WO2022166583A1 - 投射装置、三维成像系统、三维成像方法及电子产品 - Google Patents

投射装置、三维成像系统、三维成像方法及电子产品 Download PDF

Info

Publication number
WO2022166583A1
WO2022166583A1 PCT/CN2022/072764 CN2022072764W WO2022166583A1 WO 2022166583 A1 WO2022166583 A1 WO 2022166583A1 CN 2022072764 W CN2022072764 W CN 2022072764W WO 2022166583 A1 WO2022166583 A1 WO 2022166583A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light emitting
projection device
dimensional imaging
optical detectors
Prior art date
Application number
PCT/CN2022/072764
Other languages
English (en)
French (fr)
Inventor
臧凯
马志洁
张超
Original Assignee
深圳市灵明光子科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202120355576.5U external-priority patent/CN214669608U/zh
Priority claimed from CN202110182075.6A external-priority patent/CN112817010A/zh
Application filed by 深圳市灵明光子科技有限公司 filed Critical 深圳市灵明光子科技有限公司
Publication of WO2022166583A1 publication Critical patent/WO2022166583A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/89Lidar systems specially adapted for specific applications for mapping or imaging
    • G01S17/8943D imaging with simultaneous measurement of time-of-flight at a 2D array of receiver pixels, e.g. time-of-flight cameras or flash lidar
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/484Transmitters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers

Definitions

  • the present application relates to the field of semiconductor technology, and in particular, to a projection device, a three-dimensional imaging system, a three-dimensional imaging method, and an electronic product.
  • 3D imaging is a way of perceiving the real world in 3D.
  • dToF direct time-of-flight, direct time-of-flight
  • 3D imaging with information on the orientation.
  • dToF-based 3D imaging systems include area array and scanning.
  • an area array 3D imaging system is usually used.
  • the light source illuminates the entire scene within the field of view, and the sensor receives the light signal reflected by the object to calculate the distance to the object. The whole process takes less time and can achieve fast imaging.
  • the present application provides a projection device, the projection device comprising:
  • each of the light-emitting arrays includes at least one light-emitting strip, and the 2*N+1 light-emitting arrays are The light emitting bars of the emitting array are periodically arranged along a first direction; each of the light emitting bars includes at least two light emitters arranged along a second direction, the second direction being perpendicular to the first direction;
  • each control line is connected to each light emitter in the corresponding light emitting array, using In order to control each light emitter in the corresponding light emitting array to pass the driving signal at the same time and emit light when the driving signal is passed; at most 2*N of the 2*N+1 control lines The control line is connected to the drive signal at the same time.
  • the light emitters of two adjacent light emitting bars in the same light emitting array are alternately arranged along the second direction.
  • the light emitters of the two light emitting bars adjacent to the same light emitting bar in the same light emitting array are arranged side by side along the first direction.
  • the light emitters of two adjacent light emitting bars in the 2*N+1 light emitting arrays are alternately arranged along the second direction.
  • the light emitters of the two light emitting bars adjacent to the same light emitting bar in the 2*N+1 light emitting arrays are arranged side by side along the first direction.
  • N 1.
  • the distance between two adjacent light emitting strips is a fixed value.
  • the distance between two adjacent light emitters in the same light emission strip is a fixed value.
  • the number of light emitting strips in each of the light emitting arrays is more than six.
  • the number of light emitters in each of the light emitting strips is more than eight.
  • each of the light transmitters is a vertical cavity surface emitting laser.
  • the timings when the 2*N+1 control lines are connected to the driving signal are different; or, at least two of the 2*N+1 control lines are connected to the driving signal The timing of the signal is the same.
  • the projection device further includes: a diffractive optical element, disposed on the propagation path of the light emitted by the 2*N+1 light emitting arrays, for converting the 2*N+1 light
  • a diffractive optical element disposed on the propagation path of the light emitted by the 2*N+1 light emitting arrays, for converting the 2*N+1 light
  • Each light beam emitted by the transmitting array is divided into a plurality of light beams distributed in an array.
  • the projection device further includes: a collimating mirror, which is arranged on the propagation path of the light emitted by the 2*N+1 light emitting arrays, and is located in the 2*N+1 light emitting arrays Between the array and the diffractive optical element, each beam emitted by the 2*N+1 light emitting arrays is adjusted into parallel rays.
  • a collimating mirror which is arranged on the propagation path of the light emitted by the 2*N+1 light emitting arrays, and is located in the 2*N+1 light emitting arrays Between the array and the diffractive optical element, each beam emitted by the 2*N+1 light emitting arrays is adjusted into parallel rays.
  • the present application provides a three-dimensional imaging system, the three-dimensional imaging system includes:
  • the projection device provided in the first aspect is used to emit light to a target object
  • a detection device arranged in an area where the distance from the propagation path of the light emitted by the projection device is less than a threshold value, for detecting the light reflected by the target object;
  • the processing device is connected to the projection device and the detection device respectively, and is used for performing three-dimensional imaging according to the propagation time of the light.
  • the detection device includes:
  • a plurality of optical detectors are arranged on the same surface of the carrier board; each of the optical detectors corresponds to a light emitter, and is used for detecting that the corresponding light emitter is emitted to the target object and is emitted by the target The light reflected by the object generates a detection signal when the light is detected; the number of the optical detectors is greater than or equal to the number of the light emitters in the projection device, each of the light emitters and at least one of the optical detectors correspond;
  • a plurality of data lines corresponding to the plurality of optical detectors one-to-one are arranged on the carrier board; each of the data lines is respectively connected with the corresponding optical detectors and the processing device, and is used for connecting the corresponding optical detectors to the processing device.
  • the detection signal generated by the optical detector is transmitted to the processing device.
  • each of the optical detectors is a single photon avalanche diode.
  • the plurality of optical detectors are distributed in an array on the carrier plate.
  • the processing device includes a plurality of processing units, each of the data lines is connected to one of the processing units, each of the processing units is connected to at least two of the data lines, and the same
  • the optical detectors corresponding to the data lines connected to the processing units are adjacent to each other, and each of the processing units is used to superimpose the detection signals passed through the connected data lines at the same time.
  • the optical detectors corresponding to the data lines connected to the same processing unit are arranged in the row direction; or, the optical detectors corresponding to the data lines connected to the same processing unit are arranged in the column direction; or , the optical detectors corresponding to the data lines connected to the same processing unit are distributed in an array.
  • the present application provides an electronic product including the three-dimensional imaging system provided in the second aspect.
  • the present application provides a three-dimensional imaging method, the three-dimensional imaging method comprising:
  • the drive signal is passed to at most 2*N of the 2*N+1 control lines, and the light emitters connected to the at most 2*N control lines are driven to emit light to the target object, and N is positive.
  • the 2*N+1 control lines are arranged on the drive circuit board, and one surface of the drive circuit board is provided with 2*N+1 control lines corresponding to the 2*N+1 control lines one-to-one Light emitting arrays; each of the light emitting arrays includes at least one light emitting strip, and the light emitting strips of the 2*N+1 light emitting arrays are periodically arranged along the first direction; each of the light emitting strips includes At least two light emitters arranged in two directions, the second direction is perpendicular to the first direction; each of the light emitters is connected to a control line corresponding to the light emission array;
  • the detecting the light reflected by the target object includes:
  • each of the optical detectors corresponds to one of the optical transmitters, and each of the optical transmitters corresponds to at least one of the optical detectors corresponds to;
  • a certain optical detector is turned on to detect the light reflected by the target object and a detection signal is generated when the light is detected, and the optical detectors of the plurality of optical detectors except the certain optical detector are turned off.
  • the determining of the optical detectors corresponding to the light emitters connected to the at most N control lines in the plurality of optical detectors includes: passing driving signals to different control lines at different times to drive light
  • the transmitter emits light to the target object when the connected control line enters the driving signal; simultaneously turns on the plurality of optical detectors to detect the light reflected by the target object and generates a detection signal when the light is detected;
  • the light emitter corresponds to an optical detector that detects the light emitted by the light emitter.
  • the performing three-dimensional imaging according to the propagation time of light includes: forming a histogram with time as the abscissa and the intensity of the detection signal as the ordinate; The time with the maximum intensity is used as the receiving time of the light; according to the receiving time and the emission time of the light, the distance of the target object is determined for three-dimensional imaging.
  • the forming a histogram with time as the abscissa and the intensity of the detection signal as the ordinate includes: superimposing detection signals generated by at least two adjacent optical detectors at the same moment; A histogram is formed with time as the abscissa and the intensity of the superimposed detection signals as the ordinate.
  • the above-mentioned projection device three-dimensional imaging system, three-dimensional imaging method and electronic product, 2*N+1 control lines and 2*N+1 light emitting arrays are arranged through the driving circuit board, where N is a positive integer and 2*N+1
  • the light emission array is in one-to-one correspondence with 2*N+1 control lines, and each control line is connected to each light transmitter in the corresponding light emission array, that is, the control of the connection of each light reflector in the same light emission array
  • the lines are the same, and the control lines connected to the light reflectors in different light reflector arrays are different.
  • each control line can control the corresponding Each light emitter in the light emission array emits light at the same time, that is, each light emitter in the same light emission array emits light at the same time.
  • the timings at which the driving signals are passed into each control line can be different, so the light reflectors in different light reflection arrays can emit light at different timings.
  • each light emitting array including at least one light emitting bar
  • the light emitting bars of the 2*N+1 light emitting arrays are periodically arranged along the first direction
  • each light emitting bar includes at least two light emitters, the same light
  • the light emitters of the emission bar are arranged along a second direction perpendicular to the first direction, so that the control lines connected to the respective light emitters arranged along the first direction change periodically, and the respective light emitters arranged along the second direction perpendicular to the first direction
  • the control lines connected to the transmitter are the same, and a driving signal is passed into one control line to control the connected light transmitter to emit light, and the light irradiation area is similar to that of the entire projection device.
  • At most 2*N control lines in the 2*N+1 control lines pass the driving signal at the same time, and control some light emitters in the projection device to emit light, which can illuminate the entire scene within the field of view. , realizes the fast imaging of the area array, and can increase the power consumption allocated to the light transmitter that does not emit light to the light transmitter that emits light, increase the transmission power of the optical signal, and improve the energy of the optical signal.
  • the light transmitter can improve the signal-to-noise ratio when the ambient light noise is large, and can project the light signal onto the object when the object is far away, thereby improving the success rate and accuracy of the three-dimensional imaging system to correctly detect the distance of the object.
  • the at least two light emitters arranged along the second direction belong to the same light emitting strip and can be connected to the same control line, which facilitates wiring, improves the integration of the projection device, and reduces the implementation cost of the projection device.
  • FIG. 1 is a schematic plan view of a projection device according to an embodiment of the application.
  • FIG. 2 is a schematic plan view of an arrangement of light emitters in an embodiment of the present application.
  • FIG. 3 is a schematic plan view of an arrangement of light emitters in another embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of a three-dimensional imaging system in an embodiment of the present application.
  • FIG. 5 is a schematic plan view of a detection device in an embodiment of the application.
  • FIG. 6 is a schematic structural diagram of a processing device in an embodiment of the present application.
  • FIG. 7 is a schematic diagram of a connection mode of a processing unit and a data line in an embodiment of the present application.
  • FIG. 8 is a schematic diagram of another connection manner of a processing unit and a data line in an embodiment of the present application.
  • FIG. 9 is a flowchart of a three-dimensional imaging method in an embodiment of the present application.
  • Spatial relational terms such as “under”, “below”, “below”, “under”, “above”, “above”, etc., in This may be used to describe the relationship of one element or feature to other elements or features shown in the figures. It should be understood that in addition to the orientation shown in the figures, spatially relative terms encompass different orientations of the device in use and operation. For example, if the device in the figures is turned over, elements or features described as “below” or “beneath” or “beneath” other elements or features would then be oriented “above” the other elements or features. Thus, the exemplary terms “below” and “under” can encompass both an orientation of above and below. In addition, the device may also be otherwise oriented (eg, rotated 90 degrees or at other orientations) and the spatial descriptors used herein interpreted accordingly.
  • connection in the following embodiments should be understood as “electrical connection”, “communication connection” and the like if there is transmission of electrical signals or data between the objects to be connected.
  • Electronic or electrical devices and/or any other related devices or components in accordance with embodiments of the present concepts described herein may utilize any suitable hardware, firmware (eg, application specific integrated circuits), software or a combination of software, firmware and hardware to fulfill.
  • the various components of these devices may be formed on one integrated circuit (IC) chip or on separate IC chips.
  • various components of these devices may be implemented on a flexible printed circuit film, tape carrier package (TCP), printed circuit board (PCB), or formed on a substrate.
  • various components of these devices may run on one or more processors in one or more computing devices to execute computer program instructions and interact with other system components to perform various functions described herein process or thread.
  • Computer program instructions are stored in memory, which may be implemented in a computing device using standard storage devices such as random access memory (RAM). Computer program instructions may also be stored in other non-transitory computer readable media (eg, such as CD-ROMs, flash drives, etc. Also, those skilled in the art will recognize that the functionality of various computing devices may be combined or integrated into a single computing device, or the functionality of a particular computing device may be distributed among one or more other computing devices without departing from the spirit and scope of the exemplary embodiments of the present concepts.
  • the area array 3D imaging system controls all the light emitters to emit light at the same time to illuminate the entire scene within the field of view.
  • the sensor receives the light signal reflected by the target object, and the target object can be calculated the distance. The whole process takes less time and can achieve fast imaging.
  • the three-dimensional imaging system in the prior art has the problems of low success rate and accuracy in correctly detecting the distance of the object.
  • the inventor found that the reason for this problem is that the electronic products such as the mobile phone where the three-dimensional imaging system is located do not affect the power function.
  • the power consumption is strictly limited, the transmission power of the optical signal cannot be adjusted, and the energy of the optical signal is limited to a small range.
  • the ambient light noise is large, the signal-to-noise ratio is low, and the 3D imaging system may confuse the ambient light with the light reflected by the target object, and cannot correctly detect the distance of the object.
  • the 3D imaging system may not detect the light reflected by the object, nor can it correctly detect the distance of the object.
  • the 3D imaging system has a low success rate and accuracy in correctly detecting the distance of an object.
  • the present application provides a projection device that divides light emitters in a three-dimensional imaging system into different sets.
  • light emitters in the same collection are controlled to emit light at the same time, and light emitters in different collections emit light at different times.
  • the power consumption allocated by the optical transmitters that do not emit light can be increased to the optical transmitter that emits light, which increases the transmission power of the optical signal and increases the energy of the optical signal, so that the
  • the signal-to-noise ratio is improved, and when the object is far away, the light signal is projected onto the object, which improves the success rate and accuracy of the three-dimensional imaging system to correctly detect the distance of the object.
  • the light emitters in the three-dimensional imaging system are distributed in an array, and the light emitters in each set may be periodically arranged along the row direction or the column direction of the array. In this way, when light emitters in the same set emit light at the same time, they can still illuminate the entire scene within the field of view.
  • an embodiment of the present application provides a projection device 100 , including a driving circuit board 10 , 2*N+1 light emitting arrays 20 and 2*N+1 control lines 30 , where N is a positive integer.
  • 2*N+1 light emitting arrays 20 are arranged on the same surface of the driving circuit board 10 .
  • Each light emitting array 20 includes at least one light emitting bar 21, and the light emitting bars 21 of 2*N+1 light emitting arrays 20 are periodically arranged along the first direction.
  • Each light emitting bar 21 includes at least two light emitters 22 arranged in a second direction, the second direction being perpendicular to the first direction.
  • the 2*N+1 control lines 30 correspond to the 2*N+1 light emitting arrays 20 one-to-one, and are arranged on the driving circuit board 10 .
  • Each control line 30 is connected to each light emitter 22 in the corresponding light emitting array 20, and is used to control each light emitter in the corresponding light emitting array 20 to pass the drive signal at the same time and to drive at the same time. Emit light when signaled.
  • at most 2*N control lines 30 are connected to driving signals at the same time.
  • 2*N+1 control lines and 2*N+1 light emitting arrays are set through the driving circuit board, where N is a positive integer, 2*N+1 light emitting arrays and 2*N+1 control lines
  • the lines correspond one-to-one, each control line is connected to each light emitter in the corresponding light emission array, that is, the control lines connected to each light reflector in the same light emission array are the same, and the light reflection in different light reflection arrays
  • the control wires connected to the controller are different.
  • each control line can control the corresponding Each light emitter in the light emission array emits light at the same time, that is, each light emitter in the same light emission array emits light at the same time.
  • the timings at which the driving signals are passed into each control line can be different, so the light reflectors in different light reflection arrays can emit light at different timings.
  • each light emitting array including at least one light emitting bar
  • the light emitting bars of the 2*N+1 light emitting arrays are periodically arranged along the first direction
  • each light emitting bar includes at least two light emitters, the same light
  • the light emitters of the emission bar are arranged along a second direction perpendicular to the first direction, so that the control lines connected to the respective light emitters arranged along the first direction change periodically, and the respective light emitters arranged along the second direction perpendicular to the first direction
  • the control lines connected to the transmitter are the same, and a driving signal is passed into one control line to control the connected light transmitter to emit light, and the light irradiation area is similar to that of the entire projection device.
  • At most 2*N control lines in the 2*N+1 control lines pass the driving signal at the same time, and control some light emitters in the projection device to emit light, which can illuminate the entire scene within the field of view. , realizes the fast imaging of the area array, and can increase the power consumption allocated to the light transmitter that does not emit light to the light transmitter that emits light, increase the transmission power of the optical signal, and improve the energy of the optical signal.
  • the light transmitter can improve the signal-to-noise ratio when the ambient light noise is large, and can project the light signal onto the object when the object is far away, thereby improving the success rate and accuracy of the three-dimensional imaging system to correctly detect the distance of the object.
  • the at least two light emitters arranged along the second direction belong to the same light emitting strip and can be connected to the same control line, which facilitates wiring, improves the integration of the projection device, and reduces the implementation cost of the projection device.
  • each light emitter 22 is an independent point light source. At least two light emitters 22 are arranged along the second direction to form a light emitting bar 21 , and each light emitting bar 21 is a point power source distributed in an array. At least one light emitting bar 21 is arranged along a first direction perpendicular to the second direction to form a light emitting array 20, and each light emitting bar 20 is a point light source distributed in an array.
  • the light emitting bars 21 of 2*N+1 light emitting arrays 20 are periodically arranged along the first direction, that is, the light emitting bars 21 of each light emitting array 20 are arranged in sequence along the first direction. For example, as shown in FIG.
  • the first light emitting bar 21 of the first light emitting array 20 , the first light emitting bar 21 of the second light emitting array 20 , and the third light emitting bar 20 are sequentially arranged along the first direction.
  • the first light emitter 22 of this light emitting bar 21 are sequentially arranged along the second direction 22.
  • each light emitter 22 is a VCSEL (Vertical Cavity Surface Emitting Laser, Vertical Cavity Surface Emitting Laser).
  • a VCSEL is a semiconductor whose laser light is emitted perpendicular to the top surface.
  • a plurality of VCSELs are spaced on the same plane and emit light away from this plane. The light emitted by each VCSEL is parallel to each other and will not affect each other, so it is particularly suitable for forming the light emitting strip 21 and the light emitting array 20 .
  • control wire 30 is a conductive wire, which can provide a driving signal for the connected light emitter 22 to control the light emitter 22 to emit light.
  • control wire 30 is a metal wire, such as copper wire, aluminum wire, silver wire or alloy wire. Copper wires, aluminum wires, and silver wires have better electrical conductivity and thermal conductivity, which is beneficial for driving the light emitter 22 to emit light. The flexibility and stability of the alloy wire are good, which is beneficial to prolong the service life of the projection device.
  • the driving circuit board 10 is a circuit board provided with a driving circuit.
  • the circuit board can carry the control line 30 and the light emitter 22 , and the driving circuit sends a drive signal to the light emitter 22 through the control line 30 to control the light emitter 22 to emit light.
  • the driving circuit board 10 is a driving chip, such as a sensor chip or a wireless access controller, which has a high degree of integration and is easy to use.
  • the light emitters 22 of two adjacent light emitting bars 21 in the same light emitting array 20 are alternately arranged along the second direction.
  • At least two light emitters 22 are arranged along the second direction to form a light emitting bar 21
  • at least one light emitting bar 21 is arranged along the first direction to form a light emitting array 20
  • two adjacent light emitting bars 21 each include a plurality of light emitters 22 arranged along the second direction, and the plurality of light emitters 22 of the two adjacent light emitting bars 21 alternate along the second direction. The arrangement is such that all the light emitters 22 of the same light emitting array 20 are staggered.
  • the light emitters 22 of the same light emission array 20 emit light at the same time, and the light emitters 22 of the same light emission array 20 are staggered, which can prevent the light emitted by two adjacent light emitters 22 from interfering with each other, which is beneficial to the light
  • the compactness of the layout of the emitters 22 increases the number of light emitters 22 arranged in a unit area, reduces the occupied area of the light emitter array 20 , and further improves the integration degree of the projection device.
  • the light emitters 22 of two light emitting bars 21 adjacent to the same light emitting bar 21 in the same light emitting array 20 are arranged side by side along the first direction.
  • At least two light emitters 22 are arranged along the second direction to form a light emitting strip 21
  • at least one light emitting strip 21 is arranged along the first direction to form a light emitting array 20
  • the light emitters 22 of the two light emitting bars 21 adjacent to the same light emitting bar 21 in the same light emitting array 20 are arranged side by side along the first direction, which can realize that two adjacent light emitting bars 21 in the same light emitting array 20
  • the light emitters 22 of the emission bar 21 are alternately arranged along the second direction, preventing the light emitted by the adjacent two light emitters 22 from interfering with each other, improving the integration degree of the projection device, and enabling all light emission of the same light emitting array 20
  • the light emitters 22 are distributed in an array, which is beneficial to the compactness of the layout of the light emitters 22 and further improves the integration degree of the projection device.
  • the light emitters 22 of two adjacent light emitting bars 21 in the 2*N+1 light emitting arrays 20 are alternately arranged along the second direction.
  • At least two light emitters 22 are arranged along the second direction to form a light emitting bar 21, and at least one light emitting bar 21 is arranged along the first direction to form a light emitting array 20.
  • 2*N+1 light emitters The light emitting bars 21 of the emitting array 20 are arranged periodically along the first direction, and the light emitters 22 of two adjacent light emitting bars 21 in the 2*N+1 light emitting arrays 20 are alternately arranged along the second direction, which is beneficial to prevent phase differences.
  • the light emitted by the adjacent two light emitters 22 interferes with each other, which is beneficial to the compactness of the layout of the light emitters 22, increases the number of light emitters 22 arranged in a unit area, reduces the occupied area of the light emitter array 20, and further improves the The integration of the projection device.
  • the light emitters 22 of the two light emitting bars 21 adjacent to the same light emitting bar 21 in the 2*N+1 light emitting arrays 20 are arranged side by side along the first direction .
  • At least two light emitters 22 are arranged in the second direction to form a light emission bar 21, and at least one light emission bar 21 is arranged in the first direction to form a light emission array 20.
  • 2*N+1 light emission The light emitting bars 21 of the array 20 are periodically arranged along the first direction, and the light emitters 22 of the two light emitting bars 21 adjacent to the same light emitting bar 21 in the 2*N+1 light emitting arrays 20 are along the first direction
  • Arranging side by side can realize that the light emitters 22 of two adjacent light emitter bars 21 in the 2*N+1 light emitter array 20 are alternately arranged in the second direction, so as to prevent the light emitted by the adjacent two light emitters 22 from interacting with each other. interference, improve the integration of the projection device, and make all the light emitters 22 distributed in an array, which is beneficial to the compact arrangement of the light emitters 22, and further improves the integration of the projection device.
  • the number of light emitting arrays is 2*N+1, that is, the number of light emitting arrays is an odd number.
  • the plurality of light emitting bars 21 of 2*N+1 light emitting arrays 20 are periodically arranged along the first direction, and the number of light emitting arrays is an odd number, so that two adjacent light emitting bars in the same light emitting array 20 can be realized at the same time.
  • the light emitters 22 of 21 are alternately arranged along the second direction, the light emitters 22 of the two light emitting bars 21 adjacent to the same light emitting bar 21 in the same light emitting array 20 are arranged side by side along the first direction, 2* The light emitters 22 of two adjacent light emitting bars 21 in the N+1 light emitting arrays 20 are alternately arranged along the second direction, and the 2*N+1 light emitting arrays 20 are adjacent to the same light emitting bar 21
  • the light emitters 22 of the two light emitting strips 21 are arranged side by side along the first direction, so as to maximize the integration of the projection device.
  • N 1.
  • the number of light emitting bars 21 in the same light emitting array 20 is greater than the number of light emitters 22 in the same light emitting bar 21 .
  • the number of light emitting bars 21 in each light emitting array 20 is 6, and the number of light emitters 22 in each light emitting bar 21 is 4, that is, in the same light emitting array 20 , the number of light emitters 22 is 4.
  • the number of light emitting bars 21 is greater than the number of light emitters 22 in the same light emitting bar 21 .
  • At least two light emitters 22 are arranged along the second direction to form a light emitter bar 21
  • at least one light emitter bar 21 is arranged along the first direction to form a light emitter array 20
  • all the light emitters 22 are arranged in an array .
  • the number of light emitting bars 21 in the same light emitting array 20 is greater than the number of light emitters 22 in the same light emitting bar 21, and the number of light emitters 22 arranged along the first direction is greater than the number of light emitters arranged along the second direction
  • the number of 22 is especially suitable for detecting horizontally placed target objects.
  • the number of light emitting bars 21 in the same light emitting array 20 is smaller than the number of light emitters 22 in the same light emitting bar 21 .
  • the number of light emitting bars 21 in each light emitting array 20 is 4, and the number of light emitters 22 in each light emitting bar 21 is 5, that is, in the same light emitting array 20
  • the number of light emitting bars 21 is smaller than the number of light emitters 22 in the same light emitting bar 21 .
  • At least two light emitters 22 are arranged along the second direction to form a light emitter bar 21
  • at least one light emitter bar 21 is arranged along the first direction to form a light emitter array 20
  • all the light emitters 22 are arranged in an array .
  • the number of light emitting bars 21 in the same light emitting array 20 is smaller than the number of light emitters 22 in the same light emitting bar 21, and the number of light emitters 22 arranged along the first direction is smaller than the number of light emitters arranged along the second direction
  • the number of 22 is especially suitable for detecting vertically placed target objects.
  • the distance between two adjacent light emitting strips 21 is a fixed value.
  • the distance between two adjacent light emitting strips 21 is a fixed value, that is, the distance between two adjacent light emitting strips 21 is equal, and it is convenient to determine the distance between two adjacent light emitting strips 21
  • the distance between the two adjacent light emitting strips 21 can not only avoid the small distance between the adjacent two light emitting strips 21 and cause mutual influence, but also avoid the large distance between the two adjacent light emitting strips 21 causing space waste, which is convenient for the projection device. accomplish.
  • the distance between two adjacent light emitters 22 in the same light emitting strip 21 is a fixed value.
  • the distance between two adjacent light emitters 22 in the same light emitting strip 21 is a fixed value, that is, the distance between two adjacent light emitters 22 in the same light emitting strip 21 is the same , the distance between two adjacent light emitters 22 in the same light emitting strip 21 can be easily determined, and it can be avoided that the distance between two adjacent light emitters 22 in the same light emitting strip 21 is small and mutually In addition, the space waste caused by the large distance between two adjacent light emitters 22 in the same light emitting strip 21 can be avoided, and the realization of the projection device is facilitated.
  • the number of light emitting bars 21 in each light emitting array 20 is more than six.
  • the number of the light emitting strips 21 in each light emitting array 20 is more than six, which is beneficial to that when the light emitters 22 in a single light emitting array 20 emit light, the entire field of view can be radiated. illuminated in the scene.
  • the number of light emitters 22 in each light emitting strip 21 is more than eight.
  • the number of light emitters 22 in each light emitting bar 21 is more than eight, which is beneficial to the advantage that when the light emitters 22 in a single light emitting array 20 emit light, the entire field of view can be radiated. illuminated in the scene.
  • the timings at which the 2*N+1 control lines 30 pass the driving signals are different from each other.
  • the timings at which the 2*N+1 control lines 30 pass the driving signal are different, and the power consumption allocated to the light emitters that do not emit light can be maximized to increase the light emitters that emit light. It can increase the transmission power of the optical signal, improve the energy of the optical signal, effectively improve the signal-to-noise ratio when the ambient light noise is large, and ensure that the optical signal is projected on the object when the object is far away, so as to maximize the three-dimensional imaging. The success rate and accuracy with which the system correctly detects the distance of an object.
  • At least two control lines in the 2*N+1 control lines 30 pass through the driving signals at the same timing.
  • At least two control lines in the 2*N+1 control lines 30 have the same timing when the driving signal is connected, which can reduce the time for the entire projection device to emit light, and facilitate the realization of fast imaging in an area array.
  • the projection device further includes a diffractive optical element 41 .
  • the diffractive optical element 41 is disposed on the propagation path of the light emitted by the 2*N+1 light emitting arrays 20, and is used to divide each light beam emitted by the 2*N+1 light emitting arrays 20 into multiple light beams distributed in an array.
  • DOE 41 is a series of movable lenses, which are mainly used to generate the required light source.
  • DOE is used to divide a single beam of light into multiple beams of light.
  • the diffractive optical element 41 divides each light beam emitted by the three light emitting arrays 20 into 9 light beams distributed in an array, which is equivalent to duplicating the three light emitting arrays 20 into a 3*3 array. Since the number of light emitting bars 21 in the same light emitting array 20 is greater than the number of light emitters 22 in the same light emitting bar 21, the length of the 3*3 array along the first direction is greater than the length along the second direction.
  • the diffractive optical element 41 divides each light beam emitted by the three light emitting arrays 20 into 9 light beams distributed in an array, which is equivalent to duplicating the three light emitting arrays 20 into a 3*3 array. . Since the number of light emitting bars 21 in the same light emitting array 20 is smaller than the number of light emitters 22 in the same light emitting bar 21, the length of the 3*3 array along the first direction is smaller than the length along the second direction.
  • diffractive optical elements 41 are arranged on the propagation paths of the light emitted by the 2*N+1 light emitting arrays 20, and the diffractive optical element 41 divides each light emitted by the 2*N+1 light emitting arrays 20 into
  • the multiple beams of light distributed in an array are equivalent to duplicating the array formed by all the light reflectors 22 to increase the area of the entire device for projecting light, so as to reduce the number of light reflectors under the condition of illuminating the entire scene within the field of view
  • the number of 22 improves the integration of the device and reduces the implementation cost of the device.
  • the projection device further includes a collimating mirror 42 .
  • the collimating mirror 42 is arranged on the propagation path of the light emitted by the 2*N+1 light emitting arrays 20, and is located between the 2*N+1 light emitting arrays 20 and the diffractive optical element 41, and is used to convert the 2*N+
  • Each light beam emitted by one light emitting array 20 is adjusted to be parallel light rays.
  • the collimating mirror is used in the beam delivery system to maintain the collimation of the beam.
  • Collimation in layman's terms, is to keep the rays of light parallel, that is, to make the divergent light into parallel light.
  • the light beam first passes through the collimating mirror 42, so that the divergent light becomes parallel light.
  • the parallel light passes through the diffractive optical element 41, and the diffractive optical element 41 replicates the collimated light and splits the light into different angles, for example, a beam of light is replicated into multiple beams of light facing different angles.
  • an embodiment of the present application further provides a three-dimensional imaging system.
  • the three-dimensional imaging system includes the projection device 100 in the above embodiment, and the three-dimensional imaging system further includes a detection device 200 and a processing device 300 .
  • the projection device 100 is used for emitting light to the target object 400 .
  • the detection device 200 is arranged in an area where the distance from the propagation path of the light emitted by the projection device 100 is less than a threshold value, and is used for detecting the light reflected by the target object.
  • the processing device 300 is connected to the projection device 100 and the detection device 200 respectively, and is used for performing three-dimensional imaging according to the propagation time of the light.
  • the 2*N+1 light emitting arrays 10 in the projection device 100 may emit light to the target object one by one in any order, or at least two light emitting arrays 10 may simultaneously emit light to the target object, and at least one The light emitting array 10 does not emit light to the target object.
  • the detection device 200 can first determine the detection area corresponding to each light emitting array 10 in the projection device 100, and then when each light emitting array 10 emits light to the target object, open the corresponding area for detection, and close the non-corresponding area.
  • the processing device 300 controls the projection device 100 and the detection device 200, and performs three-dimensional imaging according to the propagation time of the light.
  • the detection device 200 includes a carrier board 210 , a plurality of optical detectors 220 and a plurality of data lines 230 .
  • a plurality of optical detectors 220 are disposed on the same surface of the carrier board 210 .
  • Each optical detector 220 corresponds to one light emitter 22, and is used for detecting the light emitted by the corresponding light emitter 22 to the target object and reflected by the target object, and generating a detection signal when the light is detected.
  • the number of optical detectors 220 is greater than or equal to the number of light emitters 22 in the projection device 100 , and each light emitter 22 corresponds to at least one optical detector 220 .
  • the plurality of data lines are in one-to-one correspondence with the plurality of optical detectors, and are disposed on the carrier board 210 .
  • Each data line 230 is connected to the corresponding optical detector 220 and the processing device 300 respectively, and is used for transmitting the detection signal generated by the corresponding optical detector 220 to the processing device 300 .
  • each light emitter may correspond to at least one optical detector.
  • Each optical detector corresponds to a light emitter, which can detect the light emitted by the corresponding light emitter to the target object and reflected by the target object, and generates a detection signal when the light is detected, so all the light emitters emit light to the target object. The light is detected by a corresponding optical detector.
  • the plurality of data lines are in one-to-one correspondence with the plurality of optical detectors, and each data line is respectively connected with the corresponding optical detector and the processing device, so that the corresponding optical detector can generate
  • the detection signal is transmitted to the processing device, and the processing device performs three-dimensional imaging by combining the detection signal transmitted by each optical detector and the light emitted by the light emitter corresponding to the optical detector.
  • each optical detector 220 is a SPAD (Single Photon Avalanche Diode, single photon avalanche diode).
  • SPAD is a photodetection avalanche diode with single-photon detection capability.
  • a single SPAD sensor operates in set mode, like a photon-triggered switch, in an "on” or “off” state.
  • the optical detector adopts a SPAD, which can preferably generate a detection signal when light is detected.
  • the plurality of optical detectors 220 are distributed on the carrier board 210 in an array.
  • the plurality of optical detectors 220 are distributed in an array on the carrier plate 210, which can facilitate the arrangement of the optical detectors 220, which can not only avoid waste caused by the short distance between two adjacent optical detectors 220, but also avoid adjacent optical detectors 220.
  • the distance between the two optical detectors 220 is too far to cause detection omission.
  • the processing device 300 includes a plurality of processing units 310, each data line 230 is connected to one processing unit 310, and each processing unit 310 is connected to at least two data lines 230, the same one
  • the optical detectors 220 corresponding to the data lines 230 connected to the processing units 310 are adjacent to each other, and each processing unit 310 is used to superimpose the detection signals passed through the connected data lines 230 at the same time.
  • each processing unit 310 is connected to at least two data lines 230, and the optical detectors 220 corresponding to the data lines 230 connected to the same processing unit 310 are adjacent to each other. 220 are collected into one processing unit 310 for processing, which can not only densely arrange the optical detectors 220 to avoid detection blind spots, but also reduce the number of processing units 310 and reduce the implementation cost.
  • Each processing unit 310 is used to superimpose the detection signals passed through the connected data lines 230 at the same time, which can integrate the detection results of the respective optical detectors 220 and improve the accuracy of the processing results.
  • the optical detectors 220 corresponding to the data lines 230 connected to the same processing unit 310 are arranged in the row direction.
  • the row direction is the transverse direction parallel to the horizontal plane.
  • the optical detectors 220 corresponding to the data lines 230 connected to the same processing unit 310 are arranged in the row direction, and the detection results of the optical detectors 220 in the same row can be collected, which is more suitable for horizontally placed target objects.
  • the optical detectors 220 corresponding to the data lines 230 connected to the same processing unit 310 are arranged in a column direction.
  • the column direction is the vertical direction perpendicular to the horizontal plane.
  • the optical detectors 220 corresponding to the data lines 230 connected to the same processing unit 310 are arranged in the column direction, and the detection results of the optical detectors 220 in the same column can be collected, which is more suitable for vertically placed target objects .
  • the optical detectors 220 corresponding to the data lines 230 connected to the same processing unit 310 are distributed in an array.
  • the optical detectors 220 corresponding to the data lines 230 connected to the same processing unit 310 are distributed in an array, and the detection results of the optical detectors 220 in the same area can be collected, which is more suitable for square target objects.
  • the embodiment of the present application further provides an electronic product (not shown in the figure), the electronic product includes the three-dimensional imaging system in the above-mentioned embodiment.
  • the electronic product in the embodiment of the present application may be any product or component with a three-dimensional imaging function, such as a lidar system, a mobile phone, a tablet computer, a notebook computer, a photographing device, a robot, etc. No restrictions apply.
  • an embodiment of the present application also provides a three-dimensional imaging method, as shown in FIG. 9 , the three-dimensional imaging method includes:
  • Step S501 at the same time, pass driving signals to at most 2*N control lines in the 2*N+1 control lines, and drive the light emitters connected to at most 2*N control lines to emit light to the target object, where N is a positive integer .
  • the 2*N+1 control lines are arranged on the driving circuit board, and one surface of the driving circuit board is provided with 2*N+1 light emitting arrays corresponding to the 2*N+1 control lines one-to-one.
  • Each light emitting array includes at least one light emitting bar, and the light emitting bars of the 2*N+1 light emitting arrays are periodically arranged along the first direction.
  • Each light emitting strip includes at least two light emitters arranged in a second direction, the second direction being perpendicular to the first direction. Each light emitter is connected to a control line corresponding to the light emission array.
  • Step S502 detecting the light reflected by the target object.
  • Step S503 performing three-dimensional imaging according to the propagation time of the light.
  • the above three-dimensional imaging method through the 2*N+1 control lines at most 2*N control lines at the same time pass the driving signal, control some light emitters in the projection device to emit light, which can not only transmit the light within the field of view.
  • the whole scene is illuminated to realize the fast imaging of the area array, and the power consumption allocated to the light transmitter that does not emit light can be increased to the light transmitter that emits light, so as to increase the transmission power of the light signal and improve the light signal. energy of.
  • the light transmitter can improve the signal-to-noise ratio when the ambient light noise is large, and can project the light signal onto the object when the object is far away, thereby improving the success rate and accuracy of the three-dimensional imaging system to correctly detect the distance of the object.
  • detecting the light reflected by the target object includes: determining an optical detector of the plurality of optical detectors corresponding to the light emitters connected to at most N control lines; turning on the determined optical detector to detect the target object The reflected light is generated and a detection signal is generated when the light is detected, and the optical detectors other than the determined optical detector among the plurality of optical detectors are turned off.
  • each optical detector corresponds to one optical transmitter, the number of optical detectors is greater than the number of optical transmitters, and each optical transmitter corresponds to at least one optical detector.
  • the optical detectors corresponding to the light emitters connected to at most N control lines among the multiple optical detectors are determined, and only the determined optical detectors are turned on to detect the light reflected by the target object and generate light when the light is detected. Detecting signals and turning off the optical detectors other than the determined optical detectors among the multiple optical detectors can effectively avoid unnecessary detection, reduce the number of processing loads, save resources, and prolong the service life of the system.
  • determining the optical detectors corresponding to the optical transmitters connected to at most N control lines in the plurality of optical detectors includes: passing driving signals to different control lines at different times, and driving the optical transmitters on the connected control lines.
  • driving signal When the driving signal is passed in, light is emitted to the target object; multiple optical detectors are turned on at the same time to detect the light reflected by the target object and generate a detection signal when the light is detected; the optical detector that connects the light emitter with the detected light emitted by the light emitter device corresponds.
  • driving signals are passed to different control lines at different times, and the driving light transmitter emits light to the target object when the connected control lines pass the driving signal, and simultaneously turns on multiple optical detectors to detect the light reflected by the target object
  • the detection signal is generated when the light is detected, so as to realize the correspondence between the light emitter and the optical detector that detects the light emitted by the light emitter.
  • performing three-dimensional imaging according to the propagation time of the light includes: forming a histogram with time as the abscissa and the intensity of the detection signal as the ordinate; taking the time when the intensity of the detection signal in the histogram is the maximum as the receiving time of the light ;According to the receiving time and emission time of the light, determine the distance of the target object for 3D imaging.
  • a histogram is formed with time as the abscissa and the intensity of the detection signal as the ordinate.
  • the histogram can be used to record the detection results of the detection sensor at each moment, so that the time when the intensity of the detection signal is the greatest can be found in the histogram. , so that it can be used as the receiving time of the light, and then the distance of the target object can be determined according to the receiving time and the emission time of the light for three-dimensional imaging.
  • forming a histogram with time as the abscissa and the intensity of the detection signal as the ordinate including: superimposing detection signals generated by at least two adjacent optical detectors at the same moment; The intensity of the detected signal after it forms a histogram as the ordinate.
  • the detection signals generated by at least two adjacent optical detectors at the same time are superimposed, and a histogram is formed with the time as the abscissa and the intensity of the superimposed detection signals as the ordinate, which is convenient for The time when the intensity of the detection signal is the highest in the histogram can be found, and the detection results of multiple optical detectors can also be integrated, so as to avoid errors in the determination of the light receiving time caused by the detection error of a single optical detector, and effectively improve the accuracy of the processing results.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

一种投射装置(100)、三维成像系统、三维成像方法及电子产品。投射装置(100)包括:驱动电路板(10);2*N+1个光发射阵列(20),N为正整数;每个光发射阵列(20)包括至少一个光发射条(21),2*N+1个光发射阵列(20)的光发射条(21)沿第一方向周期排列;每个光发射条(21)包括沿第二方向排列的至少两个光发射器(22);与2*N+1个光发射阵列(20)一一对应的2*N+1条控制线(30),各条控制线(30)与对应的光发射阵列(20)中的每个光发射器(22)连接,用于控制对应的光发射阵列(20)中的每个光发射器(22)在同一时刻通入驱动信号并在通入驱动信号时发射光线;2*N+1条控制线(30)中至多2*N条控制线(30)在同一时刻通入驱动信号。能够提高三维成像系统正确探测物体距离的成功率和精度。

Description

投射装置、三维成像系统、三维成像方法及电子产品 技术领域
本申请涉及半导体技术领域,特别是涉及一种投射装置、三维成像系统、三维成像方法及电子产品。
背景技术
三维成像是感知三维真实世界的方式。在众多的三维成像方式中,dToF(direct time-of-flight,直接飞行时间)测距法具有精度高、距离远、系统集成度高等优点而广受关注和使用。dToF测距法应用时,由光源发射出的光信号经被测物体反射后被传感器接收,通过光信号从反射端到接收端的时间间隔,结合光速即可计算出被测物体的距离,获得深度方向上的信息进行三维成像。
目前基于dToF的三维成像系统包括面阵式和扫描式。为了提高三维成像的速度,通常采用面阵式的三维成像系统。在面阵式的三维成像系统中,光源将视场范围内的整个场景中照亮,传感器接收物体反射回的光信号,即可计算物体的距离。整个过程耗时较短,可以实现快速成像。
然而,在环境光噪声较大时,或者在物体距离较远时,都需要增大光信号的发射功率,提高光信号的能量,以在环境光噪声较大时提高信噪比,或者在物体距离较远时将光信号投射到物体上。但是,三维成像系统所在的手机等电子产品对功耗有严格的限制,光信号的发射功率有限,导致三维成像系统正确探测物体距离的成功率和精度较低。
发明内容
基于此,有必要针对上述技术问题,提供一种能够提高三维成像系统正确探测物体距离的成功率和精度的投射装置、三维成像系统、三维成像方法及电子产品。
第一方面,本申请提供一种投射装置,所述投射装置包括:
驱动电路板;
2*N+1个光发射阵列,设置在所述驱动电路板的同一表面上,N为正整数;每个所述光发射阵列包括至少一个光发射条,所述2*N+1个光发射阵列的光发射条沿第一方向周期排列;每个所述光发射条包括沿第二方向排列的至少两个光发射器,所述第二方向垂直于所述第一方向;
与2*N+1个光发射阵列一一对应的2*N+1条控制线,设置在驱动电路板上;各条控制线与对应的光发射阵列中的每个光发射器连接,用于控制对应的光发射阵列中的每个光发射器在同一时刻通入驱动信号并在通入所述驱动信号时发射光线;所述2*N+1条控制线中至多2*N条所述控制线在同一时刻通入所述驱动信号。
在其中一个实施例中,同一个所述光发射阵列中相邻两个所述光发射条的光发射器沿所述第二方向交替排列。
在其中一个实施例中,同一个所述光发射阵列中与同一个所述光发射条相邻的两个所述光发射条的光发射器沿所述第一方向并排排列。
在其中一个实施例中,所述2*N+1个光发射阵列中相邻两个所述光发射条的光发射器沿所述第二方向交替排列。
在其中一个实施例中,所述2*N+1个光发射阵列中与同一个所述光发射条相邻的两个所述光发射条的光发射器沿所述第一方向并排排列。
在其中一个实施例中,N=1。
在其中一个实施例中,相邻两个所述光发射条之间的距离为定值。
在其中一个实施例中,同一个所述光发射条中相邻两个所述光发射器之间的距离为定值。
在其中一个实施例中,每个所述光发射阵列中光发射条的数量在六个以上。
在其中一个实施例中,每个所述光发射条中光发射器的数量在八个以上。
在其中一个实施例中,每个所述光发射器为垂直腔面发射激光器。
在其中一个实施例中,所述2*N+1条控制线通入驱动信号的时刻各不相同;或者,所述2*N+1条控制线中至少两条所述控制线通入驱动信号的时刻相同。
在其中一个实施例中,所述投射装置还包括:衍射光学元件,设置在所述2*N+1个光发射阵列发射光线的传播路径上,用于将所述2*N+1个光发射阵列发射的每束光线分成呈阵列分布的多束光线。
在其中一个实施例中,所述投射装置还包括:准直镜,设置在所述2*N+1个光发射阵列发射光线的传播路径上,并位于所述2*N+1个光发射阵列和所述衍射光学元件之间,用于将所述2*N+1个光发射阵列发射的各束光线调整为平行光线。
第二方面,本申请提供一种三维成像系统,所述三维成像系统包括:
第一方面提供的投射装置,用于向目标物体发射光线;
探测装置,设置在与所述投射装置发射光线的传播路径的距离小于阈值的区域内,用于探测被所述目标物体反射的光线;
处理装置,分别与所述投射装置和所述探测装置连接,用于根据光线的传播时间进行三维成像。
在其中一个实施例中,所述探测装置包括:
承载板;
多个光学探测器,设置在所述承载板的同一表面上;每个所述光学探测器与一个光发射器对应,用于探测对应的光发射器向所述目标物体发射并被所述目标物体反射的光线,在探测到光线时产生探测信号;所述光学探测器的数量大于或等于所述投射装置中光发射器的数量,每个所述光发射器与至少一个所述光学探测器对应;
与所述多个光学探测器一一对应的多条数据线,设置在所述承载板上;各条所述数据线分别与对应的光学探测器和所述处理装置连接,用于将对应的光学探测器产生的探测信号传输至所述处理装置。
在其中一个实施例中,每个所述光学探测器为单光子雪崩二极管。
在其中一个实施例中,所述多个光学探测器在所述承载板上呈阵列分布。
在其中一个实施例中,所述处理装置包括多个处理单元,每条所述数据线与一个所述处理单元连接,每个所述处理单元与至少两条所述数据线连接,同一个所述处理单元连接的数据线对应的光学探测器相邻,每个所述处理单元用于将连接的数据线在同一时刻通入的探测信号进行叠加。
在其中一个实施例中,同一个所述处理单元连接的数据线对应的光学探测器沿行方向排列;或者,同一个所述处理单元连接的数据线对应的光学探测器沿列方向排列;或者,同一个所述处理单元连接的数据线对应的光学探测器呈阵列分布。
第三方面,本申请提供一种电子产品,所述电子产品包括第二方面提供的三维成像系统。
第四方面,本申请提供一种三维成像方法,所述三维成像方法包括:
同一时刻向2*N+1条控制线中至多2*N条所述控制线通入驱动信号,驱动所述至多2*N条控制线连接的光发射器向目标物体发射光线,N为正整数;所述2*N+1条控制线设置在驱动电路板上,所述驱动电路板的一个表面设有与所述2*N+1条控制线一一对应的2*N+1个光发射阵列;每个所述光发射阵列包括至少一个光发射条,所述2*N+1个光发射阵列的光发射条沿第一方向周期排列;每个所述光发射条包括沿第二方向排列的至少两个光发射器,所述第二方向垂直于所述第一方向;每个所述光发射器与所述光发射阵列对应的控制线连接;
探测被所述目标物体反射的光线;
根据光线的传播时间进行三维成像。
在其中一个实施例中,所述探测被所述目标物体反射的光线,包括:
确定多个光学探测器中与所述至多N条控制线连接的光发射器对应的光学探测器;每个 所述光学探测器与一个所述光发射器对应,每个所述光发射器与至少一个所述光学探测器对应;
开启确定的光学探测器探测被所述目标物体反射的光线并在探测到光线时产生探测信号,关闭所述多个光学探测器中除确定的光学探测器之外的光学探测器。
在其中一个实施例中,所述确定多个光学探测器中与所述至多N条控制线连接的光发射器对应的光学探测器,包括:不同时刻向不同控制线通入驱动信号,驱动光发射器在连接的控制线通入所述驱动信号时向目标物体发射光线;同时开启所述多个光学探测器探测被所述目标物体反射的光线并在探测到光线时产生探测信号;将所述光发射器与探测到所述光发射器发射光线的光学探测器对应。
在其中一个实施例中,所述根据光线的传播时间进行三维成像,包括:以时间为横坐标、所述探测信号的强度为纵坐标形成直方图;将所述直方图中所述探测信号的强度最大的时间作为光线的接收时间;根据光线的接收时间和发射时间,确定目标物体的距离进行三维成像。
在其中一个实施例中,所述以时间为横坐标、所述探测信号的强度为纵坐标形成直方图,包括:将至少两个相邻的光学探测器在同一时刻产生的探测信号进行叠加;以时间为横坐标、叠加后的探测信号的强度为纵坐标形成直方图。
上述投射装置、三维成像系统、三维成像方法及电子产品,通过驱动电路板设置2*N+1条控制线和2*N+1个光发射阵列,N为正整数,2*N+1个光发射阵列与2*N+1条控制线一一对应,各条控制线与对应的光发射阵列中的每个光发射器连接,即同一个光发射阵列中的各个光反射器连接的控制线相同,不同光反射阵列中的光反射器连接的控制线不同。如果向一条控制线中通入驱动信号,则这条控制线连接的所有光发射器会在同一时刻通入驱动信号并在通入驱动信号时发射光线,因此每条控制线都可以控制对应的光发射阵列中的每个光发射器在同一时刻发射光线,即同一个光发射阵列中的各个光发射器在同一时刻发射光线。而各条控制线中通入驱动信号的时刻可以不同,因此不同光反射阵列中的光反射器可以在不同时刻发射光线。通过每个光发射阵列包括至少一个光发射条,2*N+1个光发射阵列的光发射条沿第一方向周期排列,并且每个光发射条包括至少两个光发射器,同一个光发射条的光发射器沿垂直于第一方向的第二方向排列,这样沿第一方向排列的各个光发射器连接的控制线周期变化,沿垂直于第一方向的第二方向排列的各个光发射器连接的控制线相同,一条控制线中通入驱动信号控制连接的光发射器发射光线,光线照射区域与整个投射装置差不多。通过2*N+1条控制线中至多2*N条控制线在同一时刻通入驱动信号,控制投射装置中的部分光发射器发射光线,既能将视场范围内的整个场景中照亮,实现面阵式的快速成像,又可以将分配给未发射光线的光发射器的功耗增加到发射光线的光发射器上,增大光信号的发射功率,提高光信号的能量。这样光发射器在环境光噪声较大时可以提高信噪比,在物体距离较远时可以将光信号投射到物体上,提高三维成像系统正确探测物体距离的成功率和精度。另外,沿第二方向排列的至少两个光发射器属于同一个光发射条,可以连接同一条控制线,方便走线,提高投射装置的集成度,降低投射装置的实现成本。
附图说明
为了更清楚地说明本申请实施例或传统技术中的技术方案,下面将对实施例或传统技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请一实施例中的投射装置的平面示意图;
图2为本申请一实施例中的光发射器排列方式的平面示意图;
图3为本申请另一实施例中的光发射器排列方式的平面示意图;
图4为本申请一实施例中的三维成像系统的结构示意图;
图5为本申请一实施例中的探测装置的平面示意图;
图6为本申请一实施例中的处理装置的结构示意图;
图7为本申请一实施例中的处理单元与数据线的一种连接方式示意图;
图8为本申请一实施例中的处理单元与数据线的另一种连接方式示意图;
图9为本申请一实施例中的三维成像方法的流程图。
附图标记说明:10-电路板,20-光发射阵列,21-光发射条,22-光发射器,30-控制线,41-衍射光学元件,42-准直镜,100-投射装置,200-探测装置,210-探测板,220-光学探测器,230-数据线,300-处理装置,310-处理单元。
具体实施方式
为了便于理解本申请,下面将参照相关附图对本申请进行更全面的描述。附图中给出了本申请的较佳的实施例。但是,本申请可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使本申请的公开内容的理解更加透彻全面。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。本文中在本申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请。
可以理解,本申请所使用的术语“第一”、“第二”等可在本文中用于描述各种元件,但这些元件不受这些术语限制。这些术语仅用于将第一个元件与另一个元件区分。
空间关系术语例如“在...下”、“在...下面”、“下面的”、“在...之下”、“在...之上”、“上面的”等,在这里可以用于描述图中所示的一个元件或特征与其它元件或特征的关系。应当明白,除了图中所示的取向以外,空间关系术语还包括使用和操作中的器件的不同取向。例如,如果附图中的器件翻转,描述为“在其它元件下面”或“在其之下”或“在其下”元件或特征将取向为在其它元件或特征“上”。因此,示例性术语“在...下面”和“在...下”可包括上和下两个取向。此外,器件也可以包括另外地取向(譬如,旋转90度或其它取向),并且在此使用的空间描述语相应地被解释。
需要说明的是,当一个元件被认为是“连接”另一个元件时,它可以是直接连接到另一个元件,或者通过居中元件连接另一个元件。此外,以下实施例中的“连接”,如果被连接的对象之间具有电信号或数据的传递,则应理解为“电连接”、“通信连接”等。
在此使用时,单数形式的“一”、“一个”和“所述/该”也可以包括复数形式,除非上下文清楚指出另外的方式。还应当理解的是,术语“包括/包含”或“具有”等指定所陈述的特征、整体、步骤、操作、组件、部分或它们的组合的存在,但是不排除存在或添加一个或更多个其他特征、整体、步骤、操作、组件、部分或它们的组合的可能性。同时,在本说明书中使用的术语“和/或”包括相关所列项目的任何及所有组合。
根据本文中所描述的本申请概念的实施方式的电子或电气装置和/或任何其它相关装置或部件可利用任何适当的硬件、固件(例如专用集成电路)、软件或软件、固件和硬件的组合来实现。例如,这些装置的各种部件可形成在一个集成电路(IC)芯片上或形成在单独的IC芯片上。另外,这些装置的各种部件可实现在柔性印刷电路膜、带载封装(TCP)、印刷电路板(PCB)上或形成在一个衬底上。另外,这些装置的各种部件可为在一个或更多个计算装置中在一个或更多个处理器上运行从而执行计算机程序指令以及与其它系统部件交互以执行本文中所描述的各种功能的进程或线程。计算机程序指令存储在存储器中,该存储器可使用标准存储装置(例如,如随机存取存储器(RAM)实现在计算装置中。计算机程序指令也可存储在其它非暂时性计算机可读介质(例如,如CD-ROM、闪存驱动器等)中。而且,本领域技术人员应该认识到,各种计算装置的功能可组合或集成到单个计算装置中,或者特定计算装置的功能可分布在一个或更多个其它计算装置上,而不背离本申请概念的示例性实施方式的精神和范围。
虽然在文中已经特别描述了投射装置和包括投射装置的三维成像系统的示例性实施例,但是很多修改和变化对于本领域技术人员将是显而易见的。因此,将理解的是,可除了如文 中特别描述的那样以外地实施根据本申请的原理构成的投射装置和包括投射装置的三维成像系统。本申请还被限定在权利要求及其等同物中。
正如背景技术所述,面阵式三维成像系统控制所有的光发射器同时发射光线,将视场范围内的整个场景中照亮,传感器接收到目标物体反射回的光信号,即可计算目标物体的距离。整个过程耗时较短,可以实现快速成像。
但是,现有技术中的三维成像系统有正确探测物体距离的成功率和精度较低的问题,经发明人研究发现,出现这种问题的原因在于,三维成像系统所在的手机等电子产品对功耗有严格的限制,光信号的发射功率不能调整,光信号的能量被限定在较小的范围内。在环境光噪声较大时,信噪比较低,三维成像系统有可能将环境光与目标物体反射的光线混淆,无法正确探测物体距离。在物体距离较远时,三维成像系统有可能探测不到物体反射的光线,也无法正确探测物体距离。综上,三维成像系统正确探测物体距离的成功率和精度较低。
基于以上原因,本申请提供了一种投射装置,将三维成像系统中的光发射器划分到不同的集合中。照亮视场范围内的场景时,控制同一个集合中的光发射器同时发射光线,并且不同集合中的光发射器发射光线的时间不同。这样所有的光发射器不会同时发射光线,未发射光线的光发射器分配的功耗可以增加到发射光线的光发射器上,增大光信号的发射功率,提高光信号的能量,从而在环境光噪声较大时提高信噪比,在物体距离较远时将光信号投射到物体上,提高三维成像系统正确探测物体距离的成功率和精度。
具体地,三维成像系统中的光发射器呈阵列分布,各个集合中的光发射器可以沿阵列的行方向或者列方向周期排列。这样同一个集合中的光发射器同时发射光线时,还是可以将视场范围内的整个场景中照亮。
请参见图1,本申请实施例提供一种投射装置100,包括驱动电路板10、2*N+1个光发射阵列20和2*N+1条控制线30,N为正整数。2*N+1个光发射阵列20设置在驱动电路板10的同一表面上。每个光发射阵列20包括至少一个光发射条21,2*N+1个光发射阵列20的光发射条21沿第一方向周期排列。每个光发射条21包括沿第二方向排列的至少两个光发射器22,第二方向垂直于第一方向。2*N+1条控制线30与2*N+1个光发射阵列20一一对应,设置在驱动电路板10上。各条控制线30与对应的光发射阵列20中的每个光发射器22连接,用于控制对应的光发射阵列20中的每个光发射器在同一时刻通入驱动信号并在通入驱动信号时发射光线。2*N+1条控制线30中至多2*N条控制线30在同一时刻通入驱动信号。
上述投射装置,通过驱动电路板设置2*N+1条控制线和2*N+1个光发射阵列,N为正整数,2*N+1个光发射阵列与2*N+1条控制线一一对应,各条控制线与对应的光发射阵列中的每个光发射器连接,即同一个光发射阵列中的各个光反射器连接的控制线相同,不同光反射阵列中的光反射器连接的控制线不同。如果向一条控制线中通入驱动信号,则这条控制线连接的所有光发射器会在同一时刻通入驱动信号并在通入驱动信号时发射光线,因此每条控制线都可以控制对应的光发射阵列中的每个光发射器在同一时刻发射光线,即同一个光发射阵列中的各个光发射器在同一时刻发射光线。而各条控制线中通入驱动信号的时刻可以不同,因此不同光反射阵列中的光反射器可以在不同时刻发射光线。通过每个光发射阵列包括至少一个光发射条,2*N+1个光发射阵列的光发射条沿第一方向周期排列,并且每个光发射条包括至少两个光发射器,同一个光发射条的光发射器沿垂直于第一方向的第二方向排列,这样沿第一方向排列的各个光发射器连接的控制线周期变化,沿垂直于第一方向的第二方向排列的各个光发射器连接的控制线相同,一条控制线中通入驱动信号控制连接的光发射器发射光线,光线照射区域与整个投射装置差不多。通过2*N+1条控制线中至多2*N条控制线在同一时刻通入驱动信号,控制投射装置中的部分光发射器发射光线,既能将视场范围内的整个场景中照亮,实现面阵式的快速成像,又可以将分配给未发射光线的光发射器的功耗增加到发射光线的光发射器上,增大光信号的发射功率,提高光信号的能量。这样光发射器在环境光噪声较大时可以提高信噪比,在物体距离较远时可以将光信号投射到物体上,提高三维成像系统正确探测物体距离的成功率和精度。另外,沿第二方向排列的至少两个光发射器属于同 一个光发射条,可以连接同一条控制线,方便走线,提高投射装置的集成度,降低投射装置的实现成本。
在本实施例中,每个光发射器22为一个独立的点光源。至少两个光发射器22沿第二方向排列,形成一个光发射条21,每个光发射条21为呈队列分布的点电源。至少一个光发射条21沿垂直于第二方向的第一方向排列,形成一个光发射阵列20,每个光发射条20为呈阵列分布的点光源。2*N+1个光发射阵列20的光发射条21沿第一方向周期排列,即各个光发射阵列20的光发射条21沿第一方向依次设置。例如,如图1所示,沿第一方向依次排列第一个光发射阵列20的第一个光发射条21、第二个光发射阵列20的第一个光发射条21、第三个光发射阵列20的第一个光发射条21、第一个光发射阵列20的第二个光发射条21、第二个光发射阵列20的第二个光发射条21、第三个光发射阵列20的第二个光发射条21、第一个光发射阵列20的第三个光发射条21、第二个光发射阵列20的第三个光发射条21、第三个光发射阵列20的第三个光发射条21……在每个光发射条21中,沿第二方向依次排列这个光发射条21的第一个光发射器22、这个光发射条21的第二个光发射器22、这个光发射条21的第三个光发射器22……
示例性地,每个光发射器22为VCSEL(Vertical Cavity Surface Emitting Laser,垂直腔面发射激光器)。VCSEL是一种半导体,其激光垂直于顶面射出。将多个VCSEL间隔设置在同一个平面上,并背向这个平面发射光线,各个VCSEL发射的光线相互平行,彼此之间不会相互影响,因此特别适合形成光发射条21和光发射阵列20。
在本实施例中,控制线30为导电导线,可以为连接的光发射器22提供驱动信号,以控制光发射器22发射光线。
示例性地,控制线30为金属线,如铜线、铝线、银线或者合金线。铜线、铝线、银线的导电性能和导热性能较好,有利于驱动光发射器22发射光线。合金线的柔韧性和稳定性较好,有利于延长投射装置的使用寿命。
在本实施例中,驱动电路板10为设有驱动电路的电路板。电路板可以承载控制线30和光发射器22,驱动电路通过控制线30向光发射器22发送驱动信号,控制光发射器22发射光线。
示例性地,驱动电路板10为驱动芯片,如传感器芯片或者无线接入控制器,集成度高,使用方便。
在一实施例中,如图1所示,同一个光发射阵列20中相邻两个光发射条21的光发射器22沿第二方向交替排列。
在本实施例中,至少两个光发射器22沿第二方向排列形成一个光发射条21,至少一个光发射条21沿第一方向排列形成一个光发射阵列20。同一个光发射阵列20中相邻两个光发射条21均包括沿第二方向排列的多个光发射器22,相邻两个光发射条21的多个光发射器22沿第二方向交替排列,使得同一个光发射阵列20的所有光发射器22交错设置。同一个光发射阵列20的光发射器22在同一时刻发射光线,同一个光发射阵列20的光发射器22交错设置,可以防止相邻两个光发射器22发射的光线相互干扰,有利于光发射器22布局的紧凑性,增大单位面积内布置的光发射器22数量,减小光发射阵列20的占用面积,进而提高投射装置的集成度。
在一实施例中,如图1所示,同一个光发射阵列20中与同一个光发射条21相邻的两个光发射条21的光发射器22沿第一方向并排排列。
本实施例中,至少两个光发射器22沿第二方向排列形成一个光发射条21,至少一个光发射条21沿第一方向排列形成一个光发射阵列20。同一个光发射阵列20中与同一个光发射条21相邻的两个光发射条21的光发射器22沿第一方向并排排列,既能实现同一个光发射阵列20中相邻两个光发射条21的光发射器22沿第二方向交替排列,防止相邻两个光发射器22发射的光线相互干扰,提高投射装置的集成度,又能使同一个光发射阵列20的所有光发射器22呈阵列分布,有利于光发射器22布局的紧凑性,进一步提高投射装置的集成度。
在一实施例中,如图1所示,2*N+1个光发射阵列20中相邻两个光发射条21的光发射器22沿第二方向交替排列。
在本实施例中,至少两个光发射器22沿第二方向排列形成一个光发射条21,至少一个光发射条21沿第一方向排列形成一个光发射阵列20。2*N+1个光发射阵列20的光发射条21沿第一方向周期排列,2*N+1个光发射阵列20中相邻两个光发射条21的光发射器22沿第二方向交替排列,有利于防止相邻两个光发射器22发射的光线相互干扰,有利于光发射器22布局的紧凑性,增大单位面积内布置的光发射器22的数量,减小光发射阵列20的占用面积,进而提高投射装置的集成度。
在一实施例中,如图1所示,2*N+1个光发射阵列20中与同一个光发射条21相邻的两个光发射条21的光发射器22沿第一方向并排排列。
本实施例中,至少两个光发射器22沿第二方向排列形成一个光发射条21,至少一个光发射条21沿第一方向排列形成一个光发射阵列20。2*N+1个光发射阵列20的光发射条21沿第一方向周期排列,2*N+1个光发射阵列20中与同一个光发射条21相邻的两个光发射条21的光发射器22沿第一方向并排排列,既能实现2*N+1个光发射阵列20中相邻两个光发射条21的光发射器22沿第二方向交替排列,防止相邻两个光发射器22发射的光线相互干扰,提高投射装置的集成度,又能使所有光发射器22呈阵列分布,有利于光发射器22的紧凑布置,进一步提高投射装置的集成度。
在本实施例中,光发射阵列的数量为2*N+1个,即光发射阵列的数量为奇数。2*N+1个光发射阵列20的多个光发射条21沿第一方向周期排列,光发射阵列的数量为奇数,这样可以同时实现同一个光发射阵列20中相邻两个光发射条21的光发射器22沿第二方向交替排列、同一个光发射阵列20中与同一个光发射条21相邻的两个光发射条21的光发射器22沿第一方向并排排列、2*N+1个光发射阵列20中相邻两个光发射条21的光发射器22沿第二方向交替排列、以及2*N+1个光发射阵列20中与同一个光发射条21相邻的两个光发射条21的光发射器22沿第一方向并排排列,最大程度提高投射装置的集成度。
示例性地,如图1所示,N=1。
在本实施例中,光发射阵列的数量为2*N+1个,N=1,可以最大程度减小光发射阵列的数量,进而减小与光发射阵列一一对应的控制线的数量,方便布线和实现。
在一实施例中,如图2所示,同一个光发射阵列20中光发射条21的数量大于同一个光发射条21中光发射器22的数量。
例如,如图2所示,每个光发射阵列20中光发射条21的数量为6个,每个光发射条21中光发射器22的数量为4个,即同一个光发射阵列20中光发射条21的数量大于同一个光发射条21中光发射器22的数量。
本实施例中,至少两个光发射器22沿第二方向排列形成一个光发射条21,至少一个光发射条21沿第一方向排列形成一个光发射阵列20,所有光发射器22呈阵列分布。同一个光发射阵列20中光发射条21的数量大于同一个光发射条21中光发射器22的数量,沿第一方向排列的光发射器22的数量大于沿第二方向排列的光发射器22的数量,特别适用于对横向放置的目标物体进行探测。
在另一实施例中,如图3所示,同一个光发射阵列20中光发射条21的数量小于同一个光发射条21中光发射器22的数量。
例如,如图3所示,每个光发射阵列20中光发射条21的数量为4个,每个光发射条21中光发射器22的数量为5个,即同一个光发射阵列20中光发射条21的数量小于同一个光发射条21中光发射器22的数量。
本实施例中,至少两个光发射器22沿第二方向排列形成一个光发射条21,至少一个光发射条21沿第一方向排列形成一个光发射阵列20,所有光发射器22呈阵列分布。同一个光发射阵列20中光发射条21的数量小于同一个光发射条21中光发射器22的数量,沿第一方向排列的光发射器22的数量小于沿第二方向排列的光发射器22的数量,特别适用于对竖向 放置的目标物体进行探测。
在一实施例中,相邻两个光发射条21之间的距离为定值。
在本实施例中,相邻两个光发射条21之间的距离为定值,即相邻两个光发射条21之间的距离相等,可以方便确定相邻两个光发射条21之间的距离,既能避免相邻两个光发射条21之间的距离较小而相互影响,也能避免相邻两个光发射条21之间的距离较大而造成空间浪费,方便投射装置的实现。
在一实施例中,同一个光发射条21中相邻两个光发射器22之间的距离为定值。
在本实施例中,同一个光发射条21中相邻两个光发射器22之间的距离为定值,即同一个光发射条21中相邻两个光发射器22之间的距离相等,可以方便确定同一个光发射条21中相邻两个光发射器22之间的距离,既能避免同一个光发射条21中相邻两个光发射器22之间的距离较小而相互影响,也能避免同一个光发射条21中相邻两个光发射器22之间的距离较大而造成空间浪费,方便投射装置的实现。
在一实施例中,每个光发射阵列20中光发射条21的数量在六个以上。
在本实施例中,每个光发射阵列20中光发射条21的数量在六个以上,有利于在单个光发射阵列20中的光发射器22发射光线时,可以将视场范围内的整个场景中照亮。
在一实施例中,每个光发射条21中光发射器22的数量在八个以上。
在本实施例中,每个光发射条21中光发射器22的数量在八个以上,有利于在单个光发射阵列20中的光发射器22发射光线时,可以将视场范围内的整个场景中照亮。
在一实施例中,2*N+1条控制线30通入驱动信号的时刻各不相同。
在本实施例中,2*N+1条控制线30通入驱动信号的时刻各不相同,可以最大程度利用分配给未发射光线的光发射器的功耗,增大发射光线的光发射器的功能,增大光信号的发射功率,提高光信号的能量,在环境光噪声较大时有效提高信噪比,在物体距离较远时确保将光信号投射到物体上,最大程度提高三维成像系统正确探测物体距离的成功率和精度。
在另一实施例中,2*N+1条控制线30中至少两条控制线通入驱动信号的时刻相同。
在本实施例中,2*N+1条控制线30中至少两条控制线通入驱动信号的时刻相同,可以减少整个投射装置发射光线的时间,方便实现面阵式的快速成像。
在一实施例中,如图2和图3所示,投射装置还包括衍射光学元件41。衍射光学元件41设置在2*N+1个光发射阵列20发射光线的传播路径上,用于将2*N+1个光发射阵列20发射的每束光线分成呈阵列分布的多束光线。
其中,DOE(Diffractive Optical Elements,衍射光学元件)41是一系列可动的镜片,主要用于产生所需要的光源。本实施例中利用DOE将单束光线分成多束光线。
例如,如图2所示,衍射光学元件41将3个光发射阵列20发射的每束光线分成呈阵列分布的9束光线,相当于把3个光发射阵列20复制成一个3*3阵列。由于同一个光发射阵列20中光发射条21的数量大于同一个光发射条21中光发射器22的数量,因此3*3阵列沿第一方向的长度大于沿第二方向的长度。
又如,如图3所示,衍射光学元件41将3个光发射阵列20发射的每束光线分成呈阵列分布的9束光线,相当于把3个光发射阵列20复制成一个3*3阵列。由于同一个光发射阵列20中光发射条21的数量小于同一个光发射条21中光发射器22的数量,因此3*3阵列沿第一方向的长度小于沿第二方向的长度。
在本实施例中,在2*N+1个光发射阵列20发射光线的传播路径上设置衍射光学元件41,衍射光学元件41将2*N+1个光发射阵列20发射的每束光线分成呈阵列分布的多束光线,相当于对所有光反射器22形成的阵列进行复制,增大整个装置投射光线的面积,以在照亮视场范围内的整个场景的情况下,减少光反射器22的数量,提高装置的集成度,并降低装置的实现成本。
可选地,如图2和图3所示,投射装置还包括准直镜42。准直镜42设置在2*N+1个光发射阵列20发射光线的传播路径上,并位于2*N+1个光发射阵列20和衍射光学元件41之 间,用于将2*N+1个光发射阵列20发射的各束光线调整为平行光线。
其中,准直镜被用在光束传递系统中,以维持光束的准直性。准直通俗说就是保持光线之间是平行的,即让发散光变成平行光。
本实施例中,光束先经过准直镜42,使发散光变成平行光。平行光再经过衍射光学元件41,衍射光学元件41对准直光进行复制,并分光到不同的角度,如将一束光复制成为朝向不同角度的多束光。
基于同一发明构思,本申请实施例还提供一种三维成像系统,如图4所示,该三维成像系统包括上述实施例中的投射装置100,该三维成像系统还包括探测装置200和处理装置300。投射装置100用于向目标物体400发射光线。探测装置200设置在与投射装置100发射光线的传播路径的距离小于阈值的区域内,用于探测被目标物体反射的光线。处理装置300分别与投射装置100和探测装置200连接,用于根据光线的传播时间进行三维成像。
在本实施例中,投射装置100中2*N+1个光发射阵列10可以采用任意顺序逐个向目标物体发射光线,也可以至少两个光发射阵列10同时向目标物体发射光线,且至少一个光发射阵列10不向目标物体发射光线。探测装置200可以先确定投射装置100中各个光发射阵列10对应的探测区域,再在各个光发射阵列10向目标物体发射光线时,开启对应的区域进行探测,并关闭未对应的区域。处理装置300对投射装置100和探测装置200进行控制,并根据光线的传播时间进行三维成像。
在一实施例中,如图5所示,探测装置200包括承载板210、多个光学探测器220和多条数据线230。多个光学探测器220设置在承载板210的同一表面上。每个光学探测器220与一个光发射器22对应,用于探测对应的光发射器22向目标物体发射并被目标物体反射的光线,在探测到光线时产生探测信号。光学探测器220的数量大于或等于投射装置100中光发射器22的数量,每个光发射器22与至少一个光学探测器220对应。多条数据线与多个光学探测器一一对应,设置在承载板210上。各条数据线230分别与对应的光学探测器220和处理装置300连接,用于将对应的光学探测器220产生的探测信号传输至处理装置300。
在本实施例中,通过在承载板的同一表面上设置多个光学探测器,光学探测器的数量大于或等于光发射阵列的数量,每个光发射器可以与至少一个光学探测器对应。每个光学探测器与一个光发射器对应,可以探测对应的光发射器向目标物体发射并被目标物体反射的光线,在探测到光线时产生探测信号,因此所有光发射器向目标物体发射的光线都有对应的光学探测器进行探测。通过在承载板上设置多条数据线,多条数据线与多个光学探测器一一对应,每条数据线分别与对应的光学探测器和处理装置连接,可以将对应的光学探测器产生的探测信号传输至处理装置,处理装置结合各个光学探测器传输的探测信号与这个光学探测器对应的光发射器发射光线的情况,进行三维成像。
示例性地,每个光学探测器220为SPAD(Single Photon Avalanche Diode,单光子雪崩二极管)。
其中,SPAD是一种具有单光子探测能力的光电探测雪崩二极管。一个单SPAD传感器在设定模式下工作,就像光子触发开关一样,处于“开启”或“关闭”状态。
本实施例中,光学探测器采用SPAD,可以较好实现在探测到光线时产生探测信号。
在一实施例中,多个光学探测器220在承载板210上呈阵列分布。
多个光学探测器220在承载板210上呈阵列分布,可以方便光学探测器220的布置,既能避免相邻两个光学探测器220之间的距离较近而造成浪费,也能避免相邻两个光学探测器220之间的距离较远而造成探测遗漏。
在一实施例中,如图6所示,处理装置300包括多个处理单元310,每条数据线230与一个处理单元310连接,每个处理单元310与至少两条数据线230连接,同一个处理单元310连接的数据线230对应的光学探测器220相邻,每个处理单元310用于将连接的数据线230在同一时刻通入的探测信号进行叠加。
在本实施例中,每个处理单元310与至少两条数据线230连接,同一个处理单元310连 接的数据线230对应的光学探测器220相邻,可以将距离较近的多个光学探测器220汇集到一个处理单元310进行处理,既能将光学探测器220密集布置,避免出现探测盲区,同时也能减少处理单元310的数量,降低实现成本。每个处理单元310用于将连接的数据线230在同一时刻通入的探测信号进行叠加,可以综合各个光学探测器220的探测结果,提高处理结果的准确性。
在一实施例中,如图7所示,同一个处理单元310连接的数据线230对应的光学探测器220沿行方向排列。
示例性地,行方向为平行于水平面的横向。
在本实施例中,同一个处理单元310连接的数据线230对应的光学探测器220沿行方向排列,可以将同一行的光学探测器220的探测结果进行汇集,比较适用横向放置的目标物体。
在另一实施例中,如图6所示,同一个处理单元310连接的数据线230对应的光学探测器220沿列方向排列。
示例性地,列方向为垂直于水平面的竖向。
在本实施例中,同一个处理单元310连接的数据线230对应的光学探测器220沿列方向排列,可以将同一列的光学探测器220的探测结果进行汇集,比较适用竖向放置的目标物体。
在又一实施例中,如图8所示,同一个处理单元310连接的数据线230对应的光学探测器220呈阵列分布。
在本实施例中,同一个处理单元310连接的数据线230对应的光学探测器220呈阵列分布,可以将同一片区域的光学探测器220的探测结果进行汇集,比较适用方正的目标物体。
基于同一发明构思,本申请实施例还提供一种电子产品(图未示),该电子产品包括上述实施例中的三维成像系统。
可以理解的是,本申请实施例中的电子产品可以为激光雷达系统、手机、平板电脑、笔记本电脑、拍摄设备、机器人等任何具有三维成像功能的产品或部件,本申请公开的实施例对此不作限制。
基于同一发明构思,本申请实施例还提供一种三维成像方法,如图9所示,该三维成像方法包括:
步骤S501,同一时刻向2*N+1条控制线中至多2*N条控制线通入驱动信号,驱动至多2*N条控制线连接的光发射器向目标物体发射光线,N为正整数。
其中,2*N+1条控制线设置在驱动电路板上,驱动电路板的一个表面设有与2*N+1条控制线一一对应的2*N+1个光发射阵列。每个光发射阵列包括至少一个光发射条,2*N+1个光发射阵列的光发射条沿第一方向周期排列。每个光发射条包括沿第二方向排列的至少两个光发射器,第二方向垂直于第一方向。每个光发射器与光发射阵列对应的控制线连接。
步骤S502,探测被目标物体反射的光线。
步骤S503,根据光线的传播时间进行三维成像。
上述三维成像方法,通过2*N+1条控制线中至多2*N条控制线在同一时刻通入驱动信号,控制投射装置中的部分光发射器发射光线,既能将视场范围内的整个场景中照亮,实现面阵式的快速成像,又可以将分配给未发射光线的光发射器的功耗增加到发射光线的光发射器上,增大光信号的发射功率,提高光信号的能量。这样光发射器在环境光噪声较大时可以提高信噪比,在物体距离较远时可以将光信号投射到物体上,提高三维成像系统正确探测物体距离的成功率和精度。
在一实施例中,探测被目标物体反射的光线,包括:确定多个光学探测器中与至多N条控制线连接的光发射器对应的光学探测器;开启确定的光学探测器探测被目标物体反射的光线并在探测到光线时产生探测信号,关闭多个光学探测器中除确定的光学探测器之外的光学探测器。
其中,每个光学探测器与一个光发射器对应,光学探测器的数量大于光发射器的数量,每个光发射器与至少一个光学探测器对应。
本实施例中,确定多个光学探测器中与至多N条控制线连接的光发射器对应的光学探测器,只开启确定的光学探测器探测被目标物体反射的光线并在探测到光线时产生探测信号,关闭多个光学探测器中除确定的光学探测器之外的光学探测器,可以有效避免不必要的探测,减少数量的处理量,节省资源,延长系统的使用寿命。
可选地,确定多个光学探测器中与至多N条控制线连接的光发射器对应的光学探测器,包括:不同时刻向不同控制线通入驱动信号,驱动光发射器在连接的控制线通入驱动信号时向目标物体发射光线;同时开启多个光学探测器探测被目标物体反射的光线并在探测到光线时产生探测信号;将光发射器与探测到光发射器发射光线的光学探测器对应。
本实施例中,不同时刻向不同控制线通入驱动信号,驱动光发射器在连接的控制线通入驱动信号时向目标物体发射光线,同时开启多个光学探测器探测被目标物体反射的光线并在探测到光线时产生探测信号,从而实现将光发射器与探测到光发射器发射光线的光学探测器对应。
在一实施例中,根据光线的传播时间进行三维成像,包括:以时间为横坐标、探测信号的强度为纵坐标形成直方图;将直方图中探测信号的强度最大的时间作为光线的接收时间;根据光线的接收时间和发射时间,确定目标物体的距离进行三维成像。
本实施例中,以时间为横坐标、探测信号的强度为纵坐标形成直方图,可以利用直方图记录探测传感器在各个时刻的探测结果,从而可以在直方图中找到探测信号的强度最大的时间,以将其作为光线的接收时间,进而可以根据光线的接收时间和发射时间,确定目标物体的距离进行三维成像。
可选地,以时间为横坐标、探测信号的强度为纵坐标形成直方图,包括:将至少两个相邻的光学探测器在同一时刻产生的探测信号进行叠加;以时间为横坐标、叠加后的探测信号的强度为纵坐标形成直方图。
本实施例中,将至少两个相邻的光学探测器在同一时刻产生的探测信号进行叠加,并以时间为横坐标、叠加后的探测信号的强度为纵坐标形成直方图,既能方便在直方图中找到探测信号的强度最大的时间,也能综合多个光学探测器的探测结果,避免单个光学探测器探测错误导致光线的接收时间确定错误,有效提高处理结果的准确性。
在本说明书的描述中,参考术语“有些实施例”、“其他实施例”、“理想实施例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特征包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性描述不一定指的是相同的实施例或示例。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (26)

  1. 一种投射装置,其特征在于,所述投射装置包括:
    驱动电路板(10);
    2*N+1个光发射阵列(20),设置在所述驱动电路板(10)的同一表面上,N为正整数;每个所述光发射阵列(20)包括至少一个光发射条(21),所述2*N+1个光发射阵列(20)的光发射条(21)沿第一方向周期排列;每个所述光发射条(21)包括沿第二方向排列的至少两个光发射器(22),所述第二方向垂直于所述第一方向;
    与所述2*N+1个光发射阵列(20)一一对应的2*N+1条控制线(30),设置在所述驱动电路板(10)上;各条所述控制线(30)与对应的光发射阵列(20)中的每个光发射器(22)连接,用于控制对应的光发射阵列(20)中的每个光发射器(22)在同一时刻通入驱动信号并在通入所述驱动信号时发射光线;所述2*N+1条控制线(30)中至多2*N条所述控制线(30)在同一时刻通入所述驱动信号。
  2. 根据权利要求1所述的投射装置,其特征在于,同一个所述光发射阵列(20)中相邻两个所述光发射条(21)的光发射器(22)沿所述第二方向交替排列。
  3. 根据权利要求2所述的投射装置,其特征在于,同一个所述光发射阵列(20)中与同一个所述光发射条(21)相邻的两个光发射条(21)的光发射器(22)沿所述第一方向并排排列。
  4. 根据权利要求1至3任一项所述的投射装置,其特征在于,所述2*N+1个光发射阵列(20)中相邻两个所述光发射条(21)的光发射器(22)沿所述第二方向交替排列。
  5. 根据权利要求4所述的投射装置,其特征在于,所述2*N+1个光发射阵列(20)中与同一个所述光发射条(21)相邻的两个光发射条(21)的光发射器(22)沿所述第一方向并排排列。
  6. 根据权利要求1至3任一项所述的投射装置,其特征在于,N=1。
  7. 根据权利要求1至3任一项所述的投射装置,其特征在于,相邻两个所述光发射条(21)之间的距离为定值。
  8. 根据权利要求1至3任一项所述的投射装置,其特征在于,同一个所述光发射条(21)中相邻两个所述光发射器(22)之间的距离为定值。
  9. 根据权利要求1至3任一项所述的投射装置,其特征在于,每个所述光发射阵列(20)中光发射条(21)的数量在六个以上。
  10. 根据权利要求1至3任一项所述的投射装置,其特征在于,每个所述光发射条(21)中光发射器(22)的数量在八个以上。
  11. 根据权利要求1至3任一项所述的投射装置,其特征在于,每个所述光发射器(22)为垂直腔面发射激光器。
  12. 根据权利要求1至3任一项所述的投射装置,其特征在于,所述2*N+1条控制线(30)通入驱动信号的时刻各不相同;或者,所述2*N+1条控制线(30)中至少两条所述控制线(30)通入驱动信号的时刻相同。
  13. 根据权利要求1至3任一项所述的投射装置,其特征在于,所述投射装置还包括:
    衍射光学元件(41),设置在所述2*N+1个光发射阵列(20)发射光线的传播路径上,用于将所述2*N+1个光发射阵列(20)发射的每束光线分成呈阵列分布的多束光线。
  14. 根据权利要求13所述的投射装置,其特征在于,所述投射装置还包括:
    准直镜(42),设置在所述2*N+1个光发射阵列(20)发射光线的传播路径上,并位于所述2*N+1个光发射阵列(20)和所述衍射光学元件(41)之间,用于将所述2*N+1个光发射阵列(20)发射的各束光线调整为平行光线。
  15. 一种三维成像系统,其特征在于,所述三维成像系统包括:
    如权利要求1至14任一项所述的投射装置(100),用于向目标物体发射光线;
    探测装置(200),设置在与所述投射装置(100)发射光线的传播路径的距离小于阈值的区域内,用于探测被所述目标物体反射的光线;
    处理装置(300),分别与所述投射装置(100)和所述探测装置(200)连接,用于根据光线的传播时间进行三维成像。
  16. 根据权利要求15所述的三维成像系统,其特征在于,所述探测装置(200)包括:
    承载板(210);
    多个光学探测器(220),设置在所述承载板(210)的同一表面上;每个所述光学探测器(220)与一个光发射器(22)对应,用于探测对应的光发射器(22)向所述目标物体发射并被所述目标物体反射的光线,在探测到光线时产生探测信号;所述光学探测器(220)的数量大于或等于所述投射装置(100)中光发射器(22)的数量,每个所述光发射器(22)与至少一个所述光学探测器(220)对应;
    与所述多个光学探测器(220)一一对应的多条数据线(230),设置在所述承载板(210)上;各条所述数据线(230)分别与对应的光学探测器(220)和所述处理装置(300)连接,用于将对应的光学探测器(220)产生的探测信号传输至所述处理装置(300)。
  17. 根据权利要求16所述的三维成像系统,其特征在于,每个所述光学探测器(220)为单光子雪崩二极管。
  18. 根据权利要求16或17所述的三维成像系统,其特征在于,所述多个光学探测器(220)在所述承载板(210)上呈阵列分布。
  19. 根据权利要求18所述的三维成像系统,其特征在于,所述处理装置(300)包括多个处理单元(310),每条所述数据线(230)与一个所述处理单元(310)连接,每个所述处理单元(310)与至少两条所述数据线(230)连接,同一个所述处理单元(310)连接的数据线(230)对应的光学探测器(220)相邻,每个所述处理单元(310)用于将连接的数据线(230)在同一时刻通入的探测信号进行叠加。
  20. 根据权利要求19所述的三维成像系统,其特征在于,同一个所述处理单元(310)连接的数据线(230)对应的光学探测器(220)沿行方向排列;或者,同一个所述处理单元(310)连接的数据线(230)对应的光学探测器(220)沿列方向排列;或者,同一个所述处理单元(310)连接的数据线(230)对应的光学探测器(220)呈阵列分布。
  21. 一种电子产品,其特征在于,所述电子产品包括如权利要求15至20任一项所述的三维成像系统。
  22. 一种三维成像方法,其特征在于,所述三维成像方法包括:
    同一时刻向2*N+1条控制线中至多2*N条所述控制线通入驱动信号,驱动所述至多2*N条控制线连接的光发射器向目标物体发射光线,N为正整数;所述2*N+1条控制线设置在驱动电路板上,所述驱动电路板的一个表面设有与所述2*N+1条控制线一一对应的2*N+1个光发射阵列;每个所述光发射阵列包括至少一个光发射条,所述2*N+1个光发射阵列的光发射条沿第一方向周期排列;每个所述光发射条包括沿第二方向排列的至少两个光发射器,所述第二方向垂直于所述第一方向;每个所述光发射器与所述光发射阵列对应的控制线连接;
    探测被所述目标物体反射的光线;
    根据光线的传播时间进行三维成像。
  23. 根据权利要求22所述的三维成像方法,其特征在于,所述探测被所述目标物体反射的光线,包括:
    确定多个光学探测器中与所述至多N条控制线连接的光发射器对应的光学探测器;每个所述光学探测器与一个所述光发射器对应,每个所述光发射器与至少一个所述光学探测器对应;
    开启确定的光学探测器探测被所述目标物体反射的光线并在探测到光线时产生探测信号,关闭所述多个光学探测器中除确定的光学探测器之外的光学探测器。
  24. 根据权利要求23所述的三维成像方法,其特征在于,所述确定多个光学探测器中与所述至多N条控制线连接的光发射器对应的光学探测器,包括:
    不同时刻向不同控制线通入驱动信号,驱动光发射器在连接的控制线通入所述驱动信号 时向目标物体发射光线;
    同时开启所述多个光学探测器探测被所述目标物体反射的光线并在探测到光线时产生探测信号;
    将所述光发射器与探测到所述光发射器发射光线的光学探测器对应。
  25. 根据权利要求23或24所述的三维成像方法,其特征在于,所述根据光线的传播时间进行三维成像,包括:
    以时间为横坐标、所述探测信号的强度为纵坐标形成直方图;
    将所述直方图中所述探测信号的强度最大的时间作为光线的接收时间;
    根据光线的接收时间和发射时间,确定目标物体的距离进行三维成像。
  26. 根据权利要求25所述的三维成像方法,其特征在于,所述以时间为横坐标、所述探测信号的强度为纵坐标形成直方图,包括:
    将至少两个相邻的光学探测器在同一时刻产生的探测信号进行叠加;
    以时间为横坐标、叠加后的探测信号的强度为纵坐标形成直方图。
PCT/CN2022/072764 2021-02-08 2022-01-19 投射装置、三维成像系统、三维成像方法及电子产品 WO2022166583A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202120355576.5 2021-02-08
CN202110182075.6 2021-02-08
CN202120355576.5U CN214669608U (zh) 2021-02-08 2021-02-08 投射装置、三维成像系统及电子产品
CN202110182075.6A CN112817010A (zh) 2021-02-08 2021-02-08 投射装置、三维成像系统、三维成像方法及电子产品

Publications (1)

Publication Number Publication Date
WO2022166583A1 true WO2022166583A1 (zh) 2022-08-11

Family

ID=82741919

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/072764 WO2022166583A1 (zh) 2021-02-08 2022-01-19 投射装置、三维成像系统、三维成像方法及电子产品

Country Status (1)

Country Link
WO (1) WO2022166583A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101866056A (zh) * 2010-05-28 2010-10-20 中国科学院合肥物质科学研究院 基于led阵列共透镜tof深度测量的三维成像方法和系统
US20180329064A1 (en) * 2017-05-09 2018-11-15 Stmicroelectronics (Grenoble 2) Sas Method and apparatus for mapping column illumination to column detection in a time of flight (tof) system
CN110687541A (zh) * 2019-10-15 2020-01-14 深圳奥锐达科技有限公司 一种距离测量系统及方法
CN111366941A (zh) * 2020-04-20 2020-07-03 深圳奥比中光科技有限公司 一种tof深度测量装置及方法
US20200256669A1 (en) * 2019-02-11 2020-08-13 Apple Inc. Calibration of depth sensing using a sparse array of pulsed beams
CN111856433A (zh) * 2020-07-25 2020-10-30 深圳奥锐达科技有限公司 一种距离测量系统及测量方法
CN112817010A (zh) * 2021-02-08 2021-05-18 深圳市灵明光子科技有限公司 投射装置、三维成像系统、三维成像方法及电子产品
CN214669608U (zh) * 2021-02-08 2021-11-09 深圳市灵明光子科技有限公司 投射装置、三维成像系统及电子产品

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101866056A (zh) * 2010-05-28 2010-10-20 中国科学院合肥物质科学研究院 基于led阵列共透镜tof深度测量的三维成像方法和系统
US20180329064A1 (en) * 2017-05-09 2018-11-15 Stmicroelectronics (Grenoble 2) Sas Method and apparatus for mapping column illumination to column detection in a time of flight (tof) system
US20200256669A1 (en) * 2019-02-11 2020-08-13 Apple Inc. Calibration of depth sensing using a sparse array of pulsed beams
CN110687541A (zh) * 2019-10-15 2020-01-14 深圳奥锐达科技有限公司 一种距离测量系统及方法
CN111366941A (zh) * 2020-04-20 2020-07-03 深圳奥比中光科技有限公司 一种tof深度测量装置及方法
CN111856433A (zh) * 2020-07-25 2020-10-30 深圳奥锐达科技有限公司 一种距离测量系统及测量方法
CN112817010A (zh) * 2021-02-08 2021-05-18 深圳市灵明光子科技有限公司 投射装置、三维成像系统、三维成像方法及电子产品
CN214669608U (zh) * 2021-02-08 2021-11-09 深圳市灵明光子科技有限公司 投射装置、三维成像系统及电子产品

Similar Documents

Publication Publication Date Title
US10931935B2 (en) Structured light projection module based on VCSEL array light source
CN106997603B (zh) 基于vcsel阵列光源的深度相机
EP3424279B1 (en) Curved array of light-emitting elements for sweeping out an angular range
US20190310375A1 (en) Automatic gain control for lidar for autonomous vehicles
US9268012B2 (en) 2-D planar VCSEL source for 3-D imaging
US20150260830A1 (en) 2-D Planar VCSEL Source for 3-D Imaging
WO2021072802A1 (zh) 一种距离测量系统及方法
CN214669608U (zh) 投射装置、三维成像系统及电子产品
TWI742448B (zh) 雷射偵測裝置
US20170359883A1 (en) Staggered Array of Light-Emitting Elements for Sweeping out an Angular Range
CN110244279B (zh) 光线接收模块和激光雷达
US20210320478A1 (en) Linear vcsel arrays
EP4034909A1 (en) Strobing flash lidar with full frame utilization
CN111856429B (zh) 多线激光雷达及其控制方法
KR20220097220A (ko) 서로 다른 지향각을 갖는 복수의 채널을 구비하는 라이다 광원용 발광장치
CN111323787A (zh) 探测装置及方法
CN110118961B (zh) 光线发射模块和激光雷达
WO2022166583A1 (zh) 投射装置、三维成像系统、三维成像方法及电子产品
US20180059227A1 (en) System and method for testing motion sensor
CN112817010A (zh) 投射装置、三维成像系统、三维成像方法及电子产品
WO2023065589A1 (zh) 一种测距系统及测距方法
WO2022165820A1 (zh) 驱动电路、发光单元、发射模组、感测装置和电子设备
CN211123271U (zh) 一种激光雷达
CN114355384A (zh) 飞行时间tof系统和电子设备
CN214703999U (zh) 飞行时间tof装置和电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22748862

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22748862

Country of ref document: EP

Kind code of ref document: A1