Publication of WO2022168717A1 publication Critical patent/WO2022168717A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/38Removing material by boring or cutting

Definitions

  • the present disclosure relates to a laser processing method, a processing program creation method, and a laser processing machine.
  • a laser processing machine may irradiate a sheet metal with a laser beam to cut the sheet metal to produce multiple parts with a predetermined shape.
  • the scrap of sheet metal after a plurality of parts have been fabricated and the parts removed is called a skeleton. Workers may use, for example, a gas cutting torch to cut the skeleton and discard it.
  • CAM Computer Aided Manufacturing
  • An NC Numerical Control
  • the laser processing machine controls the laser processing machine to cut the sheet metal based on a processing program to which a cutting path for cutting the crosspiece is added. As a result, the laser processing machine cuts the crosspiece portion with a laser beam during the part manufacturing process (see Patent Document 1).
  • the crosspiece adjacent to the part may be cut toward the outline of the part before the part is cut. If the crosspiece adjacent to the part is cut from the edge of the sheet metal to the contour line of the part before cutting the part, the edge of the part will be marked, degrading the machining quality of the part. Therefore, it is conceivable to cut all the parts, remove all the parts from the sheet metal, and then cut the crosspiece. However, it is difficult to cut the crosspieces after removing all the parts from the sheet metal because the crosspieces are displaced by the heat caused by the laser beam irradiation.
  • Patent Document 2 describes dividing the sheet metal into a plurality of areas, arranging the parts in each area, and cutting the gaps between the adjacent areas when nesting multiple parts in the sheet metal.
  • the laser processing method described in Patent Literature 2 is not preferable because the yield deteriorates when a plurality of parts are nested in the sheet metal.
  • said first A cutting path is set so as to pass through the crosspiece between the parts to a second position on the second end opposite to the end of the first part of the plurality of parts with respect to the cutting path
  • a first processing order is set for one or more parts positioned on a third end side in a direction intersecting the direction connecting the end and the second end, and the first processing order is set on the cutting path.
  • a laser machining method is provided for cutting one or more parts located in the .
  • a first aspect of one or more embodiments provides a cutting path from a first location on a first end to a second location on a second end through a crosspiece between parts. Since it is set, the cutting path toward the outline of the part is not set. Therefore, the end of the part does not leave marks, and the machining quality of the part is good. According to the first aspect of one or more embodiments, since the sheet metal is cut by setting the processing order as described above, the position of the crosspiece is hardly shifted due to the heat generated by the laser beam irradiation, and the sheet metal can be cut. Can be easily split by path. According to the first aspect of one or more embodiments, the cutting path is not set before nesting, so yield is not degraded.
  • a nesting image of a plurality of parts nested in a sheet metal is displayed on the display, and a first end of the sheet metal is displayed on the nesting image.
  • a cutting path is set so as to pass through a crosspiece between the parts from a first position on the part to a second position on the second end facing the first end, and , one or more parts positioned on the third end side in the direction intersecting the direction connecting the first end and the second end with respect to the cutting path are subjected to the first processing order is set to the cutting path, a second processing order following the first processing order is set on the cutting path, and among the plurality of parts, a fourth end facing the third end with respect to the cutting path
  • a machining program creation method is provided for creating a machining program for setting a third machining order following the second machining order for one or more parts positioned on the part side and cutting the sheet metal in the set machining order. be done.
  • a second aspect of one or more embodiments creates a machining program as described above so that when the laser machine processes the sheet metal according to the machining program, the edges of the part may be marked.
  • the machining quality of the parts is good.
  • the position of the crosspiece is hardly displaced by the heat generated by the irradiation of the laser beam, and the sheet metal can be easily divided along the cutting path.
  • the cutting path is not set before nesting, so yield is not compromised.
  • a processing machine body that cuts sheet metal
  • an NC device that controls the processing machine body based on a processing program
  • a display unit connected to the NC device.
  • an operation unit connected to the NC unit, the NC unit displaying a nesting image in which a plurality of parts are nested in a sheet metal on the display unit based on a machining program created in advance. and by operating the operation unit, the sheet metal is moved from a first position on the first end of the sheet metal to a second position on the second end facing the first end on the nesting image.
  • the input route is set as a cutting route, and the plurality of parts are automatically cut according to the designation based on the operation of the operation unit or regardless of the designation.
  • one or more parts located on the third end side in the direction intersecting the direction connecting the first end and the second end with respect to the cutting path are subjected to the first processing.
  • a second machining order following the first machining order on the cutting path A third machining order following the second machining order is set for one or more parts positioned on the end side, and the pre-created machining program is applied to the sheet metal in the first to third machining orders.
  • Laser processing for reconfiguring to cut, creating a reconfigured new processing program, and controlling the processing machine main body based on the new processing program when fabricating the plurality of parts from the sheet metal. machine is provided.
  • a third aspect of one or more embodiments is that the NC unit controls the machine body based on the reconfigured new machining program so that the part can be machined without marking the end of the part. Good quality. Moreover, the position of the crosspiece is hardly displaced by the heat generated by the irradiation of the laser beam, and the sheet metal can be easily divided along the cutting path. According to a third aspect of one or more embodiments, cutting paths are not set before nesting, so yield is not compromised.
  • the sheet metal can be cut without degrading the yield and leaving marks on the end of the part. can be split.
  • FIG. 1 shows a laser processing machine that executes a laser processing method of one or more embodiments, a laser processing system that executes a processing program creation method of one or more embodiments, and a laser of one or more embodiments.
  • FIG. 2 is a diagram partially showing an example of a machining program created by the CAM device 20 in FIG.
  • FIG. 3A is a partial flow chart showing the processing executed in the machining program creating method of the first embodiment.
  • FIG. 3B is a partial flowchart following FIG. 3A.
  • FIG. 4 is a diagram showing an example of a nesting image displayed on the display section 33 by the NC device 31 in FIG. FIG.
  • FIG. 5 is a plan view showing a state in which the laser processing machine 30 cuts the sheet metal W to produce the parts P1 to P6, cuts joints of the parts P1 to P6, and removes the parts P1 to P6.
  • FIG. 6 is a diagram showing a state in which the positions of the joints specified by the NC device 31 are indicated by marks J1 to J6 in the nesting image 101 shown in FIG.
  • FIG. 7 is a diagram showing a nesting image 102 in which joints in the nesting image 101 are connected.
  • FIG. 8 is a diagram showing the nesting image 103 in which the approaches Ap1 to Ap6 and the end points Ep1 to Ep6 in the nesting image 102 are deleted.
  • FIG. 9 is a diagram showing a nesting image 104 in which closed-shaped line segments existing inside other closed-shaped line segments in the nesting image 103 are discarded.
  • FIG. 10 is a diagram showing a state in which an enlarged closed line segment is added to the nesting image 104 shown in FIG.
  • FIG. 11 is a diagram showing a nesting image 105 including closed-shaped line segments created based on the enlarged closed-shaped line segment.
  • FIG. 12 is a diagram showing a state in which a path passing through crosspieces is added to the nesting image 105 shown in FIG.
  • FIG. 13 shows a nesting image 106 in which the paths Pa12, Pa13, Pa24, Pa34, and Pa46 shown in FIG. 12 are added to the nesting image 101 shown in FIG.
  • FIG. 10 is a diagram showing a state in which an enlarged closed line segment is added to the nesting image 104 shown in FIG.
  • FIG. 11 is a diagram showing a nesting image 105 including closed-shaped line segments created
  • FIG. 14 conceptually shows a state in which the operator touches the operation unit 34, which is a touch panel, and moves his/her finger along paths Pa34, Pa13, and Pa12.
  • FIG. 15 is a partial side view conceptually showing the processing head 321 provided in the processing machine main body 32.
  • FIG. 16A and 16B are diagrams showing an example of an operation for designating the processing position of the processing head 321 and the moving direction of the processing head 321 when detecting the end surface of the sheet metal W.
  • FIG. FIG. 17 shows the nesting image 107 in which the cutting path CPa1 is newly set by the operator's operation shown in FIG.
  • FIG. 18 is a diagram conceptually showing the operation of setting the processing order by touching the touch panel by the operator.
  • FIG. 19 is a conceptual diagram showing a process of creating a machining program by the CAM device 20 executing the machining program creation method of the second embodiment.
  • FIG. 20 is a flow chart showing the processing executed in the machining program creation method of the second embodiment.
  • FIG. 21 is an enlarged view of the cutting path CPa21 set in the nesting image 202 shown in FIG. 19(c).
  • FIG. 22 is a diagram showing a nesting image 221 showing a state in which the parts P21 to P25 are nested at the ends of the sheet metal W with a margin, and a nesting image 222 in which the positions of the parts P21 to P25 are shifted. be.
  • FIG. 1 shows a laser processing machine that executes a laser processing method of one or more embodiments, a laser processing system that executes a processing program creation method of one or more embodiments, and a laser of one or more embodiments. It is a block diagram showing a processing machine. First, with reference to FIG. 1, an overall configuration example of a laser processing system will be described.
  • a CAD (Computer Aided Design) device 10 creates graphic data for one or more parts.
  • the CAD equipment 10 creates image data in which one or more parts are nested in a sheet metal, and supplies the image data to the CAM equipment 20 .
  • the CAD equipment 10 is composed of computer equipment that executes a CAD program.
  • the CAM device 20 creates a machining program for cutting one or more parts from the sheet metal based on the input image data.
  • the CAM equipment 20 is composed of computer equipment that executes a CAM program.
  • a display unit 21 and an operation unit 22 are connected to the CAM device 20 .
  • the operation unit 22 may be a touch panel integrated with the display unit 21 .
  • the CAD device 10 and the CAM device 20 may be composed of one computer device, and the computer device may function as the CAD/CAM device.
  • the laser processing machine 30 includes a processing machine body 32 that irradiates a sheet metal with a laser beam to cut the sheet metal, an NC device 31 that controls the processing machine body 32, a display unit 33 and an operation unit 34 connected to the NC device 31.
  • the processing machine body 32 includes a laser oscillator.
  • the operation unit 34 may be a touch panel integrated with the display unit 33 .
  • the NC device 31 controls the machine body 32 based on the machining program created by the CAM device 20 . As will be described later, the NC device 31 may reconfigure a machining program created in advance by the CAM device 20 and control the processing machine main body 32 based on the reconfigured new machining program.
  • a machining program created by the CAM device 20 may be stored in a database (not shown), and the NC unit 31 may read the machining program from the database.
  • FIG. 2 is a diagram partially showing an example of a machining program created by the CAM device 20 in FIG.
  • the machining program is composed of machine control code such as G code.
  • the machining program includes a code group for machining the part P01 and a code group for machining the part P02.
  • the machining program is separated by comments for each part.
  • Each part may be represented by a subprogram in the machining program.
  • the laser processing method, processing program creation method, and laser processing machine of each embodiment will be specifically described below.
  • the NC device 31 executes the machining program creation method of the first embodiment.
  • the NC device 31 reconstructs the machining program created by the CAM device 20 to create a new reconstructed machining program.
  • the NC unit 31 is a machining program creation device that creates a machining program that can cut and divide the sheet metal without degrading the yield and leaving marks on the ends of the parts.
  • the laser processing machine of the first embodiment is a laser processing machine 30 that controls a processing machine main body 32 so that an NC device 31 processes sheet metal based on a new processing program.
  • the laser processing method of the first embodiment is performed by a laser processing machine 30.
  • the CAM device 20 executes the machining program creation method of the second embodiment.
  • the CAM device 20 is a machining program creation device that creates a machining program that can cut and divide the sheet metal without degrading the yield and leaving marks on the ends of the parts.
  • the laser processing machine of the second embodiment is a laser processing machine 30 in which an NC device 31 controls a processing machine main body 32 to process sheet metal based on a processing program created by a CAM device 20 .
  • a laser processing method according to the second embodiment is performed by a laser processing machine 30 .
  • FIG. 3A is a partial flow chart showing the processing executed in the machining program creation method of the first embodiment.
  • FIG. 3B is a partial flowchart following FIG. 3A. Processing executed by the machining program creation method of the first embodiment will be described with reference to FIGS. 4 to 18.
  • FIG. 3A and 3B show processing performed by the NC unit 31 executing a computer program.
  • FIG. 3A the NC device 31 creates a nesting image based on the processing program and displays the nesting image on the display unit 33 in step S1.
  • FIG. 4 is a diagram showing an example of a nesting image displayed on the display section 33 by the NC device 31 in FIG.
  • a nesting image is drawn line segments showing a state in which a plurality of parts are nested in a sheet metal.
  • a nesting image 101 shown in FIG. 4 is an image in which the parts P1 to P6 to be cut are arranged on the sheet metal image Wi showing the outline of the sheet metal W (shown in FIG. 5). Since the parts P1 to P6 have joints, which will be described later, they are represented by non-closed line segments.
  • the part P1 has a square hole P1h.
  • the laser processing machine 30 forms a hole P1h in the sheet metal W, forms an approach Ap1, and cuts the sheet metal W along the outline of the part P1 to the end point Ep1, thereby fabricating the part P1.
  • a joint is formed between the end of the approach Ap1 on the side of the part P1 and the end point Ep1 separated from the approach Ap1.
  • Part P2 has circular holes P2h1 and P2h2.
  • the laser processing machine 30 forms the holes P2h1 and P2h2 in the sheet metal W, forms an approach Ap2, and cuts the sheet metal W to the end point Ep2 along the contour line of the part P2 to fabricate the part P2.
  • a joint is provided between the end of the approach Ap2 on the side of the part P2 and the end point Ep2 separated from the approach Ap2. 4 omits illustration of an approach for forming holes P1h, P2h1, P2h2, and P3h1, P3h2, P6h, which will be described later.
  • the part P3 has square holes P3h1 and P3h2.
  • the laser processing machine 30 forms the holes P3h1 and P3h2 in the sheet metal W, forms an approach Ap3, and cuts the sheet metal W along the outline of the part P3 to the end point Ep3 to fabricate the part P3.
  • a joint is provided between the end of the approach Ap3 on the side of the part P3 and the end point Ep3 separated from the approach Ap3.
  • the laser processing machine 30 forms an approach Ap4 and cuts the sheet metal W to an end point Ep4 along the outline of the part P4 to produce the part P4.
  • a joint is provided between the end of the approach Ap4 on the side of the part P4 and the end point Ep4 separated from the approach Ap4.
  • the part P5 is a so-called part-in-part that is formed within the area of the hole P6h formed in the part P6.
  • the laser processing machine 30 forms an approach Ap5 and cuts the sheet metal W to an end point Ep5 along the outline of the part P5 to produce the part P5.
  • a joint is provided between the end of the approach Ap5 on the side of the part P5 and the end point Ep5 separated from the approach Ap5.
  • Part P6 has a rectangular hole P6h.
  • the laser processing machine 30 forms a hole P6h in the sheet metal W, forms an approach Ap6, and cuts the sheet metal W along the contour line of the part P6 to an end point Ep6 to fabricate the part P6.
  • a joint is provided between the end of the approach Ap6 on the side of the part P6 and the end point Ep6 separated from the approach Ap6.
  • FIG. 5 is a plan view showing a state in which the laser processing machine 30 cuts the sheet metal W to produce the parts P1 to P6, cuts joints of the parts P1 to P6, and removes the parts P1 to P6.
  • the sheet metal W is formed with openings HP1 to HP4 and HP6 corresponding to the parts P1 to P4 and P6.
  • the skeleton Wsk is the scrap of the sheet metal W after the parts P1 to P6 having the openings HP1 to HP4 and HP6 are removed.
  • step S2 the NC device 31 analyzes the machining program and identifies the positions of the joints. As noted above, joint locations can be identified between the approach and endpoints. A more specific method of identifying the joint position is described in Patent Document 3, so the description of the identifying method is omitted.
  • FIG. 6 is a diagram showing a state in which the positions of the joints specified by the NC device 31 are indicated by marks J1 to J6 in the nesting image 101 shown in FIG. 6 to 12 are conceptual diagrams showing internal processing executed by the NC unit 31 rather than images displayed on the display unit 33 by the NC unit 31.
  • FIG. 6 is a diagram showing a state in which the positions of the joints specified by the NC device 31 are indicated by marks J1 to J6 in the nesting image 101 shown in FIG. 6 to 12 are conceptual diagrams showing internal processing executed by the NC unit 31 rather than images displayed on the display unit 33 by the NC unit 31.
  • FIG. 7 is a diagram showing a nesting image 102 in which joints in the nesting image 101 are connected.
  • FIG. 8 is a diagram showing the nesting image 103 with the approaches Ap1 to Ap6 deleted from the nesting image 102.
  • the parts P1-P6 are represented by closed line segments surrounded by outlines.
  • Parts P1-P3 and P6 contain closed-shaped line segments indicating holes or parts inside.
  • a relief of a predetermined length parallel to the approaches Ap1 to Ap6 may be set in a direction orthogonal to the outlines of the parts P1 to P6 from the end points Ep1 to Ep6 (see FIG. 7B of Patent Document 3). reference). If relief is set for any one of the parts P1 to P6, the NC unit 31 also deletes the relief in step S4.
  • the NC device 31 selects any closed-shaped line segment in step S5. When the NC device 31 repeats the process of step S5 for the second time or later, it selects any closed line segment from unselected closed line segments excluding the selected closed line segment. . In step S6, the NC device 31 determines whether or not the selected closed shape is an undetermined closed shape.
  • step S6 determines whether the closed-shaped line segment exists inside other closed-shaped line segments in step S7. determine whether or not If the selected closed-shaped line segment exists inside other closed-shaped line segments (YES), the NC unit 31 discards the selected closed-shaped line segment in step S8, and continues the process. Return to S5. If the selected closed-shaped line segment does not exist inside other closed-shaped line segments (NO), the NC unit 31 leaves the selected closed-shaped line segment in step S9 and continues the process. Return to S5.
  • steps S7 to S9 when there is a closed line segment indicating a hole inside the closed line segment of each part, the closed line segment indicating the hole is discarded. Also, when the closed-shaped line segment of the part exists inside the closed-shaped line segment of another part, the closed-shaped line segment of the part existing inside is discarded.
  • FIG. 9 is a diagram showing the nesting image 104 in a state in which closed-shaped line segments existing inside other closed-shaped line segments in the nesting image 103 are discarded.
  • the nesting image 104 shown in FIG. 9 is created. be done.
  • a skeleton image similar to the skeleton Wsk shown in FIG. 5 with openings for the parts P1 to P6 may be used.
  • the nesting image 104 includes closed-shaped line segments surrounded by outlines of the parts P1 to P4 and P6 in the sheet metal image Wi.
  • FIG. 3B the NC device 31 enlarges the closed-shaped line segment (or the opening of the skeleton image) by the set width in step S10.
  • the set width is, for example, 5 mm.
  • FIG. 10 is a diagram showing a state in which an enlarged closed line segment is added to the nesting image 104 shown in FIG.
  • the nesting image 104 has enlarged line segments EL1 to EL4 and EL6 added thereto.
  • the area surrounded by the line segment EL2 and the area surrounded by the line segment EL6 partially overlap each other.
  • the NC unit 31 creates a new closed line segment based on the enlarged line segment.
  • FIG. 11 is a diagram showing a nesting image 105 including closed-shaped line segments (or openings in skeleton images) created based on the enlarged closed-shaped line segments.
  • enlarged closed line segments ELP1, ELP3, ELP4, and ELP26 are formed.
  • Closed-shape line segments ELP1, ELP3, and ELP4 correspond to line segments of shapes obtained by widening the outlines of parts P1, P3, and P4, respectively, and closed-shape ELP26 is a shape obtained by widening and connecting the outlines of parts P2 and P6.
  • the NC unit 31 determines the closed shape of the two parts adjacent to each other. Creates a closed-shape line segment of one part by connecting the line segments of .
  • FIG. 12 is a diagram showing a state in which a path passing through crosspieces is added to the nesting image 105 shown in FIG.
  • a path Pa12 is added to the crosspiece between the closed-shape line segment ELP1 and the closed-shape line segment ELP26.
  • a path Pa13 is added to the crosspiece between the line segment ELP1 of the closed shape and the line segment of the closed shape ELP3.
  • a path Pa24 is added to the crosspiece between the closed-shaped line segment ELP26 and the closed-shaped line segment ELP4.
  • a path Pa34 is added to the crosspiece between the closed-shaped line segment ELP3 and the closed-shaped line segment ELP4.
  • a path Pa46 is added to the crosspiece between the closed-shaped line segment ELP4 and the closed-shaped line segment ELP26.
  • the paths Pa12, Pa13, Pa24, Pa34, and Pa46 are arranged at the center of each crosspiece in the width direction.
  • Routes Pa12, Pa13, Pa24, Pa34, and Pa46 are candidate routes that are candidates for newly set cutting routes.
  • the NC unit 31 expands the closed-shaped line segment surrounded by the outlines of the parts P1 to P4 and P6 by a set width as shown in FIG.
  • the reason for creating the line segments ELP1, ELP3, ELP4, and ELP26 is as follows.
  • a closed-shape line segment of an enlarged part that touches or partially overlaps a closed-shape line segment of an adjacent enlarged part means that the two adjacent parts are too close to each other. , the cutting path cannot be created on the crosspiece between the two parts. If you create a closed line segment for one part by connecting the closed line segments for two parts that are in contact with each other or partially overlapping each other, you can create a line segment that cannot actually be cut. It is possible to avoid erroneously setting a candidate route that is a candidate.
  • the NC device 31 displays cuttable paths on the nesting image 101 shown in FIG.
  • FIG. 13 shows a nesting image 106 in which the paths Pa12, Pa13, Pa24, Pa34, and Pa46 shown in FIG. 12 are added to the nesting image 101.
  • FIG. The NC device 31 displays the nesting image 106 shown in FIG. That is, after displaying the nesting image 101 on the display unit 33, the NC device 31 displays the nesting image 106 on the display unit 33 by executing the internal processing described above when a predetermined operation is performed by the operation unit 34. indicate.
  • the NC device 31 sets the route instructed (input) by the operator (worker) as the cutting route.
  • FIG. 14 conceptually shows a state in which the operator touches the operation unit 34, which is a touch panel, and moves his/her finger along paths Pa34, Pa13, and Pa12.
  • FIG. 15 is a partial side view conceptually showing the processing head 321 provided in the processing machine main body 32.
  • FIG. A nozzle 322 is attached to the lower end of the processing head 321 .
  • the processing head 321 cuts the sheet metal W by emitting a laser beam indicated by a dashed line from an opening formed at the tip of the nozzle 322 .
  • the machining head 321 has a scanning sensor 323 .
  • the NC unit 31 adjusts the distance between the nozzle 322 and the sheet metal W based on the capacitance value detected by the scanning sensor 323 when the nozzle 322 approaches the sheet metal W. Controls the vertical position of 322.
  • FIG. 16 is a diagram showing an example of an operation for designating the moving direction of the machining head 321 when detecting the lowered position of the machining head 321 and the end surface of the sheet metal W.
  • FIG. Assume that the operator taps the touch panel with a finger at the end of the sheet metal W (sheet metal image Wi) as indicated by the x mark and slides the finger upward, which is the outside of the sheet metal W, as indicated by the arrow.
  • the NC device 31 lowers the machining head 321 at the position indicated by the x mark and moves it in the direction of the arrow. Since the capacitance value detected by the scanning sensor 323 changes greatly when the machining head 321 is separated from the sheet metal W, the NC device 31 can detect the position of the end face of the sheet metal W.
  • FIG. It should be noted that specification of the lowering position of the working head 321 and detection of the position of the end surface of the sheet metal W shown in FIG. 16 are not essential.
  • step S15 the NC device 31 creates a G-code for the cutting path newly set by the operator's operation shown in FIG. 14, and draws it on the nesting image 106. At this time, the NC device 31 erases the paths Pa12, Pa13, Pa24, Pa34 and Pa46.
  • FIG. 17 shows the nesting image 107 in which the cutting path CPa1 is newly set by the operator's operation shown in FIG.
  • FIG. 18 is a diagram conceptually showing the operation of setting the processing order by touching the touch panel by the operator.
  • #1, #2, . . . indicate the processing order.
  • the operator touches the parts P1 and P3 in this order to set the cutting of the parts P1 and P3 to the machining orders 1 and 2, respectively.
  • the order of processing the part P1 and the part P3 may be reversed.
  • the operator touches the position of the cutting path CPa1 to set the cutting of the sheet metal W along the cutting path CPa1 to the processing order 3. Further, the operator touches the parts P2, P4, P5 and P6 in this order to set the cutting order of the parts P2, P4, P5 and P6 to 4, 5, 6 and 7 respectively.
  • the order of machining the part P2 and the part P4 may be reversed.
  • step S17 the NC unit 31 reconstructs the machining program so that the machining program is for machining the sheet metal W in the machining order set in step S16, and creates a new reconstructed machining program. to end the process.
  • the NC device 31 cuts the sheet metal W by controlling the machine body 32 based on the reconfigured machining program. Therefore, the laser processing machine 30 (processing machine main body 32) cuts the sheet metal W at the position of the cutting path CPa1 after cutting the parts P1 and P3. The laser processing machine 30 cuts the sheet metal W at the position of the cutting path CPa1, and then cuts the parts P2, P4, P5, and P6.
  • the cutting path CPa1 is always positioned on the bar between the parts, and the cutting path CPa1 does not point toward the outline of the part. Even if the sheet metal W is cut at the position of the cutting path CPa1, there is no mark on the parts, so the processing quality of the parts is not deteriorated.
  • Cutting the sheet metal W at the position of the cutting path CPa1 is cutting from one end of the sheet metal W to the other end, and is a cutting that is performed after cutting a part of the parts. Therefore, the position of the crosspiece is hardly displaced by the heat generated by the irradiation of the laser beam, and cutting at the position of the cutting path CPa1 is not difficult. Since the cutting path CPa1 is not set before nesting, setting the cutting path CPa1 does not deteriorate the yield.
  • the cutting path CPa1 connects one end and the other end of the sheet metal W.
  • One end connected by the cutting path CPa1 is referred to as a first end, and the other end facing the first end is referred to as a second end.
  • the cutting path CPa1 is set to pass through the bar between the parts from a first position on the first end to a second position on the second end. Two or more cutting paths connecting the first end and the second end may be set in the sheet metal W.
  • the direction crossing the direction connecting the first end and the second end is defined as the third and fourth ends.
  • the laser processing machine 30 generally processes the sheet metal W from the third end side to the fourth end side.
  • the operator sets cutting of one or more parts located on the third end side with respect to the cutting path CPa1 in the first processing order.
  • the operator sets the cutting along the cutting path CPa1 in the second processing order following the first processing order.
  • the operator sets one or more parts positioned on the fourth end side with respect to the cutting path CPa1 to the third machining order following the second machining order.
  • the laser processing machine 30 cuts the sheet metal W in the above processing order.
  • the NC unit 31 designates the first to third machining orders based on the operation of the operation unit 34. It is also possible to set automatically regardless of
  • FIG. 19 is a conceptual diagram showing a process of creating a machining program by the CAM device 20 executing the machining program creation method of the second embodiment.
  • the CAM device 20 displays, on the display unit 21, a nesting image 201 in which the parts P21 to P25 are nested in the sheet metal image Wi, as shown in (a).
  • the operator touches the operation unit 22, which is a touch panel, to indicate the approximate position where the sheet metal W is to be split.
  • the CAM device 20 receives an approximate position for dividing the indicated sheet metal W.
  • FIG. assumee that the position touched by the operator is the position of the straight line 211 as shown in (b). At this time, the operator may indicate the position to be divided regardless of the position of the crosspiece between the parts P21 to P25.
  • the CAM device 20 has the crosspiece closest to the straight line 211, that is, the crosspiece between the part P21 and the part P22, the crosspiece between the part P22 and the part P23, the part P23 and the part
  • a cutting path CPa21 is set on the crosspiece between P24.
  • the cutting path CPa21 connects the sheet metal W from one end to the other end.
  • the CAM device 20 generates a nesting image 202 in which the cutting path CPa21 is set, and displays it on the display unit 21.
  • the operator touches the touch panel to indicate the approximate position where the sheet metal W is to be split at the position of the straight line 212 .
  • the CAM device 20 sets the cutting path CPa22 on the crosspiece between the parts P22 and P24 and the part P25, which is the position closest to the straight line 212, as shown in (e).
  • the cutting path CPa22 connects the sheet metal W from one end to the other end.
  • the CAM device 20 generates a nesting image 203 in which the cutting paths CPa21 and CPa22 are set, and displays it on the display unit 21.
  • the CAM device 20 sets the processing order specified by the operator, as shown in (f).
  • the operator sets the cutting of parts P21 and P23 to processing orders 1 and 2, respectively. Subsequently, the operator sets the cutting of the sheet metal W at the position of the cutting path CPa21 to the processing order 3. As shown in FIG. Furthermore, the operator sets the cutting of parts P22 and P24 to processing orders 4 and 5, respectively. Subsequently, the operator sets the cutting of the sheet metal W at the position of the cutting path CPa22 to the processing order 6 . Finally, the operator sets cutting order 7 for the part P25.
  • the CAM device 20 creates a processing program for cutting the sheet metal W in the processing order shown in (f).
  • the CAM device 20 automatically sets the processing order 1 to 7 regardless of the designation based on the operation of the operation unit 22. It is also possible to
  • FIG. 20 is a flow chart showing the processing executed in the machining program creation method of the second embodiment.
  • the CAM device 20 displays, on the display unit 21, a nesting image in which parts are nested in the sheet metal W in step S21.
  • the CAM device 20 determines whether or not the operator has instructed a division position. If the dividing position is not specified (NO), the CAM device 20 shifts the process to step S24.
  • step S22 If the division position is designated by the operator in step S22 (YES), the CAM device 20 searches for the route closest to the designated division position in step S23, and set. In step S24, the CAM device 20 determines whether or not the operator has designated the processing order. If the processing order is not specified (NO), the CAM device 20 returns the process to step S22 and repeats the processes of steps S22 to S24.
  • step S24 If the processing order is specified in step S24 (YES), the CAM device 20 sets the processing order of the plurality of parts and the cutting paths added by the operator's operation in step S25. In step S26, the CAM device 20 creates a machining program and terminates the process.
  • the NC device 31 cuts the sheet metal W by controlling the processing machine body 32 based on the processing program created by the CAM device 20 as described above.
  • the laser processing machine 30 (machine main body 32) cuts the sheet metal W at the position of the cutting path CPa21.
  • the laser processing machine 30 cuts the sheet metal W at the position of the cutting path CPa21, and then cuts the parts P22 and P24.
  • the laser processing machine 30 cuts the sheet metal W at the position of the cutting path CPa22, and finally cuts the part P25.
  • the sheet metal is cut without degrading the yield and leaving marks on the ends of the parts. to split the sheet metal.
  • FIG. 21 is an enlarged view of the cutting path CPa21 set in the nesting image 202 shown in (c) of FIG.
  • the cutting path CPa21 is set at a position, for example, 5 mm away from the parts P21 and P23.
  • the distance D12r between the cutting path CPa21 and the part P22 is much shorter than 5 mm, and the cutting path CPa21 and the outline of the part P22 are close to each other.
  • the sheet metal W may not be cut along the cutting path CPa21. Therefore, the CAM device 20 displays on the display unit 21 that the sheet metal W cannot be cut along the cutting path CPa21 and that the setting of the cutting path CPa21 is not possible, prompting the operator to change the setting of the cutting path. It's good.
  • FIG. 22 shows a nesting image 221 showing a state in which the parts P21 to P25 are nested at the end of the sheet metal W with a margin, and a nesting image 222 in which the positions of the parts P21 to P25 are shifted. be.
  • the width of the crosspiece between the parts P21 and P22 is narrow, and as described with reference to FIG. 21, the sheet metal W may not be cut along the cutting path CPa21.
  • the CAM device 20 shifts the positions of the parts P22 and P25 and re-nestes them as shown in the nesting image 222. good too.
  • the CAM device 20 may shift the position of the part P22 only and perform nesting again.
  • the present invention is not limited to one or more embodiments described above, and can be modified in various ways without departing from the gist of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Laser Beam Processing (AREA)
  • Numerical Control (AREA)

Abstract

In the present invention, an NC device sets a cutting path (CPa1) from a first position on a first terminal of a metal sheet to a second position on a second terminal that faces the first terminal, in an image in a state in which a plurality of parts are nested on the metal sheet, such that the cutting path (CPa1) passes through a crosspiece between the parts. The NC device sets a first processing sequence for parts (P1 and P3) positioned on a third-terminal side in a direction intersecting the direction in which the first terminal and the second terminal are linked, sets a second processing sequence for the cutting path (CPa1), and sets a third processing sequence for parts (P2 and P4-P6) positioned on a fourth-terminal side with respect to the cutting path (CPa1), the fourth terminal facing the third terminal. A laser processor cuts the parts (P1 and P3) positioned on the third-terminal side, and subsequently divides the metal sheet at the position of the cutting path (CPa1). The NC device furthermore subsequently cuts the parts (P2 and P4-P6) positioned on the fourth-terminal side.

Description

レーザ加工方法、加工プログラム作成方法、及びレーザ加工機Laser processing method, processing program creation method, and laser processing machine
 本開示は、レーザ加工方法、加工プログラム作成方法、及びレーザ加工機に関する。 The present disclosure relates to a laser processing method, a processing program creation method, and a laser processing machine.
 レーザ加工機は、板金にレーザビームを照射して板金を切断して、所定の形状を有する複数のパーツを作製することがある。複数のパーツが作製されてパーツが取り外された後の板金の端材は、スケルトンと称される。作業者は、例えばガス切断トーチを用いてスケルトンを切断して廃棄することがある。 A laser processing machine may irradiate a sheet metal with a laser beam to cut the sheet metal to produce multiple parts with a predetermined shape. The scrap of sheet metal after a plurality of parts have been fabricated and the parts removed is called a skeleton. Workers may use, for example, a gas cutting torch to cut the skeleton and discard it.
 手作業によるスケルトンの切断は作業者に大きな負担をかける。そこで、CAM(Computer Aided Manufacturing)機器は、複数のパーツを板金に割り付けるネスティングを実行した後に、スケルトンを切断するため、端材となる桟の部分を切断する切断経路を追加した加工プログラムを作成することがある。NC(Numerical Control)装置は、桟の部分を切断する切断経路が追加された加工プログラムに基づいて板金を切断するようレーザ加工機を制御する。これにより、レーザ加工機は、パーツを作製する工程の途中で、桟の部分をレーザビームによって切断する(特許文献1参照)。 Manual cutting of skeletons places a heavy burden on workers. Therefore, CAM (Computer Aided Manufacturing) equipment creates a processing program that adds a cutting path for cutting the crosspieces that will be scraps in order to cut the skeleton after executing the nesting that allocates multiple parts to the sheet metal. Sometimes. An NC (Numerical Control) device controls the laser processing machine to cut the sheet metal based on a processing program to which a cutting path for cutting the crosspiece is added. As a result, the laser processing machine cuts the crosspiece portion with a laser beam during the part manufacturing process (see Patent Document 1).
特開2000-218467号公報JP-A-2000-218467 特開2002-333910号公報JP-A-2002-333910 国際公開第2020/218477号WO2020/218477
 ところが、上記のように板金を切断すると、パーツに隣接した桟を、パーツを切断する前にパーツの外形線に向かうように切断することがある。パーツを切断する前にパーツに隣接した桟を板金の端部からパーツの外形線まで切断すると、パーツの端部に跡が付いてしまい、パーツの加工品質を悪化させてしまう。そこで、全てのパーツを切断して全てのパーツを板金から取り外した後に桟を切断することが考えられる。しかしながら、レーザビームの照射による熱で桟の位置がずれてしまい、全てのパーツを板金から取り外した後に桟を切断することは困難である。 However, when the sheet metal is cut as described above, the crosspiece adjacent to the part may be cut toward the outline of the part before the part is cut. If the crosspiece adjacent to the part is cut from the edge of the sheet metal to the contour line of the part before cutting the part, the edge of the part will be marked, degrading the machining quality of the part. Therefore, it is conceivable to cut all the parts, remove all the parts from the sheet metal, and then cut the crosspiece. However, it is difficult to cut the crosspieces after removing all the parts from the sheet metal because the crosspieces are displaced by the heat caused by the laser beam irradiation.
 特許文献2には、複数のパーツを板金にネスティングする際に、板金を複数の領域に区分けして各領域にパーツを配置し、隣接する領域間の隙間を切断することが記載されている。特許文献2に記載のレーザ加工方法は、複数のパーツを板金にネスティングするときの歩留まりが悪化するので好ましくない。 Patent Document 2 describes dividing the sheet metal into a plurality of areas, arranging the parts in each area, and cutting the gaps between the adjacent areas when nesting multiple parts in the sheet metal. The laser processing method described in Patent Literature 2 is not preferable because the yield deteriorates when a plurality of parts are nested in the sheet metal.
 1またはそれ以上の実施形態の第1の態様によれば、板金に複数のパーツがネスティングされた状態のネスティング画像上で、前記板金の第1の端部上の第1の位置から前記第1の端部と対向する第2の端部上の第2の位置まで、パーツ間の桟を通るように切断経路を設定し、前記複数のパーツのうち、前記切断経路に対して前記第1の端部と前記第2の端部とを結ぶ方向と交差する方向の第3の端部側に位置する1またはそれ以上のパーツに第1の加工順を設定し、前記切断経路に前記第1の加工順に続く第2の加工順を設定し、前記複数のパーツのうち、前記切断経路に対して前記第3の端部と対向する第4の端部側に位置する1またはそれ以上のパーツに前記第2の加工順に続く第3の加工順を設定し、前記板金にレーザビームを照射して、前記第3の端部側に位置する1またはそれ以上のパーツを切断し、その次に、前記板金の前記切断経路の位置にレーザビームを照射して前記板金を前記切断経路の位置で分割し、さらにその次に、前記板金にレーザビームを照射して、前記第4の端部側に位置する1またはそれ以上のパーツを切断するレーザ加工方法が提供される。 According to a first aspect of one or more embodiments, on a nesting image of a plurality of parts nested in sheet metal, from a first position on a first end of said sheet metal, said first A cutting path is set so as to pass through the crosspiece between the parts to a second position on the second end opposite to the end of the first part of the plurality of parts with respect to the cutting path A first processing order is set for one or more parts positioned on a third end side in a direction intersecting the direction connecting the end and the second end, and the first processing order is set on the cutting path. setting a second processing order following the processing order of , and one or more parts positioned on the fourth end side facing the third end with respect to the cutting path among the plurality of parts set a third processing order following the second processing order, irradiate the sheet metal with a laser beam, cut one or more parts located on the third end side, and then irradiating a laser beam on the position of the cutting path of the sheet metal to divide the sheet metal at the position of the cutting path; A laser machining method is provided for cutting one or more parts located in the .
 1またはそれ以上の実施形態の第1の態様は、第1の端部上の第1の位置から第2の端部上の第2の位置まで、パーツ間の桟を通るように切断経路を設定するので、パーツの外形線に向かう切断経路が設定されることがない。よって、パーツの端部に跡が付くことがなく、パーツの加工品質が良好となる。1またはそれ以上の実施形態の第1の態様は、上記のように加工順を設定して板金を切断するので、レーザビームの照射による熱で桟の位置がずれることはほとんどなく、板金を切断経路で容易に分割することができる。1またはそれ以上の実施形態の第1の態様によれば、ネスティング前に切断経路を設定しないので、歩留まりを悪化させることがない。 A first aspect of one or more embodiments provides a cutting path from a first location on a first end to a second location on a second end through a crosspiece between parts. Since it is set, the cutting path toward the outline of the part is not set. Therefore, the end of the part does not leave marks, and the machining quality of the part is good. According to the first aspect of one or more embodiments, since the sheet metal is cut by setting the processing order as described above, the position of the crosspiece is hardly shifted due to the heat generated by the laser beam irradiation, and the sheet metal can be cut. Can be easily split by path. According to the first aspect of one or more embodiments, the cutting path is not set before nesting, so yield is not degraded.
 1またはそれ以上の実施形態の第2の態様によれば、表示部に、板金に複数のパーツがネスティングされた状態のネスティング画像を表示し、前記ネスティング画像上で、前記板金の第1の端部上の第1の位置から前記第1の端部と対向する第2の端部上の第2の位置まで、パーツ間の桟を通るように切断経路を設定し、前記複数のパーツのうち、前記切断経路に対して前記第1の端部と前記第2の端部とを結ぶ方向と交差する方向の第3の端部側に位置する1またはそれ以上のパーツに第1の加工順を設定し、前記切断経路に前記第1の加工順に続く第2の加工順を設定し、前記複数のパーツのうち、前記切断経路に対して前記第3の端部と対向する第4の端部側に位置する1またはそれ以上のパーツに前記第2の加工順に続く第3の加工順を設定し、設定された加工順で前記板金を切断する加工プログラムを作成する加工プログラム作成方法が提供される。 According to a second aspect of one or more embodiments, a nesting image of a plurality of parts nested in a sheet metal is displayed on the display, and a first end of the sheet metal is displayed on the nesting image. A cutting path is set so as to pass through a crosspiece between the parts from a first position on the part to a second position on the second end facing the first end, and , one or more parts positioned on the third end side in the direction intersecting the direction connecting the first end and the second end with respect to the cutting path are subjected to the first processing order is set to the cutting path, a second processing order following the first processing order is set on the cutting path, and among the plurality of parts, a fourth end facing the third end with respect to the cutting path A machining program creation method is provided for creating a machining program for setting a third machining order following the second machining order for one or more parts positioned on the part side and cutting the sheet metal in the set machining order. be done.
 1またはそれ以上の実施形態の第2の態様は、上記のように加工プログラムを作成するので、レーザ加工機が加工プログラムに基づいて板金を加工するとき、パーツの端部に跡が付くことがなく、パーツの加工品質が良好となる。また、レーザビームの照射による熱で桟の位置がずれることはほとんどなく、板金を切断経路で容易に分割することができる。1またはそれ以上の実施形態の第2の態様によれば、ネスティング前に切断経路を設定しないので、歩留まりを悪化させることがない。 A second aspect of one or more embodiments creates a machining program as described above so that when the laser machine processes the sheet metal according to the machining program, the edges of the part may be marked. The machining quality of the parts is good. Moreover, the position of the crosspiece is hardly displaced by the heat generated by the irradiation of the laser beam, and the sheet metal can be easily divided along the cutting path. According to a second aspect of one or more embodiments, the cutting path is not set before nesting, so yield is not compromised.
 1またはそれ以上の実施形態の第3の態様によれば、板金を切断する加工機本体と、加工プログラムに基づいて前記加工機本体を制御するNC装置と、前記NC装置に接続された表示部と、前記NC装置に接続された操作部とを備え、前記NC装置は、前記表示部に、予め作成された加工プログラムに基づいて、板金に複数のパーツがネスティングされた状態のネスティング画像を表示し、前記操作部の操作によって、前記ネスティング画像上で、前記板金の第1の端部上の第1の位置から前記第1の端部と対向する第2の端部上の第2の位置まで、パーツ間の桟を通る経路が入力されたとき、入力された経路を切断経路に設定し、前記操作部の操作に基づく指定によるか前記指定によらず自動的に、前記複数のパーツのうち、前記切断経路に対して前記第1の端部と前記第2の端部とを結ぶ方向と交差する方向の第3の端部側に位置する1またはそれ以上のパーツに第1の加工順を設定し、前記切断経路に前記第1の加工順に続く第2の加工順を設定し、前記複数のパーツのうち、前記切断経路に対して前記第3の端部と対向する第4の端部側に位置する1またはそれ以上のパーツに前記第2の加工順に続く第3の加工順を設定し、前記予め作成された加工プログラムを前記第1~第3の加工順で前記板金を切断するよう再構成して、再構成された新たな加工プログラムを作成し、前記板金より前記複数のパーツを作製するときに、前記新たな加工プログラムに基づいて前記加工機本体を制御するレーザ加工機が提供される。 According to a third aspect of one or more embodiments, there is provided a processing machine body that cuts sheet metal, an NC device that controls the processing machine body based on a processing program, and a display unit connected to the NC device. and an operation unit connected to the NC unit, the NC unit displaying a nesting image in which a plurality of parts are nested in a sheet metal on the display unit based on a machining program created in advance. and by operating the operation unit, the sheet metal is moved from a first position on the first end of the sheet metal to a second position on the second end facing the first end on the nesting image. up to, when a route passing through a crosspiece between parts is input, the input route is set as a cutting route, and the plurality of parts are automatically cut according to the designation based on the operation of the operation unit or regardless of the designation. Among them, one or more parts located on the third end side in the direction intersecting the direction connecting the first end and the second end with respect to the cutting path are subjected to the first processing. a second machining order following the first machining order on the cutting path; A third machining order following the second machining order is set for one or more parts positioned on the end side, and the pre-created machining program is applied to the sheet metal in the first to third machining orders. Laser processing for reconfiguring to cut, creating a reconfigured new processing program, and controlling the processing machine main body based on the new processing program when fabricating the plurality of parts from the sheet metal. machine is provided.
 1またはそれ以上の実施形態の第3の態様は、NC装置が再構成された新たな加工プログラム基づいて加工機本体を制御するので、パーツの端部に跡が付くことがなく、パーツの加工品質が良好となる。また、レーザビームの照射による熱で桟の位置がずれることはほとんどなく、板金を切断経路で容易に分割することができる。1またはそれ以上の実施形態の第3の態様によれば、ネスティング前に切断経路を設定しないので、歩留まりを悪化させることがない。 A third aspect of one or more embodiments is that the NC unit controls the machine body based on the reconfigured new machining program so that the part can be machined without marking the end of the part. Good quality. Moreover, the position of the crosspiece is hardly displaced by the heat generated by the irradiation of the laser beam, and the sheet metal can be easily divided along the cutting path. According to a third aspect of one or more embodiments, cutting paths are not set before nesting, so yield is not compromised.
 1またはそれ以上の実施形態のレーザ加工方法、加工プログラム作成方法、及びレーザ加工機によれば、歩留まりを悪化させることなく、パーツの端部に跡が付くことなく板金を切断して、板金を分割することができる。 According to the laser processing method, the processing program creation method, and the laser processing machine of one or more embodiments, the sheet metal can be cut without degrading the yield and leaving marks on the end of the part. can be split.
図1は、1またはそれ以上の実施形態のレーザ加工方法を実行するレーザ加工機、1またはそれ以上の実施形態の加工プログラム作成方法を実行するレーザ加工システム、1またはそれ以上の実施形態のレーザ加工機を示すブロック図である。FIG. 1 shows a laser processing machine that executes a laser processing method of one or more embodiments, a laser processing system that executes a processing program creation method of one or more embodiments, and a laser of one or more embodiments. It is a block diagram showing a processing machine. 図2は、図1におけるCAM機器20が作成する加工プログラムの一例を部分的に示す図である。FIG. 2 is a diagram partially showing an example of a machining program created by the CAM device 20 in FIG. 図3Aは、第1実施形態の加工プログラム作成方法で実行される処理を示す部分的なフローチャートである。FIG. 3A is a partial flow chart showing the processing executed in the machining program creating method of the first embodiment. 図3Bは、図3Aに続く部分的なフローチャートである。FIG. 3B is a partial flowchart following FIG. 3A. 図4は、図1におけるNC装置31が表示部33に表示するネスティング画像の一例を示す図である。FIG. 4 is a diagram showing an example of a nesting image displayed on the display section 33 by the NC device 31 in FIG. 図5は、レーザ加工機30がパーツP1~P6を作製するよう板金Wを切断し、パーツP1~P6の各ジョイントを切断してパーツP1~P6を取り外した状態を示す平面図である。FIG. 5 is a plan view showing a state in which the laser processing machine 30 cuts the sheet metal W to produce the parts P1 to P6, cuts joints of the parts P1 to P6, and removes the parts P1 to P6. 図6は、図4に示すネスティング画像101にNC装置31が特定したジョイントの位置をマークJ1~J6で示した状態を示す図である。FIG. 6 is a diagram showing a state in which the positions of the joints specified by the NC device 31 are indicated by marks J1 to J6 in the nesting image 101 shown in FIG. 図7は、ネスティング画像101におけるジョイントを連結した状態のネスティング画像102を示す図である。FIG. 7 is a diagram showing a nesting image 102 in which joints in the nesting image 101 are connected. 図8は、ネスティング画像102におけるアプローチAp1~Ap6と終点Ep1~Ep6を削除した状態のネスティング画像103を示す図である。FIG. 8 is a diagram showing the nesting image 103 in which the approaches Ap1 to Ap6 and the end points Ep1 to Ep6 in the nesting image 102 are deleted. 図9は、ネスティング画像103における他の閉形状の線分の内側に存在する閉形状の線分を破棄した状態のネスティング画像104を示す図である。FIG. 9 is a diagram showing a nesting image 104 in which closed-shaped line segments existing inside other closed-shaped line segments in the nesting image 103 are discarded. 図10は、図9に示すネスティング画像104に拡大された閉形状の線分を付加した状態を示す図である。FIG. 10 is a diagram showing a state in which an enlarged closed line segment is added to the nesting image 104 shown in FIG. 図11は、拡大された閉形状の線分に基づいて作成された閉形状の線分を含むネスティング画像105を示す図である。FIG. 11 is a diagram showing a nesting image 105 including closed-shaped line segments created based on the enlarged closed-shaped line segment. 図12は、図11に示すネスティング画像105に桟を通る経路を付加した状態を示す図である。FIG. 12 is a diagram showing a state in which a path passing through crosspieces is added to the nesting image 105 shown in FIG. 図13は、図4に示すネスティング画像101に図12に示す経路Pa12、Pa13、Pa24、Pa34、Pa46を付加した状態のネスティング画像106を示す図である。FIG. 13 shows a nesting image 106 in which the paths Pa12, Pa13, Pa24, Pa34, and Pa46 shown in FIG. 12 are added to the nesting image 101 shown in FIG. 図14は、オペレータがタッチパネルである操作部34に触れて、指を経路Pa34、Pa13、Pa12に沿って移動させた状態を概念的に示す図である。FIG. 14 conceptually shows a state in which the operator touches the operation unit 34, which is a touch panel, and moves his/her finger along paths Pa34, Pa13, and Pa12. 図15は、加工機本体32が備える加工ヘッド321を概念的に示す部分側面図である。FIG. 15 is a partial side view conceptually showing the processing head 321 provided in the processing machine main body 32. As shown in FIG. 図16は、加工ヘッド321の加工位置と板金Wの端面を検出するときの加工ヘッド321の移動方向を指定する操作の一例を示す図である。16A and 16B are diagrams showing an example of an operation for designating the processing position of the processing head 321 and the moving direction of the processing head 321 when detecting the end surface of the sheet metal W. FIG. 図17は、図14に示すオペレータによる操作によって新たに切断経路CPa1が設定された状態のネスティング画像107を示す図である。FIG. 17 shows the nesting image 107 in which the cutting path CPa1 is newly set by the operator's operation shown in FIG. 図18は、オペレータがタッチパネルに触れて、加工順を設定する操作を概念的に示す図である。FIG. 18 is a diagram conceptually showing the operation of setting the processing order by touching the touch panel by the operator. 図19は、第2実施形態の加工プログラム作成方法を実行するCAM機器20が加工プログラムを作成する工程を示す概念図である。FIG. 19 is a conceptual diagram showing a process of creating a machining program by the CAM device 20 executing the machining program creation method of the second embodiment. 図20は、第2実施形態の加工プログラム作成方法で実行される処理を示すフローチャートである。FIG. 20 is a flow chart showing the processing executed in the machining program creation method of the second embodiment. 図21は、図19の(c)に示すネスティング画像202に設定された切断経路CPa21の拡大図である。FIG. 21 is an enlarged view of the cutting path CPa21 set in the nesting image 202 shown in FIG. 19(c). 図22は、パーツP21~P25が板金Wの端部に余裕を有してネスティングされている状態を示すネスティング画像221と、パーツP21~P25の位置をずらした状態のネスティング画像222を示す図である。FIG. 22 is a diagram showing a nesting image 221 showing a state in which the parts P21 to P25 are nested at the ends of the sheet metal W with a margin, and a nesting image 222 in which the positions of the parts P21 to P25 are shifted. be.
 以下、1またはそれ以上の実施形態のレーザ加工方法、加工プログラム作成方法、及びレーザ加工機について、添付図面を参照して説明する。 A laser processing method, a processing program creation method, and a laser processing machine according to one or more embodiments will be described below with reference to the accompanying drawings.
 図1は、1またはそれ以上の実施形態のレーザ加工方法を実行するレーザ加工機、1またはそれ以上の実施形態の加工プログラム作成方法を実行するレーザ加工システム、1またはそれ以上の実施形態のレーザ加工機を示すブロック図である。まず、図1を用いて、レーザ加工システムの全体的な構成例を説明する。 FIG. 1 shows a laser processing machine that executes a laser processing method of one or more embodiments, a laser processing system that executes a processing program creation method of one or more embodiments, and a laser of one or more embodiments. It is a block diagram showing a processing machine. First, with reference to FIG. 1, an overall configuration example of a laser processing system will be described.
 図1において、CAD(Computer Aided Design)機器10は1または複数のパーツの図形データを作成する。CAD機器10は、板金に1または複数のパーツをネスティングした画像データを作成して、CAM機器20に供給する。CAD機器10は、CADプログラムを実行するコンピュータ機器で構成される。CAM機器20は、入力された画像データに基づいて、板金より1または複数のパーツを切断するための加工プログラムを作成する。CAM機器20は、CAMプログラムを実行するコンピュータ機器で構成される。CAM機器20には、表示部21及び操作部22が接続されている。操作部22は、表示部21と一体化されたタッチパネルであってもよい。CAD機器10とCAM機器20とが1つのコンピュータ機器で構成され、コンピュータ機器がCAD/CAM機器として機能してもよい。 In FIG. 1, a CAD (Computer Aided Design) device 10 creates graphic data for one or more parts. The CAD equipment 10 creates image data in which one or more parts are nested in a sheet metal, and supplies the image data to the CAM equipment 20 . The CAD equipment 10 is composed of computer equipment that executes a CAD program. The CAM device 20 creates a machining program for cutting one or more parts from the sheet metal based on the input image data. The CAM equipment 20 is composed of computer equipment that executes a CAM program. A display unit 21 and an operation unit 22 are connected to the CAM device 20 . The operation unit 22 may be a touch panel integrated with the display unit 21 . The CAD device 10 and the CAM device 20 may be composed of one computer device, and the computer device may function as the CAD/CAM device.
 レーザ加工機30は、板金にレーザビームを照射して板金を切断する加工機本体32と、加工機本体32を制御するNC装置31と、NC装置31に接続された表示部33及び操作部34を有する。加工機本体32はレーザ発振器を含む。操作部34は、表示部33と一体化されたタッチパネルであってもよい。NC装置31は、CAM機器20によって作成された加工プログラムに基づいて加工機本体32を制御する。後述するように、NC装置31は、CAM機器20によって予め作成された加工プログラムを再構成して、再構成された新たな加工プログラムに基づいて加工機本体32を制御することがある。 The laser processing machine 30 includes a processing machine body 32 that irradiates a sheet metal with a laser beam to cut the sheet metal, an NC device 31 that controls the processing machine body 32, a display unit 33 and an operation unit 34 connected to the NC device 31. have The processing machine body 32 includes a laser oscillator. The operation unit 34 may be a touch panel integrated with the display unit 33 . The NC device 31 controls the machine body 32 based on the machining program created by the CAM device 20 . As will be described later, the NC device 31 may reconfigure a machining program created in advance by the CAM device 20 and control the processing machine main body 32 based on the reconfigured new machining program.
 CAM機器20によって作成された加工プログラムが図示していないデータベースに記憶され、NC装置31がデータベースより加工プログラムを読み出してもよい。 A machining program created by the CAM device 20 may be stored in a database (not shown), and the NC unit 31 may read the machining program from the database.
 図2は、図1におけるCAM機器20が作成する加工プログラムの一例を部分的に示す図である。加工プログラムはGコード等の機械制御コードによって構成されている。図2に示すように、加工プログラムは、パーツP01を加工するためのコード群と、パーツP02を加工するためのコード群とを含む。加工プログラムは、パーツごとにコメントで区切られている。加工プログラムには、各パーツがサブプログラムで表現されていてもよい。 FIG. 2 is a diagram partially showing an example of a machining program created by the CAM device 20 in FIG. The machining program is composed of machine control code such as G code. As shown in FIG. 2, the machining program includes a code group for machining the part P01 and a code group for machining the part P02. The machining program is separated by comments for each part. Each part may be represented by a subprogram in the machining program.
 以下、各実施形態のレーザ加工方法、加工プログラム作成方法、及びレーザ加工機を具体的に説明する。NC装置31は第1実施形態の加工プログラム作成方法を実行する。NC装置31は、CAM機器20によって作成された加工プログラムを再構成して、再構成された新たな加工プログラムを作成する。NC装置31は、歩留まりを悪化させることなく、パーツの端部に跡が付くことなく、板金を切断して分割することができる加工プログラムを作成する加工プログラム作成装置である。第1実施形態のレーザ加工機は、NC装置31が新たな加工プログラムに基づいて板金を加工するよう加工機本体32を制御するレーザ加工機30である。第1実施形態のレーザ加工方法は、レーザ加工機30で実行される。 The laser processing method, processing program creation method, and laser processing machine of each embodiment will be specifically described below. The NC device 31 executes the machining program creation method of the first embodiment. The NC device 31 reconstructs the machining program created by the CAM device 20 to create a new reconstructed machining program. The NC unit 31 is a machining program creation device that creates a machining program that can cut and divide the sheet metal without degrading the yield and leaving marks on the ends of the parts. The laser processing machine of the first embodiment is a laser processing machine 30 that controls a processing machine main body 32 so that an NC device 31 processes sheet metal based on a new processing program. The laser processing method of the first embodiment is performed by a laser processing machine 30. FIG.
 CAM機器20は第2実施形態の加工プログラム作成方法を実行する。CAM機器20は、歩留まりを悪化させることなく、パーツの端部に跡が付くことなく、板金を切断して分割することができる加工プログラムを作成する加工プログラム作成装置である。第2実施形態のレーザ加工機は、NC装置31が、CAM機器20が作成した加工プログラムに基づいて板金を加工するよう加工機本体32を制御するレーザ加工機30である。第2実施形態のレーザ加工方法は、レーザ加工機30で実行される。 The CAM device 20 executes the machining program creation method of the second embodiment. The CAM device 20 is a machining program creation device that creates a machining program that can cut and divide the sheet metal without degrading the yield and leaving marks on the ends of the parts. The laser processing machine of the second embodiment is a laser processing machine 30 in which an NC device 31 controls a processing machine main body 32 to process sheet metal based on a processing program created by a CAM device 20 . A laser processing method according to the second embodiment is performed by a laser processing machine 30 .
<第1実施形態>
 図3Aは、第1実施形態の加工プログラム作成方法で実行される処理を示す部分的なフローチャートである。図3Bは、図3Aに続く部分的なフローチャートである。図4~図18を参照しながら、第1実施形態の加工プログラム作成方法が実行する処理を説明する。図3A及び図3Bは、NC装置31がコンピュータプログラムを実行することによってなされる処理である。
<First Embodiment>
FIG. 3A is a partial flow chart showing the processing executed in the machining program creation method of the first embodiment. FIG. 3B is a partial flowchart following FIG. 3A. Processing executed by the machining program creation method of the first embodiment will be described with reference to FIGS. 4 to 18. FIG. 3A and 3B show processing performed by the NC unit 31 executing a computer program.
 図3Aにおいて、NC装置31は、ステップS1にて、加工プログラムに基づいてネスティング画像を作成して、ネスティング画像を表示部33に表示する。図4は、図1におけるNC装置31が表示部33に表示するネスティング画像の一例を示す図である。ネスティング画像は、板金に複数のパーツがネスティングされた状態を示す描画線分である。図4に示すネスティング画像101は、板金W(図5に図示)の外形線を示す板金画像Wiに切断すべきパーツP1~P6を配置した画像である。パーツP1~P6には後述するジョイントが存在することから、非閉形状の線分で表されている。 In FIG. 3A, the NC device 31 creates a nesting image based on the processing program and displays the nesting image on the display unit 33 in step S1. FIG. 4 is a diagram showing an example of a nesting image displayed on the display section 33 by the NC device 31 in FIG. A nesting image is drawn line segments showing a state in which a plurality of parts are nested in a sheet metal. A nesting image 101 shown in FIG. 4 is an image in which the parts P1 to P6 to be cut are arranged on the sheet metal image Wi showing the outline of the sheet metal W (shown in FIG. 5). Since the parts P1 to P6 have joints, which will be described later, they are represented by non-closed line segments.
 パーツP1は正方形の穴P1hを有する。レーザ加工機30は、板金Wに穴P1hを開けた後、アプローチAp1を形成してパーツP1の外形線に沿って終点Ep1まで板金Wを切断することによってパーツP1を作製する。アプローチAp1のパーツP1側の端部と、アプローチAp1と離隔している終点Ep1との間がジョイントとなる。パーツP2は円形の穴P2h1及びP2h2を有する。レーザ加工機30は、板金Wに穴P2h1及びP2h2を開けた後、アプローチAp2を形成してパーツP2の外形線に沿って終点Ep2まで板金Wを切断することによってパーツP2を作製する。アプローチAp2のパーツP2側の端部と、プローチAp2と離隔している終点Ep2との間がジョイントとなる。なお、図4では、穴P1h、P2h1、P2h2、及び後述するP3h1、P3h2、P6hを形成するためのアプローチの図示を省略している。 The part P1 has a square hole P1h. The laser processing machine 30 forms a hole P1h in the sheet metal W, forms an approach Ap1, and cuts the sheet metal W along the outline of the part P1 to the end point Ep1, thereby fabricating the part P1. A joint is formed between the end of the approach Ap1 on the side of the part P1 and the end point Ep1 separated from the approach Ap1. Part P2 has circular holes P2h1 and P2h2. The laser processing machine 30 forms the holes P2h1 and P2h2 in the sheet metal W, forms an approach Ap2, and cuts the sheet metal W to the end point Ep2 along the contour line of the part P2 to fabricate the part P2. A joint is provided between the end of the approach Ap2 on the side of the part P2 and the end point Ep2 separated from the approach Ap2. 4 omits illustration of an approach for forming holes P1h, P2h1, P2h2, and P3h1, P3h2, P6h, which will be described later.
 パーツP3は正方形の穴P3h1及びP3h2を有する。レーザ加工機30は、板金Wに穴P3h1及びP3h2を開けた後、アプローチAp3を形成してパーツP3の外形線に沿って終点Ep3まで板金Wを切断することによってパーツP3を作製する。アプローチAp3のパーツP3側の端部と、プローチAp3と離隔している終点Ep3との間がジョイントとなる。レーザ加工機30は、アプローチAp4を形成してパーツP4の外形線に沿って終点Ep4まで板金Wを切断することによってパーツP4を作製する。アプローチAp4のパーツP4側の端部と、プローチAp4と離隔している終点Ep4との間がジョイントとなる。 The part P3 has square holes P3h1 and P3h2. The laser processing machine 30 forms the holes P3h1 and P3h2 in the sheet metal W, forms an approach Ap3, and cuts the sheet metal W along the outline of the part P3 to the end point Ep3 to fabricate the part P3. A joint is provided between the end of the approach Ap3 on the side of the part P3 and the end point Ep3 separated from the approach Ap3. The laser processing machine 30 forms an approach Ap4 and cuts the sheet metal W to an end point Ep4 along the outline of the part P4 to produce the part P4. A joint is provided between the end of the approach Ap4 on the side of the part P4 and the end point Ep4 separated from the approach Ap4.
 パーツP5は、パーツP6に形成される穴P6hの領域内に形成される、いわゆるパーツ・イン・パーツである。レーザ加工機30は、アプローチAp5を形成してパーツP5の外形線に沿って終点Ep5まで板金Wを切断することによってパーツP5を作製する。アプローチAp5のパーツP5側の端部と、プローチAp5と離隔している終点Ep5との間がジョイントとなる。パーツP6は長方形の穴P6hを有する。レーザ加工機30は、板金Wに穴P6hを開けた後、アプローチAp6を形成してパーツP6の外形線に沿って終点Ep6まで板金Wを切断することによってパーツP6を作製する。アプローチAp6のパーツP6側の端部と、プローチAp6と離隔している終点Ep6との間がジョイントとなる。 The part P5 is a so-called part-in-part that is formed within the area of the hole P6h formed in the part P6. The laser processing machine 30 forms an approach Ap5 and cuts the sheet metal W to an end point Ep5 along the outline of the part P5 to produce the part P5. A joint is provided between the end of the approach Ap5 on the side of the part P5 and the end point Ep5 separated from the approach Ap5. Part P6 has a rectangular hole P6h. The laser processing machine 30 forms a hole P6h in the sheet metal W, forms an approach Ap6, and cuts the sheet metal W along the contour line of the part P6 to an end point Ep6 to fabricate the part P6. A joint is provided between the end of the approach Ap6 on the side of the part P6 and the end point Ep6 separated from the approach Ap6.
 図5は、レーザ加工機30がパーツP1~P6を作製するよう板金Wを切断し、パーツP1~P6の各ジョイントを切断してパーツP1~P6を取り外した状態を示す平面図である。板金Wには、パーツP1~P4及びP6に対応する開口HP1~HP4及びHP6が形成される。開口HP1~HP4及びHP6を有するパーツP1~P6が取り外された後の板金Wの端材がスケルトンWskとなる。 FIG. 5 is a plan view showing a state in which the laser processing machine 30 cuts the sheet metal W to produce the parts P1 to P6, cuts joints of the parts P1 to P6, and removes the parts P1 to P6. The sheet metal W is formed with openings HP1 to HP4 and HP6 corresponding to the parts P1 to P4 and P6. The skeleton Wsk is the scrap of the sheet metal W after the parts P1 to P6 having the openings HP1 to HP4 and HP6 are removed.
 図3Aに戻り、NC装置31は、ステップS2にて、加工プログラムを解析してジョイントの位置を特定する。上記のように、アプローチと終点との間をジョイントの位置と特定することができる。ジョイントの位置のさらに具体的な特定方法は特許文献3に記載されているので、特定方法の説明を省略する。図6は、図4に示すネスティング画像101にNC装置31が特定したジョイントの位置をマークJ1~J6で示した状態を示す図である。図6~図12は、NC装置31が表示部33に表示する画像ではなく、NC装置31が実行する内部処理を示す概念図である。 Returning to FIG. 3A, in step S2, the NC device 31 analyzes the machining program and identifies the positions of the joints. As noted above, joint locations can be identified between the approach and endpoints. A more specific method of identifying the joint position is described in Patent Document 3, so the description of the identifying method is omitted. FIG. 6 is a diagram showing a state in which the positions of the joints specified by the NC device 31 are indicated by marks J1 to J6 in the nesting image 101 shown in FIG. 6 to 12 are conceptual diagrams showing internal processing executed by the NC unit 31 rather than images displayed on the display unit 33 by the NC unit 31. FIG.
 NC装置31は、ステップS3にて、ジョイントを連結し、ステップS4にて、アプローチと終点を削除する。図7は、ネスティング画像101におけるジョイントを連結した状態のネスティング画像102を示す図である。図8は、ネスティング画像102におけるアプローチAp1~Ap6を削除した状態のネスティング画像103を示す図である。図8に示すように、各ジョイントを連結し、アプローチAp1~Ap6を削除すると、パーツP1~P6は外形線で囲まれた閉形状の線分で表される。パーツP1~P3及びP6は内側に穴またはパーツを示す閉形状の線分を含む。 The NC device 31 connects the joints in step S3, and deletes the approach and end points in step S4. FIG. 7 is a diagram showing a nesting image 102 in which joints in the nesting image 101 are connected. FIG. 8 is a diagram showing the nesting image 103 with the approaches Ap1 to Ap6 deleted from the nesting image 102. As shown in FIG. As shown in FIG. 8, when the joints are connected and the approaches Ap1-Ap6 are deleted, the parts P1-P6 are represented by closed line segments surrounded by outlines. Parts P1-P3 and P6 contain closed-shaped line segments indicating holes or parts inside.
 図4において、終点Ep1~Ep6からパーツP1~P6の外形線と直交する方向に向かう、アプローチAp1~Ap6と平行の所定の長さの逃げが設定されることがある(特許文献3の図7B参照)。パーツP1~P6のうちのいずれかのパーツに逃げが設定されている場合には、NC装置31はステップS4にて逃げも削除する。 In FIG. 4, a relief of a predetermined length parallel to the approaches Ap1 to Ap6 may be set in a direction orthogonal to the outlines of the parts P1 to P6 from the end points Ep1 to Ep6 (see FIG. 7B of Patent Document 3). reference). If relief is set for any one of the parts P1 to P6, the NC unit 31 also deletes the relief in step S4.
 NC装置31は、ステップS5にて、いずれかの閉形状の線分を選択する。なお、NC装置31は、ステップS5の処理を2回目以降繰り返すときには、選択済みの閉形状の線分を除く未選択の閉形状の線分の中からいずれかの閉形状の線分を選択する。NC装置31は、ステップS6にて、選択した閉形状が未判定の閉形状であるか否かを判定する。 The NC device 31 selects any closed-shaped line segment in step S5. When the NC device 31 repeats the process of step S5 for the second time or later, it selects any closed line segment from unselected closed line segments excluding the selected closed line segment. . In step S6, the NC device 31 determines whether or not the selected closed shape is an undetermined closed shape.
 ステップS6にて閉形状の線分が未判定であれば(YES)、NC装置31は、ステップS7にて、選択した閉形状の線分が他の閉形状の線分の内側に存在するか否かを判定する。選択した閉形状の線分が他の閉形状の線分の内側に存在すれば(YES)、NC装置31は、ステップS8にて、選択した閉形状の線分を破棄して、処理をステップS5に戻す。選択した閉形状の線分が他の閉形状の線分の内側に存在しなければ(NO)、NC装置31は、ステップS9にて、選択した閉形状の線分を残して、処理をステップS5に戻す。 If the closed-shaped line segment has not been determined in step S6 (YES), the NC unit 31 determines whether the selected closed-shaped line segment exists inside other closed-shaped line segments in step S7. determine whether or not If the selected closed-shaped line segment exists inside other closed-shaped line segments (YES), the NC unit 31 discards the selected closed-shaped line segment in step S8, and continues the process. Return to S5. If the selected closed-shaped line segment does not exist inside other closed-shaped line segments (NO), the NC unit 31 leaves the selected closed-shaped line segment in step S9 and continues the process. Return to S5.
 ステップS7~S9の処理によって、各パーツの閉形状の線分の内側に穴を示す閉形状の線分が存在するときには、穴を示す閉形状の線分が破棄される。また、他のパーツの閉形状の線分の内側にパーツの閉形状の線分が存在するときには、内側に存在するパーツの閉形状の線分が破棄される。 By the processing of steps S7 to S9, when there is a closed line segment indicating a hole inside the closed line segment of each part, the closed line segment indicating the hole is discarded. Also, when the closed-shaped line segment of the part exists inside the closed-shaped line segment of another part, the closed-shaped line segment of the part existing inside is discarded.
 図9は、ネスティング画像103における他の閉形状の線分の内側に存在する閉形状の線分を破棄した状態のネスティング画像104を示す図である。NC装置31が、図8に示すネスティング画像103に存在する全ての閉形状の線分に対して、ステップS5~S7とステップ8またはS9の処理を実行すると、図9に示すネスティング画像104が作成される。図9に示すネスティング画像104の代わりに、パーツP1~P6の部分を開口にした、図5に示すスケルトンWskと同様のスケルトン画像としてもよい。 FIG. 9 is a diagram showing the nesting image 104 in a state in which closed-shaped line segments existing inside other closed-shaped line segments in the nesting image 103 are discarded. When the NC device 31 executes the processes of steps S5 to S7 and step 8 or S9 for all closed line segments existing in the nesting image 103 shown in FIG. 8, the nesting image 104 shown in FIG. 9 is created. be done. Instead of the nesting image 104 shown in FIG. 9, a skeleton image similar to the skeleton Wsk shown in FIG. 5 with openings for the parts P1 to P6 may be used.
 全ての閉形状の線分の選択が完了すると、ステップS6にて選択した閉形状が未判定の閉形状ではない(NO)と判定され、NC装置31は、処理を図3BのステップS10に移行させる。ネスティング画像104は、板金画像Wi内にパーツP1~P4及びP6の各外形線で囲まれた閉形状の線分を含む。 When all closed shape line segments have been selected, it is determined that the closed shape selected in step S6 is not an undetermined closed shape (NO), and the NC unit 31 shifts the process to step S10 in FIG. 3B. Let The nesting image 104 includes closed-shaped line segments surrounded by outlines of the parts P1 to P4 and P6 in the sheet metal image Wi.
 図3Bにおいて、NC装置31は、ステップS10にて、閉形状の線分(またはスケルトン画像の開口)を設定幅だけ拡大する。なお、設定幅は例えば5mmとする。図10は、図9に示すネスティング画像104に拡大された閉形状の線分を付加した状態を示す図である。図10において、ネスティング画像104には拡大された線分EL1~EL4及びEL6が付加されている。線分EL2で囲まれた領域と線分EL6で囲まれた領域とは互いに部分的に重なっている。NC装置31は、ステップS11にて、拡大された線分に基づいて新たに閉形状の線分を作成する。 In FIG. 3B, the NC device 31 enlarges the closed-shaped line segment (or the opening of the skeleton image) by the set width in step S10. Note that the set width is, for example, 5 mm. FIG. 10 is a diagram showing a state in which an enlarged closed line segment is added to the nesting image 104 shown in FIG. In FIG. 10, the nesting image 104 has enlarged line segments EL1 to EL4 and EL6 added thereto. The area surrounded by the line segment EL2 and the area surrounded by the line segment EL6 partially overlap each other. In step S11, the NC unit 31 creates a new closed line segment based on the enlarged line segment.
 図11は、拡大された閉形状の線分に基づいて作成された閉形状の線分(またはスケルトン画像の開口)を含むネスティング画像105を示す図である。図11において、拡大された閉形状の線分ELP1、ELP3、ELP4、及びELP26が形成されている。閉形状の線分ELP1、ELP3、ELP4はそれぞれパーツP1、P3、P4の外形線を広げた形状の線分に相当し、閉形状ELP26は、パーツP2及びP6の外形線を広げて連結した形状の線分に相当する。NC装置31は、拡大されたパーツの閉形状の線分が隣接する拡大されたパーツの閉形状の線分と接触するか互いに部分的に重なっているときには、互いに隣接する2つのパーツの閉形状の線分を連結して1つのパーツの閉形状の線分を作成する。 FIG. 11 is a diagram showing a nesting image 105 including closed-shaped line segments (or openings in skeleton images) created based on the enlarged closed-shaped line segments. In FIG. 11, enlarged closed line segments ELP1, ELP3, ELP4, and ELP26 are formed. Closed-shape line segments ELP1, ELP3, and ELP4 correspond to line segments of shapes obtained by widening the outlines of parts P1, P3, and P4, respectively, and closed-shape ELP26 is a shape obtained by widening and connecting the outlines of parts P2 and P6. corresponds to the line segment of When the closed shape line segment of the enlarged part contacts or partially overlaps with the closed shape line segment of the adjacent enlarged part, the NC unit 31 determines the closed shape of the two parts adjacent to each other. Creates a closed-shape line segment of one part by connecting the line segments of .
 NC装置31は、ステップS12にて、最終的に残った全ての桟を通る経路を作成する。図12は、図11に示すネスティング画像105に桟を通る経路を付加した状態を示す図である。図12において、閉形状の線分ELP1と閉形状の線分ELP26との間の桟には経路Pa12が付加されている。閉形状の線分ELP1と閉形状ELP3の線分との間の桟には、経路Pa13が付加されている。閉形状の線分ELP26と閉形状の線分ELP4との間の桟には、経路Pa24が付加されている。閉形状の線分ELP3と閉形状の線分ELP4との間の桟には、経路Pa34が付加されている。閉形状の線分ELP4と閉形状の線分ELP26との間の桟には、経路Pa46が付加されている。 At step S12, the NC device 31 creates a route passing through all the remaining crosspieces. FIG. 12 is a diagram showing a state in which a path passing through crosspieces is added to the nesting image 105 shown in FIG. In FIG. 12, a path Pa12 is added to the crosspiece between the closed-shape line segment ELP1 and the closed-shape line segment ELP26. A path Pa13 is added to the crosspiece between the line segment ELP1 of the closed shape and the line segment of the closed shape ELP3. A path Pa24 is added to the crosspiece between the closed-shaped line segment ELP26 and the closed-shaped line segment ELP4. A path Pa34 is added to the crosspiece between the closed-shaped line segment ELP3 and the closed-shaped line segment ELP4. A path Pa46 is added to the crosspiece between the closed-shaped line segment ELP4 and the closed-shaped line segment ELP26.
 経路Pa12、Pa13、Pa24、Pa34、Pa46はそれぞれの桟の幅方向の中央に配置されている。経路Pa12、Pa13、Pa24、Pa34、Pa46は、新たに設定する切断経路の候補となる候補経路である。 The paths Pa12, Pa13, Pa24, Pa34, and Pa46 are arranged at the center of each crosspiece in the width direction. Routes Pa12, Pa13, Pa24, Pa34, and Pa46 are candidate routes that are candidates for newly set cutting routes.
 NC装置31が、図10に示すようにパーツP1~P4及びP6の各外形線で囲まれた閉形状の線分を設定幅だけ拡大して、図11に示すように拡大された閉形状の線分ELP1、ELP3、ELP4、及びELP26を作成するのは次の理由による。 The NC unit 31 expands the closed-shaped line segment surrounded by the outlines of the parts P1 to P4 and P6 by a set width as shown in FIG. The reason for creating the line segments ELP1, ELP3, ELP4, and ELP26 is as follows.
 互いに隣接する2つのパーツが近接していると、板金Wをその隣接する2つのパーツの間で切断することができない。拡大されたパーツの閉形状の線分が隣接する拡大されたパーツの閉形状の線分と接触するか互いに部分的に重なっているということは、互いに隣接する2つのパーツが接近しすぎていて、その2つのパーツ間の桟に切断経路を作成できないということである。互いに接触するか部分的に重なっている2つのパーツの閉形状の線分を連結して1つのパーツの閉形状の線分を作成すれば、実際には切断することができない桟に切断経路の候補である候補経路を誤って設定することを回避することができる。 If two parts adjacent to each other are close to each other, the sheet metal W cannot be cut between the two adjacent parts. A closed-shape line segment of an enlarged part that touches or partially overlaps a closed-shape line segment of an adjacent enlarged part means that the two adjacent parts are too close to each other. , the cutting path cannot be created on the crosspiece between the two parts. If you create a closed line segment for one part by connecting the closed line segments for two parts that are in contact with each other or partially overlapping each other, you can create a line segment that cannot actually be cut. It is possible to avoid erroneously setting a candidate route that is a candidate.
 NC装置31は、ステップS13にて、図4に示すネスティング画像101に切断可能な経路を表示する。図13は、ネスティング画像101に図12に示す経路Pa12、Pa13、Pa24、Pa34、Pa46を付加した状態のネスティング画像106を示す図である。NC装置31は、図13に示すネスティング画像106を表示部33に表示する。即ち、NC装置31は、表示部33にネスティング画像101を表示した後、操作部34によって所定の操作がなされると、以上説明した内部処理を実行することによって、表示部33にネスティング画像106を表示する。 At step S13, the NC device 31 displays cuttable paths on the nesting image 101 shown in FIG. FIG. 13 shows a nesting image 106 in which the paths Pa12, Pa13, Pa24, Pa34, and Pa46 shown in FIG. 12 are added to the nesting image 101. FIG. The NC device 31 displays the nesting image 106 shown in FIG. That is, after displaying the nesting image 101 on the display unit 33, the NC device 31 displays the nesting image 106 on the display unit 33 by executing the internal processing described above when a predetermined operation is performed by the operation unit 34. indicate.
 NC装置31は、ステップS14にて、オペレータ(作業者)によって指示(入力)された経路を切断経路として設定する。図14は、オペレータがタッチパネルである操作部34に触れて、指を経路Pa34、Pa13、Pa12に沿って移動させた状態を概念的に示す図である。 At step S14, the NC device 31 sets the route instructed (input) by the operator (worker) as the cutting route. FIG. 14 conceptually shows a state in which the operator touches the operation unit 34, which is a touch panel, and moves his/her finger along paths Pa34, Pa13, and Pa12.
 図15は、加工機本体32が備える加工ヘッド321を概念的に示す部分側面図である。加工ヘッド321の下端部にはノズル322が装着されている。加工ヘッド321は、一点鎖線で示すレーザビームをノズル322の先端に形成された開口より射出して、板金Wを切断する。加工ヘッド321は、倣いセンサ323を有する。板金Wを切断するとき、NC装置31は、ノズル322が板金Wに近接したときに倣いセンサ323が検出する静電容量値に基づいて、ノズル322と板金Wとの距離を一定に保つようノズル322の高さ方向の位置を制御する。 15 is a partial side view conceptually showing the processing head 321 provided in the processing machine main body 32. FIG. A nozzle 322 is attached to the lower end of the processing head 321 . The processing head 321 cuts the sheet metal W by emitting a laser beam indicated by a dashed line from an opening formed at the tip of the nozzle 322 . The machining head 321 has a scanning sensor 323 . When cutting the sheet metal W, the NC unit 31 adjusts the distance between the nozzle 322 and the sheet metal W based on the capacitance value detected by the scanning sensor 323 when the nozzle 322 approaches the sheet metal W. Controls the vertical position of 322.
 図16は、加工ヘッド321の下降位置と板金Wの端面を検出するときの加工ヘッド321の移動方向を指定する操作の一例を示す図である。オペレータが×印で示すように板金W(板金画像Wi)の端部でタッチパネルを指でタップして、板金Wの外側である上方向に矢印で示すように指をスライドさせたとする。NC装置31は、加工ヘッド321を×印で示す位置で下降させ、矢印の方向に移動させる。加工ヘッド321が板金Wから外れると倣いセンサ323が検出する静電容量値が大きく変化するから、NC装置31は、板金Wの端面の位置を検出することができる。なお、図16に示す加工ヘッド321の下降位置の指定と板金Wの端面の位置の検出は必須ではない。 FIG. 16 is a diagram showing an example of an operation for designating the moving direction of the machining head 321 when detecting the lowered position of the machining head 321 and the end surface of the sheet metal W. FIG. Assume that the operator taps the touch panel with a finger at the end of the sheet metal W (sheet metal image Wi) as indicated by the x mark and slides the finger upward, which is the outside of the sheet metal W, as indicated by the arrow. The NC device 31 lowers the machining head 321 at the position indicated by the x mark and moves it in the direction of the arrow. Since the capacitance value detected by the scanning sensor 323 changes greatly when the machining head 321 is separated from the sheet metal W, the NC device 31 can detect the position of the end face of the sheet metal W. FIG. It should be noted that specification of the lowering position of the working head 321 and detection of the position of the end surface of the sheet metal W shown in FIG. 16 are not essential.
 NC装置31は、ステップS15にて、図14に示すオペレータによる操作によって新たに設定された切断経路のGコードを作成して、ネスティング画像106に描画する。このとき、NC装置31は、経路Pa12、Pa13、Pa24、Pa34、Pa46を消去する。図17は、図14に示すオペレータによる操作によって新たに切断経路CPa1が設定された状態のネスティング画像107を示す図である。 In step S15, the NC device 31 creates a G-code for the cutting path newly set by the operator's operation shown in FIG. 14, and draws it on the nesting image 106. At this time, the NC device 31 erases the paths Pa12, Pa13, Pa24, Pa34 and Pa46. FIG. 17 shows the nesting image 107 in which the cutting path CPa1 is newly set by the operator's operation shown in FIG.
 NC装置31は、ステップS16にて、オペレータによって指定された加工順を設定する。図18は、オペレータがタッチパネルに触れて、加工順を設定する操作を概念的に示す図である。図18において、#1、#2…は加工順を示す。図18に示すように、オペレータは、パーツP1及びP3をこの順に触れて、パーツP1及びP3それぞれの切断を加工順1及び2に設定する。パーツP1とパーツP3との加工順は逆であってもよい。 The NC device 31 sets the machining order specified by the operator in step S16. FIG. 18 is a diagram conceptually showing the operation of setting the processing order by touching the touch panel by the operator. In FIG. 18, #1, #2, . . . indicate the processing order. As shown in FIG. 18, the operator touches the parts P1 and P3 in this order to set the cutting of the parts P1 and P3 to the machining orders 1 and 2, respectively. The order of processing the part P1 and the part P3 may be reversed.
 続けて、オペレータは、切断経路CPa1の位置に触れて、切断経路CPa1での板金Wの切断を加工順3に設定する。さらに、オペレータは、パーツP2、P4、P5、P6をこの順に触れて、パーツP2、P4、P5、P6それぞれの切断を加工順4、5、6、7に設定する。パーツP2とパーツP4との加工順は逆であってもよい。 Subsequently, the operator touches the position of the cutting path CPa1 to set the cutting of the sheet metal W along the cutting path CPa1 to the processing order 3. Further, the operator touches the parts P2, P4, P5 and P6 in this order to set the cutting order of the parts P2, P4, P5 and P6 to 4, 5, 6 and 7 respectively. The order of machining the part P2 and the part P4 may be reversed.
 NC装置31は、ステップS17にて、加工プログラムが板金WをステップS16で設定した加工順で加工する加工プログラムとなるよう加工プログラムを再構成して、再構成された新たな加工プログラムを作成して、処理を終了させる。 In step S17, the NC unit 31 reconstructs the machining program so that the machining program is for machining the sheet metal W in the machining order set in step S16, and creates a new reconstructed machining program. to end the process.
 NC装置31は、再構成された加工プログラムに基づいて加工機本体32を制御して、板金Wを切断する。よって、レーザ加工機30(加工機本体32)は、パーツP1及びP3を切断した後に、板金Wを切断経路CPa1の位置で切断する。レーザ加工機30は、板金Wを切断経路CPa1の位置で切断した後に、パーツP2、P4、P5、P6を切断する。 The NC device 31 cuts the sheet metal W by controlling the machine body 32 based on the reconfigured machining program. Therefore, the laser processing machine 30 (processing machine main body 32) cuts the sheet metal W at the position of the cutting path CPa1 after cutting the parts P1 and P3. The laser processing machine 30 cuts the sheet metal W at the position of the cutting path CPa1, and then cuts the parts P2, P4, P5, and P6.
 以上の説明より分かるように、第1実施形態のレーザ加工方法、加工プログラム作成方法、及びレーザ加工機によれば、切断経路CPa1はその全てが必ずパーツの間の桟に位置し、切断経路CPa1はパーツの外形線に向かうことがない。板金Wを切断経路CPa1の位置で切断してもパーツに跡が付くことはないから、パーツの加工品質を悪化させることはない。 As can be seen from the above description, according to the laser processing method, the processing program creation method, and the laser processing machine of the first embodiment, the cutting path CPa1 is always positioned on the bar between the parts, and the cutting path CPa1 does not point toward the outline of the part. Even if the sheet metal W is cut at the position of the cutting path CPa1, there is no mark on the parts, so the processing quality of the parts is not deteriorated.
 板金Wの切断経路CPa1の位置での切断は、板金Wの一方の端部から他方の端部までの切断であり、しかも、一部のパーツを切断した後に実行される切断である。よって、レーザビームの照射による熱で桟の位置がずれることはほとんどなく、切断経路CPa1の位置での切断が困難になることはない。切断経路CPa1はネスティング前に設定されるものではないので、切断経路CPa1を設定することによって歩留まりを悪化させることはない。 Cutting the sheet metal W at the position of the cutting path CPa1 is cutting from one end of the sheet metal W to the other end, and is a cutting that is performed after cutting a part of the parts. Therefore, the position of the crosspiece is hardly displaced by the heat generated by the irradiation of the laser beam, and cutting at the position of the cutting path CPa1 is not difficult. Since the cutting path CPa1 is not set before nesting, setting the cutting path CPa1 does not deteriorate the yield.
 切断経路CPa1は、板金Wの一方の端部と他方の端部とを繋いでいる。切断経路CPa1が繋ぐ一方の端部を第1の端部、第1の端部と対向する他方の端部を第2の端部とする。切断経路CPa1は、第1の端部上の第1の位置から第2の端部上の第2の位置まで、パーツ間の桟を通るように設定されている。板金Wに、第1の端部と第2の端部とを繋ぐ2つ以上の切断経路が設定されてもよい。 The cutting path CPa1 connects one end and the other end of the sheet metal W. One end connected by the cutting path CPa1 is referred to as a first end, and the other end facing the first end is referred to as a second end. The cutting path CPa1 is set to pass through the bar between the parts from a first position on the first end to a second position on the second end. Two or more cutting paths connecting the first end and the second end may be set in the sheet metal W.
 第1の端部と第2の端部とを結ぶ方向と交差する方向を第3及び第4の端部とする。レーザ加工機30は、概ね、第3の端部側から第4の端部側へと板金Wを加工する。オペレータは、切断経路CPa1に対して第3の端部側に位置する1またはそれ以上のパーツの切断を最初の第1の加工順に設定する。オペレータは、切断経路CPa1での切断を第1の加工順に続く第2の加工順に設定する。オペレータは、切断経路CPa1に対して第4の端部側に位置する1またはそれ以上のパーツを、第2の加工順に続く第3の加工順に設定する。レーザ加工機30は、以上の加工順で板金Wを切断する。 The direction crossing the direction connecting the first end and the second end is defined as the third and fourth ends. The laser processing machine 30 generally processes the sheet metal W from the third end side to the fourth end side. The operator sets cutting of one or more parts located on the third end side with respect to the cutting path CPa1 in the first processing order. The operator sets the cutting along the cutting path CPa1 in the second processing order following the first processing order. The operator sets one or more parts positioned on the fourth end side with respect to the cutting path CPa1 to the third machining order following the second machining order. The laser processing machine 30 cuts the sheet metal W in the above processing order.
 オペレータが第1~第3の加工順を設定する(操作部34の操作に基づいて指定する)代わりに、NC装置31が第1~第3の加工順を操作部34の操作に基づく指定によらず自動的に設定することも可能である。 Instead of the operator setting the first to third machining orders (designating them based on the operation of the operation unit 34), the NC unit 31 designates the first to third machining orders based on the operation of the operation unit 34. It is also possible to set automatically regardless of
<第2実施形態>
 図19は、第2実施形態の加工プログラム作成方法を実行するCAM機器20が加工プログラムを作成する工程を示す概念図である。図19において、CAM機器20は、(a)に示すように、表示部21に、板金画像WiにパーツP21~P25をネスティングしたネスティング画像201を表示する。オペレータは、タッチパネルである操作部22に触れて、板金Wを分割したいおおよその位置を指示する。これにより、CAM機器20には指示された板金Wを分割するおおよその位置が入力される。(b)に示すように、オペレータが触れた位置が直線211の位置であるとする。このとき、オペレータは、パーツP21~P25間の桟の位置にかかわらず分割したい位置を指示してよい。
<Second embodiment>
FIG. 19 is a conceptual diagram showing a process of creating a machining program by the CAM device 20 executing the machining program creation method of the second embodiment. In FIG. 19, the CAM device 20 displays, on the display unit 21, a nesting image 201 in which the parts P21 to P25 are nested in the sheet metal image Wi, as shown in (a). The operator touches the operation unit 22, which is a touch panel, to indicate the approximate position where the sheet metal W is to be split. As a result, the CAM device 20 receives an approximate position for dividing the indicated sheet metal W. FIG. Assume that the position touched by the operator is the position of the straight line 211 as shown in (b). At this time, the operator may indicate the position to be divided regardless of the position of the crosspiece between the parts P21 to P25.
 CAM機器20は、(c)に示すように、直線211に最も近い位置の桟である、パーツP21とパーツP22との間の桟、パーツP22とパーツP23との間の桟、パーツP23とパーツP24との間の桟に切断経路CPa21を設定する。切断経路CPa21は、板金Wの一方の端部から他方の端部までを繋ぐ。CAM機器20は、切断経路CPa21が設定されたネスティング画像202を生成して、表示部21に表示する。 As shown in (c), the CAM device 20 has the crosspiece closest to the straight line 211, that is, the crosspiece between the part P21 and the part P22, the crosspiece between the part P22 and the part P23, the part P23 and the part A cutting path CPa21 is set on the crosspiece between P24. The cutting path CPa21 connects the sheet metal W from one end to the other end. The CAM device 20 generates a nesting image 202 in which the cutting path CPa21 is set, and displays it on the display unit 21. FIG.
 続けて、オペレータは、(d)に示すように、タッチパネルに触れて直線212の位置で板金Wを分割したいおおよその位置を指示する。CAM機器20は、(e)に示すように、直線212に最も近い位置である、パーツP22及びP24とパーツP25との間の桟に切断経路CPa22を設定する。切断経路CPa22は、板金Wの一方の端部から他方の端部までを繋ぐ。CAM機器20は、切断経路CPa21及びCPa22が設定されたネスティング画像203を生成して、表示部21に表示する。 Subsequently, as shown in (d), the operator touches the touch panel to indicate the approximate position where the sheet metal W is to be split at the position of the straight line 212 . The CAM device 20 sets the cutting path CPa22 on the crosspiece between the parts P22 and P24 and the part P25, which is the position closest to the straight line 212, as shown in (e). The cutting path CPa22 connects the sheet metal W from one end to the other end. The CAM device 20 generates a nesting image 203 in which the cutting paths CPa21 and CPa22 are set, and displays it on the display unit 21. FIG.
 CAM機器20は、(f)に示すように、オペレータによって指定された加工順を設定する。オペレータは、パーツP21及びP23の切断をそれぞれ加工順1及び2に設定する。続けて、オペレータは、板金Wの切断経路CPa21の位置での切断を加工順3に設定する。さらに、オペレータは、パーツP22及びP24の切断をそれぞれ加工順4及び5に設定する。続けて、オペレータは、板金Wの切断経路CPa22の位置での切断を加工順6に設定する。最後に、オペレータは、パーツP25の切断を加工順7に設定する。CAM機器20は、板金Wを(f)に示す加工順で切断する加工プログラムを作成する。 The CAM device 20 sets the processing order specified by the operator, as shown in (f). The operator sets the cutting of parts P21 and P23 to processing orders 1 and 2, respectively. Subsequently, the operator sets the cutting of the sheet metal W at the position of the cutting path CPa21 to the processing order 3. As shown in FIG. Furthermore, the operator sets the cutting of parts P22 and P24 to processing orders 4 and 5, respectively. Subsequently, the operator sets the cutting of the sheet metal W at the position of the cutting path CPa22 to the processing order 6 . Finally, the operator sets cutting order 7 for the part P25. The CAM device 20 creates a processing program for cutting the sheet metal W in the processing order shown in (f).
 オペレータが加工順1~7を設定する(操作部22の操作に基づいて指定する)代わりに、CAM機器20が加工順1~7を操作部22の操作に基づく指定によらず自動的に設定することも可能である。 Instead of the operator setting the processing order 1 to 7 (specifying based on the operation of the operation unit 22), the CAM device 20 automatically sets the processing order 1 to 7 regardless of the designation based on the operation of the operation unit 22. It is also possible to
 図20は、第2実施形態の加工プログラム作成方法で実行される処理を示すフローチャートである。CAM機器20は、ステップS21にて、板金Wにパーツをネスティングしたネスティング画像を表示部21に表示する。CAM機器20は、ステップS22にて、オペレータによる分割位置の指示がなされたか否かを判定する。分割位置の指示がなされなければ(NO)、CAM機器20は処理をステップS24に移行させる。 FIG. 20 is a flow chart showing the processing executed in the machining program creation method of the second embodiment. The CAM device 20 displays, on the display unit 21, a nesting image in which parts are nested in the sheet metal W in step S21. In step S22, the CAM device 20 determines whether or not the operator has instructed a division position. If the dividing position is not specified (NO), the CAM device 20 shifts the process to step S24.
 ステップS22にてオペレータによる分割位置の指示がなされれば(YES)、CAM機器20は、ステップS23にて、指示された分割位置に最も近い経路を探索して、探索の結果得られた切断経路を設定する。CAM機器20は、ステップS24にて、オペレータによる加工順の指定がなされたか否かを判定する。加工順の指定がなされなければ(NO)、CAM機器20は処理をステップS22に戻し、ステップS22~S24の処理を繰り返す。 If the division position is designated by the operator in step S22 (YES), the CAM device 20 searches for the route closest to the designated division position in step S23, and set. In step S24, the CAM device 20 determines whether or not the operator has designated the processing order. If the processing order is not specified (NO), the CAM device 20 returns the process to step S22 and repeats the processes of steps S22 to S24.
 ステップS24にて加工順の指定がなされれば(YES)、CAM機器20は、ステップS25にて、複数のパーツ及びオペレータの操作によって加えられた切断経路の加工順を設定する。CAM機器20は、ステップS26にて、加工プログラムを作成して、処理を終了させる。 If the processing order is specified in step S24 (YES), the CAM device 20 sets the processing order of the plurality of parts and the cutting paths added by the operator's operation in step S25. In step S26, the CAM device 20 creates a machining program and terminates the process.
 NC装置31は、以上のようにCAM機器20が作成した加工プログラムに基づいて加工機本体32を制御して、板金Wを切断する。レーザ加工機30(加工機本体32)は、パーツP21及びP23を切断した後に、板金Wを切断経路CPa21の位置で切断する。レーザ加工機30は、板金Wを切断経路CPa21の位置で切断した後に、パーツP22及びP24を切断する。次に、レーザ加工機30は、板金Wを切断経路CPa22の位置で切断し、最後に、パーツP25を切断する。 The NC device 31 cuts the sheet metal W by controlling the processing machine body 32 based on the processing program created by the CAM device 20 as described above. After cutting the parts P21 and P23, the laser processing machine 30 (machine main body 32) cuts the sheet metal W at the position of the cutting path CPa21. The laser processing machine 30 cuts the sheet metal W at the position of the cutting path CPa21, and then cuts the parts P22 and P24. Next, the laser processing machine 30 cuts the sheet metal W at the position of the cutting path CPa22, and finally cuts the part P25.
 第2実施形態のレーザ加工方法、加工プログラム作成方法、及びレーザ加工機によれば、第1実施形態と同様に、歩留まりを悪化させることなく、パーツの端部に跡が付くことなく板金を切断して、板金を分割することができる。 According to the laser processing method, the processing program creation method, and the laser processing machine of the second embodiment, as in the first embodiment, the sheet metal is cut without degrading the yield and leaving marks on the ends of the parts. to split the sheet metal.
 図21は、図19の(c)に示すネスティング画像202に設定された切断経路CPa21の拡大図である。図21に示すように、CAM機器20が切断経路CPa21を設定するとき、パーツP21及びパーツP23から例えば5mm離れた位置に切断経路CPa21を設定したとする。このとき、切断経路CPa21とパーツP22との間の距離D12rが5mmより格段に短く、切断経路CPa21とパーツP22の外形線とが近接しているとする。このような場合、板金Wを切断経路CPa21で切断することができないことがある。そこで、CAM機器20は、板金Wを切断経路CPa21で切断することができず、切断経路CPa21の設定は不可であることを表示部21に表示して、オペレータに切断経路の設定の変更を促すのがよい。 FIG. 21 is an enlarged view of the cutting path CPa21 set in the nesting image 202 shown in (c) of FIG. As shown in FIG. 21, when the CAM device 20 sets the cutting path CPa21, it is assumed that the cutting path CPa21 is set at a position, for example, 5 mm away from the parts P21 and P23. At this time, the distance D12r between the cutting path CPa21 and the part P22 is much shorter than 5 mm, and the cutting path CPa21 and the outline of the part P22 are close to each other. In such a case, the sheet metal W may not be cut along the cutting path CPa21. Therefore, the CAM device 20 displays on the display unit 21 that the sheet metal W cannot be cut along the cutting path CPa21 and that the setting of the cutting path CPa21 is not possible, prompting the operator to change the setting of the cutting path. It's good.
 図22は、パーツP21~P25が板金Wの端部に余裕を有してネスティングされている状態を示すネスティング画像221と、パーツP21~P25の位置をずらした状態のネスティング画像222を示す図である。図22のネスティング画像221で示すように、パーツP21とパーツP22との間の桟の幅が狭く、図21で説明したように、板金Wを切断経路CPa21で切断できないということが起こり得る。パーツP21~P25が板金Wの端部に余裕を有してネスティングされている場合には、CAM機器20は、ネスティング画像222で示すように、パーツP22及びP25の位置をずらしてネスティングし直してもよい。 FIG. 22 shows a nesting image 221 showing a state in which the parts P21 to P25 are nested at the end of the sheet metal W with a margin, and a nesting image 222 in which the positions of the parts P21 to P25 are shifted. be. As shown in the nesting image 221 of FIG. 22, the width of the crosspiece between the parts P21 and P22 is narrow, and as described with reference to FIG. 21, the sheet metal W may not be cut along the cutting path CPa21. When the parts P21 to P25 are nested at the edge of the sheet metal W with a margin, the CAM device 20 shifts the positions of the parts P22 and P25 and re-nestes them as shown in the nesting image 222. good too.
 CAM機器20は、パーツP22とパーツP25とが所定の距離以上離れていれば、パーツP22のみの位置をずらしてネスティングし直してもよい。 If the part P22 and the part P25 are separated from each other by a predetermined distance or more, the CAM device 20 may shift the position of the part P22 only and perform nesting again.
 本発明は以上説明した1またはそれ以上の実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において種々変更可能である。 The present invention is not limited to one or more embodiments described above, and can be modified in various ways without departing from the gist of the present invention.
 本願は、2021年2月3日に日本国特許庁に出願された特願2021-015648号に基づく優先権を主張するものであり、その全ての開示内容は引用によりここに援用される。 This application claims priority based on Japanese Patent Application No. 2021-015648 filed with the Japan Patent Office on February 3, 2021, the entire disclosure of which is incorporated herein by reference.

Claims (6)

  1.  板金に複数のパーツがネスティングされた状態のネスティング画像上で、前記板金の第1の端部上の第1の位置から前記第1の端部と対向する第2の端部上の第2の位置まで、パーツ間の桟を通るように切断経路を設定し、
     前記複数のパーツのうち、前記切断経路に対して前記第1の端部と前記第2の端部とを結ぶ方向と交差する方向の第3の端部側に位置する1またはそれ以上のパーツに第1の加工順を設定し、前記切断経路に前記第1の加工順に続く第2の加工順を設定し、前記複数のパーツのうち、前記切断経路に対して前記第3の端部と対向する第4の端部側に位置する1またはそれ以上のパーツに前記第2の加工順に続く第3の加工順を設定し、
     前記板金にレーザビームを照射して、前記第3の端部側に位置する1またはそれ以上のパーツを切断し、
     その次に、前記板金の前記切断経路の位置にレーザビームを照射して前記板金を前記切断経路の位置で分割し、
     さらにその次に、前記板金にレーザビームを照射して、前記第4の端部側に位置する1またはそれ以上のパーツを切断する
     レーザ加工方法。
    On a nesting image in which a plurality of parts are nested in a sheet metal, a second position on a second end opposite to the first end from a first position on the first end of the sheet metal. Set the cutting path to pass through the crosspieces between the parts to the position,
    Among the plurality of parts, one or more parts located on the third end side in the direction crossing the direction connecting the first end and the second end with respect to the cutting path set the first processing order to the cutting path, set the second processing order following the first processing order to the cutting path, and set the third end portion and the setting a third processing order following the second processing order for one or more parts positioned on the opposing fourth end side;
    irradiating the sheet metal with a laser beam to cut one or more parts located on the third end side;
    Then, a laser beam is applied to the position of the cutting path of the sheet metal to divide the sheet metal at the position of the cutting path;
    Furthermore, the laser processing method further includes irradiating the sheet metal with a laser beam to cut one or more parts located on the fourth end side.
  2.  表示部に、板金に複数のパーツがネスティングされた状態のネスティング画像を表示し、
     前記ネスティング画像上で、前記板金の第1の端部上の第1の位置から前記第1の端部と対向する第2の端部上の第2の位置まで、パーツ間の桟を通るように切断経路を設定し、
     前記複数のパーツのうち、前記切断経路に対して前記第1の端部と前記第2の端部とを結ぶ方向と交差する方向の第3の端部側に位置する1またはそれ以上のパーツに第1の加工順を設定し、前記切断経路に前記第1の加工順に続く第2の加工順を設定し、前記複数のパーツのうち、前記切断経路に対して前記第3の端部と対向する第4の端部側に位置する1またはそれ以上のパーツに前記第2の加工順に続く第3の加工順を設定し、
     設定された加工順で前記板金を切断する加工プログラムを作成する
     加工プログラム作成方法。
    Display a nesting image in which multiple parts are nested in a sheet metal on the display,
    on the nesting image, from a first position on the first end of the sheet metal to a second position on the second end opposite the first end, passing through the crosspiece between the parts set the cutting path to
    Among the plurality of parts, one or more parts located on the third end side in the direction crossing the direction connecting the first end and the second end with respect to the cutting path set the first processing order to the cutting path, set the second processing order following the first processing order to the cutting path, and set the third end portion and the setting a third processing order following the second processing order for one or more parts positioned on the opposing fourth end side;
    A machining program creation method for creating a machining program for cutting the sheet metal in a set machining order.
  3.  NC装置が、
     前記板金を切断して前記複数のパーツを作製するためにCAM機器によって作成された加工プログラムに基づいて、前記表示部に前記ネスティング画像を表示し、
     前記切断経路を設定し、
     前記第1~第3の加工順を設定し、
     前記CAM機器によって作成された前記加工プログラムを前記第1~第3の加工順で前記板金を切断するよう再構成して、再構成された新たな加工プログラムを作成する
     請求項2に記載の加工プログラム作成方法。
    NC device
    displaying the nesting image on the display unit based on a processing program created by a CAM device for cutting the sheet metal to fabricate the plurality of parts;
    setting the cutting path;
    setting the first to third processing orders;
    3. The machining according to claim 2, wherein the machining program created by the CAM device is reconfigured to cut the sheet metal in the first to third machining orders to create a reconfigured new machining program. How to write a program.
  4.  前記複数のパーツの各パーツは、前記ネスティング画像上で、アプローチと、ジョイントを形成するための前記アプローチとは離隔した非閉形状の線分で表されており、
     前記各パーツにおける前記ジョイントを連結し、かつ前記アプローチを削除して、前記各パーツの外形線に相当する閉形状の線分を作成し、
     前記各パーツの閉形状の線分の内側に穴を示す閉形状の線分が存在するときには前記穴を示す閉形状の線分を破棄し、他のパーツの閉形状の線分の内側にパーツの閉形状の線分が存在するときには内側に存在するパーツの閉形状の線分を破棄し、
     残ったパーツの閉形状の線分を設定された幅だけ拡大し、
     拡大されたパーツの閉形状の線分が隣接する拡大されたパーツの閉形状の線分と接触するか互いに部分的に重なっているときには、互いに隣接する拡大された2つのパーツの閉形状の線分を連結して1つのパーツの閉形状の線分を作成し、
     最終的に残った複数のパーツの閉形状の線分間の桟を通る、前記切断経路の候補となる候補経路を設定し、
     前記複数のパーツの前記非閉形状の線分が表されている前記ネスティング画像上に、前記候補経路を表示する
     請求項2または3に記載の加工プログラム作成方法。
    Each part of the plurality of parts is represented on the nesting image by a non-closed line segment that is separated from the approach and the approach for forming a joint;
    Connecting the joints in each part and deleting the approach to create a closed line segment corresponding to the outline of each part;
    When there is a closed-shape line segment indicating a hole inside the closed-shape line segment of each part, the closed-shape line segment indicating the hole is discarded, and the part is placed inside the closed-shape line segment of the other parts. When there is a closed-shaped line segment of , discard the closed-shaped line segment of the part that exists inside
    Expand the closed line segments of the remaining parts by the set width,
    Closed-shape lines of two enlarged parts adjacent to each other when the closed-shape lines of the enlarged parts touch or overlap each other with the closed-shape lines of the adjacent enlarged parts. Create a closed-shaped line segment of one part by connecting the parts,
    Setting a candidate route as a candidate for the cutting route passing through the crosspieces between the closed-shaped line segments of the plurality of parts that are finally left,
    4. The machining program creation method according to claim 2, wherein the candidate paths are displayed on the nesting image in which the line segments of the non-closed shape of the plurality of parts are represented.
  5.  CAM機器が、
     前記ネスティング画像上で、パーツ間の桟の位置にかかわらず入力された前記板金を分割する位置に最も近い、パーツ間の桟を通る経路を探索し、
     探索の結果得られた経路を前記切断経路に設定し、
     前記第1~第3の加工順を設定し、
     前記加工プログラムを作成する
     請求項2に記載の加工プログラム作成方法。
    CAM equipment
    on the nesting image, searching for a path passing through the crosspieces between the parts that is closest to the position where the input sheet metal is to be split, regardless of the position of the crosspieces between the parts;
    setting the route obtained as a result of the search as the cutting route;
    setting the first to third processing orders;
    The machining program creating method according to claim 2, wherein the machining program is created.
  6.  板金を切断する加工機本体と、
     加工プログラムに基づいて前記加工機本体を制御するNC装置と、
     前記NC装置に接続された表示部と、
     前記NC装置に接続された操作部と、
     を備え、
     前記NC装置は、
     前記表示部に、予め作成された加工プログラムに基づいて、板金に複数のパーツがネスティングされた状態のネスティング画像を表示し、
     前記操作部の操作によって、前記ネスティング画像上で、前記板金の第1の端部上の第1の位置から前記第1の端部と対向する第2の端部上の第2の位置まで、パーツ間の桟を通る経路が入力されたとき、入力された経路を切断経路に設定し、
     前記操作部の操作に基づく指定によるか前記指定によらず自動的に、前記複数のパーツのうち、前記切断経路に対して前記第1の端部と前記第2の端部とを結ぶ方向と交差する方向の第3の端部側に位置する1またはそれ以上のパーツに第1の加工順を設定し、前記切断経路に前記第1の加工順に続く第2の加工順を設定し、前記複数のパーツのうち、前記切断経路に対して前記第3の端部と対向する第4の端部側に位置する1またはそれ以上のパーツに前記第2の加工順に続く第3の加工順を設定し、
     前記予め作成された加工プログラムを前記第1~第3の加工順で前記板金を切断するよう再構成して、再構成された新たな加工プログラムを作成し、
     前記板金より前記複数のパーツを作製するときに、前記新たな加工プログラムに基づいて前記加工機本体を制御する
     レーザ加工機。
    a processing machine body for cutting sheet metal;
    an NC device that controls the processing machine main body based on a processing program;
    a display unit connected to the NC device;
    an operation unit connected to the NC device;
    with
    The NC device is
    displaying a nesting image in which a plurality of parts are nested in a sheet metal on the display unit based on a processing program created in advance;
    From a first position on a first end of the sheet metal to a second position on a second end opposite to the first end on the nesting image by operating the operation unit; When a route passing through crosspieces between parts is entered, set the entered route as a cutting route,
    a direction connecting the first end and the second end of the plurality of parts with respect to the cutting path, according to the designation based on the operation of the operation unit or automatically regardless of the designation; A first machining order is set for one or more parts located on a third end side in an intersecting direction, a second machining order following the first machining order is set for the cutting path, and Among the plurality of parts, one or more parts located on the fourth end side facing the third end with respect to the cutting path are subjected to the third processing order following the second processing order. Set,
    reconfiguring the previously created machining program to cut the sheet metal in the first to third machining orders to create a reconfigured new machining program;
    A laser processing machine that controls the processing machine body based on the new processing program when fabricating the plurality of parts from the sheet metal.
PCT/JP2022/002997 2021-02-03 2022-01-27 Laser processing method, processing program creation method, and laser processor WO2022168717A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-015648 2021-02-03
JP2021015648A JP2022118868A (en) 2021-02-03 2021-02-03 Laser processing method, processing program creating method and laser beam machine

Publications (1)

Publication Number Publication Date
WO2022168717A1 true WO2022168717A1 (en) 2022-08-11

Family

ID=82741508

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/002997 WO2022168717A1 (en) 2021-02-03 2022-01-27 Laser processing method, processing program creation method, and laser processor

Country Status (2)

Country Link
JP (1) JP2022118868A (en)
WO (1) WO2022168717A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7398534B1 (en) 2022-09-28 2023-12-14 株式会社アマダ Layout data creation device, layout data creation method, and laser cutting method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05224727A (en) * 1992-02-14 1993-09-03 Amada Co Ltd Automatic programming device for laser machining nc program
JPH08332565A (en) * 1995-06-05 1996-12-17 Komatsu Ltd Method and device for product taking out of heat cutting machine
JPH09285886A (en) * 1996-04-24 1997-11-04 Mitsubishi Electric Corp Automatic programming device for cutting plate
JP2003245838A (en) * 2002-02-20 2003-09-02 Amada Co Ltd Work shooter and method of carrying out product and/or scrap
JP2019171413A (en) * 2018-03-28 2019-10-10 株式会社アマダホールディングス Layout data preparation device and layout data preparation method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05224727A (en) * 1992-02-14 1993-09-03 Amada Co Ltd Automatic programming device for laser machining nc program
JPH08332565A (en) * 1995-06-05 1996-12-17 Komatsu Ltd Method and device for product taking out of heat cutting machine
JPH09285886A (en) * 1996-04-24 1997-11-04 Mitsubishi Electric Corp Automatic programming device for cutting plate
JP2003245838A (en) * 2002-02-20 2003-09-02 Amada Co Ltd Work shooter and method of carrying out product and/or scrap
JP2019171413A (en) * 2018-03-28 2019-10-10 株式会社アマダホールディングス Layout data preparation device and layout data preparation method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7398534B1 (en) 2022-09-28 2023-12-14 株式会社アマダ Layout data creation device, layout data creation method, and laser cutting method
WO2024070449A1 (en) * 2022-09-28 2024-04-04 株式会社アマダ Layout data creating device, layout data creating method, and laser cutting method

Also Published As

Publication number Publication date
JP2022118868A (en) 2022-08-16

Similar Documents

Publication Publication Date Title
EP1563940B1 (en) Method and system for eliminating external piercing in nc cutting of nested parts
WO2022168717A1 (en) Laser processing method, processing program creation method, and laser processor
US9469338B2 (en) Method of, system and computer program for machine cutting several parts of a piece of material using controlling rules and variables for cutting
JP5883656B2 (en) Thermal cutting apparatus and thermal cutting method
JPWO2011125129A1 (en) Machining simulation method and apparatus, and program for causing computer to execute the method
KR101320194B1 (en) Numerical control programming method, apparatus therefor, and recording medium having program for causing a computer to execute the method
US9740189B2 (en) Machining program creating apparatus, machining program creating method, and machining program creating program
WO2019188694A1 (en) Laser processing machine, laser processing method, and processing program creation device
JP4352632B2 (en) CAD / CAM device and scrap cutting line setting method
JP6643439B1 (en) Laser processing method, laser processing apparatus, and method of manufacturing laser processed product
US20220212290A1 (en) Joint amount control device, joint amount control method, joint amount control program, and laser processing machine
KR101548662B1 (en) System and method for part data arrangement
JP2000029915A (en) Blanking method in cad/cam system for plate metal machining and device therefor
WO2022168724A1 (en) Laser machining method, machining program creation method, and laser machine tool
US20230405727A1 (en) Laser processing method, laser processing machine, and processing program creation device
EP4252956A1 (en) Laser machining method, laser machining device, and machining program creation device
JP2005334987A (en) Flattening tool selecting device and flattening tool selecting method
JP3642742B2 (en) Process for picking many perforated products
JP6758441B2 (en) Laser processing machine, laser processing method, and processing program creation device
JP6145336B2 (en) Automatic programming apparatus and method
JPH07136984A (en) Automatic cutting device
JPS62119607A (en) Automatic programming device
JP2005219177A (en) Generation method of router machining trajectory
JP2016034660A (en) Automated programming device for laser processing system
KR20150136902A (en) Loose piece installation method for welded structure

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22749591

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22749591

Country of ref document: EP

Kind code of ref document: A1