WO2022168536A1 - Unmanned aircraft - Google Patents

Unmanned aircraft Download PDF

Info

Publication number
WO2022168536A1
WO2022168536A1 PCT/JP2022/000544 JP2022000544W WO2022168536A1 WO 2022168536 A1 WO2022168536 A1 WO 2022168536A1 JP 2022000544 W JP2022000544 W JP 2022000544W WO 2022168536 A1 WO2022168536 A1 WO 2022168536A1
Authority
WO
WIPO (PCT)
Prior art keywords
unmanned aerial
aerial vehicle
pruning
state
tree
Prior art date
Application number
PCT/JP2022/000544
Other languages
French (fr)
Japanese (ja)
Inventor
薫 梅屋
Original Assignee
エムラインシステム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エムラインシステム株式会社 filed Critical エムラインシステム株式会社
Priority to US17/754,346 priority Critical patent/US11825783B2/en
Publication of WO2022168536A1 publication Critical patent/WO2022168536A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/10Rotorcrafts
    • B64U10/13Flying platforms
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G3/00Cutting implements specially adapted for horticultural purposes; Delimbing standing trees
    • A01G3/02Secateurs; Flower or fruit shears
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C13/00Control systems or transmitting systems for actuating flying-control surfaces, lift-increasing flaps, air brakes, or spoilers
    • B64C13/02Initiating means
    • B64C13/16Initiating means actuated automatically, e.g. responsive to gust detectors
    • B64C13/18Initiating means actuated automatically, e.g. responsive to gust detectors using automatic pilot
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C13/00Control systems or transmitting systems for actuating flying-control surfaces, lift-increasing flaps, air brakes, or spoilers
    • B64C13/02Initiating means
    • B64C13/16Initiating means actuated automatically, e.g. responsive to gust detectors
    • B64C13/20Initiating means actuated automatically, e.g. responsive to gust detectors using radiated signals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENTS OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D45/00Aircraft indicators or protectors not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENTS OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D47/00Equipment not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U30/00Means for producing lift; Empennages; Arrangements thereof
    • B64U30/20Rotors; Rotor supports

Definitions

  • the present invention relates to unmanned aerial vehicles.
  • Pruning By cutting the branches of the trees, pruning is carried out to adjust the shape of the trees. Pruning can improve the appearance of trees. Pruning can improve air circulation in trees. Pruning can allow trees to use nutrients more efficiently. This may promote tree growth. In addition, pruning can prevent the propagation of pests in trees.
  • Tall trees exemplified by cherry blossoms, zelkova, ginkgo, Japanese elm, weeping willow, rowan, etc. can reach a height of 5 meters or more. This may require work at height when pruning tall trees. Working at height requires safety measures to protect the safety of workers. Such safety measures can be a burden on pruning businesses and the like. If tall trees can be pruned using unmanned aerial vehicles (also called UAVs or drones) exemplified by remote-controlled and/or autonomously controlled multi-copters, the burden on business operators, etc. associated with safety measures can be reduced. can be mitigated.
  • unmanned aerial vehicles also called UAVs or drones
  • Patent Document 1 discloses an unmanned aerial vehicle equipped with a fruit cutting unit for assisting in removing fruit from branches. Patent document 1 also discloses pruning shears, saws, scissors, and garden shears as examples of fruit cutting units. According to U.S. Pat. No. 5,400,000, an unmanned aerial vehicle equipped with scissors or the like may be used to remove fruit from the branches of fruit trees.
  • Patent Document 1 does not contain any specific description of safety measures, and there is room for improvement in safety measures.
  • the present invention has been made in view of such circumstances, and an object of the present invention is to provide an unmanned aerial vehicle capable of both having a pruning structure capable of pruning trees and enhancing safety. is.
  • the inventors of the present invention have found a storage structure capable of storing a pruning structure, a storage state in which the pruning structure is stored inside the storage structure, and an appearance outside the storage structure.
  • the present inventors have found that the above object can be achieved by providing a state control unit capable of controlling the state of the pruning structure between the pruning structure and the emerging state, and have completed the present invention.
  • the present invention provides the following.
  • the invention according to a first aspect comprises a pruning structure capable of pruning a tree, an accommodation structure capable of accommodating the pruning structure, an accommodation state in which the pruning structure is accommodated inside the accommodation structure, and an outside of the accommodation structure.
  • a state controller operable to control the state of the pruning structure between the emerge state and the emerge state, wherein the state controller controls the state of the pruning structure to the stowed state upon landing. Offer unmanned aerial vehicles.
  • the unmanned aerial vehicle can prune trees using the pruning structure in the emerging state, which makes the pruning structure appear outside the housing structure.
  • the state controller controls the state of the pruning structure to the stowed state upon landing. Therefore, it is possible to prevent a person or the like from being injured by the pruning structure during landing.
  • an unmanned aerial vehicle that can achieve both the provision of a pruning structure capable of pruning trees and the enhancement of safety.
  • the invention according to a second feature is the invention according to the first feature, wherein the state control unit, when the distance from the unmanned aerial vehicle to the target tree to be pruned is equal to or less than a predetermined distance, Provided is an unmanned aerial vehicle that controls the state of the pruning structure to the exposed state, and controls the state of the pruning structure to the stowed state when the distance from the unmanned aerial vehicle to the target tree exceeds the predetermined distance. .
  • the unmanned aerial vehicle When pruning trees using an unmanned aerial vehicle equipped with a pruning structure, the unmanned aerial vehicle flies around the target tree to be pruned. On the other hand, when the unmanned aerial vehicle flies away from the target tree, the unmanned aerial vehicle does not prune the tree.
  • the state control unit can control the state of the pruning structure to the emerging state when the distance from the unmanned aerial vehicle to the target tree is equal to or less than a predetermined distance. This allows the pruning structure to prune the tree in the emerging state.
  • the state control unit controls the state of the pruning structure to the stowed state when the distance from the unmanned aerial vehicle to the target tree exceeds a predetermined distance. This can further enhance the safety of the unmanned aerial vehicle when trees are not pruned.
  • the invention according to a third feature is the invention according to the first or second feature, further comprising a flight state control unit capable of controlling a flight state of the unmanned aerial vehicle, wherein control of the unmanned aerial vehicle received from the outside is performed. is weaker than a predetermined strength, the state control unit controls the state of the pruning structure to the stowed state, and the flight state when the pruning structure is stowed inside the stowage structure.
  • a flight state control unit capable of controlling a flight state of the unmanned aerial vehicle, wherein control of the unmanned aerial vehicle received from the outside is performed. is weaker than a predetermined strength, the state control unit controls the state of the pruning structure to the stowed state, and the flight state when the pruning structure is stowed inside the stowage structure.
  • An unmanned aerial vehicle is provided, wherein a controller controls the unmanned aerial vehicle to land.
  • the unmanned aerial vehicle By controlling the unmanned aerial vehicle with a control signal from the outside, the safety of the unmanned aerial vehicle can be improved more than when performing autonomous flight without using a control signal from the outside.
  • the unmanned aerial vehicle may not be able to receive a control signal from the outside with a predetermined strength or more due to deterioration of the communication state or the like. If the control signal from the outside cannot be received at a predetermined intensity or more, there is a possibility that the unmanned aircraft cannot be controlled by the control signal from the outside. Therefore, the unmanned aerial vehicle with the pruning structure has room for further improvement in terms of enhancing safety when the control signal from the outside cannot be received at a predetermined intensity or more.
  • the state control unit controls the state of the pruning structure to the stowed state. It is possible to improve the safety when the control signal from is not received at a predetermined intensity or more. Furthermore, since the flight state control unit controls the unmanned aerial vehicle to the landing state when the pruning structure is housed inside the stowage structure, the time during which the unmanned aerial vehicle cannot be controlled by an external control signal is set to the landing state. It can be shorter than without control. Therefore, according to the third aspect of the invention, it is possible to further improve the safety when the external control signal cannot be received at a predetermined intensity or more.
  • the invention according to a fourth feature is the invention according to any one of the first to third features, further comprising a flight state control unit capable of controlling a flight state of the unmanned aerial vehicle, When the distance to humans and/or animals around the unmanned aerial vehicle is less than or equal to a specific distance, the state control unit controls the state of the pruning structure to the stowed state, and the pruning structure is in the stowed state.
  • a flight state control unit capable of controlling a flight state of the unmanned aerial vehicle
  • An unmanned aerial vehicle in flight has a higher potential for injury to humans and/or animals from rotating propellers and/or rotors, etc. than an unmanned aerial vehicle not in flight. Therefore, an unmanned aerial vehicle with a pruning structure could be further improved in terms of increasing safety when there are humans and/or animals around the unmanned aerial vehicle.
  • the state control unit controls the state of the pruning structure to the stowed state. Therefore, safety may be enhanced when there are humans and/or animals around the unmanned aerial vehicle.
  • the flight state controller controls the unmanned aerial vehicle to a landing state when the pruning structure is stowed inside the stowage structure, thereby reducing the possibility of collision between the unmanned aerial vehicle and humans and/or animals during flight. obtain. Therefore, according to the fourth aspect of the invention, it is possible to further improve safety when there are humans and/or animals around the unmanned aerial vehicle.
  • An invention according to a fifth feature is the invention according to any one of the first to fourth features, further comprising an altitude acquisition unit capable of acquiring an altitude, wherein when the altitude is not within a predetermined range,
  • the state controller provides an unmanned aerial vehicle for controlling the state of the pruning structure to the stowed state.
  • Unmanned aerial vehicles with pruning structures can be further improved in terms of increasing the safety of the unmanned aerial vehicle at low altitudes.
  • an unmanned aerial vehicle flying over a high altitude loses control of its flight state and crashes
  • the speed at which the unmanned aerial vehicle will fall will be faster than if the unmanned aerial vehicle is at a low altitude.
  • an unmanned aerial vehicle flying at a high altitude loses control of its flight state and crashes, and the pruned structure collides with a person, etc., the adverse effects of the pruned structure on humans, etc. can be larger. Therefore, an unmanned aerial vehicle with a pruning structure has room for further improvement in terms of increasing safety at high altitudes of the unmanned aerial vehicle.
  • an unmanned aerial vehicle equipped with a pruning structure has room for further improvement in terms of enhancing safety when the unmanned aerial vehicle is at a certain height higher than the height of the target tree.
  • the state control unit controls the state of the pruning structure to the stowed state when the altitude is not within the predetermined range. Safety at high altitudes can be enhanced.
  • an unmanned aerial vehicle that can achieve both the provision of a pruning structure capable of pruning trees and the enhancement of safety.
  • the invention according to a sixth aspect is the invention according to any one of the first aspect to the fifth aspect, further comprising a position acquisition unit capable of acquiring a position of the unmanned aerial vehicle, and presenting the pruning structure.
  • the state control unit controls the state of the pruning structure to the stowed state, and the pruning structure is stowed inside the stowed structure.
  • An unmanned aerial vehicle is provided, wherein the flight state controller sometimes controls the unmanned aerial vehicle to a landing state.
  • the pruning structure does not prune the target tree if the unmanned aerial vehicle is in a position different from the predetermined area where the target tree is located. Therefore, an unmanned aerial vehicle with a pruning structure could be further improved in enhancing the safety of the unmanned aerial vehicle when the unmanned aerial vehicle is in a different location than the predetermined area.
  • the strength of the control signal generally weakens as the distance from the outside to the unmanned aerial vehicle that transmits the control signal increases.
  • the strength of the control signal may decrease. Therefore, the area in which the control signal from the outside can be received at a predetermined intensity or more can be limited to a specific area determined by the distance from the outside and/or the shielding object, etc. from which the control signal is transmitted.
  • the unmanned aerial vehicle cannot be controlled by the control signal from the outside. Therefore, if the unmanned aerial vehicle is located in a position different from the specific area where the control signal from the outside can be received at a predetermined intensity or more, the unmanned aerial vehicle receives the control signal from the outside at a predetermined intensity or more. may not be possible.
  • An unmanned aerial vehicle with a pruning structure and receiving control signals from the outside could be further improved in enhancing the safety of the unmanned aerial vehicle when the unmanned aerial vehicle is in a different location than a specific area.
  • Unmanned aerial vehicles with pruning structures could be further improved in terms of enhancing safety when in locations different from the areas in which such unmanned aerial vehicles can fly.
  • a predetermined area in which the target tree is located a specific area in which a control signal from the outside can be received with an intensity equal to or higher than a predetermined intensity, and/or flight is possible based on laws and ordinances.
  • a revealable area can be defined where the pruning structure can be revealed. Then, it is possible to prevent the unmanned aerial vehicle with the pruning structure from appearing the pruning structure when the unmanned aerial vehicle is at a position different from the visible area. This can further enhance the safety of the unmanned aerial vehicle.
  • the flight state control unit controls the unmanned aerial vehicle to a landing state. can minimize flight time when there is This can further enhance the safety of the unmanned aerial vehicle.
  • an unmanned aerial vehicle that is capable of both having a pruning structure capable of pruning trees and enhancing safety.
  • the invention according to the seventh feature is the invention according to any one of the first to sixth features, and provides an unmanned aerial vehicle that is a multicopter.
  • a multicopter which is a rotorcraft with three or more rotors (rotor blades), can ascend and/or descend by increasing or decreasing the rotation speed of the rotors.
  • the multicopter can tilt its body by making a difference in the rotation speed of each rotor. This allows the multicopter to move forward, backward, and/or turn.
  • Multicopters can control their attitude by controlling the number of rotations of each rotor, so they can achieve higher attitude stability than single-rotor helicopters.
  • the unmanned aerial vehicle is a multi-copter
  • the attitude stability when pruning tree branches can be improved more than when using a single-rotor helicopter. This may prevent the unmanned aerial vehicle from changing attitude and colliding with animals, such as humans, and/or property when pruning with the pruning structure. Therefore, according to the seventh aspect of the invention, it is possible to enhance the safety of the unmanned aerial vehicle with the pruning structure.
  • Pruning structures can add weight to the unmanned aerial vehicle. Accordingly, an unmanned aerial vehicle with pruning structures may be more difficult to land than an unmanned aerial vehicle without pruning structures. If landing is difficult, the possibility of an accident or the like occurring during landing may increase.
  • a multicopter can ascend and/or descend without changing its planar position relative to the ground more easily than a fixed wing aircraft that uses fixed and/or variable wings to obtain lift. This allows multicopters to land more easily than fixed-wing aircraft.
  • the unmanned aerial vehicle is a multicopter, even if the unmanned aerial vehicle has a pruning structure, the unmanned aerial vehicle can be controlled to land more easily than when a fixed-wing aircraft is used. can do This can further reduce the possibility of an accident or the like occurring during landing. Therefore, according to the seventh aspect of the invention, it is possible to enhance the safety of the unmanned aerial vehicle with the pruning structure.
  • an unmanned aerial vehicle that can achieve both the provision of a pruning structure capable of pruning trees and the enhancement of safety.
  • FIG. 1 is a block diagram showing the hardware configuration and software configuration of an unmanned aerial vehicle system 1 of this embodiment.
  • FIG. 2 is a schematic diagram of the unmanned aerial vehicle 2 of the present embodiment when viewed obliquely from above.
  • FIG. 3 is a diagram showing an example of the tree image table 321.
  • FIG. 4 is a diagram showing an example of the neural network table 322.
  • FIG. 5 is a flow chart showing an example of a preferable flow of operation control processing using the control device 3 of this embodiment.
  • FIG. 6 is a flowchart showing an example of a preferred flow of state control processing using the control unit 21 of this embodiment.
  • FIG. 1 is a block diagram showing the hardware configuration and software configuration of an unmanned aerial vehicle system 1 of this embodiment.
  • FIG. 2 is a schematic diagram of the unmanned aerial vehicle 2 of the present embodiment when viewed obliquely from above.
  • FIG. 3 is a diagram showing an example of the tree image table 321.
  • FIG. 4 is a diagram showing an example of
  • FIG. 7 is a flow chart showing an example of a preferred flow of the stowed landing process using the control unit 21 of this embodiment.
  • FIG. 8 is a schematic diagram showing an example of tree pruning using the unmanned aerial vehicle system 1 of this embodiment.
  • FIG. 9 is a schematic diagram showing an example of state control for enhancing safety in the unmanned aerial vehicle 2 of this embodiment.
  • FIG. 1 is a block diagram showing the hardware configuration and software configuration of an unmanned aerial vehicle system 1 of this embodiment.
  • FIG. 2 is a schematic diagram of the unmanned aerial vehicle 2 of the present embodiment when viewed obliquely from above.
  • An example of a preferred configuration of an unmanned aerial vehicle system 1 according to an embodiment of the present invention will be described below with reference to FIGS. 1 and 2.
  • FIG. 1 is a block diagram showing the hardware configuration and software configuration of an unmanned aerial vehicle system 1 of this embodiment.
  • FIG. 2 is a schematic diagram of the unmanned aerial vehicle 2 of the present embodiment when viewed obliquely from above.
  • the unmanned aerial system 1 includes an unmanned aerial vehicle 2 and a control device 3. Each of the unmanned aerial vehicle 2 and the control device 3 is configured to be mutually connectable via a network N.
  • the unmanned aerial vehicle 2 comprises at least a control unit 21 , a flight structure 22 and a pruning structure 23 .
  • the unmanned aerial vehicle 2 preferably has a storage structure 24 that can store the pruning structure 23 therein.
  • the unmanned aerial vehicle 2 comprises a containment structure 24 such that the pruning structure 23 can be contained within the containment structure 24 .
  • the unmanned aerial vehicle 2 preferably has an imaging device 25 . By equipping the unmanned aerial vehicle 2 with the photographing device 25, the target tree can be photographed.
  • the unmanned aerial vehicle 2 include a communication unit 26 that communicatively connects the unmanned aerial vehicle 2 and the control device 3 via the network N.
  • the unmanned aerial vehicle 2 is provided with the communication unit 26 so that the unmanned aerial vehicle 2 can communicate with the control device 3 .
  • the unmanned aerial vehicle 2 preferably includes a power supply unit 27. Since the unmanned aerial vehicle 2 includes the power supply section 27 , electric power can be supplied to each member constituting the unmanned aerial vehicle 2 .
  • the unmanned aerial vehicle 2 include a support structure 28 capable of supporting two or more members of the unmanned aerial vehicle 2 in a predetermined positional relationship.
  • a support structure 28 capable of supporting two or more members of the unmanned aerial vehicle 2 in a predetermined positional relationship.
  • the unmanned aerial vehicle 2 is not particularly limited as long as it can fly.
  • Unmanned aerial vehicles 2 may be, for example, helicopters, balloons, airships, and/or fixed-wing aircraft.
  • the unmanned aerial vehicle 2, which is a helicopter is not particularly limited, and may be a single-rotor helicopter in which the number of rotors (also referred to as rotor blades) that generate main lift is one, a twin-rotor helicopter with two rotor blades, and/or It may be a multicopter with three or more rotor blades.
  • the fixed-wing unmanned aerial vehicle 2 may be a fixed-wing aircraft that uses fixed wings and/or variable wings to obtain lift.
  • the unmanned aerial vehicle 2 is preferably a multicopter.
  • the multicopter can ascend and/or descend by increasing or decreasing the rotation speed of the rotor.
  • the multicopter can tilt its body by making a difference in the rotation speed of each rotor. This allows the multicopter to move forward, backward, and/or turn.
  • Multicopters can control their attitude by controlling the number of rotations of each rotor, so they can achieve higher attitude stability than single-rotor helicopters.
  • the unmanned aerial vehicle 2 is a multi-copter
  • the attitude stability when pruning tree branches can be improved compared to when using a single-rotor helicopter. This can prevent the attitude of the unmanned aerial vehicle 2 from changing when pruning using the pruning structure 23 and moving the position of the pruning structure 23 to a position different from the pruning position. Therefore, the unmanned aerial vehicle 2 being a multicopter can prevent the pruning structure 23 from pruning a position different from the pruning position. This may allow for better trimming of the tree shape.
  • a multicopter can hover at approximately the same position in the air more easily than a fixed wing aircraft that uses fixed and/or variable wings to obtain lift. Since the unmanned aerial vehicle 2 is a multi-copter, it can hover in accordance with the pruning position and control the pruning structure 23 to prune in accordance with the pruning position. This allows the pruning to be more tailored to the pruning location compared to using a fixed wing aircraft. Therefore, the fact that the unmanned aerial vehicle 2 is a multi-copter can make it possible to further shape the trees.
  • Pruning structure 23 may add weight to unmanned aerial vehicle 2 . Accordingly, an unmanned aerial vehicle 2 with a pruning structure 23 may be more difficult to land than an unmanned aerial vehicle 2 without a pruning structure 23 . If landing is difficult, the possibility of an accident or the like occurring during landing may increase.
  • a multicopter can ascend and/or descend without changing its planar position relative to the ground more easily than a fixed wing aircraft that uses fixed and/or variable wings to obtain lift. This allows multicopters to land more easily than fixed-wing aircraft.
  • the unmanned aerial vehicle 2 is a multicopter, even if the unmanned aerial vehicle 2 is equipped with the pruning structure 23, it can be controlled to land more easily than when a fixed-wing aircraft is used. This can further reduce the possibility of an accident or the like occurring during landing. Therefore, by making the unmanned aerial vehicle 2 a multicopter, the safety of the unmanned aerial vehicle 2 with the pruning structure 23 can be enhanced.
  • control unit 21 A control unit 21 controls the flight structure 22 and the pruning structure 23 .
  • the unmanned aerial vehicle 2 includes the control unit 21 so that the unmanned aerial vehicle 2 can control the flight structure 22 to control the flight state of the unmanned aerial vehicle 2 . Further, since the unmanned aerial vehicle 2 includes the control unit 21, the unmanned aerial vehicle 2 can control the pruning structure 23 to prune the target tree.
  • the control unit 21 is not particularly limited.
  • the control unit 21 may be a conventional microcomputer including, for example, a CPU (Central Processing Unit), a RAM (Random Access Memory), and a ROM (Read Only Memory).
  • a CPU Central Processing Unit
  • RAM Random Access Memory
  • ROM Read Only Memory
  • the control unit 21 cooperates with the flight structure 22, the pruning structure 23, the communication unit 26, etc. as necessary to It is preferable that the control unit 211, the state control unit 212, the altitude acquisition unit 213, the position acquisition unit 214, etc. can be realized. This allows the unmanned aerial vehicle 2 to perform a state control process to accommodate the pruning structure 23 in the accommodation structure 24 . State control processing performed by the unmanned aerial vehicle 2 will be described in more detail later with reference to FIGS. 6 and 7. FIG.
  • the control unit 21 can control the flight structure 22, the pruning structure 23, the imaging device 25, etc. according to commands transmitted from the control device 3. Thereby, the flight conditions of the unmanned aerial vehicle 2 and the operation of the pruning structure 23 can be controlled in response to commands sent from the controller 3 .
  • a target tree to be pruned can be photographed, and the photographed tree image can be transmitted to the control device 3.
  • the command transmitted from the control device 3 is not particularly limited, and may be, for example, a command to prune the target tree at the pruning position using the pruning structure 23, a command to move the unmanned aerial vehicle 2, or a command to prune the target tree using the imaging device 25. Examples include a command to shoot and/or a command to land the unmanned aerial vehicle 2 .
  • the flight structure 22 is a structure that gives lift and/or buoyancy to the unmanned aerial vehicle 2 to enable it to fly.
  • the flight structure 22 is not particularly limited.
  • the flight structure 22 is configured to be able to control the flight state of the unmanned aerial vehicle 2 according to control by the control unit 21 .
  • the flight structure 22 When the unmanned aerial vehicle 2 is a balloon and/or an airship, the flight structure 22 preferably includes a balloon portion capable of accommodating gas lighter than air. By including the balloon portion, the unmanned aerial vehicle 2 can be flown by the buoyancy provided by the lighter-than-air gas.
  • the flight structure 22 When the unmanned aerial vehicle 2 is a fixed-wing aircraft, the flight structure 22 includes a propulsion unit capable of moving the unmanned aerial vehicle 2 and a fixed wing and/or variable wing capable of generating lift as the unmanned aerial vehicle 2 moves. is preferably included. This allows the unmanned aerial vehicle 2 to move and generate lift in response to this movement. This lift force allows the unmanned aerial vehicle 2 to fly.
  • the flight structure 22 may include one or more drive units 221 and one or more rotor blades 222 rotated by the drive units 221 .
  • the rotor blade 222 can be rotated using the drive part 221, and a lift force can be obtained. This lift force allows the unmanned aerial vehicle 2 to fly.
  • the number of flight structures 22 is three or more, and each of the three or more flight structures 22 is driven by a drive unit 221 and a drive unit 221. It preferably includes rotating rotor blades 222 . As a result, the rotor blades 222 can be rotated to obtain lift. This lift force allows the unmanned aerial vehicle 2 to fly.
  • Each of the three or more flight structures 22 has a rotor 222 so that the speed of rotation of the rotor 222 can be increased or decreased to ascend and/or descend.
  • the multi-copter can tilt its body by making the rotational speed of each rotor blade 222 different. This allows the multicopter to move forward, backward, and/or turn. Accordingly, the unmanned aerial vehicle 2 may move into position by raising, lowering, advancing, reversing, and/or turning, and the like.
  • each of the three or more flight structures 22 includes the drive section 221 and the rotor blades 222, the drive section 221 can directly rotate the rotor blades 222 without a power distribution device or the like for distributing power. This allows the flight structure 22 to have a simple configuration. Further, since the drive unit 221 rotates the rotor blades 222 without using a power distribution device or the like, the flight state using the flight structure 22 can be controlled by relatively simple control without controlling the power distribution device or the like. .
  • the unmanned aerial vehicle 2 is a multi-copter
  • the number of flight structures 22 is three or more
  • each of the three or more flight structures 22 includes a drive section 221 and a rotor 222 rotated by the drive section 221. do.
  • the flight structure 22 be able to use the power supplied by the power supply section 27 . Thereby, the flight structure 22 can be operated using the power supplied by the power supply unit 27 .
  • FIG. 2 shows a first flight structure 22a, a second flight structure 22b, a third flight structure 22c, and a fourth flight structure 22d as the flight structures 22 that the unmanned aerial vehicle 2 has.
  • Each of these flight structures 22 is connected to a control section 21 and a power supply section 27 which will be described later.
  • the drive unit 221 (reference numerals 221a, 221b, 221c, and 221d in FIG. 2) is controllable by the control unit 21 and is not particularly limited as long as it can rotate the rotor 222.
  • the drive unit 221 preferably includes a motor that rotates the rotor blades 222 using electricity. Since the drive unit 221 includes a motor, the control unit 21 can control the drive unit 221 through relatively easy control via electricity. Then, the number of revolutions of the rotor blades 222 and the like can be controlled. Thereby, the control unit 21 can easily control the flight state of the unmanned aerial vehicle 2 . If the drive unit 221 includes a motor, it is preferable that the drive unit 221 can use power supplied by the power supply unit 27 . Accordingly, the power supplied by the power supply unit 27 can be used to rotate the rotor blades 222 .
  • Rotor 222 (reference numerals 222a, 222b, 222c, and 222d in FIG. 2) can be rotated by the drive unit 221, and are not particularly limited as long as they can generate lift by rotation.
  • Rotor 222 may be, for example, a variable pitch rotor that allows the tilt of the rotor with respect to the direction of rotation to be varied. Since the rotor blade 222 is a variable-pitch rotor blade, the inclination of the rotor blade can be changed according to the rotation speed, and lift can be obtained efficiently.
  • Rotor 222 may be, for example, a fixed pitch rotor with a constant inclination of the rotor with respect to the direction of rotation.
  • the rotor blades 222 are fixed-pitch rotor blades, the rotor blades 222 can have a simpler structure than variable-pitch rotor blades. As a result, the maintainability and/or cost effectiveness of the unmanned aerial vehicle 2 can be improved.
  • the pruning structure 23 is not particularly limited as long as it is a pruning structure capable of pruning trees. Pruning structure 23 may be, for example, a pruning structure that includes one or more structures capable of pruning trees exemplified by scissors, saws, cutters, laser cutters, water cutters, and the like. The pruning structure 23 prunes a pruning tree to be pruned under the control of the control unit 21 .
  • the pruning structure 23 is preferably capable of being contained in the containment structure 24 .
  • the unmanned aerial vehicle 2 can store the pruning structure 23 in the storage structure 24 as necessary, and prevent a person or the like from being injured by the pruning structure.
  • the pruning structure 23 When the pruning structure 23 can be accommodated in the accommodation structure 24, the pruning structure 23 is controllable to a manifestation state in which the pruning structure 23 emerges outside the accommodation structure 24 according to control by the controller 2; Preferably, the pruning structure 23 is controllable to a stowed state in which the pruning structure 23 is stowed inside the stowage structure 24 as controlled by the controller 2 .
  • This allows unmanned aerial vehicle 2 to prune trees using emerging pruning structure 23 .
  • the unmanned aerial vehicle 2 can control the state of the pruning structure 23 to the stowed state to prevent a person or the like from being injured by the pruning structure.
  • the accommodation structure 24 is not particularly limited as long as it can accommodate the pruning structure 23 .
  • the containment structure 24 may be, for example, a structure capable of covering the pruning structure 23 and containing the pruning structure 23 in the containment state.
  • the photographing device 25 is not particularly limited as long as it can generate a tree image obtained by photographing a target tree to be pruned.
  • the photographing device 25 generates a tree image according to a command transmitted from the control device 3 to be described later, and provides the generated tree image to the control device 3 .
  • the photographing device 25 may be, for example, a digital still camera capable of generating still images of trees, a digital camcorder capable of generating moving images of trees, or the like.
  • the communication unit 26 is not particularly limited as long as it connects the unmanned aerial vehicle 2 to the network N and enables communication with the control device 3 .
  • a radio device corresponding to a weak radio station for radio control for example, a radio device corresponding to a specific low power radio station for telemetry and telecontrol, a radio device corresponding to a low power data communication system, an unmanned mobile image Wireless devices corresponding to transmission systems, wireless devices compatible with mobile phone networks, devices compatible with Wi-Fi (Wireless Fidelity) compatible with IEEE802.11, optical wireless devices compatible with optical wireless communication, and wired devices compatible with wired communication Communication units including one or more such as communication devices may be mentioned.
  • Wi-Fi Wireless Fidelity
  • the power supply unit 27 is a power supply unit capable of supplying power to one or more of the members of the aircraft 1 such as the control unit 21, the flight structure 22, the pruning structure 23, the accommodation structure 24, the imaging device 25, and the communication unit 26. is.
  • the power supply unit 27 is not particularly limited, and may be a conventional power supply unit.
  • the power supply unit 27 includes, for example, primary batteries (e.g., dry batteries, wet batteries, etc.), secondary batteries, solar cells, fuel cells, nuclear batteries, all-solid-state batteries, generators (e.g., internal combustion engines and/or external combustion engines). generator, microwave generator, etc.) and a power supply unit including one or more of these.
  • the power supply unit 27 preferably includes batteries exemplified by primary batteries, secondary batteries, and all-solid-state batteries.
  • a battery has a simpler structure than a generator or the like. Therefore, by including a battery in the power supply unit 27, the structure of the power supply unit 27 can be simplified. As a result, the maintainability and/or cost effectiveness of the unmanned aerial vehicle 2 can be improved.
  • the support structure 28 is not particularly limited as long as it is a structure capable of supporting two or more members of the unmanned aerial vehicle 2 in a predetermined positional relationship.
  • the support structure 28 is, for example, a structure capable of supporting the flight structure 22 and the pruning structure 23 in a predetermined positional relationship.
  • the support structure 28 included in the unmanned aerial vehicle 2 includes a control unit 21, a first flight structure 22a, a second flight structure 22b, a third flight structure 22c, a fourth flight structure 22d, a pruning structure 23, and an accommodation structure 24. , the communication unit 26, and the power supply unit 27 in a predetermined positional relationship.
  • a support structure 28 may be provided to support each of these in a predetermined positional relationship.
  • the unmanned aerial vehicle 2 is preferably equipped with a range sensor (not shown) capable of measuring the distance from the unmanned aerial vehicle 2 to target trees, humans and/or animals.
  • the flight state control unit 211 and/or the state control unit 212 can measure the distance from the unmanned aerial vehicle 2 to the target tree, human, and/or animal.
  • the distance sensor is not particularly limited, and may be, for example, a conventional distance sensor capable of measuring the distance to an object using infrared rays, laser light, radio waves, visible light, and/or sound waves.
  • the unmanned aerial vehicle 2 preferably has an altimeter (not shown) capable of measuring the altitude of the unmanned aerial vehicle 2 .
  • the altitude acquisition unit 213 can measure the altitude of the unmanned aerial vehicle 2 .
  • the altimeter is not particularly limited, and may be, for example, a conventional altimeter capable of measuring altitude using atmospheric pressure, radio waves, infrared rays, visible light, and/or laser light.
  • the unmanned aerial vehicle 2 preferably has a positioning unit (not shown) capable of positioning the unmanned aerial vehicle 2 .
  • the position acquisition unit 214 can acquire the position of the unmanned aerial vehicle 2 .
  • the positioning unit is not particularly limited, for example, a global positioning system (Global Positioning System, GPS), positioning equipment using radio waves exemplified by Real-time kinematic (RTK), inertial navigation equipment, and radar equipment It may be a positioning unit using one or more devices capable of positioning positions exemplified by, for example.
  • the control device 3 includes a control section 31 , a storage section 32 , a communication section 33 , a display section 34 and an input section 35 .
  • the control unit 31 includes a CPU (Central Processing Unit), a RAM (Random Access Memory), a ROM (Read Only Memory), and the like.
  • a CPU Central Processing Unit
  • RAM Random Access Memory
  • ROM Read Only Memory
  • the control unit 31 reads a predetermined program and cooperates with the storage unit 32, the communication unit 33, the display unit 34, and/or the input unit 35 as necessary, and is an element of the software configuration in the control device 3.
  • the storage unit 32 Data and files are stored in the storage unit 32 .
  • the storage unit 32 has a data storage unit including members capable of storing data and files exemplified by a semiconductor memory, a recording medium, a memory card, and the like.
  • the storage unit 32 is a mechanism that enables connection with a storage device or storage system such as NAS (Network Attached Storage), SAN (Storage Area Network), cloud storage, file server and/or distributed file system via network N. may have
  • the storage unit 32 stores a control program executed by the microcomputer, a tree image table 321, a neural network table 322, and the like.
  • FIG. 3 is a diagram showing an example of the tree image table 321.
  • the tree image table 321 is a table that stores tree images related to target trees to be pruned.
  • the tree image table 321 stores two or more tree images obtained by photographing the target tree.
  • the control unit 31 can generate tree shape information of the target tree using two or more tree images obtained by photographing the target tree from different directions and a shape generation neural network described later.
  • the tree image table 321 can store tree image IDs that are associated with tree images and that can identify the tree images. Thereby, the control unit 21 can store and/or obtain the tree image using the tree image ID.
  • the tree image table 321 be able to store tree IDs that are associated with tree images and that can identify target trees related to the tree images. Thereby, the control unit 21 can identify the target tree using the tree ID.
  • the tree image table 321 is preferably capable of storing image information associated with tree images. Thereby, the control unit 21 can use the image information regarding the tree image.
  • the image information is not particularly limited, and includes information about the shooting altitude of the tree image, information about the shooting position of the tree image, information about the photographer of the tree image, information about the shooting date of the tree image, information about the shooting time of the tree image, and the like. Information including one or more of various types of information about the tree image exemplified by .
  • the tree image ID "P1" in FIG. 3 stores the tree ID "T1", the tree image of the target tree identified by the tree ID "T1", and image information related to the tree image. Also, in the tree image ID "P2" of FIG. 3, the tree ID "T1" and the target tree identified by the tree ID "T1” are viewed from a direction different from that of the tree image identified by the tree image ID "P1". A photographed tree image and image information related to the tree image are stored.
  • the tree image table 321 stores two or more tree images obtained by photographing the target tree identified by the tree ID "T1" from different directions.
  • the image and shape generation neural network may be used to generate tree shape information for the target tree identified by tree ID "T1".
  • FIG. 4 is a diagram showing an example of the neural network table 322.
  • the neural network table 322 stores at least a shape generation neural network N1 (corresponding to the neural network ID "N1") capable of generating tree shape information of a target tree using two or more tree images.
  • N1 shape generation neural network
  • the neural network table 322 is preferably associated with a neural network and can store neural network IDs that can identify the neural network. Thereby, the control unit 21 can store and/or obtain the neural network using the neural network ID.
  • the neural network table 322 includes a pruning position generation neural network N2 (neural network (corresponding to ID "N2”) is preferably stored. Thereby, the pruning position generating neural network N2 may be used to control the flight conditions of the unmanned aerial vehicle 2 and the operation of the pruning structure 23.
  • N2 pruning position generation neural network
  • the neural network table 322 includes a control information generating neural network capable of controlling the flight state of the unmanned aerial vehicle 2 and the operation of the pruning structure 23 based on the pruning position and the state of control by the motion control unit 318.
  • N3 (corresponding to neural network ID "N3") is preferably stored. Thereby, the control information generating neural network N3 may be used to control the flight conditions of the unmanned aerial vehicle 2 and the operation of the pruning structure 23 .
  • the formats of the shape generation neural network N1, the pruning position generation neural network N2, and the control information generation neural network N3 are not particularly limited. Or information about the activation function that determines the strength of the signal, a weight matrix (also referred to as a weight parameter information about a bias vector that gives a reference weight (also referred to as a bias parameter or simply a bias) to a signal input to an artificial neuron of the neural network, and/or an artificial neuron of the neural network. It may also include a data structure containing information about connection relationships between neurons, and the like.
  • the type of neural network stored in the neural network table 322 is not particularly limited. Alternatively, it is also called ConvNet.), Deep stacking network (also called DSN), RBF network (also called radial basis function network), recurrent neural network (also called recurrent neural network, or RNN) ), modular neural networks, etc. can be stored.
  • ConvNet Deep stacking network
  • RBF also called radial basis function network
  • recurrent neural network also called recurrent neural network, or RNN
  • modular neural networks etc.
  • the neural network table 322 shown in FIG. stored. Storing the neural network ID facilitates obtaining and updating information stored in neural network table 322 . By storing the weight matrices A and B of the neural network, it is possible to perform generation and/or evaluation using the neural network and allow the neural network to perform machine learning.
  • a weight matrix A1 (a matrix containing elements from a111 to a179) and a weight matrix B1 (a matrix containing elements from b111 to b194). N1 is stored.
  • the tree shape information generator 312 can cause the shape generation neural network N1 to generate tree shape information.
  • the shape learning unit 314 can cause the shape generation neural network N1 to perform machine learning of the tree shape information.
  • pruning position generating neural Network N2 is stored.
  • the motion controller 318 may control the flight conditions of the unmanned aerial vehicle 2 and the motion of the pruning structure 23 using the pruning position generating neural network N2.
  • the control information learning unit 319 can machine-learn the flight state of the unmanned aerial vehicle 2 and the operation of the pruning structure 23 to the pruning position generation neural network N2.
  • a control information generation neural network represented by a weight matrix A3 (a matrix containing elements a211 to a249) and a weight matrix B3 (a matrix containing elements b211 to b297) is displayed.
  • Network N3 is stored.
  • the motion controller 318 can control the flight conditions of the unmanned aerial vehicle 2 and the motion of the pruning structure 23 using the control information generating neural network N3.
  • the control information learning unit 319 can cause the control information generation neural network N3 to machine-learn the flight state of the unmanned aerial vehicle 2 and the operation of the pruning structure 23 .
  • the communication unit 33 is not particularly limited as long as it connects the control device 3 to the network N and enables communication with the unmanned aerial vehicle 2 .
  • a radio device corresponding to a weak radio station for radio control for example, a radio device corresponding to a specific low power radio station for telemetry and telecontrol, a radio device corresponding to a low power data communication system, an unmanned mobile image Wireless devices corresponding to transmission systems, wireless devices compatible with mobile phone networks, devices compatible with Wi-Fi (Wireless Fidelity) compatible with IEEE802.11, optical wireless devices compatible with optical wireless communication, and wired devices compatible with wired communication Communication units including one or more such as communication devices may be mentioned.
  • Wi-Fi Wireless Fidelity
  • the display unit 34 is not particularly limited as long as it has a screen display area capable of displaying tree shape information.
  • Examples of the display unit 34 include a display unit having a touch panel, an organic EL display, a liquid crystal display, a monitor, a projector, and the like.
  • the input unit 35 is particularly limited as long as it is an input unit capable of inputting tree shape evaluation related to tree shape information, target shape information related to target trees, pruning positions related to pruning positions, and/or control information related to the unmanned aerial vehicle 2. not.
  • the type of the input unit 35 is not particularly limited. For example, a touch panel, a software keyboard, a microphone that recognizes voice, a communication device that receives input from an external device, a keyboard, a mouse, and one or more buttons. These include input devices, input devices that provide input via one or more rotary switches, and/or input devices that provide input via one or more sticks.
  • the user can input the tree shape evaluation, the target shape information regarding the target tree, the pruning position regarding the pruning position, and/or the control information regarding the unmanned aerial vehicle 2 via the input unit 35. etc. can be entered.
  • FIG. 5 is a flow chart showing an example of a preferable flow of operation control processing using the control device 3 of this embodiment. An example of a preferable procedure of the operation control process executed by the control device 3 will be described below with reference to FIG.
  • Step S1 Acquire Tree Image
  • the control unit 31 cooperates with the storage unit 32 and the communication unit 33 to execute the tree image photographing unit 311 to obtain two or more tree images obtained by photographing the target tree to be pruned from different directions from the unmanned aerial vehicle 2. acquire (step S1).
  • the control unit 31 shifts the process to step S2.
  • tree shape information of the target tree can be generated using the two or more tree images and the shape generation neural network N1.
  • the process of acquiring two or more tree images from the unmanned aerial vehicle 2 includes the process of associating each of the acquired tree images with a tree image ID and storing them in the tree image table 321 .
  • the tree shape generation unit 312 , the tree shape evaluation reception unit 313 , and/or the shape learning unit 314 and the like can acquire the tree images stored in the tree image table 321 .
  • the tree image acquired from the unmanned aerial vehicle 2 is associated with information that enables identification of the target tree.
  • the tree ID for identifying the target tree and the tree image can be associated with each other and stored in the tree image table 321 .
  • the tree image acquired from the unmanned aerial vehicle 2 is associated with image information related to the tree image.
  • the image information and the tree image can be associated and stored in the tree image table 321 .
  • the process of acquiring two or more tree images from the unmanned aerial vehicle 2 preferably includes a process of controlling the flight state of the unmanned aerial vehicle 2 so that the target tree can be photographed from different directions. Thereby, it is possible to control the flight state of the unmanned aerial vehicle 2 and acquire two or more tree images of the target tree photographed from different directions.
  • Step S2 Generate Tree Shape Information
  • the control unit 31 cooperates with the storage unit 32 to execute the tree shape generation unit 312 to generate tree shape information of the target tree using two or more tree images and the shape generation neural network N1 (step S2 ).
  • the control unit 31 shifts the process to step S3. Since the tree shape generator 312 uses two or more tree images photographed from different directions, the shape of the tree can be grasped. Therefore, the tree shape generator 312 can generate tree shape information of trees.
  • the tree shape information generation unit 312 can generate tree shape information for the target tree using the shape generation neural network N1 that can be machine-learned in the shape learning unit 314 . Therefore, the tree shape generation unit 312 using the shape generation neural network N1 can generate more accurate tree shape information than tree shape information generated without using a neural network that has performed machine learning.
  • the process of generating tree shape information preferably includes a process of controlling the display unit 34 to display the generated tree shape information.
  • the tree shape evaluation receiving unit 313 can receive the tree shape evaluation regarding the tree shape information displayed on the display unit 34 from the user of the control device 3 or the like.
  • the process of generating tree shape information preferably includes a process of controlling the communication unit 33 to transmit the generated tree shape information to the outside.
  • the tree shape evaluation receiving unit 313 can receive the tree shape evaluation from the outside that received the tree shape information.
  • Step S3 Determining Whether Tree Shape Evaluation Has Been Received
  • the control unit 31 cooperates with the storage unit 32, executes the tree shape evaluation receiving unit 313, and determines whether or not the tree shape evaluation has been received (step S3).
  • the control unit 31 shifts the process to step S4. If the tree shape evaluation has not been received, the control unit 31 shifts the process to step S5.
  • the shape learning unit 314 can machine-learn the shape of the tree using the received tree shape evaluation.
  • the process of generating the tree shape information includes the process of controlling the display unit 34 to display the generated tree shape information
  • the process of determining whether or not the tree shape evaluation has been received is performed via the input unit 35.
  • the process includes determining whether a tree shape evaluation based on the input information has been received.
  • the shape learning unit 314 can machine-learn the shape of the tree using the tree shape evaluation based on the information input via the input unit 35 .
  • the process of generating tree shape information includes a process of controlling the communication unit 33 to transmit the generated tree shape information to the outside
  • the process of determining whether or not the tree shape evaluation has been received is performed by the communication unit 33.
  • a process is included for determining whether a tree shape evaluation has been received via.
  • the shape learning unit 314 can machine-learn the shape of the tree using the tree shape evaluation received via the communication unit 33 .
  • Step S4 Machine learning of tree shape
  • the control unit 31 cooperates with the storage unit 32, executes the shape learning unit 314, and causes the shape generation neural network N1 to machine-learn the shape of the tree based on the tree image, the tree shape information, and the tree shape evaluation (step S4).
  • the control unit 31 shifts the process to step S5.
  • the shape generation neural network N1 can generate more accurate tree shape information than a neural network that does not undergo machine learning.
  • the control unit 31 preferably executes the processing related to the target shape information executed in steps S5, S6, and S7. As a result, it is possible to more appropriately shape the tree according to the target shape of the tree.
  • Step S5 Determining Whether Target Shape Information Has Been Received
  • the control unit 31 cooperates with the storage unit 32, executes the target shape information receiving unit 315, and determines whether or not the target shape information regarding the target shape of the pruned tree after pruning the target tree has been received. (Step S5). After receiving the target shape information, the control unit 31 shifts the process to step S6. If the target shape information has not been received, the control unit 31 shifts the process to step S8. By determining whether target shape information has been received, the motion controller 318 may control the flight state of the unmanned aerial vehicle 2 and the operation of the pruning structure 23 based on the target shape information.
  • the target shape information is not particularly limited as long as it is information related to the target shape of the pruned tree after pruning the target tree.
  • the target shape information includes, for example, the target three-dimensional shape of the tree after pruning.
  • the target shape information preferably includes the pruning position of the target tree. Thereby, the unmanned aerial vehicle 2 can prune the target tree based on the pruning position of the target tree.
  • Step S6 Control unmanned aerial vehicle based on target shape information
  • the control unit 31 cooperates with the storage unit 32, executes the operation control unit 318, and calculates the flight state of the unmanned aerial vehicle 2 and the pruning structure 23 using the tree shape information, the target shape information, and the pruning position generation neural network N2. is controlled (step S6).
  • the control unit 31 shifts the process to step S7.
  • the processing in step S5 preferably includes processing for executing the pruning position specifying unit 316 and specifying the pruning position using the tree shape information, the target shape information, and the pruning position generation neural network N2.
  • the pruning position can be designated more appropriately using the machine-learned pruning position generation neural network N2.
  • the pruning position is not particularly limited.
  • the pruning position preferably includes an uprooted pruning position capable of pruning uprooted branches (also referred to as basal shoots), which are branches protruding from the root of the target tree.
  • uprooted branches also referred to as basal shoots
  • the target tree after pruning can be a beautiful looking tree with no overhang.
  • the target tree after pruning can have good ventilation at the base. After pruning, the target tree will no longer use nutrients for the tillers, and it will be possible to use nutrients efficiently.
  • pests do not propagate in the tillage of the target tree, and the propagation of pests in the target tree can be prevented.
  • the pruning position preferably includes a branch pruning position that can prune a branch where a number of branches overlap.
  • the target tree after pruning can be a beautiful looking tree with no overgrown branches.
  • ventilation can be improved at locations where there were overgrown branches.
  • the target tree will no longer use nutrients for the bushes, and will be able to use nutrients efficiently.
  • pests do not propagate in the branches, and the propagation of pests in the target tree can be prevented.
  • the pruning position preferably includes an inverted branch pruning position capable of pruning an inverted branch extending toward the trunk.
  • the target tree after pruning can be a beautiful looking tree without upside-down branches. After pruning, the target tree will no longer use upside-down branches to use nutrients, and it will be possible to use nutrients efficiently.
  • pests do not propagate on the upside down branches, and the propagation of pests in the target tree can be prevented.
  • the pruning position preferably includes a downward branch pruning position capable of pruning a downward branch extending substantially downward in the direction of gravity.
  • a downward branch pruning position capable of pruning a downward branch extending substantially downward in the direction of gravity.
  • the pruning position preferably includes a standing branch pruning position capable of pruning a standing branch that extends substantially upward in the direction of gravity.
  • a standing branch pruning position capable of pruning a standing branch that extends substantially upward in the direction of gravity.
  • the pruning position preferably includes a tangle branch pruning position at which tangle branches that are entangled with other branches can be pruned.
  • the target tree after pruning can be a beautiful looking tree without entwining branches.
  • ventilation can be improved at locations where there were tangled branches.
  • the target tree will no longer use nutrients for tangles, and will be able to use nutrients efficiently.
  • pests do not propagate on the entanglement branches, and the propagation of pests in the target tree can be prevented.
  • the pruning position preferably includes a long branch pruning position capable of pruning long, thick branches that extend straight and/or obliquely upward in the direction of gravity.
  • the target tree after pruning can be a beautiful looking tree with no long branches. After pruning, the target tree will no longer use nutrients for long branches, and will be able to use nutrients efficiently. In the target tree after pruning, pests do not propagate on the long branches, and the propagation of pests in the target tree can be prevented.
  • the pruning positions preferably include parallel branch pruning positions capable of pruning parallel branches extending substantially parallel to other branches around other branches.
  • the target tree after pruning can be a beautiful looking tree without parallel branches.
  • ventilation can be improved where there were parallel branches.
  • the target tree can no longer use nutrients for parallel branches, and can use nutrients efficiently.
  • pests do not propagate on parallel branches, and the propagation of pests in the target tree can be prevented.
  • the target shape information receiving unit 315 can receive target shape information regarding the target shape of the pruned tree after pruning the target tree. Accordingly, when controlling the flight state of the unmanned aerial vehicle 2 and the pruning structure 23 in step S6, the motion control unit 318 can control these according to the target shape information. This control is performed in the pruning position learning unit 317 using the pruning position generation neural network N2 capable of machine learning of the pruning position of the tree. Therefore, the motion control unit 318 can control the flight state of the unmanned aerial vehicle 2 and the pruning structure 23 more appropriately than when the machine-learned neural network is not used. Therefore, the unmanned aerial vehicle 2 can more appropriately shape the tree according to the target shape of the tree.
  • Step S7 Machine learning of pruning position
  • the control unit 31 cooperates with the storage unit 32 to execute the pruning position learning unit 317, and based on the tree shape information, the target shape information, and the pruning position, the tree pruning position is machined to the pruning position generation neural network N2. Learn (step S7).
  • the control unit 31 shifts the process to step S10.
  • the pruning position generation neural network N2 can designate the pruning position more appropriately than a neural network that does not perform machine learning.
  • the machine learning in step S7 is performed based on the uprooted pruning position, the ramming branch pruning position, the inverted branch pruning position, the descending branch pruning position, the standing branch pruning position, the tangling branch pruning position, the long branch pruning position, and the parallel branch pruning position.
  • it is machine learning that learns one or more of the exemplary pruning positions. With this, the pruning positions described above can be learned, and the shape of the tree can be further adjusted.
  • Step S8 Specify pruning position
  • the control unit 31 executes the pruning position specifying unit 316 to specify the pruning position of the target tree using the tree shape information (step S8).
  • the control unit 31 shifts the process to step S9.
  • the pruning position specifying unit 316 uses the tree shape information generated without using machine learning. , the pruning position for cutting off tree branches can be more appropriately specified.
  • the pruning positions specified in step S8 are the uprooting pruning position, the ramming branch pruning position, the inverted branch pruning position, the descending branch pruning position, the standing branch pruning position, the tangle branch pruning position, the long branch pruning position, and the parallel branch pruning position. It preferably includes one or more of the pruning locations exemplified by location and the like. This allows the tree to be pruned at the pruning position described above to further shape the tree.
  • the process of specifying the pruning position preferably includes the process of specifying the pruning position based on the information input via the input unit 35.
  • the pruning position specifying unit 316 can specify the pruning position based on the information input via the input unit 35 .
  • the process of specifying the pruning position includes the process of specifying the pruning position based on the information received via the communication unit 33.
  • the pruning position specifying unit 316 can specify the pruning position based on the information received via the communication unit 33 .
  • Step S9 Control unmanned aerial vehicle
  • the control unit 31 executes the operation control unit 318 to control the flight state of the unmanned aerial vehicle 2 and the operation of the pruning structure 23 according to the pruning position (step S9).
  • the control unit 31 shifts the process to step S10.
  • the unmanned aerial vehicle 2 can fly around the pruning position in accordance with the specified pruning position.
  • the pruning structure 23 the tree can be pruned according to the pruning position. Therefore, it is possible to prune the tree by appropriately designating the positions where the branches of the tree are to be cut off, thereby further shaping the tree.
  • the motion control unit 318 controls the flight state of the unmanned aerial vehicle 2 and the operation of the pruning structure 23 based on the pruning position and the control information generating neural network N3. preferably.
  • the control information generation neural network N3 can be machine-learned in the control information learning unit 319. Therefore, the motion control unit 318 can control the flight state of the unmanned aerial vehicle 2 and the motion of the pruning structure 23 more appropriately than control without using a machine-learned neural network. This allows the pruning to be more aligned with the pruning location. Therefore, the unmanned aerial vehicle 2 can further shape the trees.
  • the control unit 31 preferably executes processing for machine learning the control of the unmanned aircraft executed in step S10.
  • Step S10 Machine Learning for Control of Unmanned Aircraft
  • the control unit 31 cooperates with the storage unit 32 to execute the control information learning unit 319 to provide the control information generation neural network N3 with the flight state of the unmanned aerial vehicle 2 based on the pruning position and the state of control by the motion control unit. And the operation of the pruning structure 23 is machine-learned (step S10).
  • the control unit 31 terminates the operation control process and repeats the processes from step S1 to step S10.
  • the motion control unit 318 using the control information generating neural network N3 is more appropriate than when using a neural network that does not undergo machine learning. can control the flight conditions of the unmanned aerial vehicle 2 and the operation of the pruning structure 23. This allows the pruning to be more aligned with the pruning location. Therefore, the unmanned aerial vehicle 2 can further shape the trees.
  • the control device 3 executes the processes from step S1 to step S10 to appropriately specify the pruning position for pruning the tree branches and prune the tree, thereby further shaping the tree.
  • the control device 3 can control the unmanned aerial vehicle 2 having the photographing device 25 capable of photographing trees and the pruning structure 23 capable of pruning trees.
  • an unmanned aerial vehicle system that can prune trees by appropriately designating pruning positions for pruning branches of the trees, and can further shape the trees. can.
  • FIG. 6 is a flowchart showing an example of a preferred flow of state control processing executed by the control unit 21 of this embodiment. An example of a preferred procedure of the state control process executed by the control unit 21 will be described below with reference to FIG.
  • the state control process include the stowage landing process executed in step S11.
  • Step S11 Accommodate landing process
  • the control unit 21 cooperates with the flight structure 22, the pruning structure 23, and/or the containment structure 24, etc. to execute the flight state control unit 211, the state control unit 212, the position acquisition unit 214, etc., and the pruning structure 23.
  • the unmanned aerial vehicle 2 is accommodated in the accommodation structure 24, and accommodation landing processing is executed to control the flight state of the unmanned aerial vehicle 2 to the landing state via the control of the flight structure 22 (step S11).
  • the control unit 21 shifts the process to step S12.
  • the stowage landing process executed in step S11 will be described later in detail with reference to FIG.
  • the control unit 21 executes the stowed landing process, and when the strength of the control signal related to the control of the unmanned aerial vehicle 2 is weaker than a predetermined strength, the If the distance is less than or equal to a certain distance, or if the distance from the unmanned aerial vehicle 2 to animals in the surroundings of the unmanned aerial vehicle 2 is less than or equal to a certain distance, and/or the revealable area that allows the pruning structure 23 to emerge. In various cases where greater safety is required, such as when the unmanned aerial vehicle 2 is in a position different from can be controlled to the landing state. Thereby, the safety of the unmanned aerial vehicle 2 can be enhanced.
  • Step S12 Determining Whether Landing is in Progress
  • the control unit 21 executes the state control unit 212 to determine whether the unmanned aerial vehicle 2 is landing (step S12). If the unmanned aerial vehicle 2 is landing, the control unit 21 shifts the process to step S15. If the unmanned aerial vehicle 2 is not landing, the control unit 21 shifts the process to step S13.
  • the pruning structure 23 may be stowed in the stowage structure 24 when the unmanned aerial vehicle 2 is landing.
  • the state control unit 212 controls the state of the pruning structure 23 to the stowed state during landing. Therefore, a person or the like can be prevented from being injured by the pruning structure 23 during landing.
  • the method of determining whether or not the aircraft is landing is not particularly limited.
  • the means for determining whether or not the unmanned aerial vehicle 2 is landing is, for example, a method of determining that the unmanned aerial vehicle 2 is being landed when a command to land the unmanned aerial vehicle 2 is received, and/or a method of determining that the unmanned aerial vehicle 2 is landing when the altitude of the unmanned aerial vehicle 2 is below a predetermined altitude.
  • the state control process include a process of determining whether or not the altitude is within a predetermined range, which is executed in step S13.
  • Step S13 Determining Whether Altitude is Within a Predetermined Range
  • the control unit 21 cooperates with the altimeter to execute the altitude acquisition unit 213 to determine whether the altitude of the unmanned aerial vehicle 2 is within a predetermined range (step S13). If the altitude of the unmanned aerial vehicle 2 is within the predetermined range, the control unit 21 shifts the process to step S14. If the altitude of the unmanned aerial vehicle 2 is not within the predetermined range, the control unit 21 shifts the process to step S15.
  • the pruning structure 23 can be accommodated in the containment structure 24 when the altitude of the unmanned aerial vehicle 2 is not within the predetermined range.
  • the unmanned aerial vehicle 2 with the pruning structure 23 has room for further improvement in terms of enhancing safety when the unmanned aerial vehicle 2 is at a low altitude.
  • the unmanned aerial vehicle 2 flying over a high altitude loses control of its flight state and crashes
  • the speed at which the unmanned aerial vehicle 2 falls will be faster than when the unmanned aerial vehicle 2 is at a low altitude.
  • the unmanned aerial vehicle 2 flying over a high altitude loses control of its flight state and crashes
  • the pruning structure 23 collides with a person or the like
  • the adverse effects of the pruning structure 23 on the person or the like are as follows. At lower altitudes it can be larger. Therefore, the unmanned aerial vehicle 2 with the pruning structure 23 has room for further improvement in terms of enhancing safety when the unmanned aerial vehicle 2 is at a high altitude.
  • the distance from the unmanned aerial vehicle 2 to the target tree is greater than the distance at which the pruning structure 23 can prune the tree. If the distance from the unmanned aerial vehicle 2 to the target tree is greater than the distance at which the tree can be pruned, the pruning structure 23 does not prune the tree. Therefore, the unmanned aerial vehicle 2 equipped with the pruning structure 23 has room for further improvement in terms of enhancing safety when the unmanned aerial vehicle 2 is higher than the height of the target tree by a certain level or more.
  • the state control unit 212 determines the state of the pruning structure 23 by the processing executed in step S16, which will be described later. Control to the stowed state can enhance safety when the altitude of the unmanned aerial vehicle 2 is low and safety when the altitude of the unmanned aerial vehicle 2 is high.
  • the state control processing executed in steps S14 and S15 determines whether or not the distance to the target tree is equal to or less than a predetermined distance, and changes the state of the pruning structure 23 to the emerging state. It preferably includes a series of controlling processes.
  • Step S14 Determining whether the distance to the target tree is equal to or less than a predetermined distance
  • the control unit 21 cooperates with the distance sensor to execute the state control unit 212, and determines whether or not the distance from the unmanned aerial vehicle 2 to the target tree is equal to or less than a predetermined distance (step S14). If the distance is less than or equal to the predetermined distance, the control unit 21 shifts the process to step S15. If the distance is not equal to or less than the predetermined distance, the control unit 21 shifts the process to step S16.
  • the state control unit 212 sets the appearance state in which the pruning structure 23 appears outside the housing structure 24 by the processing executed in step S15, which will be described later. can control the condition of the pruning structure 23 at any time. This allows the pruning structure 23 to prune the tree in the emerging state.
  • the state control unit 212 changes the pruning structure 23 into the storage state in which the pruning structure 23 is stored inside the storage structure 24 by the processing executed in step S16, which will be described later.
  • 23 states can be controlled. This can further enhance the safety of the unmanned aerial vehicle 2 when trees are not pruned.
  • Step S15 Control the State of the Pruning Structure to the Revealed State
  • the control unit 21 cooperates with the pruning structure 23 and/or the containing structure 24 to execute the state control unit 212 to control the state of the pruning structure 23 to the exposed state (step S15).
  • the control unit 21 terminates the state control process and repeats the processes from step S11 to step S16.
  • pruning structure 23 can prune trees in the emerging state.
  • Step S16 Control the State of the Pruning Structure to the Accommodated State
  • the control unit 21 cooperates with the pruning structure 23 and/or the containing structure 24 to execute the state control unit 212 to control the state of the pruning structure 23 to the containing state (step S16).
  • the control unit 21 terminates the state control process and repeats the processes from step S11 to step S16.
  • FIG. 7 is a flow chart showing an example of a preferred flow of the stowage landing process executed in step S11 of FIG. An example of a preferred procedure for stowage landing processing will be described below with reference to FIG.
  • the stowage landing process includes a process of determining whether or not the strength of the control signal is weaker than a predetermined strength, which is executed in step S21, and a process of determining whether or not the distance to a person, etc., is less than or equal to a specific distance, which is executed in step S22. and a process of determining whether or not the position is different from the presentable area executed in step S23.
  • Step S21 Determining whether or not the strength of the control signal is weaker than a predetermined strength
  • the control unit 21 cooperates with the communication unit 26 to execute the state control unit 212, and determines whether the strength of the control signal for controlling the unmanned aerial vehicle 2 is weaker than a predetermined strength (step S21). If the strength of the control signal is weaker than the predetermined strength, the control section 21 shifts the process to step S24. If the strength of the control signal is not weaker than the predetermined strength, the control section 21 shifts the process to step S22.
  • the safety of the unmanned aerial vehicle 2 can be improved more than when performing autonomous flight without using a control signal from the outside.
  • the unmanned aerial vehicle 2 may not be able to receive the control signal from the outside with a predetermined strength or more due to deterioration of the communication state or the like. If the control signal from the outside cannot be received with an intensity equal to or higher than a predetermined intensity, there is a possibility that the unmanned aerial vehicle 2 cannot be controlled by the control signal from the outside. Therefore, the unmanned aerial vehicle 2 having the pruning structure 23 has room for further improvement in terms of enhancing safety when the control signal from the outside cannot be received at a predetermined intensity or more.
  • steps S24 and S25 which will be described later, are performed. may control the state of the pruning structure 23 to the stowed state and the flight state of the unmanned aerial vehicle 2 to the landed state. As a result, it is possible to further improve the safety when the control signal from the outside cannot be received at a predetermined intensity or more.
  • Step S22 Determining whether the distance to a human or the like is equal to or less than a specific distance
  • the control unit 21 cooperates with the distance sensor to execute the state control unit 212 to determine whether the distance from the unmanned aerial vehicle 2 to humans and/or animals is equal to or less than a specific distance (step S222). If the distance is less than or equal to the specific distance, the control unit 21 shifts the process to step S24. If the distance is not equal to or less than the specific distance, the control unit 21 shifts the process to step S23.
  • the unmanned aerial vehicle 2 with the pruning structure 23 has room for further improvement in terms of increasing safety when there are humans and/or animals around the unmanned aerial vehicle 2 .
  • the processing executed in steps S24 and S25 described later changes the state of the pruning structure 23 into the stowed state. and control the flight state of the unmanned aerial vehicle 2 to the landing state. This can further enhance safety when the distance from the unmanned aerial vehicle 2 to humans and/or animals around the unmanned aerial vehicle 2 is equal to or less than a specific distance.
  • Step S23 Determining whether the position is different from the visible area
  • the control unit 21 cooperates with the positioning unit to execute the position obtaining unit 214, and determines whether the position of the unmanned aerial vehicle 2 is different from the possible appearance area in which the pruning structure 23 can appear (step S223). If the position is different from the reappearable area, the control unit 21 shifts the process to step S24. If the position is not different from the possible appearance area, the control unit 21 ends the stowage landing process, and shifts the process to step S12.
  • the pruning structure 23 does not prune the target tree when the unmanned aerial vehicle 2 is in a position different from the predetermined area where the target tree is located. Therefore, the unmanned aerial vehicle 2 with the pruning structure 23 has room for further improvement in terms of increasing the safety of the unmanned aerial vehicle 2 when the unmanned aerial vehicle 2 is in a position different from the predetermined area.
  • the strength of the control signal generally weakens as the distance from the outside to the unmanned aerial vehicle 2 that transmits the control signal increases.
  • the strength of the control signal may decrease. Therefore, the area where the unmanned aerial vehicle 2 can receive a control signal from the outside with an intensity equal to or higher than a predetermined intensity can be limited to a specific area determined by the distance from the outside where the control signal is transmitted and/or a shield. .
  • the unmanned aerial vehicle 2 cannot be controlled by the control signal from the outside. Therefore, when the unmanned aerial vehicle 2 is located in a position different from the specific area where the control signal from the outside can be received at a predetermined intensity or more, the unmanned aerial vehicle 2 receives the control signal from the outside at a predetermined intensity or more. may not be received.
  • the unmanned aerial vehicle 2 with the pruning structure 23 and receiving control signals from the outside could be further improved in terms of increasing the safety of the unmanned aerial vehicle 2 when the unmanned aerial vehicle 2 is in a different location than the specific area.
  • an unmanned aerial vehicle 2 with a pruning structure 23 could be further improved in terms of increasing safety when such an unmanned aerial vehicle 2 is in a position different from the flightable area.
  • the pruning structure 23 is currently selected based on a predetermined area where the target tree is present, a specific area in which a control signal from the outside can be received at a predetermined intensity or more, and/or a flightable area based on laws and regulations.
  • a renderable region may be defined that is visible.
  • Step S24 Control the State of the Pruning Structure to the Accommodated State
  • the control unit 21 cooperates with the pruning structure 23 and/or the containing structure 24 to execute the state control unit 212 to control the state of the pruning structure 23 to the containing state (step S24).
  • the control unit 21 shifts the process to step S25 when the pruning structure 23 is housed inside the housing structure 24 .
  • Step S25 Control Flight State to Landing State
  • the control unit 21 cooperates with the pruning structure 23 and/or the accommodation structure 24 to execute the flight state control unit 211 to control the flight state of the unmanned aerial vehicle 2 to the landing state (step S24).
  • the control unit 21 shifts the process to step S25.
  • the flight state control unit 211 controls the unmanned aerial vehicle 2 to land.
  • the flight time of the unmanned aerial vehicle 2 can be minimized when predetermined conditions are met in S22 and/or S23. Thereby, the safety of the unmanned aerial vehicle 2 can be further enhanced.
  • FIG. 8 is a schematic diagram showing an example of tree pruning using the unmanned aerial vehicle system 1 of this embodiment.
  • FIG. 9 is a schematic diagram showing an example of state control for enhancing safety in the unmanned aerial vehicle 2 of this embodiment.
  • a usage example of the unmanned aerial vehicle system 1 of this embodiment will be described with reference to FIGS. 8 and/or 9 as necessary.
  • a user starts using the unmanned aerial system 1 .
  • the control device 3 commands the unmanned aerial vehicle 2 to photograph the target tree T1 to be pruned via the network N.
  • the control device 3 controls the flight state of the unmanned aerial vehicle 2 so that the target tree T1 can be photographed from different directions, and obtains two or more tree images obtained by photographing the target tree T1 from different directions.
  • the control device 3 generates tree shape information based on two or more tree images, and controls the display unit 34 to display the generated tree shape information.
  • the user performs tree shape evaluation on the tree shape information displayed on the display unit 34 and transmits the tree shape evaluation to the control device 3 via the input unit 35 .
  • the control device 3 machine-learns the tree shape using the tree shape evaluation.
  • the user transmits target shape information regarding the target shape of the pruned tree T2 obtained by pruning the target tree T1 to the control device 3 via the input unit 35 .
  • the unmanned aerial vehicle 2 moves around the target tree T1. As a result, the distance from the unmanned aerial vehicle 2 to the target tree T1 is less than or equal to the predetermined distance. Therefore, the unmanned aerial vehicle 2 controls the pruning structure 23 to the exposed state. The unmanned aerial vehicle 2 prunes the target tree T1 based on the target shape information.
  • FIG. 8 is a schematic diagram showing an example of tree pruning using the unmanned aerial vehicle system 1 of this embodiment.
  • the target tree T1 has branches B that require pruning (elevated branches Ba, rammed branches Bb, inverted branches Bc, descending branches Bd, standing branches Be, twining branches Bf, long branches Bg, parallel branches Bh, etc.).
  • the control device 3 sets one or more of the branches B that require pruning to pruning positions P (backward pruning position Pa, incoming branch pruning position Pb, inverted branch pruning position Pc, descending branch pruning position Pd, standing branch pruning position Pe , tangle branch pruning position Pf, long branch pruning position Pg, and parallel branch pruning position Ph, etc.).
  • the target tree T1 after pruning can be a beautiful looking tree without the setback Ba.
  • the target tree T1 after pruning can be well ventilated at the root Ta. After pruning, the target tree T1 is no longer used for nutrients by the sillage Ba, and may be able to use nutrients efficiently.
  • pests do not propagate in the sillage Ba, and the propagation of pests in the target tree T1 can be prevented.
  • the target tree T1 after pruning can be a beautiful looking tree without the branch Bb.
  • ventilation can be improved at the location where the branch Bb was present.
  • the target tree T1 is no longer used for nutrients by the branch Bb, and can efficiently use the nutrients.
  • pests do not propagate in the branches Bb, and the propagation of pests in the target tree T1 can be prevented.
  • the target tree T1 after pruning can be a beautiful looking tree without the upside-down branches Bc. After pruning, the target tree T1 no longer uses nutrients for the upside-down branches Bc, and can efficiently use the nutrients. In the target tree T1 after pruning, pests do not propagate on the upside down branches Bc, and the propagation of pests in the target tree T1 can be prevented.
  • the target tree T1 after pruning can be a beautiful looking tree without descending branches Bd. After pruning, the target tree T1 is no longer used for nutrients by the descending branches Bd, and can efficiently use the nutrients. In the target tree T1 after pruning, pests do not propagate in the descending branches Bd, and the propagation of pests in the target tree T1 can be prevented.
  • the target tree T1 after pruning can be a beautiful looking tree with no standing branches Be. After pruning, the target tree T1 does not use nutrients for the standing branches Be, and can efficiently use the nutrients. In the target tree T1 after pruning, pests do not propagate on the standing branches Be, and propagation of pests in the target tree T1 can be prevented.
  • the target tree T1 after pruning can be a beautiful looking tree without the entanglement branch Bf. In addition, it is possible to improve the ventilation at the location where the tangling branch Bf was. After pruning, the target tree T1 no longer uses nutrients for the entwining branches Bf, and can efficiently use the nutrients. In the target tree T1 after pruning, pests do not propagate on the entanglement branches Bf, and the propagation of pests in the target tree T1 can be prevented.
  • the target tree T1 after pruning can be a beautiful looking tree with no long branches Bg. After pruning, the target tree T1 no longer uses nutrients for the long branches Bg, and can efficiently use the nutrients. In the target tree T1 after pruning, pests do not propagate in the long branches Bg, and the propagation of pests in the target tree T1 can be prevented.
  • the target tree T1 after pruning can be a beautiful looking tree without the parallel branches Bh.
  • ventilation can be improved at locations where the parallel branches Bh were present.
  • no nutrients are used by the parallel branches Bh, and the nutrients can be used efficiently.
  • pests do not propagate in the parallel branches Bh, and the propagation of pests in the target tree T1 can be prevented.
  • the control device 3 controls branches B requiring pruning exemplified by overhang Ba, ramming branch Bb, inverted branch Bc, descending branch Bd, standing branch Be, entwining branch Bf, long branch Bg, and parallel branch Bh.
  • pruning pruning position Pa nesting branch pruning position Pb, inverted branch pruning position Pc, descending branch pruning position Pd, standing branch pruning position Pe, tangling branch pruning position Pf, long branch pruning position Pg, and parallel branches
  • pruning position Ph exemplified by pruning position Ph, etc.
  • the target tree T1 is pruned with one or more of the branches B that require pruning. It becomes the rear tree T2. Therefore, the appearance of the target tree T1 can be made beautiful. Also, the ventilation in the target tree T1 can be improved. The target tree T1 can be able to use nutrients efficiently. The growth of the target tree T1 can be promoted. In addition, it is possible to prevent the propagation of pests in the target tree T1.
  • FIG. 9 is a schematic diagram showing an example of state control for enhancing safety in the unmanned aerial vehicle 2 of this embodiment.
  • a user using the unmanned aerial system 1 commands the unmanned aerial vehicle 2 to move via the control device 3 .
  • the unmanned aerial vehicle 2 moves.
  • a distance D from the unmanned aerial vehicle 2 after movement to the tree T2 after pruning is greater than a predetermined distance.
  • the unmanned aerial vehicle 2 controls the pruning structure 23 to be stowed.
  • the pruning structure 23 is housed in the housing structure 24 .
  • the pruning structure 23 is housed inside the housing structure 24 . Therefore, when viewing the unmanned aerial vehicle 2 from the outside, the unmanned aerial vehicle 2 is in a state where the pruning structure 23 housed inside the housing structure 24 cannot be seen. This can further enhance the safety of the unmanned aerial vehicle 2 when trees are not pruned.
  • a user using the unmanned aerial system 1 commands the unmanned aerial vehicle 2 to land via the control device 3 .
  • the unmanned aerial vehicle 2 controls the pruning structure 23 to be stowed.
  • the pruning structure 23 is housed in the housing structure 24 . This can prevent a person or the like from being injured by the pruning structure 23 during landing.
  • the unmanned aerial vehicle 2 controls the pruning structure 23 to be stowed.
  • the controller 21 controls the pruning structure 23 to accommodate the pruning structure 23 in the accommodation structure 24 . This can improve safety when the altitude of the unmanned aerial vehicle 2 is low and safety when the altitude of the unmanned aerial vehicle 2 is high.
  • the unmanned aerial vehicle 2 controls the pruning structure 23 to be in the stowed state.
  • the controller 21 controls the pruning structure 23 to accommodate the pruning structure 23 in the accommodation structure 24 .
  • the control unit 21 controls the flight state of the unmanned aerial vehicle 2 to the landing state.
  • the unmanned aerial vehicle 2 controls the pruning structure 23 to be in the stowed state.
  • the controller 21 controls the pruning structure 23 to accommodate the pruning structure 23 in the accommodation structure 24 .
  • the control unit 21 controls the flight state of the unmanned aerial vehicle 2 to the landing state. This can further enhance safety when the distance from the unmanned aerial vehicle 2 to humans and/or animals around the unmanned aerial vehicle 2 is equal to or less than a specific distance.
  • the unmanned aerial vehicle 2 controls the pruning structure 23 to be in the stowed state.
  • the controller 21 controls the pruning structure 23 to accommodate the pruning structure 23 in the accommodation structure 24 .
  • the control unit 21 controls the flight state of the unmanned aerial vehicle 2 to the landing state. This can further enhance safety when the position of the unmanned aerial vehicle 2 is different from the reappearable area.
  • the present invention is not limited to the above-described embodiments.
  • the effects described in the above-described embodiments are merely a list of the most preferable effects produced by the present invention, and the effects of the present invention are not limited to those described in the above-described embodiments. do not have.
  • the above-described embodiments have been described in detail in order to explain the present invention in an easy-to-understand manner, and are not necessarily limited to those having all the configurations described.
  • unmanned aerial vehicle system unmanned aerial vehicle 21 control unit 211 flight state control unit 212 state control unit 213 altitude acquisition unit 214 position acquisition unit 22 flight structure 221 drive unit 222 rotor 23 pruning structure 24 accommodation structure 25 imaging device 26 communication unit 27 power supply Unit 28 Support structure 3 Control device 31 Control unit 311 Tree image photographing unit 312 Tree shape information generation unit 313 Tree shape evaluation reception unit 314 Shape learning unit 315 Target shape information reception unit 316 Pruning position specifying unit 317 Pruning position learning unit 318 Operation control Unit 319 Control information learning unit 32 Storage unit 321 Tree image table 322 Neural network table 33 Communication unit 34 Display unit 35 Input unit B Branch requiring pruning D Distance N Network N1 Shape generation neural network N2 Pruning position generation neural network N3 Control Information generating neural network P Pruning position T1 Target tree T2 Pruned tree

Abstract

[Problem] To provide an unmanned aircraft which can comprise a pruning structure that can prune trees, and that can increasing safety. [Solution] This unmanned aircraft 2 comprises: a pruning structure 23 that can prune trees; a storage structure 24 that can store the pruning structure 23; and a state control unit 212 which can control the state of the pruning structure 23 so as to switch between a storage state in which the pruning structure 23 is stored in the storage structure 24, and an appearance state in which same appears outside the storage structure 24. The state control unit 212 controls the state of the pruning structure 23 to be the storage state when landing. When the distance D from the unmanned aircraft 2 to a target tree T1 to be pruned is a predetermined distance or less, the state control unit 212 preferably controls the state of the pruning structure 23 to be the appearance state, and when the distance D to the target tree T1 exceeds the predetermined distance, the state control unit preferably controls the state of the pruning structure 23 to be the storage state.

Description

無人航空機unmanned aerial vehicle
 本発明は、無人航空機に関する。 The present invention relates to unmanned aerial vehicles.
 樹木の枝を切ることにより、樹木の形状を整える剪定が行われている。剪定を行うことにより、樹木の見た目を美しくできる。剪定を行うことにより、樹木における風通しを良くし得る。剪定を行うことにより、樹木が養分を効率よく利用できるようになり得る。これにより、樹木の生長が促進され得る。また、剪定を行うことにより、樹木における病害虫の繁殖を予防し得る。 By cutting the branches of the trees, pruning is carried out to adjust the shape of the trees. Pruning can improve the appearance of trees. Pruning can improve air circulation in trees. Pruning can allow trees to use nutrients more efficiently. This may promote tree growth. In addition, pruning can prevent the propagation of pests in trees.
 サクラ、ケヤキ、イチョウ、ハルニレ、シダレヤナギ、及びナナカマド等によって例示される高木は、その高さが5メートル以上になり得る。これにより、樹木のうち高木を剪定する場合、高所での作業が必要となり得る。高所での作業では、作業者の安全を守る安全対策が必要とされる。このような安全対策は、剪定を行う事業者等の負担となり得る。遠隔操作及び/又は自律制御が可能なマルチコプター等によって例示される無人航空機(unmanned aerial vehicle、UAV、あるいはドローンとも称する。)を用いて高木を剪定できれば、安全対策に伴う事業者等の負担を軽減し得る。 Tall trees exemplified by cherry blossoms, zelkova, ginkgo, Japanese elm, weeping willow, rowan, etc., can reach a height of 5 meters or more. This may require work at height when pruning tall trees. Working at height requires safety measures to protect the safety of workers. Such safety measures can be a burden on pruning businesses and the like. If tall trees can be pruned using unmanned aerial vehicles (also called UAVs or drones) exemplified by remote-controlled and/or autonomously controlled multi-copters, the burden on business operators, etc. associated with safety measures can be reduced. can be mitigated.
 無人航空機を用いて樹木の一部を切る工夫の例として、特許文献1は、果物を枝から取り去るのを補助するための果物カットユニットを備える無人航空機を開示している。また、特許文献1は、果物カットユニットの例として、剪定ばさみ、のこぎり、はさみ、及び植木ばさみを開示している。特許文献1によれば、はさみ等を備える無人航空機を用いて、果樹の枝から果物を取り去り得る。 As an example of a device for cutting a part of a tree using an unmanned aerial vehicle, Patent Document 1 discloses an unmanned aerial vehicle equipped with a fruit cutting unit for assisting in removing fruit from branches. Patent document 1 also discloses pruning shears, saws, scissors, and garden shears as examples of fruit cutting units. According to U.S. Pat. No. 5,400,000, an unmanned aerial vehicle equipped with scissors or the like may be used to remove fruit from the branches of fruit trees.
特表2019-532666号公報Japanese Patent Publication No. 2019-532666
 ところで、無人航空機がはさみ及びのこぎり等によって例示される剪定機構を備える場合、安全対策を要する。特許文献1には、安全対策に関する具体的な記載がなく、安全対策において改良の余地がある。 By the way, when an unmanned aerial vehicle is equipped with a pruning mechanism exemplified by scissors and a saw, safety measures are required. Patent Document 1 does not contain any specific description of safety measures, and there is room for improvement in safety measures.
 本発明は、このような事情に鑑みてなされたものであり、その目的は、樹木を剪定可能な剪定構造を備えることと安全性を高めることとの両方を実現可能な無人航空機を提供することである。 SUMMARY OF THE INVENTION The present invention has been made in view of such circumstances, and an object of the present invention is to provide an unmanned aerial vehicle capable of both having a pruning structure capable of pruning trees and enhancing safety. is.
 本発明者らは、上記課題を解決するために鋭意検討した結果、剪定構造を収容可能な収容構造と、この剪定構造が収容構造の内部に収容される収容状態と収容構造の外部に現出される現出状態との間で剪定構造の状態を制御可能な状態制御部とを備えることで、上記の目的を達成できることを見出し、本発明を完成させるに至った。具体的に、本発明は以下のものを提供する。 As a result of intensive studies to solve the above problems, the inventors of the present invention have found a storage structure capable of storing a pruning structure, a storage state in which the pruning structure is stored inside the storage structure, and an appearance outside the storage structure. The present inventors have found that the above object can be achieved by providing a state control unit capable of controlling the state of the pruning structure between the pruning structure and the emerging state, and have completed the present invention. Specifically, the present invention provides the following.
 第1の特徴に係る発明は、樹木を剪定可能な剪定構造と、前記剪定構造を収容可能な収容構造と、前記剪定構造を前記収容構造の内部に収容する収容状態と前記収容構造の外部に現出する現出状態との間で前記剪定構造の状態を制御可能な状態制御部と、を備え、前記状態制御部は、着陸の際に前記剪定構造の状態を前記収容状態に制御する、無人航空機を提供する。 The invention according to a first aspect comprises a pruning structure capable of pruning a tree, an accommodation structure capable of accommodating the pruning structure, an accommodation state in which the pruning structure is accommodated inside the accommodation structure, and an outside of the accommodation structure. a state controller operable to control the state of the pruning structure between the emerge state and the emerge state, wherein the state controller controls the state of the pruning structure to the stowed state upon landing. Offer unmanned aerial vehicles.
 第1の特徴に係る発明によれば、無人航空機は、剪定構造を収容構造の外部に現出する現出状態の剪定構造を用いて樹木を剪定し得る。一方で、状態制御部は、着陸の際に剪定構造の状態を収容状態に制御する。そのため、着陸の際にヒト等が剪定構造によって怪我することを防ぎ得る。 According to the invention according to the first feature, the unmanned aerial vehicle can prune trees using the pruning structure in the emerging state, which makes the pruning structure appear outside the housing structure. Meanwhile, the state controller controls the state of the pruning structure to the stowed state upon landing. Therefore, it is possible to prevent a person or the like from being injured by the pruning structure during landing.
 したがって、第1の特徴に係る発明によれば、樹木を剪定可能な剪定構造を備えることと安全性を高めることとの両方を実現可能な無人航空機を提供できる。 Therefore, according to the invention according to the first characteristic, it is possible to provide an unmanned aerial vehicle that can achieve both the provision of a pruning structure capable of pruning trees and the enhancement of safety.
 第2の特徴に係る発明は、第1の特徴に係る発明であって、前記状態制御部は、前記無人航空機から剪定の対象となる対象樹木までの距離が所定の距離以下である場合、前記剪定構造の状態を前記現出状態に制御し、前記無人航空機から前記対象樹木までの距離が前記所定の距離を超える場合、前記剪定構造の状態を前記収容状態に制御する、無人航空機を提供する。 The invention according to a second feature is the invention according to the first feature, wherein the state control unit, when the distance from the unmanned aerial vehicle to the target tree to be pruned is equal to or less than a predetermined distance, Provided is an unmanned aerial vehicle that controls the state of the pruning structure to the exposed state, and controls the state of the pruning structure to the stowed state when the distance from the unmanned aerial vehicle to the target tree exceeds the predetermined distance. .
 剪定構造を備える無人航空機を用いて樹木を剪定する場合、無人航空機は、剪定の対象となる対象樹木の周辺を飛行する。一方、無人航空機が対象樹木から離れた位置を飛行する場合、無人航空機は、樹木を剪定しない。 When pruning trees using an unmanned aerial vehicle equipped with a pruning structure, the unmanned aerial vehicle flies around the target tree to be pruned. On the other hand, when the unmanned aerial vehicle flies away from the target tree, the unmanned aerial vehicle does not prune the tree.
 第2の特徴に係る発明によれば、状態制御部は、無人航空機から対象樹木までの距離が所定の距離以下である場合、剪定構造の状態を現出状態に制御可能である。これにより、剪定構造は、現出状態において樹木を剪定し得る。 According to the invention according to the second feature, the state control unit can control the state of the pruning structure to the emerging state when the distance from the unmanned aerial vehicle to the target tree is equal to or less than a predetermined distance. This allows the pruning structure to prune the tree in the emerging state.
 第2の特徴に係る発明によれば、状態制御部は、無人航空機から対象樹木までの距離が所定の距離を超える場合、剪定構造の状態を収容状態に制御する。これにより、樹木を剪定しない場合における無人航空機の安全性をよりいっそう高め得る。 According to the second aspect of the invention, the state control unit controls the state of the pruning structure to the stowed state when the distance from the unmanned aerial vehicle to the target tree exceeds a predetermined distance. This can further enhance the safety of the unmanned aerial vehicle when trees are not pruned.
 したがって、第2の特徴に係る発明によれば、樹木を剪定可能な剪定構造を備えることと、安全性を高めることとの両方を実現可能な無人航空機を提供できる。 Therefore, according to the invention according to the second characteristic, it is possible to provide an unmanned aerial vehicle that can achieve both the provision of a pruning structure capable of pruning trees and the enhancement of safety.
 第3の特徴に係る発明は、第1又は第2の特徴に係る発明であって、前記無人航空機の飛行状態を制御可能な飛行状態制御部をさらに備え、外部から受信する前記無人航空機の制御に関する制御信号の強度が所定の強度よりも弱い場合、前記状態制御部が前記剪定構造の状態を前記収容状態に制御し、前記剪定構造が前記収容構造の内部に収容されたときに前記飛行状態制御部が前記無人航空機を着陸状態に制御する、無人航空機を提供する。 The invention according to a third feature is the invention according to the first or second feature, further comprising a flight state control unit capable of controlling a flight state of the unmanned aerial vehicle, wherein control of the unmanned aerial vehicle received from the outside is performed. is weaker than a predetermined strength, the state control unit controls the state of the pruning structure to the stowed state, and the flight state when the pruning structure is stowed inside the stowage structure. An unmanned aerial vehicle is provided, wherein a controller controls the unmanned aerial vehicle to land.
 外部からの制御信号によって無人航空機を制御することにより、外部からの制御信号を用いない自律飛行を行う場合より無人航空機の安全性を高め得る。しかしながら、無人航空機は、通信状態の悪化等によって外部からの制御信号を所定の強度以上の強度で受信できない場合があり得る。外部からの制御信号を所定の強度以上の強度で受信できない場合、外部からの制御信号によって無人航空機を制御できない可能性があり得る。したがって、剪定構造を備える無人航空機は、外部からの制御信号を所定の強度以上の強度で受信できない場合における安全性を高める点においてさらなる改良の余地がある。 By controlling the unmanned aerial vehicle with a control signal from the outside, the safety of the unmanned aerial vehicle can be improved more than when performing autonomous flight without using a control signal from the outside. However, the unmanned aerial vehicle may not be able to receive a control signal from the outside with a predetermined strength or more due to deterioration of the communication state or the like. If the control signal from the outside cannot be received at a predetermined intensity or more, there is a possibility that the unmanned aircraft cannot be controlled by the control signal from the outside. Therefore, the unmanned aerial vehicle with the pruning structure has room for further improvement in terms of enhancing safety when the control signal from the outside cannot be received at a predetermined intensity or more.
 第3の特徴に係る発明によれば、外部から受信する無人航空機の制御に関する制御信号の強度が所定の強度よりも弱い場合に状態制御部が剪定構造の状態を収容状態に制御するため、外部からの制御信号を所定の強度以上の強度で受信できない場合における安全性を高め得る。さらに、剪定構造が収容構造の内部に収容されたときに飛行状態制御部が無人航空機を着陸状態に制御するため、外部からの制御信号によって無人航空機を制御できない状態で飛行する時間を着陸状態に制御しない場合より短い時間にし得る。したがって、第3の特徴に係る発明によれば、外部からの制御信号を所定の強度以上の強度で受信できない場合における安全性をよりいっそう高め得る。 According to the third aspect of the invention, when the strength of the control signal related to the control of the unmanned aerial vehicle received from the outside is weaker than a predetermined strength, the state control unit controls the state of the pruning structure to the stowed state. It is possible to improve the safety when the control signal from is not received at a predetermined intensity or more. Furthermore, since the flight state control unit controls the unmanned aerial vehicle to the landing state when the pruning structure is housed inside the stowage structure, the time during which the unmanned aerial vehicle cannot be controlled by an external control signal is set to the landing state. It can be shorter than without control. Therefore, according to the third aspect of the invention, it is possible to further improve the safety when the external control signal cannot be received at a predetermined intensity or more.
 したがって、第3の特徴に係る発明によれば、樹木を剪定可能な剪定構造を備えることと安全性を高めることとの両方を実現可能な無人航空機を提供できる。 Therefore, according to the invention according to the third characteristic, it is possible to provide an unmanned aerial vehicle that can achieve both the provision of a pruning structure capable of pruning trees and the enhancement of safety.
 第4の特徴に係る発明は、第1の特徴から第3の特徴のいずれかに係る発明であって、前記無人航空機の飛行状態を制御可能な飛行状態制御部をさらに備え、前記無人航空機から前記無人航空機の周囲にいるヒト及び/又は動物までの距離が特定の距離以下である場合、前記状態制御部が前記剪定構造の状態を前記収容状態に制御し、前記剪定構造が前記収容構造の内部に収容されたときに前記飛行状態制御部が前記無人航空機を着陸状態に制御する、無人航空機を提供する。 The invention according to a fourth feature is the invention according to any one of the first to third features, further comprising a flight state control unit capable of controlling a flight state of the unmanned aerial vehicle, When the distance to humans and/or animals around the unmanned aerial vehicle is less than or equal to a specific distance, the state control unit controls the state of the pruning structure to the stowed state, and the pruning structure is in the stowed state. To provide an unmanned aerial vehicle in which the flight state control unit controls the unmanned aerial vehicle to a landing state when accommodated therein.
 飛行中の無人航空機の周囲にヒトがいる場合、ヒトが無人航空機の進路上に飛び出す等して飛行中の無人航空機及び/又は剪定構造と衝突することがあり得る。飛行中の無人航空機の周囲にペット及び家畜等によって例示される動物がいる場合、動物が無人航空機の進路上に飛び出す等して飛行中の無人航空機及び/又は剪定構造と衝突することがあり得る。飛行中の無人航空機は、回転するプロペラ及び/又はローター等がヒト及び/又は動物を傷つける可能性が飛行中でない無人航空機より高い。したがって、剪定構造を備える無人航空機は、無人航空機の周囲にヒト及び/又は動物がいる場合における安全性を高める点においてさらなる改良の余地がある。 If there are people around the unmanned aerial vehicle in flight, it is possible that the humans will jump out into the path of the unmanned aerial vehicle and collide with the unmanned aerial vehicle and/or the pruning structure in flight. If there are animals, such as pets and livestock, around the unmanned aerial vehicle in flight, it is possible that the animals may run into the path of the unmanned aerial vehicle and collide with the unmanned aerial vehicle and/or the pruning structure in flight. . An unmanned aerial vehicle in flight has a higher potential for injury to humans and/or animals from rotating propellers and/or rotors, etc. than an unmanned aerial vehicle not in flight. Therefore, an unmanned aerial vehicle with a pruning structure could be further improved in terms of increasing safety when there are humans and/or animals around the unmanned aerial vehicle.
 第4の特徴に係る発明によれば、無人航空機から無人航空機の周囲にいるヒト及び/又は動物までの距離が特定の距離以下である場合、状態制御部が剪定構造の状態を収容状態に制御するため、無人航空機の周囲にヒト及び/又は動物がいる場合における安全性を高め得る。さらに、剪定構造が収容構造の内部に収容されたときに飛行状態制御部が無人航空機を着陸状態に制御するため、飛行中の無人航空機とヒト及び/又は動物とが衝突する可能性を低くし得る。したがって、第4の特徴に係る発明によれば、無人航空機の周囲にヒト及び/又は動物がいる場合における安全性をよりいっそう高め得る。 According to the fourth aspect of the invention, when the distance from the unmanned aerial vehicle to humans and/or animals around the unmanned aerial vehicle is less than or equal to a specific distance, the state control unit controls the state of the pruning structure to the stowed state. Therefore, safety may be enhanced when there are humans and/or animals around the unmanned aerial vehicle. Further, the flight state controller controls the unmanned aerial vehicle to a landing state when the pruning structure is stowed inside the stowage structure, thereby reducing the possibility of collision between the unmanned aerial vehicle and humans and/or animals during flight. obtain. Therefore, according to the fourth aspect of the invention, it is possible to further improve safety when there are humans and/or animals around the unmanned aerial vehicle.
 したがって、第4の特徴に係る発明によれば、樹木を剪定可能な剪定構造を備えることと安全性を高めることとの両方を実現可能な無人航空機を提供できる。 Therefore, according to the invention according to the fourth characteristic, it is possible to provide an unmanned aerial vehicle that can achieve both the provision of a pruning structure capable of pruning trees and the enhancement of safety.
 第5の特徴に係る発明は、第1の特徴から第4の特徴のいずれかに係る発明であって、高度を取得可能な高度取得部をさらに備え、前記高度が所定の範囲にない場合、前記状態制御部は、前記剪定構造の状態を前記収容状態に制御する、無人航空機を提供する。 An invention according to a fifth feature is the invention according to any one of the first to fourth features, further comprising an altitude acquisition unit capable of acquiring an altitude, wherein when the altitude is not within a predetermined range, The state controller provides an unmanned aerial vehicle for controlling the state of the pruning structure to the stowed state.
 無人航空機が地上に近い場合、すなわち、無人航空機の高度が低い場合、無人航空機とヒト及び/又は動物とが衝突する可能性があり得る。また、無人航空機の高度が低い場合、家屋、農作物、及び自動車等によって例示される地上にある財産と無人航空機とが衝突する可能性があり得る。剪定構造を備える無人航空機は、無人航空機の高度が低い場合における安全性を高める点においてさらなる改良の余地がある。 When the unmanned aerial vehicle is close to the ground, that is, when the altitude of the unmanned aerial vehicle is low, there is a possibility of collision between the unmanned aerial vehicle and humans and/or animals. Also, when the altitude of the unmanned aerial vehicle is low, there may be a possibility of collision between the unmanned aerial vehicle and property on the ground, such as houses, crops, and automobiles. Unmanned aerial vehicles with pruning structures can be further improved in terms of increasing the safety of the unmanned aerial vehicle at low altitudes.
 万が一高度が高い上空を飛行する無人航空機が飛行状態の制御を失って墜落した場合に無人航空機が落下する速度は、無人航空機の高度が低い場合より速くなる。これにより、高度が高い上空を飛行する無人航空機が飛行状態の制御を失って墜落し、剪定構造がヒト等と衝突したときに剪定構造がヒト等に与える悪影響は、無人航空機の高度が低い場合より大きくなり得る。したがって、剪定構造を備える無人航空機は、無人航空機の高度が高い場合における安全性を高める点においてさらなる改良の余地がある。 In the unlikely event that an unmanned aerial vehicle flying over a high altitude loses control of its flight state and crashes, the speed at which the unmanned aerial vehicle will fall will be faster than if the unmanned aerial vehicle is at a low altitude. As a result, when an unmanned aerial vehicle flying at a high altitude loses control of its flight state and crashes, and the pruned structure collides with a person, etc., the adverse effects of the pruned structure on humans, etc. can be larger. Therefore, an unmanned aerial vehicle with a pruning structure has room for further improvement in terms of increasing safety at high altitudes of the unmanned aerial vehicle.
 無人航空機の高度が対象樹木の高さより一定以上高い場合、無人航空機から対象樹木までの距離は、剪定構造が樹木を剪定可能な距離より遠くなる。無人航空機から対象樹木までの距離が樹木を剪定可能な距離より遠い場合、剪定構造は、樹木を剪定しない。したがって、剪定構造を備える無人航空機は、無人航空機の高度が対象樹木の高さより一定以上高い場合における安全性を高める点においても、さらなる改良の余地がある。  If the altitude of the unmanned aerial vehicle is higher than the height of the target tree by a certain amount or more, the distance from the unmanned aerial vehicle to the target tree will be greater than the distance at which the pruning structure can prune the tree. If the distance from the unmanned aerial vehicle to the target tree is greater than the distance at which the tree can be pruned, the pruning structure will not prune the tree. Therefore, an unmanned aerial vehicle equipped with a pruning structure has room for further improvement in terms of enhancing safety when the unmanned aerial vehicle is at a certain height higher than the height of the target tree.
 第5の特徴に係る発明によれば、高度が所定の範囲にない場合に状態制御部が剪定構造の状態を収容状態に制御するため、無人航空機の高度が低い場合における安全性と無人航空機の高度が高い場合における安全性とを高め得る。 According to the fifth aspect of the invention, the state control unit controls the state of the pruning structure to the stowed state when the altitude is not within the predetermined range. Safety at high altitudes can be enhanced.
 したがって、第5の特徴に係る発明によれば、樹木を剪定可能な剪定構造を備えることと安全性を高めることとの両方を実現可能な無人航空機を提供できる。 Therefore, according to the invention according to the fifth characteristic, it is possible to provide an unmanned aerial vehicle that can achieve both the provision of a pruning structure capable of pruning trees and the enhancement of safety.
 第6の特徴に係る発明は、第1の特徴から第5の特徴のいずれかに係る発明であって、前記無人航空機の位置を取得可能な位置取得部をさらに備え、前記剪定構造を現出可能にする現出可能領域とは異なる位置に前記無人航空機がある場合、前記状態制御部が前記剪定構造の状態を前記収容状態に制御し、前記剪定構造が前記収容構造の内部に収容されたときに前記飛行状態制御部が前記無人航空機を着陸状態に制御する、無人航空機を提供する。 The invention according to a sixth aspect is the invention according to any one of the first aspect to the fifth aspect, further comprising a position acquisition unit capable of acquiring a position of the unmanned aerial vehicle, and presenting the pruning structure. When the unmanned aerial vehicle is in a position different from the possible revealable area, the state control unit controls the state of the pruning structure to the stowed state, and the pruning structure is stowed inside the stowed structure. An unmanned aerial vehicle is provided, wherein the flight state controller sometimes controls the unmanned aerial vehicle to a landing state.
 対象樹木が位置する所定の領域とは異なる位置に無人航空機がある場合、剪定構造は、対象樹木を剪定しない。したがって、剪定構造を備える無人航空機は、無人航空機が所定の領域とは異なる位置にある場合の無人航空機の安全性を高める点においてさらなる改良の余地がある。 The pruning structure does not prune the target tree if the unmanned aerial vehicle is in a position different from the predetermined area where the target tree is located. Therefore, an unmanned aerial vehicle with a pruning structure could be further improved in enhancing the safety of the unmanned aerial vehicle when the unmanned aerial vehicle is in a different location than the predetermined area.
 無人航空機の制御に関する制御信号を外部から受信する無人航空機の場合、制御信号の強度は、一般に、制御信号を送信する外部から無人航空機までの距離が離れるにしたがって弱くなる。また、制御信号を送信する外部と無人航空機との間に地形及び建造物等によって例示される遮蔽物がある場合、制御信号の強度が低下し得る。したがって、外部からの制御信号を所定の強度以上の強度で受信可能な領域は、制御信号を送信する外部からの距離及び/又は遮蔽物等によって定められる特定の領域に限られ得る。 In the case of an unmanned aerial vehicle that receives a control signal related to control of the unmanned aerial vehicle from the outside, the strength of the control signal generally weakens as the distance from the outside to the unmanned aerial vehicle that transmits the control signal increases. In addition, if there is a shield such as terrain and buildings between the outside transmitting the control signal and the unmanned aerial vehicle, the strength of the control signal may decrease. Therefore, the area in which the control signal from the outside can be received at a predetermined intensity or more can be limited to a specific area determined by the distance from the outside and/or the shielding object, etc. from which the control signal is transmitted.
 外部からの制御信号を所定の強度以上の強度で受信できない場合、外部からの制御信号によって無人航空機を制御できない可能性があり得る。したがって、外部からの制御信号を所定の強度以上の強度で受信可能な特定の領域とは異なる位置に無人航空機がある場合、無人航空機は、外部からの制御信号を所定の強度以上の強度で受信できない可能性がある。剪定構造を備え、制御信号を外部から受信する無人航空機は、無人航空機が特定の領域とは異なる位置にある場合の無人航空機の安全性を高める点においてさらなる改良の余地がある。 If the control signal from the outside cannot be received at a predetermined strength or higher, it is possible that the unmanned aerial vehicle cannot be controlled by the control signal from the outside. Therefore, if the unmanned aerial vehicle is located in a position different from the specific area where the control signal from the outside can be received at a predetermined intensity or more, the unmanned aerial vehicle receives the control signal from the outside at a predetermined intensity or more. may not be possible. An unmanned aerial vehicle with a pruning structure and receiving control signals from the outside could be further improved in enhancing the safety of the unmanned aerial vehicle when the unmanned aerial vehicle is in a different location than a specific area.
 無人航空機の飛行に関する安全性等を高めるため、無人航空機の飛行に関する各種の法令等(例えば、重要施設の周辺地域の上空における小型無人機等の飛行の禁止に関する法律(平成二十八年法律第九号)、無人航空機の飛行禁止区域等を定める告示(令和元年国土交通省告示第461号)等。)によって、無人航空機の飛行を禁止する区域が定められている。法令等により、飛行を禁止する区域等においては、許可を受けた場合にのみ飛行可能であると定められている。剪定構造を備える無人航空機が剪定構造の状態を現出状態にして飛行可能である領域は、法令等によって制限され得る。 In order to improve the safety of flying unmanned aircraft, various laws and regulations concerning the flight of unmanned aircraft (for example, the Act on Prohibition of Flight of Small Unmanned Aircraft over Areas Surrounding Important Facilities (Law No. 2016) No. 9), and the notification specifying the no-fly areas for unmanned aerial vehicles (Ministry of Land, Infrastructure, Transport and Tourism Notification No. 461 of 2019), etc.), areas where unmanned aerial vehicles are prohibited from flying are stipulated. Laws and regulations stipulate that in areas where flight is prohibited, it is possible to fly only when permission is obtained. A region in which an unmanned aerial vehicle equipped with a pruning structure can fly with the pruning structure exposed may be restricted by law or the like.
 法令等を遵守して飛行することにより、無人航空機の安全性を高め得る。剪定構造を備える無人航空機は、このような無人航空機が飛行可能である領域とは異なる位置にある場合の安全性を高める点においてさらなる改良の余地がある。 By flying in compliance with laws and regulations, the safety of unmanned aerial vehicles can be improved. Unmanned aerial vehicles with pruning structures could be further improved in terms of enhancing safety when in locations different from the areas in which such unmanned aerial vehicles can fly.
 第6の特徴に係る発明によれば、例えば、対象樹木がある所定の領域、外部からの制御信号を所定の強度以上の強度で受信可能な特定の領域、及び/又は法令等に基づく飛行可能領域等に基づいて、剪定構造を現出可能である現出可能領域を定め得る。そして、現出可能領域とは異なる位置に無人航空機がある場合に、剪定構造を備える無人航空機が剪定構造を現出することを防ぎ得る。これにより、無人航空機の安全性をよりいっそう高め得る。 According to the sixth aspect of the invention, for example, a predetermined area in which the target tree is located, a specific area in which a control signal from the outside can be received with an intensity equal to or higher than a predetermined intensity, and/or flight is possible based on laws and ordinances. Based on the area, etc., a revealable area can be defined where the pruning structure can be revealed. Then, it is possible to prevent the unmanned aerial vehicle with the pruning structure from appearing the pruning structure when the unmanned aerial vehicle is at a position different from the visible area. This can further enhance the safety of the unmanned aerial vehicle.
 第6の特徴に係る発明によれば、剪定構造が収容構造の内部に収容されたときに飛行状態制御部が無人航空機を着陸状態に制御するため、現出可能領域とは異なる位置に無人航空機がある場合の飛行時間を最小限に抑え得る。これにより、無人航空機の安全性をさらにいっそう高め得る。 According to the sixth aspect of the invention, when the pruning structure is housed inside the housing structure, the flight state control unit controls the unmanned aerial vehicle to a landing state. can minimize flight time when there is This can further enhance the safety of the unmanned aerial vehicle.
 したがって、第6の特徴に係る発明によれば、樹木を剪定可能な剪定構造を備えることと安全性を高めることとの両方を実現可能な無人航空機を提供できる。 Therefore, according to the sixth aspect of the invention, it is possible to provide an unmanned aerial vehicle that is capable of both having a pruning structure capable of pruning trees and enhancing safety.
 第7の特徴に係る発明は、第1の特徴から第6の特徴のいずれかに係る発明であって、マルチコプターである無人航空機を提供する。 The invention according to the seventh feature is the invention according to any one of the first to sixth features, and provides an unmanned aerial vehicle that is a multicopter.
 3以上のローター(回転翼)を有する回転翼機であるマルチコプターは、ローターの回転速度の増減によって上昇及び/又は下降を行える。また、マルチコプターは、各ローターの回転数に差をつけることで、その機体を傾けられる。これにより、マルチコプターは、前進、後進、及び/又は旋回等を行える。マルチコプターは、各ローターの回転数を制御することによってその姿勢を制御できるため、ローターが1つだけのシングルローター式のヘリコプターより高い姿勢安定性を実現し得る。 A multicopter, which is a rotorcraft with three or more rotors (rotor blades), can ascend and/or descend by increasing or decreasing the rotation speed of the rotors. In addition, the multicopter can tilt its body by making a difference in the rotation speed of each rotor. This allows the multicopter to move forward, backward, and/or turn. Multicopters can control their attitude by controlling the number of rotations of each rotor, so they can achieve higher attitude stability than single-rotor helicopters.
 第7の特徴に係る発明によれば、無人航空機がマルチコプターであるため、樹木の枝を剪定する場合における姿勢安定性をシングルローター式のヘリコプターを用いる場合より高め得る。これにより、剪定構造を用いて剪定するときに無人航空機の姿勢が変化し、人間等の動物及び/又は財産と衝突することを防ぎ得る。したがって、第7の特徴に係る発明によれば、剪定構造を備える無人航空機の安全性を高め得る。 According to the invention according to the seventh feature, since the unmanned aerial vehicle is a multi-copter, the attitude stability when pruning tree branches can be improved more than when using a single-rotor helicopter. This may prevent the unmanned aerial vehicle from changing attitude and colliding with animals, such as humans, and/or property when pruning with the pruning structure. Therefore, according to the seventh aspect of the invention, it is possible to enhance the safety of the unmanned aerial vehicle with the pruning structure.
 航空機は、重量が大きいほど、着陸が困難になることが知られている。剪定構造は、無人航空機の重量を増し得る。したがって、剪定構造を備える無人航空機は、剪定構造を備えない無人航空機より着陸が困難になり得る。着陸が困難であれば、着陸するときに事故等が発生する可能性が高まり得る。マルチコプターは、地上に対する平面的な位置を変えずに上昇及び/又は下降することを、固定翼及び/又は可変翼を用いて揚力を得る固定翼機より容易に行える。これにより、マルチコプターは、固定翼機より容易に着陸し得る。 It is known that the heavier the aircraft, the more difficult it is to land. Pruning structures can add weight to the unmanned aerial vehicle. Accordingly, an unmanned aerial vehicle with pruning structures may be more difficult to land than an unmanned aerial vehicle without pruning structures. If landing is difficult, the possibility of an accident or the like occurring during landing may increase. A multicopter can ascend and/or descend without changing its planar position relative to the ground more easily than a fixed wing aircraft that uses fixed and/or variable wings to obtain lift. This allows multicopters to land more easily than fixed-wing aircraft.
 第7の特徴に係る発明によれば、無人航空機がマルチコプターであるため、無人航空機が剪定構造を備える無人航空機であっても、固定翼機を用いる場合より容易に無人航空機を着陸状態に制御することを行える。これにより、着陸するときに事故等が発生する可能性をよりいっそう低くし得る。したがって、第7の特徴に係る発明によれば、剪定構造を備える無人航空機の安全性を高め得る。 According to the seventh aspect of the invention, since the unmanned aerial vehicle is a multicopter, even if the unmanned aerial vehicle has a pruning structure, the unmanned aerial vehicle can be controlled to land more easily than when a fixed-wing aircraft is used. can do This can further reduce the possibility of an accident or the like occurring during landing. Therefore, according to the seventh aspect of the invention, it is possible to enhance the safety of the unmanned aerial vehicle with the pruning structure.
 したがって、第7の特徴に係る発明によれば、樹木を剪定可能な剪定構造を備えることと安全性を高めることとの両方を実現可能な無人航空機を提供できる。 Therefore, according to the invention according to the seventh characteristic, it is possible to provide an unmanned aerial vehicle that can achieve both the provision of a pruning structure capable of pruning trees and the enhancement of safety.
 本発明によれば、樹木を剪定可能な剪定構造を備えることと安全性を高めることとの両方を実現可能な無人航空機を提供できる。 According to the present invention, it is possible to provide an unmanned aerial vehicle that can achieve both the provision of a pruning structure capable of pruning trees and the enhancement of safety.
図1は、本実施形態の無人航空機システム1のハードウェア構成とソフトウェア構成とを示すブロック図である。FIG. 1 is a block diagram showing the hardware configuration and software configuration of an unmanned aerial vehicle system 1 of this embodiment. 図2は、本実施形態の無人航空機2を斜め上方からみた場合の概略図である。FIG. 2 is a schematic diagram of the unmanned aerial vehicle 2 of the present embodiment when viewed obliquely from above. 図3は、樹木画像テーブル321の一例を示す図である。FIG. 3 is a diagram showing an example of the tree image table 321. As shown in FIG. 図4は、ニューラルネットワークテーブル322の一例を示す図である。FIG. 4 is a diagram showing an example of the neural network table 322. As shown in FIG. 図5は、本実施形態の制御装置3を用いた動作制御処理について、その好ましい流れの一例を示すフローチャートである。FIG. 5 is a flow chart showing an example of a preferable flow of operation control processing using the control device 3 of this embodiment. 図6は、本実施形態の制御部21を用いた状態制御処理について、その好ましい流れの一例を示すフローチャートである。FIG. 6 is a flowchart showing an example of a preferred flow of state control processing using the control unit 21 of this embodiment. 図7は、本実施形態の制御部21を用いた収容着陸処理について、その好ましい流れの一例を示すフローチャートである。FIG. 7 is a flow chart showing an example of a preferred flow of the stowed landing process using the control unit 21 of this embodiment. 図8は、本実施形態の無人航空機システム1を用いた樹木剪定の一例を示す概略模式図である。FIG. 8 is a schematic diagram showing an example of tree pruning using the unmanned aerial vehicle system 1 of this embodiment. 図9は、本実施形態の無人航空機2における安全性を高める状態制御の一例を示す概略模式図である。FIG. 9 is a schematic diagram showing an example of state control for enhancing safety in the unmanned aerial vehicle 2 of this embodiment.
 以下、本発明を実施するための好適な形態の一例について図を参照しながら説明する。なお、これはあくまでも一例であって、本発明の技術的範囲はこれに限られるものではない。 An example of a preferred embodiment for carrying out the present invention will be described below with reference to the drawings. This is just an example, and the technical scope of the present invention is not limited to this.
<無人航空機システム1>
 図1は、本実施形態の無人航空機システム1のハードウェア構成とソフトウェア構成とを示すブロック図である。図2は、本実施形態の無人航空機2を斜め上方からみた場合の概略図である。以下、図1及び図2までを参照して本発明の実施形態における無人航空機システム1の好ましい構成の一例を説明する。
<Unmanned aircraft system 1>
FIG. 1 is a block diagram showing the hardware configuration and software configuration of an unmanned aerial vehicle system 1 of this embodiment. FIG. 2 is a schematic diagram of the unmanned aerial vehicle 2 of the present embodiment when viewed obliquely from above. An example of a preferred configuration of an unmanned aerial vehicle system 1 according to an embodiment of the present invention will be described below with reference to FIGS. 1 and 2. FIG.
 無人航空機システム1は、無人航空機2と制御装置3とを含んで構成される。無人航空機2と制御装置3とのそれぞれは、ネットワークNを介して相互に接続可能に構成される。 The unmanned aerial system 1 includes an unmanned aerial vehicle 2 and a control device 3. Each of the unmanned aerial vehicle 2 and the control device 3 is configured to be mutually connectable via a network N.
〔無人航空機2〕
 無人航空機2は、少なくとも、制御部21と飛行構造22と剪定構造23とを備える。
[Unmanned aerial vehicle 2]
The unmanned aerial vehicle 2 comprises at least a control unit 21 , a flight structure 22 and a pruning structure 23 .
 必須の態様ではないが、無人航空機2は、剪定構造23を内部に収容可能な収容構造24を備えることが好ましい。無人航空機2が収容構造24を備えることにより、剪定構造23を収容構造24の内部に収容することができる。 Although not an essential aspect, the unmanned aerial vehicle 2 preferably has a storage structure 24 that can store the pruning structure 23 therein. The unmanned aerial vehicle 2 comprises a containment structure 24 such that the pruning structure 23 can be contained within the containment structure 24 .
 必須の態様ではないが、無人航空機2は、撮影装置25を備えることが好ましい。無人航空機2が撮影装置25を備えることにより、対象樹木を撮影し得る。 Although not an essential aspect, the unmanned aerial vehicle 2 preferably has an imaging device 25 . By equipping the unmanned aerial vehicle 2 with the photographing device 25, the target tree can be photographed.
 必須の態様ではないが、無人航空機2は、無人航空機2と制御装置3とをネットワークNを介して通信可能に接続する通信部26を備えることが好ましい。無人航空機2が通信部26を備えることにより、無人航空機2は、制御装置3と通信し得る。 Although not an essential aspect, it is preferable that the unmanned aerial vehicle 2 include a communication unit 26 that communicatively connects the unmanned aerial vehicle 2 and the control device 3 via the network N. The unmanned aerial vehicle 2 is provided with the communication unit 26 so that the unmanned aerial vehicle 2 can communicate with the control device 3 .
 無人航空機2は、電源部27を備えることが好ましい。無人航空機2が電源部27を備えることにより、無人航空機2を構成する各部材に電力を供給し得る。 The unmanned aerial vehicle 2 preferably includes a power supply unit 27. Since the unmanned aerial vehicle 2 includes the power supply section 27 , electric power can be supplied to each member constituting the unmanned aerial vehicle 2 .
 必須の態様ではないが、無人航空機2は、無人航空機2が備える各部材等の2以上を所定の位置関係で支持可能な支持構造28を備えることが好ましい。支持構造28を備えることにより、無人航空機2が含む各部材等が所定の位置関係を保つよう、該部材等それぞれを支持できる。 Although not an essential aspect, it is preferable that the unmanned aerial vehicle 2 include a support structure 28 capable of supporting two or more members of the unmanned aerial vehicle 2 in a predetermined positional relationship. By providing the support structure 28, each member included in the unmanned aerial vehicle 2 can be supported so as to maintain a predetermined positional relationship.
 無人航空機2は、飛行可能であれば特に限定されない。無人航空機2は、例えば、ヘリコプター、気球、飛行船、及び/又は固定翼機等でよい。ヘリコプターである無人航空機2は、特に限定されず、主たる揚力を生むローター(回転翼とも称する。)の数が1であるシングルローター式ヘリコプター、2の回転翼を有するツインローター式ヘリコプター、及び/又は3以上の回転翼を有するマルチコプターでよい。固定翼機である無人航空機2は、固定翼及び/又は可変翼を用いて揚力を得る固定翼機でよい。 The unmanned aerial vehicle 2 is not particularly limited as long as it can fly. Unmanned aerial vehicles 2 may be, for example, helicopters, balloons, airships, and/or fixed-wing aircraft. The unmanned aerial vehicle 2, which is a helicopter, is not particularly limited, and may be a single-rotor helicopter in which the number of rotors (also referred to as rotor blades) that generate main lift is one, a twin-rotor helicopter with two rotor blades, and/or It may be a multicopter with three or more rotor blades. The fixed-wing unmanned aerial vehicle 2 may be a fixed-wing aircraft that uses fixed wings and/or variable wings to obtain lift.
 無人航空機2は、マルチコプターであることが好ましい。マルチコプターは、ローターの回転速度の増減によって上昇及び/又は下降を行える。また、マルチコプターは、各ローターの回転数に差をつけることで、その機体を傾けられる。これにより、マルチコプターは、前進、後進、及び/又は旋回等を行える。マルチコプターは、各ローターの回転数を制御することによってその姿勢を制御できるため、ローターが1つだけのシングルローター式のヘリコプターより高い姿勢安定性を実現し得る。 The unmanned aerial vehicle 2 is preferably a multicopter. The multicopter can ascend and/or descend by increasing or decreasing the rotation speed of the rotor. In addition, the multicopter can tilt its body by making a difference in the rotation speed of each rotor. This allows the multicopter to move forward, backward, and/or turn. Multicopters can control their attitude by controlling the number of rotations of each rotor, so they can achieve higher attitude stability than single-rotor helicopters.
 無人航空機2がマルチコプターであることにより、樹木の枝を剪定する場合における姿勢安定性をシングルローター式のヘリコプターを用いる場合より高め得る。これにより、剪定構造23を用いて剪定するときに無人航空機2の姿勢が変化し、剪定構造23の位置が剪定位置と異なる位置に移動することを防ぎ得る。したがって、無人航空機2がマルチコプターであることにより、剪定構造23が剪定位置と異なる位置を剪定することを防ぎ得る。これにより、樹木の形状をよりいっそう整えることを可能にし得る。 Because the unmanned aerial vehicle 2 is a multi-copter, the attitude stability when pruning tree branches can be improved compared to when using a single-rotor helicopter. This can prevent the attitude of the unmanned aerial vehicle 2 from changing when pruning using the pruning structure 23 and moving the position of the pruning structure 23 to a position different from the pruning position. Therefore, the unmanned aerial vehicle 2 being a multicopter can prevent the pruning structure 23 from pruning a position different from the pruning position. This may allow for better trimming of the tree shape.
 マルチコプターは、空中の略同じ位置で静止するホバリングを、固定翼及び/又は可変翼を用いて揚力を得る固定翼機より容易に行える。無人航空機2がマルチコプターであることにより、剪定位置に合わせてホバリングを行い、剪定構造23を制御して剪定位置に合わせて剪定し得る。これにより、固定翼機を用いる場合と比較して、剪定位置によりいっそう合わせて剪定し得る。したがって、無人航空機2がマルチコプターであることにより、樹木の形状をよりいっそう整えることを可能にし得る。 A multicopter can hover at approximately the same position in the air more easily than a fixed wing aircraft that uses fixed and/or variable wings to obtain lift. Since the unmanned aerial vehicle 2 is a multi-copter, it can hover in accordance with the pruning position and control the pruning structure 23 to prune in accordance with the pruning position. This allows the pruning to be more tailored to the pruning location compared to using a fixed wing aircraft. Therefore, the fact that the unmanned aerial vehicle 2 is a multi-copter can make it possible to further shape the trees.
 航空機は、その重量が大きいほど、着陸が困難になることが知られている。剪定構造23は、無人航空機2の重量を増し得る。したがって、剪定構造23を備える無人航空機2は、剪定構造23を備えない無人航空機2より着陸が困難になり得る。着陸が困難であれば、着陸するときに事故等が発生する可能性が高まり得る。マルチコプターは、地上に対する平面的な位置を変えずに上昇及び/又は下降することを、固定翼及び/又は可変翼を用いて揚力を得る固定翼機より容易に行える。これにより、マルチコプターは、固定翼機より容易に着陸し得る。 It is known that the heavier the aircraft, the more difficult it is to land. Pruning structure 23 may add weight to unmanned aerial vehicle 2 . Accordingly, an unmanned aerial vehicle 2 with a pruning structure 23 may be more difficult to land than an unmanned aerial vehicle 2 without a pruning structure 23 . If landing is difficult, the possibility of an accident or the like occurring during landing may increase. A multicopter can ascend and/or descend without changing its planar position relative to the ground more easily than a fixed wing aircraft that uses fixed and/or variable wings to obtain lift. This allows multicopters to land more easily than fixed-wing aircraft.
 無人航空機2がマルチコプターであることにより、無人航空機2が剪定構造23を備える無人航空機2であっても、固定翼機を用いる場合より容易に無人航空機2を着陸状態に制御することを行える。これにより、着陸するときに事故等が発生する可能性をよりいっそう低くし得る。したがって、無人航空機2がマルチコプターであることにより、剪定構造23を備える無人航空機2の安全性を高め得る。 Because the unmanned aerial vehicle 2 is a multicopter, even if the unmanned aerial vehicle 2 is equipped with the pruning structure 23, it can be controlled to land more easily than when a fixed-wing aircraft is used. This can further reduce the possibility of an accident or the like occurring during landing. Therefore, by making the unmanned aerial vehicle 2 a multicopter, the safety of the unmanned aerial vehicle 2 with the pruning structure 23 can be enhanced.
[制御部21]
 制御部21は、飛行構造22及び剪定構造23を制御する。無人航空機2が制御部21を備えることにより、無人航空機2は、飛行構造22を制御して無人航空機2の飛行状態を制御し得る。また、無人航空機2が制御部21を備えることにより、無人航空機2は、剪定構造23を制御して対象樹木を剪定し得る。
[control unit 21]
A control unit 21 controls the flight structure 22 and the pruning structure 23 . The unmanned aerial vehicle 2 includes the control unit 21 so that the unmanned aerial vehicle 2 can control the flight structure 22 to control the flight state of the unmanned aerial vehicle 2 . Further, since the unmanned aerial vehicle 2 includes the control unit 21, the unmanned aerial vehicle 2 can control the pruning structure 23 to prune the target tree.
 制御部21は、特に限定されない。制御部21は、例えば、CPU(Central Processing Unit)、RAM(Random Access Memory)、及びROM(Read Only Memory)等を備える従来技術のマイクロコンピュータでよい。 The control unit 21 is not particularly limited. The control unit 21 may be a conventional microcomputer including, for example, a CPU (Central Processing Unit), a RAM (Random Access Memory), and a ROM (Read Only Memory).
 無人航空機2が収容構造24を備える場合、制御部21は、必要に応じて飛行構造22、剪定構造23、通信部26等と協働して、無人航空機2におけるソフトウェア構成の要素である飛行状態制御部211、状態制御部212、高度取得部213、位置取得部214等を実現可能であることが好ましい。これにより、無人航空機2は、剪定構造23を収容構造24に収容する状態制御処理を行い得る。無人航空機2が行う状態制御処理については、後に図6及び図7を用いてより詳細に説明する。 When the unmanned aerial vehicle 2 is provided with a containment structure 24, the control unit 21 cooperates with the flight structure 22, the pruning structure 23, the communication unit 26, etc. as necessary to It is preferable that the control unit 211, the state control unit 212, the altitude acquisition unit 213, the position acquisition unit 214, etc. can be realized. This allows the unmanned aerial vehicle 2 to perform a state control process to accommodate the pruning structure 23 in the accommodation structure 24 . State control processing performed by the unmanned aerial vehicle 2 will be described in more detail later with reference to FIGS. 6 and 7. FIG.
 無人航空機2が通信部26を備える場合、制御部21は、制御装置3から送信された指令に応じて飛行構造22、剪定構造23、撮影装置25等を制御可能であることが好ましい。これにより、制御装置3から送信された指令に応じて無人航空機2の飛行状態及び剪定構造23の動作を制御し得る。また、制御装置3から送信された指令に応じて、剪定の対象となる対象樹木を撮影し、撮影した樹木画像を制御装置3に送信し得る。 When the unmanned aerial vehicle 2 is equipped with a communication unit 26, it is preferable that the control unit 21 can control the flight structure 22, the pruning structure 23, the imaging device 25, etc. according to commands transmitted from the control device 3. Thereby, the flight conditions of the unmanned aerial vehicle 2 and the operation of the pruning structure 23 can be controlled in response to commands sent from the controller 3 . In addition, in accordance with a command transmitted from the control device 3, a target tree to be pruned can be photographed, and the photographed tree image can be transmitted to the control device 3.
 制御装置3から送信される指令は、特に限定されず、例えば、剪定構造23を用いて剪定位置において対象樹木を剪定させる指令、無人航空機2を移動させる指令、撮影装置25を用いて対象樹木を撮影させる指令、及び/又は無人航空機2を着陸させる指令等が挙げられる。 The command transmitted from the control device 3 is not particularly limited, and may be, for example, a command to prune the target tree at the pruning position using the pruning structure 23, a command to move the unmanned aerial vehicle 2, or a command to prune the target tree using the imaging device 25. Examples include a command to shoot and/or a command to land the unmanned aerial vehicle 2 .
[飛行構造22]
 飛行構造22は、無人航空機2に揚力及び/又は浮力を与え、飛行可能とする構造である。飛行構造22は、特に限定されない。飛行構造22は、制御部21による制御に応じて無人航空機2の飛行状態を制御可能に構成される。
[Flight structure 22]
The flight structure 22 is a structure that gives lift and/or buoyancy to the unmanned aerial vehicle 2 to enable it to fly. The flight structure 22 is not particularly limited. The flight structure 22 is configured to be able to control the flight state of the unmanned aerial vehicle 2 according to control by the control unit 21 .
 無人航空機2が気球及び/又は飛行船である場合、飛行構造22は、空気より軽い気体を収容可能な気球部を含むことが好ましい。気球部を含むことにより、空気より軽い気体がもたらす浮力によって無人航空機2を飛行させ得る。無人航空機2が固定翼機である場合、飛行構造22は、無人航空機2を移動させることが可能な推進部と無人航空機2に移動に応じて揚力を発生可能な固定翼及び/又は可変翼とを含むことが好ましい。これにより、無人航空機2を移動させ、この移動に応じて揚力を発生させ得る。この揚力により、無人航空機2を飛行させ得る。 When the unmanned aerial vehicle 2 is a balloon and/or an airship, the flight structure 22 preferably includes a balloon portion capable of accommodating gas lighter than air. By including the balloon portion, the unmanned aerial vehicle 2 can be flown by the buoyancy provided by the lighter-than-air gas. When the unmanned aerial vehicle 2 is a fixed-wing aircraft, the flight structure 22 includes a propulsion unit capable of moving the unmanned aerial vehicle 2 and a fixed wing and/or variable wing capable of generating lift as the unmanned aerial vehicle 2 moves. is preferably included. This allows the unmanned aerial vehicle 2 to move and generate lift in response to this movement. This lift force allows the unmanned aerial vehicle 2 to fly.
 無人航空機2が1以上の回転翼を用いて揚力を得るヘリコプター等である場合、飛行構造22は、1以上の駆動部221と駆動部221によって回転する1以上の回転翼222とを含むことが好ましい(図2)。これにより、駆動部221を用いて回転翼222を回転させ、揚力を得ることができる。この揚力により、無人航空機2を飛行させ得る。 If the unmanned aerial vehicle 2 is a helicopter or the like that uses one or more rotors to obtain lift, the flight structure 22 may include one or more drive units 221 and one or more rotor blades 222 rotated by the drive units 221 . preferred (Fig. 2). Thereby, the rotor blade 222 can be rotated using the drive part 221, and a lift force can be obtained. This lift force allows the unmanned aerial vehicle 2 to fly.
 無人航空機2が3以上の回転翼を用いて揚力を得るマルチコプターである場合、飛行構造22の数が3以上であり、3以上の飛行構造22のそれぞれは、駆動部221と駆動部221によって回転する回転翼222とを含むことが好ましい。これにより、回転翼222を回転させ、揚力を得ることができる。この揚力により、無人航空機2を飛行させ得る。3以上の飛行構造22のそれぞれが回転翼222を有することにより、回転翼222の回転速度の増減によって上昇及び/又は下降を行える。また、マルチコプターは、各回転翼222の回転数に差をつけることで、その機体を傾けられる。これにより、マルチコプターは、前進、後進、及び/又は旋回等を行える。したがって、無人航空機2は、上昇、下降、前進、後進、及び/又は旋回等を行うことによって所定の位置に移動し得る。 When the unmanned aerial vehicle 2 is a multicopter that obtains lift using three or more rotor blades, the number of flight structures 22 is three or more, and each of the three or more flight structures 22 is driven by a drive unit 221 and a drive unit 221. It preferably includes rotating rotor blades 222 . As a result, the rotor blades 222 can be rotated to obtain lift. This lift force allows the unmanned aerial vehicle 2 to fly. Each of the three or more flight structures 22 has a rotor 222 so that the speed of rotation of the rotor 222 can be increased or decreased to ascend and/or descend. In addition, the multi-copter can tilt its body by making the rotational speed of each rotor blade 222 different. This allows the multicopter to move forward, backward, and/or turn. Accordingly, the unmanned aerial vehicle 2 may move into position by raising, lowering, advancing, reversing, and/or turning, and the like.
 3以上の飛行構造22のそれぞれが駆動部221と回転翼222とを含むことにより、駆動部221は、動力を分配する動力分配装置等を介さずに回転翼222を直接回転させ得る。これにより、飛行構造22を簡易な構成にし得る。また、駆動部221が動力分配装置等を介さず回転翼222を回転させることにより、動力分配装置等の制御を行わない比較的簡易な制御によって、飛行構造22を用いた飛行状態を制御し得る。 Since each of the three or more flight structures 22 includes the drive section 221 and the rotor blades 222, the drive section 221 can directly rotate the rotor blades 222 without a power distribution device or the like for distributing power. This allows the flight structure 22 to have a simple configuration. Further, since the drive unit 221 rotates the rotor blades 222 without using a power distribution device or the like, the flight state using the flight structure 22 can be controlled by relatively simple control without controlling the power distribution device or the like. .
 以下、無人航空機2がマルチコプターであり、飛行構造22の数が3以上であり、3以上の飛行構造22のそれぞれが駆動部221と駆動部221によって回転する回転翼222とを含むものとして説明する。 In the following description, the unmanned aerial vehicle 2 is a multi-copter, the number of flight structures 22 is three or more, and each of the three or more flight structures 22 includes a drive section 221 and a rotor 222 rotated by the drive section 221. do.
 飛行構造22は、電源部27が供給する電力を利用可能であることが好ましい。これにより、電源部27が供給する電力を利用して飛行構造22を動作させ得る。 It is preferable that the flight structure 22 be able to use the power supplied by the power supply section 27 . Thereby, the flight structure 22 can be operated using the power supplied by the power supply unit 27 .
 図2には、無人航空機2が備える飛行構造22として、第1飛行構造22a、第2飛行構造22b、第3飛行構造22c、及び第4飛行構造22dが示されている。これらの飛行構造22それぞれは、制御部21及び後述する電源部27と接続されている。 FIG. 2 shows a first flight structure 22a, a second flight structure 22b, a third flight structure 22c, and a fourth flight structure 22d as the flight structures 22 that the unmanned aerial vehicle 2 has. Each of these flight structures 22 is connected to a control section 21 and a power supply section 27 which will be described later.
(駆動部221)
 駆動部221(図2の符号221a、221b、221c、及び221d)は、制御部21によって制御可能であり、回転翼222を回転させることが可能な駆動部221であれば、特に限定されない。駆動部221は、電気を用いて回転翼222を回転させるモータを含むことが好ましい。駆動部221がモータを含むことにより、制御部21は、電気を介した比較的容易な制御によって駆動部221を制御し得る。そして、回転翼222の回転数等を制御し得る。これにより、制御部21は、無人航空機2の飛行状態を容易に制御し得る。駆動部221がモータを含む場合、駆動部221は、電源部27が供給する電力を利用可能であることが好ましい。これにより、電源部27が供給する電力を利用して回転翼222を回転させ得る。
(Driving unit 221)
The drive unit 221 ( reference numerals 221a, 221b, 221c, and 221d in FIG. 2) is controllable by the control unit 21 and is not particularly limited as long as it can rotate the rotor 222. The drive unit 221 preferably includes a motor that rotates the rotor blades 222 using electricity. Since the drive unit 221 includes a motor, the control unit 21 can control the drive unit 221 through relatively easy control via electricity. Then, the number of revolutions of the rotor blades 222 and the like can be controlled. Thereby, the control unit 21 can easily control the flight state of the unmanned aerial vehicle 2 . If the drive unit 221 includes a motor, it is preferable that the drive unit 221 can use power supplied by the power supply unit 27 . Accordingly, the power supplied by the power supply unit 27 can be used to rotate the rotor blades 222 .
(回転翼222)
 回転翼222(図2の符号222a、222b、222c、及び222d)は、駆動部221によって回転させられることが可能であり、回転によって揚力を発生可能な回転翼であれば、特に限定されない。回転翼222は、例えば、回転方向に対する回転翼の傾きを変化させることが可能な可変ピッチの回転翼でよい。回転翼222が可変ピッチの回転翼であることにより、回転速度に応じて回転翼の傾きを変化させ、揚力を効率的に得られる。回転翼222は、例えば、回転方向に対する回転翼の傾きが一定である固定ピッチの回転翼でよい。回転翼222が固定ピッチの回転翼であることにより、回転翼222を可変ピッチの回転翼より簡易な構造にし得る。これにより、無人航空機2の保守性及び/又は費用対効果等を改善し得る。
(rotary blade 222)
The rotor blades 222 ( reference numerals 222a, 222b, 222c, and 222d in FIG. 2) can be rotated by the drive unit 221, and are not particularly limited as long as they can generate lift by rotation. Rotor 222 may be, for example, a variable pitch rotor that allows the tilt of the rotor with respect to the direction of rotation to be varied. Since the rotor blade 222 is a variable-pitch rotor blade, the inclination of the rotor blade can be changed according to the rotation speed, and lift can be obtained efficiently. Rotor 222 may be, for example, a fixed pitch rotor with a constant inclination of the rotor with respect to the direction of rotation. Since the rotor blades 222 are fixed-pitch rotor blades, the rotor blades 222 can have a simpler structure than variable-pitch rotor blades. As a result, the maintainability and/or cost effectiveness of the unmanned aerial vehicle 2 can be improved.
[剪定構造23]
 剪定構造23は、樹木を剪定可能な剪定構造であれば、特に限定されない。剪定構造23は、例えば、ハサミ、ノコギリ、カッター、レーザーカッター、及びウォーターカッター等によって例示される樹木を剪定可能な構造の1以上を含む剪定構造でよい。剪定構造23は、制御部21による制御に応じて剪定の対象となる剪定樹木を剪定する。
[Pruning structure 23]
The pruning structure 23 is not particularly limited as long as it is a pruning structure capable of pruning trees. Pruning structure 23 may be, for example, a pruning structure that includes one or more structures capable of pruning trees exemplified by scissors, saws, cutters, laser cutters, water cutters, and the like. The pruning structure 23 prunes a pruning tree to be pruned under the control of the control unit 21 .
 無人航空機2が収容構造24を備える場合、剪定構造23は、収容構造24に収容可能であることが好ましい。これにより、無人航空機2は、必要に応じて剪定構造23を収容構造24に収容し、ヒト等が剪定構造によって怪我することを防ぎ得る。 If the unmanned aerial vehicle 2 comprises a containment structure 24 , the pruning structure 23 is preferably capable of being contained in the containment structure 24 . As a result, the unmanned aerial vehicle 2 can store the pruning structure 23 in the storage structure 24 as necessary, and prevent a person or the like from being injured by the pruning structure.
 剪定構造23が収容構造24に収容可能である場合、剪定構造23は、コントローラ2による制御に応じて剪定構造23が収容構造24の外部に現出する現出状態に制御可能であり、かつ、コントローラ2による制御に応じて剪定構造23が収容構造24の内部に収容される収容状態に制御可能であることが好ましい。これにより、無人航空機2は、現出状態の剪定構造23を用いて樹木を剪定し得る。一方で、無人航空機2は、剪定構造23の状態を収容状態に制御し、ヒト等が剪定構造によって怪我することを防ぎ得る。 When the pruning structure 23 can be accommodated in the accommodation structure 24, the pruning structure 23 is controllable to a manifestation state in which the pruning structure 23 emerges outside the accommodation structure 24 according to control by the controller 2; Preferably, the pruning structure 23 is controllable to a stowed state in which the pruning structure 23 is stowed inside the stowage structure 24 as controlled by the controller 2 . This allows unmanned aerial vehicle 2 to prune trees using emerging pruning structure 23 . On the other hand, the unmanned aerial vehicle 2 can control the state of the pruning structure 23 to the stowed state to prevent a person or the like from being injured by the pruning structure.
[収容構造24]
 収容構造24は、剪定構造23を収容可能であれば、特に限定されない。収容構造24は、例えば、収容状態において剪定構造23を覆い、剪定構造23を内部に収容することが可能な構造でよい。
[Containment structure 24]
The accommodation structure 24 is not particularly limited as long as it can accommodate the pruning structure 23 . The containment structure 24 may be, for example, a structure capable of covering the pruning structure 23 and containing the pruning structure 23 in the containment state.
[撮影装置25]
 撮影装置25は、剪定の対象となる対象樹木を撮影した樹木画像を生成可能であれば、特に限定されない。撮影装置25は、後述する制御装置3から送信された指令に応じて樹木画像を生成し、生成した樹木画像を制御装置3に提供する。撮影装置25は、例えば、静止画である樹木画像を生成可能なデジタルスチルカメラ、動画である樹木画像を生成可能なデジタルカムコーダ等でよい。
[Photographing device 25]
The photographing device 25 is not particularly limited as long as it can generate a tree image obtained by photographing a target tree to be pruned. The photographing device 25 generates a tree image according to a command transmitted from the control device 3 to be described later, and provides the generated tree image to the control device 3 . The photographing device 25 may be, for example, a digital still camera capable of generating still images of trees, a digital camcorder capable of generating moving images of trees, or the like.
[通信部26]
 通信部26は、無人航空機2をネットワークNに接続して制御装置3と通信可能にする通信部であれば特に限定されない。通信部26として、例えば、ラジコン用微弱無線局に該当する無線装置、テレメータ用・テレコントロール用特定小電力無線局に該当する無線装置、小電力データ通信システムに該当する無線装置、無人移動体画像伝送システムに該当する無線装置、携帯電話ネットワークに対応した無線装置、IEEE802.11に準拠したWi-Fi(Wireless Fidelity)対応デバイス、光無線通信に対応した光無線装置、及び有線通信に対応した有線通信装置等の1以上を含む通信部が挙げられる。
[Communication unit 26]
The communication unit 26 is not particularly limited as long as it connects the unmanned aerial vehicle 2 to the network N and enables communication with the control device 3 . As the communication unit 26, for example, a radio device corresponding to a weak radio station for radio control, a radio device corresponding to a specific low power radio station for telemetry and telecontrol, a radio device corresponding to a low power data communication system, an unmanned mobile image Wireless devices corresponding to transmission systems, wireless devices compatible with mobile phone networks, devices compatible with Wi-Fi (Wireless Fidelity) compatible with IEEE802.11, optical wireless devices compatible with optical wireless communication, and wired devices compatible with wired communication Communication units including one or more such as communication devices may be mentioned.
[電源部27]
 電源部27は、制御部21、飛行構造22、剪定構造23、収容構造24、撮影装置25、及び通信部26等の飛行体1が備える各部材等の1以上に電力を供給可能な電源部である。電源部27は、特に限定されず、従来技術の電源部でよい。電源部27は、例えば、一次電池(例えば、乾電池、湿電池等)、二次電池、太陽電池、燃料電池、原子力電池、全固体電池、発電機(例えば、内燃機関及び/又は外燃機関を用いる発電機、マイクロ波発電機等)及びこれらの1以上を含む電源部でよい。
[Power supply unit 27]
The power supply unit 27 is a power supply unit capable of supplying power to one or more of the members of the aircraft 1 such as the control unit 21, the flight structure 22, the pruning structure 23, the accommodation structure 24, the imaging device 25, and the communication unit 26. is. The power supply unit 27 is not particularly limited, and may be a conventional power supply unit. The power supply unit 27 includes, for example, primary batteries (e.g., dry batteries, wet batteries, etc.), secondary batteries, solar cells, fuel cells, nuclear batteries, all-solid-state batteries, generators (e.g., internal combustion engines and/or external combustion engines). generator, microwave generator, etc.) and a power supply unit including one or more of these.
 中でも、電源部27は、一次電池、二次電池、及び全固体電池等によって例示される電池を含むことが好ましい。電池は、発電機等より簡易な構造を有する。したがって、電源部27が電池を含むことにより、電源部27の構成を簡易な構造にし得る。これにより、無人航空機2の保守性及び/又は費用対効果等を改善し得る。 Above all, the power supply unit 27 preferably includes batteries exemplified by primary batteries, secondary batteries, and all-solid-state batteries. A battery has a simpler structure than a generator or the like. Therefore, by including a battery in the power supply unit 27, the structure of the power supply unit 27 can be simplified. As a result, the maintainability and/or cost effectiveness of the unmanned aerial vehicle 2 can be improved.
[支持構造28]
 支持構造28は、無人航空機2が備える各部材等の2以上を所定の位置関係で支持可能な構造であれば、特に限定されない。支持構造28は、例えば、飛行構造22及び剪定構造23を所定の位置関係で支持可能な構造である。
[Support structure 28]
The support structure 28 is not particularly limited as long as it is a structure capable of supporting two or more members of the unmanned aerial vehicle 2 in a predetermined positional relationship. The support structure 28 is, for example, a structure capable of supporting the flight structure 22 and the pruning structure 23 in a predetermined positional relationship.
 図2には、無人航空機2が備える支持構造28として、制御部21、第1飛行構造22a、第2飛行構造22b、第3飛行構造22c、第4飛行構造22d、剪定構造23、収容構造24、通信部26、及び電源部27のそれぞれを所定の位置関係で支持する支持構造28が示されている。支持構造28を備えることにより、これらが所定の位置関係を保つよう、これらのそれぞれを支持できる。 In FIG. 2, the support structure 28 included in the unmanned aerial vehicle 2 includes a control unit 21, a first flight structure 22a, a second flight structure 22b, a third flight structure 22c, a fourth flight structure 22d, a pruning structure 23, and an accommodation structure 24. , the communication unit 26, and the power supply unit 27 in a predetermined positional relationship. A support structure 28 may be provided to support each of these in a predetermined positional relationship.
[距離センサ]
 必須の態様ではないが、無人航空機2は、無人航空機2から対象樹木、ヒト、及び/又は動物までの距離を測定可能な距離センサ(図示せず)を備えることが好ましい。これにより、飛行状態制御部211及び/又は状態制御部212は、無人航空機2から対象樹木、ヒト、及び/又は動物までの距離を測定し得る。距離センサは、特に限定されず、例えば、赤外線、レーザ光、電波、可視光、及び/又は音波等を用いて対象までの距離を測定可能な従来技術の距離センサでよい。
[Distance sensor]
Although not an essential aspect, the unmanned aerial vehicle 2 is preferably equipped with a range sensor (not shown) capable of measuring the distance from the unmanned aerial vehicle 2 to target trees, humans and/or animals. Thereby, the flight state control unit 211 and/or the state control unit 212 can measure the distance from the unmanned aerial vehicle 2 to the target tree, human, and/or animal. The distance sensor is not particularly limited, and may be, for example, a conventional distance sensor capable of measuring the distance to an object using infrared rays, laser light, radio waves, visible light, and/or sound waves.
[高度計]
 必須の態様ではないが、無人航空機2は、無人航空機2の高度を測定可能な高度計(図示せず)を備えることが好ましい。これにより、高度取得部213は、無人航空機2の高度を測定し得る。高度計は、特に限定されず、例えば、気圧、電波、赤外線、可視光、及び/又はレーザ光等を用いて高度を測定可能な従来技術の高度計でよい。
[Altimeter]
Although not an essential aspect, the unmanned aerial vehicle 2 preferably has an altimeter (not shown) capable of measuring the altitude of the unmanned aerial vehicle 2 . Thereby, the altitude acquisition unit 213 can measure the altitude of the unmanned aerial vehicle 2 . The altimeter is not particularly limited, and may be, for example, a conventional altimeter capable of measuring altitude using atmospheric pressure, radio waves, infrared rays, visible light, and/or laser light.
[測位部]
 必須の態様ではないが、無人航空機2は、無人航空機2の位置を測位可能な測位部(図示せず)を備えることが好ましい。これにより、位置取得部214は、無人航空機2の位置を取得し得る。測位部は、特に限定されず、例えば、グローバル・ポジショニング・システム(Global Positioning System、GPS)、及びReal-time kinematic(RTK)等によって例示される電波を用いる測位装置、慣性航法装置、並びにレーダ装置等によって例示される位置を測位可能な装置の1以上を用いる測位部でよい。
[Positioning unit]
Although not an essential aspect, the unmanned aerial vehicle 2 preferably has a positioning unit (not shown) capable of positioning the unmanned aerial vehicle 2 . Thereby, the position acquisition unit 214 can acquire the position of the unmanned aerial vehicle 2 . The positioning unit is not particularly limited, for example, a global positioning system (Global Positioning System, GPS), positioning equipment using radio waves exemplified by Real-time kinematic (RTK), inertial navigation equipment, and radar equipment It may be a positioning unit using one or more devices capable of positioning positions exemplified by, for example.
〔制御装置3〕
 図1に戻る。制御装置3は、制御部31と、記憶部32と、通信部33と、表示部34と、入力部35と、を備える。
[Control device 3]
Return to FIG. The control device 3 includes a control section 31 , a storage section 32 , a communication section 33 , a display section 34 and an input section 35 .
[制御部31]
 制御部31は、CPU(Central Processing Unit)、RAM(Random Access Memory)、及びROM(Read Only Memory)等を備える。
[Control unit 31]
The control unit 31 includes a CPU (Central Processing Unit), a RAM (Random Access Memory), a ROM (Read Only Memory), and the like.
 制御部31は、所定のプログラムを読み込み、必要に応じて記憶部32、通信部33、表示部34、及び/又は入力部35と協働することで、制御装置3におけるソフトウェア構成の要素である樹木画像撮影部311、樹木形状情報生成部312、樹木形状評価受信部313、形状学習部314、目標形状情報受信部315、剪定位置指定部316、剪定位置学習部317、動作制御部318、及び制御情報学習部319等を実現する。 The control unit 31 reads a predetermined program and cooperates with the storage unit 32, the communication unit 33, the display unit 34, and/or the input unit 35 as necessary, and is an element of the software configuration in the control device 3. A tree image capturing unit 311, a tree shape information generating unit 312, a tree shape evaluation receiving unit 313, a shape learning unit 314, a target shape information receiving unit 315, a pruning position specifying unit 316, a pruning position learning unit 317, an operation control unit 318, and It implements the control information learning unit 319 and the like.
[記憶部32]
 記憶部32には、データやファイルが記憶される。記憶部32は、半導体メモリ、記録媒体、及びメモリカード等によって例示されるデータやファイルを記憶可能な部材を含むデータのストレージ部を有する。記憶部32は、ネットワークNを介してNAS(Network Attached Storage)、SAN(Storage Area Network)、クラウドストレージ、ファイルサーバ及び/又は分散ファイルシステム等の記憶装置又は記憶システムとの接続を可能にする仕組みを有してもよい。
[Storage unit 32]
Data and files are stored in the storage unit 32 . The storage unit 32 has a data storage unit including members capable of storing data and files exemplified by a semiconductor memory, a recording medium, a memory card, and the like. The storage unit 32 is a mechanism that enables connection with a storage device or storage system such as NAS (Network Attached Storage), SAN (Storage Area Network), cloud storage, file server and/or distributed file system via network N. may have
 記憶部32には、マイクロコンピュータで実行される制御プログラム、樹木画像テーブル321、及びニューラルネットワークテーブル322等が記憶されている。 The storage unit 32 stores a control program executed by the microcomputer, a tree image table 321, a neural network table 322, and the like.
(樹木画像テーブル321)
 図3は、樹木画像テーブル321の一例を示す図である。樹木画像テーブル321は、剪定の対象となる対象樹木に関する樹木画像を格納するテーブルである。樹木画像テーブル321には、対象樹木を撮影した2以上の樹木画像が格納される。これにより、制御部31は、対象樹木を異なる向きから撮影した2以上の樹木画像と後述する形状生成ニューラルネットワークとを用いて、対象樹木の樹木形状情報を生成し得る。
(Tree image table 321)
FIG. 3 is a diagram showing an example of the tree image table 321. As shown in FIG. The tree image table 321 is a table that stores tree images related to target trees to be pruned. The tree image table 321 stores two or more tree images obtained by photographing the target tree. Thereby, the control unit 31 can generate tree shape information of the target tree using two or more tree images obtained by photographing the target tree from different directions and a shape generation neural network described later.
 樹木画像テーブル321は、樹木画像と関連付けられ、該樹木画像を識別可能な樹木画像IDを格納可能であることが好ましい。これにより、制御部21は、樹木画像IDを用いて樹木画像を格納及び/又は取得し得る。 It is preferable that the tree image table 321 can store tree image IDs that are associated with tree images and that can identify the tree images. Thereby, the control unit 21 can store and/or obtain the tree image using the tree image ID.
 樹木画像テーブル321は、樹木画像と関連付けられ、該樹木画像に関する対象樹木を識別可能な樹木IDを格納可能であることが好ましい。これにより、制御部21は、樹木IDを用いて対象樹木を識別し得る。 It is preferable that the tree image table 321 be able to store tree IDs that are associated with tree images and that can identify target trees related to the tree images. Thereby, the control unit 21 can identify the target tree using the tree ID.
 樹木画像テーブル321は、樹木画像と関連付けられた画像情報を格納可能であることが好ましい。これにより、制御部21は、樹木画像に関する画像情報を利用し得る。画像情報は、特に限定されず、樹木画像の撮影高度に関する情報、樹木画像の撮影位置に関する情報、樹木画像の撮影者に関する情報、樹木画像の撮影日に関する情報、及び樹木画像の撮影時刻に関する情報等によって例示される樹木画像に関する各種の情報の1以上を含む情報でよい。 The tree image table 321 is preferably capable of storing image information associated with tree images. Thereby, the control unit 21 can use the image information regarding the tree image. The image information is not particularly limited, and includes information about the shooting altitude of the tree image, information about the shooting position of the tree image, information about the photographer of the tree image, information about the shooting date of the tree image, information about the shooting time of the tree image, and the like. Information including one or more of various types of information about the tree image exemplified by .
 図3の樹木画像ID「P1」には、樹木ID「T1」と、樹木ID「T1」によって識別される対象樹木の樹木画像と、該樹木画像に関する画像情報とが格納されている。また、図3の樹木画像ID「P2」には、樹木ID「T1」と、樹木ID「T1」によって識別される対象樹木を樹木画像ID「P1」によって識別される樹木画像とは異なる向きから撮影した樹木画像と、該樹木画像に関する画像情報とが格納されている。 The tree image ID "P1" in FIG. 3 stores the tree ID "T1", the tree image of the target tree identified by the tree ID "T1", and image information related to the tree image. Also, in the tree image ID "P2" of FIG. 3, the tree ID "T1" and the target tree identified by the tree ID "T1" are viewed from a direction different from that of the tree image identified by the tree image ID "P1". A photographed tree image and image information related to the tree image are stored.
 樹木画像テーブル321が樹木ID「T1」によって識別される対象樹木を異なる向きから撮影した2以上の樹木画像を格納することにより、制御部31は、対象樹木を異なる向きから撮影した2以上の樹木画像と形状生成ニューラルネットワークとを用いて、樹木ID「T1」によって識別される対象樹木の樹木形状情報を生成し得る。 The tree image table 321 stores two or more tree images obtained by photographing the target tree identified by the tree ID "T1" from different directions. The image and shape generation neural network may be used to generate tree shape information for the target tree identified by tree ID "T1".
(ニューラルネットワークテーブル322)
 図4は、ニューラルネットワークテーブル322の一例を示す図である。ニューラルネットワークテーブル322には、少なくとも、2以上の樹木画像を用いて対象樹木の樹木形状情報を生成可能な形状生成ニューラルネットワークN1(ニューラルネットワークID「N1」に相当)が記憶される。これにより、形状生成ニューラルネットワークN1を用いて、対象樹木の樹木形状情報を生成できる。
(Neural network table 322)
FIG. 4 is a diagram showing an example of the neural network table 322. As shown in FIG. The neural network table 322 stores at least a shape generation neural network N1 (corresponding to the neural network ID "N1") capable of generating tree shape information of a target tree using two or more tree images. Thus, the tree shape information of the target tree can be generated using the shape generation neural network N1.
 ニューラルネットワークテーブル322は、ニューラルネットワークと関連付けられ、該ニューラルネットワークを識別可能なニューラルネットワークIDを格納可能であることが好ましい。これにより、制御部21は、ニューラルネットワークIDを用いてニューラルネットワークを格納及び/又は取得し得る。 The neural network table 322 is preferably associated with a neural network and can store neural network IDs that can identify the neural network. Thereby, the control unit 21 can store and/or obtain the neural network using the neural network ID.
 必須の態様ではないが、ニューラルネットワークテーブル322には、樹木形状情報と目標形状情報とに基づいて無人航空機2の飛行状態及び剪定構造23の動作を制御可能な剪定位置生成ニューラルネットワークN2(ニューラルネットワークID「N2」に相当)が記憶されることが好ましい。これにより、剪定位置生成ニューラルネットワークN2を用いて、無人航空機2の飛行状態及び剪定構造23の動作を制御し得る。 Although not an essential aspect, the neural network table 322 includes a pruning position generation neural network N2 (neural network (corresponding to ID "N2") is preferably stored. Thereby, the pruning position generating neural network N2 may be used to control the flight conditions of the unmanned aerial vehicle 2 and the operation of the pruning structure 23. FIG.
 必須の態様ではないが、ニューラルネットワークテーブル322には、剪定位置と動作制御部318による制御の状態とに基づいて無人航空機2の飛行状態及び剪定構造23の動作を制御可能な制御情報生成ニューラルネットワークN3(ニューラルネットワークID「N3」に相当)が記憶されることが好ましい。これにより、制御情報生成ニューラルネットワークN3を用いて、無人航空機2の飛行状態及び剪定構造23の動作を制御し得る。 Although not an essential aspect, the neural network table 322 includes a control information generating neural network capable of controlling the flight state of the unmanned aerial vehicle 2 and the operation of the pruning structure 23 based on the pruning position and the state of control by the motion control unit 318. N3 (corresponding to neural network ID "N3") is preferably stored. Thereby, the control information generating neural network N3 may be used to control the flight conditions of the unmanned aerial vehicle 2 and the operation of the pruning structure 23 .
 形状生成ニューラルネットワークN1、剪定位置生成ニューラルネットワークN2、及び制御情報生成ニューラルネットワークN3のフォーマットは、特に限定されず、ニューラルネットワークの人工ニューロン(ノードとも称される。)が出力する信号の有無及び/又は信号の強さを決定する活性化関数に関する情報、ニューラルネットワークの人工ニューロンに入力された信号に対する重み付け(シナプスの結合強度又は単に結合強度とも称される。)を表現する重み行列(重みパラメータとも称される。)に関する情報、ニューラルネットワークの人工ニューロンに入力された信号に基準となる重み(バイアスパラメータ又は単にバイアスとも称される。)を与えるバイアスベクトルに関する情報、及び/又は、ニューラルネットワークの人工ニューロン間の接続関係に関する情報、等を含むデータ構造体を含んでもよい。 The formats of the shape generation neural network N1, the pruning position generation neural network N2, and the control information generation neural network N3 are not particularly limited. Or information about the activation function that determines the strength of the signal, a weight matrix (also referred to as a weight parameter information about a bias vector that gives a reference weight (also referred to as a bias parameter or simply a bias) to a signal input to an artificial neuron of the neural network, and/or an artificial neuron of the neural network. It may also include a data structure containing information about connection relationships between neurons, and the like.
 ニューラルネットワークテーブル322が格納するニューラルネットワークの種類は、特に限定されず、例えば、順伝播型ニューラルネットワーク(フィードフォワードニューラルネットワーク、又はFFNNとも称される。)、畳み込みニューラルネットワーク(Convolutional neural network、CNN、又は、ConvNetとも称される。)、Deep stacking network(DSNとも称される。)、RBFネットワーク(Radial basis function networkとも称される。)、回帰型ニューラルネットワーク(リカレントニューラルネットワーク、又は、RNNとも称される。)、モジュール型ニューラルネットワーク(Modular neural network)、等によって例示される従来技術の各種のニューラルネットワークを格納できる。 The type of neural network stored in the neural network table 322 is not particularly limited. Alternatively, it is also called ConvNet.), Deep stacking network (also called DSN), RBF network (also called radial basis function network), recurrent neural network (also called recurrent neural network, or RNN) ), modular neural networks, etc. can be stored.
 ニューラルネットワークテーブル322の構成をより詳しくみると、図4に示すニューラルネットワークテーブル322には、ニューラルネットワークを識別可能な「ニューラルネットワークID」と、ニューラルネットワークの重み行列A及びBとが紐付けられて格納されている。ニューラルネットワークIDを格納することにより、ニューラルネットワークテーブル322に格納された情報の取得及び更新が容易になる。ニューラルネットワークの重み行列A及びBを格納することにより、ニューラルネットワークを用いた生成及び/又は評価を行うことと、ニューラルネットワークに機械学習させることとを実行できる。 Looking at the configuration of the neural network table 322 in more detail, the neural network table 322 shown in FIG. stored. Storing the neural network ID facilitates obtaining and updating information stored in neural network table 322 . By storing the weight matrices A and B of the neural network, it is possible to perform generation and/or evaluation using the neural network and allow the neural network to perform machine learning.
 ニューラルネットワークID「N1」の行には、重み行列A1(a111からa179までの要素を含む行列)と、重み行列B1(b111からb194までの要素を含む行列)とによって表される形状生成ニューラルネットワークN1が格納されている。重み行列A1及び重み行列B1を格納することにより、樹木形状情報生成部312は、形状生成ニューラルネットワークN1に樹木形状情報を生成させ得る。また、重み行列A1及び重み行列B1を格納することにより、形状学習部314は、形状生成ニューラルネットワークN1に樹木形状情報を機械学習させ得る。 In the row of the neural network ID "N1", a weight matrix A1 (a matrix containing elements from a111 to a179) and a weight matrix B1 (a matrix containing elements from b111 to b194). N1 is stored. By storing the weight matrix A1 and the weight matrix B1, the tree shape information generator 312 can cause the shape generation neural network N1 to generate tree shape information. Also, by storing the weight matrix A1 and the weight matrix B1, the shape learning unit 314 can cause the shape generation neural network N1 to perform machine learning of the tree shape information.
 ニューラルネットワークID「N2」の行には、重み行列A2(a211からa249までの要素を含む行列)と、重み行列B2(b211からb297までの要素を含む行列)とによって表される剪定位置生成ニューラルネットワークN2が格納されている。重み行列A2及び重み行列B2を格納することにより、動作制御部318は、剪定位置生成ニューラルネットワークN2を用いて無人航空機2の飛行状態及び剪定構造23の動作を制御し得る。また、重み行列A2及び重み行列B2を格納することにより、制御情報学習部319は、剪定位置生成ニューラルネットワークN2に無人航空機2の飛行状態及び剪定構造23の動作を機械学習させ得る。 In the row of neural network ID "N2", pruning position generating neural Network N2 is stored. By storing the weight matrix A2 and the weight matrix B2, the motion controller 318 may control the flight conditions of the unmanned aerial vehicle 2 and the motion of the pruning structure 23 using the pruning position generating neural network N2. Also, by storing the weight matrix A2 and the weight matrix B2, the control information learning unit 319 can machine-learn the flight state of the unmanned aerial vehicle 2 and the operation of the pruning structure 23 to the pruning position generation neural network N2.
 ニューラルネットワークID「N3」の行には、重み行列A3(a211からa249までの要素を含む行列)と、重み行列B3(b211からb297までの要素を含む行列)とによって表される制御情報生成ニューラルネットワークN3が格納されている。重み行列A3及び重み行列B3を格納することにより、動作制御部318は、制御情報生成ニューラルネットワークN3を用いて無人航空機2の飛行状態及び剪定構造23の動作を制御し得る。また、重み行列A3及び重み行列B3を格納することにより、制御情報学習部319は、制御情報生成ニューラルネットワークN3に無人航空機2の飛行状態及び剪定構造23の動作を機械学習させ得る。 In the row of the neural network ID "N3", a control information generation neural network represented by a weight matrix A3 (a matrix containing elements a211 to a249) and a weight matrix B3 (a matrix containing elements b211 to b297) is displayed. Network N3 is stored. By storing the weighting matrix A3 and the weighting matrix B3, the motion controller 318 can control the flight conditions of the unmanned aerial vehicle 2 and the motion of the pruning structure 23 using the control information generating neural network N3. By storing the weight matrix A3 and the weight matrix B3, the control information learning unit 319 can cause the control information generation neural network N3 to machine-learn the flight state of the unmanned aerial vehicle 2 and the operation of the pruning structure 23 .
[通信部33]
 図1に戻る。通信部33は、制御装置3をネットワークNに接続して無人航空機2と通信可能にする通信部であれば特に限定されない。通信部33として、例えば、ラジコン用微弱無線局に該当する無線装置、テレメータ用・テレコントロール用特定小電力無線局に該当する無線装置、小電力データ通信システムに該当する無線装置、無人移動体画像伝送システムに該当する無線装置、携帯電話ネットワークに対応した無線装置、IEEE802.11に準拠したWi-Fi(Wireless Fidelity)対応デバイス、光無線通信に対応した光無線装置、及び有線通信に対応した有線通信装置等の1以上を含む通信部が挙げられる。
[Communication section 33]
Return to FIG. The communication unit 33 is not particularly limited as long as it connects the control device 3 to the network N and enables communication with the unmanned aerial vehicle 2 . As the communication unit 33, for example, a radio device corresponding to a weak radio station for radio control, a radio device corresponding to a specific low power radio station for telemetry and telecontrol, a radio device corresponding to a low power data communication system, an unmanned mobile image Wireless devices corresponding to transmission systems, wireless devices compatible with mobile phone networks, devices compatible with Wi-Fi (Wireless Fidelity) compatible with IEEE802.11, optical wireless devices compatible with optical wireless communication, and wired devices compatible with wired communication Communication units including one or more such as communication devices may be mentioned.
[表示部34]
 表示部34は、樹木形状情報を表示可能な画面表示領域を有する表示部であれば特に限定されない。表示部34として、例えば、タッチパネル、有機ELディスプレイ、液晶ディスプレイ、モニタ、プロジェクタ等を有する表示部が挙げられる。
[Display unit 34]
The display unit 34 is not particularly limited as long as it has a screen display area capable of displaying tree shape information. Examples of the display unit 34 include a display unit having a touch panel, an organic EL display, a liquid crystal display, a monitor, a projector, and the like.
[入力部35]
 入力部35は、樹木形状情報に関する樹木形状評価、対象樹木に関する目標形状情報、剪定を行う位置に関する剪定位置、及び/又は無人航空機2に関する制御情報等を入力可能な入力部であれば、特に限定されない。入力部35の種類は、特に限定されず、例えば、タッチパネル、ソフトウェアキーボード、音声を認識するマイク、外部の装置から入力を受信する通信デバイス、キーボード、マウス、1以上のボタンを介して入力を行う入力装置、1以上の回転式スイッチを介して入力を行う入力装置、及び/又は1以上のスティックを介して入力を行う入力装置等が挙げられる。
[Input unit 35]
The input unit 35 is particularly limited as long as it is an input unit capable of inputting tree shape evaluation related to tree shape information, target shape information related to target trees, pruning positions related to pruning positions, and/or control information related to the unmanned aerial vehicle 2. not. The type of the input unit 35 is not particularly limited. For example, a touch panel, a software keyboard, a microphone that recognizes voice, a communication device that receives input from an external device, a keyboard, a mouse, and one or more buttons. These include input devices, input devices that provide input via one or more rotary switches, and/or input devices that provide input via one or more sticks.
 制御装置3が入力部35を備えることにより、利用者は、入力部35を介して樹木形状評価、対象樹木に関する目標形状情報、剪定を行う位置に関する剪定位置、及び/又は無人航空機2に関する制御情報等を入力し得る。 By providing the input unit 35 to the control device 3, the user can input the tree shape evaluation, the target shape information regarding the target tree, the pruning position regarding the pruning position, and/or the control information regarding the unmanned aerial vehicle 2 via the input unit 35. etc. can be entered.
〔制御装置3で実行される動作制御処理のフローチャート〕
 図5は、本実施形態の制御装置3を用いた動作制御処理について、その好ましい流れの一例を示すフローチャートである。以下、図5を用いて、制御装置3で実行される動作制御処理の好ましい手順の一例を説明する。
[Flowchart of Operation Control Processing Executed by Control Device 3]
FIG. 5 is a flow chart showing an example of a preferable flow of operation control processing using the control device 3 of this embodiment. An example of a preferable procedure of the operation control process executed by the control device 3 will be described below with reference to FIG.
[ステップS1:樹木画像を取得]
 制御部31は、記憶部32及び通信部33と協働し、樹木画像撮影部311を実行して、剪定の対象となる対象樹木を異なる向きから撮影した2以上の樹木画像を無人航空機2から取得する(ステップS1)。制御部31は、処理をステップS2に移す。2以上の樹木画像を取得することにより、2以上の樹木画像と形状生成ニューラルネットワークN1とを用いて、対象樹木の樹木形状情報を生成し得る。
[Step S1: Acquire Tree Image]
The control unit 31 cooperates with the storage unit 32 and the communication unit 33 to execute the tree image photographing unit 311 to obtain two or more tree images obtained by photographing the target tree to be pruned from different directions from the unmanned aerial vehicle 2. acquire (step S1). The control unit 31 shifts the process to step S2. By acquiring two or more tree images, tree shape information of the target tree can be generated using the two or more tree images and the shape generation neural network N1.
 2以上の樹木画像を無人航空機2から取得する処理は、取得した樹木画像それぞれを樹木画像IDと関連付けて樹木画像テーブル321に格納する処理を含む。これにより、樹木形状生成部312、樹木形状評価受信部313、及び/又は形状学習部314等は、樹木画像テーブル321に格納された樹木画像を取得し得る。 The process of acquiring two or more tree images from the unmanned aerial vehicle 2 includes the process of associating each of the acquired tree images with a tree image ID and storing them in the tree image table 321 . Thereby, the tree shape generation unit 312 , the tree shape evaluation reception unit 313 , and/or the shape learning unit 314 and the like can acquire the tree images stored in the tree image table 321 .
 必須の態様ではないが、無人航空機2から取得する樹木画像は、対象樹木を識別可能な情報と関連付けられていることが好ましい。これにより、取得した樹木画像それぞれについて、対象樹木を識別する樹木IDと樹木画像とを関連付けて樹木画像テーブル321に格納し得る。 Although not an essential aspect, it is preferable that the tree image acquired from the unmanned aerial vehicle 2 is associated with information that enables identification of the target tree. As a result, for each acquired tree image, the tree ID for identifying the target tree and the tree image can be associated with each other and stored in the tree image table 321 .
 必須の態様ではないが、無人航空機2から取得する樹木画像は、樹木画像に関する画像情報と関連付けられていることが好ましい。これにより、取得した樹木画像それぞれについて、画像情報と樹木画像とを関連付けて樹木画像テーブル321に格納し得る。 Although not an essential aspect, it is preferable that the tree image acquired from the unmanned aerial vehicle 2 is associated with image information related to the tree image. As a result, for each acquired tree image, the image information and the tree image can be associated and stored in the tree image table 321 .
 必須の態様ではないが、2以上の樹木画像を無人航空機2から取得する処理は、対象樹木を異なる向きから撮影可能であるよう無人航空機2の飛行状態を制御する処理を含むことが好ましい。これにより、無人航空機2の飛行状態を制御して、対象樹木を異なる向きから撮影した2以上の樹木画像を取得し得る。 Although not an essential aspect, the process of acquiring two or more tree images from the unmanned aerial vehicle 2 preferably includes a process of controlling the flight state of the unmanned aerial vehicle 2 so that the target tree can be photographed from different directions. Thereby, it is possible to control the flight state of the unmanned aerial vehicle 2 and acquire two or more tree images of the target tree photographed from different directions.
[ステップS2:樹木形状情報を生成]
 制御部31は、記憶部32と協働し、樹木形状生成部312を実行して、2以上の樹木画像と形状生成ニューラルネットワークN1とを用いて対象樹木の樹木形状情報を生成する(ステップS2)。制御部31は、処理をステップS3に移す。樹木形状生成部312は、異なる向きから撮影した2以上の樹木画像を用いるため、樹木の形状を把握し得る。したがって、樹木形状生成部312は、樹木の樹木形状情報を生成し得る。
[Step S2: Generate Tree Shape Information]
The control unit 31 cooperates with the storage unit 32 to execute the tree shape generation unit 312 to generate tree shape information of the target tree using two or more tree images and the shape generation neural network N1 (step S2 ). The control unit 31 shifts the process to step S3. Since the tree shape generator 312 uses two or more tree images photographed from different directions, the shape of the tree can be grasped. Therefore, the tree shape generator 312 can generate tree shape information of trees.
 樹木形状情報生成部312は、形状学習部314において機械学習可能な形状生成ニューラルネットワークN1を用いて、対象樹木の樹木形状情報を生成できる。したがって、形状生成ニューラルネットワークN1を用いる樹木形状生成部312は、機械学習を行ったニューラルネットワークを用いずに生成された樹木形状情報より正確な樹木形状情報を生成し得る。 The tree shape information generation unit 312 can generate tree shape information for the target tree using the shape generation neural network N1 that can be machine-learned in the shape learning unit 314 . Therefore, the tree shape generation unit 312 using the shape generation neural network N1 can generate more accurate tree shape information than tree shape information generated without using a neural network that has performed machine learning.
 樹木形状情報を生成する処理は、生成された樹木形状情報を表示するよう表示部34を制御する処理を含むことが好ましい。これにより、樹木形状評価受信部313は、表示部34に表示された樹木形状情報に関する樹木形状評価を制御装置3の利用者等から受信し得る。 The process of generating tree shape information preferably includes a process of controlling the display unit 34 to display the generated tree shape information. Thereby, the tree shape evaluation receiving unit 313 can receive the tree shape evaluation regarding the tree shape information displayed on the display unit 34 from the user of the control device 3 or the like.
 樹木形状情報を生成する処理は、生成された樹木形状情報を外部に送信するよう通信部33を制御する処理を含むことが好ましい。これにより、樹木形状評価受信部313は、樹木形状情報を受信した外部から樹木形状評価を受信し得る。 The process of generating tree shape information preferably includes a process of controlling the communication unit 33 to transmit the generated tree shape information to the outside. Thereby, the tree shape evaluation receiving unit 313 can receive the tree shape evaluation from the outside that received the tree shape information.
[ステップS3:樹木形状評価を受信したか否かを判別]
 制御部31は、記憶部32と協働し、樹木形状評価受信部313を実行して、樹木形状評価を受信したか否かを判別する(ステップS3)。樹木形状評価を受信したならば、制御部31は、処理をステップS4に移す。樹木形状評価を受信していないならば、制御部31は、処理をステップS5に移す。樹木形状評価を受信したか否かを判別することにより、形状学習部314は、受信した樹木形状評価を用いて樹木の形状を機械学習し得る。
[Step S3: Determining Whether Tree Shape Evaluation Has Been Received]
The control unit 31 cooperates with the storage unit 32, executes the tree shape evaluation receiving unit 313, and determines whether or not the tree shape evaluation has been received (step S3). Upon receiving the tree shape evaluation, the control unit 31 shifts the process to step S4. If the tree shape evaluation has not been received, the control unit 31 shifts the process to step S5. By determining whether or not the tree shape evaluation has been received, the shape learning unit 314 can machine-learn the shape of the tree using the received tree shape evaluation.
 樹木形状情報を生成する処理が生成された樹木形状情報を表示するよう表示部34を制御する処理を含む場合、樹木形状評価を受信したか否かを判別する処理は、入力部35を介して入力された情報に基づく樹木形状評価を受信したか否かを判別する処理を含むことが好ましい。これにより、形状学習部314は、入力部35を介して入力された情報に基づく樹木形状評価を用いて樹木の形状を機械学習し得る。 If the process of generating the tree shape information includes the process of controlling the display unit 34 to display the generated tree shape information, the process of determining whether or not the tree shape evaluation has been received is performed via the input unit 35. Preferably, the process includes determining whether a tree shape evaluation based on the input information has been received. Thereby, the shape learning unit 314 can machine-learn the shape of the tree using the tree shape evaluation based on the information input via the input unit 35 .
 樹木形状情報を生成する処理が生成された樹木形状情報を外部に送信するよう通信部33を制御する処理を含む場合、樹木形状評価を受信したか否かを判別する処理は、通信部33を介して樹木形状評価を受信したか否かを判別する処理を含むことが好ましい。これにより、形状学習部314は、通信部33を介して受信した樹木形状評価を用いて樹木の形状を機械学習し得る。 When the process of generating tree shape information includes a process of controlling the communication unit 33 to transmit the generated tree shape information to the outside, the process of determining whether or not the tree shape evaluation has been received is performed by the communication unit 33. Preferably, a process is included for determining whether a tree shape evaluation has been received via. Thereby, the shape learning unit 314 can machine-learn the shape of the tree using the tree shape evaluation received via the communication unit 33 .
[ステップS4:樹木の形状を機械学習]
 制御部31は、記憶部32と協働し、形状学習部314を実行して、樹木画像と樹木形状情報と樹木形状評価とに基づいて形状生成ニューラルネットワークN1に樹木の形状を機械学習させる(ステップS4)。制御部31は、処理をステップS5に移す。形状生成ニューラルネットワークN1に樹木の形状を機械学習させることにより、形状生成ニューラルネットワークN1は、機械学習しないニューラルネットワークより正確な樹木形状情報を生成し得る。
[Step S4: Machine learning of tree shape]
The control unit 31 cooperates with the storage unit 32, executes the shape learning unit 314, and causes the shape generation neural network N1 to machine-learn the shape of the tree based on the tree image, the tree shape information, and the tree shape evaluation ( step S4). The control unit 31 shifts the process to step S5. By subjecting the shape generation neural network N1 to machine learning of tree shapes, the shape generation neural network N1 can generate more accurate tree shape information than a neural network that does not undergo machine learning.
 ニューラルネットワークテーブル322に剪定位置生成ニューラルネットワークN2が格納される場合、制御部31は、ステップS5、ステップS6、及びステップS7で実行される目標形状情報に関する処理を実行することが好ましい。これにより、目標とする樹木の形状に応じて樹木の形状を整えることを、よりいっそう適切に実行し得る。 When the neural network table 322 stores the pruning position generation neural network N2, the control unit 31 preferably executes the processing related to the target shape information executed in steps S5, S6, and S7. As a result, it is possible to more appropriately shape the tree according to the target shape of the tree.
[ステップS5:目標形状情報を受信したか否かを判別]
 制御部31は、記憶部32と協働し、目標形状情報受信部315を実行して、対象樹木を剪定した剪定後樹木の目標とする形状に関する目標形状情報を受信したか否かを判別する(ステップS5)。目標形状情報を受信したならば、制御部31は、処理をステップS6に移す。目標形状情報を受信していないならば、制御部31は、処理をステップS8に移す。目標形状情報を受信したか否かを判別することにより、動作制御部318は、目標形状情報に基づいて無人航空機2の飛行状態及び剪定構造23の動作を制御し得る。
[Step S5: Determining Whether Target Shape Information Has Been Received]
The control unit 31 cooperates with the storage unit 32, executes the target shape information receiving unit 315, and determines whether or not the target shape information regarding the target shape of the pruned tree after pruning the target tree has been received. (Step S5). After receiving the target shape information, the control unit 31 shifts the process to step S6. If the target shape information has not been received, the control unit 31 shifts the process to step S8. By determining whether target shape information has been received, the motion controller 318 may control the flight state of the unmanned aerial vehicle 2 and the operation of the pruning structure 23 based on the target shape information.
 目標形状情報は、対象樹木を剪定した剪定後樹木の目標とする形状に関する情報であれば、特に限定されない。目標形状情報は、例えば、剪定後樹木の目標とする立体的形状を含む。目標形状情報は、対象樹木の剪定位置を含むことが好ましい。これにより、無人航空機2は、対象樹木の剪定位置に基づいて対象樹木を剪定し得る。 The target shape information is not particularly limited as long as it is information related to the target shape of the pruned tree after pruning the target tree. The target shape information includes, for example, the target three-dimensional shape of the tree after pruning. The target shape information preferably includes the pruning position of the target tree. Thereby, the unmanned aerial vehicle 2 can prune the target tree based on the pruning position of the target tree.
[ステップS6:目標形状情報に基づいて無人航空機を制御]
 制御部31は、記憶部32と協働し、動作制御部318を実行して、樹木形状情報と目標形状情報と剪定位置生成ニューラルネットワークN2とを用いて無人航空機2の飛行状態及び剪定構造23の動作を制御する(ステップS6)。制御部31は、処理をステップS7に移す。
[Step S6: Control unmanned aerial vehicle based on target shape information]
The control unit 31 cooperates with the storage unit 32, executes the operation control unit 318, and calculates the flight state of the unmanned aerial vehicle 2 and the pruning structure 23 using the tree shape information, the target shape information, and the pruning position generation neural network N2. is controlled (step S6). The control unit 31 shifts the process to step S7.
 ステップS5における処理は、剪定位置指定部316を実行し、樹木形状情報と目標形状情報と剪定位置生成ニューラルネットワークN2とを用いて剪定位置を指定する処理を含むことが好ましい。これにより、機械学習した剪定位置生成ニューラルネットワークN2を用いて、より適切に剪定位置を指定し得る。 The processing in step S5 preferably includes processing for executing the pruning position specifying unit 316 and specifying the pruning position using the tree shape information, the target shape information, and the pruning position generation neural network N2. As a result, the pruning position can be designated more appropriately using the machine-learned pruning position generation neural network N2.
 剪定位置は、特に限定されない。剪定位置は、対象樹木の根元から出る枝であるひこばえ(蘖、孫生えとも表記する。ベーサルシュート、basal shootとも称する。)を剪定可能なひこばえ剪定位置を含むことが好ましい。これにより、剪定後の対象樹木は、ひこばえがない美しい見た目の樹木となり得る。また、剪定後の対象樹木は、根元における風通しがよくなり得る。剪定後の対象樹木は、ひこばえに養分を使われることがなくなり、養分を効率よく利用できるようになり得る。剪定後の対象樹木は、ひこばえにおいて病害虫が繁殖することがなくなり、対象樹木における病害虫の繁殖を予防し得る。 The pruning position is not particularly limited. The pruning position preferably includes an uprooted pruning position capable of pruning uprooted branches (also referred to as basal shoots), which are branches protruding from the root of the target tree. As a result, the target tree after pruning can be a beautiful looking tree with no overhang. Also, the target tree after pruning can have good ventilation at the base. After pruning, the target tree will no longer use nutrients for the tillers, and it will be possible to use nutrients efficiently. After pruning, pests do not propagate in the tillage of the target tree, and the propagation of pests in the target tree can be prevented.
 剪定位置は、いくつもの枝が重なる込み枝を剪定可能な込み枝剪定位置を含むことが好ましい。これにより、剪定後の対象樹木は、込み枝がない美しい見た目の樹木となり得る。また、込み枝があった箇所における風通しがよくなり得る。剪定後の対象樹木は、込み枝に養分を使われることがなくなり、養分を効率よく利用できるようになり得る。剪定後の対象樹木は、込み枝において病害虫が繁殖することがなくなり、対象樹木における病害虫の繁殖を予防し得る。 The pruning position preferably includes a branch pruning position that can prune a branch where a number of branches overlap. As a result, the target tree after pruning can be a beautiful looking tree with no overgrown branches. In addition, ventilation can be improved at locations where there were overgrown branches. After pruning, the target tree will no longer use nutrients for the bushes, and will be able to use nutrients efficiently. In the target tree after pruning, pests do not propagate in the branches, and the propagation of pests in the target tree can be prevented.
 剪定位置は、幹の向きに伸びる逆さ枝を剪定可能な逆さ枝剪定位置を含むことが好ましい。これにより、剪定後の対象樹木は、逆さ枝がない美しい見た目の樹木となり得る。剪定後の対象樹木は、逆さ枝に養分を使われることがなくなり、養分を効率よく利用できるようになり得る。剪定後の対象樹木は、逆さ枝において病害虫が繁殖することがなくなり、対象樹木における病害虫の繁殖を予防し得る。 The pruning position preferably includes an inverted branch pruning position capable of pruning an inverted branch extending toward the trunk. As a result, the target tree after pruning can be a beautiful looking tree without upside-down branches. After pruning, the target tree will no longer use upside-down branches to use nutrients, and it will be possible to use nutrients efficiently. In the target tree after pruning, pests do not propagate on the upside down branches, and the propagation of pests in the target tree can be prevented.
 剪定位置は、重力方向において略下方に伸びる下り枝を剪定可能な下り枝剪定位置を含むことが好ましい。これにより、剪定後の対象樹木は、下り枝がない美しい見た目の樹木となり得る。剪定後の対象樹木は、下り枝に養分を使われることがなくなり、養分を効率よく利用できるようになり得る。剪定後の対象樹木は、下り枝において病害虫が繁殖することがなくなり、対象樹木における病害虫の繁殖を予防し得る。 The pruning position preferably includes a downward branch pruning position capable of pruning a downward branch extending substantially downward in the direction of gravity. As a result, the target tree after pruning can be a beautiful looking tree without descending branches. After pruning, the target tree will no longer use nutrients for descending branches, and will be able to use nutrients efficiently. After pruning, pests do not propagate on the descending branches of the target tree, and the propagation of pests on the target tree can be prevented.
 剪定位置は、重力方向において略上方に伸びる立ち枝を剪定可能な立ち枝剪定位置を含むことが好ましい。これにより、剪定後の対象樹木は、立ち枝がない美しい見た目の樹木となり得る。剪定後の対象樹木は、立ち枝に養分を使われることがなくなり、養分を効率よく利用できるようになり得る。剪定後の対象樹木は、立ち枝において病害虫が繁殖することがなくなり、対象樹木における病害虫の繁殖を予防し得る。 The pruning position preferably includes a standing branch pruning position capable of pruning a standing branch that extends substantially upward in the direction of gravity. As a result, the target tree after pruning can be a beautiful looking tree without standing branches. After pruning, the target tree will no longer use nutrients for its standing branches, and will be able to use nutrients efficiently. After pruning, pests do not propagate on the standing branches of the target tree, and the propagation of pests on the target tree can be prevented.
 剪定位置は、他の枝と絡む絡み枝を剪定可能な絡み枝剪定位置を含むことが好ましい。これにより、剪定後の対象樹木は、絡み枝がない美しい見た目の樹木となり得る。また、絡み枝があった箇所における風通しがよくなり得る。剪定後の対象樹木は、絡み枝に養分を使われることがなくなり、養分を効率よく利用できるようになり得る。剪定後の対象樹木は、絡み枝において病害虫が繁殖することがなくなり、対象樹木における病害虫の繁殖を予防し得る。 The pruning position preferably includes a tangle branch pruning position at which tangle branches that are entangled with other branches can be pruned. As a result, the target tree after pruning can be a beautiful looking tree without entwining branches. In addition, ventilation can be improved at locations where there were tangled branches. After pruning, the target tree will no longer use nutrients for tangles, and will be able to use nutrients efficiently. In the target tree after pruning, pests do not propagate on the entanglement branches, and the propagation of pests in the target tree can be prevented.
 剪定位置は、重力方向において略上方及び/又は斜め上方に真っ直ぐ長く太く伸びる徒長枝を剪定可能な徒長枝剪定位置を含むことが好ましい。これにより、剪定後の対象樹木は、徒長枝がない美しい見た目の樹木となり得る。剪定後の対象樹木は、徒長枝に養分を使われることがなくなり、養分を効率よく利用できるようになり得る。剪定後の対象樹木は、徒長枝において病害虫が繁殖することがなくなり、対象樹木における病害虫の繁殖を予防し得る。 The pruning position preferably includes a long branch pruning position capable of pruning long, thick branches that extend straight and/or obliquely upward in the direction of gravity. As a result, the target tree after pruning can be a beautiful looking tree with no long branches. After pruning, the target tree will no longer use nutrients for long branches, and will be able to use nutrients efficiently. In the target tree after pruning, pests do not propagate on the long branches, and the propagation of pests in the target tree can be prevented.
 剪定位置は、他の枝の周辺において他の枝と略平行に伸びる平行枝を剪定可能な平行枝剪定位置を含むことが好ましい。これにより、剪定後の対象樹木は、平行枝がない美しい見た目の樹木となり得る。また、平行枝があった箇所における風通しがよくなり得る。剪定後の対象樹木は、平行枝に養分を使われることがなくなり、養分を効率よく利用できるようになり得る。剪定後の対象樹木は、平行枝において病害虫が繁殖することがなくなり、対象樹木における病害虫の繁殖を予防し得る。 The pruning positions preferably include parallel branch pruning positions capable of pruning parallel branches extending substantially parallel to other branches around other branches. As a result, the target tree after pruning can be a beautiful looking tree without parallel branches. Also, ventilation can be improved where there were parallel branches. After pruning, the target tree can no longer use nutrients for parallel branches, and can use nutrients efficiently. In the target tree after pruning, pests do not propagate on parallel branches, and the propagation of pests in the target tree can be prevented.
 剪定においては、目標とする樹木の形状に応じた制御も重要である。目標とする樹木の形状に応じて無人航空機2の飛行状態及び剪定構造23を適切に制御することにより、樹木の形状を所望の形状に整え得る。しかしながら、このような制御は、容易ではない。 In pruning, it is also important to control according to the shape of the target tree. By appropriately controlling the flight state of the unmanned aerial vehicle 2 and the pruning structure 23 according to the target shape of the tree, the shape of the tree can be adjusted to a desired shape. However, such control is not easy.
 ステップS5において目標形状情報受信部315は、対象樹木を剪定した剪定後樹木の目標とする形状に関する目標形状情報を受信できる。これにより、ステップS6において動作制御部318は、無人航空機2の飛行状態と剪定構造23とを制御する場合に、目標形状情報に応じてこれらを制御できる。この制御は、剪定位置学習部317において樹木の剪定位置を機械学習可能な剪定位置生成ニューラルネットワークN2を用いて行われる。したがって、動作制御部318は、機械学習を行ったニューラルネットワークを用いない場合より適切に無人航空機2の飛行状態と剪定構造23とを制御し得る。したがって、無人航空機2は、目標とする樹木の形状に応じて樹木の形状を整えることを、よりいっそう適切に実行し得る。 In step S5, the target shape information receiving unit 315 can receive target shape information regarding the target shape of the pruned tree after pruning the target tree. Accordingly, when controlling the flight state of the unmanned aerial vehicle 2 and the pruning structure 23 in step S6, the motion control unit 318 can control these according to the target shape information. This control is performed in the pruning position learning unit 317 using the pruning position generation neural network N2 capable of machine learning of the pruning position of the tree. Therefore, the motion control unit 318 can control the flight state of the unmanned aerial vehicle 2 and the pruning structure 23 more appropriately than when the machine-learned neural network is not used. Therefore, the unmanned aerial vehicle 2 can more appropriately shape the tree according to the target shape of the tree.
[ステップS7:剪定位置を機械学習]
 制御部31は、記憶部32と協働し、剪定位置学習部317を実行して、樹木形状情報と目標形状情報と剪定位置とに基づいて剪定位置生成ニューラルネットワークN2に樹木の剪定位置を機械学習させる(ステップS7)。制御部31は、処理をステップS10に移す。剪定位置生成ニューラルネットワークN2に樹木の剪定位置を機械学習させることにより、剪定位置生成ニューラルネットワークN2は、機械学習しないニューラルネットワークより適切に剪定位置を指定し得る。
[Step S7: Machine learning of pruning position]
The control unit 31 cooperates with the storage unit 32 to execute the pruning position learning unit 317, and based on the tree shape information, the target shape information, and the pruning position, the tree pruning position is machined to the pruning position generation neural network N2. Learn (step S7). The control unit 31 shifts the process to step S10. By subjecting the pruning position generation neural network N2 to machine learning of the pruning position of the tree, the pruning position generation neural network N2 can designate the pruning position more appropriately than a neural network that does not perform machine learning.
 ステップS7における機械学習は、ひこばえ剪定位置、込み枝剪定位置、逆さ枝剪定位置、下り枝剪定位置、立ち枝剪定位置、絡み枝剪定位置、徒長枝剪定位置、及び平行枝剪定位置等によって例示される剪定位置の1以上を学習する機械学習であることが好ましい。これにより、上述の剪定位置を学習し、樹木の形状をよりいっそう整え得る。 The machine learning in step S7 is performed based on the uprooted pruning position, the ramming branch pruning position, the inverted branch pruning position, the descending branch pruning position, the standing branch pruning position, the tangling branch pruning position, the long branch pruning position, and the parallel branch pruning position. Preferably, it is machine learning that learns one or more of the exemplary pruning positions. With this, the pruning positions described above can be learned, and the shape of the tree can be further adjusted.
[ステップS8:剪定位置を指定]
 制御部31は、剪定位置指定部316を実行して、樹木形状情報を用いて対象樹木の剪定位置を指定する(ステップS8)。制御部31は、処理をステップS9に移す。形状生成ニューラルネットワークN1を用いて生成された樹木形状情報を用いて対象樹木の剪定位置を指定することにより、剪定位置指定部316は、機械学習を用いずに生成された樹木形状情報を用いる場合との比較において、樹木の枝を切り離す剪定位置をよりいっそう適切に指定し得る。
[Step S8: Specify pruning position]
The control unit 31 executes the pruning position specifying unit 316 to specify the pruning position of the target tree using the tree shape information (step S8). The control unit 31 shifts the process to step S9. By specifying the pruning position of the target tree using the tree shape information generated using the shape generation neural network N1, the pruning position specifying unit 316 uses the tree shape information generated without using machine learning. , the pruning position for cutting off tree branches can be more appropriately specified.
 ステップS8において指定される剪定位置は、ひこばえ剪定位置、込み枝剪定位置、逆さ枝剪定位置、下り枝剪定位置、立ち枝剪定位置、絡み枝剪定位置、徒長枝剪定位置、及び平行枝剪定位置等によって例示される剪定位置の1以上を含むことが好ましい。これにより、上述の剪定位置において樹木を剪定し、樹木の形状をよりいっそう整え得る。 The pruning positions specified in step S8 are the uprooting pruning position, the ramming branch pruning position, the inverted branch pruning position, the descending branch pruning position, the standing branch pruning position, the tangle branch pruning position, the long branch pruning position, and the parallel branch pruning position. It preferably includes one or more of the pruning locations exemplified by location and the like. This allows the tree to be pruned at the pruning position described above to further shape the tree.
 必須の態様ではないが、剪定位置を指定する処理は、入力部35を介して入力された情報に基づいて剪定位置を指定する処理を含むことが好ましい。これにより、剪定位置指定部316は、入力部35を介して入力された情報に基づいて剪定位置を指定し得る。 Although not an essential aspect, the process of specifying the pruning position preferably includes the process of specifying the pruning position based on the information input via the input unit 35. Thereby, the pruning position specifying unit 316 can specify the pruning position based on the information input via the input unit 35 .
 必須の態様ではないが、剪定位置を指定する処理は、通信部33を介して受信した情報に基づいて剪定位置を指定する処理を含むことが好ましい。これにより、剪定位置指定部316は、通信部33を介して受信した情報に基づいて剪定位置を指定し得る。 Although not an essential aspect, it is preferable that the process of specifying the pruning position includes the process of specifying the pruning position based on the information received via the communication unit 33. Thereby, the pruning position specifying unit 316 can specify the pruning position based on the information received via the communication unit 33 .
[ステップS9:無人航空機を制御]
 制御部31は、動作制御部318を実行して、剪定位置に合わせて無人航空機2の飛行状態及び剪定構造23の動作を制御する(ステップS9)。制御部31は、処理をステップS10に移す。剪定位置に合わせて無人航空機2の飛行状態及び剪定構造23の動作を制御することにより、無人航空機2は、指定された剪定位置に合わせて剪定位置の周辺へ飛行できる。そして、剪定構造23を制御し、剪定位置に合わせて樹木の剪定を行える。したがって、樹木の枝を切り離す位置を適切に指定して樹木の剪定を行い、樹木の形状をよりいっそう整え得る。
[Step S9: Control unmanned aerial vehicle]
The control unit 31 executes the operation control unit 318 to control the flight state of the unmanned aerial vehicle 2 and the operation of the pruning structure 23 according to the pruning position (step S9). The control unit 31 shifts the process to step S10. By controlling the flight conditions of the unmanned aerial vehicle 2 and the operation of the pruning structure 23 in accordance with the pruning position, the unmanned aerial vehicle 2 can fly around the pruning position in accordance with the specified pruning position. Then, by controlling the pruning structure 23, the tree can be pruned according to the pruning position. Therefore, it is possible to prune the tree by appropriately designating the positions where the branches of the tree are to be cut off, thereby further shaping the tree.
 ニューラルネットワークテーブル322に制御情報生成ニューラルネットワークN3が格納される場合、動作制御部318は、剪定位置と制御情報生成ニューラルネットワークN3とに基づいて無人航空機2の飛行状態及び剪定構造23の動作を制御することが好ましい。 When the neural network table 322 stores the control information generating neural network N3, the motion control unit 318 controls the flight state of the unmanned aerial vehicle 2 and the operation of the pruning structure 23 based on the pruning position and the control information generating neural network N3. preferably.
 剪定構造23を有する無人航空機2を用いた樹木の剪定においては、樹木の枝を切り離す位置を適切に指定することに加えて、無人航空機2の飛行状態及び剪定構造23の動作を制御することも重要である。無人航空機2の飛行状態及び剪定構造23の動作をより適切に制御できれば、無人航空機2は、指定された位置によりいっそう合わせて樹木を切り離し得る。そして、樹木の形状をよりいっそう整え得る。しかしながら、このような制御は、容易ではない。 In tree pruning using the unmanned aerial vehicle 2 having the pruning structure 23, in addition to appropriately designating the position to cut off the branches of the tree, it is also possible to control the flight state of the unmanned aerial vehicle 2 and the operation of the pruning structure 23. is important. The better the flight conditions of unmanned aerial vehicle 2 and the operation of pruning structure 23 can be controlled, the better unmanned aerial vehicle 2 can cut trees to the designated location. And the shape of a tree can be arranged further. However, such control is not easy.
 制御情報生成ニューラルネットワークN3は、制御情報学習部319において機械学習可能である。したがって、動作制御部318は、機械学習を行ったニューラルネットワークを用いない制御より適切に無人航空機2の飛行状態及び剪定構造23の動作を制御し得る。これにより、剪定位置によりいっそう合わせて剪定し得る。したがって、無人航空機2は、樹木の形状をよりいっそう整え得る。 The control information generation neural network N3 can be machine-learned in the control information learning unit 319. Therefore, the motion control unit 318 can control the flight state of the unmanned aerial vehicle 2 and the motion of the pruning structure 23 more appropriately than control without using a machine-learned neural network. This allows the pruning to be more aligned with the pruning location. Therefore, the unmanned aerial vehicle 2 can further shape the trees.
 ニューラルネットワークテーブル322に制御情報生成ニューラルネットワークN3が格納される場合、制御部31は、ステップS10において実行される無人航空機の制御を機械学習する処理を実行することが好ましい。 When the neural network table 322 stores the control information generating neural network N3, the control unit 31 preferably executes processing for machine learning the control of the unmanned aircraft executed in step S10.
[ステップS10:無人航空機の制御を機械学習]
 制御部31は、記憶部32と協働し、制御情報学習部319を実行して、剪定位置と動作制御部による制御の状態とに基づいて制御情報生成ニューラルネットワークN3に無人航空機2の飛行状態及び剪定構造23の動作を機械学習させる(ステップS10)。制御部31は、動作制御処理を終了し、ステップS1からステップS10の処理を繰り返す。
[Step S10: Machine Learning for Control of Unmanned Aircraft]
The control unit 31 cooperates with the storage unit 32 to execute the control information learning unit 319 to provide the control information generation neural network N3 with the flight state of the unmanned aerial vehicle 2 based on the pruning position and the state of control by the motion control unit. And the operation of the pruning structure 23 is machine-learned (step S10). The control unit 31 terminates the operation control process and repeats the processes from step S1 to step S10.
 制御情報生成ニューラルネットワークN3に無人航空機2の飛行状態及び剪定構造23の動作を機械学習させることにより、制御情報生成ニューラルネットワークN3を用いる動作制御部318は、機械学習しないニューラルネットワークを用いる場合より適切に無人航空機2の飛行状態及び剪定構造23の動作を制御し得る。これにより、剪定位置によりいっそう合わせて剪定し得る。したがって、無人航空機2は、樹木の形状をよりいっそう整え得る。 By having the control information generating neural network N3 machine-learn the flight state of the unmanned aerial vehicle 2 and the operation of the pruning structure 23, the motion control unit 318 using the control information generating neural network N3 is more appropriate than when using a neural network that does not undergo machine learning. can control the flight conditions of the unmanned aerial vehicle 2 and the operation of the pruning structure 23. This allows the pruning to be more aligned with the pruning location. Therefore, the unmanned aerial vehicle 2 can further shape the trees.
 制御装置3がステップS1からステップS10に係る処理を実行して樹木の枝を剪定する剪定位置を適切に指定して樹木の剪定を行い、樹木の形状をよりいっそう整えることが可能な制御装置3であることにより、制御装置3は、樹木を撮影可能な撮影装置25、及び樹木を剪定可能な剪定構造23を有する無人航空機2を制御できる。 The control device 3 executes the processes from step S1 to step S10 to appropriately specify the pruning position for pruning the tree branches and prune the tree, thereby further shaping the tree. , the control device 3 can control the unmanned aerial vehicle 2 having the photographing device 25 capable of photographing trees and the pruning structure 23 capable of pruning trees.
 したがって、本実施形態の無人航空機システム1によれば、樹木の枝を剪定する剪定位置を適切に指定して樹木の剪定を行い、樹木の形状をよりいっそう整えることが可能な無人航空機システムを提供できる。 Therefore, according to the unmanned aerial vehicle system 1 of the present embodiment, an unmanned aerial vehicle system is provided that can prune trees by appropriately designating pruning positions for pruning branches of the trees, and can further shape the trees. can.
〔制御部21で実行される状態制御処理のフローチャート〕
 図6は、本実施形態の制御部21で実行される状態制御処理について、その好ましい流れの一例を示すフローチャートである。以下、図6を用いて、制御部21で実行される状態制御処理の好ましい手順の一例を説明する。
[Flowchart of State Control Processing Executed by Control Unit 21]
FIG. 6 is a flowchart showing an example of a preferred flow of state control processing executed by the control unit 21 of this embodiment. An example of a preferred procedure of the state control process executed by the control unit 21 will be described below with reference to FIG.
 必須の態様ではないが、状態制御処理は、ステップS11で実行される収容着陸処理を含むことが好ましい。 Although it is not an essential aspect, it is preferable that the state control process include the stowage landing process executed in step S11.
[ステップS11:収容着陸処理]
 制御部21は、飛行構造22、剪定構造23、及び/又は収容構造24等と協働して、飛行状態制御部211、状態制御部212、位置取得部214等を実行し、剪定構造23を収容構造24に収容し、飛行構造22の制御を介して無人航空機2の飛行状態を着陸状態に制御する収容着陸処理を実行する(ステップS11)。制御部21は、処理をステップS12に移す。ステップS11で実行される収容着陸処理については、後に図7を用いてより詳細に説明する。
[Step S11: Accommodate landing process]
The control unit 21 cooperates with the flight structure 22, the pruning structure 23, and/or the containment structure 24, etc. to execute the flight state control unit 211, the state control unit 212, the position acquisition unit 214, etc., and the pruning structure 23. The unmanned aerial vehicle 2 is accommodated in the accommodation structure 24, and accommodation landing processing is executed to control the flight state of the unmanned aerial vehicle 2 to the landing state via the control of the flight structure 22 (step S11). The control unit 21 shifts the process to step S12. The stowage landing process executed in step S11 will be described later in detail with reference to FIG.
 制御部21が収容着陸処理を実行することにより、外部から受信する無人航空機2の制御に関する制御信号の強度が所定の強度よりも弱い場合、無人航空機2から無人航空機2の周囲にいるヒトまでの距離が特定の距離以下である場合、無人航空機2から無人航空機2の周囲にいる動物までの距離が特定の距離以下である場合、及び/又は剪定構造23を現出可能にする現出可能領域とは異なる位置に無人航空機2がある場合等の安全性をよりいっそう求められる各種の場合において、剪定構造23を収容構造24に収容し、飛行構造22の制御を介して無人航空機2の飛行状態を着陸状態に制御し得る。これにより、無人航空機2の安全性を高め得る。 When the strength of the control signal related to the control of the unmanned aerial vehicle 2 received from the outside is weaker than a predetermined strength, the control unit 21 executes the stowed landing process, and when the strength of the control signal related to the control of the unmanned aerial vehicle 2 is weaker than a predetermined strength, the If the distance is less than or equal to a certain distance, or if the distance from the unmanned aerial vehicle 2 to animals in the surroundings of the unmanned aerial vehicle 2 is less than or equal to a certain distance, and/or the revealable area that allows the pruning structure 23 to emerge. In various cases where greater safety is required, such as when the unmanned aerial vehicle 2 is in a position different from can be controlled to the landing state. Thereby, the safety of the unmanned aerial vehicle 2 can be enhanced.
[ステップS12:着陸中であるか否かを判別]
 制御部21は、状態制御部212を実行し、無人航空機2が着陸中であるか否かを判別する(ステップS12)。無人航空機2が着陸中であるならば、制御部21は、処理をステップS15に移す。無人航空機2が着陸中でないならば、制御部21は、処理をステップS13に移す。無人航空機2が着陸中であるか否かを判別することにより、無人航空機2が着陸中である場合に剪定構造23を収容構造24に収容し得る。状態制御部212は、着陸の際に剪定構造23の状態を収容状態に制御する。そのため、着陸の際にヒト等が剪定構造23によって怪我することを防ぎ得る。
[Step S12: Determining Whether Landing is in Progress]
The control unit 21 executes the state control unit 212 to determine whether the unmanned aerial vehicle 2 is landing (step S12). If the unmanned aerial vehicle 2 is landing, the control unit 21 shifts the process to step S15. If the unmanned aerial vehicle 2 is not landing, the control unit 21 shifts the process to step S13. By determining whether the unmanned aerial vehicle 2 is landing, the pruning structure 23 may be stowed in the stowage structure 24 when the unmanned aerial vehicle 2 is landing. The state control unit 212 controls the state of the pruning structure 23 to the stowed state during landing. Therefore, a person or the like can be prevented from being injured by the pruning structure 23 during landing.
 着陸中であるか否かを判別する方法は、特に限定されない。着陸中であるか否かを判別する手段は、例えば、無人航空機2を着陸させる指令を受信した場合に着陸中であると判別する方法、及び/又は無人航空機2の高度が所定の高度以下であり、かつ、高度が下がる状態が所定の時間以上継続している場合に着陸中であると判別する方法等が挙げられる。 The method of determining whether or not the aircraft is landing is not particularly limited. The means for determining whether or not the unmanned aerial vehicle 2 is landing is, for example, a method of determining that the unmanned aerial vehicle 2 is being landed when a command to land the unmanned aerial vehicle 2 is received, and/or a method of determining that the unmanned aerial vehicle 2 is landing when the altitude of the unmanned aerial vehicle 2 is below a predetermined altitude. There is a method of determining that the aircraft is in the process of landing when the state of falling altitude continues for a predetermined period of time or longer.
 必須の態様ではないが、状態制御処理は、ステップS13で実行される高度が所定の範囲内であるか否かを判別する処理を含むことが好ましい。 Although not an essential aspect, it is preferable that the state control process include a process of determining whether or not the altitude is within a predetermined range, which is executed in step S13.
[ステップS13:高度が所定の範囲内であるか否かを判別]
 制御部21は、高度計と協働して高度取得部213を実行し、無人航空機2の高度が所定の範囲内であるか否かを判別する(ステップS13)。無人航空機2の高度が所定の範囲内であるならば、制御部21は、処理をステップS14に移す。無人航空機2の高度が所定の範囲内でないならば、制御部21は、処理をステップS15に移す。無人航空機2の高度が所定の範囲内であるか否かを判別することにより、無人航空機2の高度が所定の範囲内でない場合に剪定構造23を収容構造24に収容し得る。
[Step S13: Determining Whether Altitude is Within a Predetermined Range]
The control unit 21 cooperates with the altimeter to execute the altitude acquisition unit 213 to determine whether the altitude of the unmanned aerial vehicle 2 is within a predetermined range (step S13). If the altitude of the unmanned aerial vehicle 2 is within the predetermined range, the control unit 21 shifts the process to step S14. If the altitude of the unmanned aerial vehicle 2 is not within the predetermined range, the control unit 21 shifts the process to step S15. By determining whether the altitude of the unmanned aerial vehicle 2 is within a predetermined range, the pruning structure 23 can be accommodated in the containment structure 24 when the altitude of the unmanned aerial vehicle 2 is not within the predetermined range.
 無人航空機2が地上に近い場合、すなわち、無人航空機2の高度が低い場合、無人航空機2とヒト及び/又は動物とが衝突する可能性があり得る。また、無人航空機2の高度が低い場合、家屋、農作物、及び自動車等によって例示される地上にある財産と無人航空機2とが衝突する可能性があり得る。剪定構造23を備える無人航空機2は、無人航空機2の高度が低い場合における安全性を高める点においてさらなる改良の余地がある。 When the unmanned aerial vehicle 2 is close to the ground, that is, when the altitude of the unmanned aerial vehicle 2 is low, there is a possibility that the unmanned aerial vehicle 2 collides with humans and/or animals. Also, when the altitude of the unmanned aerial vehicle 2 is low, there may be a possibility that the unmanned aerial vehicle 2 collides with properties on the ground such as houses, crops, and automobiles. The unmanned aerial vehicle 2 with the pruning structure 23 has room for further improvement in terms of enhancing safety when the unmanned aerial vehicle 2 is at a low altitude.
 万が一高度が高い上空を飛行する無人航空機2が飛行状態の制御を失って墜落した場合に無人航空機2が落下する速度は、無人航空機2の高度が低い場合より速くなる。これにより、高度が高い上空を飛行する無人航空機2が飛行状態の制御を失って墜落し、剪定構造23がヒト等と衝突したときに剪定構造23がヒト等に与える悪影響は、無人航空機2の高度が低い場合より大きくなり得る。したがって、剪定構造23を備える無人航空機2は、無人航空機2の高度が高い場合における安全性を高める点においてさらなる改良の余地がある。 In the unlikely event that the unmanned aerial vehicle 2 flying over a high altitude loses control of its flight state and crashes, the speed at which the unmanned aerial vehicle 2 falls will be faster than when the unmanned aerial vehicle 2 is at a low altitude. As a result, when the unmanned aerial vehicle 2 flying over a high altitude loses control of its flight state and crashes, and the pruning structure 23 collides with a person or the like, the adverse effects of the pruning structure 23 on the person or the like are as follows. At lower altitudes it can be larger. Therefore, the unmanned aerial vehicle 2 with the pruning structure 23 has room for further improvement in terms of enhancing safety when the unmanned aerial vehicle 2 is at a high altitude.
 無人航空機2の高度が対象樹木の高さより一定以上高い場合、無人航空機2から対象樹木までの距離は、剪定構造23が樹木を剪定可能な距離より遠くなる。無人航空機2から対象樹木までの距離が樹木を剪定可能な距離より遠い場合、剪定構造23は、樹木を剪定しない。したがって、剪定構造23を備える無人航空機2は、無人航空機2の高度が対象樹木の高さより一定以上高い場合における安全性を高める点においても、さらなる改良の余地がある。 When the altitude of the unmanned aerial vehicle 2 is higher than the height of the target tree by a certain amount or more, the distance from the unmanned aerial vehicle 2 to the target tree is greater than the distance at which the pruning structure 23 can prune the tree. If the distance from the unmanned aerial vehicle 2 to the target tree is greater than the distance at which the tree can be pruned, the pruning structure 23 does not prune the tree. Therefore, the unmanned aerial vehicle 2 equipped with the pruning structure 23 has room for further improvement in terms of enhancing safety when the unmanned aerial vehicle 2 is higher than the height of the target tree by a certain level or more.
 無人航空機2の高度が所定の範囲内であるか否かを判別し、高度が所定の範囲にない場合に、後述するステップS16において実行される処理によって状態制御部212が剪定構造23の状態を収容状態に制御するため、無人航空機2の高度が低い場合における安全性と無人航空機2の高度が高い場合における安全性とを高め得る。 It is determined whether or not the altitude of the unmanned aerial vehicle 2 is within a predetermined range, and if the altitude is not within the predetermined range, the state control unit 212 determines the state of the pruning structure 23 by the processing executed in step S16, which will be described later. Control to the stowed state can enhance safety when the altitude of the unmanned aerial vehicle 2 is low and safety when the altitude of the unmanned aerial vehicle 2 is high.
 必須の態様ではないが、状態制御処理は、ステップS14及びステップS15で実行される対象樹木までの距離が所定の距離以下であるか否かを判別し、剪定構造23の状態を現出状態に制御する一連の処理を含むことが好ましい。 Although not an essential aspect, the state control processing executed in steps S14 and S15 determines whether or not the distance to the target tree is equal to or less than a predetermined distance, and changes the state of the pruning structure 23 to the emerging state. It preferably includes a series of controlling processes.
[ステップS14:対象樹木までの距離が所定の距離以下であるか否かを判別]
 制御部21は、距離センサと協働して状態制御部212を実行し、無人航空機2から対象樹木までの距離が所定の距離以下であるか否かを判別する(ステップS14)。所定の距離以下であるならば、制御部21は、処理をステップS15に移す。所定の距離以下でないならば、制御部21は、処理をステップS16に移す。
[Step S14: Determining whether the distance to the target tree is equal to or less than a predetermined distance]
The control unit 21 cooperates with the distance sensor to execute the state control unit 212, and determines whether or not the distance from the unmanned aerial vehicle 2 to the target tree is equal to or less than a predetermined distance (step S14). If the distance is less than or equal to the predetermined distance, the control unit 21 shifts the process to step S15. If the distance is not equal to or less than the predetermined distance, the control unit 21 shifts the process to step S16.
 状態制御部212は、無人航空機2から対象樹木までの距離が所定の距離以下である場合、後述するステップS15において実行される処理によって剪定構造23を収容構造24の外部に現出する現出状態に剪定構造23の状態を制御し得る。これにより、剪定構造23は、現出状態において樹木を剪定し得る。 When the distance from the unmanned aerial vehicle 2 to the target tree is equal to or less than a predetermined distance, the state control unit 212 sets the appearance state in which the pruning structure 23 appears outside the housing structure 24 by the processing executed in step S15, which will be described later. can control the condition of the pruning structure 23 at any time. This allows the pruning structure 23 to prune the tree in the emerging state.
 状態制御部212は、無人航空機2から対象樹木までの距離が所定の距離を超える場合、後述するステップS16において実行される処理によって剪定構造23を収容構造24の内部に収容する収容状態に剪定構造23の状態を制御し得る。これにより、樹木を剪定しない場合における無人航空機2の安全性をよりいっそう高め得る。 When the distance from the unmanned aerial vehicle 2 to the target tree exceeds a predetermined distance, the state control unit 212 changes the pruning structure 23 into the storage state in which the pruning structure 23 is stored inside the storage structure 24 by the processing executed in step S16, which will be described later. 23 states can be controlled. This can further enhance the safety of the unmanned aerial vehicle 2 when trees are not pruned.
[ステップS15:剪定構造の状態を現出状態に制御]
 制御部21は、剪定構造23及び/又は収容構造24と協働して状態制御部212を実行し、剪定構造23の状態を現出状態に制御する(ステップS15)。制御部21は、状態制御処理を終了し、ステップS11からステップS16の処理を繰り返す。剪定構造23の状態を現出状態に制御することにより、剪定構造23は、現出状態において樹木を剪定し得る。
[Step S15: Control the State of the Pruning Structure to the Revealed State]
The control unit 21 cooperates with the pruning structure 23 and/or the containing structure 24 to execute the state control unit 212 to control the state of the pruning structure 23 to the exposed state (step S15). The control unit 21 terminates the state control process and repeats the processes from step S11 to step S16. By controlling the state of pruning structure 23 to the emerging state, pruning structure 23 can prune trees in the emerging state.
[ステップS16:剪定構造の状態を収容状態に制御]
 制御部21は、剪定構造23及び/又は収容構造24と協働して状態制御部212を実行し、剪定構造23の状態を収容状態に制御する(ステップS16)。制御部21は、状態制御処理を終了し、ステップS11からステップS16の処理を繰り返す。剪定構造23の状態を収容状態に制御することにより、剪定構造23を備える無人航空機2の安全性を高め得る。
[Step S16: Control the State of the Pruning Structure to the Accommodated State]
The control unit 21 cooperates with the pruning structure 23 and/or the containing structure 24 to execute the state control unit 212 to control the state of the pruning structure 23 to the containing state (step S16). The control unit 21 terminates the state control process and repeats the processes from step S11 to step S16. By controlling the state of the pruning structure 23 to the stowed state, the safety of the unmanned aerial vehicle 2 with the pruning structure 23 can be enhanced.
〔収容着陸処理のフローチャート〕
 図7は、図6のステップS11において実行される収容着陸処理について、その好ましい流れの一例を示すフローチャートである。以下、図7を用いて、収容着陸処理の好ましい手順の一例を説明する。
[Accommodation landing process flow chart]
FIG. 7 is a flow chart showing an example of a preferred flow of the stowage landing process executed in step S11 of FIG. An example of a preferred procedure for stowage landing processing will be described below with reference to FIG.
 収容着陸処理は、ステップS21で実行される制御信号の強度が所定の強度より弱いか否かを判別する処理、ステップS22で実行されるヒト等までの距離が特定の距離以下か否かを判別する処理、及びステップS23で実行される現出可能領域と異なる位置か否かを判別する処理の1以上を含む。 The stowage landing process includes a process of determining whether or not the strength of the control signal is weaker than a predetermined strength, which is executed in step S21, and a process of determining whether or not the distance to a person, etc., is less than or equal to a specific distance, which is executed in step S22. and a process of determining whether or not the position is different from the presentable area executed in step S23.
[ステップS21:制御信号の強度が所定の強度より弱いか否かを判別]
 制御部21は、通信部26と協働して状態制御部212を実行し、無人航空機2の制御に関する制御信号の強度が所定の強度より弱いか否かを判別する(ステップS21)。制御信号の強度が所定の強度より弱いならば、制御部21は、処理をステップS24に移す。制御信号の強度が所定の強度より弱くないならば、制御部21は、処理をステップS22に移す。
[Step S21: Determining whether or not the strength of the control signal is weaker than a predetermined strength]
The control unit 21 cooperates with the communication unit 26 to execute the state control unit 212, and determines whether the strength of the control signal for controlling the unmanned aerial vehicle 2 is weaker than a predetermined strength (step S21). If the strength of the control signal is weaker than the predetermined strength, the control section 21 shifts the process to step S24. If the strength of the control signal is not weaker than the predetermined strength, the control section 21 shifts the process to step S22.
 外部からの制御信号によって無人航空機2を制御することにより、外部からの制御信号を用いない自律飛行を行う場合より無人航空機2の安全性を高め得る。しかしながら、無人航空機2は、通信状態の悪化等によって外部からの制御信号を所定の強度以上の強度で受信できない場合があり得る。外部からの制御信号を所定の強度以上の強度で受信できない場合、外部からの制御信号によって無人航空機2を制御できない可能性があり得る。したがって、剪定構造23を備える無人航空機2は、外部からの制御信号を所定の強度以上の強度で受信できない場合における安全性を高める点においてさらなる改良の余地がある。 By controlling the unmanned aerial vehicle 2 with a control signal from the outside, the safety of the unmanned aerial vehicle 2 can be improved more than when performing autonomous flight without using a control signal from the outside. However, the unmanned aerial vehicle 2 may not be able to receive the control signal from the outside with a predetermined strength or more due to deterioration of the communication state or the like. If the control signal from the outside cannot be received with an intensity equal to or higher than a predetermined intensity, there is a possibility that the unmanned aerial vehicle 2 cannot be controlled by the control signal from the outside. Therefore, the unmanned aerial vehicle 2 having the pruning structure 23 has room for further improvement in terms of enhancing safety when the control signal from the outside cannot be received at a predetermined intensity or more.
 制御信号の強度が所定の強度より弱いか否かを判別することにより、外部から受信する無人航空機2の制御に関する制御信号の強度が所定の強度よりも弱い場合に、後述するステップS24及びステップS25において実行される処理によって、剪定構造23の状態を収容状態に制御し、無人航空機2の飛行状態を着陸状態に制御し得る。これにより、外部からの制御信号を所定の強度以上の強度で受信できない場合における安全性をよりいっそう高め得る。 By determining whether or not the strength of the control signal is weaker than a predetermined strength, if the strength of the control signal received from the outside related to the control of the unmanned aerial vehicle 2 is weaker than the predetermined strength, steps S24 and S25, which will be described later, are performed. may control the state of the pruning structure 23 to the stowed state and the flight state of the unmanned aerial vehicle 2 to the landed state. As a result, it is possible to further improve the safety when the control signal from the outside cannot be received at a predetermined intensity or more.
[ステップS22:ヒト等までの距離が特定の距離以下か否かを判別]
 制御部21は、距離センサと協働して状態制御部212を実行し、無人航空機2からヒト及び/又は動物までの距離が特定の距離以下であるか否かを判別する(ステップS222)。特定の距離以下であるならば、制御部21は、処理をステップS24に移す。特定の距離以下でないならば、制御部21は、処理をステップS23に移す。
[Step S22: Determining whether the distance to a human or the like is equal to or less than a specific distance]
The control unit 21 cooperates with the distance sensor to execute the state control unit 212 to determine whether the distance from the unmanned aerial vehicle 2 to humans and/or animals is equal to or less than a specific distance (step S222). If the distance is less than or equal to the specific distance, the control unit 21 shifts the process to step S24. If the distance is not equal to or less than the specific distance, the control unit 21 shifts the process to step S23.
 飛行中の無人航空機2の周囲にヒトがいる場合、ヒトが無人航空機2の進路上に飛び出す等して飛行中の無人航空機2及び/又は剪定構造23と衝突することがあり得る。飛行中の無人航空機2の周囲にペット及び家畜等によって例示される動物がいる場合、動物が無人航空機2の進路上に飛び出す等して飛行中の無人航空機2及び/又は剪定構造23と衝突することがあり得る。飛行中の無人航空機2は、回転するプロペラ及び/又はローター等がヒト及び/又は動物を傷つける可能性が飛行中でない無人航空機2より高い。したがって、剪定構造23を備える無人航空機2は、無人航空機2の周囲にヒト及び/又は動物がいる場合における安全性を高める点においてさらなる改良の余地がある。 If there are humans around the unmanned aerial vehicle 2 in flight, it is possible that the humans will jump out onto the path of the unmanned aerial vehicle 2 and collide with the unmanned aerial vehicle 2 in flight and/or the pruning structure 23 . When there are animals such as pets and livestock around the unmanned aerial vehicle 2 in flight, the animals jump out onto the path of the unmanned aerial vehicle 2 and collide with the unmanned aerial vehicle 2 in flight and/or the pruning structure 23. It is possible. An unmanned aerial vehicle 2 in flight has a higher potential for rotating propellers and/or rotors etc. to injure humans and/or animals than an unmanned aerial vehicle 2 not in flight. Therefore, the unmanned aerial vehicle 2 with the pruning structure 23 has room for further improvement in terms of increasing safety when there are humans and/or animals around the unmanned aerial vehicle 2 .
 無人航空機2から無人航空機2の周囲にいるヒト及び/又は動物までの距離が特定の距離以下である場合に後述するステップS24及びステップS25において実行される処理によって、剪定構造23の状態を収容状態に制御し、無人航空機2の飛行状態を着陸状態に制御し得る。これにより、無人航空機2から無人航空機2の周囲にいるヒト及び/又は動物までの距離が特定の距離以下である場合における安全性をよりいっそう高め得る。 When the distance from the unmanned aerial vehicle 2 to the humans and/or animals around the unmanned aerial vehicle 2 is equal to or less than a specific distance, the processing executed in steps S24 and S25 described later changes the state of the pruning structure 23 into the stowed state. and control the flight state of the unmanned aerial vehicle 2 to the landing state. This can further enhance safety when the distance from the unmanned aerial vehicle 2 to humans and/or animals around the unmanned aerial vehicle 2 is equal to or less than a specific distance.
[ステップS23:現出可能領域と異なる位置か否かを判別]
 制御部21は、測位部と協働して位置取得部214を実行し、無人航空機2の位置が剪定構造23を現出可能にする現出可能領域と異なる位置か否かを判別する(ステップS223)。現出可能領域と異なる位置であるならば、制御部21は、処理をステップS24に移す。現出可能領域と異なる位置でないならば、制御部21は、収容着陸処理を終了し、処理をステップS12に移す。
[Step S23: Determining whether the position is different from the visible area]
The control unit 21 cooperates with the positioning unit to execute the position obtaining unit 214, and determines whether the position of the unmanned aerial vehicle 2 is different from the possible appearance area in which the pruning structure 23 can appear (step S223). If the position is different from the reappearable area, the control unit 21 shifts the process to step S24. If the position is not different from the possible appearance area, the control unit 21 ends the stowage landing process, and shifts the process to step S12.
 対象樹木が位置する所定の領域とは異なる位置に無人航空機2がある場合、剪定構造23は、対象樹木を剪定しない。したがって、剪定構造23を備える無人航空機2は、無人航空機2が所定の領域とは異なる位置にある場合の無人航空機2の安全性を高める点においてさらなる改良の余地がある。 The pruning structure 23 does not prune the target tree when the unmanned aerial vehicle 2 is in a position different from the predetermined area where the target tree is located. Therefore, the unmanned aerial vehicle 2 with the pruning structure 23 has room for further improvement in terms of increasing the safety of the unmanned aerial vehicle 2 when the unmanned aerial vehicle 2 is in a position different from the predetermined area.
 無人航空機2の制御に関する制御信号を外部から受信する無人航空機2の場合、制御信号の強度は、一般に、制御信号を送信する外部から無人航空機2までの距離が離れるにしたがって弱くなる。また、制御信号を送信する外部と無人航空機2との間に地形及び建造物等によって例示される遮蔽物がある場合、制御信号の強度が低下し得る。したがって、無人航空機2が外部からの制御信号を所定の強度以上の強度で受信可能な領域は、制御信号を送信する外部からの距離及び/又は遮蔽物等によって定められる特定の領域に限られ得る。 In the case of an unmanned aerial vehicle 2 that receives a control signal related to control of the unmanned aerial vehicle 2 from the outside, the strength of the control signal generally weakens as the distance from the outside to the unmanned aerial vehicle 2 that transmits the control signal increases. In addition, if there is a shield such as terrain and buildings between the outside transmitting the control signal and the unmanned aerial vehicle 2, the strength of the control signal may decrease. Therefore, the area where the unmanned aerial vehicle 2 can receive a control signal from the outside with an intensity equal to or higher than a predetermined intensity can be limited to a specific area determined by the distance from the outside where the control signal is transmitted and/or a shield. .
 外部からの制御信号を所定の強度以上の強度で受信できない場合、外部からの制御信号によって無人航空機2を制御できない可能性があり得る。したがって、外部からの制御信号を所定の強度以上の強度で受信可能な特定の領域とは異なる位置に無人航空機2がある場合、無人航空機2は、外部からの制御信号を所定の強度以上の強度で受信できない可能性がある。剪定構造23を備え、制御信号を外部から受信する無人航空機2は、無人航空機2が特定の領域とは異なる位置にある場合の無人航空機2の安全性を高める点においてさらなる改良の余地がある。 If the control signal from the outside cannot be received at a predetermined intensity or more, it is possible that the unmanned aerial vehicle 2 cannot be controlled by the control signal from the outside. Therefore, when the unmanned aerial vehicle 2 is located in a position different from the specific area where the control signal from the outside can be received at a predetermined intensity or more, the unmanned aerial vehicle 2 receives the control signal from the outside at a predetermined intensity or more. may not be received. The unmanned aerial vehicle 2 with the pruning structure 23 and receiving control signals from the outside could be further improved in terms of increasing the safety of the unmanned aerial vehicle 2 when the unmanned aerial vehicle 2 is in a different location than the specific area.
 無人航空機の飛行に関する安全性等を高めるため、無人航空機の飛行に関する各種の法令等(例えば、重要施設の周辺地域の上空における小型無人機等の飛行の禁止に関する法律(平成二十八年法律第九号)、無人航空機の飛行禁止区域等を定める告示(令和元年国土交通省告示第461号)等。)によって、無人航空機の飛行を禁止する区域が定められている。法令等により、飛行を禁止する区域等においては、許可を受けた場合にのみ飛行可能であると定められている。剪定構造23を備える無人航空機2が剪定構造23の状態を現出状態にして飛行可能である領域は、法令等によって制限され得る。 In order to improve the safety of flying unmanned aircraft, various laws and regulations concerning the flight of unmanned aircraft (for example, the Act on Prohibition of Flight of Small Unmanned Aircraft over Areas Surrounding Important Facilities (Law No. 2016) No. 9), and the notification specifying the no-fly areas for unmanned aerial vehicles (Ministry of Land, Infrastructure, Transport and Tourism Notification No. 461 of 2019), etc.), areas where unmanned aerial vehicles are prohibited from flying are stipulated. Laws and regulations stipulate that in areas where flight is prohibited, it is possible to fly only when permission is obtained. A region in which the unmanned aerial vehicle 2 having the pruning structure 23 can fly with the pruning structure 23 in the exposed state may be restricted by laws and regulations.
 法令等を遵守して飛行することにより、無人航空機2の安全性を高め得る。剪定構造23を備える無人航空機2は、このような無人航空機2が飛行可能である領域とは異なる位置にある場合の安全性を高める点においてさらなる改良の余地がある。 By flying in compliance with laws and regulations, the safety of the unmanned aerial vehicle 2 can be improved. An unmanned aerial vehicle 2 with a pruning structure 23 could be further improved in terms of increasing safety when such an unmanned aerial vehicle 2 is in a position different from the flightable area.
 例えば、対象樹木がある所定の領域、外部からの制御信号を所定の強度以上の強度で受信可能な特定の領域、及び/又は法令等に基づく飛行可能領域等に基づいて、剪定構造23を現出可能である現出可能領域を定め得る。そして、現出可能領域とは異なる位置に無人航空機2がある場合に後述するステップS24及びステップS25において実行される処理によって、剪定構造23の状態を収容状態に制御し、無人航空機2の飛行状態を着陸状態に制御し得る。これにより、無人航空機2の位置が現出可能領域と異なる位置である場合における安全性をよりいっそう高め得る。 For example, the pruning structure 23 is currently selected based on a predetermined area where the target tree is present, a specific area in which a control signal from the outside can be received at a predetermined intensity or more, and/or a flightable area based on laws and regulations. A renderable region may be defined that is visible. Then, when the unmanned aerial vehicle 2 is at a position different from the reappearable area, the processing executed in steps S24 and S25 described later controls the state of the pruning structure 23 to the stowed state, and the flight state of the unmanned aerial vehicle 2 can be controlled to the landing state. This can further enhance safety when the position of the unmanned aerial vehicle 2 is different from the reappearable area.
[ステップS24:剪定構造の状態を収容状態に制御]
 制御部21は、剪定構造23及び/又は収容構造24と協働して状態制御部212を実行し、剪定構造23の状態を収容状態に制御する(ステップS24)。制御部21は、剪定構造23が収容構造24の内部に収容されたときに処理をステップS25に移す。剪定構造23の状態を収容状態に制御することにより、剪定構造23を備える無人航空機2の安全性を高め得る。
[Step S24: Control the State of the Pruning Structure to the Accommodated State]
The control unit 21 cooperates with the pruning structure 23 and/or the containing structure 24 to execute the state control unit 212 to control the state of the pruning structure 23 to the containing state (step S24). The control unit 21 shifts the process to step S25 when the pruning structure 23 is housed inside the housing structure 24 . By controlling the state of the pruning structure 23 to the stowed state, the safety of the unmanned aerial vehicle 2 with the pruning structure 23 can be enhanced.
[ステップS25:飛行状態を着陸状態に制御]
 制御部21は、剪定構造23及び/又は収容構造24と協働して飛行状態制御部211を実行し、無人航空機2の飛行状態を着陸状態に制御する(ステップS24)。制御部21は、処理をステップS25に移す。無人航空機2の飛行状態を着陸状態に制御することにより、剪定構造23を備える無人航空機2の安全性を高め得る。
[Step S25: Control Flight State to Landing State]
The control unit 21 cooperates with the pruning structure 23 and/or the accommodation structure 24 to execute the flight state control unit 211 to control the flight state of the unmanned aerial vehicle 2 to the landing state (step S24). The control unit 21 shifts the process to step S25. By controlling the flight state of the unmanned aerial vehicle 2 to the landing state, the safety of the unmanned aerial vehicle 2 with the pruning structure 23 can be enhanced.
 ステップS24及びステップS25において実行される処理によれば、剪定構造23が収容構造24の内部に収容されたときに飛行状態制御部211が無人航空機2を着陸状態に制御するため、ステップS21、ステップS22、及び/又はステップS23において所定の条件を満たした場合における無人航空機2の飛行時間を最小限に抑え得る。これにより、無人航空機2の安全性をさらにいっそう高め得る。 According to the processing executed in steps S24 and S25, when the pruning structure 23 is accommodated inside the accommodation structure 24, the flight state control unit 211 controls the unmanned aerial vehicle 2 to land. The flight time of the unmanned aerial vehicle 2 can be minimized when predetermined conditions are met in S22 and/or S23. Thereby, the safety of the unmanned aerial vehicle 2 can be further enhanced.
<使用例>
 図8は、本実施形態の無人航空機システム1を用いた樹木剪定の一例を示す概略模式図である。図9は、本実施形態の無人航空機2における安全性を高める状態制御の一例を示す概略模式図である。以下、必要に応じて図8及び/又は図9を用いて、本実施形態の無人航空機システム1の使用例を説明する。
<Usage example>
FIG. 8 is a schematic diagram showing an example of tree pruning using the unmanned aerial vehicle system 1 of this embodiment. FIG. 9 is a schematic diagram showing an example of state control for enhancing safety in the unmanned aerial vehicle 2 of this embodiment. Hereinafter, a usage example of the unmanned aerial vehicle system 1 of this embodiment will be described with reference to FIGS. 8 and/or 9 as necessary.
〔樹木画像の取得〕
 利用者は、無人航空機システム1の利用を開始する。制御装置3は、ネットワークNを介して剪定の対象となる対象樹木T1を撮影するよう、無人航空機2に指令する。制御装置3は、対象樹木T1を異なる向きから撮影可能であるよう無人航空機2の飛行状態を制御し、対象樹木T1を異なる向きから撮影した2以上の樹木画像を取得する。制御装置3は、2以上の樹木画像に基づいて樹木形状情報を生成し、生成した樹木形状情報を表示するよう表示部34を制御する。
[Acquisition of tree images]
A user starts using the unmanned aerial system 1 . The control device 3 commands the unmanned aerial vehicle 2 to photograph the target tree T1 to be pruned via the network N. The control device 3 controls the flight state of the unmanned aerial vehicle 2 so that the target tree T1 can be photographed from different directions, and obtains two or more tree images obtained by photographing the target tree T1 from different directions. The control device 3 generates tree shape information based on two or more tree images, and controls the display unit 34 to display the generated tree shape information.
〔樹木形状評価の送信〕
 利用者は、表示部34に表示された樹木形状情報に関する樹木形状評価を行い、入力部35を介して該樹木形状評価を制御装置3に送信する。制御装置3は、樹木形状評価を用いて樹木の形状を機械学習する。
[Transmission of tree shape evaluation]
The user performs tree shape evaluation on the tree shape information displayed on the display unit 34 and transmits the tree shape evaluation to the control device 3 via the input unit 35 . The control device 3 machine-learns the tree shape using the tree shape evaluation.
〔目標形状情報の送信〕
 利用者は、入力部35を介して、対象樹木T1を剪定した剪定後樹木T2の目標とする形状に関する目標形状情報を制御装置3に送信する。
[Transmission of target shape information]
The user transmits target shape information regarding the target shape of the pruned tree T2 obtained by pruning the target tree T1 to the control device 3 via the input unit 35 .
〔対象樹木を剪定〕
 無人航空機2は、対象樹木T1の周辺に移動する。これにより、無人航空機2から対象樹木T1までの距離が所定の距離以下となる。したがって、無人航空機2は、剪定構造23を現出状態に制御する。無人航空機2は、目標形状情報に基づいて対象樹木T1を剪定する。
[Pruning target trees]
The unmanned aerial vehicle 2 moves around the target tree T1. As a result, the distance from the unmanned aerial vehicle 2 to the target tree T1 is less than or equal to the predetermined distance. Therefore, the unmanned aerial vehicle 2 controls the pruning structure 23 to the exposed state. The unmanned aerial vehicle 2 prunes the target tree T1 based on the target shape information.
 図8は、本実施形態の無人航空機システム1を用いた樹木剪定の一例を示す概略模式図である。対象樹木T1は、剪定を必要とする枝B(ひこばえBa、込み枝Bb、逆さ枝Bc、下り枝Bd、立ち枝Be、絡み枝Bf、徒長枝Bg、及び平行枝Bh等)を有する。制御装置3は、剪定を必要とする枝Bの1以上を剪定位置P(ひこばえ剪定位置Pa、込み枝剪定位置Pb、逆さ枝剪定位置Pc、下り枝剪定位置Pd、立ち枝剪定位置Pe、絡み枝剪定位置Pf、徒長枝剪定位置Pg、及び平行枝剪定位置Ph等)において剪定するよう無人航空機2の飛行状態及び剪定構造23を制御する。 FIG. 8 is a schematic diagram showing an example of tree pruning using the unmanned aerial vehicle system 1 of this embodiment. The target tree T1 has branches B that require pruning (elevated branches Ba, rammed branches Bb, inverted branches Bc, descending branches Bd, standing branches Be, twining branches Bf, long branches Bg, parallel branches Bh, etc.). . The control device 3 sets one or more of the branches B that require pruning to pruning positions P (backward pruning position Pa, incoming branch pruning position Pb, inverted branch pruning position Pc, descending branch pruning position Pd, standing branch pruning position Pe , tangle branch pruning position Pf, long branch pruning position Pg, and parallel branch pruning position Ph, etc.).
 対象樹木T1の根元Taから出る枝であるひこばえBaをひこばえ剪定位置Paにおいて剪定することにより、剪定後の対象樹木T1は、ひこばえBaがない美しい見た目の樹木となり得る。また、剪定後の対象樹木T1は、根元Taにおける風通しがよくなり得る。剪定後の対象樹木T1は、ひこばえBaに養分を使われることがなくなり、養分を効率よく利用できるようになり得る。剪定後の対象樹木T1は、ひこばえBaにおいて病害虫が繁殖することがなくなり、対象樹木T1における病害虫の繁殖を予防し得る。 By pruning the setback Ba, which is a branch extending from the root Ta of the target tree T1, at the setback pruning position Pa, the target tree T1 after pruning can be a beautiful looking tree without the setback Ba. In addition, the target tree T1 after pruning can be well ventilated at the root Ta. After pruning, the target tree T1 is no longer used for nutrients by the sillage Ba, and may be able to use nutrients efficiently. In the pruned target tree T1, pests do not propagate in the sillage Ba, and the propagation of pests in the target tree T1 can be prevented.
 いくつもの枝が重なる込み枝Bbを込み枝剪定位置Pbにおいて剪定することにより、剪定後の対象樹木T1は、込み枝Bbがない美しい見た目の樹木となり得る。また、込み枝Bbがあった箇所における風通しがよくなり得る。剪定後の対象樹木T1は、込み枝Bbに養分を使われることがなくなり、養分を効率よく利用できるようになり得る。剪定後の対象樹木T1は、込み枝Bbにおいて病害虫が繁殖することがなくなり、対象樹木T1における病害虫の繁殖を予防し得る。 By pruning the branch Bb where many branches overlap at the branch pruning position Pb, the target tree T1 after pruning can be a beautiful looking tree without the branch Bb. In addition, ventilation can be improved at the location where the branch Bb was present. After pruning, the target tree T1 is no longer used for nutrients by the branch Bb, and can efficiently use the nutrients. In the target tree T1 after pruning, pests do not propagate in the branches Bb, and the propagation of pests in the target tree T1 can be prevented.
 幹Tbの向きに伸びる逆さ枝Bcを逆さ枝剪定位置Pcにおいて剪定することにより、剪定後の対象樹木T1は、逆さ枝Bcがない美しい見た目の樹木となり得る。剪定後の対象樹木T1は、逆さ枝Bcに養分を使われることがなくなり、養分を効率よく利用できるようになり得る。剪定後の対象樹木T1は、逆さ枝Bcにおいて病害虫が繁殖することがなくなり、対象樹木T1における病害虫の繁殖を予防し得る。 By pruning the upside-down branches Bc extending in the direction of the trunk Tb at the upside-down branch pruning position Pc, the target tree T1 after pruning can be a beautiful looking tree without the upside-down branches Bc. After pruning, the target tree T1 no longer uses nutrients for the upside-down branches Bc, and can efficiently use the nutrients. In the target tree T1 after pruning, pests do not propagate on the upside down branches Bc, and the propagation of pests in the target tree T1 can be prevented.
 重力方向において略下方に伸びる下り枝Bdを下り枝剪定位置Pdにおいて剪定することにより、剪定後の対象樹木T1は、下り枝Bdがない美しい見た目の樹木となり得る。剪定後の対象樹木T1は、下り枝Bdに養分を使われることがなくなり、養分を効率よく利用できるようになり得る。剪定後の対象樹木T1は、下り枝Bdにおいて病害虫が繁殖することがなくなり、対象樹木T1における病害虫の繁殖を予防し得る。 By pruning the descending branches Bd that extend substantially downward in the direction of gravity at the descending branch pruning position Pd, the target tree T1 after pruning can be a beautiful looking tree without descending branches Bd. After pruning, the target tree T1 is no longer used for nutrients by the descending branches Bd, and can efficiently use the nutrients. In the target tree T1 after pruning, pests do not propagate in the descending branches Bd, and the propagation of pests in the target tree T1 can be prevented.
 重力方向において略上方に伸びる立ち枝Beを立ち枝剪定位置Peにおいて剪定することにより、剪定後の対象樹木T1は、立ち枝Beがない美しい見た目の樹木となり得る。剪定後の対象樹木T1は、立ち枝Beに養分を使われることがなくなり、養分を効率よく利用できるようになり得る。剪定後の対象樹木T1は、立ち枝Beにおいて病害虫が繁殖することがなくなり、対象樹木T1における病害虫の繁殖を予防し得る。 By pruning the standing branches Be that extend substantially upward in the direction of gravity at the standing branch pruning position Pe, the target tree T1 after pruning can be a beautiful looking tree with no standing branches Be. After pruning, the target tree T1 does not use nutrients for the standing branches Be, and can efficiently use the nutrients. In the target tree T1 after pruning, pests do not propagate on the standing branches Be, and propagation of pests in the target tree T1 can be prevented.
 他の枝と絡む絡み枝Bfを絡み枝剪定位置Pfにおいて剪定することにより、剪定後の対象樹木T1は、絡み枝Bfがない美しい見た目の樹木となり得る。また、絡み枝Bfがあった箇所における風通しがよくなり得る。剪定後の対象樹木T1は、絡み枝Bfに養分を使われることがなくなり、養分を効率よく利用できるようになり得る。剪定後の対象樹木T1は、絡み枝Bfにおいて病害虫が繁殖することがなくなり、対象樹木T1における病害虫の繁殖を予防し得る。 By pruning the entanglement branch Bf that is entwined with other branches at the entanglement branch pruning position Pf, the target tree T1 after pruning can be a beautiful looking tree without the entanglement branch Bf. In addition, it is possible to improve the ventilation at the location where the tangling branch Bf was. After pruning, the target tree T1 no longer uses nutrients for the entwining branches Bf, and can efficiently use the nutrients. In the target tree T1 after pruning, pests do not propagate on the entanglement branches Bf, and the propagation of pests in the target tree T1 can be prevented.
 重力方向において略上方及び/又は斜め上方に真っ直ぐ長く太く伸びる徒長枝Bgを徒長枝剪定位置Pgにおいて剪定することにより、剪定後の対象樹木T1は、徒長枝Bgがない美しい見た目の樹木となり得る。剪定後の対象樹木T1は、徒長枝Bgに養分を使われることがなくなり、養分を効率よく利用できるようになり得る。剪定後の対象樹木T1は、徒長枝Bgにおいて病害虫が繁殖することがなくなり、対象樹木T1における病害虫の繁殖を予防し得る。 By pruning the long and thick long branches Bg that extend straight and/or obliquely upward in the direction of gravity at the long branch pruning position Pg, the target tree T1 after pruning can be a beautiful looking tree with no long branches Bg. After pruning, the target tree T1 no longer uses nutrients for the long branches Bg, and can efficiently use the nutrients. In the target tree T1 after pruning, pests do not propagate in the long branches Bg, and the propagation of pests in the target tree T1 can be prevented.
 他の枝の周辺において他の枝と略平行に伸びる平行枝Bhを平行枝剪定位置Phにおいて剪定することにより、剪定後の対象樹木T1は、平行枝Bhがない美しい見た目の樹木となり得る。また、平行枝Bhがあった箇所における風通しがよくなり得る。剪定後の対象樹木T1は、平行枝Bhに養分を使われることがなくなり、養分を効率よく利用できるようになり得る。剪定後の対象樹木T1は、平行枝Bhにおいて病害虫が繁殖することがなくなり、対象樹木T1における病害虫の繁殖を予防し得る。 By pruning the parallel branches Bh extending substantially parallel to the other branches around the other branches at the parallel branch pruning position Ph, the target tree T1 after pruning can be a beautiful looking tree without the parallel branches Bh. In addition, ventilation can be improved at locations where the parallel branches Bh were present. In the target tree T1 after pruning, no nutrients are used by the parallel branches Bh, and the nutrients can be used efficiently. In the target tree T1 after pruning, pests do not propagate in the parallel branches Bh, and the propagation of pests in the target tree T1 can be prevented.
 制御装置3は、ひこばえBa、込み枝Bb、逆さ枝Bc、下り枝Bd、立ち枝Be、絡み枝Bf、徒長枝Bg、及び平行枝Bh等によって例示される剪定を必要とする枝Bの1以上をひこばえ剪定位置Pa、込み枝剪定位置Pb、逆さ枝剪定位置Pc、下り枝剪定位置Pd、立ち枝剪定位置Pe、絡み枝剪定位置Pf、徒長枝剪定位置Pg、及び平行枝剪定位置Ph等によって例示される剪定位置Pにおいて剪定するよう無人航空機2の飛行状態及び剪定構造23を制御する。 The control device 3 controls branches B requiring pruning exemplified by overhang Ba, ramming branch Bb, inverted branch Bc, descending branch Bd, standing branch Be, entwining branch Bf, long branch Bg, and parallel branch Bh. One or more of pruning pruning position Pa, nesting branch pruning position Pb, inverted branch pruning position Pc, descending branch pruning position Pd, standing branch pruning position Pe, tangling branch pruning position Pf, long branch pruning position Pg, and parallel branches Control flight conditions of unmanned aerial vehicle 2 and pruning structure 23 to prune at pruning position P, exemplified by pruning position Ph, etc.
 剪定を必要とする枝Bの1以上を剪定するよう無人航空機2の飛行状態及び剪定構造23を制御することにより、対象樹木T1は、剪定を必要とする枝Bの1以上が剪定された剪定後樹木T2となる。したがって、対象樹木T1の見た目を美しくできる。また、対象樹木T1における風通しを良くし得る。対象樹木T1は、養分を効率よく利用できるようになり得る。対象樹木T1の生長が促進され得る。また、対象樹木T1における病害虫の繁殖を予防し得る。 By controlling the flight state of the unmanned aerial vehicle 2 and the pruning structure 23 so as to prune one or more of the branches B that require pruning, the target tree T1 is pruned with one or more of the branches B that require pruning. It becomes the rear tree T2. Therefore, the appearance of the target tree T1 can be made beautiful. Also, the ventilation in the target tree T1 can be improved. The target tree T1 can be able to use nutrients efficiently. The growth of the target tree T1 can be promoted. In addition, it is possible to prevent the propagation of pests in the target tree T1.
〔無人航空機2の移動〕
 図9は、本実施形態の無人航空機2における安全性を高める状態制御の一例を示す概略模式図である。無人航空機システム1を利用する利用者は、制御装置3を介して無人航空機2に移動するよう指令する。無人航空機2は、移動する。移動後の無人航空機2から剪定後樹木T2までの距離Dは、所定の距離より大きくなる。無人航空機2は、剪定構造23を収容状態にするよう制御する。剪定構造23は、収容構造24に収容される。
[Movement of unmanned aerial vehicle 2]
FIG. 9 is a schematic diagram showing an example of state control for enhancing safety in the unmanned aerial vehicle 2 of this embodiment. A user using the unmanned aerial system 1 commands the unmanned aerial vehicle 2 to move via the control device 3 . The unmanned aerial vehicle 2 moves. A distance D from the unmanned aerial vehicle 2 after movement to the tree T2 after pruning is greater than a predetermined distance. The unmanned aerial vehicle 2 controls the pruning structure 23 to be stowed. The pruning structure 23 is housed in the housing structure 24 .
 図9に示す例では、剪定構造23は、収容構造24の内部に収容されている。したがって、外部から無人航空機2をみる場合において、無人航空機2は、収容構造24の内部に収容された剪定構造23がみえない状態となっている。これにより、樹木を剪定しない場合における無人航空機2の安全性をよりいっそう高め得る。 In the example shown in FIG. 9 , the pruning structure 23 is housed inside the housing structure 24 . Therefore, when viewing the unmanned aerial vehicle 2 from the outside, the unmanned aerial vehicle 2 is in a state where the pruning structure 23 housed inside the housing structure 24 cannot be seen. This can further enhance the safety of the unmanned aerial vehicle 2 when trees are not pruned.
〔無人航空機2の着陸〕
 無人航空機システム1を利用する利用者は、制御装置3を介して無人航空機2に着陸するよう指令する。無人航空機2は、剪定構造23を収容状態にするよう制御する。剪定構造23は、収容構造24に収容される。これにより、着陸の際にヒト等が剪定構造23によって怪我することを防ぎ得る。
[Landing of unmanned aerial vehicle 2]
A user using the unmanned aerial system 1 commands the unmanned aerial vehicle 2 to land via the control device 3 . The unmanned aerial vehicle 2 controls the pruning structure 23 to be stowed. The pruning structure 23 is housed in the housing structure 24 . This can prevent a person or the like from being injured by the pruning structure 23 during landing.
〔無人航空機2の高度が所定の範囲内でない場合〕
 無人航空機2の高度が所定の範囲内でない場合、無人航空機2は、剪定構造23を収容状態にするよう制御する。制御部21は、剪定構造23を収容構造24に収容するよう剪定構造23を制御する。これにより、無人航空機2の高度が低い場合における安全性と無人航空機2の高度が高い場合における安全性とを高め得る。
[When the altitude of the unmanned aerial vehicle 2 is not within a predetermined range]
If the altitude of the unmanned aerial vehicle 2 is not within the predetermined range, the unmanned aerial vehicle 2 controls the pruning structure 23 to be stowed. The controller 21 controls the pruning structure 23 to accommodate the pruning structure 23 in the accommodation structure 24 . This can improve safety when the altitude of the unmanned aerial vehicle 2 is low and safety when the altitude of the unmanned aerial vehicle 2 is high.
〔制御信号の強度が所定の強度より弱い場合〕
 制御信号の強度が所定の強度より弱い場合、無人航空機2は、剪定構造23を収容状態にするよう制御する。制御部21は、剪定構造23を収容構造24に収容するよう剪定構造23を制御する。そして、制御部21は、無人航空機2の飛行状態を着陸状態に制御する。これにより、外部からの制御信号を所定の強度以上の強度で受信できない場合における安全性をよりいっそう高め得る。
[When the strength of the control signal is weaker than the predetermined strength]
If the strength of the control signal is weaker than the predetermined strength, the unmanned aerial vehicle 2 controls the pruning structure 23 to be in the stowed state. The controller 21 controls the pruning structure 23 to accommodate the pruning structure 23 in the accommodation structure 24 . Then, the control unit 21 controls the flight state of the unmanned aerial vehicle 2 to the landing state. As a result, it is possible to further improve the safety when the control signal from the outside cannot be received at a predetermined intensity or more.
〔無人航空機2からヒト等までの距離が特定の距離以下である場合〕
 無人航空機2からヒト等までの距離が特定の距離以下である場合、無人航空機2は、剪定構造23を収容状態にするよう制御する。制御部21は、剪定構造23を収容構造24に収容するよう剪定構造23を制御する。そして、制御部21は、無人航空機2の飛行状態を着陸状態に制御する。これにより、無人航空機2から無人航空機2の周囲にいるヒト及び/又は動物までの距離が特定の距離以下である場合における安全性をよりいっそう高め得る。
[When the distance from the unmanned aerial vehicle 2 to a person, etc. is less than or equal to a specific distance]
When the distance from the unmanned aerial vehicle 2 to the person or the like is less than or equal to a specific distance, the unmanned aerial vehicle 2 controls the pruning structure 23 to be in the stowed state. The controller 21 controls the pruning structure 23 to accommodate the pruning structure 23 in the accommodation structure 24 . Then, the control unit 21 controls the flight state of the unmanned aerial vehicle 2 to the landing state. This can further enhance safety when the distance from the unmanned aerial vehicle 2 to humans and/or animals around the unmanned aerial vehicle 2 is equal to or less than a specific distance.
〔無人航空機2の位置が現出可能領域と異なる位置である場合〕
 無人航空機2の位置が現出可能領域と異なる位置である場合、無人航空機2は、剪定構造23を収容状態にするよう制御する。制御部21は、剪定構造23を収容構造24に収容するよう剪定構造23を制御する。そして、制御部21は、無人航空機2の飛行状態を着陸状態に制御する。これにより、無人航空機2の位置が現出可能領域と異なる位置である場合における安全性をよりいっそう高め得る。
[When the position of the unmanned aerial vehicle 2 is different from the reappearable area]
When the position of the unmanned aerial vehicle 2 is at a position different from the unmanned aerial vehicle 2, the unmanned aerial vehicle 2 controls the pruning structure 23 to be in the stowed state. The controller 21 controls the pruning structure 23 to accommodate the pruning structure 23 in the accommodation structure 24 . Then, the control unit 21 controls the flight state of the unmanned aerial vehicle 2 to the landing state. This can further enhance safety when the position of the unmanned aerial vehicle 2 is different from the reappearable area.
 以上、本発明の実施形態について説明したが、本発明は上述の実施形態に限るものではない。また、上述の実施形態に記載された効果は、本発明から生じる最も好適な効果を列挙したものに過ぎず、本発明による効果は、上述の実施形態に記載されたものに限定されるものではない。また、上述の実施形態は、本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明したすべての構成を備えるものに限定されるものではない。 Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments. Moreover, the effects described in the above-described embodiments are merely a list of the most preferable effects produced by the present invention, and the effects of the present invention are not limited to those described in the above-described embodiments. do not have. Moreover, the above-described embodiments have been described in detail in order to explain the present invention in an easy-to-understand manner, and are not necessarily limited to those having all the configurations described.
1   無人航空機システム
2   無人航空機
21  制御部
211 飛行状態制御部
212 状態制御部
213 高度取得部
214 位置取得部
22  飛行構造
221 駆動部
222 回転翼
23  剪定構造
24  収容構造
25  撮影装置
26  通信部
27  電源部
28  支持構造
3   制御装置
31  制御部
311 樹木画像撮影部
312 樹木形状情報生成部
313 樹木形状評価受信部
314 形状学習部
315 目標形状情報受信部
316 剪定位置指定部
317 剪定位置学習部
318 動作制御部
319 制御情報学習部
32  記憶部
321 樹木画像テーブル
322 ニューラルネットワークテーブル
33  通信部
34  表示部
35  入力部
B   剪定を必要とする枝
D   距離
N   ネットワーク
N1  形状生成ニューラルネットワーク
N2  剪定位置生成ニューラルネットワーク
N3  制御情報生成ニューラルネットワーク
P   剪定位置
T1  対象樹木
T2  剪定後樹木

 
1 unmanned aerial vehicle system 2 unmanned aerial vehicle 21 control unit 211 flight state control unit 212 state control unit 213 altitude acquisition unit 214 position acquisition unit 22 flight structure 221 drive unit 222 rotor 23 pruning structure 24 accommodation structure 25 imaging device 26 communication unit 27 power supply Unit 28 Support structure 3 Control device 31 Control unit 311 Tree image photographing unit 312 Tree shape information generation unit 313 Tree shape evaluation reception unit 314 Shape learning unit 315 Target shape information reception unit 316 Pruning position specifying unit 317 Pruning position learning unit 318 Operation control Unit 319 Control information learning unit 32 Storage unit 321 Tree image table 322 Neural network table 33 Communication unit 34 Display unit 35 Input unit B Branch requiring pruning D Distance N Network N1 Shape generation neural network N2 Pruning position generation neural network N3 Control Information generating neural network P Pruning position T1 Target tree T2 Pruned tree

Claims (7)

  1.  樹木を剪定可能な剪定構造と、
     前記剪定構造を収容可能な収容構造と、
     前記剪定構造を前記収容構造の内部に収容する収容状態と前記収容構造の外部に現出する現出状態との間で前記剪定構造の状態を制御可能な状態制御部と、
    を備え、
     前記状態制御部は、着陸の際に前記剪定構造の状態を前記収容状態に制御する、無人航空機。
    a pruning structure capable of pruning trees;
    a containment structure capable of containing the pruning structure;
    a state control unit capable of controlling the state of the pruning structure between an accommodation state in which the pruning structure is accommodated inside the accommodation structure and an appearance state in which the pruning structure appears outside the accommodation structure;
    with
    The unmanned aerial vehicle, wherein the state controller controls the state of the pruning structure to the stowed state upon landing.
  2.  前記状態制御部は、
     前記無人航空機から剪定の対象となる対象樹木までの距離が所定の距離以下である場合、前記剪定構造の状態を前記現出状態に制御し、
     前記無人航空機から前記対象樹木までの距離が前記所定の距離を超える場合、前記剪定構造の状態を前記収容状態に制御する、請求項1に記載の無人航空機。
    The state control unit
    controlling the state of the pruning structure to the emerging state when the distance from the unmanned aerial vehicle to the target tree to be pruned is equal to or less than a predetermined distance;
    The unmanned aerial vehicle according to claim 1, wherein the state of the pruning structure is controlled to the stowed state when the distance from the unmanned aerial vehicle to the target tree exceeds the predetermined distance.
  3.  前記無人航空機の飛行状態を制御可能な飛行状態制御部をさらに備え、
     外部から受信する前記無人航空機の制御に関する制御信号の強度が所定の強度よりも弱い場合、前記状態制御部が前記剪定構造の状態を前記収容状態に制御し、前記剪定構造が前記収容構造の内部に収容されたときに前記飛行状態制御部が前記無人航空機を着陸状態に制御する、請求項1又は2に記載の無人航空機。
    further comprising a flight state control unit capable of controlling the flight state of the unmanned aerial vehicle;
    When the strength of the control signal related to the control of the unmanned aerial vehicle received from the outside is weaker than a predetermined strength, the state control unit controls the state of the pruning structure to the stowed state, and the pruning structure is inside the stowage structure. 3. The unmanned aerial vehicle according to claim 1 or 2, wherein the flight state controller controls the unmanned aerial vehicle to a landing state when the unmanned aerial vehicle is stowed in a vehicle.
  4.  前記無人航空機の飛行状態を制御可能な飛行状態制御部をさらに備え、
     前記無人航空機から前記無人航空機の周囲にいるヒト及び/又は動物までの距離が特定の距離以下である場合、前記状態制御部が前記剪定構造の状態を前記収容状態に制御し、前記剪定構造が前記収容構造の内部に収容されたときに前記飛行状態制御部が前記無人航空機を着陸状態に制御する、請求項1から3のいずれか1項に記載の無人航空機。
    further comprising a flight state control unit capable of controlling the flight state of the unmanned aerial vehicle;
    When the distance from the unmanned aerial vehicle to humans and/or animals around the unmanned aerial vehicle is less than or equal to a specific distance, the state control unit controls the state of the pruning structure to the stowed state, and the pruning structure 4. The unmanned aerial vehicle according to any one of claims 1 to 3, wherein the flight state controller controls the unmanned aerial vehicle to a landing state when housed inside the housing structure.
  5.  高度を取得可能な高度取得部をさらに備え、
     前記高度が所定の範囲にない場合、前記状態制御部は、前記剪定構造の状態を前記収容状態に制御する、請求項1から4のいずれか1項に記載の無人航空機。
    Further equipped with an altitude acquisition unit capable of acquiring altitude,
    The unmanned aerial vehicle according to any one of claims 1 to 4, wherein the state control section controls the state of the pruning structure to the stowed state when the altitude is not within a predetermined range.
  6.  前記無人航空機の位置を取得可能な位置取得部をさらに備え、
     前記剪定構造を現出可能にする現出可能領域とは異なる位置に前記無人航空機がある場合、前記状態制御部が前記剪定構造の状態を前記収容状態に制御し、前記剪定構造が前記収容構造の内部に収容されたときに前記飛行状態制御部が前記無人航空機を着陸状態に制御する、請求項1から5のいずれか1項に記載の無人航空機。
    further comprising a position acquisition unit capable of acquiring the position of the unmanned aerial vehicle;
    When the unmanned aerial vehicle is in a position different from the revealable region where the pruning structure can appear, the state control unit controls the state of the pruning structure to the stowed state, and the pruning structure is the stowed structure. 6. The unmanned aerial vehicle according to any one of claims 1 to 5, wherein the flight state control unit controls the unmanned aerial vehicle to a landing state when housed inside the unmanned aerial vehicle.
  7.  マルチコプターである、請求項1から6のいずれか1項に記載の無人航空機。

     
    7. An unmanned aerial vehicle according to any preceding claim, which is a multicopter.

PCT/JP2022/000544 2021-02-05 2022-01-11 Unmanned aircraft WO2022168536A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/754,346 US11825783B2 (en) 2021-02-05 2022-01-11 Unmanned aerial vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021017341A JP7004963B1 (en) 2021-02-05 2021-02-05 Unmanned aerial vehicle
JP2021-017341 2021-02-05

Publications (1)

Publication Number Publication Date
WO2022168536A1 true WO2022168536A1 (en) 2022-08-11

Family

ID=80621030

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/000544 WO2022168536A1 (en) 2021-02-05 2022-01-11 Unmanned aircraft

Country Status (2)

Country Link
JP (1) JP7004963B1 (en)
WO (1) WO2022168536A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN210695076U (en) * 2019-07-30 2020-06-09 南京林业大学 Intelligent trimming system based on unmanned aerial vehicle
CN210987175U (en) * 2019-10-11 2020-07-14 湖北电鹰科技有限公司 Be applied to unmanned aerial vehicle's robot hand
CN211881182U (en) * 2019-10-29 2020-11-10 广西南宁市温拿信息科技有限公司 Garden trimming device
US20200367441A1 (en) * 2019-05-24 2020-11-26 AES Gener S.A. Tree trimming with drone
KR102187942B1 (en) * 2019-07-15 2020-12-07 배대원 LPG Engine Type Hybrid Drone for Harvesting Pine Nut

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018100038A (en) * 2016-12-21 2018-06-28 学校法人立命館 Gripper device and flight body including the same
CN108873845A (en) * 2018-07-12 2018-11-23 苏州昭轩数字科技有限公司 A kind of joint greening clipping device and its working method based on artificial intelligence

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200367441A1 (en) * 2019-05-24 2020-11-26 AES Gener S.A. Tree trimming with drone
KR102187942B1 (en) * 2019-07-15 2020-12-07 배대원 LPG Engine Type Hybrid Drone for Harvesting Pine Nut
CN210695076U (en) * 2019-07-30 2020-06-09 南京林业大学 Intelligent trimming system based on unmanned aerial vehicle
CN210987175U (en) * 2019-10-11 2020-07-14 湖北电鹰科技有限公司 Be applied to unmanned aerial vehicle's robot hand
CN211881182U (en) * 2019-10-29 2020-11-10 广西南宁市温拿信息科技有限公司 Garden trimming device

Also Published As

Publication number Publication date
JP2022120441A (en) 2022-08-18
JP7004963B1 (en) 2022-01-21

Similar Documents

Publication Publication Date Title
KR102229095B1 (en) UAV operation method and device
ES2613310B1 (en) BIOMIMETIC AND ZOOSEMIOTIC UNMISSED AIR VEHICLE DIRECTED BY AUTOMATIC PILOT FOR PRECISION FLIGHTS AND / OR PERSECUTION
CN106708080A (en) Cloud control-based automatic express delivery system employing unmanned aerial vehicle
JP6906621B2 (en) Windshield aerial spraying method and system
WO2009153588A1 (en) Compact unmanned aerial vehicle
JP6891102B2 (en) Agricultural multicopter
JP7176785B2 (en) Drone, drone control method, and drone control program
CN112041866B (en) Unmanned aerial vehicle delivery system
JP2022527029A (en) Systems, equipment, and methods for remote-controlled robots
KR20160082773A (en) Drone for aviation disaster prevention
CN112867395B (en) Travel route generation system, travel route generation method, computer-readable recording medium, and unmanned aerial vehicle
JP7270265B2 (en) Driving route generation device, driving route generation method, driving route generation program, and drone
Ross Open-source drones for fun and profit
WO2022168536A1 (en) Unmanned aircraft
WO2022168535A1 (en) Device for controlling unmanned air vehicle, and unmanned air vehicle system
JP2022036356A (en) Drone system
CN112911932B (en) Travel route generation device, travel route generation method, computer-readable recording medium, and unmanned aerial vehicle
WO2021140657A1 (en) Drone system, flight management device, and drone
Sajithvariyar et al. Opportunities and challenges of launching UAVs within wooded areas
Choudhury et al. Agricultural aid to seed cultivation: An Agribot
JP2022055370A (en) Drone system
JP7412041B2 (en) unmanned aircraft control system
JP7412037B2 (en) How to define the drone system, controls and work area
JP6806403B2 (en) Drones, drone control methods, and drone control programs
WO2017107661A1 (en) Flying mowing method and apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22749413

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22749413

Country of ref document: EP

Kind code of ref document: A1