WO2022168446A1 - Inorganic particle-containing paste, inorganic particle-containing film, and laminate - Google Patents

Inorganic particle-containing paste, inorganic particle-containing film, and laminate Download PDF

Info

Publication number
WO2022168446A1
WO2022168446A1 PCT/JP2021/045897 JP2021045897W WO2022168446A1 WO 2022168446 A1 WO2022168446 A1 WO 2022168446A1 JP 2021045897 W JP2021045897 W JP 2021045897W WO 2022168446 A1 WO2022168446 A1 WO 2022168446A1
Authority
WO
WIPO (PCT)
Prior art keywords
inorganic particle
chains
particles
inorganic
branched
Prior art date
Application number
PCT/JP2021/045897
Other languages
French (fr)
Japanese (ja)
Inventor
準 塩田
友樹 吾郷
信之 木南
明大 鶴
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to KR1020237025908A priority Critical patent/KR20230128323A/en
Priority to JP2022579372A priority patent/JPWO2022168446A1/ja
Priority to CN202180092230.3A priority patent/CN116745872A/en
Publication of WO2022168446A1 publication Critical patent/WO2022168446A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/16Solid spheres
    • C08K7/18Solid spheres inorganic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/08Cellulose derivatives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/16Non-insulated conductors or conductive bodies characterised by their form comprising conductive material in insulating or poorly conductive material, e.g. conductive rubber
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/30Stacked capacitors

Definitions

  • the present invention relates to an inorganic particle-containing paste, an inorganic particle-containing film that can be formed using the inorganic particle-containing paste, and a laminate containing the inorganic particle-containing film.
  • Films containing various inorganic particles are used in various applications.
  • a method for forming such a film a method using a paste containing inorganic particles is known.
  • a film containing inorganic particles can be formed by forming a film from a paste containing inorganic particles by a method such as coating or printing, and curing or drying the formed film.
  • Laminates used to manufacture laminated ceramic electronic components such as laminated ceramic capacitors are known as typical applications of inorganic particle-containing films.
  • green sheets containing ceramic powder and precursor films of internal electrode layers containing metal particles are usually laminated.
  • a conductive paste for forming a conductive sheet that provides internal electrode layers by firing a conductive paste containing metal particles and ethyl cellulose as a binder resin has been proposed (see Patent Document 1. ).
  • Ethyl cellulose is excellent in solubility in organic solvents and decomposability during firing, and provides a conductive paste with good printing properties.
  • a laminate containing a green sheet and a conductive sheet that provides an internal electrode layer by being fired is cut into a predetermined size by a method such as pressure cutting and divided. In some cases, the divided laminate is fired.
  • a laminate containing a conductive sheet formed using a conductive paste containing ethyl cellulose as a binder resin when cutting the laminate in a direction perpendicular or substantially perpendicular to the plane direction, there is a problem that delamination easily occurs due to delamination or cohesive failure due to the action of shear force or the like.
  • the present invention has been made in view of the above problems, and when cutting a laminate obtained by laminating an inorganic particle-containing film into small pieces, the other layers due to the action of shear force etc.
  • An inorganic particle-containing paste that provides an inorganic particle-containing film that is unlikely to cause intra-layer peeling due to delamination or cohesive failure, an inorganic particle-containing film that can be formed using the inorganic particle-containing paste, and the above inorganic particle-containing film. It is an object of the present invention to provide a laminate comprising:
  • the present inventors found that in an inorganic particle-containing paste containing a binder resin, inorganic particles, and an organic solvent, a molecule having a main chain made of a cellulose polymer and a branch chain made of an aliphatic polycarbonate or an aliphatic polyester
  • a combination of a branched polymer having a chain and a dispersant having at least one selected from the group consisting of a polyether chain, a polyester chain, and a polycarbonate chain I have perfected my invention. More specifically, the present invention provides the following (1) to (3).
  • (1) comprising a branched polymer, inorganic particles, a dispersant, and an organic solvent;
  • the molecular chain of the branched polymer has a main chain made of a cellulose polymer and a branch chain made of an aliphatic polycarbonate or an aliphatic polyester,
  • the branched chain may be linear or branched, branch chains may be attached to two or more of said main chains to bridge two or more of said main chains;
  • An inorganic particle-containing paste, wherein the dispersant has at least one selected from the group consisting of polyether chains, polyester chains, and polycarbonate chains.
  • the molecular chain of the branched polymer has a main chain made of a cellulose polymer and a branch chain made of an aliphatic polycarbonate or an aliphatic polyester,
  • the branched chain may be linear or branched, branch chains may be attached to two or more of said main chains to bridge two or more of said main chains;
  • An inorganic particle-containing film, wherein the dispersant has at least one selected from the group consisting of polyether chains, polyester chains, and polycarbonate chains.
  • an inorganic particle-containing paste that provides an inorganic particle-containing film that is unlikely to cause delamination from other layers due to the action of shear force or the like when laminated, and a paste that is formed using the inorganic particle-containing paste. It is possible to provide the obtained inorganic particle-containing film and the laminate containing the inorganic particle-containing film described above.
  • the inorganic particle-containing paste contains a branched polymer, inorganic particles, a dispersant, and an organic solvent.
  • a molecular chain of a branched polymer has a main chain and a branch chain.
  • the backbone consists of a cellulosic polymer.
  • the branches consist of aliphatic polycarbonates or aliphatic polyesters. Branches may be straight or branched. A branch may be attached to two or more backbones to bridge two or more backbones.
  • the dispersant has at least one selected from the group consisting of polyether chains, polyester chains and polycarbonate chains.
  • the inorganic particle-containing paste containing inorganic particles and an organic solvent
  • the inorganic particle-containing paste can contain inorganic particles Contains inorganic particles that do not easily cause delamination from other layers due to the action of shear force, etc., or intra-layer delamination due to cohesive failure when the laminate obtained by laminating the containing film is cut into small pieces. Give a membrane.
  • a branched polymer has a main chain and branch chains in its molecular chain.
  • the backbone consists of a cellulosic polymer.
  • the branches consist of aliphatic polycarbonates or aliphatic polyesters. Branches may be straight or branched.
  • a branch may be attached to two or more backbones to bridge two or more backbones.
  • the graft ratio which is the ratio of the mass of the branch chains to the mass of the main chain, is not particularly limited as long as the desired effects are not impaired.
  • the graft rate is preferably 10% by mass or more and 400% by mass or less, more preferably 50% by mass or more and 250% by mass or less, from the viewpoint of easily suppressing the occurrence of .
  • the graft rate can be determined by nuclear magnetic resonance spectroscopy (NMR analysis).
  • the mass average molecular weight of the branched polymer is not particularly limited.
  • the weight average molecular weight of the branched polymer is, for example, preferably 50,000 or more and 1,000,000 or less, more preferably 100,000 or more and 600,000 or less.
  • mechanical properties such as strength, elongation and toughness and moldability of the branched polymer are good.
  • Branched polymers have a backbone consisting of a cellulosic polymer.
  • the type of cellulosic polymer is not particularly limited as long as the main chain of the cellulosic polymer has functional groups to which branch chains can be bonded.
  • Preferred specific examples of cellulosic polymers include cellulose; alkylcelluloses such as methylcellulose, ethylcellulose, n-propylcellulose, isopropylcellulose, n-butylcellulose, tert-butylcellulose, and n-hexylcellulose; hydroxymethylcellulose, hydroxyethylcellulose.
  • hydroxyalkylcelluloses such as, hydroxypropylcellulose, and hydroxybutylcellulose
  • cellulose esters such as cellulose acetate, cellulose diacetate, cellulose triacetate, cellulose acetate propionate, and cellulose acetate butyrate
  • carboxymethylcellulose, carboxyethylcellulose, and carboxypropyl carboxyalkyl cellulose such as cellulose
  • cellulose derivatives such as nitrocellulose, aldehyde cellulose, dialdehyde cellulose, and sulfonated cellulose
  • a branched polymer may comprise two or more branched polymer molecules having different types of cellulosic polymer backbones.
  • Cellulose-based polymers are alkyl celluloses, alkyl celluloses, At least one selected from the group consisting of hydroxyalkyl cellulose and cellulose ester is preferred. Among the above preferred cellulosic polymers, at least one selected from the group consisting of methyl cellulose, ethyl cellulose, cellulose acetate butyrate, cellulose acetate propionate, and cellulose acetate is preferred.
  • the mass average molecular weight of the cellulose-based polymer is not particularly limited.
  • the mass average molecular weight of the cellulose-based polymer is, for example, preferably 5,000 or more, more preferably 10,000 or more, and particularly preferably 100,000 or more.
  • the mass average molecular weight of the cellulose-based polymer is preferably 1,000,000 or less, more preferably 750,000 or less, even more preferably 500,000 or less. More specifically, the molecular weight of the cellulose polymer is preferably 5,000 or more and 1,000,000 or less, more preferably 10,000 or more and 750,000 or less, and more preferably 10,000 or more and 750,000 or less.
  • the degree of substitution of the cellulosic polymer is not particularly limited as long as the desired effects are not impaired.
  • the degree of substitution of the cellulosic polymer is preferably 2 or more and 3 or less, typically 2.5.
  • the degree of substitution of a cellulosic polymer is the total number of hydroxyl groups substituted by groups other than branched chains among all hydroxyl groups in the constituent units of the cellulosic polymer.
  • branches have branches attached to a backbone composed of a cellulosic polymer.
  • the branches consist of aliphatic polycarbonates or aliphatic polyesters. Branches may be straight or branched. Typically, branches are attached to only one main chain. A branch may be attached to two or more backbones to bridge two or more backbones.
  • the aliphatic polycarbonate or aliphatic polyester that constitutes the branched chain is not particularly limited, as long as the branched chain can be formed in a state of being bound to the main chain or can be bound to the main chain.
  • Typical examples of branched chain aliphatic polycarbonates or aliphatic polyesters are given below in the description of methods for producing branched polymers.
  • the method for producing the branched polymer is not particularly limited.
  • a graft polymerization method is typically employed.
  • the graft polymerization method can be appropriately selected from various known methods depending on the type of branched chain.
  • a ring-opening polymerization method for example, a ring-opening polymerization method can be adopted.
  • a cyclic carbonate compound or a cyclic ester compound such as a lactone By subjecting a cyclic carbonate compound or a cyclic ester compound such as a lactone to ring-opening polymerization in the presence of a cellulose-based polymer, an aliphatic polycarbonate or an aliphatic polyester is formed as a graft chain on the molecular chain of the cellulose-based polymer. Generate.
  • propylene carbonate as a cyclic compound gives a branched chain made of polypropylene carbonate.
  • Butylene carbonate as a cyclic compound gives branches consisting of polybutylene carbonate.
  • Cyclohexene carbonate as a cyclic compound gives a branched chain consisting of polycyclohexene carbonate.
  • Trimethylene carbonate as a cyclic compound gives branches consisting of polytrimethylene carbonate.
  • 2,2-dimethyltrimethylene carbonate as a cyclic compound gives branches consisting of poly(2,2-dimethyltrimethylene carbonate).
  • ⁇ -caprolactone as a cyclic compound gives a branched chain composed of polycaprolactone, which is an aliphatic polyester.
  • L-lactide as a cyclic compound gives L-form polylactic acid, which is an aliphatic polyester, as a branched chain.
  • D-lactide as a cyclic compound gives D-form polylactic acid, which is an aliphatic polyester, as a branched chain.
  • Meso-lactide as a cyclic compound gives a syndiotactic polylactic acid, which is an aliphatic polyester, as a branched chain.
  • ⁇ -Propiolactone as a cyclic compound gives D-form poly(3-hydroxypropionic acid), which is an aliphatic polyester, as branched chains.
  • ⁇ -butyrolactone as a cyclic compound gives the aliphatic polyester poly(3-hydroxybutyric acid) as branched chains.
  • ⁇ -Butyrolactone as the cyclic compound gives the aliphatic polyester poly(4-hydroxybutyric acid) as branched chains.
  • ⁇ -valerolactone as a cyclic compound gives the aliphatic polyester poly(3-hydroxyvaleric acid) as branched chains.
  • P-dioxanone as a cyclic compound gives poly(p-dioxanone), an aliphatic polyester, as branched chains.
  • Ring-opening polymerization is typically carried out in the presence of a catalyst.
  • catalysts that can be used for ring-opening polymerization include alkali metals such as sodium and potassium; sodium hydroxide, potassium hydroxide, triethylaluminum, aluminum triisopropoxide, n-butyllithium, titanium tetraisopropoxy metal-containing catalysts such as sodium chloride, titanium tetrachloride, zirconium tetraisopropoxide, tin tetrachloride, sodium stannate, tin octoate, and diethylzinc dibutyltin dilaurate; pyridine, 4-N,N-dimethylaminopyridine, 1,5 ,7-triazabicyclo[4.4.0]dec-5-ene (TBD), 1,8-diazabicyclo[5.4.0]undec-7-ene (DBT) and other basic organic compounds; , acetic acid, methane
  • promoters include N-cyclohexyl-N'-phenylthiourea, N,N'-bis[3,5-bis(trifluoromethyl)phenyl]thiourea, N-[3,5-bis(tri fluoromethyl)phenyl]-N'-cyclohexylthiourea, (-)-sparteine and the like.
  • the amount of the catalyst that can be used in the ring-opening polymerization is appropriately determined in consideration of the amount of the catalyst used in conventionally known ring-opening polymerization reactions.
  • the amount of the catalyst used is preferably 0.001 mol or more, more preferably 0.005 mol or more, per 1 mol of the cyclic compound.
  • the amount of the catalyst used is preferably 0.2 mol or less, more preferably 0.1 mol or less, per 1 mol of the cyclic compound. More specifically, the amount of the catalyst used is preferably 0.001 mol or more and 0.2 mol or less, more preferably 0.005 mol or more and 0.1 mol or less, relative to 1 mol of the cyclic compound.
  • the amount of promoter used is the same as the amount of catalyst used.
  • Ring-opening polymerization is preferably carried out in the presence of a solvent.
  • the type of solvent is not particularly limited as long as it does not inhibit the ring-opening polymerization reaction.
  • Suitable specific examples of solvents include aliphatic hydrocarbon solvents such as pentane, hexane, octane, decane, and cyclohexane; aromatic hydrocarbon solvents such as benzene, toluene, and xylene; Halogenated hydrocarbon solvents such as dichloroethane, 1,2-dichloroethane, chlorobenzene, and bromobenzene; ethylene glycol dimethyl ether (monoglyme), diethylene glycol dimethyl ether (diglyme), triethylene glycol dimethyl ether (triglyme), tetrahydrofuran, 2-methyltetrahydrofuran, 1 Ether solvents such as ,4-dioxane, 1,3-dioxolane, and ani
  • the amount of solvent used is not particularly limited as long as the ring-opening polymerization reaction proceeds well.
  • the amount of the solvent used is preferably 100 parts by mass or more and 1000 parts by mass or less with respect to 100 parts by mass of the cyclic compound, for example.
  • a cellulosic resin, a cyclic compound, a catalyst, and optionally a cocatalyst and/or solvent are charged into a reaction vessel, and the mixture in the reaction vessel is stirred to carry out ring-opening polymerization. is done.
  • a preferred reaction temperature for ring-opening polymerization varies depending on the cyclic compound, the type of catalyst, the amount of catalyst used, and the like.
  • the reaction temperature for ring-opening polymerization is preferably ⁇ 80° C. or higher, more preferably ⁇ 40° C. or higher, and even more preferably 0° C. or higher.
  • the reaction temperature of the ring-opening polymerization is preferably 250° C. or lower, more preferably 200° C. or lower, and even more preferably 150° C. or lower. More specifically, the reaction temperature is preferably ⁇ 80° C. or higher and 250° C. or lower, more preferably ⁇ 40° C. or higher and 200° C. or lower, even more preferably 0° C. or higher and 150° C. or lower.
  • reaction time for ring-opening polymerization varies depending on the type of cyclic compound, the type of catalyst, the amount of catalyst used, etc. Typically, the reaction time for ring-opening polymerization is preferably 1 hour or more and 40 hours or less.
  • the amount of the cyclic compound used in the ring-opening polymerization is appropriately determined in consideration of the above-mentioned graft ratio.
  • Another preferred method for producing a branched polymer is a method of copolymerizing a cyclic ether and carbon dioxide in the presence of a cellulosic resin. Such a copolymerization reaction produces branched chains of aliphatic polycarbonate.
  • the cellulosic resin is as described above.
  • cyclic ethers the corresponding cyclic ethers of the branched aliphatic polycarbonates are suitably selected.
  • Preferred examples of cyclic ethers include ethylene oxide, propylene oxide, trimethylene oxide (oxetane), 3,3-dimethyltrimethylene oxide (3,3-dimethyloxetane), 1,2-butylene oxide and 2,3-butylene oxide.
  • cyclic ethers there are branched polymers that have excellent polymerization reactivity and that easily suppress the occurrence of delamination due to external force when inorganic particle-containing films are laminated using inorganic particle-containing pastes.
  • Ethylene oxide, propylene oxide, trimethylene oxide, and 1,2-butylene oxide are preferred, and ethylene oxide, propylene oxide, and trimethylene oxide are more preferred, as they are available.
  • An example of an aliphatic polycarbonate produced by copolymerizing a cyclic ether and carbon dioxide is shown below.
  • Ethylene oxide gives polyethylene carbonate.
  • Propylene oxide gives polypropylene carbonate.
  • Trimethylene oxide gives polytrimethylene carbonate.
  • the copolymerization of cyclic ether and carbon dioxide is carried out in the presence of a metal catalyst.
  • metal catalysts include zinc-based catalysts, aluminum-based catalysts, chromium-based catalysts, cobalt-based catalysts, and the like. Among these, zinc-based catalysts and cobalt-based catalysts are preferred because of their high polymerization activity.
  • zinc-based catalysts include diethylzinc-water-based catalysts, diethylzinc-pyrogallol-based catalysts, bis((2,6-diphenyl)phenoxy)zinc, N-(2,6-diisopropylphenyl)- 3,5-di-tert-butyl salicylaldoiminato zinc, 2-((2,6-diisopropylphenyl)amido)-4-((2,6-diisopropylphenyl)imino)-2-pentenoic acid acetate, adipine zinc acid, zinc glutarate, and the like.
  • cobalt-based catalysts include cobalt acetate-acetic acid-based catalysts, N,N'-bis(3,5-di-tert-butylsalicylidene)-1,2-cyclohexanediaminocobalt acetate, N, N'-bis-(3,5-di-tert-butylsalicylidene)-1,2-cyclohexanediaminocobalt pentafluorobenzoate, N,N'-bis-(3,5-di-tert-butylsalicylidene) den)-1,2-cyclohexanediaminocobalt chloride, N,N'-bis-(3,5-di-tert-butylsalicylidene)-1,2-cyclohexanediaminocobalt nitrate, N,N'-bis -(3,5-di-tert-butylsalicylidene)-1,2-cyclohexanediaminocobalt nit
  • a cobalt-based catalyst is preferably used together with a co-catalyst.
  • promoters include pyridine, 4-N,N-dimethylaminopyridine, N-methylimidazole, tetrabutylammonium chloride, tetrabutylammonium acetate, triphenylphosphine, bis(triphenylphosphoranylidene)ammonium chloride, and bis(triphenylphosphoranylidene)ammonium acetate.
  • the amount of the catalyst that can be used in the copolymerization of the cyclic ether and carbon dioxide is appropriately determined in consideration of the amounts of conventionally known catalysts used for such copolymerization reactions.
  • the amount of the catalyst used is preferably 0.001 mol or more, more preferably 0.005 mol or more, per 1 mol of the cyclic ether.
  • the amount of the catalyst used is preferably 0.2 mol or less, more preferably 0.1 mol or less, per 1 mol of the cyclic ether. More specifically, the amount of the catalyst to be used is preferably 0.001 mol or more and 0.2 mol or less, more preferably 0.005 mol or more and 0.1 mol or less, relative to 1 mol of the cyclic ether.
  • the amount of promoter used is the same as the amount of catalyst used.
  • Copolymerization of the cyclic ether and carbon dioxide is preferably carried out in the presence of a solvent.
  • the type of solvent is not particularly limited as long as it does not inhibit the copolymerization reaction.
  • Suitable specific examples of solvents include aliphatic hydrocarbon solvents such as pentane, hexane, octane, decane, and cyclohexane; aromatic hydrocarbon solvents such as benzene, toluene, and xylene; Halogenated hydrocarbon solvents such as dichloroethane, 1,2-dichloroethane, chlorobenzene, and bromobenzene; ethylene glycol dimethyl ether (monoglyme), diethylene glycol dimethyl ether (diglyme), triethylene glycol dimethyl ether (triglyme), tetrahydrofuran, 2-methyltetrahydrofuran, 1 Ether solvents such as ,4-dioxane, 1,3-diox
  • the amount of solvent used is not particularly limited as long as the copolymerization reaction proceeds well.
  • the amount of the solvent used is preferably 100 parts by mass or more and 1000 parts by mass or less with respect to 100 parts by mass of the cyclic ether, for example.
  • a cellulose resin, a cyclic ether, a catalyst, and optionally a co-catalyst and/or solvent are charged into a reaction vessel, and then carbon dioxide is injected into the reaction vessel, followed by Copolymerization is carried out by stirring the mixture inside.
  • the amount of the cyclic ether and carbon dioxide to be used in the copolymerization is appropriately determined in consideration of the above-mentioned graft ratio.
  • the pressure of carbon dioxide in the reaction vessel during copolymerization is preferably 0.1 MPa or more, more preferably 0.2 MPa or more, more preferably 0.5 MPa as a gauge pressure at the reaction temperature, from the viewpoint of good progress of the reaction. The above is more preferable.
  • the pressure of carbon dioxide in the reaction vessel is preferably 20 MPa or less, more preferably 10 MPa or less, and 5 MPa or less from the viewpoint of work safety and that there is no need to use an expensive pressure-resistant container with high pressure resistance. It can be.
  • the gauge pressure of carbon dioxide in the reaction solution is preferably 0.1 MPa or more and 20 MPa or less, more preferably 0.2 MPa or more and 10 MPa or less, and even more preferably 0.5 MPa or more and 5 MPa or less.
  • the copolymerization reaction may be carried out under supercritical conditions of carbon dioxide.
  • a preferred reaction temperature for copolymerization varies depending on the type of cyclic ether, the type of catalyst, the amount of catalyst used, and the like.
  • the reaction temperature for copolymerization is preferably 0° C. or higher, more preferably 20° C. or higher, and even more preferably 30° C. or higher.
  • the reaction temperature for copolymerization is preferably 100° C. or lower, more preferably 80° C. or lower, and even more preferably 60° C. or lower.
  • the reaction temperature for copolymerization is preferably 0° C. or higher and 100° C. or lower, more preferably 20° C. or higher and 80° C. or lower, and even more preferably 30° C. or higher and 60° C. or lower.
  • the reaction time for copolymerization varies depending on the type of cyclic ether, the type of catalyst, the amount of catalyst used, etc.
  • the reaction time for ring-opening polymerization is preferably 1 hour or more and 40 hours or less.
  • the amount of the cyclic compound used in the ring-opening polymerization is appropriately determined in consideration of the above-mentioned graft ratio.
  • the branch chain is made of an aliphatic polyester obtained by polycondensation of an aliphatic dicarboxylic acid and a glycol such as polyethylene succinate, polyethylene adipate, polybutylene succinate, polybutylene adipate, etc.
  • the fatty acid A branched polymer can also be produced by copolycondensation of an aliphatic dicarboxylic acid and glycols according to the structure of the family polyester according to a conventional method.
  • the amount of the branched polymer used in the inorganic particle-containing paste is not particularly limited as long as the desired effect is not impaired.
  • the ratio of the volume of the branched polymer to the sum of the volume of the branched polymer and the volume of the inorganic particles is preferably 17% by volume or more and 29% by volume or less, and is 19% by volume or more and 27% by volume or less. is more preferred.
  • the inorganic particle-containing paste contains inorganic particles.
  • inorganic particles inorganic particles conventionally added to various resin compositions can be used without particular limitation. Ceramic particles and/or metal particles are typically preferred as inorganic particles.
  • a suitable example of the inorganic particle-containing film formed using the inorganic particle-containing paste is a conductive sheet containing metal particles and providing an internal electrode layer, which constitutes a laminate useful as a precursor of a laminated ceramic electronic component. and green sheets containing ceramic particles.
  • Ceramic particles are used as inorganic particles when inorganic particle-containing pastes are used to form green sheets that provide dielectric layers in multilayer ceramic electronic components.
  • inorganic particles may comprise a combination of metal particles and ceramic particles.
  • the constituent material of the ceramic particles preferably contains at least one selected from the group consisting of Ba, Ti, Sr, Ca and Zr.
  • Preferred specific examples of ceramic particles include barium titanate particles, calcium titanate particles, strontium titanate particles, lead zirconate titanate particles, and the like.
  • the ceramic particles one type may be used alone, or two or more types may be used in combination.
  • ceramic particles containing barium titanate particles as a main component and a component containing Ca, Zr, or Sr as an auxiliary component may be used.
  • the particle size of the ceramic particles is not particularly limited as long as the desired effect is not impaired.
  • the average particle size of the ceramic particles is preferably 3 nm or more and 500 nm or less as an average particle size according to the BET conversion method.
  • metal particles are preferred as the inorganic particles. At least one selected from the group consisting of Ni, Cu, Ag, and Au is preferable as the metal constituting the metal particles.
  • the average particle size of the metal particles is not particularly limited as long as the desired effects are not impaired.
  • the average particle diameter of the metal particles is preferably 3000 nm or less, more preferably 30 nm or more and 1000 nm or less as an SEM diameter.
  • the metal particles may contain two or more kinds of metal particles.
  • the metal particles may be particles of an alloy containing two or more metals.
  • the mass of the ceramic particles is preferably 4% by mass or more and 25% by mass or less with respect to the mass of the metal particles.
  • the inorganic particle-containing paste contains a dispersant.
  • the dispersant has at least one selected from the group consisting of polyether chains, polyester chains and polycarbonate chains. Having a polyether chain, a polyester chain, or a polycarbonate chain makes the dispersant more compatible with branched polymers having branches made of aliphatic polycarbonates or aliphatic polyesters.
  • Polyester chains and polycarbonate chains include polyester chains and polycarbonate chains described as branches of branched polymers.
  • a polyoxyalkylene chain is preferred as the polyether chain.
  • Preferred examples of polyoxyalkylene chains include polyoxyethylene chains and polyoxypropylene chains.
  • the dispersant preferably has a hydrophobic group in terms of the dispersing effect.
  • Preferred examples of the hydrophobic group include hydrocarbon groups and fluorinated hydrocarbon groups, with aliphatic hydrocarbon groups and aliphatic fluorinated hydrocarbon groups being more preferred.
  • the dispersant preferably has an adsorptive group such as a carboxyl group, an amino group, a phosphoric acid group, or a sulfonic acid group that can bond to the surface of the inorganic particles in terms of the dispersing effect.
  • an adsorptive group such as a carboxyl group, an amino group, a phosphoric acid group, or a sulfonic acid group that can bond to the surface of the inorganic particles in terms of the dispersing effect.
  • the molecular weight of the dispersant is not particularly limited as long as the desired effects are not impaired.
  • the dispersant may be a so-called low-molecular-weight compound or a polymer-type dispersant.
  • a polymer-type dispersant is preferable as the dispersant in terms of ease of molecular design to give the dispersant the above-described various functional groups.
  • Polymer-type dispersants include, for example, (meth)acrylic monomers having hydrophobic chains such as hydrocarbon chains, and (meth)acrylic monomers having hydrophilic chains such as polyether chains, polyester chains, and polycarbonate chains.
  • a (meth)acrylic resin having a comb structure copolymerized with a monomer can be preferably used.
  • Comb-structured (meth)acrylic resins in which the above hydrophobic chains and hydrophilic chains are introduced as side chains into known (meth)acrylic resins are also preferably used as polymer-type dispersants.
  • the amount of the dispersant to be used is preferably 0.5 mg/m 2 to 5 mg/m 2 , more preferably 1.0 mg/m 2 to 2.5 mg/m 2 with respect to the surface area of the particles to be dispersed.
  • the inorganic particle-containing paste may contain components other than the above components as long as the desired effects are not impaired.
  • Other components include, for example, at least one additive selected from the group consisting of plasticizers and antistatic agents.
  • the amount of other ingredients to be used is not particularly limited as long as the desired effects are not impaired.
  • the amount of other components to be used is appropriately determined in consideration of the amounts that can be normally used according to the types of the above additives.
  • the inorganic particle-containing paste contains an organic solvent.
  • organic solvents include alkanols such as isopropanol; hydrocarbon-based solvents such as toluene, xylene, and isophorone; terpineol-based solvents such as terpineol and dihydroterpineol; Ester solvents such as pentyl, n-hexyl acetate, n-heptyl acetate, n-octyl acetate, terpineol acetate, and dihydroterpineol acetate; ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, methyl carbitol, Glycol ether solvents such as ethyl carbitol, butyl carbitol, propylene glycol monomethyl ether, ethylene glycol dimethyl ether, and diethylene glycol di
  • ethyl acetate, n-butyl acetate, n-pentyl acetate, n-hexyl acetate, n-heptyl acetate, and n-acetate have good affinity for branched polymers and dispersants.
  • Ester solvents such as octyl, terpineol acetate, and dihydroterpineol acetate
  • glycol ester solvents such as ethylene glycol monomethyl ether acetate, diethylene glycol monomethyl ether acetate, propylene glycol monomethyl ether acetate, and dipropylene glycol monomethyl ether acetate are preferred.
  • the amount of organic solvent used is not particularly limited as long as the desired effect is not impaired.
  • the amount of the organic solvent used is preferably 60% by volume or more and 97% by volume or less, more preferably 80% by volume or more and 94% by volume or less, relative to the total volume of the inorganic particle-containing paste.
  • the inorganic particle-containing film contains a branched polymer, inorganic particles, and a dispersant.
  • the branched polymer, inorganic particles, and dispersant are all the same as those described above for the inorganic particle-containing paste.
  • the inorganic particle-containing film can be formed by forming the inorganic particle-containing paste into a film, and then removing at least part of the organic solvent from the inorganic particle-containing paste film.
  • a method for removing the organic solvent is not particularly limited.
  • the organic solvent is removed by a method such as heating or exposure to a reduced pressure atmosphere.
  • the inorganic particle-containing film is preferably, for example, a green sheet in which inorganic particles contain ceramic particles and which, when fired, provides a dielectric layer in a multilayer ceramic electronic component.
  • a green sheet can be formed, for example, by a known method such as a die coater sheet method or a doctor blade method.
  • the thickness of the green sheet is preferably 4 ⁇ m or less, more preferably 3 ⁇ m or less.
  • the inorganic particle-containing film it is also preferable to use a conductive sheet containing inorganic particles containing metal particles and providing an internal electrode layer in a multilayer ceramic electronic component by firing.
  • the method of forming the conductive sheet is not particularly limited.
  • the conductive sheet is formed by printing an inorganic particle-containing paste on the above green sheet.
  • a printing method for example, a gravure printing method, a screen printing method, or the like can be applied.
  • the film thickness of the conductive sheet is preferably 1.5 ⁇ m or less, for example.
  • the laminate includes at least one layer made of the inorganic particle-containing film described above.
  • a green sheet that provides a dielectric layer by firing and a conductive sheet that provides an internal electrode layer by firing are stacked, Such laminates, in which the green sheet is the inorganic particle-containing film described above or the conductive sheet is the inorganic particle-containing film described above, are suitably used in the production of multilayer ceramic electronic components. After firing the laminate, the fired laminate is subjected to various known processes for manufacturing a multilayer ceramic electronic component, thereby obtaining a multilayer ceramic electronic component. Examples of laminated ceramic electronic components include laminated ceramic capacitors, inductors, piezoelectric elements, and thermistors.
  • Example 1 A conductive paste containing Ni particles as inorganic particles was produced. Ni particles with an average SEM diameter of 200 nm and barium titanate particles with a BET diameter of 20 nm were used as inorganic particles for the preparation of the conductive paste.
  • the branched polymer a resin having a main chain made of ethyl cellulose and a branch chain made of polypropylene carbonate, which is an aliphatic polycarbonate, was used.
  • the dispersant a polymer dispersant having a carboxy group as an adsorptive functional group, a chain aliphatic hydrocarbon group as a hydrophobic group, and a polyoxyethylene group (polyether chain) was used. Dihydroterpineol acetate, which is an ester solvent, was used as the organic solvent.
  • (Dielectric paste preparation) 7.2 parts by mass of polypropylene carbonate, which is an aliphatic polycarbonate, was dissolved in 26 parts by mass of n-butyl acetate and 26 parts by mass of dimethyl carbonate.
  • Polypropylene carbonate has a carboxylic acid-modified site in the repeating structure. The proportion of carboxylic acid-modified sites is 0.8 mol % in the entire structure.
  • 40 parts by mass of barium titanate particles (0.2 ⁇ m in BET equivalent diameter) as ceramic particles, 0.7 parts by mass of polyethylene glycol as a plasticizer, and 0.1 part by mass of an antistatic agent were added. added. The obtained suspension was then dispersed in a ball mill for a predetermined time to obtain a dielectric paste.
  • Green sheet preparation A dielectric paste was applied onto a PET (polyethylene terephthalate) film by a doctor blade method. After that, the coating film was dried to obtain a green sheet containing ceramic particles. The thickness of the green sheet was adjusted so that the thickness of the dielectric layer after firing was 1.7 ⁇ m.
  • a conductive paste was screen-printed on the green sheet.
  • the printed conductive paste was dried to obtain a conductive sheet.
  • the conductive paste was printed on the green sheet so as to form a pattern in which the planar dimension of the chip-shaped laminate cut and fired was 3.2 mm ⁇ 1.6 mm.
  • the thickness of the conductive sheet as the thickness of the metal component alone was 0.4 ⁇ m by XRF measurement.
  • the thickness of the conductive sheet immediately after drying was 0.8 ⁇ m.
  • the green sheet provided with the conductive sheet was peeled off from the PET film. 200 peeled sheets were laminated, and the 200 laminated sheets were placed in a mold. The sheets in the mold were pressed and crimped to obtain a laminate. The obtained laminate was cut into a predetermined size by press cutting to obtain a chip-shaped unfired laminate.
  • Example 2 The same test as in Example 1 was performed, except that the branched polymer was changed to a resin having a main chain made of ethyl cellulose and branch chains made of polycaprolactone, which is an aliphatic polyester. Table 1 shows the evaluation results of the occurrence of structural defects.
  • Example 3 The same test as in Example 1 was performed, except that the polyoxyethylene group (polyether chain) of the dispersant was changed to a polycaprolactone group (polyester chain). Table 1 shows the evaluation results of the occurrence of structural defects.
  • Example 4 The same test as in Example 1 was conducted, except that the hydrophilic group of the dispersant was changed to a polypropylene carbonate group (polycarbonate chain). Table 1 shows the evaluation results of the occurrence of structural defects.
  • Example 5 The branched polymer is changed to a resin having a main chain made of ethyl cellulose and a branch chain made of polycaprolactone, which is an aliphatic polyester, and the polyoxyethylene group (polyether chain) of the dispersant is replaced with a polycaprolactone group ( The same test as in Example 1 was performed, except that the polyester chain was changed. Table 1 shows the evaluation results of the occurrence of structural defects.
  • Example 6 A branched polymer is changed to a resin having a main chain made of ethyl cellulose and a branch chain made of polycaprolactone, which is an aliphatic polyester, and a hydrophilic group possessed by a dispersant is changed to a polypropylene carbonate group (polycarbonate chain).
  • polypropylene carbonate group polypropylene carbonate chain
  • Example 7 The same test as in Example 1 was performed, except that ceramic particles were not used in the preparation of the conductive paste. Table 1 shows the evaluation results of the occurrence of structural defects.
  • Example 8 Except for changing the branched polymer to a resin having a main chain made of ethyl cellulose and branch chains made of polycaprolactone, an aliphatic polyester, and not using ceramic particles in the preparation of the conductive paste, A test similar to that of Example 1 was carried out. Table 1 shows the evaluation results of the occurrence of structural defects.
  • Example 9 The same test as in Example 1 was performed except that the metal particles were changed to Cu particles having an SEM diameter of 500 nm. Table 1 shows the evaluation results of the occurrence of structural defects.
  • Example 10 Except for changing the branched polymer to a resin having a main chain made of ethyl cellulose and a branch chain made of polycaprolactone, which is an aliphatic polyester, and changing the metal particles to Cu particles having an SEM diameter of 500 nm, A test similar to that of Example 1 was carried out. Table 1 shows the evaluation results of the occurrence of structural defects.
  • the binder is the ratio of the volume of the binder resin to the sum of the volume of the binder resin and the volume of the inorganic particles in the conductive paste.
  • the same test as in Example 1 was conducted except that the resin volume ratio was changed to 17% by volume. Table 1 shows the evaluation results of the occurrence of structural defects.
  • the binder is the ratio of the volume of the binder resin to the sum of the volume of the binder resin and the volume of the inorganic particles in the conductive paste.
  • the same test as in Example 1 was performed, except that the resin volume ratio was changed to 29% by volume.
  • Table 1 shows the evaluation results of the occurrence of structural defects.
  • Example 13 The branched polymer is changed to a resin having a main chain made of ethyl cellulose and a branch chain made of polycaprolactone which is an aliphatic polyester, the amount of the branched polymer used, and the amount of Ni particles and ceramic particles used are changed.
  • the binder resin volume ratio which is the ratio of the volume of the binder resin to the total of the volume of the binder resin in the conductive paste and the volume of the inorganic particles, is changed to 17% by volume. The same test as in 1 was performed. Table 1 shows the evaluation results of the occurrence of structural defects.
  • Example 14 The branched polymer is changed to a resin having a main chain made of ethyl cellulose and a branch chain made of polycaprolactone which is an aliphatic polyester, the amount of the branched polymer used, and the amount of Ni particles and ceramic particles used are changed.
  • the binder resin volume ratio which is the ratio of the volume of the binder resin to the total of the volume of the binder resin in the conductive paste and the volume of the inorganic particles, is changed to 29% by volume.
  • Table 1 shows the evaluation results of the occurrence of structural defects.
  • Example 1 The same test as in Example 1 was performed, except that the branched polymer was changed to ethyl cellulose, which is a linear polymer. Table 1 shows the evaluation results of the occurrence of structural defects.
  • Example 2 The branched polymer is changed to ethyl cellulose, which is a linear polymer, and the dispersant has a carboxy group, which is an adsorptive functional group, and a chain aliphatic hydrocarbon group, which is a hydrophobic group.
  • the same test as in Example 1 was performed, except that the dispersant was changed to a polymeric dispersant that did not have an ethylene group (polyether chain).
  • Table 1 shows the evaluation results of the occurrence of structural defects.
  • Example 3 The dispersant is changed to a polymeric dispersant that has a carboxy group, which is an adsorptive functional group, and a chain aliphatic hydrocarbon group, which is a hydrophobic group, but does not have a polyoxyethylene group (polyether chain). Except for this, the same test as in Example 1 was performed. Table 1 shows the evaluation results of the occurrence of structural defects.
  • Example 4 The branched polymer is changed to a resin having a main chain composed of ethyl cellulose and a branch chain composed of polycaprolactone, which is an aliphatic polyester, and the dispersant is composed of a carboxy group, which is an adsorptive functional group, and a hydrophobic group.
  • the same test as in Example 1 was performed, except that the polymer dispersant was changed to a polymeric dispersant having certain linear aliphatic hydrocarbon groups but no polyoxyethylene groups (polyether chains). Table 1 shows the evaluation results of the occurrence of structural defects.
  • Example 5 The same test as in Example 1 was performed, except that the branched polymer was changed to a linear polymer, ethyl cellulose, and the hydrophilic group of the dispersant was changed to a polycaprolactone group (polyester chain). Table 1 shows the evaluation results of the occurrence of structural defects.
  • Example 6 The same test as in Example 1 was performed, except that the branched polymer was changed to a linear polymer, ethyl cellulose, and the hydrophilic group of the dispersant was changed to a polypropylene carbonate group (polycarbonate chain). Table 1 shows the evaluation results of the occurrence of structural defects.
  • Example 7 The same test as in Example 1 was performed, except that the branched polymer was changed to ethyl cellulose, which is a linear polymer, and ceramic particles were not used in the preparation of the conductive paste. Table 1 shows the evaluation results of the occurrence of structural defects.
  • Example 8 The same test as in Example 1 was performed, except that the branched polymer was changed to ethyl cellulose, which is a linear polymer, and the metal particles were changed to Cu particles having an SEM diameter of 500 nm. Table 1 shows the evaluation results of the occurrence of structural defects.
  • the specific functional groups in Table 1 below are types of functional groups corresponding to any of polyether chains, polyester chains, and polycarbonate chains.
  • the binder resin volume ratio is the ratio of the volume of the binder resin to the sum of the volume of the binder resin and the volume of the inorganic particles in the conductive paste.
  • the abbreviations in the table below are as follows.
  • EC ethyl cellulose
  • PCL polycaprolactone (aliphatic polyester)
  • PPC polypropylene carbonate (aliphatic polycarbonate)
  • a branched polymer having a main chain composed of a cellulosic polymer and branch chains composed of an aliphatic polycarbonate or an aliphatic polyester, and a dispersant having hydrophilic chains such as polyether chains are combined.
  • the binder resin contained in the conductive paste consists only of a main chain made of a cellulose polymer, or when the dispersant does not have a specific hydrophilic chain, when cutting the laminate It can be seen that delamination is likely to occur as a structural defect.

Abstract

Provided are: an inorganic particle-containing paste that yields an inorganic particle-containing film that, when laminated, resists the generation, due to the action of, e.g., shear force, of interlayer separation from another layer; an inorganic particle-containing film that can be formed using the inorganic particle-containing paste; and a laminate that contains the inorganic particle-containing film. The combination of a branched polymer and a dispersing agent is used in an inorganic particle-containing paste comprising a binder resin, inorganic particles, and organic solvent, wherein the branched polymer has a molecular chain that has a main chain comprising a cellulosic polymer and a branch chain comprising an aliphatic polycarbonate or an aliphatic polyester, and the dispersing agent has at least one selected from the group consisting of polyether chains, polyester chains, and polycarbonate chains.

Description

無機粒子含有ペースト、無機粒子含有膜、及び積層体Inorganic particle-containing paste, inorganic particle-containing film, and laminate
 本発明は、無機粒子含有ペーストと、当該無機粒子含有ペーストを用いて形成され得る無機粒子含有膜と、前述の無機粒子含有膜を含む積層体とに関する。 The present invention relates to an inorganic particle-containing paste, an inorganic particle-containing film that can be formed using the inorganic particle-containing paste, and a laminate containing the inorganic particle-containing film.
 種々の無機粒子を含有する膜が、種々の用途において使用されている。かかる膜を形成する方法としては、無機粒子を含むペーストが用いる方法が知られている。無機粒子を含むペーストを、塗布や印刷等の方法により製膜し、形成された膜を硬化させたり乾燥させたりすることにより、無機粒子を含有する膜を形成できる。 Films containing various inorganic particles are used in various applications. As a method for forming such a film, a method using a paste containing inorganic particles is known. A film containing inorganic particles can be formed by forming a film from a paste containing inorganic particles by a method such as coating or printing, and curing or drying the formed film.
 無機粒子含有膜の体表的な用途としては、積層セラミックコンデンサ等の積層セラミック電子部品を製造するために用いられる積層体が知られている。かかる積層体においては、通常、セラミック粉末を含むグリーンシートと、金属粒子を含む内部電極層の前駆膜とが積層されている。 Laminates used to manufacture laminated ceramic electronic components such as laminated ceramic capacitors are known as typical applications of inorganic particle-containing films. In such a laminate, green sheets containing ceramic powder and precursor films of internal electrode layers containing metal particles are usually laminated.
 例えば、焼成により内部電極層を与える導電性シートを形成するための導電性ペーストとしては、金属粒子と、バインダー樹脂としてのエチルセルロースとを含む導電性ペーストが提案されている(特許文献1を参照。)。エチルセルロースは、有機溶媒への溶解性や焼成時の分解性に優れるとともに、印刷特性が良好な導電性ペーストを与える。 For example, as a conductive paste for forming a conductive sheet that provides internal electrode layers by firing, a conductive paste containing metal particles and ethyl cellulose as a binder resin has been proposed (see Patent Document 1. ). Ethyl cellulose is excellent in solubility in organic solvents and decomposability during firing, and provides a conductive paste with good printing properties.
特開2018-168238号公報JP 2018-168238 A
 積層セラミック電子部品を製造する際には、焼成されることで内部電極層を与える導電性シートとグリーンシートとを含む積層体を押切り等の方法により所定のサイズに切断して分割した後、分割された積層体を焼成する場合がある。しかし、エチルセルロースをバインダー樹脂として含む導電性ペーストを用いて形成された導電性シートを含む積層体を用いる場合、積層体を面方向に対して垂直又は略垂直方向に切断する際に切断面にかかるせん断力等の作用によって、層間剥離や凝集破壊による層内剥離が生じやすい問題がある。 When manufacturing a multilayer ceramic electronic component, a laminate containing a green sheet and a conductive sheet that provides an internal electrode layer by being fired is cut into a predetermined size by a method such as pressure cutting and divided. In some cases, the divided laminate is fired. However, when using a laminate containing a conductive sheet formed using a conductive paste containing ethyl cellulose as a binder resin, when cutting the laminate in a direction perpendicular or substantially perpendicular to the plane direction, There is a problem that delamination easily occurs due to delamination or cohesive failure due to the action of shear force or the like.
 本発明は、上記の課題に鑑みなされたものであって、無機粒子含有膜を積層して得られた積層体を小片化するために切断する場合に、せん断力等の作用による他の層との層間剥離や凝集破壊による層内剥離を生じさせにくい無機粒子含有膜を与える無機粒子含有ペーストと、当該無機粒子含有ペーストを用いて形成され得る無機粒子含有膜と、前述の無機粒子含有膜を含む積層体とを提供することを目的とする。 The present invention has been made in view of the above problems, and when cutting a laminate obtained by laminating an inorganic particle-containing film into small pieces, the other layers due to the action of shear force etc. An inorganic particle-containing paste that provides an inorganic particle-containing film that is unlikely to cause intra-layer peeling due to delamination or cohesive failure, an inorganic particle-containing film that can be formed using the inorganic particle-containing paste, and the above inorganic particle-containing film. It is an object of the present invention to provide a laminate comprising:
 本発明者らは、バインダー樹脂と、無機粒子と、有機溶媒とを含む無機粒子含有ペーストにおいて、セルロース系ポリマーからなる主鎖と、脂肪族ポリカーボネート、又は脂肪族ポリエステルからなる枝鎖とを有する分子鎖を有する分岐型ポリマーと、ポリエーテル鎖、ポリエステル鎖、及びポリカーボネート鎖からなる群より選択される少なくとも1種を有する分散剤とを組み合わせて用いることにより、上記の課題を解決できることを見出し、本発明を完成するに至った。より具体的には、本発明は以下の(1)~(3)を提供する。 The present inventors found that in an inorganic particle-containing paste containing a binder resin, inorganic particles, and an organic solvent, a molecule having a main chain made of a cellulose polymer and a branch chain made of an aliphatic polycarbonate or an aliphatic polyester We have found that the above problems can be solved by using a combination of a branched polymer having a chain and a dispersant having at least one selected from the group consisting of a polyether chain, a polyester chain, and a polycarbonate chain. I have perfected my invention. More specifically, the present invention provides the following (1) to (3).
(1)分岐型ポリマーと、無機粒子と、分散剤と、有機溶媒とを含み、
 分岐型ポリマーの分子鎖が、セルロース系ポリマーからなる主鎖と、脂肪族ポリカーボネート、又は脂肪族ポリエステルからなる枝鎖とを有し、
 枝鎖は、直鎖状であっても分岐鎖状であってもよく、
 枝鎖は、2以上の前記主鎖に結合して2以上の前記主鎖を架橋してもよく、
 分散剤が、ポリエーテル鎖、ポリエステル鎖、及びポリカーボネート鎖からなる群より選択される少なくとも1種を有する、無機粒子含有ペースト。
(1) comprising a branched polymer, inorganic particles, a dispersant, and an organic solvent;
The molecular chain of the branched polymer has a main chain made of a cellulose polymer and a branch chain made of an aliphatic polycarbonate or an aliphatic polyester,
The branched chain may be linear or branched,
branch chains may be attached to two or more of said main chains to bridge two or more of said main chains;
An inorganic particle-containing paste, wherein the dispersant has at least one selected from the group consisting of polyether chains, polyester chains, and polycarbonate chains.
(2)分岐型ポリマーと、無機粒子と、分散剤とを含み、
 分岐型ポリマーの分子鎖が、セルロース系ポリマーからなる主鎖と、脂肪族ポリカーボネート、又は脂肪族ポリエステルからなる枝鎖とを有し、
 枝鎖は、直鎖状であっても分岐鎖状であってもよく、
 枝鎖は、2以上の前記主鎖に結合して2以上の前記主鎖を架橋してもよく、
 分散剤が、ポリエーテル鎖、ポリエステル鎖、及びポリカーボネート鎖からなる群より選択される少なくとも1種を有する、無機粒子含有膜。
(2) comprising a branched polymer, inorganic particles, and a dispersant;
The molecular chain of the branched polymer has a main chain made of a cellulose polymer and a branch chain made of an aliphatic polycarbonate or an aliphatic polyester,
The branched chain may be linear or branched,
branch chains may be attached to two or more of said main chains to bridge two or more of said main chains;
An inorganic particle-containing film, wherein the dispersant has at least one selected from the group consisting of polyether chains, polyester chains, and polycarbonate chains.
(3)少なくとも1層が、(2)に記載の無機粒子含有膜からなる積層体。 (3) A laminate in which at least one layer comprises the inorganic particle-containing film according to (2).
 本発明によれば、積層した場合に、せん断力等の作用による他の層との層間剥離を生じさせにくい無機粒子含有膜を与える無機粒子含有ペーストと、当該無機粒子含有ペーストを用いて形成され得る無機粒子含有膜と、前述の無機粒子含有膜を含む積層体とを提供することができる。 According to the present invention, an inorganic particle-containing paste that provides an inorganic particle-containing film that is unlikely to cause delamination from other layers due to the action of shear force or the like when laminated, and a paste that is formed using the inorganic particle-containing paste. It is possible to provide the obtained inorganic particle-containing film and the laminate containing the inorganic particle-containing film described above.
≪無機粒子含有ペースト≫
 無機粒子含有ペーストは、分岐型ポリマーと、無機粒子と、分散剤と、有機溶媒とを含む。
 分岐型ポリマーの分子鎖は、主鎖と枝鎖とを有する。主鎖は、セルロース系ポリマーからなる。枝鎖は、脂肪族ポリカーボネート、又は脂肪族ポリエステルからなる。枝鎖は、直鎖状であっても分岐鎖状であってもよい。枝鎖は、2以上の主鎖に結合して2以上の主鎖を架橋してもよい。
 分散剤は、ポリエーテル鎖、ポリエステル鎖、及びポリカーボネート鎖からなる群より選択される少なくとも1種を有する。
≪Paste containing inorganic particles≫
The inorganic particle-containing paste contains a branched polymer, inorganic particles, a dispersant, and an organic solvent.
A molecular chain of a branched polymer has a main chain and a branch chain. The backbone consists of a cellulosic polymer. The branches consist of aliphatic polycarbonates or aliphatic polyesters. Branches may be straight or branched. A branch may be attached to two or more backbones to bridge two or more backbones.
The dispersant has at least one selected from the group consisting of polyether chains, polyester chains and polycarbonate chains.
 無機粒子と有機溶媒とを含む無機粒子含有ペーストにおいて、上記の特定の構造の分岐型ポリマーと、特定の構造の鎖を有する分散剤とを組み合わせて用いることにより、無機粒子含有ペーストが、無機粒子含有膜を積層して得られた積層体を小片化するために切断する場合に、せん断力等の作用による他の層との層間剥離や、凝集破壊による層内剥離を生じさせにくい無機粒子含有膜を与える。 In the inorganic particle-containing paste containing inorganic particles and an organic solvent, by using a combination of the branched polymer having the specific structure and the dispersant having a chain having a specific structure, the inorganic particle-containing paste can contain inorganic particles Contains inorganic particles that do not easily cause delamination from other layers due to the action of shear force, etc., or intra-layer delamination due to cohesive failure when the laminate obtained by laminating the containing film is cut into small pieces. Give a membrane.
 以下、無機粒子含有ペーストが含んでいてもよい、必須、又は任意の成分について説明する。 The essential or optional components that the inorganic particle-containing paste may contain will be described below.
<分岐型ポリマー>
 分岐型ポリマーは、その分子鎖において、主鎖と枝鎖とを有する。主鎖は、セルロース系ポリマーからなる。枝鎖は、脂肪族ポリカーボネート、又は脂肪族ポリエステルからなる。
 枝鎖は、直鎖状であっても分岐鎖状であってもよい。枝鎖は、2以上の主鎖に結合して2以上の主鎖を架橋してもよい。
 上記の分岐型ポリマーと、後述する分散剤とを組み合わせて用いることにより、無機粒子含有膜を積層して得られた積層体を小片化するために切断する場合に、せん断力等の作用による他の層との層間剥離や、凝集破壊による層内剥離を生じさせにくい無機粒子含有膜を与える無機粒子含有ペーストが得られる。
<Branched polymer>
A branched polymer has a main chain and branch chains in its molecular chain. The backbone consists of a cellulosic polymer. The branches consist of aliphatic polycarbonates or aliphatic polyesters.
Branches may be straight or branched. A branch may be attached to two or more backbones to bridge two or more backbones.
By using the above-mentioned branched polymer in combination with a dispersant described later, when cutting the laminate obtained by laminating the inorganic particle-containing film into small pieces, the effect of shear force and the like can be reduced. It is possible to obtain an inorganic particle-containing paste that gives an inorganic particle-containing film that is less likely to cause delamination with the layer of , or intra-layer delamination due to cohesive failure.
 分岐型ポリマーにおいて、主鎖の質量に対する、枝鎖の質量の比率であるグラフト率は、所望する効果が損なわれない範囲で特に限定されない。無機粒子含有ペーストを用いて形成された無機粒子含有膜を積層して得られた積層体を小片化するために切断する場合に、せん断力等の外力による層間剥離や、凝集破壊による層内剥離の発生を抑制しやすい点から、グラフト率は、10質量%以上400質量%以下が好ましく、50質量%以上250質量%以下がより好ましい。
 グラフト率は、核磁気共鳴分光分析(NMR分析)により求めることができる。
In the branched polymer, the graft ratio, which is the ratio of the mass of the branch chains to the mass of the main chain, is not particularly limited as long as the desired effects are not impaired. When a laminate obtained by laminating inorganic particle-containing films formed using an inorganic particle-containing paste is cut into small pieces, delamination due to external force such as shear force or intra-layer delamination due to cohesive failure The graft rate is preferably 10% by mass or more and 400% by mass or less, more preferably 50% by mass or more and 250% by mass or less, from the viewpoint of easily suppressing the occurrence of .
The graft rate can be determined by nuclear magnetic resonance spectroscopy (NMR analysis).
 分岐型ポリマーの質量平均分子量は特に限定されない。分岐型ポリマーの質量平均分子量は、例えば、50,000以上1,000,000以下が好ましく、100,000以上600,000以下がより好ましい。分岐型ポリマーの質量平均分子量がかかる範囲内であると、分岐型ポリマーの、強度、伸び、及び靭性等の機械的特性や成形性が良好である。 The mass average molecular weight of the branched polymer is not particularly limited. The weight average molecular weight of the branched polymer is, for example, preferably 50,000 or more and 1,000,000 or less, more preferably 100,000 or more and 600,000 or less. When the mass-average molecular weight of the branched polymer is within such a range, mechanical properties such as strength, elongation and toughness and moldability of the branched polymer are good.
 以下、主鎖、枝鎖、及び分岐型ポリマーの製造方法について説明する。 The method for producing the main chain, branched chain, and branched polymer will be described below.
(主鎖)
 分岐型ポリマーは、セルロース系ポリマーからなる主鎖を有する。セルロース系ポリマーの種類は、セルロース系ポリマーの主鎖が、枝鎖が結合し得る官能基を有する限り特に限定されない。
 セルロース系ポリマーの好適な具体例としては、セルロース;メチルセルロース、エチルセルロース、n-プロピルセルロース、イソプロピルセルロース、n-ブチルセルロース、tert-ブチルセルロース、及びn-ヘキシルセルロース等のアルキルセルロース;ヒドロキシメチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、及びヒドロキシブチルセルロース等のヒドロキシアルキルセルロース;セルロースアセテート、セルロースジアセテート、セルローストリアセテート、セルロースアセテートプロピオネート、及びセルロースアセテートブチレート等のセルロースエステル;カルボキシメチルセルロース、カルボキシエチルセルロース、及びカルボキシプロピルセルロース等のカルボキシアルキルセルロース;ニトロセルロース、アルデヒドセルロース、ジアルデヒドセルロース、及びスルホン化セルロース等のセルロース誘導体等が挙げられる。
 分岐型ポリマーは、異なる種類のセルロース系ポリマーを主鎖として有する2種以上の分岐型ポリマー分子を含んでいてもよい。
(main chain)
Branched polymers have a backbone consisting of a cellulosic polymer. The type of cellulosic polymer is not particularly limited as long as the main chain of the cellulosic polymer has functional groups to which branch chains can be bonded.
Preferred specific examples of cellulosic polymers include cellulose; alkylcelluloses such as methylcellulose, ethylcellulose, n-propylcellulose, isopropylcellulose, n-butylcellulose, tert-butylcellulose, and n-hexylcellulose; hydroxymethylcellulose, hydroxyethylcellulose. hydroxyalkylcelluloses such as, hydroxypropylcellulose, and hydroxybutylcellulose; cellulose esters such as cellulose acetate, cellulose diacetate, cellulose triacetate, cellulose acetate propionate, and cellulose acetate butyrate; carboxymethylcellulose, carboxyethylcellulose, and carboxypropyl carboxyalkyl cellulose such as cellulose; cellulose derivatives such as nitrocellulose, aldehyde cellulose, dialdehyde cellulose, and sulfonated cellulose;
A branched polymer may comprise two or more branched polymer molecules having different types of cellulosic polymer backbones.
 分岐型ポリマーの製造が容易で、無機粒子含有ペーストを用いて形成された無機粒子含有膜を積層した場合に、外力による層間剥離の発生を抑制しやすい点で、セルロース系ポリマーは、アルキルセルロース、ヒドロキシアルキルセルロース、及びセルロースエステルからなる群より選択される少なくとも1種が好ましい。
 上記の好ましいセルロース系ポリマーの中では、メチルセルロース、エチルセルロース、セルロースアセテートブチレート、セルロースアセテートプロピオネート、及びセルロースアセテートからなる群より選択される少なくとも1種が好ましい。
Cellulose-based polymers are alkyl celluloses, alkyl celluloses, At least one selected from the group consisting of hydroxyalkyl cellulose and cellulose ester is preferred.
Among the above preferred cellulosic polymers, at least one selected from the group consisting of methyl cellulose, ethyl cellulose, cellulose acetate butyrate, cellulose acetate propionate, and cellulose acetate is preferred.
 セルロース系ポリマーの質量平均分子量は特に限定されない。セルロース系ポリマーの質量平均分子量は、例えば、5,000以上が好ましく、10,000以上がより好ましく、100,000以上が特に好ましい。セルロース系ポリマーの質量平均分子量は、1,000,000以下が好ましく、750,000以下がより好ましく、500,000以下がさらに好ましい。
 より具体的には、セルロース系ポリマーの分子量は、5,000以上1,000,000以下が好ましく、10,000以上750,000以下がより好ましく、10,000以上750,000以下がより好ましい。
The mass average molecular weight of the cellulose-based polymer is not particularly limited. The mass average molecular weight of the cellulose-based polymer is, for example, preferably 5,000 or more, more preferably 10,000 or more, and particularly preferably 100,000 or more. The mass average molecular weight of the cellulose-based polymer is preferably 1,000,000 or less, more preferably 750,000 or less, even more preferably 500,000 or less.
More specifically, the molecular weight of the cellulose polymer is preferably 5,000 or more and 1,000,000 or less, more preferably 10,000 or more and 750,000 or less, and more preferably 10,000 or more and 750,000 or less.
 セルロース系ポリマーの置換度は、所望する効果が損なわれない範囲で特に限定されない。セルロース系ポリマーの置換度は、2以上3以下が好ましく、典型的には2.5である。
 セルロース系ポリマーの置換度は、セルロース系ポリマーの構成単位中の全水酸基のうち、枝鎖以外の基によって置換されている水酸基の総数である。
The degree of substitution of the cellulosic polymer is not particularly limited as long as the desired effects are not impaired. The degree of substitution of the cellulosic polymer is preferably 2 or more and 3 or less, typically 2.5.
The degree of substitution of a cellulosic polymer is the total number of hydroxyl groups substituted by groups other than branched chains among all hydroxyl groups in the constituent units of the cellulosic polymer.
(枝鎖)
 分岐型ポリマーは、セルロース系ポリマーからなる主鎖に結合する枝鎖を有する。枝鎖は、脂肪族ポリカーボネート、又は脂肪族ポリエステルからなる。枝鎖は、直鎖状であっても分岐鎖状であってもよい。
 典型的には、枝鎖は、1つの主鎖のみに結合する。枝鎖は、2以上の主鎖に結合して、2以上の主鎖を架橋してもよい。
(branch chain)
Branched polymers have branches attached to a backbone composed of a cellulosic polymer. The branches consist of aliphatic polycarbonates or aliphatic polyesters. Branches may be straight or branched.
Typically, branches are attached to only one main chain. A branch may be attached to two or more backbones to bridge two or more backbones.
 枝鎖が、主鎖に結合した状態で形成され得るか、主鎖に結合し得る限り、枝鎖を構成する脂肪族ポリカーボネート、又は脂肪族ポリエステルは、それぞれ特に限定されない。
 枝鎖を構成する脂肪族ポリカーボネート、又は脂肪族ポリエステルの典型例については、以下の分岐型ポリマーの製造方法の説明において示す。
The aliphatic polycarbonate or aliphatic polyester that constitutes the branched chain is not particularly limited, as long as the branched chain can be formed in a state of being bound to the main chain or can be bound to the main chain.
Typical examples of branched chain aliphatic polycarbonates or aliphatic polyesters are given below in the description of methods for producing branched polymers.
(分岐型ポリマーの製造方法)
 分岐型ポリマーの製造方法は特に制限されない。典型的には、グラフト重合法が採用される。グラフト重合法は、枝鎖の種類に応じて、公知の種々の方法から適宜選択され得る。
(Method for producing branched polymer)
The method for producing the branched polymer is not particularly limited. A graft polymerization method is typically employed. The graft polymerization method can be appropriately selected from various known methods depending on the type of branched chain.
 グラフト重合法としては、例えば、開環重合法を採用できる。環状カーボネート化合物や、ラクトンのような環状エステル化合物を、セルロース系ポリマーの存在下に開環重合させることにより、脂肪族ポリカーボネート、又は脂肪族ポリエステルが、セルロース系ポリマーの分子鎖上に、グラフト鎖として生成する。 As the graft polymerization method, for example, a ring-opening polymerization method can be adopted. By subjecting a cyclic carbonate compound or a cyclic ester compound such as a lactone to ring-opening polymerization in the presence of a cellulose-based polymer, an aliphatic polycarbonate or an aliphatic polyester is formed as a graft chain on the molecular chain of the cellulose-based polymer. Generate.
 例えば、環状化合物としてのプロピレンカーボネートは、ポリプロピレンカーボネートからなる枝鎖を与える。環状化合物としてのブチレンカーボネートは、ポリブチレンカーボネートからなる枝鎖を与える。環状化合物としてのシクロヘキセンカーボネートは、ポリシクロヘキセンカーボネートかなる枝鎖を与える。環状化合物としてのトリメチレンカーボネートは、ポリトリメチレンカーボネートからなる枝鎖を与える。環状化合物としての2,2-ジメチルトリメチレンカーボネートは、ポリ(2,2-ジメチルトリメチレンカーボネート)からなる枝鎖を与える。 For example, propylene carbonate as a cyclic compound gives a branched chain made of polypropylene carbonate. Butylene carbonate as a cyclic compound gives branches consisting of polybutylene carbonate. Cyclohexene carbonate as a cyclic compound gives a branched chain consisting of polycyclohexene carbonate. Trimethylene carbonate as a cyclic compound gives branches consisting of polytrimethylene carbonate. 2,2-dimethyltrimethylene carbonate as a cyclic compound gives branches consisting of poly(2,2-dimethyltrimethylene carbonate).
 環状化合物としてのε-カプロラクトンは、脂肪族ポリエステルであるポリカプロラクトンからなる枝鎖を与える。環状化合物としてのL-ラクチドは、脂肪族ポリエステルであるL体のポリ乳酸を枝鎖として与える。環状化合物としてのD-ラクチドは、脂肪族ポリエステルであるD体のポリ乳酸を枝鎖として与える。環状化合物としてのメソ-ラクチドは、脂肪族ポリエステルであるシンジオタクチック体のポリ乳酸を枝鎖として与える。環状化合物としてのβ-プロピオラクトンは、脂肪族ポリエステルであるD体のポリ(3-ヒドロキシプロピオン酸)を枝鎖として与える。環状化合物としてのβ-ブチロラクトンは、脂肪族ポリエステルであるポリ(3-ヒドロキシ酪酸)を枝鎖として与える。環状化合物としてのγ-ブチロラクトンは、脂肪族ポリエステルであるポリ(4-ヒドロキシ酪酸)を枝鎖として与える。環状化合物としてのδ-バレロラクトンは、脂肪族ポリエステルであるポリ(3-ヒドロキシ吉草酸)を枝鎖として与える。環状化合物としてのp-ジオキサノンは、脂肪族ポリエステルであるポリ(p-ジオキサノン)を枝鎖として与える。 ε-caprolactone as a cyclic compound gives a branched chain composed of polycaprolactone, which is an aliphatic polyester. L-lactide as a cyclic compound gives L-form polylactic acid, which is an aliphatic polyester, as a branched chain. D-lactide as a cyclic compound gives D-form polylactic acid, which is an aliphatic polyester, as a branched chain. Meso-lactide as a cyclic compound gives a syndiotactic polylactic acid, which is an aliphatic polyester, as a branched chain. β-Propiolactone as a cyclic compound gives D-form poly(3-hydroxypropionic acid), which is an aliphatic polyester, as branched chains. β-butyrolactone as a cyclic compound gives the aliphatic polyester poly(3-hydroxybutyric acid) as branched chains. γ-Butyrolactone as the cyclic compound gives the aliphatic polyester poly(4-hydroxybutyric acid) as branched chains. δ-valerolactone as a cyclic compound gives the aliphatic polyester poly(3-hydroxyvaleric acid) as branched chains. P-dioxanone as a cyclic compound gives poly(p-dioxanone), an aliphatic polyester, as branched chains.
 典型的には開環重合は触媒の存在下に行われる。開環重合に用いることができる触媒の具体例としては、ナトリウム、及びカリウム等のアルカリ金属;水酸化ナトリウム、水酸化カリウム、トリエチルアルミニウム、アルミニウムトリイソプロポキシド、n-ブチルリチウム、チタンテトライソプロポキシド、四塩化チタン、ジルコニウムテトライソプロポキシド、四塩化スズ、スズ酸ナトリウム、オクタン酸スズ、及びジブチルスズジラウレートジエチル亜鉛等の含金属触媒;ピリジン、4-N,N-ジメチルアミノピリジン、1,5,7-トリアザビシクロ[4.4.0]デカ-5-エン(TBD)、1,8-ジアザビシクロ[5.4.0]ウンデカ-7-エン(DBT)等の塩基性有機化合物;塩酸、酢酸、メタンスルホン酸、トリフルオロメタンスルホン酸、p-トルエンスルホン酸、ジフェニルリン酸、及びフェノール等の酸触媒;1,3-ビス(2-プロピル)-4,5-ジメチルイミダゾール-2-イリデン、及び1,3-ジイソプロピルイミダゾール-2-イリデン等のN-ヘテロ環状カルベンが挙げられる。
 触媒は、1種単独で使用されても2種以上を組み合わせて使用されてもよい。
Ring-opening polymerization is typically carried out in the presence of a catalyst. Specific examples of catalysts that can be used for ring-opening polymerization include alkali metals such as sodium and potassium; sodium hydroxide, potassium hydroxide, triethylaluminum, aluminum triisopropoxide, n-butyllithium, titanium tetraisopropoxy metal-containing catalysts such as sodium chloride, titanium tetrachloride, zirconium tetraisopropoxide, tin tetrachloride, sodium stannate, tin octoate, and diethylzinc dibutyltin dilaurate; pyridine, 4-N,N-dimethylaminopyridine, 1,5 ,7-triazabicyclo[4.4.0]dec-5-ene (TBD), 1,8-diazabicyclo[5.4.0]undec-7-ene (DBT) and other basic organic compounds; , acetic acid, methanesulfonic acid, trifluoromethanesulfonic acid, p-toluenesulfonic acid, diphenylphosphoric acid, and phenol; 1,3-bis(2-propyl)-4,5-dimethylimidazol-2-ylidene; , and N-heterocyclic carbenes such as 1,3-diisopropylimidazol-2-ylidene.
A catalyst may be used individually by 1 type, or may be used in combination of 2 or more type.
 環状カーボネートを用いて開環重合を行う場合、触媒とともに助触媒を用いるのも好ましい。助触媒の具体例としては、N-シクロヘキシル-N’-フェニルチオ尿素、N,N’-ビス[3,5-ビス(トリフルオロメチル)フェニル]チオ尿素、N-[3,5-ビス(トリフルオロメチル)フェニル]-N’-シクロヘキシルチオ尿素、及び(-)-スパルテイン等が挙げられる。 When carrying out ring-opening polymerization using a cyclic carbonate, it is also preferable to use a co-catalyst together with the catalyst. Specific examples of promoters include N-cyclohexyl-N'-phenylthiourea, N,N'-bis[3,5-bis(trifluoromethyl)phenyl]thiourea, N-[3,5-bis(tri fluoromethyl)phenyl]-N'-cyclohexylthiourea, (-)-sparteine and the like.
 開環重合に用いることができる触媒の使用量は、従来知られる開環重合反応における触媒の使用量を勘案して適宜定められる。典型的には、触媒の使用量は、環状化合物1モルに対して0.001モル以上が好ましく、0.005モル以上がより好ましい。触媒の使用量は、環状化合物1モルに対して0.2モル以下が好ましく、0.1モル以下がより好ましい。
 より具体的には、触媒の使用量は、環状化合物1モルに対して0.001モル以上0.2モル以下が好ましく、0.005モル以上0.1モル以下がより好ましい。
 助触媒の使用量は、触媒の使用量と同様である。
The amount of the catalyst that can be used in the ring-opening polymerization is appropriately determined in consideration of the amount of the catalyst used in conventionally known ring-opening polymerization reactions. Typically, the amount of the catalyst used is preferably 0.001 mol or more, more preferably 0.005 mol or more, per 1 mol of the cyclic compound. The amount of the catalyst used is preferably 0.2 mol or less, more preferably 0.1 mol or less, per 1 mol of the cyclic compound.
More specifically, the amount of the catalyst used is preferably 0.001 mol or more and 0.2 mol or less, more preferably 0.005 mol or more and 0.1 mol or less, relative to 1 mol of the cyclic compound.
The amount of promoter used is the same as the amount of catalyst used.
 開環重合は、溶媒の存在下に行われるのが好ましい。溶媒の種類としては、開環重合反応を阻害しない限り特に限定されない。
 溶媒の好適な具体例としては、ペンタン、ヘキサン、オクタン、デカン、及びシクロヘキサン等の脂肪族炭化水素溶媒;ベンゼン、トルエン、及びキシレン等の芳香族炭化水素溶媒;塩化メチレン、クロロホルム、1,1-ジクロロエタン、1,2-ジクロロエタン、クロロベンゼン、及びブロモベンゼン等のハロゲン化炭化水素溶媒;エチレングリコールジメチルエーテル(モノグライム)、ジエチレングリコールジメチルエーテル(ジグライム)、トリエチレングリコールジメチルエーテル(トリグライム)、テトラヒドロフラン、2-メチルテトラヒドロフラン、1,4-ジオキサン、1,3-ジオキソラン、及びアニソール等のエーテル系溶媒;酢酸エチル、酢酸n-プロピル、及び酢酸イソプロピル等のエステル系溶媒;N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、及びN-メチル-2-ピロリドン等のアミド系溶媒が挙げられる。
Ring-opening polymerization is preferably carried out in the presence of a solvent. The type of solvent is not particularly limited as long as it does not inhibit the ring-opening polymerization reaction.
Suitable specific examples of solvents include aliphatic hydrocarbon solvents such as pentane, hexane, octane, decane, and cyclohexane; aromatic hydrocarbon solvents such as benzene, toluene, and xylene; Halogenated hydrocarbon solvents such as dichloroethane, 1,2-dichloroethane, chlorobenzene, and bromobenzene; ethylene glycol dimethyl ether (monoglyme), diethylene glycol dimethyl ether (diglyme), triethylene glycol dimethyl ether (triglyme), tetrahydrofuran, 2-methyltetrahydrofuran, 1 Ether solvents such as ,4-dioxane, 1,3-dioxolane, and anisole; Ester solvents such as ethyl acetate, n-propyl acetate, and isopropyl acetate; N,N-dimethylformamide, N,N-dimethylacetamide, and amide solvents such as N-methyl-2-pyrrolidone.
 溶媒の使用量は、開環重合反応が良好に進行する限り特に限定されない。溶媒の使用量は、例えば、環状化合物100質量部に対して100質量部以上1000質量部以下が好ましい。 The amount of solvent used is not particularly limited as long as the ring-opening polymerization reaction proceeds well. The amount of the solvent used is preferably 100 parts by mass or more and 1000 parts by mass or less with respect to 100 parts by mass of the cyclic compound, for example.
 典型的には、セルロース系樹脂、環状化合物、及び触媒と、必要に応じて助触媒、及び/又は溶媒等とを反応容器に仕込んだ後、反応容器内の混合物を撹拌することにより開環重合が行われる。 Typically, a cellulosic resin, a cyclic compound, a catalyst, and optionally a cocatalyst and/or solvent are charged into a reaction vessel, and the mixture in the reaction vessel is stirred to carry out ring-opening polymerization. is done.
 開環重合を行う際の好ましい反応温度は、環状化合物、触媒の種類、触媒の使用量等によって異なる。典型的には、開環重合の反応温度は、-80℃以上が好ましく、-40℃以上がより好ましく、0℃以上がさらに好ましい。良好な収率と副反応の抑制との両立の点で、開環重合の反応温度は、250℃以下が好ましく、200℃以下がより好ましく、150℃以下がさらに好ましい。
 より具体的には、反応温度は、-80℃以上250℃以下が好ましく、-40℃以上200℃以下がより好ましく、0℃以上150℃以下がさらに好ましい。
A preferred reaction temperature for ring-opening polymerization varies depending on the cyclic compound, the type of catalyst, the amount of catalyst used, and the like. Typically, the reaction temperature for ring-opening polymerization is preferably −80° C. or higher, more preferably −40° C. or higher, and even more preferably 0° C. or higher. From the viewpoint of achieving both good yield and suppression of side reactions, the reaction temperature of the ring-opening polymerization is preferably 250° C. or lower, more preferably 200° C. or lower, and even more preferably 150° C. or lower.
More specifically, the reaction temperature is preferably −80° C. or higher and 250° C. or lower, more preferably −40° C. or higher and 200° C. or lower, even more preferably 0° C. or higher and 150° C. or lower.
 開環重合の反応時間は、環状化合物の種類、触媒の種類、触媒の使用量等によって異なる。典型的には、開環重合の反応時間は1時間以上40時間以下が好ましい。 The reaction time for ring-opening polymerization varies depending on the type of cyclic compound, the type of catalyst, the amount of catalyst used, etc. Typically, the reaction time for ring-opening polymerization is preferably 1 hour or more and 40 hours or less.
 開環重合における環状化合物の使用量は、前述のグラフト率を勘案したうえで適宜定められる。 The amount of the cyclic compound used in the ring-opening polymerization is appropriately determined in consideration of the above-mentioned graft ratio.
 分岐型ポリマーの製造方法の他の好ましい例としては、セルロース系樹脂の存在下に、環状エーテルと二酸化炭素との共重合を行う方法が挙げられる。かかる共重合反応によれば、脂肪族ポリカーボネートからなる枝鎖が生成する。セルロース系樹脂については前述の通りである。 Another preferred method for producing a branched polymer is a method of copolymerizing a cyclic ether and carbon dioxide in the presence of a cellulosic resin. Such a copolymerization reaction produces branched chains of aliphatic polycarbonate. The cellulosic resin is as described above.
 環状エーテルとしては、枝鎖としての脂肪族ポリカーボネートの対応する環状エーテルが適宜選択される。
 環状エーテルの好ましい例としては、エチレンオキシド、プロピレンオキシド、トリメチレンオキシド(オキセタン)、3,3-ジメチルトリメチレンオキシド(3,3-ジメチルオキセタン)、1,2-ブチレンオキシド、2,3-ブチレンオキシド、イソブチレンオキシド、1-ペンテンオキシド、2-ペンテンオキシド、1-ヘキセンオキシド、1-オクテンオキシド、1-ドデセンオキシド、シクロペンテンオキシド、シクロヘキセンオキシド、スチレンオキシド、ビニルシクロヘキサンオキシド、3-フェニルプロピレンオキシド、3,3,3-トリフルオロプロピレンオキシド、3-ナフチルプロピレンオキシド、2-フェノキシプロピレンオキシド、3-ナフトキシプロピレンオキシド、ブタジエンモノオキシド、3-ビニルオキシプロピレンオキシド、及び3-トリメチルシリルオキシプロピレンオキシドが挙げられる。
As cyclic ethers, the corresponding cyclic ethers of the branched aliphatic polycarbonates are suitably selected.
Preferred examples of cyclic ethers include ethylene oxide, propylene oxide, trimethylene oxide (oxetane), 3,3-dimethyltrimethylene oxide (3,3-dimethyloxetane), 1,2-butylene oxide and 2,3-butylene oxide. , isobutylene oxide, 1-pentene oxide, 2-pentene oxide, 1-hexene oxide, 1-octene oxide, 1-dodecene oxide, cyclopentene oxide, cyclohexene oxide, styrene oxide, vinylcyclohexane oxide, 3-phenylpropylene oxide, 3 , 3,3-trifluoropropylene oxide, 3-naphthylpropylene oxide, 2-phenoxypropylene oxide, 3-naphthoxypropylene oxide, butadiene monoxide, 3-vinyloxypropylene oxide, and 3-trimethylsilyloxypropylene oxide. .
 上記の環状エーテルの中では、重合反応性に優れることや、無機粒子含有ペーストを用いて形成された無機粒子含有膜を積層した場合に、外力による層間剥離の発生を抑制しやすい分岐型ポリマーが得られることから、エチレンオキシド、プロピレンオキシド、トリメチレンオキシド、及び1,2-ブチレンオキシドが好ましく、エチレンオキシド、プロピレンオキシド、及びトリメチレンオキシドがより好ましい。 Among the above cyclic ethers, there are branched polymers that have excellent polymerization reactivity and that easily suppress the occurrence of delamination due to external force when inorganic particle-containing films are laminated using inorganic particle-containing pastes. Ethylene oxide, propylene oxide, trimethylene oxide, and 1,2-butylene oxide are preferred, and ethylene oxide, propylene oxide, and trimethylene oxide are more preferred, as they are available.
 環状エーテルと二酸化炭素との共重合により生成する脂肪族ポリカーボネートの一例を以下に示す。エチレンオキシドは、ポリエチレンカーボネートを与える。プロピレンオキシドはポリプロピレンカーボネートを与える。トリメチレンオキシドは、ポリトリメチレンカーボネートを与える。 An example of an aliphatic polycarbonate produced by copolymerizing a cyclic ether and carbon dioxide is shown below. Ethylene oxide gives polyethylene carbonate. Propylene oxide gives polypropylene carbonate. Trimethylene oxide gives polytrimethylene carbonate.
 環状エーテルと二酸化炭素との共重合は、金属触媒の存在下に行われる。金属触媒の好ましい例としては、亜鉛系触媒、アルミニウム系触媒、クロム系触媒、及びコバルト系触媒等が挙げられる。これらの中では、重合活性の高さから亜鉛系触媒、及びコバルト系触媒が好ましい。  The copolymerization of cyclic ether and carbon dioxide is carried out in the presence of a metal catalyst. Preferred examples of metal catalysts include zinc-based catalysts, aluminum-based catalysts, chromium-based catalysts, cobalt-based catalysts, and the like. Among these, zinc-based catalysts and cobalt-based catalysts are preferred because of their high polymerization activity.
 亜鉛系触媒の好適な具体例としては、例えば、ジエチル亜鉛-水系触媒、ジエチル亜鉛-ピロガロール系触媒、ビス((2,6-ジフェニル)フェノキシ)亜鉛、N-(2,6-ジイソプロピルフェニル)-3,5-ジ-tert-ブチルサリチルアルドイミナト亜鉛、2-((2,6-ジイソプロピルフェニル)アミド)-4-((2,6-ジイソプロピルフェニル)イミノ)-2-ペンテン酸アセテート、アジピン酸亜鉛、及びグルタル酸亜鉛等が挙げられる。 Preferred specific examples of zinc-based catalysts include diethylzinc-water-based catalysts, diethylzinc-pyrogallol-based catalysts, bis((2,6-diphenyl)phenoxy)zinc, N-(2,6-diisopropylphenyl)- 3,5-di-tert-butyl salicylaldoiminato zinc, 2-((2,6-diisopropylphenyl)amido)-4-((2,6-diisopropylphenyl)imino)-2-pentenoic acid acetate, adipine zinc acid, zinc glutarate, and the like.
 コバルト系触媒の好適な具体例としては、酢酸コバルト-酢酸系触媒、N,N’-ビス(3,5-ジ-tert-ブチルサリチリデン)-1,2-シクロヘキサンジアミノコバルトアセテート、N,N’-ビス-(3,5-ジ-tert-ブチルサリチリデン)-1,2-シクロヘキサンジアミノコバルトペンタフルオロベンゾエート、N,N’-ビス-(3,5-ジ-tert-ブチルサリチリデン)-1,2-シクロヘキサンジアミノコバルトクロリド、N,N’-ビス-(3,5-ジ-tert-ブチルサリチリデン)-1,2-シクロヘキサンジアミノコバルトナイトレート、N,N’-ビス-(3,5-ジ-tert-ブチルサリチリデン)-1,2-シクロヘキサンジアミノコバルト2,4-ジニトロフェノキシド、テトラフェニルポルフィリンコバルトクロリド、テトラフェニルポルフィリンコバルトアセテート、N,N’-ビス[2-(エトキシカルボニル)-3-オキソブチリデン]-1,2-シクロヘキサンジアミナトコバルトクロリド、及びN,N’-ビス[2-(エトキシカルボニル)-3-オキソブチリデン]-1,2-シクロヘキサンジアミナトコバルトペンタフルオロベンゾエートが挙げられる。 Preferred specific examples of cobalt-based catalysts include cobalt acetate-acetic acid-based catalysts, N,N'-bis(3,5-di-tert-butylsalicylidene)-1,2-cyclohexanediaminocobalt acetate, N, N'-bis-(3,5-di-tert-butylsalicylidene)-1,2-cyclohexanediaminocobalt pentafluorobenzoate, N,N'-bis-(3,5-di-tert-butylsalicylidene) den)-1,2-cyclohexanediaminocobalt chloride, N,N'-bis-(3,5-di-tert-butylsalicylidene)-1,2-cyclohexanediaminocobalt nitrate, N,N'-bis -(3,5-di-tert-butylsalicylidene)-1,2-cyclohexanediaminocobalt 2,4-dinitrophenoxide, tetraphenylporphyrin cobalt chloride, tetraphenylporphyrin cobalt acetate, N,N'-bis[2 -(ethoxycarbonyl)-3-oxobutylidene]-1,2-cyclohexanediaminatocobalt chloride and N,N'-bis[2-(ethoxycarbonyl)-3-oxobutylidene]-1,2-cyclohexanediaminatocobalt penta Fluorobenzoates are mentioned.
 コバルト系触媒は、助触媒とともに使用されるのが好ましい。助触媒の具体例としては、ピリジン,4-N,N-ジメチルアミノピリジン、N-メチルイミダゾール、テトラブチルアンモニウムクロリド、テトラブチルアンモニウムアセテート、トリフェニルホスフィン、ビス(トリフェニルホスホラニリデン)アンモニウムクロリド、及びビス(トリフェニルホスホラニリデン)アンモニウムアセテート等が挙げられる。 A cobalt-based catalyst is preferably used together with a co-catalyst. Specific examples of promoters include pyridine, 4-N,N-dimethylaminopyridine, N-methylimidazole, tetrabutylammonium chloride, tetrabutylammonium acetate, triphenylphosphine, bis(triphenylphosphoranylidene)ammonium chloride, and bis(triphenylphosphoranylidene)ammonium acetate.
 環状エーテルと二酸化炭素との共重合に用いることができる触媒の使用量は、かかる共重合反応について従来知られている触媒の使用量を勘案して適宜定められる。典型的には、触媒の使用量は、環状エーテル1モルに対して0.001モル以上が好ましく、0.005モル以上がより好ましい。触媒の使用量は、環状エーテル1モルに対して0.2モル以下が好ましく、0.1モル以下がより好ましい。
 より具体的には、触媒の使用量は、環状エーテル1モルに対して、0.001モル以上0.2モル以下が好ましく、0.005モル以上0.1モル以下がより好ましい。
 助触媒の使用量は、触媒の使用量と同様である。
The amount of the catalyst that can be used in the copolymerization of the cyclic ether and carbon dioxide is appropriately determined in consideration of the amounts of conventionally known catalysts used for such copolymerization reactions. Typically, the amount of the catalyst used is preferably 0.001 mol or more, more preferably 0.005 mol or more, per 1 mol of the cyclic ether. The amount of the catalyst used is preferably 0.2 mol or less, more preferably 0.1 mol or less, per 1 mol of the cyclic ether.
More specifically, the amount of the catalyst to be used is preferably 0.001 mol or more and 0.2 mol or less, more preferably 0.005 mol or more and 0.1 mol or less, relative to 1 mol of the cyclic ether.
The amount of promoter used is the same as the amount of catalyst used.
 環状エーテルと二酸化炭素との共重合は、溶媒の存在下に行われるのが好ましい。溶媒の種類としては、共重合反応を阻害しない限り特に限定されない。
 溶媒の好適な具体例としては、ペンタン、ヘキサン、オクタン、デカン、及びシクロヘキサン等の脂肪族炭化水素溶媒;ベンゼン、トルエン、及びキシレン等の芳香族炭化水素溶媒;塩化メチレン、クロロホルム、1,1-ジクロロエタン、1,2-ジクロロエタン、クロロベンゼン、及びブロモベンゼン等のハロゲン化炭化水素溶媒;エチレングリコールジメチルエーテル(モノグライム)、ジエチレングリコールジメチルエーテル(ジグライム)、トリエチレングリコールジメチルエーテル(トリグライム)、テトラヒドロフラン、2-メチルテトラヒドロフラン、1,4-ジオキサン、1,3-ジオキソラン、及びアニソール等のエーテル系溶媒;酢酸エチル、酢酸n-プロピル、及び酢酸イソプロピル等のエステル系溶媒;N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、及びN-メチル-2-ピロリドン等のアミド系溶媒が挙げられる。
Copolymerization of the cyclic ether and carbon dioxide is preferably carried out in the presence of a solvent. The type of solvent is not particularly limited as long as it does not inhibit the copolymerization reaction.
Suitable specific examples of solvents include aliphatic hydrocarbon solvents such as pentane, hexane, octane, decane, and cyclohexane; aromatic hydrocarbon solvents such as benzene, toluene, and xylene; Halogenated hydrocarbon solvents such as dichloroethane, 1,2-dichloroethane, chlorobenzene, and bromobenzene; ethylene glycol dimethyl ether (monoglyme), diethylene glycol dimethyl ether (diglyme), triethylene glycol dimethyl ether (triglyme), tetrahydrofuran, 2-methyltetrahydrofuran, 1 Ether solvents such as ,4-dioxane, 1,3-dioxolane, and anisole; Ester solvents such as ethyl acetate, n-propyl acetate, and isopropyl acetate; N,N-dimethylformamide, N,N-dimethylacetamide, and amide solvents such as N-methyl-2-pyrrolidone.
 溶媒の使用量は、共重合反応が良好に進行する限り特に限定されない。溶媒の使用量は、例えば、環状エーテル100質量部に対して100質量部以上1000質量部以下が好ましい。 The amount of solvent used is not particularly limited as long as the copolymerization reaction proceeds well. The amount of the solvent used is preferably 100 parts by mass or more and 1000 parts by mass or less with respect to 100 parts by mass of the cyclic ether, for example.
 典型的には、セルロース系樹脂、環状エーテル、及び触媒と、必要に応じて助触媒、及び/又は溶媒等とを反応容器に仕込んだ後、反応容器内に二酸化炭素を圧入した後、反応容器内の混合物を撹拌することにより共重合が行われる。 Typically, a cellulose resin, a cyclic ether, a catalyst, and optionally a co-catalyst and/or solvent are charged into a reaction vessel, and then carbon dioxide is injected into the reaction vessel, followed by Copolymerization is carried out by stirring the mixture inside.
 共重合を行う際の、環状エーテル、及び二酸化炭素の使用量は、前述のグラフト率を勘案したうえで適宜定められる。
 共重合を行う際の、反応容器内の二酸化炭素の圧力は、良好な反応の進行の点から、反応温度におけるゲージ圧として0.1MPa以上が好ましく、0.2MPa以上がより好ましく、0.5MPa以上がさらに好ましい。耐圧性能が高い高価な耐圧容器を用いる必要性が無い点や、作業の安全性の点から、反応容器の内の二酸化炭素の圧力は、20MPa以下が好ましく、10MPa以下がより好ましく、5MPa以下であってもよい。
 より具体的には、反応溶液内の二酸化炭素の圧力は、ゲージ圧として、0.1MPa以上20MPa以下が好ましく、0.2MPa以上10MPa以下がより好ましく、0.5MPa以上5MPa以下がさらに好ましい。
 共重合反応は、二酸化炭素の超臨界条件で行われてもよい。
The amount of the cyclic ether and carbon dioxide to be used in the copolymerization is appropriately determined in consideration of the above-mentioned graft ratio.
The pressure of carbon dioxide in the reaction vessel during copolymerization is preferably 0.1 MPa or more, more preferably 0.2 MPa or more, more preferably 0.5 MPa as a gauge pressure at the reaction temperature, from the viewpoint of good progress of the reaction. The above is more preferable. The pressure of carbon dioxide in the reaction vessel is preferably 20 MPa or less, more preferably 10 MPa or less, and 5 MPa or less from the viewpoint of work safety and that there is no need to use an expensive pressure-resistant container with high pressure resistance. It can be.
More specifically, the gauge pressure of carbon dioxide in the reaction solution is preferably 0.1 MPa or more and 20 MPa or less, more preferably 0.2 MPa or more and 10 MPa or less, and even more preferably 0.5 MPa or more and 5 MPa or less.
The copolymerization reaction may be carried out under supercritical conditions of carbon dioxide.
 共重合を行う際の好ましい反応温度は、環状エーテルの種類、触媒の種類、触媒の使用量等によって異なる。典型的には、共重合の反応温度は、0℃以上が好ましく、20℃以上がより好ましく、30℃以上がさらに好ましい。良好な収率と副反応の抑制との両立の点で、共重合の反応温度は、100℃以下が好ましく、80℃以下がより好ましく、60℃以下がさらに好ましい。
 上記の点で、共重合の反応温度は、0℃以上100℃以下が好ましく、20℃以上80℃以下がより好ましく、30℃以上60℃以下がさらに好ましい。
A preferred reaction temperature for copolymerization varies depending on the type of cyclic ether, the type of catalyst, the amount of catalyst used, and the like. Typically, the reaction temperature for copolymerization is preferably 0° C. or higher, more preferably 20° C. or higher, and even more preferably 30° C. or higher. From the viewpoint of achieving both good yield and suppression of side reactions, the reaction temperature for copolymerization is preferably 100° C. or lower, more preferably 80° C. or lower, and even more preferably 60° C. or lower.
In view of the above, the reaction temperature for copolymerization is preferably 0° C. or higher and 100° C. or lower, more preferably 20° C. or higher and 80° C. or lower, and even more preferably 30° C. or higher and 60° C. or lower.
 共重合の反応時間は、環状エーテルの種類、触媒の種類、触媒の使用量等によって異なる。典型的には、開環重合の反応時間は1時間以上40時間以下が好ましい。 The reaction time for copolymerization varies depending on the type of cyclic ether, the type of catalyst, the amount of catalyst used, etc. Typically, the reaction time for ring-opening polymerization is preferably 1 hour or more and 40 hours or less.
 開環重合における環状化合物の使用量は、前述のグラフト率を勘案したうえで適宜定められる。 The amount of the cyclic compound used in the ring-opening polymerization is appropriately determined in consideration of the above-mentioned graft ratio.
 枝鎖が、ポリエチレンサクシネート、ポリエチレンアジペート、ポリブチレンサクシネート、ポリブチレンアジペート等の、脂肪族ジカルボン酸とグリコール類とが重縮合した脂肪族ポリエステルからなる場合、セルロール系樹脂の存在下に、脂肪族ポリエステルの構造に応じた脂肪族ジカルボン酸とグリコール類とを、常法に従って共重縮合することによっても、分岐型ポリマーを製造することができる。 When the branch chain is made of an aliphatic polyester obtained by polycondensation of an aliphatic dicarboxylic acid and a glycol such as polyethylene succinate, polyethylene adipate, polybutylene succinate, polybutylene adipate, etc., in the presence of a cellulose resin, the fatty acid A branched polymer can also be produced by copolycondensation of an aliphatic dicarboxylic acid and glycols according to the structure of the family polyester according to a conventional method.
 無機粒子含有ペーストにおける、分岐型ポリマーの使用量は、所望する効果が損なわれない限りにおいて特に限定されない。
 例えば、分岐型ポリマーの体積と無機粒子の体積との合計に対する、分岐型ポリマーの体積の比率が、17体積%以上29体積%以下であるのが好ましく、19体積%以上27体積%以下であるのがより好ましい。
The amount of the branched polymer used in the inorganic particle-containing paste is not particularly limited as long as the desired effect is not impaired.
For example, the ratio of the volume of the branched polymer to the sum of the volume of the branched polymer and the volume of the inorganic particles is preferably 17% by volume or more and 29% by volume or less, and is 19% by volume or more and 27% by volume or less. is more preferred.
<無機粒子>
 無機粒子含有ペーストは、無機粒子を含む。無機粒子としては、従来から種々の樹脂組成物に添加されている無機粒子を特定に制限なく用いることができる。
 無機粒子としては、典型的には、セラミック粒子、及び/又は金属粒子が好ましい。
<Inorganic particles>
The inorganic particle-containing paste contains inorganic particles. As the inorganic particles, inorganic particles conventionally added to various resin compositions can be used without particular limitation.
Ceramic particles and/or metal particles are typically preferred as inorganic particles.
 無機粒子含有ペーストを用いて形成される無機粒子含有膜の好適な例としては、積層セラミック電子部品の前駆体として有用な積層体を構成する、金属粒子を含み、内部電極層を与える導電性シートや、セラミック粒子を含むグリーンシート等が挙げられる。 A suitable example of the inorganic particle-containing film formed using the inorganic particle-containing paste is a conductive sheet containing metal particles and providing an internal electrode layer, which constitutes a laminate useful as a precursor of a laminated ceramic electronic component. and green sheets containing ceramic particles.
 無機粒子含有ペーストを用いて、積層セラミック電子部品における誘電体層を与えるグリーンシートを形成する場合、セラミック粒子が、無機粒子として使用される。
 無機粒子含有ペーストを用いて、積層セラミック電子部品における内部電極層を与える電極シートを形成する場合、グリーンシートと電極シートとの親和性や、誘電体層と内部電極層の密着性の点で、無機粒子が金属粒子とセラミック粒子とを組み合わせて含んでいてもよい。
Ceramic particles are used as inorganic particles when inorganic particle-containing pastes are used to form green sheets that provide dielectric layers in multilayer ceramic electronic components.
When forming an electrode sheet that provides an internal electrode layer in a multilayer ceramic electronic component using a paste containing inorganic particles, in terms of affinity between the green sheet and the electrode sheet and adhesion between the dielectric layer and the internal electrode layer, The inorganic particles may comprise a combination of metal particles and ceramic particles.
 セラミック粒子について、その構成材料が、Ba、Ti、Sr、Ca、及びZrからなる群より選択される少なくとも1種を含むのが好ましい。
 セラミック粒子の好ましい具体例としては、チタン酸バリウム粒子、チタン酸カルシウム粒子、チタン酸ストロンチウム粒子、及びジルコン酸チタン酸鉛粒子等が挙げられる。
 セラミック粒子としては、1種を単独で用いても、2種以上を組み合わせて用いてもよい。例えば、チタン酸バリウム粒子を主成分として、Ca、Zr、又はSrを含む構成成分を副成分として含むセラミック粒子を用いてもよい。
The constituent material of the ceramic particles preferably contains at least one selected from the group consisting of Ba, Ti, Sr, Ca and Zr.
Preferred specific examples of ceramic particles include barium titanate particles, calcium titanate particles, strontium titanate particles, lead zirconate titanate particles, and the like.
As the ceramic particles, one type may be used alone, or two or more types may be used in combination. For example, ceramic particles containing barium titanate particles as a main component and a component containing Ca, Zr, or Sr as an auxiliary component may be used.
 セラミック粒子の粒子径は、所望する効果が損なわれない限り特に限定されない。セラミック粒子の平均粒子径は、BET換算法による平均粒子径として3nm以上500nm以下が好ましい。 The particle size of the ceramic particles is not particularly limited as long as the desired effect is not impaired. The average particle size of the ceramic particles is preferably 3 nm or more and 500 nm or less as an average particle size according to the BET conversion method.
 無機粒子含有ペーストを用いて、積層セラミック電子部品における内部電極層を与える導電性シートを形成する場合、無機粒子として金属粒子が好ましい。
 金属粒子を構成する金属としては、Ni、Cu、Ag、及びAuからなる群より選択される少なくとも1種が好ましい。
 金属粒子の平均粒子径は、所望する効果が損なわれない限り特に限定されない。金属粒子の平均粒子径は、SEM径として3000nm以下が好ましく、30nm以上1000nm以下がより好ましい。
 金属粒子は、2種以上の金属粒子を含んでいてもよい。金属粒子は、2種以上の金属を含む合金の粒子であってもよい。
When the inorganic particle-containing paste is used to form a conductive sheet that provides an internal electrode layer in a multilayer ceramic electronic component, metal particles are preferred as the inorganic particles.
At least one selected from the group consisting of Ni, Cu, Ag, and Au is preferable as the metal constituting the metal particles.
The average particle size of the metal particles is not particularly limited as long as the desired effects are not impaired. The average particle diameter of the metal particles is preferably 3000 nm or less, more preferably 30 nm or more and 1000 nm or less as an SEM diameter.
The metal particles may contain two or more kinds of metal particles. The metal particles may be particles of an alloy containing two or more metals.
 無機粒子が、セラミック粒子と金属粒子とを組み合わせて含む場合、セラミック粒子の質量が、金属粒子の質量に対して4質量%以上25質量%以下であるのが好ましい。 When the inorganic particles include a combination of ceramic particles and metal particles, the mass of the ceramic particles is preferably 4% by mass or more and 25% by mass or less with respect to the mass of the metal particles.
<分散剤>
 無機粒子含有ペーストは、分散剤を含む。分散剤は、ポリエーテル鎖、ポリエステル鎖、及びポリカーボネート鎖からなる群より選択される少なくとも1種を有する。
 分散剤が、ポリエーテル鎖、ポリエステル鎖、又はポリカーボネート鎖を有することにより、分散剤が、脂肪族ポリカーボネート、又は脂肪族ポリエステルからなる枝鎖を有する分岐型ポリマーと馴染みやすい。
<Dispersant>
The inorganic particle-containing paste contains a dispersant. The dispersant has at least one selected from the group consisting of polyether chains, polyester chains and polycarbonate chains.
Having a polyether chain, a polyester chain, or a polycarbonate chain makes the dispersant more compatible with branched polymers having branches made of aliphatic polycarbonates or aliphatic polyesters.
 ポリエステル鎖、及びポリカーボネート鎖としては、分岐型ポリマーの枝鎖として説明したポリエステル鎖、及びポリカーボネート鎖が挙げられる。
 ポリエーテル鎖としては、ポリオキシアルキレン鎖が好ましい。ポリオキシアルキレン鎖の好ましい例としては、ポリオキシエチレン鎖、及びポリオキシプロピレン鎖が挙げられる。
Polyester chains and polycarbonate chains include polyester chains and polycarbonate chains described as branches of branched polymers.
A polyoxyalkylene chain is preferred as the polyether chain. Preferred examples of polyoxyalkylene chains include polyoxyethylene chains and polyoxypropylene chains.
 分散剤は、分散効果の点で、疎水性基を有するのが好ましい。疎水性基の好適な例としては、炭化水素基やフッ素化炭化水素基が挙げられ、脂肪族炭化水素基、及び脂肪族フッ素化炭化水素基がより好ましい。 The dispersant preferably has a hydrophobic group in terms of the dispersing effect. Preferred examples of the hydrophobic group include hydrocarbon groups and fluorinated hydrocarbon groups, with aliphatic hydrocarbon groups and aliphatic fluorinated hydrocarbon groups being more preferred.
 分散剤は、分散効果の点で、無機粒子の表面に結合し得る、カルボキシ基、アミノ基、リン酸基、スルホン酸基等の吸着性基を有するのが好ましい。 The dispersant preferably has an adsorptive group such as a carboxyl group, an amino group, a phosphoric acid group, or a sulfonic acid group that can bond to the surface of the inorganic particles in terms of the dispersing effect.
 分散剤の分子量は、所望する効果が損なわれない範囲において特に限定されない。分散剤は、所謂低分子化合物であってもよく、ポリマー型の分散剤であってもよい。分散剤に上記の種々の官能基を持たせる分子設計が容易である点では、分散剤としてはポリマー型の分散剤が好ましい。
 ポリマー型の分散剤としては、例えば、炭化水素鎖のような疎水鎖を有する(メタ)アクリル系モノマーと、ポリエーテル鎖、ポリエステル鎖、及びポリカーボネート鎖のような親水鎖を有する(メタ)アクリル系モノマーとを共重合したくし型構造の(メタ)アクリル樹脂を好適に用いることができる。公知の(メタ)アクリル樹脂に、側鎖として上記の疎水鎖、及び親水鎖が導入されたくし型構造の(メタ)アクリル樹脂も、ポリマー型の分散剤として好ましく使用される。
The molecular weight of the dispersant is not particularly limited as long as the desired effects are not impaired. The dispersant may be a so-called low-molecular-weight compound or a polymer-type dispersant. A polymer-type dispersant is preferable as the dispersant in terms of ease of molecular design to give the dispersant the above-described various functional groups.
Polymer-type dispersants include, for example, (meth)acrylic monomers having hydrophobic chains such as hydrocarbon chains, and (meth)acrylic monomers having hydrophilic chains such as polyether chains, polyester chains, and polycarbonate chains. A (meth)acrylic resin having a comb structure copolymerized with a monomer can be preferably used. Comb-structured (meth)acrylic resins in which the above hydrophobic chains and hydrophilic chains are introduced as side chains into known (meth)acrylic resins are also preferably used as polymer-type dispersants.
 分散剤の使用量は、分散対象とする粒子の表面積に対して0.5mg/m~5mg/mが好ましく、1.0mg/m~2.5mg/mがより好ましい。 The amount of the dispersant to be used is preferably 0.5 mg/m 2 to 5 mg/m 2 , more preferably 1.0 mg/m 2 to 2.5 mg/m 2 with respect to the surface area of the particles to be dispersed.
<その他の成分>
 無機粒子含有ペーストは、所望する効果が損なわれない限りにおいて、上記の成分以外のその他の成分を含んでいてもよい。
 その他の成分としては、例えば、可塑剤、及び帯電防止剤からなる群より選択される少なくとも1種の添加剤が挙げられる。
 その他の成分の使用量は、所望する効果が損なわれない限り特に限定されない。その他の成分の使用量は、上記の添加剤の種類に応じた通常使用され得る量を考慮して適宜決定される。
<Other ingredients>
The inorganic particle-containing paste may contain components other than the above components as long as the desired effects are not impaired.
Other components include, for example, at least one additive selected from the group consisting of plasticizers and antistatic agents.
The amount of other ingredients to be used is not particularly limited as long as the desired effects are not impaired. The amount of other components to be used is appropriately determined in consideration of the amounts that can be normally used according to the types of the above additives.
<有機溶媒>
 無機粒子含有ペーストは、有機溶媒を含む。有機溶媒の好適な例としては、イソプロパノール等のアルカノール類;トルエン、キシレン、及びイソホロン等の炭化水溶系溶媒;ターピネオール、及びジヒドロターピネオール等のターピネオール系溶媒;酢酸エチル、酢酸n-ブチル、酢酸n-ペンチル、酢酸n-ヘキシル、酢酸n-ヘプチル、酢酸n-オクチル、ターピネオールアセテート、及びジヒドロターピネオールアセテート等のエステル系溶媒;エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、メチルカルビトール、エチルカルビトール、ブチルカルビトール、プロピレングリコールモノメチルエーテル、エチレングリコールジメチルエーテル、及びジエチレングリコールジメチルエーテル等のグリコールエーテル系溶媒;エチレングリコールモノメチルエーテルアセテート、ジエチレングリコールモノメチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート、ジプロピレングリコールモノメチルエーテルアセテート等のグリコールエステル系溶媒;ジメチルカーボネート、及びプロピレンカーボネート等のカーボネート系溶媒;アセトン、メチルエチルケトン、及びシクロヘキサノン等のケトン系溶媒;N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、及びN-メチル-2-ピロリドン等の含窒素極性有機溶媒等が挙げられる。
<Organic solvent>
The inorganic particle-containing paste contains an organic solvent. Preferable examples of organic solvents include alkanols such as isopropanol; hydrocarbon-based solvents such as toluene, xylene, and isophorone; terpineol-based solvents such as terpineol and dihydroterpineol; Ester solvents such as pentyl, n-hexyl acetate, n-heptyl acetate, n-octyl acetate, terpineol acetate, and dihydroterpineol acetate; ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, methyl carbitol, Glycol ether solvents such as ethyl carbitol, butyl carbitol, propylene glycol monomethyl ether, ethylene glycol dimethyl ether, and diethylene glycol dimethyl ether; ethylene glycol monomethyl ether acetate, diethylene glycol monomethyl ether acetate, propylene glycol monomethyl ether acetate, dipropylene glycol monomethyl ether acetate Glycol ester solvents such as dimethyl carbonate and propylene carbonate; ketone solvents such as acetone, methyl ethyl ketone, and cyclohexanone; N,N-dimethylformamide, N,N-dimethylacetamide, and N-methyl- nitrogen-containing polar organic solvents such as 2-pyrrolidone;
 これらの溶媒の中では、分岐型ポリマーや、分散剤との親和性が良好であることから、酢酸エチル、酢酸n-ブチル、酢酸n-ペンチル、酢酸n-ヘキシル、酢酸n-ヘプチル、酢酸n-オクチル、ターピネオールアセテート、及びジヒドロターピネオールアセテート等のエステル系溶媒やエチレングリコールモノメチルエーテルアセテート、ジエチレングリコールモノメチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート、ジプロピレングリコールモノメチルエーテルアセテート等のグリコールエステル系溶媒が好ましい。 Among these solvents, ethyl acetate, n-butyl acetate, n-pentyl acetate, n-hexyl acetate, n-heptyl acetate, and n-acetate have good affinity for branched polymers and dispersants. Ester solvents such as octyl, terpineol acetate, and dihydroterpineol acetate, and glycol ester solvents such as ethylene glycol monomethyl ether acetate, diethylene glycol monomethyl ether acetate, propylene glycol monomethyl ether acetate, and dipropylene glycol monomethyl ether acetate are preferred.
 有機溶媒の使用量は、所望する効果が損なわれない限りにおいて特に限定されない。有機溶媒の使用量は、無機粒子含有ペースト全体の体積に対して、60体積%以上97体積%以下が好ましく、80体積%以上94体積%以下がより好ましい。 The amount of organic solvent used is not particularly limited as long as the desired effect is not impaired. The amount of the organic solvent used is preferably 60% by volume or more and 97% by volume or less, more preferably 80% by volume or more and 94% by volume or less, relative to the total volume of the inorganic particle-containing paste.
≪無機粒子含有膜≫
 無機粒子含有膜は、分岐型ポリマーと、無機粒子と、分散剤とを含む。分岐型ポリマー、無機粒子、及び分散剤について、いずれも無機粒子含有ペーストについて前述した通りである。
 無機粒子含有膜は、前述の無機粒子含有ペーストを膜状に成形した後に、無機粒子含有ペーストからなる膜から有機溶剤の少なくとも一部を除去することにより形成され得る。
 有機溶媒を除去する方法は特に限定されない。例えば、加熱や、減圧雰囲気への暴露等の方法により有機溶媒が除去される。
<<Inorganic particle-containing film>>
The inorganic particle-containing film contains a branched polymer, inorganic particles, and a dispersant. The branched polymer, inorganic particles, and dispersant are all the same as those described above for the inorganic particle-containing paste.
The inorganic particle-containing film can be formed by forming the inorganic particle-containing paste into a film, and then removing at least part of the organic solvent from the inorganic particle-containing paste film.
A method for removing the organic solvent is not particularly limited. For example, the organic solvent is removed by a method such as heating or exposure to a reduced pressure atmosphere.
 無機粒子含有膜としては、例えば、無機粒子がセラミック粒子を含み、焼成されることにより積層セラミック電子部品における誘電体層を与えるグリーンシートであるのが好ましい。
 かかるグリーンシートは、例えば、ダイコータシート法やドクターブレード法等の公知の方法により形成され得る。グリーンシートの厚さは、4μm以下が好ましく、3μm以下がより好ましい。
The inorganic particle-containing film is preferably, for example, a green sheet in which inorganic particles contain ceramic particles and which, when fired, provides a dielectric layer in a multilayer ceramic electronic component.
Such a green sheet can be formed, for example, by a known method such as a die coater sheet method or a doctor blade method. The thickness of the green sheet is preferably 4 μm or less, more preferably 3 μm or less.
 無機粒子含有膜としては、無機粒子が金属粒子を含み、焼成されることにより積層セラミック電子部品における内部電極層を与える導電性シートであるのも好ましい。
 導電性シートを形成する方法は特に限定されない。好ましくは、導電性シートは、上記のグリーンシート上に無機粒子含有ペーストを印刷することによって形成される。印刷法としては、例えば、グラビア印刷法やスクリーン印刷法等を適用できる。
 導電性シートの膜厚は、例えば、1.5μm以下が好ましい。
As the inorganic particle-containing film, it is also preferable to use a conductive sheet containing inorganic particles containing metal particles and providing an internal electrode layer in a multilayer ceramic electronic component by firing.
The method of forming the conductive sheet is not particularly limited. Preferably, the conductive sheet is formed by printing an inorganic particle-containing paste on the above green sheet. As a printing method, for example, a gravure printing method, a screen printing method, or the like can be applied.
The film thickness of the conductive sheet is preferably 1.5 μm or less, for example.
≪積層体≫
 積層体は、前述の無機粒子含有膜からなる層を少なくとも1層含む。
 好ましい積層体としては、焼成されることにより誘電体層を与えるグリーンシートと、焼成されることにより内部電極層を与える導電性シートとが積層されており、
 グリーンシートが、前述の無機粒子含有膜であるか、導電性シートが、前述の無機粒子含有膜である積層体が挙げられる、かかる積層体は、積層セラミック電子部品の製造に好適に用いられる。
 かかる積層体を焼成した後に、焼成された積層体に、積層セラミック電子部品を製造するための公知の種々の加工を施すことにより、積層セラミック電子部品が得られる。
 積層セラミック電子部品としては、積層セラミックコンデンサ、インダクタ、圧電素子、サーミスタ等が挙げられる。
≪Laminate≫
The laminate includes at least one layer made of the inorganic particle-containing film described above.
As a preferable laminate, a green sheet that provides a dielectric layer by firing and a conductive sheet that provides an internal electrode layer by firing are stacked,
Such laminates, in which the green sheet is the inorganic particle-containing film described above or the conductive sheet is the inorganic particle-containing film described above, are suitably used in the production of multilayer ceramic electronic components.
After firing the laminate, the fired laminate is subjected to various known processes for manufacturing a multilayer ceramic electronic component, thereby obtaining a multilayer ceramic electronic component.
Examples of laminated ceramic electronic components include laminated ceramic capacitors, inductors, piezoelectric elements, and thermistors.
 以下、本発明を実施例によりさらに詳細に説明するが、本発明はこれらの実施例に限定されない。 Although the present invention will be described in more detail below with reference to examples, the present invention is not limited to these examples.
〔実施例1〕
 無機粒子としてNi粒子を含む、導電性ペーストを作製した。
 導電性ペーストの調製には、無機粒子として、平均SEM径200nmのNi粒子と、BET径20nmのチタン酸バリウム粒子とを用いた。
 分岐型ポリマーとして、エチルセルロースからなる主鎖と、脂肪族ポリカーボネートであるポリプロピレンカーボネートからなる枝鎖とを有する樹脂を用いた。
 分散剤としては、吸着性官能基であるカルボキシ基と、疎水性基である鎖状脂肪族炭化水素基と、ポリオキシエチレン基(ポリエーテル鎖)とを有する高分子分散剤を用いた。
 有機溶媒としては、エステル系溶媒であるジヒドロターピネオールアセテートを用いた。
[Example 1]
A conductive paste containing Ni particles as inorganic particles was produced.
Ni particles with an average SEM diameter of 200 nm and barium titanate particles with a BET diameter of 20 nm were used as inorganic particles for the preparation of the conductive paste.
As the branched polymer, a resin having a main chain made of ethyl cellulose and a branch chain made of polypropylene carbonate, which is an aliphatic polycarbonate, was used.
As the dispersant, a polymer dispersant having a carboxy group as an adsorptive functional group, a chain aliphatic hydrocarbon group as a hydrophobic group, and a polyoxyethylene group (polyether chain) was used.
Dihydroterpineol acetate, which is an ester solvent, was used as the organic solvent.
(導電性ペースト調製)
 Ni粒子40質量部と、チタン酸バリウム粒子4質量部と、分岐型ポリマー2質量部と、分散剤0.7質量部と、有機溶媒53.3質量部とを均一に混合した。得られた混合物をロール分散させて、導電性ペーストを得た。
(Conductive paste preparation)
40 parts by mass of Ni particles, 4 parts by mass of barium titanate particles, 2 parts by mass of a branched polymer, 0.7 parts by mass of a dispersant, and 53.3 parts by mass of an organic solvent were uniformly mixed. The resulting mixture was roll-dispersed to obtain a conductive paste.
(誘電体ペースト調製)
 脂肪族ポリカーボネートであるポリプロピレンカーボネート7.2質量部を、26質量部の酢酸n-ブチルと、26質量部のジメチルカーボネートに溶解させた。ポリプロピレンカーボネートは、繰り返し構造中にカルボン酸変性部位を有する。カルボン酸変性部位の割合は、全体構造中の0.8モル%である。得られた溶液に、40質量部のセラミック粒子としてのチタン酸バリウム粒子(BET換算径0.2μm)と、可塑剤として0.7質量部のポリエチレングリコールと、帯電防止剤0.1質量部を加えた。次いで、得られた懸濁液を、ボールミル中で所定の時間分散させて、誘電体ペーストを得た。
(Dielectric paste preparation)
7.2 parts by mass of polypropylene carbonate, which is an aliphatic polycarbonate, was dissolved in 26 parts by mass of n-butyl acetate and 26 parts by mass of dimethyl carbonate. Polypropylene carbonate has a carboxylic acid-modified site in the repeating structure. The proportion of carboxylic acid-modified sites is 0.8 mol % in the entire structure. To the obtained solution, 40 parts by mass of barium titanate particles (0.2 μm in BET equivalent diameter) as ceramic particles, 0.7 parts by mass of polyethylene glycol as a plasticizer, and 0.1 part by mass of an antistatic agent were added. added. The obtained suspension was then dispersed in a ball mill for a predetermined time to obtain a dielectric paste.
(グリーンシート調製)
 PET(ポリエチレンテレフタレート)フィルム上に、ドクターブレード法によって誘電体ペーストを塗布した。その後、塗布膜を乾燥させてセラミック粒子を含むグリーンシートを得た。グリーンシートの厚さは、焼成後の誘電体層の厚さが1.7μmになるように調整された。
(Green sheet preparation)
A dielectric paste was applied onto a PET (polyethylene terephthalate) film by a doctor blade method. After that, the coating film was dried to obtain a green sheet containing ceramic particles. The thickness of the green sheet was adjusted so that the thickness of the dielectric layer after firing was 1.7 μm.
(導電性シート調製)
 グリーンシート上に、導電性ペーストをスクリーン印刷した。印刷された導電性ペーストを乾燥させて導電性シートを得た。導電性ペーストは、切断及び焼成されたチップ状の積層体の平面寸法が3.2mm×1.6mmとなるようなパターンが形成されるように、グリーンシート上に印刷された。XRF測定による、金属成分だけの厚さとしての導電性シートの厚さは0.4μmであった。乾燥直後の導電性シートの厚さは0.8μmであった。
(Conductive sheet preparation)
A conductive paste was screen-printed on the green sheet. The printed conductive paste was dried to obtain a conductive sheet. The conductive paste was printed on the green sheet so as to form a pattern in which the planar dimension of the chip-shaped laminate cut and fired was 3.2 mm×1.6 mm. The thickness of the conductive sheet as the thickness of the metal component alone was 0.4 μm by XRF measurement. The thickness of the conductive sheet immediately after drying was 0.8 μm.
(積層体製造)
 導電性シートを備えるグリーンシートをPETフィルムから剥離した。剥離されたシートを200枚積層して、積層された200枚のシートを金型内に入れた。金型内のシートをプレスして圧着して積層体を得た。得られた積層体を、所定の大きさに押切りによりカットして、チップ状の未焼成の積層体を得た。
(Laminate manufacturing)
The green sheet provided with the conductive sheet was peeled off from the PET film. 200 peeled sheets were laminated, and the 200 laminated sheets were placed in a mold. The sheets in the mold were pressed and crimped to obtain a laminate. The obtained laminate was cut into a predetermined size by press cutting to obtain a chip-shaped unfired laminate.
(構造欠陥の発生の評価)
 無作為に選択したチップ上の未焼成の積層体100個それぞれについて、切断面を光学顕微鏡により観察し、構造欠陥としての導電性シートとグリーンシートとの層間剥離、及び導電性シート内部での凝集破壊による層内剥離の有無を確認した。構造欠陥が観察された積層体の個数を構造欠陥の発生率として表1に記す。また、構造欠陥が観察された積層体の個数に基づき、構造欠陥の発生を以下の基準に従って評価した。
◎:構造欠陥が観察された積層体の個数が0又は1個である。
○:構造欠陥が観察された積層体の個数が2個以上10個以下である。
×:構造欠陥が観察された積層体の個数が11個以上である。
(Evaluation of Occurrence of Structural Defects)
For each of 100 unfired laminates on a randomly selected chip, the cut surface was observed with an optical microscope, and delamination between the conductive sheet and the green sheet as structural defects, and cohesion inside the conductive sheet The presence or absence of intralayer peeling due to destruction was confirmed. The number of laminates in which structural defects were observed is shown in Table 1 as the rate of occurrence of structural defects. Based on the number of laminates in which structural defects were observed, occurrence of structural defects was evaluated according to the following criteria.
A: The number of laminates in which structural defects were observed was 0 or 1.
○: The number of laminates in which structural defects were observed is 2 or more and 10 or less.
x: The number of laminates in which structural defects were observed is 11 or more.
〔実施例2〕
 分岐型ポリマーを、エチルセルロースからなる主鎖と、脂肪族ポリエステルであるポリカプロラクトンからなる枝鎖とを有する樹脂に変えることの他は、実施例1と同様の試験を行った。構造欠陥の発生の評価結果を表1に記す。
[Example 2]
The same test as in Example 1 was performed, except that the branched polymer was changed to a resin having a main chain made of ethyl cellulose and branch chains made of polycaprolactone, which is an aliphatic polyester. Table 1 shows the evaluation results of the occurrence of structural defects.
〔実施例3〕
 分散剤が有するポリオキシエチレン基(ポリエーテル鎖)をポリカプロラクトン基(ポリエステル鎖)に変えることの他は、実施例1と同様の試験を行った。構造欠陥の発生の評価結果を表1に記す。
[Example 3]
The same test as in Example 1 was performed, except that the polyoxyethylene group (polyether chain) of the dispersant was changed to a polycaprolactone group (polyester chain). Table 1 shows the evaluation results of the occurrence of structural defects.
〔実施例4〕
 分散剤が有する親水性基をポリプロピレンカーボネート基(ポリカーボネート鎖)に変えることの他は、実施例1と同様の試験を行った。構造欠陥の発生の評価結果を表1に記す。
[Example 4]
The same test as in Example 1 was conducted, except that the hydrophilic group of the dispersant was changed to a polypropylene carbonate group (polycarbonate chain). Table 1 shows the evaluation results of the occurrence of structural defects.
〔実施例5〕
 分岐型ポリマーを、エチルセルロースからなる主鎖と、脂肪族ポリエステルであるポリカプロラクトンからなる枝鎖とを有する樹脂に変えることと、分散剤が有するポリオキシエチレン基(ポリエーテル鎖)をポリカプロラクトン基(ポリエステル鎖)に変えることとの他は、実施例1と同様の試験を行った。構造欠陥の発生の評価結果を表1に記す。
[Example 5]
The branched polymer is changed to a resin having a main chain made of ethyl cellulose and a branch chain made of polycaprolactone, which is an aliphatic polyester, and the polyoxyethylene group (polyether chain) of the dispersant is replaced with a polycaprolactone group ( The same test as in Example 1 was performed, except that the polyester chain was changed. Table 1 shows the evaluation results of the occurrence of structural defects.
〔実施例6〕
 分岐型ポリマーを、エチルセルロースからなる主鎖と、脂肪族ポリエステルであるポリカプロラクトンからなる枝鎖とを有する樹脂に変えることと、分散剤が有する親水性基をポリプロピレンカーボネート基(ポリカーボネート鎖)に変えることとの他は、実施例1と同様の試験を行った。構造欠陥の発生の評価結果を表1に記す。
[Example 6]
A branched polymer is changed to a resin having a main chain made of ethyl cellulose and a branch chain made of polycaprolactone, which is an aliphatic polyester, and a hydrophilic group possessed by a dispersant is changed to a polypropylene carbonate group (polycarbonate chain). The same test as in Example 1 was performed except for the above. Table 1 shows the evaluation results of the occurrence of structural defects.
〔実施例7〕
 導電性ペーストの調製にセラミック粒子を用いないことの他は、実施例1と同様の試験を行った。構造欠陥の発生の評価結果を表1に記す。
[Example 7]
The same test as in Example 1 was performed, except that ceramic particles were not used in the preparation of the conductive paste. Table 1 shows the evaluation results of the occurrence of structural defects.
〔実施例8〕
 分岐型ポリマーを、エチルセルロースからなる主鎖と、脂肪族ポリエステルであるポリカプロラクトンからなる枝鎖とを有する樹脂に変えることと、導電性ペーストの調製にセラミック粒子を用いないこととの他は、実施例1と同様の試験を行った。構造欠陥の発生の評価結果を表1に記す。
[Example 8]
Except for changing the branched polymer to a resin having a main chain made of ethyl cellulose and branch chains made of polycaprolactone, an aliphatic polyester, and not using ceramic particles in the preparation of the conductive paste, A test similar to that of Example 1 was carried out. Table 1 shows the evaluation results of the occurrence of structural defects.
〔実施例9〕
 金属粒子をSEM径500nmのCu粒子に変えることの他は、実施例1と同様の試験を行った。構造欠陥の発生の評価結果を表1に記す。
[Example 9]
The same test as in Example 1 was performed except that the metal particles were changed to Cu particles having an SEM diameter of 500 nm. Table 1 shows the evaluation results of the occurrence of structural defects.
〔実施例10〕
 分岐型ポリマーを、エチルセルロースからなる主鎖と、脂肪族ポリエステルであるポリカプロラクトンからなる枝鎖とを有する樹脂に変えることと、金属粒子をSEM径500nmのCu粒子に変えることとの他は、実施例1と同様の試験を行った。構造欠陥の発生の評価結果を表1に記す。
[Example 10]
Except for changing the branched polymer to a resin having a main chain made of ethyl cellulose and a branch chain made of polycaprolactone, which is an aliphatic polyester, and changing the metal particles to Cu particles having an SEM diameter of 500 nm, A test similar to that of Example 1 was carried out. Table 1 shows the evaluation results of the occurrence of structural defects.
〔実施例11〕
 分岐型ポリマーの使用量と、Ni粒子及びセラミック粒子の使用量とを調整して、導電性ペーストにおけるバインダー樹脂の体積と、無機粒子の体積との合計に対する、バインダー樹脂の体積の比率であるバインダー樹脂体積比率を17体積%に変えることの他は、実施例1と同様の試験を行った。構造欠陥の発生の評価結果を表1に記す。
[Example 11]
By adjusting the amount of branched polymer and the amount of Ni particles and ceramic particles used, the binder is the ratio of the volume of the binder resin to the sum of the volume of the binder resin and the volume of the inorganic particles in the conductive paste. The same test as in Example 1 was conducted except that the resin volume ratio was changed to 17% by volume. Table 1 shows the evaluation results of the occurrence of structural defects.
〔実施例12〕
 分岐型ポリマーの使用量と、Ni粒子及びセラミック粒子の使用量とを調整して、導電性ペーストにおけるバインダー樹脂の体積と、無機粒子の体積との合計に対する、バインダー樹脂の体積の比率であるバインダー樹脂体積比率を29体積%に変えることの他は、実施例1と同様の試験を行った。構造欠陥の発生の評価結果を表1に記す。
[Example 12]
By adjusting the amount of branched polymer and the amount of Ni particles and ceramic particles used, the binder is the ratio of the volume of the binder resin to the sum of the volume of the binder resin and the volume of the inorganic particles in the conductive paste. The same test as in Example 1 was performed, except that the resin volume ratio was changed to 29% by volume. Table 1 shows the evaluation results of the occurrence of structural defects.
〔実施例13〕
 分岐型ポリマーを、エチルセルロースからなる主鎖と、脂肪族ポリエステルであるポリカプロラクトンからなる枝鎖とを有する樹脂に変えることと、分岐型ポリマーの使用量と、Ni粒子及びセラミック粒子の使用量とを調整して、導電性ペーストにおけるバインダー樹脂の体積と、無機粒子の体積との合計に対する、バインダー樹脂の体積の比率であるバインダー樹脂体積比率を17体積%に変えることと、の他は、実施例1と同様の試験を行った。構造欠陥の発生の評価結果を表1に記す。
[Example 13]
The branched polymer is changed to a resin having a main chain made of ethyl cellulose and a branch chain made of polycaprolactone which is an aliphatic polyester, the amount of the branched polymer used, and the amount of Ni particles and ceramic particles used are changed. By adjusting, the binder resin volume ratio, which is the ratio of the volume of the binder resin to the total of the volume of the binder resin in the conductive paste and the volume of the inorganic particles, is changed to 17% by volume. The same test as in 1 was performed. Table 1 shows the evaluation results of the occurrence of structural defects.
〔実施例14〕
 分岐型ポリマーを、エチルセルロースからなる主鎖と、脂肪族ポリエステルであるポリカプロラクトンからなる枝鎖とを有する樹脂に変えることと、分岐型ポリマーの使用量と、Ni粒子及びセラミック粒子の使用量とを調整して、導電性ペーストにおけるバインダー樹脂の体積と、無機粒子の体積との合計に対する、バインダー樹脂の体積の比率であるバインダー樹脂体積比率を29体積%に変えることと、の他は、実施例1と同様の試験を行った。構造欠陥の発生の評価結果を表1に記す。
[Example 14]
The branched polymer is changed to a resin having a main chain made of ethyl cellulose and a branch chain made of polycaprolactone which is an aliphatic polyester, the amount of the branched polymer used, and the amount of Ni particles and ceramic particles used are changed. By adjusting, the binder resin volume ratio, which is the ratio of the volume of the binder resin to the total of the volume of the binder resin in the conductive paste and the volume of the inorganic particles, is changed to 29% by volume. The same test as in 1 was performed. Table 1 shows the evaluation results of the occurrence of structural defects.
〔比較例1〕
 分岐型ポリマーを、直鎖型ポリマーであるエチルセルロースに変えることの他は、実施例1と同様の試験を行った。構造欠陥の発生の評価結果を表1に記す。
[Comparative Example 1]
The same test as in Example 1 was performed, except that the branched polymer was changed to ethyl cellulose, which is a linear polymer. Table 1 shows the evaluation results of the occurrence of structural defects.
〔比較例2〕
 分岐型ポリマーを、直鎖型ポリマーであるエチルセルロースに変えることと、分散剤を、吸着性官能基であるカルボキシ基と、疎水性基である鎖状脂肪族炭化水素基とを有するが、ポリオキシエチレン基(ポリエーテル鎖)を有さない高分子分散剤に変えることとの他は、実施例1と同様の試験を行った。構造欠陥の発生の評価結果を表1に記す。
[Comparative Example 2]
The branched polymer is changed to ethyl cellulose, which is a linear polymer, and the dispersant has a carboxy group, which is an adsorptive functional group, and a chain aliphatic hydrocarbon group, which is a hydrophobic group. The same test as in Example 1 was performed, except that the dispersant was changed to a polymeric dispersant that did not have an ethylene group (polyether chain). Table 1 shows the evaluation results of the occurrence of structural defects.
〔比較例3〕
 分散剤を、吸着性官能基であるカルボキシ基と、疎水性基である鎖状脂肪族炭化水素基とを有するが、ポリオキシエチレン基(ポリエーテル鎖)を有さない高分子分散剤に変えることの他は、実施例1と同様の試験を行った。構造欠陥の発生の評価結果を表1に記す。
[Comparative Example 3]
The dispersant is changed to a polymeric dispersant that has a carboxy group, which is an adsorptive functional group, and a chain aliphatic hydrocarbon group, which is a hydrophobic group, but does not have a polyoxyethylene group (polyether chain). Except for this, the same test as in Example 1 was performed. Table 1 shows the evaluation results of the occurrence of structural defects.
〔比較例4〕
 分岐型ポリマーを、エチルセルロースからなる主鎖と、脂肪族ポリエステルであるポリカプロラクトンからなる枝鎖とを有する樹脂に変えることと、分散剤を、吸着性官能基であるカルボキシ基と、疎水性基である鎖状脂肪族炭化水素基とを有するが、ポリオキシエチレン基(ポリエーテル鎖)を有さない高分子分散剤に変えることとの他は、実施例1と同様の試験を行った。構造欠陥の発生の評価結果を表1に記す。
[Comparative Example 4]
The branched polymer is changed to a resin having a main chain composed of ethyl cellulose and a branch chain composed of polycaprolactone, which is an aliphatic polyester, and the dispersant is composed of a carboxy group, which is an adsorptive functional group, and a hydrophobic group. The same test as in Example 1 was performed, except that the polymer dispersant was changed to a polymeric dispersant having certain linear aliphatic hydrocarbon groups but no polyoxyethylene groups (polyether chains). Table 1 shows the evaluation results of the occurrence of structural defects.
〔比較例5〕
 分岐型ポリマーを、直鎖型ポリマーであるエチルセルロースに変えることと、分散剤が有する親水性基をポリカプロラクトン基(ポリエステル鎖)に変えることの他は、実施例1と同様の試験を行った。構造欠陥の発生の評価結果を表1に記す。
[Comparative Example 5]
The same test as in Example 1 was performed, except that the branched polymer was changed to a linear polymer, ethyl cellulose, and the hydrophilic group of the dispersant was changed to a polycaprolactone group (polyester chain). Table 1 shows the evaluation results of the occurrence of structural defects.
〔比較例6〕
 分岐型ポリマーを、直鎖型ポリマーであるエチルセルロースに変えることと、分散剤が有する親水性基をポリプロピレンカーボネート基(ポリカーボネート鎖)に変えることの他は、実施例1と同様の試験を行った。構造欠陥の発生の評価結果を表1に記す。
[Comparative Example 6]
The same test as in Example 1 was performed, except that the branched polymer was changed to a linear polymer, ethyl cellulose, and the hydrophilic group of the dispersant was changed to a polypropylene carbonate group (polycarbonate chain). Table 1 shows the evaluation results of the occurrence of structural defects.
〔比較例7〕
 分岐型ポリマーを、直鎖型ポリマーであるエチルセルロースに変えることと、導電性ペーストの調製にセラミック粒子を用いないこととの他は、実施例1と同様の試験を行った。構造欠陥の発生の評価結果を表1に記す。
[Comparative Example 7]
The same test as in Example 1 was performed, except that the branched polymer was changed to ethyl cellulose, which is a linear polymer, and ceramic particles were not used in the preparation of the conductive paste. Table 1 shows the evaluation results of the occurrence of structural defects.
〔比較例8〕
 分岐型ポリマーを、直鎖型ポリマーであるエチルセルロースに変えることと、金属粒子をSEM径500nmのCu粒子に変えることとの他は、実施例1と同様の試験を行った。構造欠陥の発生の評価結果を表1に記す。
[Comparative Example 8]
The same test as in Example 1 was performed, except that the branched polymer was changed to ethyl cellulose, which is a linear polymer, and the metal particles were changed to Cu particles having an SEM diameter of 500 nm. Table 1 shows the evaluation results of the occurrence of structural defects.
〔比較例9〕
 分岐型ポリマーを、直鎖型ポリマーであるエチルセルロースに変えることと、エチルセルロースの使用量と、Ni粒子及びセラミック粒子の使用量とを調整して、導電性ペーストにおけるバインダー樹脂の体積と、無機粒子の体積との合計に対する、バインダー樹脂の体積の比率であるバインダー樹脂体積比率を17体積%に変えることと、の他は、実施例1と同様の試験を行った。構造欠陥の発生の評価結果を表1に記す。
[Comparative Example 9]
By changing the branched polymer to ethyl cellulose, which is a linear polymer, and adjusting the amount of ethyl cellulose used and the amount of Ni particles and ceramic particles used, the volume of the binder resin in the conductive paste and the amount of inorganic particles The same test as in Example 1 was performed, except that the binder resin volume ratio, which is the ratio of the binder resin volume to the total volume, was changed to 17% by volume. Table 1 shows the evaluation results of the occurrence of structural defects.
〔比較例10〕
 分岐型ポリマーを、直鎖型ポリマーであるエチルセルロースに変えることと、エチルセルロースの使用量と、Ni粒子及びセラミック粒子の使用量とを調整して、導電性ペーストにおけるバインダー樹脂の体積と、無機粒子の体積との合計に対する、バインダー樹脂の体積の比率であるバインダー樹脂体積比率を29体積%に変えることと、の他は、実施例1と同様の試験を行った。構造欠陥の発生の評価結果を表1に記す。
[Comparative Example 10]
By changing the branched polymer to ethyl cellulose, which is a linear polymer, and adjusting the amount of ethyl cellulose used and the amount of Ni particles and ceramic particles used, the volume of the binder resin in the conductive paste and the amount of inorganic particles The same test as in Example 1 was performed, except that the binder resin volume ratio, which is the ratio of the binder resin volume to the total volume, was changed to 29% by volume. Table 1 shows the evaluation results of the occurrence of structural defects.
 下記表1中の、特定官能基は、ポリエーテル鎖、ポリエステル鎖、及びポリカーボネート鎖のいずれかに該当する官能基の種類である。
 バインダー樹脂体積比率は、導電性ペーストにおけるバインダー樹脂の体積と、無機粒子の体積との合計に対する、バインダー樹脂の体積の比率である。
 下表中の略号は以下の通りである。
EC:エチルセルロース
PCL:ポリカプロラクトン(脂肪族ポリエステル)
PPC:ポリプロピレンカーボネート(脂肪族ポリカーボネート)
The specific functional groups in Table 1 below are types of functional groups corresponding to any of polyether chains, polyester chains, and polycarbonate chains.
The binder resin volume ratio is the ratio of the volume of the binder resin to the sum of the volume of the binder resin and the volume of the inorganic particles in the conductive paste.
The abbreviations in the table below are as follows.
EC: ethyl cellulose PCL: polycaprolactone (aliphatic polyester)
PPC: polypropylene carbonate (aliphatic polycarbonate)
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 実施例によれば、セルロース系ポリマーからなる主鎖と、脂肪族ポリカーボネート、又は脂肪族ポリエステルからなる枝鎖とを有する分岐型ポリマーと、ポリエーテル鎖のような親水性鎖を有する分散剤とを組み合わせて含む導電性ペーストを用いて形成された導電性シートを含む積層体をカットする場合、積層体をカットする際にせん断力が加えられても、構造欠陥としての層間剥離がほとんど生じないことが分かる。
 他方、比較例によれば、導電性ペーストに含まれるバインダー樹脂がセルロース系ポリマーからなる主鎖のみからなったり、分散剤が特定の親水性鎖を有さない場合、積層体をカットする際に構造欠陥としての層間剥離が生じやすいことが分かる。
According to an embodiment, a branched polymer having a main chain composed of a cellulosic polymer and branch chains composed of an aliphatic polycarbonate or an aliphatic polyester, and a dispersant having hydrophilic chains such as polyether chains are combined. When cutting a laminate containing a conductive sheet formed using a combination of conductive pastes, delamination as a structural defect hardly occurs even if a shearing force is applied when cutting the laminate. I understand.
On the other hand, according to the comparative example, when the binder resin contained in the conductive paste consists only of a main chain made of a cellulose polymer, or when the dispersant does not have a specific hydrophilic chain, when cutting the laminate It can be seen that delamination is likely to occur as a structural defect.

Claims (12)

  1.  分岐型ポリマーと、無機粒子と、分散剤と、有機溶媒とを含み、
     前記分岐型ポリマーの分子鎖が、セルロース系ポリマーからなる主鎖と、脂肪族ポリカーボネート、又は脂肪族ポリエステルからなる枝鎖とを有し、
     前記枝鎖は、直鎖状であっても分岐鎖状であってもよく、
     前記枝鎖は、2以上の前記主鎖に結合して2以上の前記主鎖を架橋してもよく、
     前記分散剤が、ポリエーテル鎖、ポリエステル鎖、及びポリカーボネート鎖からなる群より選択される少なくとも1種を有する、無機粒子含有ペースト。
    comprising a branched polymer, inorganic particles, a dispersant, and an organic solvent;
    The molecular chain of the branched polymer has a main chain made of a cellulose-based polymer and a branch chain made of an aliphatic polycarbonate or an aliphatic polyester,
    The branched chain may be linear or branched,
    the branch chains may bind to two or more of the main chains to bridge the two or more main chains;
    An inorganic particle-containing paste, wherein the dispersant has at least one selected from the group consisting of polyether chains, polyester chains, and polycarbonate chains.
  2.  前記セルロース系ポリマーが、メチルセルロース、エチルセルロース、セルロースアセテートブチレート、セルロースアセテートプロピオネート、及びセルロースアセテートからなる群より選択される少なくとも1種を含む、請求項1に記載の無機粒子含有ペースト。 The inorganic particle-containing paste according to claim 1, wherein the cellulosic polymer contains at least one selected from the group consisting of methyl cellulose, ethyl cellulose, cellulose acetate butyrate, cellulose acetate propionate, and cellulose acetate.
  3.  前記無機粒子が、セラミック粒子、及び/又は金属粒子を含む、請求項1又は2に記載の無機粒子含有ペースト。 The inorganic particle-containing paste according to claim 1 or 2, wherein the inorganic particles include ceramic particles and/or metal particles.
  4.  前記無機粒子として金属粒子を含み、前記金属粒子を構成する金属が、Ni、Cu、Ag、及びAuからなる群より選択される少なくとも1種である、請求項3に記載の複合構造体。 The composite structure according to claim 3, wherein metal particles are included as the inorganic particles, and the metal constituting the metal particles is at least one selected from the group consisting of Ni, Cu, Ag, and Au.
  5.  前記無機粒子として前記セラミック粒子を含み、前記セラミック粒子を構成する材料が、Ba、Ti、Sr、Ca、及びZrからなる群より選択される少なくとも1種を含む、請求項3、又は4に記載の複合構造体。 5. The method according to claim 3 or 4, wherein the ceramic particles are included as the inorganic particles, and the material constituting the ceramic particles includes at least one selected from the group consisting of Ba, Ti, Sr, Ca, and Zr. composite structure.
  6.  前記有機溶媒が、エステル系溶媒を含む、請求項1~5のいずれか1項に記載の無機粒子含有ペースト。 The inorganic particle-containing paste according to any one of claims 1 to 5, wherein the organic solvent contains an ester solvent.
  7.  分岐型ポリマーの体積と前記無機粒子の体積との合計に対する、前記分岐型ポリマーの体積の比率が、17体積%以上29体積%以下である、請求項1~6のいずれか1項に記載の無機粒子含有ペースト。 The ratio of the volume of the branched polymer to the sum of the volume of the branched polymer and the volume of the inorganic particles is 17% by volume or more and 29% by volume or less, according to any one of claims 1 to 6. Paste containing inorganic particles.
  8.  分岐型ポリマーと、無機粒子と、分散剤とを含み、
     前記分岐型ポリマーの分子鎖が、セルロース系ポリマーからなる主鎖と、脂肪族ポリカーボネート、又は脂肪族ポリエステルからなる枝鎖とを有し、
     前記枝鎖は、直鎖状であっても分岐鎖状であってもよく、
     前記枝鎖は、2以上の前記主鎖に結合して2以上の前記主鎖を架橋してもよく、
     前記分散剤が、ポリエーテル鎖、ポリエステル鎖、及びポリカーボネート鎖からなる群より選択される少なくとも1種を有する、無機粒子含有膜。
    comprising a branched polymer, inorganic particles, and a dispersant;
    The molecular chain of the branched polymer has a main chain made of a cellulose-based polymer and a branch chain made of an aliphatic polycarbonate or an aliphatic polyester,
    The branched chain may be linear or branched,
    the branch chains may bind to two or more of the main chains to bridge the two or more main chains;
    An inorganic particle-containing film, wherein the dispersant has at least one selected from the group consisting of polyether chains, polyester chains, and polycarbonate chains.
  9.  前記無機粒子がセラミック粒子を含み、焼成されることにより積層セラミック電子部品における誘電体層を与えるグリーンシートである、請求項8に記載の無機粒子含有膜。 The inorganic particle-containing film according to claim 8, wherein the inorganic particles contain ceramic particles and are a green sheet that provides a dielectric layer in a multilayer ceramic electronic component by firing.
  10.  前記無機粒子が金属粒子を含み、焼成されることにより積層セラミック電子部品における内部電極層を与える導電性シートである、請求項8に記載の無機粒子含有膜。 The inorganic particle-containing film according to claim 8, wherein the inorganic particles contain metal particles and are a conductive sheet that provides an internal electrode layer in a multilayer ceramic electronic component by firing.
  11.  少なくとも1層が、請求項8に記載の無機粒子含有膜からなる積層体。 A laminate in which at least one layer is composed of the inorganic particle-containing film according to claim 8.
  12.  焼成されることにより誘電体層を与えるグリーンシートと、焼成されることにより内部電極層を与える導電性シートとが積層されており、
     前記グリーンシートが、請求項9に記載の前記無機粒子含有膜であるか、前記導電性シートが、請求項10に記載の前記無機粒子含有膜であり、
     積層セラミック電子部品の製造に用いられる、請求項11に記載の積層体。
    A green sheet that provides a dielectric layer by firing and a conductive sheet that provides an internal electrode layer by firing are laminated,
    The green sheet is the inorganic particle-containing film according to claim 9, or the conductive sheet is the inorganic particle-containing film according to claim 10,
    12. The laminate according to claim 11, which is used for manufacturing a laminated ceramic electronic component.
PCT/JP2021/045897 2021-02-02 2021-12-13 Inorganic particle-containing paste, inorganic particle-containing film, and laminate WO2022168446A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020237025908A KR20230128323A (en) 2021-02-02 2021-12-13 Inorganic Particle-Containing Paste, Inorganic Particle-Containing Film, and Laminate
JP2022579372A JPWO2022168446A1 (en) 2021-02-02 2021-12-13
CN202180092230.3A CN116745872A (en) 2021-02-02 2021-12-13 Paste containing inorganic particles, film containing inorganic particles, and laminate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-015277 2021-02-02
JP2021015277 2021-02-02

Publications (1)

Publication Number Publication Date
WO2022168446A1 true WO2022168446A1 (en) 2022-08-11

Family

ID=82741098

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/045897 WO2022168446A1 (en) 2021-02-02 2021-12-13 Inorganic particle-containing paste, inorganic particle-containing film, and laminate

Country Status (4)

Country Link
JP (1) JPWO2022168446A1 (en)
KR (1) KR20230128323A (en)
CN (1) CN116745872A (en)
WO (1) WO2022168446A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007261941A (en) * 2007-05-14 2007-10-11 Tdk Corp Water-based coating composition for ceramic green sheet, method for manufacturing ceramic green sheet and method for manufacturing ceramic electronic parts
JP2009182128A (en) * 2008-01-30 2009-08-13 Sekisui Chem Co Ltd Conductive paste for internal electrode of multilayer ceramic capacitor
JP2014005192A (en) * 2012-05-29 2014-01-16 Sekisui Chem Co Ltd Binder for producing inorganic sintered body
JP2014070002A (en) * 2012-09-28 2014-04-21 Sekisui Chem Co Ltd Method for producing slurry composition
WO2015040924A1 (en) * 2013-09-18 2015-03-26 株式会社村田製作所 Ceramic molded body, and method for producing stacked ceramic electronic component
JP2019140372A (en) * 2018-02-08 2019-08-22 サムソン エレクトロ−メカニックス カンパニーリミテッド. Capacitor component and method of manufacturing the same
JP2020088389A (en) * 2018-11-19 2020-06-04 積水化学工業株式会社 Conductive paste
WO2020137289A1 (en) * 2018-12-25 2020-07-02 住友金属鉱山株式会社 Conductive paste, electronic component, and laminated ceramic capacitor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6939015B2 (en) 2017-03-29 2021-09-22 住友金属鉱山株式会社 Conductive paste for gravure printing for internal electrodes of multilayer ceramic capacitors

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007261941A (en) * 2007-05-14 2007-10-11 Tdk Corp Water-based coating composition for ceramic green sheet, method for manufacturing ceramic green sheet and method for manufacturing ceramic electronic parts
JP2009182128A (en) * 2008-01-30 2009-08-13 Sekisui Chem Co Ltd Conductive paste for internal electrode of multilayer ceramic capacitor
JP2014005192A (en) * 2012-05-29 2014-01-16 Sekisui Chem Co Ltd Binder for producing inorganic sintered body
JP2014070002A (en) * 2012-09-28 2014-04-21 Sekisui Chem Co Ltd Method for producing slurry composition
WO2015040924A1 (en) * 2013-09-18 2015-03-26 株式会社村田製作所 Ceramic molded body, and method for producing stacked ceramic electronic component
JP2019140372A (en) * 2018-02-08 2019-08-22 サムソン エレクトロ−メカニックス カンパニーリミテッド. Capacitor component and method of manufacturing the same
JP2020088389A (en) * 2018-11-19 2020-06-04 積水化学工業株式会社 Conductive paste
WO2020137289A1 (en) * 2018-12-25 2020-07-02 住友金属鉱山株式会社 Conductive paste, electronic component, and laminated ceramic capacitor

Also Published As

Publication number Publication date
CN116745872A (en) 2023-09-12
KR20230128323A (en) 2023-09-04
JPWO2022168446A1 (en) 2022-08-11

Similar Documents

Publication Publication Date Title
KR101696947B1 (en) Method for producing slurry composition
KR100897079B1 (en) Modified Polyvinyl Acetal Resin
EP2154186B1 (en) Crosslinkable polyvinyl acetal porous powder, method for producing the same, and use of the same
KR101886458B1 (en) Method for producing slurry composition
TWI658109B (en) Method for producing adhesive resin and method for producing resin composition, and adhesive resin and resin composition
TWI609059B (en) Inorganic particle dispersion paste, adhesive resin and inorganic particle dispersion paste
WO2004087608A1 (en) Electrode step difference offsetting print paste and production method for electronic components
KR20220161320A (en) Polyester, film and adhesive compositions, and adhesive sheets, laminates and printed wiring boards
JP6666479B2 (en) Slurry composition, ceramic green sheet and coated sheet
WO2022168446A1 (en) Inorganic particle-containing paste, inorganic particle-containing film, and laminate
JP6542476B2 (en) Copolymer, method for producing the same, and copolymer composition
JP5195342B2 (en) Core-shell structured particles, composition, dielectric composition and capacitor
JP2004068013A (en) Vinyl acetal polymer and its application
JP2011206994A (en) Peeling film, ceramic component sheet, methods for manufacturing these, and method for manufacturing ceramic component
JPWO2004101465A1 (en) CERAMIC GREEN SHEET AND MULTILAYER CERAMIC ARTICLE AND METHOD FOR PRODUCING THE SAME
JP2020029479A (en) Polymer compound and polymer composition containing the same, and inorganic particle-containing composition
KR20220161323A (en) Polyester, film and adhesive compositions, and adhesive sheets, laminates and printed wiring boards
JP2022509403A (en) How to Make Ceramic Rally Compositions and Laminated Ceramic Parts
WO2022168445A1 (en) Composite structure, layered ceramic electronic component precursor, method for manufacturing layered ceramic electronic component precursor, and method for manufacturing layered ceramic electronic component
JP6251001B2 (en) Resin composition
JP2004210941A (en) Resin composition, resin cured product, sheet-shaped resin cured product and laminate
WO2024029328A1 (en) Multilayer ceramic electronic component precursor and method for producing multilayer ceramic electronic component
JP5716293B2 (en) Aliphatic polyester polyurethane
WO2024014427A1 (en) Conductive paste, electronic component and multilayer ceramic capacitor
WO2024062857A1 (en) Electrically conductive paste, electronic component, and multilayer ceramic capacitor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21924831

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180092230.3

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 20237025908

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2022579372

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21924831

Country of ref document: EP

Kind code of ref document: A1