WO2022166650A1 - 激光拼接方法、导电膜、触控模组、电容屏及电子设备 - Google Patents

激光拼接方法、导电膜、触控模组、电容屏及电子设备 Download PDF

Info

Publication number
WO2022166650A1
WO2022166650A1 PCT/CN2022/073503 CN2022073503W WO2022166650A1 WO 2022166650 A1 WO2022166650 A1 WO 2022166650A1 CN 2022073503 W CN2022073503 W CN 2022073503W WO 2022166650 A1 WO2022166650 A1 WO 2022166650A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
conductive film
splicing
etching
conductive
Prior art date
Application number
PCT/CN2022/073503
Other languages
English (en)
French (fr)
Inventor
马正
黄俊辉
陈钟辉
Original Assignee
广州视源电子科技股份有限公司
广州视睿电子科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广州视源电子科技股份有限公司, 广州视睿电子科技有限公司 filed Critical 广州视源电子科技股份有限公司
Publication of WO2022166650A1 publication Critical patent/WO2022166650A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/362Laser etching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/70Auxiliary operations or equipment
    • B23K26/702Auxiliary equipment
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04112Electrode mesh in capacitive digitiser: electrode for touch sensing is formed of a mesh of very fine, normally metallic, interconnected lines that are almost invisible to see. This provides a quite large but transparent electrode surface, without need for ITO or similar transparent conductive material

Definitions

  • the present application relates to the field of touch technology, such as a laser splicing method, a conductive film, a touch module, a capacitive screen, and an electronic device.
  • Capacitive touch screens are widely used in electronic products such as mobile phones and tablet computers because of their sensitive and fast response. In order to better apply capacitive touch screens in corporate meetings, commercial advertisements, education In teaching and exhibition, a large-sized capacitive touch screen is required, and correspondingly, a large-sized conductive film applied to the capacitive touch screen needs to be produced.
  • This application aims to solve at least one defect (deficiency) in the above-mentioned related art, and provides a laser splicing method, a conductive film, a touch module, a capacitive screen and an electronic device, which have solved the problem that the laser splicing of the conductive film in the related art is prone to dislocation A problem that leads to a short circuit of the conductive film.
  • a laser splicing method is provided, the method is applied to a conductive film, comprising:
  • the non-conductive pattern includes a plurality of polygonal unit patterns
  • the step-by-step etching area is surrounded by a first splicing line arranged at the intersection of two adjacent unit patterns along a first direction and a second splicing line arranged along a second direction, and two adjacent units
  • the contour lines of the patterns intersect and form an acute angle with the first splicing line, wherein the first direction and the second direction form a certain angle with each other.
  • the contour lines of the two adjacent unit patterns intersect and form an acute angle with the first seam line, thereby moving to the next even after completing one stepwise etching area
  • the stepwise etching area is offset during laser etching, and the unit patterns of two adjacent stepwise etching areas still intersect at the splicing point, which solves the problem that the offset during laser etching results in two adjacent stepwise etching areas.
  • the unit pattern of the splicing is dislocated at the splicing, which leads to the problem of short circuit of the conductive film, and improves the tolerance to laser offset.
  • the non-conductive pattern includes a plurality of unit pattern groups arranged in parallel and spaced apart along the first direction, and the unit pattern group is formed by sequentially connecting a plurality of the unit patterns along the second direction; the first Two stitching lines are arranged on the area between two adjacent unit pattern groups.
  • the area between the adjacent two unit pattern groups has no unit pattern, thereby avoiding two stepwise etching areas in the second direction
  • the problem of splicing dislocation effectively avoids the short circuit of the conductive film caused by the splicing dislocation.
  • the unit pattern is a polygonal axisymmetric pattern with a diagonal grid, which has at least an axis of symmetry along the second direction;
  • the non-conductive pattern includes a plurality of parallel and spaced rows along the first direction
  • a unit pattern group of cloth, the unit pattern group is formed by connecting a plurality of the unit patterns in sequence along the second direction;
  • the second splicing line is arranged on the symmetry axis of the unit pattern group along the second direction, The included angle between the oblique line and the second splicing line is an acute angle.
  • the angle between the oblique line and the second splicing line is an acute angle, thereby Even if the offset occurs when moving to the next step-etched area for laser etching after completing one step-etched area, the cell patterns of two adjacent step-etched areas still intersect at the splicing, thus avoiding two step-etched areas
  • the problem of splicing dislocation of the etched region in the second direction effectively avoids the problem of short circuit of the conductive film caused by the splicing dislocation.
  • the etching is performed by laser in each of the step-by-step etching regions in sequence to form a spliced non-conductive pattern
  • the non-conductive pattern includes a plurality of polygonal unit patterns, including:
  • the movement area of the laser machine is set according to the step-by-step etching area, so that the laser machine etches the conductive film according to the non-conductive pattern, the first stitching line and the second stitching line .
  • the two adjacent step-by-step etching areas are offset.
  • the unit patterns in the splicing area still intersect at the splicing point, which solves the problem that the offset of the laser machine in the laser etching causes the splicing dislocation of the unit patterns located in the two adjacent stepwise etching areas at the splicing point, resulting in a short circuit of the conductive film. Improved tolerance to laser offset.
  • the method before the setting of the movement area of the laser machine according to the step-by-step etching area, the method further includes:
  • the basic parameters for the laser machine to etch the non-conductive pattern on the conductive film are set, so that the laser machine etches the conductive film according to the basic parameters.
  • the method further includes: fixing the conductive film under the laser head of the laser machine, and positioning the conductive film.
  • the laser etching precision of the non-conductive pattern formed by the laser machine on the conductive film by laser etching is improved.
  • the fixing the conductive film under the laser machine includes:
  • the conductive film is fixed at the bottom of the conductive film by means of air suction.
  • the conductive film is fixed by means of air suction, thereby avoiding the problem of etching errors caused by the movement of the conductive film during laser etching, and improving the precision of laser etching of non-conductive patterns.
  • the basic parameter includes a moving direction of the laser machine, and the laser machine sequentially performs etching on each step-by-step etching area according to the moving direction to form the spliced non-conductive pattern.
  • a conductive film comprising a conductive film body and a non-conductive pattern formed by etching on the conductive film body using the above-mentioned laser splicing method.
  • a touch module including a substrate and the above-mentioned conductive film.
  • a capacitive screen comprising a protective cover, a display module and the above touch module, the protective cover, the touch module and the display module are arranged in order from top to bottom set up.
  • an electronic device comprising a conductive film processed by the above-mentioned laser splicing method.
  • the beneficial effect of the present application is: by arranging the first splicing line at the intersection of two adjacent unit patterns, the contour lines of the two adjacent unit patterns intersect and form an acute angle with the first splicing line, thereby Even if the offset occurs when moving to the next step-etched area for laser etching after completing one step-etched area, the unit patterns of two adjacent step-by-step etching areas in the first direction still intersect at the splicing point, which solves the problem.
  • the offset in the first direction causes the unit patterns located in the two adjacent stepwise etching regions to have splicing dislocation at the splicing, which leads to the problem of short circuit of the conductive film and improves the tolerance to laser offset.
  • FIG. 1 is a schematic diagram of a step-by-step etching region in the present application.
  • FIG. 2 is a partial schematic diagram of a joint of two adjacent step-by-step etching regions in the related art.
  • FIG. 3 is a schematic diagram after laser etching at the splicing of two adjacent stepwise etching regions in the related art.
  • FIG. 4 is a partial schematic diagram of the intersection of two adjacent stepwise etching regions in the first direction in the present application.
  • FIG. 5 is a schematic diagram of the intersection of two adjacent stepwise etching regions in the first direction after laser etching in the present application.
  • first and second are only used for descriptive purposes, and should not be construed as indicating or implying relative importance or implying the number of indicated technical features. Thus, a feature defined as “first”, “second” may expressly or implicitly include one or more of that feature. In the description of the present invention, “plurality” means two or more, unless otherwise expressly defined.
  • FIG. 1 is a schematic diagram of a step-by-step etching area. The method is applied to a conductive film, including:
  • Etching is performed by laser in each of the step-by-step etching regions in sequence to form a spliced non-conductive pattern, the non-conductive pattern including a plurality of polygonal unit patterns 1;
  • the step-by-step etching area is surrounded by a first splicing line 2 arranged at the intersection of two adjacent unit patterns 1 along the first direction and a second splicing line 3 arranged along the second direction.
  • the contour lines of 1 intersect and form an acute angle with the first splicing line 2, wherein the first direction and the second direction form a certain angle with each other.
  • first splicing lines 2 are arranged in the first direction
  • second splicing lines 3 are arranged in the second direction
  • the first splicing lines 2 and the second splicing lines 3 intersect to divide the conductive film It is a plurality of spliced step-by-step etching areas, and the size of each step-by-step etching area is equal; etching is performed by laser in each step-by-step etching area in turn to form a spliced non-conductive pattern, and the non-conductive pattern includes several polygons.
  • the unit pattern 1 may be a rhombus or a rhombus-like shape, or a hexagon.
  • the first splicing line 2 is set at the intersection of two adjacent unit patterns 1, and the contour lines of the two adjacent unit patterns 1 It intersects and forms an acute angle with the first splicing line 2 .
  • the first direction and the second direction form a certain angle with each other, wherein the first direction and the second direction form 90° with each other; taking the plane coordinate axis as a reference, the first direction is the Y-axis direction, and the second direction is The X-axis direction, or the first direction is the X-axis direction, and the second direction is the Y-axis direction; when the conductive film is used as the emission layer in the touch module, that is, the TX layer, the first direction is the Y-axis direction, and the second direction is the Y-axis direction.
  • the first direction is the X-axis direction
  • the second direction is the Y-axis direction
  • the emission layer is the TX layer
  • the first direction is the X-axis direction
  • the second direction is the Y-axis direction
  • the conductive film is used as the receiving layer in the touch module, that is, the RX layer
  • the first direction is the Y-axis direction
  • the second The direction is the X-axis direction.
  • FIG. 2 is a partial schematic diagram of the splicing of two step-by-step etching areas in the related art. Since the splicing area of the two step-by-step etching areas, that is, the splicing line, is placed on the unit pattern 1 and is connected to one of the outer contours of the unit pattern 1 The line is vertical. When one step-etched area is completed and moved to the next step-etched area for laser etching, the offset occurs, which will cause dislocation at the splicing, for example, as shown in Figure 3, which is based on Figure 2.
  • FIG. 5 is a schematic diagram after laser etching at the intersection of two adjacent step-by-step etching areas in the first direction, wherein the dotted line in FIG.
  • the contour lines of the two adjacent unit patterns 1 intersect and form an acute angle with the first stitching line 2, so that even after completing one step etching
  • the unit patterns 1 of two adjacent step-by-step etching areas still intersect at the splicing point b, which solves the problem of offset during laser etching.
  • the unit patterns 1 located in the adjacent two step-etched regions have splicing dislocation at the splicing point a, which leads to the problem of short circuit of the conductive film, and improves the tolerance to laser offset.
  • the non-conductive pattern includes a plurality of unit pattern groups arranged in parallel and spaced apart along the first direction, and the unit pattern group is formed by sequentially connecting a plurality of unit patterns 1 along the second direction; the second splicing line 3 is provided on the area between two adjacent unit pattern groups.
  • the area between the two adjacent unit pattern groups has no unit pattern 1, thereby avoiding the two step-etched areas in the second area.
  • the problem of splicing dislocation in the direction effectively avoids the problem of short circuit of the conductive film caused by splicing dislocation.
  • the unit pattern 1 is a polygonal axisymmetric pattern with a diagonal grid, which has at least an axis of symmetry along the second direction;
  • the non-conductive pattern includes a plurality of parallel and spaced rows along the first direction
  • a unit pattern group of cloth, the unit pattern group is formed by connecting several unit patterns 1 in sequence along the second direction;
  • the second splicing line 3 is arranged on the symmetry axis of the unit pattern group along the second direction, and the oblique line is connected with the first
  • the included angle between the two splicing lines 3 is an acute angle.
  • the unit pattern 1 is a polygonal axisymmetric pattern along the second direction formed by the intersection of contour lines and a plurality of oblique lines.
  • the non-conductive patterns are formed by parallel and spaced arrangement along the first direction, the second splicing line 3 is arranged on the symmetry axis of the unit pattern group in the second direction, the second splicing line 3 intersects the oblique line and forms an acute angle, or, the second splicing line 3
  • the stitching line 3 is arranged on the area between two adjacent unit pattern groups.
  • the grid in the unit pattern 1 is a grid composed of several line segments parallel to the first direction and several line segments perpendicular to the second direction, and the second stitching line 2 is located in the unit pattern group, due to the The vertical line segment is perpendicular to the second splicing line 2, so when the laser etching is offset, the vertical line segments on both sides of the second splicing line 2 cannot be connected at the splicing point, that is, the splicing dislocation occurs, resulting in a short circuit of the conductive film;
  • the difference between the oblique line and the second splicing line 3 The included angle is an acute angle, so that even if the offset occurs when moving to the next step-etched area for laser etching after completing one step-etching area, the unit patterns 1 of two adjacent step-etching areas still intersect at the splicing point,
  • the etching is performed by laser in each of the step-by-step etching regions to form a spliced non-conductive pattern
  • the non-conductive pattern includes a plurality of polygonal unit patterns 1, including:
  • the movement area of the laser machine is set according to the step-by-step etching area, so that the laser machine etches the conductive film according to the non-conductive pattern, the first stitching line 2 and the second stitching line 3 .
  • the non-conductive pattern is drawn using AUTO CAD, CORELDRAW or CAM software, the drawn non-conductive pattern that needs to be etched on the conductive film is input into the laser machine, and then the movement of the laser machine is set according to the step-by-step etching area
  • the moving area of the laser machine is the processing width of a laser head in the laser machine.
  • the etching range of a laser head is limited, in practice, the etching range of a laser head is 17cm*17cm, so step-by-step etching
  • the size of the area is less than or equal to the etching range of a laser head, that is, the size of the step-by-step etching area is less than or equal to 17cm*17cm, but with the advancement of technology, when the etching range of a laser head increases, the The size of the step-by-step etching area also increases; the laser machine sequentially etches each step-by-step etching area on the conductive film according to the input non-conductive pattern and the set motion area to form a spliced non-conductive pattern.
  • the place where the two step-by-step etching areas meet The splicing of the laser lines occurs, that is, the splicing of the two unit patterns 1. Since the first splicing line 2 is located at the intersection of the two adjacent unit patterns 1, the contour lines of the two adjacent unit patterns 1 intersect and intersect with the first splicing line 2.
  • the unit pattern 1 of the two adjacent step-etching areas still intersects at the splicing point, That is to say, the contour lines and oblique lines of two adjacent unit patterns 1 still intersect, which solves the problem that the unit pattern 1 located in the two adjacent step-by-step etching regions has a splicing dislocation at the splicing due to offset when the laser machine performs laser etching. This leads to the problem of short-circuiting of the conductive film, increasing the tolerance to laser offset.
  • the unit pattern 1 further includes an inner line that is routed along its outline, and the inner lines of two adjacent unit patterns 1 intersect and intersect the first splicing line 2 at an acute angle.
  • the method before the setting of the movement area of the laser machine according to the step-by-step etching area, the method further includes:
  • the basic parameters for the laser machine to etch the non-conductive pattern on the conductive film are set, so that the laser machine etches the conductive film according to the basic parameters.
  • the basic parameters include, but are not limited to, the laser parameters of the laser machine, the laser pulse frequency and pulse width, the laser etching linear speed, the number of etchings in a stepwise etching area, and the laser layer, wherein the laser layer includes the emission layer and receiving layer, when the set laser layer is the emitting layer, the first direction is the Y-axis direction, the second direction is the X-axis direction, and the non-conductive pattern includes several unit pattern groups arranged in parallel and spaced along the Y-axis, The unit pattern group includes several unit patterns 1 connected in sequence along the X-axis direction.
  • the basic parameter includes a moving direction of the laser machine, and the laser machine sequentially performs etching on each step-by-step etching area according to the moving direction to form the spliced non-conductive pattern.
  • the moving direction of the laser machine is the moving direction after completing a step-by-step etching area, wherein the moving direction of the laser machine may be moving along the first direction and then moving along the second direction, or may be moving along the first direction Move in the second direction and then move in the first direction.
  • the method further includes: fixing the conductive film under the laser head of the laser machine, and positioning the conductive film.
  • a positioning target is provided on the conductive film, and the laser machine automatically grabs the positioning target to realize the positioning of the conductive film.
  • the laser etching precision of the non-conductive pattern formed by the laser machine on the conductive film by laser etching is improved.
  • the fixing the conductive film under the laser machine includes:
  • the conductive film is fixed at the bottom of the conductive film by means of air suction.
  • the conductive film is placed on a platform below the laser machine, and the conductive film is fixed at the bottom of the conductive film by means of suction.
  • the conductive film is fixed by means of air suction, thereby avoiding the problem of etching errors caused by the movement of the conductive film during laser etching, and improving the precision of laser etching of non-conductive patterns.
  • a touch module which includes a substrate and the conductive film as described above.
  • two conductive films are included, namely a first conductive film and a second conductive film, the first conductive film or the receiving layer is disposed on the upper surface of the substrate, and the second conductive film or the emitting layer is disposed under the substrate
  • the surface, or the first conductive film, that is, the receiving layer, and the second conductive film, that is, the emitting layer, are arranged sequentially from top to bottom.
  • the substrate may be, but not limited to, a glass substrate, and the conductive film is made of conductive materials such as ITO, nano-silver, metal mesh, conductive polymer, etc.
  • the conductive film and the substrate are bonded by optical adhesive (OCA).
  • OCA optical adhesive
  • OCA optical adhesive
  • the touch module avoids the offset when the laser machine performs laser etching, resulting in the dislocation of the unit patterns 1 located in the two adjacent step-by-step etching areas at the splicing position, thereby causing short circuit of the conductive film , increasing the tolerance to laser offset.
  • a capacitive screen including a protective cover, a display module and the above touch module, the protective cover, the touch module and the Display modules are set in order from top to bottom.
  • the protective cover plate may be a glass cover plate, and a bonding layer is further provided between the touch module and the display module, wherein the bonding layer may be optical glue or air.
  • the capacitive screen avoids the problem that the offset occurs when the laser machine performs laser etching, resulting in the splicing dislocation of the unit patterns 1 located in the two adjacent stepwise etching areas at the splicing point, thereby causing the short circuit of the conductive film. , which improves tolerance to laser offset.
  • an electronic device including a conductive film processed by the above-mentioned laser splicing method.
  • the electronic device may be, but is not limited to, any product or component with a display function, such as a mobile phone, a tablet computer, a monitor, and a notebook computer. Based on the same reason as above, it avoids the problem that the unit pattern 1 located in the adjacent two step-etching regions has a splicing dislocation at the splicing place due to the offset when the laser machine performs laser etching, thereby causing the short circuit of the conductive film, and improves the Tolerance to laser offset.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing Of Printed Circuit Boards (AREA)
  • Laser Beam Processing (AREA)

Abstract

一种激光拼接方法,应用于导电膜,包括:将导电膜划分为多个相拼接的分步蚀刻区域;依次在各个分步蚀刻区域内通过激光进行蚀刻,以形成拼接的非导电图案,非导电图案包括若干个呈多边形的单元图案(1);分步蚀刻区域由沿第一方向设置在相邻两个单元图案相交处的第一拼接线(2)和沿第二方向设置的第二拼接线(3)围绕而成,相邻两个单元图案的轮廓线相交且与第一拼接线成锐角,其中,第一方向与第二方向互成一定角度。该方法可以避免因拼接错位导致导电膜短路的问题。还涉及一种导电膜、触控模组、电容屏及电子设备。

Description

激光拼接方法、导电膜、触控模组、电容屏及电子设备
本申请要求于2021年2月2日提交国家知识产权局、申请号为202110145372.3、发明名称为“激光拼接方法、导电膜、触控模组、电容屏及电子设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及触控技术领域,例如涉及一种激光拼接方法、导电膜、触控模组、电容屏及电子设备。
背景技术
电容式触控屏因其具有触摸点击灵敏和响应快的特点,现已广泛应用于手机、平板电脑等电子产品中,为了更好地将电容式触控屏应用在企业会议、商业广告、教育教学、会展展示中,需要大尺寸的电容式触控屏,相应地,则需要制作大尺寸的应用于电容式触控屏的导电膜。
目前大多数的激光蚀刻机采用振镜和平台的组合对导电膜进行激光蚀刻,而常规振镜的加工幅面为170mm*170mm,因此,在制作大尺寸的导电膜时,如图1所示,需要先将导电膜划分为多个分步蚀刻区域,然后在分步蚀刻区域内根据需要蚀刻的导电膜图案通过激光蚀刻在导电膜上形成多条蚀刻线,多条蚀刻线共同形成蚀刻图案,在完成一个分步蚀刻区域的蚀刻即完成振镜的一个幅面加工后,移动振镜来完成其他分步蚀刻区域的激光蚀刻;然而,振镜在进行激光蚀刻时容易发生偏移,这就导致位于相邻两个分步蚀刻区域内的蚀刻图案的拼接处容易发生偏移,从而造成导电膜的短路,进而使得导电膜无法实现触控功能。
发明内容
本申请旨在解决上述相关技术中至少一种缺陷(不足),提供一种激光拼接方法、导电膜、触控模组、电容屏及电子设备,已解决相关技术中导电膜激光拼接处容易错位导致导电膜短路的问题。
一方面,提供一种激光拼接方法,所述方法应用于导电膜,包括:
将导电膜划分为多个相拼接的分步蚀刻区域;
依次在各个所述分步蚀刻区域内通过激光进行蚀刻,以形成拼接的非导电图案,所述非导电图案包括若干个呈多边形的单元图案;
所述分步蚀刻区域由沿第一方向设置在相邻两个所述单元图案相交处的第一拼接线和沿第二方向设置的第二拼接线围绕而成,相邻两个所述单元图案的轮廓线相交且与所述第一拼接线成锐角,其中,所述第一方向与所述第二方向互成一定角度。
通过将第一拼接线设置在相邻两个单元图案相交处,相邻两个单元图案的轮廓线相交且与第一拼接线成锐角,从而即使在完成一个分步蚀刻区域后移动到下一个分步蚀刻区域进行激光蚀刻时发生了偏移,相邻两个分步蚀刻区的单元图案在拼接处依旧相交,解决了在进行激光蚀刻时发生偏移导致位于相邻两个分步蚀刻区域的单元图案在拼接处有拼接错位,从而导致导电膜短路的问题,提高了对激光偏移的容忍度。
在一个实施例中,所述非导电图案包括若干个沿第一方向平行间隔排布的单元图案组,所述单元图案组由若干个所述单元图案沿第二方向依次连接形成;所述第二拼接线设置在相邻两个所述单元图案组之间的区域上。
通过将第二拼接线设置在相邻两个单元图案组之间的区域上,相邻两个单元图案组之间的区域没有单元图案,从而避免了两个分步蚀刻区域在第二方向上的拼接错位问题,有效地避免了因拼接错位导致导电膜短路的问题。
在一个实施例中,所述单元图案为具有斜线网格的多边形轴对称图案,其至少具有沿所述第二方向的对称轴;所述非导电图案包括若干个沿第一方向平行间隔排布的单元图案组,所述单元图案组由若干个所述单元图案沿第二方向依次连接形成;所述第二拼接线设置在所述单元图案组沿所述第二方向的对称轴上,所述斜线与所述第二拼接线之间的夹角为锐角。
通过将第二拼接线设置在相邻两个单元图案组之间的区域或设置在单元图案组沿第二方向的对称轴上,斜线与第二拼接线之间的夹角为锐角,从而即使在完成一个分步蚀刻区域后移动到下一个分步蚀刻区域进行激光蚀刻时发生了偏移,相邻两个分步蚀刻区的单元图案在拼接处依旧相交,从而避免了两个分步蚀刻区域在第二方向上的拼接错位问题,有效地避免了因拼接错位导致导电膜短路的问题。
在一个实施例中,所述依次在各个所述分步蚀刻区域内通过激光进行蚀刻,以形成拼接的非导电图案,所述非导电图案包括若干个呈多边形的单元图案,包括:
将需要蚀刻在导电膜上的所述非导电图案输入激光机;
根据所述分步蚀刻区域设定所述激光机的运动区域,以使所述激光机根据所述非导电图案、所述第一拼接线和所述第二拼接线对所述导电膜进行蚀刻。
通过根据分步蚀刻区域设定激光机的运动区域,从而即使激光机在完成一个分步蚀刻区域后移动到下一个分步蚀刻区域进行激光蚀刻时发生了偏移,相邻两个分步蚀刻区的单元图案在拼接处依旧相交,解决了在激光机进行激光蚀刻时发生偏移导致位于相邻两个分步蚀刻区域的单元图案在拼接处有拼接错位,从而导致导电膜短路的问题,提高了对激光偏移的容忍度。
在一个实施例中,在所述根据所述分步蚀刻区域设定所述激光机的运动区域之前,还包括:
设定所述激光机在所述导电膜上蚀刻所述非导电图案的基本参数,以使所述激光机根据所述基本参数对所述导电膜进行蚀刻。
在一个实施例中,还包括:将所述导电膜固定在所述激光机的激光头的下方,并对所述导电膜进行定位。
通过对导电膜进行定位,从而提高了激光机在导电膜上进行激光蚀刻形成拼接的非导电图案激光蚀刻的精度。
在一个实施例中,所述将所述导电膜固定在所述激光机的下方包括:
在所述导电膜的底部采用吸风的方式将所述导电膜进行固定。
通过采用吸风的方式将所述导电膜进行固定,从而避免了在进行激光蚀刻时因导电膜移动导致蚀刻错误的问题,提高了非导电图案激光蚀刻的精度。
在一个实施例中,所述基本参数包括所述激光机的移动方向,所述激光机根据所述移动方向依次在各个分步蚀刻区域上进行蚀刻,以形成拼接的所述非导电图案。
一方面,提供一种导电膜,包括导电膜本体和采用如上所述的激光拼接方法在所述导电膜本体上蚀刻形成的非导电图案。
一方面,提供一种触控模组,包括基板和如上所述的导电膜。
一方面,提供一种电容屏,包括保护盖板、显示模组和如上所述的触控模组,所述保护盖板、所述触控模组和所述显示模组从上至下依次设置。
另一方面,提供一种电子设备,包括采用如上所述激光拼接方法加工而成的导电膜。
与相关技术相比,本申请的有益效果为:通过将第一拼接线设置在相邻两个单元图案相交处,相邻两个单元图案的轮廓线相交且与第一拼接线成锐角,从而即使在完成一个分步蚀刻区域后移动到下一个分步蚀刻区域进行激光蚀刻时发生了偏移,在第一方向上相邻两个分步蚀刻区的单元图案在拼接处依旧相交,解决了在进行激光蚀刻时在第一方向上发生偏移导致位于相邻两个分步蚀刻区域的单元图案在拼接处有拼接错位,从而导致导电膜短路的问题,提高了对激光偏移的容忍度;通过将第二拼接线设置在相邻两个单元图案组之间的区域上,相邻两个单元图案组之间的区域没有单元图案,或者,通过将第二拼接线设置在相邻两个单元图案组之间的区域或设置在单元图案组沿第二方向的对称轴上,即使在进行激光蚀刻时在第二方向上发生了偏移,在第二方向上相邻两个分步蚀刻区的单元图案在拼接处依旧相交,有效地避免了因拼接错位导致导电膜短路的问题。
附图说明
图1为本申请中分步蚀刻区的示意图。
图2为相关技术中相邻两个分步蚀刻区拼接处的局部示意图。
图3为相关技术中相邻两个分步蚀刻区拼接处激光蚀刻后的示意图。
图4本申请中第一方向上相邻两个分步蚀刻区相交处的局部示意图。
图5为本申请中第一方向上相邻两个分步蚀刻区相交处激光蚀刻后的示意图。
具体实施方式
本申请附图仅用于示例性说明,不能理解为对本申请的限制。为了更好说明以下实施例,附图某些部件会有省略、放大或缩小,并不代表实际产品的尺寸;对于本领域技术人员来说,附图中某些公知结构及其说明可能省略是可以理解的。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二” 的特征可以明示或者隐含地包括一个或者更多个该特征。在本实用新型的描述中,“多个”的含义是两个或两个以上,除非另有明确的限定。
在本申请中,除非另有明确的规定和限定,属于“安装”、“相连”“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据情况理解上述术语在本实用新型中的含义。
在一个实施例中,提供一种激光拼接方法,参考图1,图1为分步蚀刻区的示意图,所述方法应用于导电膜,包括:
将导电膜划分为多个相拼接的分步蚀刻区域;
依次在各个所述分步蚀刻区域内通过激光进行蚀刻,以形成拼接的非导电图案,所述非导电图案包括若干个呈多边形的单元图案1;
所述分步蚀刻区域由沿第一方向设置在相邻两个单元图案1相交处的第一拼接线2和沿第二方向设置的第二拼接线3围绕而成,相邻两个单元图案1的轮廓线相交且与第一拼接线2成锐角,其中,所述第一方向与所述第二方向互成一定角度。
在一个实施例中,在第一方向上设置若干条第一拼接线2,在第二方向上设置若干条第二拼接线3,第一拼接线2与第二拼接线3相交将导电膜划分为多个相拼接的分步蚀刻区域,每个分步蚀刻区域的大小相等;依次在各个分步蚀刻区域内通过激光进行蚀刻,以形成拼接的非导电图案,非导电图案包括若干个呈多边形的单元图案1。在一个实施例中,单元图案1可以为菱形或类菱形,也可以为六边形,第一拼接线2设置在相邻两个单元图案1相交处,相邻两个单元图案1的轮廓线相交且与第一拼接线2成锐角。在一个实施例中,第一方向与第二方向互成一定角度,其中第一方向与第二方向互成90°;以平面坐标轴为基准,第一方向为Y轴方向,第二方向为X轴方向,或者,第一方向为X轴方向,第二方向为Y轴方向;当导电膜作为触控模组中的发射层即TX层时,第一方向为Y轴方向,第二方向为X轴方向,当导电膜作为触控模组中的接收层即RX层时,第一方向为X轴方向,第二方向为Y轴方向,或者,当导电膜作为触控模组中的发 射层即TX层时,第一方向为X轴方向,第二方向为Y轴方向,当导电膜作为触控模组中的接收层即RX层时,第一方向为Y轴方向,第二方向为X轴方向。
如图2所示为相关技术中两个分步蚀刻区拼接处的局部示意图,由于两个分步蚀刻区的拼接处即拼接线放置在单元图案1上且与单元图案1的其中一外轮廓线垂直,当完成一个分步蚀刻区域后移动到下一个分步蚀刻区域进行激光蚀刻时发生了偏移,会导致拼接处错位,例如,如图3所示,图3为根据图2所示的拼接处进行激光蚀刻后的导电膜局部示意图,当在分布蚀刻区域A1完成激光蚀刻后移动到分步蚀刻区域A2进行激光蚀刻发生偏移时,会导致拼接处a两侧单元图案1的轮廓线发生错位,使得两侧的轮廓线在拼接处a无法连接,导致导电膜短路;如图4和图5所示,图4为第一方向上相邻两个分步蚀刻区相交处的局部示意图,如图5为第一方向上相邻两个分步蚀刻区相交处激光蚀刻后的示意图,其中,图5中的虚线为第二拼接线2,在实际蚀刻后的导电膜中并不存在,通过将第一拼接线2设置在相邻两个单元图案1相交处,相邻两个单元图案1的轮廓线相交且与第一拼接线2成锐角,从而即使在完成一个分步蚀刻区域B1后移动到下一个分步蚀刻区域B2进行激光蚀刻时发生了偏移,相邻两个分步蚀刻区的单元图案1在拼接处b依旧相交,解决了在进行激光蚀刻时发生偏移导致位于相邻两个分步蚀刻区域的单元图案1在拼接处a有拼接错位,从而导致导电膜短路的问题,提高了对激光偏移的容忍度。
在一个实施例中,所述非导电图案包括若干个沿第一方向平行间隔排布的单元图案组,单元图案组由若干个单元图案1沿第二方向依次连接形成;第二拼接线3设置在相邻两个单元图案组之间的区域上。
通过将第二拼接线3设置在相邻两个单元图案组之间的区域上,相邻两个单元图案组之间的区域没有单元图案1,从而避免了两个分步蚀刻区域在第二方向上的拼接错位问题,有效地避免了因拼接错位导致导电膜短路的问题。
在又一个实施例中,单元图案1为具有斜线网格的多边形轴对称图案,其至少具有沿所述第二方向的对称轴;所述非导电图案包括若干个沿第一方向平行间隔排布的单元图案组,单元图案组由若干个单元图案1沿第二方向依次连接形成;第二拼接线3设置在单元图案组沿所述第二方向的对称轴上,所述斜线与第二拼接线3之间的夹角为锐角。
在一个实施例中,单元图案1由轮廓线和多条斜线互相相交形成的沿第二方向的多边形轴对称图案,其可以为仅沿第二方向轴对称的单元图案1,也可以为既沿第一方向轴对称又沿第二方向轴对称的单元图案1;若干个单元图案1沿第二方向依次连接形成单元图案组,从而单元图案组沿第二方向轴对称,若干个单元图案组沿第一方向平行间隔排布形成非导电图案,第二拼接线3设置在单元图案组在第二方向上的对称轴上,第二拼接线3与斜线相交且成锐角,或者,第二拼接线3设置在相邻两个单元图案组之间的区域上。
当单元图案1中的网格为由与第一方向平行的若干线段和与第二方向垂直的若干线段构成的网格,而第二拼接线2位于单元图案组中时,由于与第二方向垂直的线段与第二拼接线2垂直,因此当进行激光蚀刻发生偏移时,第二拼接线2两侧的垂直线段在拼接处无法连接,即发生了拼接错位,从而导致了导电膜短路;而本实施例通过将第二拼接线3设置在相邻两个单元图案组之间的区域或设置在单元图案组沿第二方向的对称轴上,斜线与第二拼接线3之间的夹角为锐角,从而即使在完成一个分步蚀刻区域后移动到下一个分步蚀刻区域进行激光蚀刻时发生了偏移,相邻两个分步蚀刻区的单元图案1在拼接处依旧相交,从而避免了两个分步蚀刻区域在第二方向上的拼接错位问题,有效地避免了因拼接错位导致导电膜短路的问题。
在一个实施例中,所述依次在各个所述分步蚀刻区域内通过激光进行蚀刻,以形成拼接的非导电图案,所述非导电图案包括若干个呈多边形的单元图案1,包括:
将需要蚀刻在导电膜上的所述非导电图案输入激光机;
根据所述分步蚀刻区域设定所述激光机的运动区域,以使所述激光机根据所述非导电图案、第一拼接线2和第二拼接线3对所述导电膜进行蚀刻。
在一个实施例中,非导电图案采用AUTO CAD、CORELDRAW或CAM软件绘制,将绘制好的需要蚀刻在导电膜上的非导电图案输入激光机中,然后根据分步蚀刻区域设定激光机的运动区域,其中,激光机的运动区域为激光机中一个激光头的加工幅面,由于一个激光头的蚀刻范围是有限的,在实际中,一个激光头的蚀刻范围为17cm*17cm,故分步蚀刻区域的大小小于或等于一个激光头的蚀刻范围,即分步蚀刻区域的大小小于或等于17cm*17cm,但随着科技的进步,当一个激光 头的蚀刻范围增大时,本实施例中的分步蚀刻区域的大小也随着增大;激光机根据输入的非导电图案和设定的运动区域在导电膜上的各个分步蚀刻区域上依次进行蚀刻以形成拼接的非导电图案。在一个实施例中,如图4所示,当一个激光头完成一个分步蚀刻区域的激光蚀刻后,移动到下一个分步蚀刻区域进行蚀刻时,两个分步蚀刻区域相接的地方会出现激光线的拼接,即两个单元图案1的拼接,由于第一拼接线2位于相邻两个单元图案1相交处,相邻两个单元图案1的轮廓线相交且与第一拼接线2成锐角,从而即使激光机在完成一个分步蚀刻区域后移动到下一个分步蚀刻区域进行激光蚀刻时发生了偏移,相邻两个分步蚀刻区的单元图案1在拼接处依旧相交,即相邻两个单元图案1的轮廓线、斜线依旧相交,解决了在激光机进行激光蚀刻时发生偏移导致位于相邻两个分步蚀刻区域的单元图案1在拼接处有拼接错位,从而导致导电膜短路的问题,提高了对激光偏移的容忍度。
在一个实施例中,单元图案1还包括沿其轮廓线走线的内部走线,相邻两个单元图案1的内部走线相交且与第一拼接线2相交成锐角。
在一个实施例中,在所述根据所述分步蚀刻区域设定所述激光机的运动区域之前,还包括:
设定所述激光机在所述导电膜上蚀刻所述非导电图案的基本参数,以使所述激光机根据所述基本参数对所述导电膜进行蚀刻。
在一个实施例中,基本参数包括但不限于激光机的激光参数、激光脉冲频率脉宽、激光蚀刻线速度、在一个分步蚀刻区域的蚀刻次数和激光图层,其中,激光图层包括发射层和接收层,当设置的激光图层为发射层时,第一方向为Y轴方向,第二方向为X轴方向,非导电图案包括若干个沿Y轴平行间隔排布的单元图案组,单元图案组包括若干个沿X轴方向依次连接的单元图案1。
在一个实施例中,所述基本参数包括所述激光机的移动方向,所述激光机根据所述移动方向依次在各个分步蚀刻区域上进行蚀刻,以形成拼接的所述非导电图案。
在一个实施例中,激光机的移动方向为完成一个分步蚀刻区域后的移动方向,其中,激光机的移动方向可以为先沿第一方向移动再沿第二方向移动,也可以为先沿第二方向移动再沿第一方向移动。
在一个实施例中,还包括:将所述导电膜固定在所述激光机的激光头的下方,并对所述导电膜进行定位。
在一个实施例中,导电膜上设有定位靶标,激光机自动抓取定位靶标实现导电膜的定位。
通过对导电膜进行定位,从而提高了激光机在导电膜上进行激光蚀刻形成拼接的非导电图案激光蚀刻的精度。
在一个实施例中,所述将所述导电膜固定在所述激光机的下方包括:
在所述导电膜的底部采用吸风的方式将所述导电膜进行固定。
在一个实施例中,将导电膜放置在激光机下方的平台上,并在导电膜的底部采用吸风的方式将导电膜进行固定。
通过采用吸风的方式将所述导电膜进行固定,从而避免了在进行激光蚀刻时因导电膜移动导致蚀刻错误的问题,提高了非导电图案激光蚀刻的精度。
在基于同一个构思,在又一个实施例中,提供一种触控模组,包括基板和如上所述的导电膜。
在一个实施例中,包括两个导电膜,分别为第一导电膜和第二导电膜,第一导电膜即接收层设置在基板的上表面,第二导电膜即发射层设置在基板的下表面,或者第一导电膜即接收层、第二导电膜即发射层由上至下依次设置。
在一个实施例中,基板可以为但不限于玻璃基板,导电膜采用ITO、纳米银、金属网格、导电聚合物等导电材料制成;导电膜和基板之间通过光学胶(OCA)粘合,导电膜之间通过光学胶(OCA)粘合。
基于上述同样的理由,所述触控模组避免了在激光机进行激光蚀刻时发生偏移导致位于相邻两个分步蚀刻区域的单元图案1在拼接处有拼接错位,从而导致导电膜短路的问题,提高了对激光偏移的容忍度。
基于同一个构思,在一个实施例中,提供一种电容屏,包括保护盖板、显示模组和如上所述的触控模组,所述保护盖板、所述触控模组和所述显示模组从上至下依次设置。
在一个实施例中,保护盖板可以为玻璃盖板,触控模组和显示模组之间还设有贴合层,其中,贴合层可以为光学胶或空气。
基于上述同样的理由,所述电容屏避免了在激光机进行激光蚀刻时发生偏移导致位于相邻两个分步蚀刻区域的单元图案1在拼接处有拼接错位,从而导致导电膜短路的问题,提高了对激光偏移的容忍度。
基于同一个构思,在一个实施例中,提供一种电子设备,包括采用如上所述激光拼接方法加工而成的导电膜。在一个实施例中,电子设备可以但不限于为手机、平板电脑、显示器、笔记本电脑等任何具有显示功能的产品或部件。基于上述同样的理由,其避免了在激光机进行激光蚀刻时发生偏移导致位于相邻两个分步蚀刻区域的单元图案1在拼接处有拼接错位,从而导致导电膜短路的问题,提高了对激光偏移的容忍度。
显然,本实用新型的上述实施例是为清楚地说明本实用新型技术方案所作的举例,而并非是对本实用新型的实施方式的限定。凡在本实用新型权利要求书的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本实用新型权利要求的保护范围之内。

Claims (12)

  1. 一种激光拼接方法,所述方法应用于导电膜,包括:
    将导电膜划分为多个相拼接的分步蚀刻区域;
    依次在各个所述分步蚀刻区域内通过激光进行蚀刻,以形成拼接的非导电图案,所述非导电图案包括若干个呈多边形的单元图案;
    其中,所述分步蚀刻区域由沿第一方向设置在相邻两个所述单元图案相交处的第一拼接线和沿第二方向设置的第二拼接线围绕而成,相邻两个所述单元图案的轮廓线相交且与所述第一拼接线成锐角,其中,所述第一方向与所述第二方向互成一定角度。
  2. 根据权利要求1所述的一种激光拼接方法,其中,所述非导电图案包括若干个沿第一方向平行间隔排布的单元图案组,所述单元图案组由若干个所述单元图案沿第二方向依次连接形成;所述第二拼接线设置在相邻两个所述单元图案组之间的区域上。
  3. 根据权利要求1所述的一种激光拼接方法,其中,所述单元图案为具有斜线网格的多边形轴对称图案,其至少具有沿所述第二方向的对称轴;所述非导电图案包括若干个沿第一方向平行间隔排布的单元图案组,所述单元图案组由若干个所述单元图案沿第二方向依次连接形成;所述第二拼接线设置在所述单元图案组沿所述第二方向的对称轴上,所述斜线与所述第二拼接线之间的夹角为锐角。
  4. 根据权利要求1-3任一项所述的一种激光拼接方法,其中,所述依次在各个所述分步蚀刻区域内通过激光进行蚀刻,以形成拼接的非导电图案,所述非导电图案包括若干个呈多边形的单元图案,包括:
    将需要蚀刻在导电膜上的所述非导电图案输入激光机;
    根据所述分步蚀刻区域设定所述激光机的运动区域,以使所述激光机根据所述非导电图案、所述第一拼接线和所述第二拼接线对所述导电膜进行蚀刻。
  5. 根据权利要求4所述的一种激光拼接方法,其中,在所述根据所述分步蚀刻区域设定所述激光机的运动区域之前,还包括:
    设定所述激光机在所述导电膜上蚀刻所述非导电图案的基本参数,以使所述激光机根据所述基本参数对所述导电膜进行蚀刻。
  6. 根据权利要求4所述的一种激光拼接方法,其中,还包括:将所述导电膜固定在所述激光机的激光头的下方,并对所述导电膜进行定位。
  7. 根据权利要求6所述的一种激光拼接方法,其中,所述将所述导电膜固定在所述激光机的下方包括:
    在所述导电膜的底部采用吸风的方式将所述导电膜进行固定。
  8. 根据权利要求5所述的一种激光拼接方法,其中,所述基本参数包括所述激光机的移动方向,所述激光机根据所述移动方向依次在各个分步蚀刻区域上进行蚀刻,以形成拼接的所述非导电图案。
  9. 一种导电膜,其中,包括导电膜本体和采用如权利要求1-8任一项所述的激光拼接方法在所述导电膜本体上蚀刻形成的非导电图案。
  10. 一种触控模组,其中,包括基板和如权利要求9所述的导电膜。
  11. 一种电容屏,其中,包括保护盖板、显示模组和如权利要求10所述的触控模组,所述保护盖板、所述触控模组和所述显示模组从上至下依次设置。
  12. 一种电子设备,其中,包括采用如权利要求1-8任一项所述激光拼接方法加工而成的导电膜。
PCT/CN2022/073503 2021-02-02 2022-01-24 激光拼接方法、导电膜、触控模组、电容屏及电子设备 WO2022166650A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110145372.3 2021-02-02
CN202110145372.3A CN112935566A (zh) 2021-02-02 2021-02-02 激光拼接方法、导电膜、触控模组、电容屏及电子设备

Publications (1)

Publication Number Publication Date
WO2022166650A1 true WO2022166650A1 (zh) 2022-08-11

Family

ID=76241818

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/073503 WO2022166650A1 (zh) 2021-02-02 2022-01-24 激光拼接方法、导电膜、触控模组、电容屏及电子设备

Country Status (2)

Country Link
CN (1) CN112935566A (zh)
WO (1) WO2022166650A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112935566A (zh) * 2021-02-02 2021-06-11 广州视源电子科技股份有限公司 激光拼接方法、导电膜、触控模组、电容屏及电子设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102308367A (zh) * 2009-02-06 2012-01-04 Lg化学株式会社 制造绝缘导电图形的方法和层压体
KR20120027997A (ko) * 2010-09-14 2012-03-22 삼성전기주식회사 정전용량방식 터치스크린의 제조방법
CN108628503A (zh) * 2018-05-08 2018-10-09 张家港康得新光电材料有限公司 导电膜、电容式触摸屏和导电膜的制作方法
CN110515486A (zh) * 2019-07-31 2019-11-29 芜湖伦丰电子触摸屏产业技术研究院有限公司 一种单层膜结构触摸屏制作方法
CN111009339A (zh) * 2019-12-24 2020-04-14 江西蓝沛泰和新材料有限公司 一种导电结构及其制备方法、触摸面板及显示装置
CN112935566A (zh) * 2021-02-02 2021-06-11 广州视源电子科技股份有限公司 激光拼接方法、导电膜、触控模组、电容屏及电子设备

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103311384A (zh) * 2012-03-15 2013-09-18 上海蓝宝光电材料有限公司 一种图形衬底的制作方法
CN106020531B (zh) * 2016-05-09 2019-05-10 京东方科技集团股份有限公司 一种触摸屏和触摸装置
CN107310250B (zh) * 2017-07-28 2022-12-27 张家港康得新光电材料有限公司 用于制作触摸屏的印刷网版与触摸屏的制作方法
CN107402682B (zh) * 2017-07-31 2021-08-10 张家港康得新光电材料有限公司 一种触摸屏与其制作方法
CN207529354U (zh) * 2017-10-26 2018-06-22 张家港康得新光电材料有限公司 触摸屏激光转角结构
US11216140B2 (en) * 2019-04-16 2022-01-04 Elo Touch Solutions, Inc. PCAP touchscreens with varying ITO dicing patterns
CN211840610U (zh) * 2020-02-17 2020-11-03 苏州德龙激光股份有限公司 双面纳米银线薄膜激光刻蚀装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102308367A (zh) * 2009-02-06 2012-01-04 Lg化学株式会社 制造绝缘导电图形的方法和层压体
KR20120027997A (ko) * 2010-09-14 2012-03-22 삼성전기주식회사 정전용량방식 터치스크린의 제조방법
CN108628503A (zh) * 2018-05-08 2018-10-09 张家港康得新光电材料有限公司 导电膜、电容式触摸屏和导电膜的制作方法
CN110515486A (zh) * 2019-07-31 2019-11-29 芜湖伦丰电子触摸屏产业技术研究院有限公司 一种单层膜结构触摸屏制作方法
CN111009339A (zh) * 2019-12-24 2020-04-14 江西蓝沛泰和新材料有限公司 一种导电结构及其制备方法、触摸面板及显示装置
CN112935566A (zh) * 2021-02-02 2021-06-11 广州视源电子科技股份有限公司 激光拼接方法、导电膜、触控模组、电容屏及电子设备

Also Published As

Publication number Publication date
CN112935566A (zh) 2021-06-11

Similar Documents

Publication Publication Date Title
TWI615759B (zh) 採用虛擬圖案的靜電電容式觸控螢幕之觸控板結構
US20190206968A1 (en) Display panel and display device
US20210373691A1 (en) Display panel and display device
CN105242814B (zh) 电容式触控结构及其触控显示装置
TWI798278B (zh) 觸控面板及具備該觸控面板的顯示裝置
CN108681415A (zh) 一种阵列基板、显示面板及显示装置
CN104956296A (zh) 输入装置及其制造方法和电子信息设备
JPWO2015146277A1 (ja) タッチパネル、表示装置、並びに、タッチパネルの製造方法
WO2022166650A1 (zh) 激光拼接方法、导电膜、触控模组、电容屏及电子设备
EP3477622A1 (en) Flexible, foldable display screen and preparation method therefor
TW202013021A (zh) 覆晶薄膜、顯示面板、顯示裝置及引腳的設計方法
US10782839B2 (en) Touch substrate, method for manufacturing the same, and display apparatus
CN110164913B (zh) 一种显示模组及其制作方法、显示装置
US20190140207A1 (en) Method for fabricating display panel, display panel and display apparatus
EP4006703A1 (en) Touch control electrode structure, touch screen and touch control display apparatus
WO2021248372A1 (zh) 光斑调整方法、光斑调整装置及光斑调整系统
CN108628503B (zh) 导电膜、电容式触摸屏和导电膜的制作方法
CN105742333A (zh) 显示面板母板、显示面板的制造方及显示装置
US11596062B2 (en) Substrate motherboard and manufacturing method thereof, driving substrate and display device
CN205247345U (zh) 触控面板的感测金属网格
US20210232792A1 (en) Display panel, manufacturing method thereof and display apparatus
US11360623B2 (en) Touch sensor and electronic device
CN207571439U (zh) 阵列基板
JP6572748B2 (ja) タッチパネルセンサ及びタッチ位置検出機能付き表示装置
CN107505752B (zh) 一种基板处理方法及液晶显示器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22748929

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22748929

Country of ref document: EP

Kind code of ref document: A1