WO2022168450A1 - 合わせガラス用中間膜及び合わせガラス - Google Patents

合わせガラス用中間膜及び合わせガラス Download PDF

Info

Publication number
WO2022168450A1
WO2022168450A1 PCT/JP2021/045907 JP2021045907W WO2022168450A1 WO 2022168450 A1 WO2022168450 A1 WO 2022168450A1 JP 2021045907 W JP2021045907 W JP 2021045907W WO 2022168450 A1 WO2022168450 A1 WO 2022168450A1
Authority
WO
WIPO (PCT)
Prior art keywords
laminated glass
intermediate film
interlayer film
film
silver
Prior art date
Application number
PCT/JP2021/045907
Other languages
English (en)
French (fr)
Inventor
尚治 清都
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2022168450A1 publication Critical patent/WO2022168450A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/26Reflecting filters

Definitions

  • the present disclosure relates to an interlayer film for laminated glass and laminated glass.
  • heat ray shielding material a material that imparts heat ray shielding properties to the windows of automobiles or buildings
  • Patent Document 1 has a heat ray reflective layer containing silver tabular particles and a heat ray absorbing layer containing multiple types of metal oxide particles, and the content of silver tabular particles in the heat ray reflective layer is 15 to 45 mg. /m 2 . Further, Patent Document 1 below also discloses an interlayer film for laminated glass having the heat ray shielding material and a laminated glass having the interlayer film for laminated glass.
  • An object of one embodiment of the present disclosure is to provide an interlayer film for laminated glass that reduces iridescent unevenness and exhibits high heat ray shielding properties.
  • Another embodiment of the present disclosure aims to provide a laminated glass including an intermediate film for laminated glass that reduces iridescent unevenness and exhibits high heat ray shielding properties.
  • ⁇ 1> Contains 50% by mass or more and less than 100% by mass of a polymer, silver tabular grains, and at least 90% of the content of the silver tabular grains based on the number, and has an average thickness of more than 10 nm and 100 nm or less. and a first region, wherein the interlayer film for laminated glass has a retardation value of 150 nm or less.
  • ⁇ 2> The interlayer film for laminated glass according to ⁇ 1>, wherein the first region contains 100% of the content of the silver tabular grains on a number basis.
  • ⁇ 3> The interlayer film for laminated glass according to ⁇ 1> or ⁇ 2>, wherein the first region contains polyvinyl acetal.
  • ⁇ 4> A region other than the first region, further including a second region containing polyvinyl acetal, wherein the weight average molecular weight of the polyvinyl acetal in the first region is the weight average of the polyvinyl acetal in the second region
  • the interlayer film for laminated glass according to ⁇ 3> which has a higher molecular weight.
  • ⁇ 5> The interlayer film for laminated glass according to any one of ⁇ 1> to ⁇ 4>, wherein the polymer contains polyvinyl acetal.
  • ⁇ 6> The interlayer film for laminated glass according to ⁇ 5>, wherein the content of the polyvinyl acetal in the polymer is 80% by mass or more with respect to the total mass of the polymer.
  • ⁇ 7> The interlayer film for laminated glass according to any one of ⁇ 1> to ⁇ 6>, wherein the polymer does not contain polyethylene terephthalate.
  • ⁇ 8> A laminated glass comprising the interlayer film for laminated glass according to any one of ⁇ 1> to ⁇ 7> and two glass plates sandwiching the interlayer film for laminated glass.
  • an interlayer film for laminated glass that reduces iridescent unevenness and exhibits high heat ray shielding properties is provided.
  • laminated glass is provided that includes an interlayer film for laminated glass that reduces iridescent unevenness and exhibits high heat ray shielding properties.
  • FIG. 1 is a schematic diagram showing an example of a method for producing an intermediate film for laminated glass and a laminated glass.
  • a numerical range indicated using "-" indicates a range that includes the numerical values described before and after "-" as lower and upper limits, respectively.
  • upper or lower limits described in a certain numerical range may be replaced with upper or lower limits of other numerical ranges described step by step.
  • upper or lower limits described in a certain numerical range may be replaced with values shown in Examples.
  • the amount of each component in the composition means the total amount of the multiple substances present in the composition unless otherwise specified when there are multiple substances corresponding to each component in the composition. .
  • step includes not only independent steps, but also if the intended purpose of the step is achieved even if it cannot be clearly distinguished from other steps. .
  • ordinal numbers are terms used to distinguish constituent elements, and do not limit the number of constituent elements or their superiority or inferiority.
  • the weight average molecular weight (Mw) and number average molecular weight (Mn) are TSKgel GMHxL (trade name manufactured by Tosoh Corporation), TSKgel G4000HxL (trade name manufactured by Tosoh Corporation) and TSKgel It is a molecular weight converted using polystyrene as a standard substance using a gel permeation chromatography (GPC) analyzer using a column of G2000HxL (manufactured by Tosoh Corporation) and a differential refractometer. Tetrahydrofuran (THF) is used as solvent.
  • GPC gel permeation chromatography
  • the heat ray reflective layer is formed, for example, by applying a coating liquid for the silver tabular grain-containing layer onto the support.
  • substrates such as polyethylene terephthalate exhibit high birefringence and are believed to increase iridescence. Therefore, the inventors of the present disclosure studied in detail the optical properties of the interlayer film for laminated glass, and found that rainbow unevenness can be reduced by setting the retardation value of the interlayer film for laminated glass to 150 nm or less. Furthermore, the inventors of the present disclosure have found that heat ray shielding properties can be improved by adjusting the existence range of silver tabular grains in an interlayer film for laminated glass.
  • An interlayer film for laminated glass contains 50% by mass or more and less than 100% by mass of a polymer and silver tabular particles. Further, the interlayer film for laminated glass includes a first region. The first region contains at least 90% of the content of the silver tabular grains based on the number and has an average thickness of more than 10 nm and 100 nm or less. Further, the retardation value of the interlayer for laminated glass is 150 nm or less. According to the above-described interlayer film for laminated glass, iridescent unevenness is reduced and high heat ray shielding properties are obtained.
  • An interlayer film for laminated glass according to an embodiment of the present disclosure contains 50% by mass or more and less than 100% by mass of a polymer.
  • the polymer can improve the durability of the interlayer film for laminated glass.
  • the content of the polymer described above is the proportion of the polymer in the interlayer film for laminated glass.
  • polymers examples include polyvinyl acetal, polyvinyl alcohol, acrylic resin, polycarbonate, polyvinyl chloride, polyester, polyurethane, gelatin and cellulose.
  • the type of polymer is preferably selected in consideration of the retardation value of the interlayer film for laminated glass. From the viewpoint of reducing the retardation value of the interlayer film for laminated glass, polyvinyl acetal is preferred.
  • the polymer comprises polyvinyl acetal.
  • Polyvinyl acetal can reduce the retardation value of the interlayer film for laminated glass.
  • polyvinyl acetal can improve the adhesion between the interlayer film for laminated glass and the glass plate.
  • the polyvinyl acetal preferably contains a cyclic structure containing —O—CHR 1 —O— bonds.
  • R 1 represents a hydrogen atom or a monovalent organic group.
  • the cyclic structure is preferably a 6-membered ring structure.
  • R 1 is preferably a monovalent organic group. Examples of monovalent organic groups include alkyl groups. Alkyl groups may be linear, branched or cyclic alkyl groups.
  • the number of carbon atoms in the alkyl group is preferably 1-10, more preferably 2-8, and particularly preferably 2-4.
  • Polyvinyl acetals include, for example, polyvinyl formal and polyvinyl butyral (PVB). From the viewpoint of reducing the retardation value of the interlayer film for laminated glass, the polyvinyl acetal is preferably polyvinyl butyral (PVB).
  • the degree of acetalization of the polyvinyl acetal is preferably 55 mol% or more, more preferably 67 mol% or more. From the viewpoint of shortening the production time of polyvinyl acetal, the degree of acetalization of polyvinyl acetal is preferably 75 mol % or less, more preferably 71 mol % or less. The degree of acetalization is calculated, for example, by a method based on "ASTM D1396-92".
  • the polyvinyl acetal may be a synthetic product or a commercial product.
  • Polyvinyl acetal is produced, for example, by a known method.
  • Polyvinyl acetal is produced, for example, by acetalizing polyvinyl alcohol with an aldehyde.
  • the polyvinyl alcohol may be a synthetic product or a commercial product.
  • Polyvinyl alcohol is produced, for example, by saponifying polyvinyl acetate.
  • the degree of saponification of polyvinyl alcohol is preferably 70 mol % to 99.9 mol %.
  • the average degree of polymerization of polyvinyl alcohol is preferably 200 or more, more preferably 500 or more, and particularly preferably 1,500 or more.
  • the average degree of polymerization of polyvinyl alcohol is preferably 1,600 or more, more preferably 2,600 or more, and particularly preferably 2,700 or more.
  • the average degree of polymerization of polyvinyl alcohol is preferably 5,000 or less, more preferably 4,000 or less, and 3,500 or less. is particularly preferred.
  • the average degree of polymerization of polyvinyl alcohol is determined, for example, by a method conforming to "JIS K 6726:1994" (polyvinyl alcohol test method).
  • aldehydes include, for example, aldehydes having 1 to 10 carbon atoms.
  • aldehydes having 1 to 10 carbon atoms include formaldehyde, acetaldehyde, propionaldehyde, n-butyraldehyde, isobutyraldehyde, n-valeraldehyde, 2-ethylbutyraldehyde, n-hexylaldehyde, n-octylaldehyde, n -nonylaldehyde, n-decylaldehyde and benzaldehyde.
  • Propionaldehyde, n-butyraldehyde, isobutyraldehyde, n-valeraldehyde or n-hexylaldehyde are preferred, propionaldehyde, n-butyraldehyde or isobutyraldehyde are more preferred, and n-butyraldehyde is particularly preferred.
  • the content of the polyvinyl acetal in the polymer is preferably 80% by mass or more, more preferably 85% by mass or more, relative to the total mass of the polymer. is more preferable, and 90% by mass or more is particularly preferable.
  • the content of polyvinyl acetal in the polymer may be less than 100% by weight relative to the total weight of the polymer.
  • the polymer preferably does not contain polyethylene terephthalate (PET).
  • PET polyethylene terephthalate
  • the polymer does not contain polyethylene terephthalate, that is, when the interlayer film for laminated glass does not contain polyethylene terephthalate, iridescent unevenness can be further reduced.
  • the interlayer film for laminated glass according to one embodiment of the present disclosure may contain one or more polymers.
  • the content of the polymer is 50% by mass or more and less than 100% by mass with respect to the total mass of the interlayer film for laminated glass. From the viewpoint of the hardness of the interlayer film, the content of the polymer is preferably 60% by mass to 90% by mass, more preferably 70% by mass to 80% by mass, based on the total mass of the interlayer film for laminated glass. is more preferable.
  • An interlayer film for laminated glass contains tabular silver particles.
  • the silver tabular particles can improve the heat ray shielding property of the interlayer film for laminated glass.
  • tabular grain means a grain containing two principal planes facing in opposite directions.
  • Silver tabular grains are tabular grains containing silver.
  • the silver tabular grains may contain metals other than silver, if necessary.
  • the silver tabular grains are preferably silver tabular grains containing 50% by mass to 100% by mass of silver, and are silver tabular grains containing 80% by mass to 100% by mass of silver. More preferably, silver tabular grains containing 95% by mass to 100% by mass of silver are particularly preferable.
  • the metals other than silver are preferably noble metals such as gold and platinum.
  • silver tabular grains include triangular silver tabular grains, hexagonal silver tabular grains, and circular silver tabular grains. From the viewpoint of improving the visible light transmittance, the silver tabular grains are preferably at least one selected from the group consisting of hexagonal or more polygonal silver tabular grains and circular silver tabular grains. and circular silver tabular grains. Further, the silver tabular grains are preferably polygonal silver tabular grains having a hexagon or more or circular tabular silver grains, and more preferably hexagonal tabular silver grains or circular tabular silver grains.
  • circular tabular silver grains means a shape in which the number of sides having a length of 50% or more of the average equivalent circular diameter of the tabular silver grain is 0 per silver tabular grain. do. For example, when the main planes of circular silver tabular grains are observed using a transmission electron microscope, round shapes without corners are observed.
  • hexagonal in the hexagonal silver tabular grains means a shape in which one silver tabular grain has 6 sides having a length of 20% or more of the average circle equivalent diameter of the silver tabular grains. do.
  • the applicability of a polygonal shape other than a hexagon is determined according to the number of sides having a length of 20% or more of the average circle-equivalent diameter of the silver tabular grains. For example, when the main planes of hexagonal silver tabular grains are observed using a transmission electron microscope, a hexagonal shape is observed.
  • the hexagonal corners may be sharp or rounded. From the viewpoint of reducing absorption in the visible light region, the hexagonal corners are preferably rounded. The degree of roundness of the hexagonal corners may be determined depending on the purpose.
  • the content of the hexagonal silver tabular grains and the circular silver tabular grains is preferably 60% or more, more preferably 65% or more, based on the total number of silver grains. It is more preferably 70% or more, particularly preferably 70% or more.
  • Silver particles in this paragraph means particles containing silver.
  • the average equivalent circle diameter of the silver tabular grains is preferably 50 nm to 500 nm, more preferably 70 nm to 300 nm, and particularly preferably 80 nm to 250 nm.
  • the average equivalent circle diameter of the silver tabular grains is increased, the heat ray shielding property is improved. Visible light transmittance is improved when the average equivalent circle diameter of silver tabular grains is reduced.
  • the average circle-equivalent diameter of the silver tabular grains is calculated by the following method.
  • the silver tabular grains are observed using a transmission electron microscope (TEM), and the obtained image is imported into image processing software "ImageJ" and subjected to image processing.
  • Image analysis of 1,000 silver tabular grains arbitrarily extracted from TEM images of a plurality of fields of view is performed, and the average circle equivalent diameter of the 1,000 silver tabular grains is calculated. The obtained value is employed as the average circle equivalent diameter of the silver tabular grains.
  • the coefficient of variation of the equivalent circle diameter of the silver tabular grains is preferably 35% or less, more preferably 30% or less, and particularly preferably 20% or less. When the coefficient of variation becomes small, the reflection wavelength range of heat rays in the interlayer film for laminated glass becomes sharp.
  • the variation coefficient of the equivalent circle diameter of the silver tabular grains is calculated by dividing the standard deviation of the equivalent circle diameters of 1,000 silver tabular grains by the average equivalent circle diameter of the silver tabular grains.
  • the circle-equivalent diameter of the silver tabular grains is calculated using the above-mentioned image processing software "ImageJ".
  • the average thickness of the silver tabular grains is preferably 14 nm or less, more preferably 5 nm to 14 nm, and particularly preferably 5 nm to 12 nm.
  • the average thickness of the silver tabular grains is calculated by arithmetically averaging the thicknesses of 100 silver tabular grains.
  • the thickness of the silver tabular grain corresponds to the distance between the two main planes of the silver tabular grain.
  • the thickness of the silver tabular grains is measured using at least one of transmission electron microscopy (TEM) and atomic force microscopy (AFM).
  • TEM transmission electron microscopy
  • AFM atomic force microscopy
  • the aspect ratio of the silver tabular grains is preferably 6 to 40, more preferably 10 to 35.
  • the aspect ratio of the silver tabular grains is calculated by dividing the average circle equivalent diameter of the silver tabular grains by the average thickness of the silver tabular grains.
  • the average inclination angle of the main planes of the silver tabular grains with respect to one surface of the interlayer film for laminated glass is preferably 0° to ⁇ 30°, more preferably 0° to ⁇ 20°, and 0° to ⁇ 10° is particularly preferred. Matters relating to the orientation of silver tabular grains are described in paragraphs 0044 to 0048 of JP-A-2014-194446. The contents of the above documents are incorporated herein by reference.
  • Silver tabular grains are manufactured, for example, by a known synthetic method.
  • methods for synthesizing silver tabular grains include a liquid phase method.
  • Liquid phase methods include, for example, chemical reduction methods, photochemical reduction methods, and electrochemical reduction methods. From the viewpoint of controllability of the shape and size of silver tabular grains, the chemical reduction method and the photochemical reduction method are preferred.
  • a method of synthesizing silver tabular grains for example, a method of crystal-growing grains in a tabular shape after fixing seed crystals on the surface of a transparent base material can be used.
  • a method for synthesizing silver tabular grains is described, for example, in JP-A-2014-194446. The contents of the above documents are incorporated herein by reference.
  • the interlayer film for laminated glass according to an embodiment of the present disclosure may contain one or more silver tabular grains.
  • the interlayer film for laminated glass according to one embodiment of the present disclosure preferably contains a plurality of tabular silver particles.
  • the ratio of the silver tabular grains to the area of the interlayer film for laminated glass is preferably 10 mg/m 2 to 100 mg/m 2 , more preferably 15 mg/m 2 to 80 mg/m 2 . more preferably 20 mg/m 2 to 60 mg/m 2 . If the amount of silver is too small, sufficient heat shielding performance will not be exhibited. Also, if the amount of silver is large, the visible light transmittance is lowered.
  • An interlayer film for laminated glass includes a first region containing at least 90% of the content of silver tabular grains based on number and having an average thickness of more than 10 nm and less than or equal to 100 nm.
  • the term "content of tabular silver particles" used in relation to the first region means the content of tabular silver particles in the interlayer film for laminated glass.
  • the first region defines the existence range of the silver tabular grains in the thickness direction of the interlayer film for laminated glass. That is, most of the silver tabular grains in the interlayer film for laminated glass are arranged in the first region having the specific thickness as described above. As will be described later, the first region is defined by a region sandwiched between two virtual lines drawn on the cross section of the interlayer film for laminated glass, and the thickness of the first region is defined by the two virtual lines is represented by an interval of .
  • the average thickness of the first region is more than 10 nm and less than or equal to 100 nm.
  • the average thickness of the first region that is, the existence range of the silver tabular grains affects the heat ray shielding properties of the interlayer film for laminated glass. For example, as the average thickness of the first region becomes smaller, the existence range of the silver tabular grains in the thickness direction of the interlayer film for laminated glass becomes narrower. As a result, the heat ray reflectance due to the silver tabular particles is increased, and the heat ray shielding property of the interlayer film for laminated glass is improved.
  • the average thickness of the first region is preferably 10 nm to 95 nm, more preferably 10 nm to 80 nm, and particularly preferably 10 nm to 70 nm.
  • An interlayer film for laminated glass includes a first region containing at least 90% of the content of silver tabular grains based on the number. That is, the ratio of the content of the tabular silver grains in the first region to the content of the tabular silver grains in the interlayer film for laminated glass (hereinafter sometimes referred to as "the content of tabular silver grains in the first region") is At least 90% by number. From the viewpoint of improving heat ray shielding properties, the content of tabular silver grains in the first region is preferably at least 95%, more preferably 100%, based on number. In other words, all of the silver tabular grains in the interlayer film for laminated glass are preferably arranged in the first region.
  • the first region and the average thickness of the first region are confirmed based on the arrangement of the silver tabular grains observed in the cross section along the thickness direction of the interlayer film for laminated glass.
  • the specific procedure is as follows. However, when the lower limit of the content of the tabular silver grains in the first region is changed, "90%" described in the procedure below shall be read as the value after the change. For example, when the content of tabular silver grains in the first region is changed to at least 95%, "90%” described in the procedure below should be read as "95%”. (1) Using a transmission electron microscope, a cross-section along the thickness direction of the interlayer film for laminated glass is observed to obtain cross-sectional images for a total of 10 fields of view.
  • the photographing magnification is adjusted within the range of 1,000 to 5,000 times so that both ends of the interlayer film for laminated glass in the thickness direction are included in one field of view.
  • (2) Draw two virtual lines (hereinafter, the two virtual lines are referred to as “virtual lines L1” and “virtual lines L2”, respectively) for each cross-sectional image.
  • the virtual line L1 and the virtual line L2 are drawn perpendicular to the thickness direction of the interlayer film for laminated glass, and the distance between the virtual line L1 and the virtual line L2 (hereinafter , referred to as "distance D") is adjusted so that at least 90% of the total number of observed silver tabular grains is sandwiched between imaginary lines L1 and L2.
  • distance D the distance between the virtual line L1 and the virtual line L2
  • the minimum value among the multiple candidates is adopted as the distance D.
  • the area sandwiched by the virtual line L1 and the virtual line L2 corresponds to the first area in the present disclosure.
  • the first region preferably contains a polymer.
  • the polymer in the first region supports the tabular silver grains in the first region, thereby contributing to the improvement of heat ray shielding properties.
  • the polymer includes, for example, the polymers described in the section "Polymer” above.
  • the first region preferably contains polyvinyl acetal. Preferred aspects of the polyvinyl acetal in the first region are the same as the preferred aspects of the polyvinyl acetal described in the section on "Polymer” above.
  • the weight average molecular weight of the polyvinyl acetal in the first region is preferably 1,000 or more, more preferably 1,500 or more, and particularly preferably 2,000 or more.
  • the weight average molecular weight of the polyvinyl acetal in the first region may be 10,000 or less or 8,000 or less. As the weight average molecular weight of polyvinyl acetal increases, the hardness of polyvinyl acetal increases. When the hardness of polyvinyl acetal increases, an interlayer film for laminated glass as a support as described in the above-mentioned Patent Document 1 (that is, Japanese Patent Laid-Open No. 2014-194446) has a high birefringence base material (for example, polyethylene).
  • the silver tabular grains in the first region are stably supported even without containing terephthalate. When the silver tabular grains in the first region are stably supported, heat ray shielding properties can also be improved.
  • the silver tabular particles are supported by a high-molecular-weight polymer. This facilitates formation of the thin first region. Therefore, the rainbow unevenness is also reduced by reducing the retardation value without impairing the heat ray shielding property.
  • a base material having high birefringence e.g., polyethylene terephthalate
  • the interlayer film for laminated glass may contain, as other components, components other than the components described above.
  • Other components may be selected from known components of interlayer films for laminated glass.
  • Other ingredients include, for example, plasticizers and antioxidants.
  • Other components include, for example, additives described in paragraphs 0066 to 0067 of JP-A-2014-194446.
  • the interlayer film for laminated glass according to one embodiment of the present disclosure may contain a plasticizer.
  • Plasticizers include, for example, organic ester plasticizers and organic phosphate plasticizers.
  • organic ester plasticizers examples include triethylene glycol di-2-ethylpropanoate, triethylene glycol di-2-ethylbutyrate, triethylene glycol di-2-ethylhexanoate, and triethylene glycol dicaprylate.
  • triethylene glycol di-n-octanoate triethylene glycol di-n-heptanoate, tetraethylene glycol di-n-heptanoate, dibutyl sebacate, dioctyl azelate, dibutyl carbitol adipate, ethylene glycol di-2-ethylbutyrate , 1,3-propylene glycol di-2-ethylbutyrate, 1,4-butylene glycol di-2-ethylbutyrate, diethylene glycol di-2-ethylbutyrate, diethylene glycol di-2-ethylhexanoate, dipropylene glycol di-2-ethylbutyrate, triethylene glycol di-2-ethylpentanoate, tetraethylene glycol di-2-ethylbutyrate, diethylene glycol dicaprylate, dihexyl adipate, dioctyl adipate, hexyl cycl
  • organic phosphoric acid plasticizers examples include tributoxyethyl phosphate, isodecylphenyl phosphate and triisopropyl phosphate.
  • the plasticizer is preferably an organic ester plasticizer, preferably an organic diester plasticizer.
  • the plasticizer is at least one selected from the group consisting of triethylene glycol di-2-ethylhexanoate, triethylene glycol di-2-ethylbutyrate and triethylene glycol di-2-ethylpropanoate.
  • it is more preferably at least one selected from the group consisting of triethylene glycol di-2-ethylhexanoate and triethylene glycol di-2-ethylbutyrate, triethylene glycol di-2- Ethylhexanoate is particularly preferred.
  • the plasticizer is preferably a liquid plasticizer.
  • the interlayer film for laminated glass according to one embodiment of the present disclosure may contain one or more plasticizers.
  • the content of the plasticizer in the interlayer film for laminated glass is preferably 5% to 60% by weight, more preferably 10% to 50% by weight, based on the total weight of the interlayer film for laminated glass. 15% by mass to 45% by mass is particularly preferred.
  • the interlayer film for laminated glass according to one embodiment of the present disclosure may contain an antioxidant.
  • Antioxidants include, for example, phenol antioxidants, sulfur antioxidants and phosphorus antioxidants.
  • a phenolic antioxidant is an antioxidant containing a phenol skeleton.
  • a sulfur antioxidant is an antioxidant containing a sulfur atom.
  • a phosphorus antioxidant is an antioxidant containing a phosphorus atom.
  • the antioxidant is preferably a phenolic antioxidant or a phosphorus antioxidant.
  • Phenolic antioxidants include, for example, 2,6-di-t-butyl-p-cresol (BHT), butylated hydroxyanisole (BHA), 2,6-di-t-butyl-4-ethylphenol, Stearyl- ⁇ -(3,5-di-t-butyl-4-hydroxyphenyl)propionate, 2,2′-methylenebis(4-methyl-6-butylphenol), 2,2′-methylenebis(4-ethyl-6 -t-butylphenol), 4,4′-butylidene-bis(3-methyl-6-t-butylphenol), 1,1,3-tris-(2-methyl-hydroxy-5-t-butylphenyl)butane, tetrakis[methylene-3-(3′,5′-butyl-4-hydroxyphenyl)propionate]methane, 1,3,3-tris-(2-methyl-4-hydroxy-5-t-butylphenol)butane, 1 , 3,5-trimethyl-2
  • Phosphorus-based antioxidants include, for example, tridecyl phosphite, tris(tridecyl) phosphite, triphenyl phosphite, trinonylphenyl phosphite, bis(tridecyl) pentaerythritol diphosphite, bis(decyl) pentaerythritol diphosphite, Phosphite, tris(2,4-di-t-butylphenyl)phosphite, bis(2,4-di-t-butyl-6-methylphenyl)ethyl ester phosphorous acid, tris(2,4-di- t-butylphenyl)phosphite and 2,2'-methylenebis(4,6-di-t-butyl-1-phenyloxy)(2-ethylhexyloxy)phosphorus.
  • the interlayer film for laminated glass according to one embodiment of the present disclosure may contain one or more antioxidants.
  • the content of the antioxidant in the interlayer film for laminated glass is preferably 0.01% by mass to 20% by mass, more preferably 0.03% by mass to 15% by mass, based on the total mass of the interlayer film for laminated glass. is more preferable, and 0.05% by mass to 10% by mass is particularly preferable.
  • the retardation value of the interlayer film for laminated glass according to one embodiment of the present disclosure is 150 nm or less.
  • the “retardation value” is the in-plane retardation Re at a wavelength of 550 nm measured using a phase difference measuring device (eg, KOBRA-WR, manufactured by Oji Scientific Instruments Co., Ltd.).
  • a phase difference measuring device eg, KOBRA-WR, manufactured by Oji Scientific Instruments Co., Ltd.
  • the retardation value of the interlayer for laminated glass is 150 nm or less, iridescent unevenness is reduced. From the viewpoint of reducing iridescent unevenness, the retardation value is preferably 100 nm or less, more preferably 70 nm or less, and particularly preferably 40 nm or less.
  • the lower limit of the retardation value is not limited.
  • the retardation value may be 0.1 nm or more.
  • the retardation value depends, for example, on the optical properties (eg, birefringence) of the components of the interlayer for laminated glass. For example, when the interlayer film for laminated glass contains a component having a low birefringence, the retardation value of the interlayer film for laminated glass tends to be small.
  • the interlayer film for laminated glass according to an embodiment of the present disclosure may include regions other than the first region.
  • the area other than the first area may be referred to as "second area”.
  • An interlayer film for laminated glass according to an embodiment of the present disclosure may include the first region and the second region in this order.
  • the second region In a cross section along the thickness direction of the interlayer film for laminated glass, the second region may be arranged above or below the first region.
  • the second region In a cross section along the thickness direction of the interlayer film for laminated glass, the second region may be arranged above and below the first region.
  • An interlayer film for laminated glass according to an embodiment of the present disclosure may apparently have a single-layer structure or a multi-layer structure.
  • the second region may contain a polymer.
  • the polymer includes, for example, the polymers described in the section "Polymer” above.
  • the second region may contain a component other than the polymer as another component.
  • Other components include, for example, the components described in the section "Other components" above.
  • the interlayer film for laminated glass according to an embodiment of the present disclosure preferably further includes a second region other than the first region and containing polyvinyl acetal.
  • Polyvinyl acetals include, for example, the polyvinyl acetals described in the above section "Polymer”. Preferred aspects of the polyvinyl acetal in the second region are the same as the preferred aspects of the polyvinyl acetal described in the section on "Polymer" above.
  • the weight average molecular weight of the polyvinyl acetal in the first region is the polyvinyl It is preferably larger than the weight average molecular weight of acetal (hereinafter referred to as “Mw2" in this paragraph).
  • Mw1 is the polyvinyl It is preferably larger than the weight average molecular weight of acetal (hereinafter referred to as "Mw2" in this paragraph).
  • the ratio of the weight average molecular weight of the polyvinyl acetal in the first region to the weight average molecular weight of the polyvinyl acetal in the second region is preferably from 1.1 to 10, and from 1.2 to 8. is more preferable, and 1.3 to 5 is particularly preferable.
  • the aspect of the second region is not limited to the aspect described above.
  • the second region may be another layer described later.
  • the interlayer film for laminated glass may contain other layers as needed.
  • Other layers include, for example, a heat ray absorbing layer, an ultraviolet absorbing layer, an adhesive layer, a hard coat layer and an overcoat layer.
  • other layers include, for example, a support described in paragraphs 0068 to 0072 of JP-A-2014-194446, an undercoat layer described in paragraph 0085 of JP-A-2014-194446, and a JP-A-2014-194446.
  • the back coat layers described in paragraph 0086 of JP-A-2014-194446.
  • the types of other layers are preferably selected in consideration of the retardation value of the interlayer film for laminated glass.
  • An interlayer film for laminated glass according to an embodiment of the present disclosure may include a heat absorbing layer containing metal oxide particles.
  • Metal oxides in the metal oxide particles include tin-doped indium oxide (ITO), cesium-doped tungsten oxide (CWO), antimony-doped tin oxide (ATO), zinc oxide, zinc antimonate, titanium oxide, indium oxide, and tin oxide. , antimony oxide, glass ceramics and lanthanum hexaboride (LaB 6 ).
  • a composition of cesium-doped tungsten oxide includes, for example, Cs 0.33 WO 3 .
  • the metal oxide in the metal oxide particles is preferably at least one selected from the group consisting of tin-doped indium oxide (ITO) and cesium-doped tungsten oxide (CWO).
  • the volume average particle size of the primary particles of the metal oxide particles is preferably 100 nm or less, more preferably 80 nm or less, and 60 nm or less. It is particularly preferred to have
  • the shape of the metal oxide particles includes, for example, a spherical shape, a needle shape, and a plate shape.
  • the heat-absorbing layer may contain one or more metal oxide particles.
  • the content of metal oxide particles in the heat ray absorbing layer is preferably 0.5 g/m 2 to 5.0 g/m 2 , more preferably 0.5 g/m 2 to 4 g/m 2 with respect to the total mass of the heat ray absorbing layer. 0 g/m 2 is more preferred, and 1.0 g/m 2 to 3.0 g/m 2 is particularly preferred.
  • the content of the metal oxide particles is 0.5 g/m 2 or more, the heat ray shielding properties are improved.
  • the content of the metal oxide particles is 5 g/m 2 or less, the visible light transmittance is improved.
  • the content of cesium-doped tungsten oxide (CWO) in the heat-absorbing layer is preferably 0.3 g/m 2 to 1.3 g/m 2 , more preferably 0.6 g/m 2 with respect to the total mass of the heat-absorbing layer. More preferably 2 to 1.3 g/m 2 .
  • the mass ratio of ITO and CWO is preferably 5-95:95-5, more preferably 10-90:90-10. , 20-80:80-20.
  • the thickness of the heat ray absorbing layer is preferably within the range of 0.5 ⁇ m to 10 ⁇ m, more preferably within the range of 1.0 ⁇ m to 3.0 ⁇ m.
  • An interlayer film for laminated glass according to an embodiment of the present disclosure may include an ultraviolet absorbing layer.
  • the ultraviolet absorption layer may be a layer having other functions in addition to the function of absorbing ultraviolet rays.
  • the number of ultraviolet absorbing layers may be one or two or more. From the viewpoint of reducing the thickness of the interlayer film for laminated glass, the interlayer film for laminated glass according to one embodiment of the present disclosure preferably includes one ultraviolet absorbing layer.
  • the transmittance of the ultraviolet absorption layer at a wavelength of 390 nm is preferably 50% or less, more preferably 40% or less, and particularly preferably 30% or less.
  • the transmittance of the ultraviolet absorbing layer at a wavelength of 390 nm is adjusted, for example, by the content and type of the ultraviolet absorbing agent in the ultraviolet absorbing layer.
  • the ultraviolet absorbing layer preferably contains an ultraviolet absorber.
  • UV absorbers include triazine-based compounds, benzotriazole-based compounds, cyclic iminoester-based compounds, benzophenone-based compounds, merocyanine-based compounds, cyanine-based compounds, dibenzoylmethane-based compounds, cinnamic acid-based compounds, and cyanoacrylate-based compounds. and benzoic acid ester compounds.
  • UV absorbers also include compounds described in paragraphs 0040 to 0088 of JP-A-2012-136019. The contents of the above documents are incorporated herein by reference.
  • the ultraviolet absorbing layer may contain one or more ultraviolet absorbers.
  • the content of UV absorbers is not limited.
  • the content of the ultraviolet absorbent is determined, for example, according to the function of the ultraviolet absorbing layer, that is, the required ultraviolet transmittance.
  • the ultraviolet absorbing layer may contain a polymer as a binder.
  • Polymers include, for example, acrylic resins, polyvinyl butyral, polyvinyl alcohol, and polyesters. From the viewpoint of improving heat ray reflection by silver tabular particles, the polymer is preferably selected from polymers that do not absorb light in the wavelength range of 450 nm to 1,500 nm.
  • the ultraviolet absorbing layer may contain at least one selected from the group consisting of fine particles having a low refractive index and fine particles having a high refractive index. Fine particles with a low refractive index can reduce the refractive index of the UV absorbing layer. Fine particles with a high refractive index can increase the refractive index of the UV absorbing layer. Fine particles having a low refractive index include, for example, magnesium fluoride fine particles and silica fine particles. Silica fine particles are preferred from the viewpoint of refractive index, dispersion stability and cost. From the viewpoint of reducing the refractive index, hollow silica fine particles are preferred.
  • the refractive index of the hollow silica fine particles is preferably 1.17 to 1.40, more preferably 1.17 to 1.35, particularly preferably 1.17 to 1.30.
  • the refractive index of the hollow silica fine particles represents the refractive index of the entire particle, and does not represent the refractive index of only the outer shell silica forming the hollow silica fine particles.
  • the average particle size of the fine particles having a low refractive index is preferably 30 nm to 100 nm, more preferably 35 nm to 80 nm, and particularly preferably 40 nm to 60 nm.
  • Fine particles having a high refractive index include, for example, metal oxide fine particles containing at least one selected from the group consisting of titanium, zirconium, aluminum, indium, zinc, tin and antimony.
  • the average particle size of the fine particles having a high refractive index is preferably 0.2 ⁇ m or less, more preferably 0.1 ⁇ m or less, and particularly preferably 0.06 ⁇ m or less.
  • the thickness of the ultraviolet absorbing layer is preferably 5 ⁇ m or more, more preferably 10 ⁇ m or more. From the viewpoint of visible light transmission, the thickness of the ultraviolet absorbing layer is preferably 200 ⁇ m or less, more preferably 100 ⁇ m or less.
  • the interlayer film for laminated glass according to one embodiment of the present disclosure may include an adhesive layer.
  • Components of the adhesive layer include, for example, polyvinyl butyral, acrylic resin, styrene/acrylic resin, polyurethane, polyester and silicone. Components of the adhesive layer also include, for example, antistatic agents, lubricants and antiblocking agents.
  • the thickness of the adhesive layer is preferably within the range of 0.1 ⁇ m to 30 ⁇ m, more preferably within the range of 5 ⁇ m to 20 ⁇ m.
  • the interlayer film for laminated glass may include a hard coat layer.
  • the hard coat layer can impart scratch resistance to the interlayer film for laminated glass.
  • Components of the hard coat layer include, for example, acrylic resins, silicone resins, melamine resins, urethane resins, alkyd resins, and fluorine resins.
  • the hard coat layer may contain metal oxide particles.
  • the thickness of the hard coat layer is preferably within the range of 1 ⁇ m to 50 ⁇ m.
  • the interlayer film for laminated glass may include an overcoat layer.
  • the overcoat layer is preferably in contact with the first region.
  • the overcoat layer in contact with the first region can prevent the silver tabular grains from being oxidized and sulfurized due to mass transfer, and can impart scratch resistance to the interlayer film for laminated glass.
  • Components of the overcoat layer include, for example, binders, matting agents and surfactants.
  • binders include acrylic resins, silicone resins, melamine resins, urethane resins, alkyd resins, and fluorine resins.
  • the thickness of the overcoat layer is preferably within the range of 0.01 ⁇ m to 5 ⁇ m, more preferably within the range of 0.05 ⁇ m to 1 ⁇ m.
  • the thickness of the interlayer film for laminated glass according to an embodiment of the present disclosure is preferably in the range of 10 ⁇ m to 2,000 ⁇ m, preferably 20 ⁇ m to 1,000 ⁇ m. It is more preferably within the range of 500 ⁇ m, and particularly preferably within the range of 30 ⁇ m to 1,000 ⁇ m.
  • a method for manufacturing an interlayer film for laminated glass according to an embodiment of the present disclosure is not limited.
  • An interlayer film for laminated glass is produced, for example, by extruding a composition containing a polymer and silver tabular particles using an extruder.
  • a composition containing a polymer and silver tabular particles can form a first region containing silver tabular particles in an interlayer film for laminated glass.
  • a composition containing a polymer and tabular silver particles is produced, for example, by mixing a dispersion containing tabular silver particles and a polymer.
  • the composition containing the polymer and silver tabular grains may contain other components as described above, if desired.
  • the composition containing the polymer and silver tabular grains preferably contains a plasticizer as another component.
  • a dispersion containing silver tabular particles may be produced by a known method.
  • a dispersion liquid containing tabular silver particles is produced, for example, by dispersing tabular silver particles obtained by the above-described liquid phase method in a solvent.
  • solvents include water.
  • the extruder conditions are determined according to, for example, the desired thickness of the first region and the thickness of the intermediate film for laminated glass. In order to reduce the thickness of the interlayer film for laminated glass, it is effective to increase the pressure and temperature.
  • a method for producing an interlayer film for laminated glass according to an embodiment of the present disclosure is performed by subjecting a composition containing a polymer and silver tabular particles to a pressure of 10 kgf/cm 2 to 150 kgf/cm 2 and a temperature of 140°C to 250°C. It preferably includes extruding with an extruder under conditions.
  • the extruder may be any known extruder.
  • a method for producing an interlayer film for laminated glass includes a first interlayer film containing a polymer, a second interlayer film containing a polymer and silver tabular particles, and a third interlayer film containing a polymer. and are stacked in this order and extruded using an extruder.
  • the existence range of the silver tabular grains in the thickness direction of the interlayer film for laminated glass, that is, the thickness of the first region is reduced. can.
  • a support such as polyethylene terephthalate can be formed on a support like the method described in the above-mentioned Patent Document 1 (that is, Japanese Patent Laid-Open No. 2014-194446).
  • a thin first region can be formed without applying the coating liquid for the silver tabular grain-containing layer to the first region. Therefore, the rainbow unevenness is also reduced by reducing the retardation value without impairing the heat ray shielding property.
  • the second intermediate film containing the polymer and the silver tabular particles can form the first region containing the silver tabular particles in the interlayer film for laminated glass.
  • the second intermediate film containing a polymer and silver tabular particles is produced by, for example, using a composition containing a polymer and silver tabular particles, It is manufactured by extrusion using an extruder.
  • the second intermediate film may contain other components as described above, if necessary.
  • the second intermediate film preferably contains a plasticizer as another component.
  • the first interlayer film containing the polymer and the third interlayer film containing the polymer can form the second region containing the polymer in the interlayer film for laminated glass.
  • the first intermediate film and the third intermediate film are produced, for example, by extruding a composition containing a polymer or a polymer using an extruder.
  • the first intermediate film and the third intermediate film may contain other components as described above, if necessary.
  • the first intermediate film and the third intermediate film preferably contain a plasticizer as another component.
  • a method for manufacturing an interlayer film for laminated glass includes a laminate obtained by extrusion of a first interlayer film, a second interlayer film, and a third interlayer film, and two interlayer films containing a polymer. (Hereinafter referred to as "fourth intermediate film and fifth intermediate film” in this paragraph), it may include sandwiching between and extruding using an extruder.
  • the fourth intermediate film, the first intermediate film, the second intermediate film, the third intermediate film and the fifth intermediate film may be stacked in this order, or the fifth intermediate film and the first intermediate film may be stacked in this order.
  • the second intermediate film, the third intermediate film and the fourth intermediate film may be stacked in this order.
  • the fourth intermediate film and the fifth intermediate film are manufactured, for example, by the same method as the method for manufacturing the first intermediate film or the third intermediate film.
  • the fourth intermediate film and the fifth intermediate film may contain other components as described above, if necessary.
  • the fourth intermediate film and the fifth intermediate film preferably contain a plasticizer as another component.
  • FIG. 1 is a schematic diagram showing an example of a method for producing an intermediate film for laminated glass and a laminated glass.
  • FIG. 1 for convenience of explanation of the interlayer film for laminated glass and the method of manufacturing the laminated glass, the boundaries between the interlayer films used as raw materials are shown. In an actual interlayer film for laminated glass, some or all of the boundaries between the interlayer films used as raw materials as shown in FIG. 1 may not be clearly observed.
  • an intermediate film laminate 100 is obtained by stacking an intermediate film 10, an intermediate film 11 and an intermediate film 12 in this order and extruding them using an extruder.
  • intermediate films 13, 10, 11, 12 and 14 are laminated in this order as shown in FIG. and extruded using an extruder to obtain the interlayer film 200 for laminated glass.
  • the interlayer film 200 for laminated glass shown in FIG. 1B is obtained by sandwiching the laminate 100 of interlayer films shown in FIG.
  • the above description does not limit the use of the interlayer laminate 100 shown in FIG. 1(a) as an interlayer for laminated glass.
  • the intermediate film 10 corresponds to the first intermediate film described above.
  • the intermediate film 10 contains a polymer.
  • the intermediate film 10 may form the second region R2.
  • the intermediate film 11 corresponds to the second intermediate film already described.
  • the intermediate film 11 contains a polymer and silver tabular grains P.
  • the intermediate film 11 can form the first region R1 containing the silver tabular grains P.
  • a dotted line shown in FIG. 1 is a virtual line that defines the first region R1.
  • the intermediate film 12 corresponds to the third intermediate film already described.
  • the intermediate film 12 contains a polymer.
  • the intermediate film 12 may form the second region R2.
  • the intermediate film 13 corresponds to the fourth intermediate film already described.
  • the intermediate film 13 contains a polymer.
  • the intermediate film 13 may form the second region R2.
  • the intermediate film 14 corresponds to the already-described fifth intermediate film.
  • the intermediate film 14 contains a polymer.
  • the intermediate film 14 may form the second region R2.
  • An interlayer film for laminated glass according to an embodiment of the present disclosure is used as an interlayer film for various laminated glasses.
  • Applications of laminated glass include, for example, vehicle (eg, automobile, railcar and airplane) glazing and building glazing.
  • a laminated glass according to an embodiment of the present disclosure includes an intermediate film for laminated glass according to the present disclosure, and two glass plates sandwiching the intermediate film for laminated glass. According to the laminated glass described above, iridescent unevenness is reduced and high heat ray shielding properties are obtained.
  • a laminated glass according to an embodiment of the present disclosure includes an intermediate film for laminated glass. Modes of the interlayer film for laminated glass are described in the section "Interlayer film for laminated glass" above. Preferred aspects of the interlayer film for laminated glass are the same as the preferred aspects of the interlayer film for laminated glass described in the above "Intermediate film for laminated glass”.
  • a laminated glass according to an embodiment of the present disclosure includes two glass plates sandwiching an interlayer film for laminated glass.
  • the type of glass plate is not limited.
  • the glass plate may be a known glass plate.
  • Glass plates include soda plate glass and green glass.
  • the glass plate may be a glass substitute resin molding.
  • Glass substitute resins include, for example, polycarbonate and acrylic resins.
  • the glass substitute resin molded article may be produced by forming a hard coat layer on the glass substitute resin.
  • the hard coat layer include a layer in which inorganic fine particles are dispersed in an acrylic hard coat material, a silicone hard coat material, or a melamine hard coat material.
  • examples of inorganic fine particles include silica, titania, alumina and zirconia.
  • a laminated glass according to an embodiment of the present disclosure may include other layers.
  • Other layers include the other layers described in the above section "Interlayer film for laminated glass".
  • a laminated glass according to an embodiment of the present disclosure includes a glass plate, an intermediate film for laminated glass, and a glass plate in this order.
  • the interlayer for laminated glass may contact at least one of the two glass sheets.
  • Another layer may be arranged between the glass plate and the interlayer film for laminated glass.
  • a method for manufacturing laminated glass according to an embodiment of the present disclosure is not limited.
  • Laminated glass is produced, for example, by stacking a first glass plate, an intermediate film for laminated glass, and a second glass plate.
  • the first glass plate and the second glass plate correspond to two glass plates sandwiching the interlayer film for laminated glass.
  • a method for manufacturing laminated glass according to an embodiment of the present disclosure preferably includes sandwiching an interlayer film for laminated glass between two glass plates and pressing them while heating.
  • the interlayer film for laminated glass and the two glass plates may be preliminarily pressure-bonded and then pressure-bonded while being heated in a device such as an autoclave.
  • Preliminary pressure bonding is performed, for example, under a reduced pressure environment at a temperature of 80° C. to 120° C. for a treatment time of 30 minutes to 60 minutes.
  • Thermocompression bonding by an autoclave is performed, for example, at a pressure of 1.0 MPa to 1.5 MPa and a temperature of 120°C to 150°C.
  • the time for thermocompression bonding is preferably 20 to 90 minutes.
  • the range in which the interlayer film for laminated glass and the glass plate are heat-pressed may be a range over the entire area of the glass plate, or may be only the peripheral edge of the glass plate.
  • the thermocompression bonding of the peripheral portion of the glass plate can further suppress the occurrence of wrinkles.
  • the laminated glass body may be produced by allowing it to cool while appropriately releasing the pressure after the thermocompression bonding. From the viewpoint of improving wrinkles and cracks in the laminated glass body, it is preferable to lower the temperature while the pressure is maintained after the thermocompression bonding.
  • the expression "lowering the temperature while maintaining the pressure” means that the pressure inside the device at 40°C is lowered to 75% to 100% of the pressure during thermocompression bonding.
  • a method of lowering the temperature while maintaining the pressure there is a method of lowering the temperature without leaking the pressure from the inside of the device so that the pressure inside the device naturally decreases as the temperature decreases, or a method in which the pressure inside the device decreases as the temperature decreases.
  • a method of lowering the temperature while further pressurizing it from the outside is preferable so as not to reduce the temperature.
  • the pressure it is preferable to release the pressure after the temperature is lowered while the pressure is maintained. After the temperature is lowered while the pressure is maintained, it is preferable to release the pressure and lower the temperature after the temperature inside the apparatus reaches 40° C. or lower.
  • a method for manufacturing laminated glass according to an embodiment of the present disclosure includes (1) sandwiching an interlayer film for laminated glass between two glass plates; (3) lowering the temperature while maintaining the pressure; and (4) releasing the pressure. preferable.
  • the laminated glass 300 shown in FIG. 1(c) is obtained by sandwiching the laminated glass intermediate film 200 shown in FIG. obtained by
  • the interlayer laminate 100 shown in FIG. 1(a) may be used as an interlayer for laminated glass.
  • the intermediate film laminate 100 is used as an intermediate film for laminated glass, for example, the intermediate film laminate 100 is sandwiched between the first glass 20 and the second glass 21 and laminated by pressing while heating. A glass is obtained.
  • [Use] Applications of the laminated glass according to an embodiment of the present disclosure include, for example, vehicle (eg, automobile, railcar, and airplane) glazing and building glazing.
  • vehicle eg, automobile, railcar, and airplane
  • a laminated glass according to an embodiment of the present disclosure is preferably used as a window glass for automobiles.
  • Dispersion B1 containing tabular silver particles was prepared by the following procedure.
  • the aqueous gelatin solution was prepared by dissolving inert gelatin (33.5 g) with a weight average molecular weight of 200,000 and oxidized gelatin (22.3 g) with a weight average molecular weight of 20,000 in pure water (409 mL).
  • a silver sulfite white precipitate mixture prepared by mixing 13.5% by mass sodium sulfite aqueous solution (67 mL), 10% by mass aqueous silver nitrate solution (228 mL) and pure water (369 mL) was added to the reactor. added.
  • Dispersion B1 200 mL of the dispersion A1 is extracted, and centrifuged at 7000 rpm (revolutions per minute, hereinafter the same) and 60 minutes using a centrifuge (manufactured by Kokusan Co., Ltd., H200-N) to precipitate silver tabular particles. let me 190 mL of the supernatant after centrifugation was discarded, 0.2 mmol/L NaOH aqueous solution (9 mL) was added to the remaining silver tabular particles, and the mixture was spun at 15,000 rpm using a desktop homogenizer (SpinMix08, manufactured by Mitsui Electric Seiki Co., Ltd.). and dispersion for 20 minutes to prepare dispersion liquid B1.
  • the dispersion liquid B1 is dropped onto a mesh (elastic carbon support film 100Cu: manufactured by Okenshoji Co., Ltd.), the solvent is volatilized, and then a transmission electron microscope is used. (TEM), the silver tabular grains were observed at a magnification of 5,000 to 20,000 times, and the obtained image was imported into image processing software "ImageJ" and subjected to image processing. Image analysis was performed on 1,000 silver tabular grains arbitrarily extracted from TEM images of a plurality of fields of view, and the average circle equivalent diameter of the 1,000 silver tabular grains was calculated. The average grain size of the silver tabular grains was 120 nm.
  • Dispersion B2 containing tabular silver particles was prepared by the following procedure.
  • Ion-exchanged water (87.1 mL) was added to a 2.5 mmol/L sodium citrate aqueous solution (132.7 mL) in a reaction vessel and heated to 35°C.
  • 10 mmol/L ascorbic acid aqueous solution (2 mL) was added, followed by seed solution (42.4 mL), and 0.5 mmol/L silver nitrate aqueous solution (79.6 mL) was added to 10 mL. /min with stirring.
  • Dispersion B2 200 mL of dispersion liquid A2 was extracted and centrifuged at 7,000 rpm for 60 minutes using a centrifuge (manufactured by Kokusan Co., Ltd., H200-N) to precipitate silver tabular particles. 190 mL of the supernatant after centrifugation was discarded, 0.2 mmol/L NaOH aqueous solution (9 mL) was added to the remaining silver tabular particles, and the mixture was spun at 15,000 rpm using a desktop homogenizer (SpinMix08, manufactured by Mitsui Electric Seiki Co., Ltd.). and dispersion for 20 minutes to prepare a dispersion liquid B2.
  • the average circle equivalent diameter of the silver tabular grains measured according to the method described above was 200 nm.
  • the average thickness of the silver tabular grains measured according to the method described above was 8 nm.
  • a coating liquid for the silver tabular grain-containing layer having the composition shown below was prepared.
  • Polyurethane aqueous solution (Hydran HW-350, manufactured by DIC Corporation, solid content: 30% by mass): 0.27 parts by mass
  • Surfactant A (Ripal 8780P, manufactured by Lion Corporation, solid content: 1% by mass): 0.96 Parts by mass
  • Surfactant B (Naroacty CL-95, manufactured by Sanyo Chemical Industries, Ltd., solid content: 1% by mass): 1.19 parts by mass Dispersion liquid B1: 32.74 parts by mass Water: 34.23 parts by mass Methanol : 30 parts by mass
  • polyvinyl butyral was washed with water and dried to obtain polyvinyl acetal P.
  • the weight average molecular weight of polyvinyl acetal P (that is, polyvinyl butyral) was 2,200.
  • polyvinyl butyral was washed with water and dried to obtain polyvinyl acetal Q.
  • the weight average molecular weight of polyvinyl acetal Q (that is, polyvinyl butyral) was 3,900.
  • An intermediate film A (thickness: 1,000 ⁇ m) was produced by extruding the resulting composition using an extruder.
  • An intermediate film S (thickness: 20 ⁇ m) was produced by stacking the intermediate film A, the intermediate film B, and the intermediate film A in this order and extruding them using an extruder.
  • An intermediate film C (thickness: 760 ⁇ m) was produced by stacking the intermediate film A, the intermediate film S and the intermediate film A in this order and extruding them using an extruder.
  • the stacking order of the five intermediate films forming the intermediate film C is shown below.
  • (1) Interlayer film A (2) Interlayer film A (3) Interlayer film B (4) Interlayer film A (5) Interlayer film A
  • An intermediate film T (thickness: 15 ⁇ m) was produced by stacking the intermediate film A, the intermediate film B, and the intermediate film D in this order and extruding them using an extruder.
  • An intermediate film E (thickness: 760 ⁇ m) was produced by stacking the intermediate film A, the intermediate film T, and the intermediate film D in this order and extruding them using an extruder.
  • the stacking order of the five intermediate films forming the intermediate film E is shown below. (1) Interlayer film A (2) Interlayer film A (3) Interlayer film B (4) Intermediate film D (5) Intermediate film D
  • An intermediate film U (thickness: 20 ⁇ m) was produced by stacking the intermediate film A, the intermediate film B, and the intermediate film D in this order and extruding them using an extruder.
  • An intermediate film F (thickness: 760 ⁇ m) was produced by stacking the intermediate film A, the intermediate film U, and the intermediate film D in this order and extruding them using an extruder.
  • the stacking order of the five intermediate films forming the intermediate film F is shown below. (1) Interlayer film A (2) Interlayer film A (3) Interlayer film B (4) Intermediate film D (5) Intermediate film D
  • ⁇ Intermediate film G> An intermediate film V (thickness: 25 ⁇ m) was produced by stacking the intermediate film A, the intermediate film B, and the intermediate film D in this order and extruding them using an extruder.
  • An intermediate film X (thickness: 30 ⁇ m) was produced by stacking the intermediate film A, the intermediate film B, and the intermediate film D in this order and extruding them using an extruder.
  • An intermediate film J (thickness: 380 ⁇ m) was produced by stacking the intermediate film A, the intermediate film X, and the intermediate film D in this order and extruding them using an extruder.
  • the stacking order of the five intermediate films forming the intermediate film J is shown below. (1) Interlayer film A (2) Interlayer film A (3) Interlayer film B (4) Intermediate film D (5) Intermediate film D
  • ⁇ Intermediate film M> An intermediate film Z (thickness: 30 ⁇ m) was produced by stacking the intermediate film A, the intermediate film B, and the intermediate film A in this order and extruding them using an extruder.
  • An intermediate film N (thickness: 380 ⁇ m) was produced by extruding the resulting composition using an extruder.
  • ⁇ Glass plate> Two glass plates, washed and dried, were prepared. Specifically, the two glass plates include soda plate glass (length 25 cm ⁇ width 10 cm ⁇ thickness 2 mm) and green glass (length 25 cm ⁇ width 10 cm ⁇ thickness 2 mm).
  • Example 1 A laminate was produced by stacking the three members in the following order.
  • First glass plate Soda plate glass
  • Interlayer film for laminated glass Interlayer film C
  • Second glass plate green glass
  • the obtained laminate was placed in a rubber bag and deaerated for 20 minutes at a degree of vacuum of 2,660 Pa (20 torr).
  • the laminate was vacuum pressed while being held at 90° C. for 30 minutes in an autoclave while being degassed.
  • the preliminarily pressure-bonded laminate was pressure-bonded in an autoclave at 135° C. and 1.2 MPa (12 kg/cm 2 ) for 20 minutes to obtain a laminated glass.
  • Example 2 A laminated glass was obtained in the same manner as in Example 1 except that the intermediate film C was changed to the intermediate film E and the intermediate film D side of the intermediate film E was brought into contact with the second glass plate.
  • Example 3 A laminated glass was obtained in the same manner as in Example 2 except that the intermediate film E was changed to the intermediate film F.
  • Example 4 A laminated glass was obtained in the same manner as in Example 2, except that the intermediate film E was changed to the intermediate film G.
  • Example 5 A laminated glass was obtained in the same manner as in Example 2, except that the intermediate film E was changed to the intermediate film I.
  • Example 6 A laminated glass was obtained in the same manner as in Example 2, except that the intermediate film E was changed to the intermediate film J.
  • Example 7 A laminated glass was obtained in the same manner as in Example 2, except that the intermediate film E was changed to the intermediate film L.
  • Example 2 A laminated glass was obtained in the same manner as in Example 1, except that the laminate used in Example 1 was changed to a laminate produced by stacking five members in the following order.
  • First glass plate Soda plate glass
  • Interlayer film for laminated glass Interlayer film N
  • Heat ray reflective film Heat ray reflective film 1
  • Interlayer film for laminated glass Interlayer film N
  • Second glass plate green glass
  • TTS ⁇ Visible light transmittance and total solar transmittance
  • ⁇ Rainbow unevenness> Two polarizing plates (polarizing film thin S size, Kenis Co., Ltd.) were placed on a light table so that the polarization directions were perpendicular to each other. A laminated glass was put between the polarizing plates. The obtained laminate was visually observed and evaluated according to the following criteria. A: Rainbow unevenness is not observed. B: Rainbow unevenness is observed.
  • Table 1 shows that rainbow unevenness was reduced and high heat ray shielding properties were obtained in Examples 1-7 compared to Comparative Examples 1-2.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Joining Of Glass To Other Materials (AREA)

Abstract

本開示は、50質量%以上100質量%未満の重合体と、銀平板粒子と、個数基準に基づく上記銀平板粒子の含有量の少なくとも90%を含み、10nmを超え100nm以下の平均厚さを有する第1領域と、を含み、リタデーション値が、150nm以下である、合わせガラス用中間膜及び上記合わせガラス用中間膜を含む合わせガラスを提供する。

Description

合わせガラス用中間膜及び合わせガラス
 本開示は、合わせガラス用中間膜及び合わせガラスに関する。
 近年、二酸化炭素削減のための省エネルギー施策の1つとして、例えば、自動車又は建物の窓に熱線遮蔽性を付与する材料(「熱線遮蔽材」ともいう。)が開発されている。
 下記特許文献1は、銀平板粒子を含む熱線反射層と、複数種類の金属酸化物粒子を含有する熱線吸収層とを有し、前記熱線反射層における銀平板粒子の含有量が、15~45mg/mであることを特徴とする熱線遮蔽材を開示している。また、下記特許文献1は、上記熱線遮蔽材を有する合わせガラス用中間膜及び上記合わせガラス用中間膜を有する合わせガラスも開示している。
特開2014-194446号公報
 しかしながら、上記特許文献1に記載された合わせガラス用中間膜及び合わせガラスを偏光サングラスといった偏光レンズを通して観察すると、虹ムラ(虹のような模様をいう。以下同じ。)が観察されることがある。
 本開示の一実施形態は、虹ムラを低減し、高い熱線遮蔽性を示す合わせガラス用中間膜を提供することを目的とする。
 本開示の他の一実施形態は、虹ムラを低減し、高い熱線遮蔽性を示す合わせガラス用中間膜を含む合わせガラスを提供することを目的とする。
 本開示は、以下の態様を包含する。
<1> 50質量%以上100質量%未満の重合体と、銀平板粒子と、個数基準に基づく上記銀平板粒子の含有量の少なくとも90%を含み、10nmを超え100nm以下の平均厚さを有する第1領域と、を含み、リタデーション値が、150nm以下である、合わせガラス用中間膜。
<2> 上記第1領域が、個数基準に基づく上記銀平板粒子の含有量の100%を含む、<1>に記載の合わせガラス用中間膜。
<3> 上記第1領域が、ポリビニルアセタールを含む、<1>又は<2>に記載の合わせガラス用中間膜。
<4> 上記第1領域以外の領域であって、ポリビニルアセタールを含む第2領域を更に含み、上記第1領域における上記ポリビニルアセタールの重量平均分子量が、上記第2領域における上記ポリビニルアセタールの重量平均分子量よりも大きい、<3>に記載の合わせガラス用中間膜。
<5> 上記重合体が、ポリビニルアセタールを含む、<1>~<4>のいずれか1つに記載の合わせガラス用中間膜。
<6> 上記重合体における上記ポリビニルアセタールの含有率が、上記重合体の全質量に対して、80質量%以上である、<5>に記載の合わせガラス用中間膜。
<7> 上記重合体が、ポリエチレンテレフタレートを含まない、<1>~<6>のいずれか1つに記載の合わせガラス用中間膜。
<8> <1>~<7>のいずれか1つに記載の合わせガラス用中間膜と、上記合わせガラス用中間膜を挟む2つのガラス板と、を含む、合わせガラス。
 本開示の一実施形態によれば、虹ムラを低減し、高い熱線遮蔽性を示す合わせガラス用中間膜が提供される。
 本開示の他の一実施形態によれば、虹ムラを低減し、高い熱線遮蔽性を示す合わせガラス用中間膜を含む合わせガラスが提供される。
図1は、合わせガラス用中間膜及び合わせガラスの製造方法の一例を示す概略図である。
 以下、本開示の実施形態について詳細に説明する。本開示は、以下の実施形態に何ら制限されない。以下の実施形態は、本開示の目的の範囲内において適宜変更されてもよい。
 本開示の実施形態について図面を参照して説明する場合、図面において重複する構成要素及び符号の説明を省略することがある。図面において同一の符号を用いて示す構成要素は、同一の構成要素であることを意味する。図面における寸法の比率は、必ずしも実際の寸法の比率を表すものではない。
 本開示において、「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ下限値及び上限値として含む範囲を示す。本開示に段階的に記載されている数値範囲において、ある数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本開示に記載されている数値範囲において、ある数値範囲で記載された上限値又は下限値は、実施例に示されている値に置き換えてもよい。
 本開示において、組成物中の各成分の量は、組成物中に各成分に該当する物質が複数存在する場合、特に断らない限り、組成物中に存在する複数の物質の合計量を意味する。
 本開示において、「工程」との用語には、独立した工程だけでなく、他の工程と明確に区別できない場合であっても工程の所期の目的が達成されれば、本用語に含まれる。
 本開示において、「質量%」と「重量%」とは同義であり、「質量部」と「重量部」とは同義である。
 本開示において、2以上の好ましい態様の組み合わせは、より好ましい態様である。
 本開示において、序数詞(例えば、「第1」及び「第2」)は、構成要素を区別するために使用する用語であり、構成要素の数、及び構成要素の優劣を制限するものではない。
 本開示において、重量平均分子量(Mw)及び数平均分子量(Mn)は、特に断りのない限り、TSKgel GMHxL(東ソー株式会社製の商品名)、TSKgel G4000HxL(東ソー株式会社製の商品名)及びTSKgel G2000HxL(東ソー株式会社製の商品名)のカラムを使用したゲルパーミエーションクロマトグラフィ(GPC)分析装置及び示差屈折計を用いて、標準物質としてポリスチレンを用いて換算した分子量である。溶媒として、テトラヒドロフラン(THF)が使用される。
<合わせガラス用中間膜>
 本開示の発明者による詳細な検討によれば、既述の特許文献1(すなわち、特開2014-194446号公報)に記載された合わせガラス用中間膜及び合わせガラスにおける虹ムラの発生要因の1つは、原材料に起因する複屈折性であると考えられる。例えば、既述の特許文献1に記載された合わせガラス用中間膜では、熱線反射層として機能する銀平板粒子含有層を形成するために、支持体としてポリエチレンテレフタレートといった基材が使用されている。熱線反射層は、例えば、支持体の上に銀平板粒子含有層用の塗布液を塗布することにより形成される。しかしながら、ポリエチレンテレフタレートといった基材は、高い複屈折性を示し、虹ムラを増大させると考えられる。そこで、本開示の発明者は、合わせガラス用中間膜の光学特性について詳細に検討し、合わせガラス用中間膜のリタデーション値を150nm以下にすることで、虹ムラを低減できることを見出した。さらに、本開示の発明者は、合わせガラス用中間膜における銀平板粒子の存在範囲を調節することで、熱線遮蔽性を向上できることを見出した。
 本開示の一実施形態に係る合わせガラス用中間膜は、50質量%以上100質量%未満の重合体と、銀平板粒子と、を含む。さらに、合わせガラス用中間膜は、第1領域を含む。第1領域は、個数基準に基づく上記銀平板粒子の含有量の少なくとも90%を含み、10nmを超え100nm以下の平均厚さを有する。さらに、合わせガラス用中間膜のリタデーション値は、150nm以下である。上記した合わせガラス用中間膜によれば、虹ムラが低減され、高い熱線遮蔽性が得られる。
[重合体]
 本開示の一実施形態に係る合わせガラス用中間膜は、50質量%以上100質量%未満の重合体を含む。重合体は、合わせガラス用中間膜の耐久性を向上できる。上記した重合体の含有率は、合わせガラス用中間膜に占める重合体の割合である。
 重合体としては、例えば、ポリビニルアセタール、ポリビニルアルコール、アクリル樹脂、ポリカーボネート、ポリ塩化ビニル、ポリエステル、ポリウレタン、ゼラチン及びセルロースが挙げられる。重合体の種類は、合わせガラス用中間膜のリタデーション値を考慮して選択されることが好ましい。合わせガラス用中間膜のリタデーション値の低減の観点から、ポリビニルアセタールが好ましい。
 重合体は、ポリビニルアセタールを含むことが好ましい。ポリビニルアセタールは、合わせガラス用中間膜のリタデーション値を低減できる。また、ポリビニルアセタールは、合わせガラス用中間膜とガラス板との接着性を向上できる。ポリビニルアセタールは、-O-CHR-O-結合を含む環状構造を含むことが好ましい。Rは、水素原子又は1価の有機基を表す。環状構造は、6員環構造であることが好ましい。Rは、1価の有機基であることが好ましい。1価の有機基としては、例えば、アルキル基が挙げられる。アルキル基は、直鎖状、分岐状又は環状のアルキル基であってもよい。アルキル基の炭素数は、1~10であることが好ましく、2~8であることがより好ましく、2~4であることが特に好ましい。ポリビニルアセタールとしては、例えば、ポリビニルホルマール及びポリビニルブチラール(PVB)が挙げられる。合わせガラス用中間膜のリタデーション値の低減の観点から、ポリビニルアセタールは、ポリビニルブチラール(PVB)であることが好ましい。
 ポリビニルアセタールと可塑剤との相溶性向上の観点から、ポリビニルアセタールのアセタール化度は、55mol%以上であることが好ましく、67mol%以上であることがより好ましい。ポリビニルアセタールの製造時間の短縮の観点から、ポリビニルアセタールのアセタール化度は、75mol%以下であることが好ましく、71mol%以下であることがより好ましい。アセタール化度は、例えば、「ASTMD1396-92」に準拠した方法により算出される。
 ポリビニルアセタールは、合成品又は市販品であってもよい。ポリビニルアセタールは、例えば、公知の方法によって製造される。ポリビニルアセタールは、例えば、ポリビニルアルコールをアルデヒドによりアセタール化することにより製造される。
 ポリビニルアルコールは、合成品又は市販品であってもよい。ポリビニルアルコールは、例えば、ポリ酢酸ビニルをけん化することにより製造される。ポリビニルアルコールのけん化度は、70mol%~99.9mol%であることが好ましい。合わせガラスの耐貫通性の向上の観点から、ポリビニルアルコールの平均重合度は、200以上であることが好ましく、500以上であることがより好ましく、1,500以上であることが特に好ましい。さらに、ポリビニルアルコールの平均重合度は、1,600以上であることが好ましく、2,600以上であることがより好ましく、2、700以上であることが特に好ましい。合わせガラス用中間膜の形成の容易性の観点から、ポリビニルアルコールの平均重合度は、5,000以下であることが好ましく、4,000以下であることがより好ましく、3,500以下であることが特に好ましい。ポリビニルアルコールの平均重合度は、例えば、「JIS K 6726:1994」(ポリビニルアルコール試験方法)に準拠した方法により求められる。
 好ましいアルデヒドとしては、例えば、炭素数が1~10のアルデヒドが挙げられる。炭素数が1~10のアルデヒドとしては、例えば、ホルムアルデヒド、アセトアルデヒド、プロピオンアルデヒド、n-ブチルアルデヒド、イソブチルアルデヒド、n-バレルアルデヒド、2-エチルブチルアルデヒド、n-ヘキシルアルデヒド、n-オクチルアルデヒド、n-ノニルアルデヒド、n-デシルアルデヒド及びベンズアルデヒドが挙げられる。プロピオンアルデヒド、n-ブチルアルデヒド、イソブチルアルデヒド、n-バレルアルデヒド又はn-ヘキシルアルデヒドが好ましく、プロピオンアルデヒド、n-ブチルアルデヒド又はイソブチルアルデヒドがより好ましく、n-ブチルアルデヒドが特に好ましい。
 合わせガラス用中間膜のリタデーション値の低減の観点から、重合体におけるポリビニルアセタールの含有率は、重合体の全質量に対して、80質量%以上であることが好ましく、85質量%以上であることがより好ましく、90質量%以上であることが特に好ましい。重合体におけるポリビニルアセタールの含有率は、重合体の全質量に対して、100質量%未満であってもよい。
 重合体は、ポリエチレンテレフタレート(PET)を含まないことが好ましい。重合体がポリエチレンテレフタレートを含まない、すなわち、合わせガラス用中間膜がポリエチレンテレフタレートを含まないことで、虹ムラを更に低減できる。
 本開示の一実施形態に係る合わせガラス用中間膜は、1種又は2種以上の重合体を含んでもよい。
 重合体の含有率は、合わせガラス用中間膜の全質量に対して、50質量%以上100質量%未満である。中間膜の硬さの観点から、重合体の含有率は、合わせガラス用中間膜の全質量に対して、60質量%~90質量%であることが好ましく、70質量%~80質量%であることがより好ましい。
[銀平板粒子]
 本開示の一実施形態に係る合わせガラス用中間膜は、銀平板粒子を含む。銀平板粒子は、合わせガラス用中間膜の熱線遮蔽性を向上できる。本開示において、「平板粒子」とは、互いに反対向きの2つの主平面を含む粒子を意味する。
(組成)
 銀平板粒子は、銀を含む平板粒子である。銀平板粒子は、必要に応じて、銀以外の金属を含んでもよい。熱線遮蔽性の向上の観点から、銀平板粒子は、50質量%~100質量%の銀を含む銀平板粒子であることが好ましく、80質量%~100質量%の銀を含む銀平板粒子であることがより好ましく、95質量%~100質量%の銀を含む銀平板粒子であることが特に好ましい。銀平板粒子が銀以外の金属を含む場合、銀以外の金属は、金及び白金のような貴金属であることが好ましい。
(形状)
 銀平板粒子としては、例えば、三角形状の銀平板粒子、六角形状の銀平板粒子及び円形状の銀平板粒子が挙げられる。可視光透過率の向上の観点から、銀平板粒子は、六角形以上の多角形状の銀平板粒子及び円形状の銀平板粒子からなる群より選択される少なくとも1種であることが好ましく、六角形状の銀平板粒子及び円形状の銀平板粒子からなる群より選択される少なくとも1種であることがより好ましい。さらに、銀平板粒子は、六角形以上の多角形状の銀平板粒子又は円形状の銀平板粒子であることが好ましく、六角形状の銀平板粒子又は円形状の銀平板粒子であることがより好ましい。
 円形状の銀平板粒子における用語「円形状」とは、銀平板粒子の平均円相当径の50%以上の長さを有する辺の個数が1個の銀平板粒子あたり0個である形状を意味する。例えば、透過型電子顕微鏡を用いて円形状の銀平板粒子の主平面を観察すると、角が無く、丸い形状が観察される。
 六角形状の銀平板粒子における用語「六角形状」とは、銀平板粒子の平均円相当径の20%以上の長さを有する辺の個数が1個の銀平板粒子あたり6個である形状を意味する。なお、六角形以外の多角形状の該当性は、銀平板粒子の平均円相当径の20%以上の長さを有する辺の個数に応じて判断される。例えば、透過型電子顕微鏡を用いて六角形状の銀平板粒子の主平面を観察すると、六角形状が観察される。六角形状の角は、尖っていても丸くなっていてもよい。可視光域の吸収軽減の観点から、六角形状の角は、丸くなっていることが好ましい。六角形状の角の丸さの程度は、目的に応じて決定されてもよい。
 可視光透過率の向上の観点から、六角形状の銀平板粒子及び円形状の銀平板粒子の含有率は、銀粒子の全個数に対して、60%以上であることが好ましく、65%以上であることがより好ましく、70%以上であることが特に好ましい。本段落における「銀粒子」とは、銀を含む粒子を意味する。
(平均円相当径及び変動係数)
 銀平板粒子の平均円相当径は、50nm~500nmであることが好ましく、70nm~300nmであることがより好ましく、80nm~250nmであることが特に好ましい。銀平板粒子の平均円相当径が大きくなると、熱線遮蔽性が向上する。銀平板粒子の平均円相当径が小さくなると、可視光透過率が向上する。
 銀平板粒子の平均円相当径は、以下の方法によって算出される。透過型電子顕微鏡(TEM)を用いて銀平板粒子を観察し、得られた像を画像処理ソフト「ImageJ」に取り込み、画像処理を施す。複数の視野のTEM像から任意に抽出した1,000個の銀平板粒子の画像解析を行い、1,000個の銀平板粒子の平均円相当径を算出する。得られた値は、銀平板粒子の平均円相当径として採用される。
 銀平板粒子の円相当径の変動係数は、35%以下であることが好ましく、30%以下であることがより好ましく、20%以下であることが特に好ましい。変動係数が小さくなると、合わせガラス用中間膜における熱線の反射波長域がシャープになる。銀平板粒子の円相当径の変動係数は、1,000個の銀平板粒子の円相当径の標準偏差を銀平板粒子の平均円相当径で割ることで算出される。銀平板粒子の円相当径は、既述した画像処理ソフト「ImageJ」を用いて算出される。
(平均厚さ及びアスペクト比)
 熱線遮蔽性の向上の観点から、銀平板粒子の平均厚さは、14nm以下であることが好ましく、5nm~14nmであることがより好ましく、5nm~12nmであることが特に好ましい。銀平板粒子の平均厚さは、100個の銀平板粒子の厚さを算術平均することによって算出される。銀平板粒子の厚さは、銀平板粒子の2つの主平面間の距離に相当する。銀平板粒子の厚さは、透過型電子顕微鏡(TEM)及び原子間力顕微鏡(AFM)の少なくとも1つを用いて測定される。
 800nm~1,800nmの赤外光領域での反射率の向上の観点から、銀平板粒子のアスペクト比は、6~40であることが好ましく、10~35であることがより好ましい。銀平板粒子のアスペクト比は、銀平板粒子の平均円相当径を銀平板粒子の平均厚さで割ることで算出される。
(面配向)
 合わせガラス用中間膜の一方の表面に対する銀平板粒子の主平面の平均傾斜角は、0°~±30°であることが好ましく、0°~±20°であることがより好ましく、0°~±10°であることが特に好ましい。銀平板粒子の配向性に関する事項は、特開2014-194446号公報の段落0044~段落0048に記載されている。上記文献の内容は、参照により本明細書に取り込まれる。
(合成方法)
 銀平板粒子は、例えば、公知に合成方法によって製造される。銀平板粒子の合成方法としては、例えば、液相法が挙げられる。液相法としては、例えば、化学還元法、光化学還元法及び電気化学還元法が挙げられる。銀平板粒子の形状及び大きさの制御性の観点から、化学還元法及び光化学還元法が好ましい。銀平板粒子の合成方法としては、例えば、透明基材の表面に種晶を固定した後、平板状に粒子を結晶成長させる方法も挙げられる。銀平板粒子の合成方法は、例えば、特開2014-194446号公報に記載されている。上記文献の内容は、参照により本明細書に取り込まれる。
(他の事項)
 本開示の一実施形態に係る合わせガラス用中間膜は、1種又は2種以上の銀平板粒子を含んでもよい。本開示の一実施形態に係る合わせガラス用中間膜は、複数の銀平板粒子を含むことが好ましい。
 熱線遮熱性の向上の観点から、合わせガラス用中間膜の面積に占める銀平板粒子の割合は、10mg/m~100mg/mであることが好ましく、15mg/m~80mg/mであることがより好ましく、20mg/m~60mg/mであることが特に好ましい。銀量が少ないと十分な遮熱性能を示さなくなる。また、銀量が多いと可視光透過率が下がってしまう。
 銀平板粒子の好ましい態様は、特開2014-194446号公報に記載されている。上記文献の内容は、参照により本明細書に取り込まれる。
[第1領域]
 本開示の一実施形態に係る合わせガラス用中間膜は、個数基準に基づく銀平板粒子の含有量の少なくとも90%を含み、10nmを超え100nm以下の平均厚さを有する第1領域を含む。第1領域に関して使用される用語「銀平板粒子の含有量」とは、合わせガラス用中間膜における銀平板粒子の含有量を意味する。第1領域は、合わせガラス用中間膜の厚さ方向における銀平板粒子の存在範囲を規定している。つまり、合わせガラス用中間膜における銀平板粒子の多くは、上記のような特定の厚さを有する第1領域に配置されている。後述するように、第1領域は、合わせガラス用中間膜の断面に描かれた2つの仮想線に挟まれた領域によって画定され、そして、第1の領域の厚さは、上記2つの仮想線の間隔によって表される。
 第1領域の平均厚さは、10nmを超え100nm以下である。第1領域の平均厚さ、すなわち、銀平板粒子の存在範囲は、合わせガラス用中間膜の熱線遮蔽性に影響を及ぼす。例えば、第1領域の平均厚さが小さくなるにつれて、合わせガラス用中間膜の厚さ方向における銀平板粒子の存在範囲が狭くなる。この結果、銀平板粒子による熱線反射率が増大し、合わせガラス用中間膜の熱線遮蔽性が向上する。熱線遮蔽性の向上の観点から、第1領域の平均厚さは、10nm~95nmであることが好ましく、10nm~80nmであることがより好ましく、10nm~70nmであることが特に好ましい。
 本開示の一実施形態に係る合わせガラス用中間膜は、個数基準に基づく銀平板粒子の含有量の少なくとも90%を含む第1領域を含む。すなわち、合わせガラス用中間膜における銀平板粒子の含有量に対する第1領域における銀平板粒子の含有量の割合(以下、「第1領域における銀平板粒子の含有率」という場合がある。)は、個数基準で少なくとも90%である。熱線遮蔽性の向上の観点から、第1領域における銀平板粒子の含有率は、個数基準で、少なくとも95%であることが好ましく、100%であることがより好ましい。言い換えると、合わせガラス用中間膜における銀平板粒子の全ては、第1領域に配置されていることが好ましい。
 第1領域及び第1領域の平均厚さは、合わせガラス用中間膜の厚さ方向に沿う断面で観察される銀平板粒子の配置に基づいて確認される。具体的な手順は、以下のとおりである。ただし、第1領域における銀平板粒子の含有率の下限が変更された場合、以下の手順に記載された「90%」は、変更後の数値に読み替えられるものとする。例えば、第1領域における銀平板粒子の含有率が少なくとも95%に変更された場合、以下の手順に記載された「90%」は、「95%」に読み替えられる。
 (1)透過型電子顕微鏡を用いて、合わせガラス用中間膜の厚さ方向に沿う断面を観察し、合計10視野分の断面画像を得る。断面観察では、厚さ方向における合わせガラス用中間膜の両端が1つの視野に含まれるように、1,000倍~5,000倍の範囲内で撮影倍率を調節する。
 (2)各断面画像に対して2つの仮想線(以下、2つの仮想線をそれぞれ「仮想線L1」及び「仮想線L2」という。)を描く。具体的に、各断面画像において、仮想線L1及び仮想線L2は、合わせガラス用中間膜の厚さ方向に直交して描かれ、かつ、仮想線L1と仮想線L2との間の距離(以下、「距離D」という。)は、観察される銀平板粒子の総数の少なくとも90%が仮想線L1及び仮想線L2によって挟まれるように調節される。ただし、対象の断面画像において、仮想線L1及び仮想線L2によって定められる距離Dに関して複数の候補が提示された場合には、複数の候補のうち最小値を距離Dとして採用する。各断面画像において、仮想線L1及び仮想線L2によって挟まれた領域は、本開示における第1領域に対応する。
 (3)10視野分の断面画像に基づいて、距離Dの算術平均を算出する。得られた値は、第1領域の平均厚さとして採用される。
 第1領域は、重合体を含むことが好ましい。第1領域における重合体は、第1領域における銀平板粒子を支持することで熱線遮蔽性の向上に寄与できる。重合体としては、例えば、上記「重合体」の項で説明した重合体が挙げられる。合わせガラス用中間膜のリタデーション値の低減の観点から、第1領域は、ポリビニルアセタールを含むことが好ましい。第1領域におけるポリビニルアセタールの好ましい態様は、上記「重合体」の項で説明したポリビニルアセタールの好ましい態様と同じである。第1領域におけるポリビニルアセタールの重量平均分子量は、1,000以上であることが好ましく、1,500以上であることがより好ましく、2,000以上であることが特に好ましい。第1領域におけるポリビニルアセタールの重量平均分子量は、10,000以下又は8,000以下であってもよい。ポリビニルアセタールの重量平均分子量が大きくなると、ポリビニルアセタールの硬さが増大する。ポリビニルアセタールの硬さが増大すると、既述の特許文献1(すなわち、特開2014-194446号公報)のように合わせガラス用中間膜が支持体として高い複屈折性を有する基材(例えば、ポリエチレンテレフタレート)を含まなくても、第1領域における銀平板粒子は安定的に支持される。第1領域における銀平板粒子が安定的に支持されると、熱線遮蔽性も向上できる。また、合わせガラス用中間膜の製造過程においては、例えば、支持体として高い複屈折性を有する基材(例えば、ポリエチレンテレフタレート)を使用しなくても、銀平板粒子が高分子量の重合体により支持されることで、薄い第1領域が形成されやすくなる。したがって、熱線遮蔽性が損なわれることなく、リタデーション値の低減によって虹ムラも低減される。
[他の成分]
 本開示の一実施形態に係る合わせガラス用中間膜は、他の成分として、既述した成分以外の成分を含んでもよい。他の成分は、公知の合わせガラス用中間膜の成分から選択されてもよい。他の成分としては、例えば、可塑剤及び酸化防止剤が挙げられる。他の成分としては、例えば、特開2014-194446号公報の段落0066~段落0067に記載された添加剤も挙げられる。
(可塑剤)
 本開示の一実施形態に係る合わせガラス用中間膜は、可塑剤を含んでもよい。可塑剤としては、例えば、有機エステル可塑剤及び有機リン酸可塑剤が挙げられる。
 有機エステル可塑剤としては、例えば、トリエチレングリコールジ-2-エチルプロパノエート、トリエチレングリコールジ-2-エチルブチレート、トリエチレングリコールジ-2-エチルヘキサノエート、トリエチレングリコールジカプリレート、トリエチレングリコールジ-n-オクタノエート、トリエチレングリコールジ-n-ヘプタノエート、テトラエチレングリコールジ-n-ヘプタノエート、ジブチルセバケート、ジオクチルアゼレート、ジブチルカルビトールアジペート、エチレングリコールジ-2-エチルブチレート、1,3-プロピレングリコールジ-2-エチルブチレート、1,4-ブチレングリコールジ-2-エチルブチレート、ジエチレングリコールジ-2-エチルブチレート、ジエチレングリコールジ-2-エチルヘキサノエート、ジプロピレングリコールジ-2-エチルブチレート、トリエチレングリコールジ-2-エチルペンタノエート、テトラエチレングリコールジ-2-エチルブチレート、ジエチレングリコールジカプリレート、アジピン酸ジヘキシル、アジピン酸ジオクチル、アジピン酸ヘキシルシクロヘキシル、アジピン酸ヘプチルとアジピン酸ノニルとの混合物、アジピン酸ジイソノニル、アジピン酸ジイソデシル、アジピン酸ヘプチルノニル、セバシン酸ジブチル、油変性セバシン酸アルキド及びリン酸エステルとアジピン酸エステルとの混合物が挙げられる。
 有機リン酸可塑剤としては、例えば、トリブトキシエチルホスフェート、イソデシルフェニルホスフェート及びトリイソプロピルホスフェートが挙げられる。
 可塑剤は、有機エステル可塑剤であることが好ましく、有機ジエステル可塑剤であることが好ましい。可塑剤は、トリエチレングリコールジ-2-エチルヘキサノエート、トリエチレングリコールジ-2-エチルブチレート及びトリエチレングリコールジ-2-エチルプロパノエートからなる群より選択される少なくとも1種であることが好ましく、トリエチレングリコールジ-2-エチルヘキサノエート及びトリエチレングリコールジ-2-エチルブチレートからなる群より選択される少なくとも1種であることがより好ましく、トリエチレングリコールジ-2-エチルヘキサノエートであることが特に好ましい。
 可塑剤は、液状の可塑剤であることが好ましい。
 本開示の一実施形態に係る合わせガラス用中間膜は、1種又は2種以上の可塑剤を含んでもよい。
 合わせガラス用中間膜における可塑剤の含有率は、合わせガラス用中間膜の全質量に対して、5質量%~60質量%であることが好ましく、10質量%~50質量%であることがより好ましく、15質量%~45質量%であることが特に好ましい。
(酸化防止剤)
 本開示の一実施形態に係る合わせガラス用中間膜は、酸化防止剤を含んでもよい。酸化防止剤としては、例えば、フェノール系酸化防止剤、硫黄系酸化防止剤及びリン系酸化防止剤が挙げられる。フェノール系酸化防止剤は、フェノール骨格を含む酸化防止剤である。硫黄系酸化防止剤は、硫黄原子を含む酸化防止剤である。リン系酸化防止剤は、リン原子を含む酸化防止剤である。酸化防止剤は、フェノール系酸化防止剤又はリン系酸化防止剤であることが好ましい。
 フェノール系酸化防止剤としては、例えば、2,6-ジ-t-ブチル-p-クレゾール(BHT)、ブチル化ヒドロキシアニソール(BHA)、2,6-ジ-t-ブチル-4-エチルフェノール、ステアリル-β-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート、2,2’-メチレンビス(4-メチル-6-ブチルフェノール)、2,2’-メチレンビス(4-エチル-6-t-ブチルフェノール)、4,4’-ブチリデン-ビス(3-メチル-6-t-ブチルフェノール)、1,1,3-トリス-(2-メチル-ヒドロキシ-5-t-ブチルフェニル)ブタン、テトラキス[メチレン-3-(3’,5’-ブチル-4-ヒドロキシフェニル)プロピオネート]メタン、1,3,3-トリス-(2-メチル-4-ヒドロキシ-5-t-ブチルフェノール)ブタン、1,3,5-トリメチル-2,4,6-トリス(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)ベンゼン、ビス(3,3’-t-ブチルフェノール)ブチリックアッシドグリコールエステル及びビス(3-t-ブチル-4-ヒドロキシ-5-メチルベンゼンプロパン酸)エチレンビス(オキシエチレン)が挙げられる。
 リン系酸化防止剤としては、例えば、トリデシルホスファイト、トリス(トリデシル)ホスファイト、トリフェニルホスファイト、トリノニルフェニルホスファイト、ビス(トリデシル)ペンタエリスリトールジホスファイト、ビス(デシル)ペンタエリスリトールジホスファイト、トリス(2,4-ジ-t-ブチルフェニル)ホスファイト、ビス(2,4-ジ-t-ブチル-6-メチルフェニル)エチルエステル亜リン酸、トリス(2,4-ジ-t-ブチルフェニル)ホスファイト及び2,2’-メチレンビス(4,6-ジ-t-ブチル-1-フェニルオキシ)(2-エチルヘキシルオキシ)ホスホラスが挙げられる。
 本開示の一実施形態に係る合わせガラス用中間膜は、1種又は2種以上の酸化防止剤を含んでもよい。
 合わせガラス用中間膜における酸化防止剤の含有率は、合わせガラス用中間膜の全質量に対して、0.01質量%~20質量%であることが好ましく、0.03質量%~15質量%であることがより好ましく、0.05質量%~10質量%であることが特に好ましい。
[リタデーション値]
 本開示の一実施形態に係る合わせガラス用中間膜のリタデーション値は、150nm以下である。本開示において、「リタデーション値」とは、位相差測定装置(例えば、KOBRA-WR、王子計測機器株式会社製)を用いて測定される、波長550nmにおける面内リタデーションReである。合わせガラス用中間膜のリタデーション値が150nm以下であると、虹ムラが低減される。虹ムラの低減の観点から、リタデーション値は、100nm以下であることが好ましく、70nm以下であることがより好ましく、40nm以下であることが特に好ましい。虹ムラの低減という目的において、リタデーション値の下限は制限されない。リタデーション値は、0.1nm以上であってもよい。リタデーション値は、例えば、合わせガラス用中間膜の成分の光学特性(例えば、複屈折性)に左右される。例えば、合わせガラス用中間膜が低い複屈折を有する成分を含むと、合わせガラス用中間膜のリタデーション値は小さくなる傾向にある。
[第1領域以外の領域:第2領域]
 本開示の一実施形態に係る合わせガラス用中間膜は、第1領域以外の領域を含んでもよい。以下、第1領域以外の領域を「第2領域」という場合がある。本開示の一実施形態に係る合わせガラス用中間膜は、第1領域及び第2領域をこの順に含んでもよい。合わせガラス用中間膜の厚さ方向に沿う断面において、第2領域は、第1領域の上又は第1領域の下に配置されてもよい。合わせガラス用中間膜の厚さ方向に沿う断面において、第2領域は、第1領域の上及び第1領域の下に配置されてもよい。本開示の一実施形態に係る合わせガラス用中間膜は、見かけ上、単層構造又は多層構造を有してもよい。
 第2領域は、重合体を含んでもよい。重合体としては、例えば、上記「重合体」の項で説明した重合体が挙げられる。第2領域は、他の成分として、重合体以外の成分を含んでもよい。他の成分としては、例えば、上記「他の成分」の項で説明した成分が挙げられる。
 本開示の一実施形態に係る合わせガラス用中間膜は、第1領域以外の領域であって、ポリビニルアセタールを含む第2領域を更に含むことが好ましい。ポリビニルアセタールとしては、例えば、上記「重合体」の項で説明したポリビニルアセタールが挙げられる。第2領域におけるポリビニルアセタールの好ましい態様は、上記「重合体」の項で説明したポリビニルアセタールの好ましい態様と同じである。
 第1領域がポリビニルアセタールを含み、かつ、第2領域がポリビニルアセタールを含む場合、第1領域におけるポリビニルアセタールの重量平均分子量(以下、本段落において「Mw1」という。)は、第2領域におけるポリビニルアセタールの重量平均分子量(以下、本段落において「Mw2」という。)よりも大きいことが好ましい。Mw1がMw2よりも大きくなると、既述したように、熱線遮蔽性が損なわれることなく、リタデーション値の低減によって虹ムラも低減される。また、Mw1がMw2よりも大きくなると、銀平板粒子の配列が良くなり、熱線反射能が高くなる。第2領域におけるポリビニルアセタールの重量平均分子量に対する第1領域におけるポリビニルアセタールの重量平均分子量の比(すなわち、Mw1/Mw2)は、1.1~10であることが好ましく、1.2~8であることがより好ましく、1.3~5であることが特に好ましい。
 第2領域の態様は、上記した態様に制限されるものではない。第2領域は、後述する他の層であってもよい。
[他の層]
 本開示の一実施形態に係る合わせガラス用中間膜は、必要に応じて、他の層を含んでもよい。他の層としては、例えば、熱線吸収層、紫外線吸収層、粘着層、ハードコート層及びオーバーコート層が挙げられる。また、他の層としては、例えば、特開2014-194446号公報の段落0068~段落0072に記載された支持体、特開2014-194446号公報の段落0085に記載されたアンダーコート層及び特開2014-194446号公報の段落0086に記載されたバックコート層も挙げられる。他の層の種類は、合わせガラス用中間膜のリタデーション値を考慮して選択されることが好ましい。
(熱線吸収層)
 本開示の一実施形態に係る合わせガラス用中間膜は、金属酸化物粒子を含む熱線吸収層を含んでもよい。
 金属酸化物粒子における金属酸化物としては、錫ドープ酸化インジウム(ITO)、セシウムドープ酸化タングステン(CWO)、アンチモンドープ酸化錫(ATO)、酸化亜鉛、アンチモン酸亜鉛、酸化チタン、酸化インジウム、酸化錫、酸化アンチモン、ガラスセラミックス及び六ホウ化ランタン(LaB)が挙げられる。セシウムドープ酸化タングステンの組成としては、例えば、Cs0.33WOが挙げられる。金属酸化物粒子における金属酸化物は、錫ドープ酸化インジウム(ITO)及びセシウムドープ酸化タングステン(CWO)からなる群より選択される少なくとも1種であることが好ましい。
 可視光透過率の低下及びヘイズの発生を抑制する観点から、金属酸化物粒子の一次粒子の体積平均粒径は、100nm以下であることが好ましく、80nm以下であることがより好ましく、60nm以下であることが特に好ましい。
 金属酸化物粒子の形状としては、例えば、球状、針状及び板状が挙げられる。
 熱線吸収層は、1種又は2種以上の金属酸化物粒子を含んでもよい。
 熱線吸収層における金属酸化物粒子の含有率は、熱線吸収層の全質量に対して、0.5g/m~5.0g/mであることが好ましく、0.5g/m~4.0g/mであることがより好ましく、1.0g/m~3.0g/mであることが特に好ましい。金属酸化物粒子の含有率が0.5g/m以上であると、熱線遮蔽性が向上する。金属酸化物粒子の含有率が5g/m以下であると、可視光透過率が向上する。熱線吸収層におけるセシウムドープ酸化タングステン(CWO)の含有率は、熱線吸収層の全質量に対して、0.3g/m~1.3g/mであることが好ましく、0.6g/m~1.3g/mであることがより好ましい。ITOとCWOとを併用する場合、ITO及びCWOの質量比(すなわち、ITO:CWO)は、5~95:95~5であることが好ましく、10~90:90~10であることがより好ましく、20~80:80~20であることがさらに好ましい。
 熱線吸収層の厚さは、0.5μm~10μmの範囲内であることが好ましく、1.0μm~3.0μmの範囲内であることが好ましい。
 熱線吸収層の好ましい態様は、特開2014-194446号公報の段落0036~段落0039に記載されている。上記文献の内容は、参照により本明細書に取り込まれる。
(紫外線吸収層)
 本開示の一実施形態に係る合わせガラス用中間膜は、紫外線吸収層を含んでもよい。紫外線吸収層は、紫外線吸収という機能に加えて他の機能を有する層であってもよい。紫外線吸収層に複数の機能が付与されると、合わせガラス用中間膜の厚さを小さくできる。紫外線吸収層の数は、1つ又は2つ以上であってもよい。合わせガラス用中間膜の厚さの低減の観点から、本開示の一実施形態に係る合わせガラス用中間膜は、1つの紫外線吸収層を含むことが好ましい。
 紫外線吸収層の波長390nmにおける透過率は、50%以下であることが好ましく、40%以下であることがより好ましく、30%以下であることが特に好ましい。紫外線吸収層の波長390nmにおける透過率が小さくなると、太陽光の紫外線による合わせガラス用中間膜が劣化すること、室内にいる人が有害な紫外線を浴びること、又は室内の調度品が色褪せたりすることを防ぐことができる。紫外線吸収層の波長390nmにおける透過率は、例えば、紫外線吸収層における紫外線吸収剤の含有率及び種類によって調整される。
 紫外線吸収層は、紫外線吸収剤を含むことが好ましい。紫外線吸収剤としては、例えば、トリアジン系化合物、ベンゾトリアゾール系化合物、環状イミノエステル系化合物、ベンゾフェノン系化合物、メロシアニン系化合物、シアニン系化合物、ジベンゾイルメタン系化合物、桂皮酸系化合物、シアノアクリレート系化合物及び安息香酸エステル系化合物が挙げられる。紫外線吸収剤としては、特開2012-136019号公報の段落0040~段落0088に記載された化合物も挙げられる。上記文献の内容は、参照により本明細書に取り込まれる。
 紫外線吸収層は、1種又は2種以上の紫外線吸収剤を含んでもよい。
 紫外線吸収剤の含有率は、制限されない。紫外線吸収剤の含有率は、例えば、紫外線吸収層の機能、すなわち、要求される紫外線の透過率に応じて決定される。
 紫外線吸収層は、バインダーとして重合体を含んでもよい。重合体としては、例えば、アクリル樹脂、ポリビニルブチラール、ポリビニルアルコール及びポリエステルが挙げられる。なお、銀平板粒子による熱線反射の向上の観点から、重合体は、450nm~1,500nmの波長領域に吸収を有しない重合体から選択されることが好ましい。
 紫外線吸収層は、低屈折率を有する微粒子及び高屈折率を有する微粒子からなる群より選択される少なくとも1種を含んでもよい。低屈折率を有する微粒子は、紫外線吸収層の屈折率を低減できる。高屈折率を有する微粒子は、紫外線吸収層の屈折率を増大できる。低屈折率を有する微粒子としては、例えば、フッ化マグネシウム微粒子及びシリカ微粒子が挙げられる。屈折率、分散安定性及びコストの観点から、シリカ微粒子が好ましい。屈折率の低減の観点から、中空シリカ微粒子が好ましい。中空シリカ微粒子の屈折率は、1.17~1.40であることが好ましく、1.17~1.35であることがより好ましくは、1.17~1.30であることが特に好ましい。中空シリカ微粒子の屈折率は、粒子全体の屈折率を表し、中空シリカ微粒子を形成している外殻のシリカのみの屈折率を表すものではない。低屈折率を有する微粒子の平均粒径は、30nm~100nmであることが好ましく、35nm~80nmであることがより好ましく、40nm~60nmであることが特に好ましい。高屈折率を有する微粒子としては、例えば、チタン、ジルコニウム、アルミニウム、インジウム、亜鉛、スズ及びアンチモンからなる群より選択される少なくとも1種を含む金属酸化物微粒子が挙げられる。高屈折率を有する微粒子の平均粒径は、0.2μm以下であることが好ましく、0.1μm以下であることがより好ましく、0.06μm以下であることが特に好ましい。
 紫外線遮蔽性の観点から、紫外線吸収層の厚さは、5μm以上であることが好ましく、10μm以上であることがより好ましい。可視光透過性の観点から、紫外線吸収層の厚さは、200μm以下であることが好ましく、100μm以下であることがより好ましい。
 紫外線吸収層の好ましい態様は、特開2014-194446号公報の段落0073~段落0079に記載されている。上記文献の内容は、参照により本明細書に取り込まれる。
(粘着層)
 本開示の一実施形態に係る合わせガラス用中間膜は、粘着層を含んでもよい。
 粘着層の成分としては、例えば、ポリビニルブチラール、アクリル樹脂、スチレン/アクリル樹脂、ポリウレタン、ポリエステル及びシリコーンが挙げられる。粘着層の成分としては、例えば、帯電防止剤、滑剤及びブロッキング防止剤も挙げられる。
 粘着層の厚さは、0.1μm~30μmの範囲内であることが好ましく、5μm~20μmの範囲内であることがより好ましい。
 粘着層の好ましい態様は、特開2014-194446号公報の段落0080~段落0081に記載されている。上記文献の内容は、参照により本明細書に取り込まれる。
(ハードコート層)
 本開示の一実施形態に係る合わせガラス用中間膜は、ハードコート層を含んでもよい。ハードコート層は、合わせガラス用中間膜に耐擦傷性を付与できる。
 ハードコート層の成分としては、例えば、アクリル系樹脂、シリコーン系樹脂、メラミン系樹脂、ウレタン系樹脂、アルキド系樹脂及びフッ素系樹脂が挙げられる。ハードコート層は、金属酸化物粒子を含んでもよい。
 ハードコート層の厚さは、1μm~50μmの範囲内であることが好ましい。
 ハードコート層の好ましい態様は、特開2014-194446号公報の段落0082に記載されている。上記文献の内容は、参照により本明細書に取り込まれる。
(オーバーコート層)
 本開示の一実施形態に係る合わせガラス用中間膜は、オーバーコート層を含んでもよい。オーバーコート層は、第1領域に接触していることが好ましい。第1領域に接触するオーバーコート層は、物質移動による銀平板粒子の酸化及び硫化を防ぎ、また、合わせガラス用中間膜に耐擦傷性を付与できる。
 オーバーコート層の成分としては、例えば、バインダー、マット剤及び界面活性剤が挙げられる。バインダーとしては、例えば、アクリル系樹脂、シリコーン系樹脂、メラミン系樹脂、ウレタン系樹脂、アルキド系樹脂及びフッ素系樹脂が挙げられる。
 オーバーコート層の厚さは、0.01μm~5μmの範囲内であることが好ましく、0.05μm~1μmの範囲内であることがより好ましい。
 オーバーコート層の好ましい態様は、特開2014-194446号公報の段落0083~段落0085に記載されている。上記文献の内容は、参照により本明細書に取り込まれる。
[厚さ]
 熱線遮蔽性及び可視光透過率の向上の観点から、本開示の一実施形態に係る合わせガラス用中間膜の厚さは、10μm~2,000μmの範囲内であることが好ましく、20μm~1,500μmの範囲内であることがより好ましく、30μm~1,000μmの範囲内であることが特に好ましい。
[製造方法]
 本開示の一実施形態に係る合わせガラス用中間膜の製造方法は、制限されない。合わせガラス用中間膜は、例えば、重合体及び銀平板粒子を含む組成物を、押出機を用いて押し出すことにより製造される。
 重合体及び銀平板粒子を含む組成物は、合わせガラス用中間膜において銀平板粒子を含む第1領域を形成できる。重合体及び銀平板粒子を含む組成物は、例えば、銀平板粒子を含む分散液及び重合体を混合することにより製造される。重合体及び銀平板粒子を含む組成物は、必要に応じて、既述した他の成分を含んでもよい。重合体及び銀平板粒子を含む組成物は、他の成分として可塑剤を含むことが好ましい。
 銀平板粒子を含む分散液は、公知の方法によって製造されてもよい。銀平板粒子を含む分散液は、例えば、既述した液相法によって得られた銀平板粒子を溶剤に分散させることにより製造される。溶剤としては、例えば、水が挙げられる。
 押出機の条件は、例えば、目的の第1領域の厚さ及び合わせガラス用中間膜の厚さに応じて決定される。合わせガラス用中間膜の厚さを薄くするためには、圧力を大きくすること、そして、温度を大きくすることが有効である。本開示の一実施形態に係る合わせガラス用中間膜の製造方法は、重合体及び銀平板粒子を含む組成物を、10kgf/cm~150kgf/cmの圧力及び140℃~250℃の温度の条件で押出機を用いて押し出すことを含むことが好ましい。押出機は、公知の押出機であってもよい。
 本開示の一実施形態に係る合わせガラス用中間膜の製造方法は、重合体を含む第1中間膜と、重合体及び銀平板粒子を含む第2中間膜と、重合体を含む第3中間膜と、をこの順に重ねて、押出機を用いて押し出すことを含むことが好ましい。第1中間膜、第2中間膜及び第3中間膜をこの順に重ねて押し出すことで、合わせガラス用中間膜の厚さ方向における銀平板粒子の存在範囲、すなわち、第1領域の厚さを小さくできる。また、上記のような合わせガラス用中間膜の製造方法によれば、既述の特許文献1(すなわち、特開2014-194446号公報)に記載された方法のようにポリエチレンテレフタレートといった支持体の上に銀平板粒子含有層用の塗布液を塗布しなくても、薄い第1領域を形成できる。したがって、熱線遮蔽性が損なわれることなく、リタデーション値の低減によって虹ムラも低減される。
 重合体及び銀平板粒子を含む第2中間膜は、合わせガラス用中間膜において銀平板粒子を含む第1領域を形成できる。既述した「重合体及び銀平板粒子を含む組成物」の製造方法と同様に、重合体及び銀平板粒子を含む第2中間膜は、例えば、重合体及び銀平板粒子を含む組成物を、押出機を用いて押し出すことにより製造される。第2中間膜は、必要に応じて、既述した他の成分を含んでもよい。第2中間膜は、他の成分として可塑剤を含むことが好ましい。
 重合体を含む第1中間膜及び重合体を含む第3中間膜は、合わせガラス用中間膜において重合体を含む第2領域を形成できる。第1中間膜及び第3中間膜は、例えば、重合体を含む組成物又は重合体を、押出機を用いて押し出すことにより製造される。第1中間膜及び第3中間膜は、必要に応じて、既述した他の成分を含んでもよい。第1中間膜及び第3中間膜は、他の成分として可塑剤を含むことが好ましい。
 本開示の一実施形態に係る合わせガラス用中間膜の製造方法は、第1中間膜、第2中間膜及び第3中間膜の押出により得られた積層体を、重合体を含む2つの中間膜(以下、本段落において「第4中間膜及び第5中間膜」という。)の間に挟み、押出機を用いて押し出すことを含んでもよい。上記のような工程では、第4中間膜、第1中間膜、第2中間膜、第3中間膜及び第5中間膜がこの順に重ねられてもよく、又は第5中間膜、第1中間膜、第2中間膜、第3中間膜及び第4中間膜がこの順に重ねられてもよい。第4中間膜及び第5中間膜は、例えば、既述した第1中間膜又は第3中間膜の製造方法と同じ方法により製造される。第4中間膜及び第5中間膜は、必要に応じて、既述した他の成分を含んでもよい。第4中間膜及び第5中間膜は、他の成分として可塑剤を含むことが好ましい。
 次に、図1を参照して合わせガラス用中間膜の製造方法を説明する。ただし、合わせガラス用中間膜の製造方法は、以下の方法に制限されるものではない。図1は、合わせガラス用中間膜及び合わせガラスの製造方法の一例を示す概略図である。図1では、合わせガラス用中間膜及び合わせガラスの製造方法の説明のために、便宜上、原材料として使用される中間膜と中間膜との境界が示されている。実際の合わせガラス用中間膜において、図1に示されるような原材料として使用される中間膜と中間膜との境界の一部又は全部は明確に観察されないことがある。
 図1(a)に示されるように、中間膜10、中間膜11及び中間膜12をこの順に重ねて、押出機を用いて押し出すことにより、中間膜の積層体100が得られる。次に、得られた中間膜の積層体100を用いて、図1(b)に示されるように、中間膜13、中間膜10、中間膜11、中間膜12及び中間膜14をこの順に重ねて、押出機を用いて押し出すことにより、合わせガラス用中間膜200が得られる。つまり、図1(b)に示される合わせガラス用中間膜200は、図1(a)に示される中間膜の積層体100を中間膜13と中間膜14との間に挟むことにより得られる。なお、上記の説明は、図1(a)に示される中間膜の積層体100が合わせガラス用中間膜として使用されることを制限するものではない。
 中間膜10は、既述した第1中間膜に対応する。中間膜10は、重合体を含む。中間膜10は、第2領域R2を形成できる。
 中間膜11は、既述した第2中間膜に対応する。中間膜11は、重合体及び銀平板粒子Pを含む。中間膜11は、銀平板粒子Pを含む第1領域R1を形成できる。図1に示される点線は、第1領域R1を画定する仮想線である。
 中間膜12は、既述した第3中間膜に対応する。中間膜12は、重合体を含む。中間膜12は、第2領域R2を形成できる。
 中間膜13は、既述した第4中間膜に対応する。中間膜13は、重合体を含む。中間膜13は、第2領域R2を形成できる。
 中間膜14は、既述した第5中間膜に対応する。中間膜14は、重合体を含む。中間膜14は、第2領域R2を形成できる。
[用途]
 本開示の一実施形態に係る合わせガラス用中間膜は、種々の合わせガラスの中間膜として使用される。合わせガラスの用途としては、例えば、乗り物(例えば、自動車、鉄道車両及び飛行機)の窓ガラス及び建物の窓ガラスが挙げられる。
<合わせガラス>
 本開示の一実施形態に係る合わせガラスは、本開示に係る合わせガラス用中間膜と、上記合わせガラス用中間膜を挟む2つのガラス板と、を含む。上記した合わせガラスによれば、虹ムラが低減され、高い熱線遮蔽性が得られる。
[合わせガラス用中間膜]
 本開示の一実施形態に係る合わせガラスは、合わせガラス用中間膜を含む。合わせガラス用中間膜の態様は、上記「合わせガラス用中間膜」の項に記載されている。合わせガラス用中間膜の好ましい態様は、上記「合わせガラス用中間膜」に記載された合わせガラス用中間膜の好ましい態様と同じである。
[ガラス板]
 本開示の一実施形態に係る合わせガラスは、合わせガラス用中間膜を挟む2つのガラス板を含む。ガラス板の種類は、制限されない。ガラス板は、公知のガラス板であってもよい。ガラス板としては、青板ガラス及びグリーンガラスが挙げられる。ガラス板は、ガラス代替樹脂成形体であってもよい。ガラス代替樹脂としては、例えば、ポリカーボネート及びアクリル樹脂が挙げられる。ガラス代替樹脂成形体は、ガラス代替樹脂の上にハードコート層を形成することにより製造されてもよい。ハードコート層としては、例えば、アクリル系ハードコート材、シリコーン系ハードコート材又はメラミン系ハードコート材に無機微粒子を分散させた層が挙げられる。無機微粒子としては、例えば、シリカ、チタニア、アルミナ及びジルコニアが挙げられる。
[他の層]
 本開示の一実施形態に係る合わせガラスは、他の層を含んでもよい。他の層としては、上記「合わせガラス用中間膜」の項で説明した他の層が挙げられる。
[構造]
 本開示の一実施形態に係る合わせガラスは、ガラス板と、合わせガラス用中間膜と、ガラス板と、をこの順に含む。合わせガラス用中間膜は、2つのガラス板の少なくとも1つに接触してもよい。ガラス板と合わせガラス用中間膜との間に、他の層が配置されてもよい。
[製造方法]
 本開示の一実施形態に係る合わせガラスの製造方法は、制限されない。合わせガラスは、例えば、第1ガラス板、合わせガラス用中間膜及び第2ガラス板を重ねることにより製造される。第1ガラス板及び第2ガラス板は、合わせガラス用中間膜を挟む2つのガラス板に対応する。本開示の一実施形態に係る合わせガラスの製造方法は、合わせガラス用中間膜を2つのガラス板の間に挟み、加熱しながら圧着することを含むことが好ましい。
 合わせガラスの製造方法において、合わせガラス用中間膜及び2つのガラス板は、予備圧着された後、オートクレーブといった装置において加熱しながら圧着されてもよい。予備圧着は、例えば、減圧環境下、80℃~120℃の温度及び30分間~60分間の処理時間で実施される。オートクレーブによる加熱圧着は、例えば、1.0MPa~1.5MPaの圧力及び120℃~150℃の温度で実施される。加熱圧着の時間は、20分間~90分間であることが好ましい。
 合わせガラス用中間膜とガラス板とを加熱圧着させる範囲は、ガラス板の全面積にわたる範囲でもよく、又はガラス板の周縁部のみでもよい。ガラス板の周縁部の加熱圧着は、シワの発生をより抑制できる。
 本開示の一実施形態に係る合わせガラスの製造方法では、加熱圧着の後に適宜圧力を開放しながら放冷して、合わせガラス体を製造してもよい。加熱圧着の後に圧力を保持した状態で降温することが、合わせガラス体のシワ及び割れを改善する観点から好ましい。「圧力を保持した状態で降温する」とは、40℃のときの装置内部の圧力が加熱圧着時の圧力の75%~100%となるように降温することを意味する。圧力を保持した状態で降温する方法としては、装置内部の圧力が温度減少に伴って自然と低下していくように装置内部から圧力を漏らさずに降温する方法又は装置内部の圧力が温度減少に伴って減少しないように外部から更に加圧しながら降温する方法が好ましい。圧力を保持した状態で降温する場合、120℃~150℃で加熱圧着した後、40℃まで1時間~5時間かけて放冷することが好ましい。
 本開示の一実施形態に係る合わせガラスの製造方法では、圧力を保持した状態で降温した後、圧力を開放することが好ましい。圧力を保持した状態で降温した後、装置内部の温度が40℃以下になった後に圧力を開放して降温することが好ましい。
 本開示の一実施形態に係る合わせガラスの製造方法は、(1)合わせガラス用中間膜を2つのガラス板の間に挟むことと、(2)合わせガラス用中間膜及び2つのガラス板を、1.0MPa~1.5MPaの圧力及び120℃~150℃の温度で加熱圧着することと、(3)圧力を保持した状態で降温することと、(4)圧力を開放することと、を含むことが好ましい。
 次に、図1を参照して合わせガラスの製造方法を説明する。ただし、合わせガラスの製造方法は、以下の方法に制限されるものではない。図1(c)に示される合わせガラス300は、図1(b)に示される合わせガラス用中間膜200を第1ガラス板20と第2ガラス板21との間に挟み、加熱しながら圧着することにより得られる。他の一例において、図1(a)に示される中間膜の積層体100は、合わせガラス用中間膜として使用されてもよい。中間膜の積層体100が合わせガラス用中間膜として使用される場合、例えば、中間膜の積層体100を第1ガラス20と第2ガラス21との間に挟み、加熱しながら圧着することによって合わせガラスが得られる。
[用途]
 本開示の一実施形態に係る合わせガラスの用途としては、例えば、乗り物(例えば、自動車、鉄道車両及び飛行機)の窓ガラス及び建物の窓ガラスが挙げられる。本開示の一実施形態に係る合わせガラスは、自動車用の窓ガラスとして使用されることが好ましい。
 以下、実施例により本開示を詳細に説明する。ただし、本開示は、以下の実施例に制限されるものではない。以下の実施例に示される材料、使用量、割合、処理内容及び処理手順は、本開示の趣旨を逸脱しない範囲で適宜変更されてもよい。
<銀平板粒子を含む分散液B1の調製>
 以下の手順によって、銀平板粒子を含む分散液B1を調製した。
(分散液A1)
 反応釜中の純水(308mL)に1質量%のクエン酸ナトリウム水溶液(24.5mL)及び8g/Lのポリスチレンスルホン酸ナトリウム水溶液(16.7mL)を添加し、35℃まで加熱した。溶液に2.3質量%の水素化ほう素ナトリウム水溶液(1mL)を添加し、次に、0.6mmol/Lの硝酸銀水溶液(316mL)を撹拌しながら添加した。得られた溶液を20分間撹拌した後、1質量%のクエン酸ナトリウム水溶液(24.5mL)、10mmol/Lのアスコルビン酸水溶液(33mL)及び純水(274mL)を添加した。得られた溶液に0.6mmol/Lの硝酸銀水溶液(199mL)を撹拌しながら添加した。30分間撹拌しながら液温度を30℃に冷却した後に、0.35mol/Lのメチルヒドロキノン水溶液(197mL)及びゼラチン水溶液を反応釜に添加した。ゼラチン水溶液は、重量平均分子量が20万の不活性ゼラチン(33.5g)と重量平均分子量が2万の酸化処理ゼラチン(22.3g)とを純水(409mL)に溶解して調製された。次に、13.5質量%の亜硫酸ナトリウム水溶液(67mL)、10質量%の硝酸銀水溶液(228mL)及び純水(369mL)を混合して調製された亜硫酸銀の白色沈殿物混合液を反応釜に添加した。得られた溶液を75分間撹拌した後、1mol/LのNaOH(123ml)及び2質量%の1-(5-メチルウレイドフェニル)-5-メルカプトテトラゾール水溶液(4.46mL)を反応釜に添加して、分散液A1を得た。分散液A1において、平均円相当径が120nmである六角形状の銀平板粒子が生成していることを確認した。
(分散液B1)
 分散液A1を200mL抽出し、遠心分離機(株式会社コクサン製、H200-N)を用いて7000rpm(revolutions per minute、以下同じ。)及び60分間の条件で遠心分離を行い、銀平板粒子を沈殿させた。遠心分離後の上澄み液を190mL捨て、残った銀平板粒子に0.2mmol/LのNaOH水溶液(9mL)を添加し、卓上型ホモジナイザー(三井電気精機株式会社製、SpinMix08)を用いて15,000rpm及び20分間の条件で分散させることで、分散液B1を調製した。
(銀平板粒子の平均円相当径)
 分散液B1に含まれる銀平板粒子を観察するために、分散液B1をメッシュ(エラスチックカーボン支持膜 100Cu:応研商事株式会社製)の上に滴下し、溶剤を揮発させた後、透過型電子顕微鏡(TEM)を用いて銀平板粒子を倍率5,000倍~20,000倍で観察し、得られた像を画像処理ソフト「ImageJ」に取り込み、画像処理を施した。複数の視野のTEM像から任意に抽出した1,000個の銀平板粒子の画像解析を行い、1,000個の銀平板粒子の平均円相当径を算出した。銀平板粒子の平均粒径は、120nmであった。
(銀平板粒子の厚さ)
 分散液B1を用いて、遠心分離、上澄み液廃却、希釈、分散を2回繰り返して作製した分散液をシリコン基板の上に滴下して乾燥した。5,000倍~2,0000倍の撮影倍率で、銀平板粒子の厚さをFIB-TEM法により測定した。100個の銀平板粒子の厚さを算術平均することによって銀平板粒子の平均厚さを求めると、8nmであった。
<銀平板粒子を含む分散液B2の調製>
 以下の手順によって、銀平板粒子を含む分散液B2を調製した。
(分散液A2)
 2.5mmol/Lのクエン酸ナトリウム水溶液(50mL)に0.5g/Lのポリスチレンスルホン酸水溶液(2.5mL)を添加し、35℃まで加熱した。得られた溶液に10mmol/Lの水素化ほう素ナトリウム水溶液(3mL)を添加し、0.5mmol/Lの硝酸銀水溶液(50mL)を20mL/分で撹拌しながら添加した。溶液を30分間撹拌し、種溶液を作製した。
 反応釜中の2.5mmol/Lのクエン酸ナトリウム水溶液(132.7mL)にイオン交換水(87.1mL)を添加し、35℃まで加熱した。反応釜中の溶液に、10mmol/Lのアスコルビン酸水溶液(2mL)を添加した後、種溶液(42.4mL)を添加し、そして、0.5mmol/Lの硝酸銀水溶液(79.6mL)を10mL/分で撹拌しながら添加した。30分間撹拌した後、0.35mol/Lのヒドロキノンスルホン酸カリウム水溶液(71.1mL)を反応釜に添加し、7質量%のゼラチン水溶液(200g)を反応釜に添加した。反応釜中の溶液に、0.25mol/Lの亜硫酸ナトリウム水溶液(107mL)と0.47mol/Lの硝酸銀水溶液(107mL)とを混合して調製された亜硫酸銀の白色沈殿物混合液を添加した。白色沈殿物混合液を添加した後すぐに0.17mol/LのNaOH水溶液(72mL)を反応釜に添加した。NaOH水溶液の添加では、pHが10を超えないように添加速度を調節しながらNaOH水溶液を添加した。混合物を300分間撹拌し、分散液A2を得た。分散液A2において、平均円相当径が200nmである銀の六角平板粒子が生成していることを確認した。
(分散液B2)
 分散液A2を200mL抽出し、遠心分離機(株式会社コクサン製、H200-N)を用いて7,000rpm及び60分間の条件で遠心分離を行い、銀平板粒子を沈殿させた。遠心分離後の上澄み液を190mL捨て、残った銀平板粒子に0.2mmol/LのNaOH水溶液(9mL)を添加し、卓上型ホモジナイザー(三井電気精機株式会社製、SpinMix08)を用いて15,000rpm及び20分間の条件で分散させることで、分散液B2を調液した。既述した方法に準じて測定された銀平板粒子の平均円相当径は、200nmであった。既述した方法に準じて測定された銀平板粒子の平均厚さは、8nmであった。
<銀平板粒子含有層用の塗布液の調製>
 下記に示す組成を有する銀平板粒子含有層用の塗布液を調製した。
 ポリウレタン水溶液(ハイドランHW-350、DIC株式会社製、固形分:30質量%):0.27質量部
 界面活性剤A(リパール8780P、ライオン株式会社製、固形分:1質量%):0.96質量部
 界面活性剤B(ナロアクティーCL-95、三洋化成工業株式会社製、固形分:1質量%):1.19質量部
 分散液B1:32.74質量部
 水:34.23質量部
 メタノール:30質量部
<熱線反射フィルム1の作製>
 支持体としてコスモシャインA4300(東洋紡株式会社製、1.66の屈折率を有するポリエチレンテレフタレートフィルム、厚さ:100μm)の上に、銀平板粒子含有層用の塗布液を、ワイヤーバーを用いて塗布した。乾燥後の平均厚さが55nmになるように塗布した。
<ポリビニルアセタールPの合成>
 撹拌装置を備えた反応器に、イオン交換水(2,500mL)、1,700の平均重合度及び99.1mol%のけん化度を有するポリビニルアルコール(300g)を入れ、撹拌しながら加熱溶解し、溶液を得た。得られた溶液に触媒として60質量%硝酸(22.6g)を添加し、温度を10℃に調整した後、撹拌しながらn-ブチルアルデヒド(169g)を添加したところ、白色粒子状のポリビニルブチラールが析出した。析出してから20分後に、60質量%硝酸(86.3g)を添加し、65℃に加熱し、67.5℃で2時間熟成させた。次いで、溶液を冷却し、中和した後、ポリビニルブチラールを水洗し、乾燥させることにより、ポリビニルアセタールPを得た。ポリビニルアセタールP(すなわち、ポリビニルブチラール)の重量平均分子量は、2,200であった。
<ポリビニルアセタールQの合成>
 撹拌装置を備えた反応器に、イオン交換水(3,244mL)、3,000の平均重合度及び88.2mol%のけん化度を有するポリビニルアルコール(300g)を入れ、撹拌しながら加熱溶解し、溶液を得た。得られた溶液に触媒として60質量%硝酸(47.3g)を添加し、温度を10℃に調整した後、撹拌しながらn-ブチルアルデヒド(199g)を添加したところ、白色粒子状のポリビニルブチラールが析出した。析出してから20分後に、60質量%硝酸(144g)を添加し、65℃に加熱し、67.5℃で2時間熟成させた。次いで、溶液を冷却し、中和した後、ポリビニルブチラールを水洗し、乾燥させることにより、ポリビニルアセタールQを得た。ポリビニルアセタールQ(すなわち、ポリビニルブチラール)の重量平均分子量は、3,900であった。
<中間膜A>
 ポリビニルアセタールP(100質量部)と、可塑剤(トリエチレングリコールジ-2-エチルヘキサノエート:3GO、30質量部)と、紫外線吸収剤(Tinuvin477、0.2質量部)と、酸化防止剤(2,6-ジ-tert-ブチル-p-クレゾール:BHT、0.2質量部)とを混合し、ポリビニルアセタール中間膜Aを形成するための組成物を得た。得られた組成物を、押出機を用いて押し出すことにより、中間膜A(厚さ:1,000μm)を作製した。
<中間膜B>
 分散液B1(100質量部)にエタノール(90質量部)を加え、ポリビニルアセタールQ(10質量部)を加えて、よく混ぜてから80℃で水及びエタノールをよく蒸発させ、銀平板粒子を含むポリビニルアセタール粉末V1を得た。ポリビニルアセタール粉末V1(100質量部)と、可塑剤(トリエチレングリコールジ-2-エチルヘキサノエート:3GO、15質量部)と、酸化防止剤(2,6-ジ-tert-ブチル-p-クレゾール:BHT、0.2質量部)とを混合し、ポリビニルアセタール中間膜Bを形成するための組成物を得た。得られた組成物を、押出機を用いて押し出すことにより、中間膜B(厚さ:20μm)を作製した。
<中間膜C>
 中間膜A、中間膜B及び中間膜Aをこの順に重ねて、押出機を用いて押し出すことにより、中間膜S(厚さ:20μm)を作製した。中間膜A、中間膜S及び中間膜Aをこの順に重ねて、押出機を用いて押し出すことにより、中間膜C(厚さ:760μm)を作製した。中間膜Cを形成している5つの中間膜の積層順を以下に示す。
 (1)中間膜A
 (2)中間膜A
 (3)中間膜B
 (4)中間膜A
 (5)中間膜A
<中間膜D>
 1質量%の酸化インジウムスズ(ITO)を含有するトリエチレングリコールジ-2-エチルヘキサノエート(3GO)溶液に、100質量部のITOに対して10質量部の乳酸ブチルを加え、よく撹拌し分散させた。得られた混合物(30質量部)と、ポリビニルアセタールV(100質量部)と、紫外線吸収剤(Tinuvin477、0.2質量部)と、酸化防止剤(2,6-ジ-tert-ブチル-p-クレゾール:BHT、0.2質量部)とを混合し、ポリビニルアセタール中間膜Dを形成するための組成物を得た。得られた組成物を、押出機を用いて押し出すことにより、中間膜D(厚さ:1,000μm)を作製した。
<中間膜E>
 中間膜A、中間膜B及び中間膜Dをこの順に重ねて、押出機を用いて押し出すことにより、中間膜T(厚さ:15μm)を作製した。中間膜A、中間膜T及び中間膜Dをこの順に重ねて、押出機を用いて押し出すことにより、中間膜E(厚さ:760μm)を作製した。中間膜Eを形成している5つの中間膜の積層順を以下に示す。
 (1)中間膜A
 (2)中間膜A
 (3)中間膜B
 (4)中間膜D
 (5)中間膜D
<中間膜F>
 中間膜A、中間膜B及び中間膜Dをこの順に重ねて、押出機を用いて押し出すことにより、中間膜U(厚さ:20μm)を作製した。中間膜A、中間膜U及び中間膜Dをこの順に重ねて、押出機を用いて押し出すことにより、中間膜F(厚さ:760μm)を作製した。中間膜Fを形成している5つの中間膜の積層順を以下に示す。
 (1)中間膜A
 (2)中間膜A
 (3)中間膜B
 (4)中間膜D
 (5)中間膜D
<中間膜G>
 中間膜A、中間膜B及び中間膜Dをこの順に重ねて、押出機を用いて押し出すことにより、中間膜V(厚さ:25μm)を作製した。中間膜A、中間膜V及び中間膜Dをこの順に重ねて、押出機を用いて押し出すことにより、中間膜G(厚さ:760μm)を作製した。中間膜Gを形成している5つの中間膜の積層順を以下に示す。
 (1)中間膜A
 (2)中間膜A
 (3)中間膜B
 (4)中間膜D
 (5)中間膜D
<中間膜H>
 分散液B1(100質量部)にエタノール(90質量部)を加え、ポリビニルアセタールP(10質量部)を加えて、よく混ぜてから80℃で水及びエタノールをよく蒸発させ、銀平板粒子を含むポリビニルアセタール粉末V1を得た。ポリビニルアセタール粉末V1(100質量部)と、可塑剤(トリエチレングリコールジ-2-エチルヘキサノエート:3GO、15質量部)と、酸化防止剤(2,6-ジ-tert-ブチル-p-クレゾール:BHT、0.2質量部)とを混合し、ポリビニルアセタール中間膜Hを形成するための組成物を得た。得られた組成物を、押出機を用いて押し出すことにより、中間膜H(厚さ:20μm)を作製した。
<中間膜I>
 中間膜A、中間膜H及び中間膜Dをこの順に重ねて、押出機を用いて押し出すことにより、中間膜W(厚さ:15μm)を作製した。中間膜A、中間膜W及び中間膜Dをこの順に重ねて、押出機を用いて押し出すことにより、中間膜I(厚さ:760μm)を作製した。中間膜Iを形成している5つの中間膜の積層順を以下に示す。
 (1)中間膜A
 (2)中間膜A
 (3)中間膜H
 (4)中間膜D
 (5)中間膜D
<中間膜J>
 中間膜A、中間膜B及び中間膜Dをこの順に重ねて、押出機を用いて押し出すことにより、中間膜X(厚さ:30μm)を作製した。中間膜A、中間膜X及び中間膜Dをこの順に重ねて、押出機を用いて押し出すことにより、中間膜J(厚さ:380μm)を作製した。中間膜Jを形成している5つの中間膜の積層順を以下に示す。
 (1)中間膜A
 (2)中間膜A
 (3)中間膜B
 (4)中間膜D
 (5)中間膜D
<中間膜K>
 分散液B2(100質量部)にエタノール(90質量部)を加え、ポリビニルアセタールQ(10質量部)を加えて、よく混ぜてから80℃で水及びエタノールをよく蒸発させ、銀平板粒子を含むポリビニルアセタール粉末V2を得た。ポリビニルアセタール粉末V2(100質量部)と、可塑剤(トリエチレングリコールジ-2-エチルヘキサノエート:3GO、15質量部)と、酸化防止剤(2,6-ジ-tert-ブチル-p-クレゾール:BHT、0.2質量部)とを混合し、中間膜Hを形成するための組成物を得た。得られた組成物を、押出機を用いて押し出すことにより、中間膜K(厚さ:20μm)を作製した。
<中間膜L>
 中間膜A、中間膜K及び中間膜Dをこの順に重ねて、押出機を用いて押し出すことにより、中間膜Y(厚さ:15μm)を作製した。中間膜A、中間膜Y及び中間膜Dをこの順に重ねて、押出機を用いて押し出すことにより、中間膜L(厚さ:760μm)を作製した。ポリビニルアセタール中間膜Lを形成している5つの中間膜の積層順を以下に示す。
 (1)中間膜A
 (2)中間膜A
 (3)中間膜K
 (4)中間膜D
 (5)中間膜D
<中間膜M>
 中間膜A、中間膜B及び中間膜Aをこの順に重ねて、押出機を用いて押し出すことにより、中間膜Z(厚さ:30μm)を作製した。中間膜A、中間膜Z及び中間膜Aをこの順に重ねて、押出機を用いて押し出すことにより、中間膜M(厚さ:760μm)を作製した。中間膜Mを形成している5つの中間膜の積層順を以下に示す。
 (1)中間膜A
 (2)中間膜A
 (3)中間膜B
 (4)中間膜A
 (5)中間膜A
<中間膜N>
 ポリビニルアセタールP(100質量部)と、可塑剤(トリエチレングリコールジ-2-エチルヘキサノエート:3GO、30質量部)と、紫外線吸収剤(Tinuvin477、0.2質量部)と、酸化防止剤(2,6-ジ-tert-ブチル-p-クレゾール:BHT、0.2質量部)とを混合し、ポリビニルアセタール中間膜Nを形成するための組成物を得た。得られた組成物を、押出機を用いて押し出すことにより、中間膜N(厚さ:380μm)を作製した。
<ガラス板>
 洗浄及び乾燥した2つのガラス板を準備した。具体的に、2つのガラス板は、青板ガラス(縦25cm×横10cm×厚さ2mm)及びグリーンガラス(縦25cm×横10cm×厚さ2mm)を含む。
<実施例1>
 以下の順番で3つの部材を重ね合わせて、積層体を作製した。
 第1ガラス板:青板ガラス
 合わせガラス用中間膜:中間膜C
 第2ガラス板:グリーンガラス
 得られた積層体をゴムバック内に入れ、2,660Pa(20torr)の真空度で20分間脱気した。脱気したままで積層体をオートクレーブにおいて90℃で30分間保持しつつ、真空プレスした。予備圧着された積層体を、オートクレーブにおいて135℃及び1.2MPa(12kg/cm)の条件で20分間圧着し、合わせガラスを得た。
<実施例2>
 中間膜Cを中間膜Eに変更し、中間膜Eの中間膜D側を第2ガラス板に接触させたこと以外は、実施例1の方法と同じ方法によって合わせガラスを得た。
<実施例3>
 中間膜Eを中間膜Fに変更したこと以外は、実施例2の方法と同じ方法によって合わせガラスを得た。
<実施例4>
 中間膜Eを中間膜Gに変更したこと以外は、実施例2の方法と同じ方法によって合わせガラスを得た。
<実施例5>
 中間膜Eを中間膜Iに変更したこと以外は、実施例2の方法と同じ方法によって合わせガラスを得た。
<実施例6>
 中間膜Eを中間膜Jに変更したこと以外は、実施例2の方法と同じ方法によって合わせガラスを得た。
<実施例7>
 中間膜Eを中間膜Lに変更したこと以外は、実施例2の方法と同じ方法によって合わせガラスを得た。
<比較例1>
 中間膜Cを中間膜Mに変更したこと以外は、実施例1の方法と同じ方法によって合わせガラスを得た。
<比較例2>
 実施例1で使用された積層体を、以下の順番で5つの部材を重ね合わせて作製された積層体に変更したこと以外は、実施例1の方法と同じ方法によって合わせガラスを得た。
 第1ガラス板:青板ガラス
 合わせガラス用中間膜:中間膜N
 熱線反射フィルム:熱線反射フィルム1
 合わせガラス用中間膜:中間膜N
 第2ガラス板:グリーンガラス
<リタデーション値>
 位相差測定装置KOBRA-WR(王子計測機器株式会社製)を用いて、波長550nmにおける合わせガラス用中間膜のリタデーション値Reを測定した。測定結果を表1に示す。
<可視光透過率及び全日射透過率(TTS))
 積分球ユニットISN-723を付属した紫外可視近赤外分光機(日本分光株式会社製、V-670)を用いて、合わせガラスの青板ガラスに光を照射し、合わせガラスの透過及び反射スペクトル(波長:300nm~2,500nm)を測定した。「ISO 13837:2008」に記載された可視光透過率及び全日射透過率(TTS)の計算方法に基づき、可視光透過率及びTTSを算出した。また、銀量を変えたときのTTSと可視光透過率の変化から、可視光透過率を72%に換算したときのTTSを求めた。算出結果を表1に示す。
<虹ムラ>
 ライトテーブルの上に2枚の偏光板(偏光フィルム薄手Sサイズ、ケニス株式会社)を、偏光方向が直交する向きに重ねた。偏光板と偏光板との間に合わせガラスを入れた。得られた積層体を目視で観察し、以下の基準に従って評価した。
 A:虹ムラが観察されない。
 B:虹ムラが観察される。
Figure JPOXMLDOC01-appb-T000001
 表1において、以下の用語は、それぞれ、次の意味を有する。
 「第1領域における銀平板粒子の含有率」:個数基準で算出された、合わせガラス用中間膜における銀平板粒子の含有量に対する第1領域における銀平板粒子の含有量の割合
 「PVB」:ポリビニルブチラール
 「PET」:ポリエチレンテレフタレート
 「Re」:リタデーション値
 表1は、比較例1~2に比べて、実施例1~7において、虹ムラが低減され、かつ、高い熱線遮蔽性が得られたことを示す。
 2021年2月5日に出願された日本国特許出願2021-017408号の開示は、参照により本明細書に取り込まれる。本明細書に記載された全ての文献、特許出願及び技術規格は、個々の文献、特許出願及び技術規格が参照により取り込まれることが具体的かつ個々に記載された場合と同程度に、本明細書に参照により取り込まれる。
 P:銀平板粒子
 R1:第1領域
 R2:第2領域
 10、11、12、13、14:中間膜
 100:中間膜の積層体
 20:第1ガラス板
 21:第2ガラス板
 200:合わせガラス用中間膜
 300:合わせガラス

Claims (8)

  1.  50質量%以上100質量%未満の重合体と、
     銀平板粒子と、
     個数基準に基づく前記銀平板粒子の含有量の少なくとも90%を含み、10nmを超え100nm以下の平均厚さを有する第1領域と、を含み、
     リタデーション値が、150nm以下である、
     合わせガラス用中間膜。
  2.  前記第1領域が、個数基準に基づく前記銀平板粒子の含有量の100%を含む、請求項1に記載の合わせガラス用中間膜。
  3.  前記第1領域が、ポリビニルアセタールを含む、請求項1又は請求項2に記載の合わせガラス用中間膜。
  4.  前記第1領域以外の領域であって、ポリビニルアセタールを含む第2領域を更に含み、前記第1領域における前記ポリビニルアセタールの重量平均分子量が、前記第2領域における前記ポリビニルアセタールの重量平均分子量よりも大きい、請求項3に記載の合わせガラス用中間膜。
  5.  前記重合体が、ポリビニルアセタールを含む、請求項1~請求項4のいずれか1項に記載の合わせガラス用中間膜。
  6.  前記重合体における前記ポリビニルアセタールの含有率が、前記重合体の全質量に対して、80質量%以上である、請求項5に記載の合わせガラス用中間膜。
  7.  前記重合体が、ポリエチレンテレフタレートを含まない、請求項1~請求項6のいずれか1項に記載の合わせガラス用中間膜。
  8.  請求項1~請求項7のいずれか1項に記載の合わせガラス用中間膜と、
     前記合わせガラス用中間膜を挟む2つのガラス板と、を含む、
     合わせガラス。
PCT/JP2021/045907 2021-02-05 2021-12-13 合わせガラス用中間膜及び合わせガラス WO2022168450A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021017408 2021-02-05
JP2021-017408 2021-02-05

Publications (1)

Publication Number Publication Date
WO2022168450A1 true WO2022168450A1 (ja) 2022-08-11

Family

ID=82742194

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/045907 WO2022168450A1 (ja) 2021-02-05 2021-12-13 合わせガラス用中間膜及び合わせガラス

Country Status (1)

Country Link
WO (1) WO2022168450A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024048344A1 (ja) * 2022-09-02 2024-03-07 Agc株式会社 合わせガラス用接着層付き機能性フィルム、及び合わせガラス

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007317632A (ja) * 2006-04-28 2007-12-06 Toyo Ink Mfg Co Ltd 導電性被膜の製造方法
JP2011118347A (ja) * 2009-11-06 2011-06-16 Fujifilm Corp 熱線遮蔽材
JP2014104613A (ja) * 2012-11-26 2014-06-09 Fujifilm Corp 熱線遮蔽材、遮熱ガラス、合わせガラス用中間膜および合わせガラス
WO2019003783A1 (ja) * 2017-06-30 2019-01-03 富士フイルム株式会社 熱線遮蔽材、合わせガラス用中間膜、及び、合わせガラス

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007317632A (ja) * 2006-04-28 2007-12-06 Toyo Ink Mfg Co Ltd 導電性被膜の製造方法
JP2011118347A (ja) * 2009-11-06 2011-06-16 Fujifilm Corp 熱線遮蔽材
JP2014104613A (ja) * 2012-11-26 2014-06-09 Fujifilm Corp 熱線遮蔽材、遮熱ガラス、合わせガラス用中間膜および合わせガラス
WO2019003783A1 (ja) * 2017-06-30 2019-01-03 富士フイルム株式会社 熱線遮蔽材、合わせガラス用中間膜、及び、合わせガラス

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024048344A1 (ja) * 2022-09-02 2024-03-07 Agc株式会社 合わせガラス用接着層付き機能性フィルム、及び合わせガラス

Similar Documents

Publication Publication Date Title
US20210162715A1 (en) Interlayer film for laminated glass, and laminated glass
JP5416839B2 (ja) 合わせガラス用中間膜及び合わせガラス
CN103261113B (zh) 夹层玻璃用中间膜及夹层玻璃
JP5220956B2 (ja) 合わせガラス用中間膜及び合わせガラス
JP2016193826A (ja) 合わせガラス用中間膜及び合わせガラス
WO2012108537A1 (ja) 合わせガラス用中間膜及び合わせガラス
JP2013010671A (ja) 合わせガラス用中間膜及び合わせガラス
JP2013006725A (ja) 合わせガラス用中間膜及び合わせガラス
WO2021117596A1 (ja) 合わせガラス用中間膜及び合わせガラス
WO2019194113A1 (ja) 合わせガラス用中間膜及び合わせガラス
WO2022168450A1 (ja) 合わせガラス用中間膜及び合わせガラス
WO2019021999A1 (ja) 樹脂膜及びガラス板含有積層体
JP6386305B2 (ja) 合わせガラス用中間膜及び合わせガラス
JP2012148915A (ja) 合わせガラス用中間膜及び合わせガラス
JP2013163616A (ja) 合わせガラス用中間膜及び合わせガラス
WO2022168451A1 (ja) 金属平板粒子分散液及び合わせガラス用中間膜の製造方法
JP2012131659A (ja) 合わせガラス及び合わせガラスの取り付け方法
WO2022168436A1 (ja) 合わせガラス、及び、合わせガラス中間膜
WO2024034436A1 (ja) 合わせガラス用中間膜及び合わせガラス
WO2021261523A1 (ja) 合わせガラス用中間膜及び合わせガラス
EP3778518A1 (en) Intermediate film for laminated glass, and laminated glass
JP2019023153A (ja) 合わせガラス用中間膜及び合わせガラス
JP2017222572A (ja) 合わせガラス用中間膜及び合わせガラス
JP2017071530A (ja) 合わせガラス用中間膜、合わせガラス用中間膜の製造方法及び合わせガラス

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21924835

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21924835

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP