WO2022166414A1 - 一种等离子电弧增材制造形性一体化成形装备系统 - Google Patents

一种等离子电弧增材制造形性一体化成形装备系统 Download PDF

Info

Publication number
WO2022166414A1
WO2022166414A1 PCT/CN2021/138117 CN2021138117W WO2022166414A1 WO 2022166414 A1 WO2022166414 A1 WO 2022166414A1 CN 2021138117 W CN2021138117 W CN 2021138117W WO 2022166414 A1 WO2022166414 A1 WO 2022166414A1
Authority
WO
WIPO (PCT)
Prior art keywords
plasma arc
forming
additive manufacturing
module
powder
Prior art date
Application number
PCT/CN2021/138117
Other languages
English (en)
French (fr)
Inventor
黄逸凡
代轶励
康翼鸿
喻学锋
高明
陆星铭
Original Assignee
深圳先进技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳先进技术研究院 filed Critical 深圳先进技术研究院
Publication of WO2022166414A1 publication Critical patent/WO2022166414A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K10/00Welding or cutting by means of a plasma
    • B23K10/02Plasma welding
    • B23K10/027Welding for purposes other than joining, e.g. build-up welding

Definitions

  • the invention belongs to the technical field of plasma arc additive manufacturing, and relates to an integrated forming equipment system for plasma arc additive manufacturing.
  • Arc additive manufacturing is the most rapidly developing parts manufacturing technology in recent years. It uses tungsten electrodes or wires and formed parts to form arc-melted metal wires, and realizes direct forming of metal components through layered slicing and layer-by-layer accumulation. Compared with other manufacturing technologies, it has the advantages of high forming efficiency, high material utilization rate, and can form any complex metal components. It is widely used in the forming of key components in the fields of aerospace, shipbuilding and petrochemical industry.
  • the plasma arc additive manufacturing equipment system in the prior art has the following defects and deficiencies: First, when large-sized components are stacked, the increase in heat input and the phenomenon of heat accumulation can easily lead to a decrease in the forming accuracy of the formed components. How to balance the heat input It is one of the urgent problems to be solved when it comes to quantity and forming efficiency; secondly, the forming quality control of most of the stacked forming components at this stage is generally after the completion of the stacking, that is, the parameters are adjusted according to the forming quality, and it is difficult to achieve real-time control; thirdly, at this stage Plasma additive manufacturing alloying is mainly based on coating materials or replacing wires. The uniformity of coating materials is difficult to guarantee, the process and cost of replacing wires are high, and the alloying of special elements is difficult to achieve. The current plasma arc additive manufacturing technology is difficult to realize the integrated forming of large-scale and complex metal gradient structures.
  • the present invention provides an integrated forming equipment system for plasma arc additive manufacturing.
  • an integrated forming equipment system for plasma arc additive manufacturing.
  • it can realize the integrated forming of large-scale and complex metal gradient structures such as titanium alloys, stainless steels, and high-temperature nickel-based alloys.
  • a plasma arc additive manufacturing shape integrated forming equipment system which is special in that it includes:
  • Silk powder combines plasma arc module, temperature acquisition module, high-speed camera monitoring module, process parameter digitization module and external gas unit;
  • the silk powder combined with plasma arc module includes a three-axis motion mechanism, a silk powder combined with a plasma arc gun body, a wire feeding unit, a powder feeding unit, a plasma arc power supply unit, and a water cooling unit;
  • the three-axis motion mechanism drives the silk powder combined with the plasma arc gun body to move in the three-axis directions of X, Y, and Z.
  • Silk powder combined plasma arc gun body includes tungsten electrode, water-cooled nozzle, interlayer and protective cover from inside to outside;
  • the interlayer is provided with a powder feeding channel, the powder feeding channel is connected with the powder feeding unit, and the water-cooling nozzle is connected with the water-cooling unit through a pipeline; the plasma arc power supply unit is used to provide the power supply for forming the plasma arc;
  • the temperature acquisition module is used for real-time monitoring of the temperature of the formed part in the stack forming process
  • the high-speed camera monitoring module is used to collect the topographic image information of the plasma arc, the molten droplet and the formed part in the stacking forming process,
  • the process parameter digitization module is used to obtain the measurement information of the temperature acquisition module and the high-speed camera monitoring module, and to perform negative feedback adjustment on the stacking forming process parameters in real time.
  • the above-mentioned external gas unit includes an external gas protective cover and a protective gas storage device, the protective gas storage device is used to provide protective gas to the external gas protective cover, and the external gas protective cover is located near the silk powder combined plasma arc gun body.
  • the above temperature acquisition module includes a thermal imager, thermal image acquisition and analysis software, and the maximum acquisition temperature of thermal imaging is 2000°C.
  • the above-mentioned high-speed camera monitoring module includes a high-speed camera, a fiber laser and a high-speed camera acquisition software;
  • the high-speed camera is used to collect the topographic photos of the plasma arc, molten droplet and the formed part in the process of accumulation and forming, and the maximum number of frames collected is 4000 frames per second;
  • the fiber laser is mainly used to illuminate the metal molten droplet and the metal molten pool;
  • high-speed The camera software is mainly used to collect arc photos, and process the photo information in time according to the self-designed image analysis algorithm.
  • the above-mentioned process parameter digitization module includes a collection and measurement part and a negative feedback control part; the collection and measurement part is used to collect the process parameters of the stacking forming process in real time; the negative feedback control part is the total control part, that is, by analyzing the thermal imaging data, Processing and analysis of high-speed camera data and process parameter data, and real-time negative feedback adjustment of process parameters of accumulation forming.
  • the wire feeding unit is a bypass wire feeding.
  • the wire feeding unit includes a wire feeding mechanism and a wire feeding control part.
  • the number of the above-mentioned powder feeding channels is four, and the four powder feeding channels are respectively distributed in the interlayer at intervals of 90°.
  • the above-mentioned wire feeding unit can realize the feeding of wire with a diameter of 0.8-1.6 mm, and the powder feeding unit can realize the feeding of alloy powder with a particle size of 60-80 mesh.
  • the present invention also proposes a plasma arc additive manufacturing method, which is special in that it includes the following steps:
  • the thermal imager and high-speed camera are used to observe the temperature distribution and arc column morphology, metal wire droplets and metal molten pool during the stacking process, and the stacking forming process parameters are corrected in time combined with the process parameter digital module.
  • the negative feedback adjustment of the process parameters of the stacking forming is realized, and then the stacking forming of the components is realized.
  • the key components of the plasma arc additive manufacturing system are improved, wherein by using silk powder combined with plasma arc additive manufacturing, in the process of using plasma arc to melt the titanium alloy wire, the internal arc gun is used. Powder spraying channel, adding different types of metal alloy powder to the plasma arc arc column area, using the introduced alloy powder to control the process stability of the titanium alloy wire accumulation process, and using alloying to improve the titanium alloy plasma arc additive manufacturing component. microstructure and improve the mechanical properties of titanium alloy components manufactured by plasma arc additive manufacturing.
  • the present invention can observe the temperature distribution, forming morphology and arc stability in the process of stacking and forming in real time by configuring a temperature acquisition module, a high-speed camera monitoring module and other components, and assist the process parameter digitization module to quantify the plasma.
  • the process parameters of arc additive manufacturing are adjusted by negative feedback, which can realize high-precision, real-time automatic control, and then realize the integrated forming of large and complex metal components.
  • Fig. 1 is a schematic diagram of an integrated equipment system for plasma arc additive manufacturing formed by the present invention
  • Fig. 2 is the workflow schematic diagram of the system of the present invention.
  • FIG. 3 is a schematic structural diagram of the silk powder combined with the composite gun body of the system of the present invention.
  • Fig. 4 is the top view of Fig. 3;
  • FIG. 5 is a cross-sectional view of FIG. 3 .
  • 1-wire powder combined with plasma arc gun body 2-wire feeding mechanism, 3-external gas shield, 4-stacking metal, 5-three-axis motion mechanism, 6-stacking substrate, 7-thermal imaging collector, 8- high-speed camera, 9- wire feeding control part, 10- powder feeding control part, 11- plasma arc power supply unit, 12- protective gas storage device, 13- high-speed camera acquisition control part, 14- thermal imaging acquisition control part, 15- Process parameter digital module, 16- Metal wire, 17- Metal droplet, 18- Metal powder, 19- Metal molten pool, 20- Tungsten electrode, 21- Water cooling nozzle, 22- Interlayer, 23- Protective cover, 24 - Powder feeding channel.
  • the present invention aims to provide a new type of plasma arc additive manufacturing formability integrated equipment system, wherein through the design and layout optimization of each component of the plasma arc additive manufacturing system, and the introduction of silk powder combined with the arc gun, temperature acquisition, High-speed camera and process digital monitoring and other modules form a compact, easy-to-operate and highly automated plasma arc additive manufacturing integrated equipment system.
  • the equipment system can realize high-precision and high-quality forming of metal components of various materials.
  • a plasma arc additive manufacturing shape integrated forming equipment system includes a silk powder combined plasma arc module, a temperature acquisition module, a high-speed camera monitoring module, a process parameter digitization module 15 and an external gas unit.
  • the silk powder combined plasma arc module includes a three-axis motion mechanism 5, a silk powder combined plasma arc gun body 1, a wire feeding unit, a powder feeding unit, a plasma arc power supply unit 11, and a water cooling unit; the three-axis motion mechanism 5 drives the silk powder to combine
  • the plasma arc gun body 1 realizes movement in the three-axis directions of X, Y, and Z;
  • the silk powder combined with the plasma arc gun body 1 includes a tungsten electrode 20, a water-cooled nozzle 21, an interlayer 22 and a protective cover 23 from the inside to the outside;
  • a powder feeding channel 24 is provided, the powder feeding channel 24 is connected with the powder feeding unit, and the water-cooling nozzle 21 is connected with the water-cooling unit through a pipeline;
  • the plasma arc power supply unit 11 is used to provide power for forming a plasma arc.
  • the temperature acquisition module is used for real-time monitoring of the temperature of the formed part during the stacking forming process;
  • the high-speed camera monitoring module is used for collecting the topographic image information of the plasma arc, the molten droplet and the formed part in the stacking forming process.
  • the parameter digitization module 15 is used to obtain the measurement information of the temperature acquisition module and the high-speed camera monitoring module, and to perform negative feedback adjustment on the parameters of the stacking forming process in real time.
  • the above-mentioned external gas unit includes an external gas protective cover 3 and a protective gas storage device 12.
  • the protective gas storage device 12 is used to provide protective gas to the external gas protective cover 3, and the external gas protective cover 3 is located near the body 1 of the silk powder combined with the plasma arc torch.
  • the above temperature acquisition module includes a thermal imager, thermal imaging acquisition and analysis software, and the maximum acquisition temperature of thermal imaging is 2000°C.
  • the above-mentioned high-speed camera monitoring module includes a high-speed camera 8, a fiber laser, and high-speed camera acquisition software.
  • the high-speed camera 8 is used to collect the topographic photos of the plasma arc, the molten droplet and the formed part in the process of accumulation and forming, and the maximum number of frames collected is 4000 frames per second;
  • the fiber laser is mainly used to illuminate the metal molten droplet 17 and the metal molten pool. 19.
  • the high-speed camera software is mainly used to collect arc photos, and process the photo information in time according to the self-designed image analysis algorithm.
  • the above-mentioned process parameter digitization module 15 includes a collection and measurement part and a negative feedback control part; the collection and measurement part is used for real-time collection of process parameters of the stacking forming process; the negative feedback control part is the total control part, That is, by analyzing the processing and analysis of thermal imaging data, high-speed camera data and process parameter data, real-time negative feedback adjustment of the process parameters of the stacking forming is performed.
  • the above-mentioned wire feeding unit is a bypass wire feeding, and the wire feeding unit includes a wire feeding mechanism 2 and a wire feeding control part 9 .
  • the number of the above-mentioned powder feeding channels 24 is four, and the four powder feeding channels 24 are respectively distributed in the interlayer 22 in an array at intervals of 90°.
  • the above-mentioned wire feeding unit can realize the feeding of wire with a diameter of 0.8-1.6 mm, and the powder feeding unit can realize the feeding of alloy powder with a particle size of 60-80 mesh.
  • the present invention also proposes a plasma arc additive manufacturing method, comprising the following steps:
  • the forming process parameters can realize the negative feedback adjustment of the process parameters of the accumulation forming, and then realize the accumulation forming of the components.
  • the plasma arc additive manufacturing system mainly includes a silk powder combined plasma arc module, a temperature acquisition module, a high-speed camera monitoring module, a process parameter digitization module 15, an external gas unit and other auxiliary components, etc. It will be explained in detail one by one.
  • the silk powder combined plasma arc module includes a three-axis motion mechanism 5, a silk powder combined plasma arc gun body 1, a wire feeding unit, a powder feeding unit, a plasma arc power supply unit 11, and a water cooling unit.
  • the silk powder combined plasma arc torch body 1 includes a tungsten electrode 20 , a water cooling nozzle 21 , an interlayer 22 and a protective cover 23 from the inside to the outside.
  • the interlayer 22 is provided with powder feeding channels 24.
  • the powder feeding channels 24 are distributed in an array at 90° intervals.
  • the powder feeding channels 24 are connected to the powder feeding unit, and the water cooling nozzle 21 is connected to the water cooling unit through pipelines.
  • the three-axis motion mechanism 5 can move in the three-axis directions of X, Y, and Z.
  • the silk powder is combined with the plasma arc gun body 1, the wire feeding mechanism 2, and the external gas shield 3 to be fixed on the Z-axis.
  • the wire feeding unit includes a wire feeding control part 9 and a wire feeding mechanism 2 ; the powder feeding unit includes a powder feeding control part 10 .
  • the wire feeding control part 9 and the powder feeding control part 10 are located on the left and above the three-axis motion mechanism 5 respectively. Realize the transportation of alloy powder with a particle size of 60 ⁇ 80 mesh.
  • the three-axis motion mechanism 5 is set on the worktable, the stacking substrate 6 is fixed on the worktable, and the stacking substrate 6 is the stacking metal 4.
  • a molten metal pool 19 is formed under the wire powder combined with the plasma arc gun body 1, and the wire feeding mechanism 2 feeds the The metal wire 16 and the powder feeding control part 10 eject the metal powder 18 through the powder feeding channel 24 .
  • the protective gas provided by the protective gas storage device 12 is output from the gap between the interlayer 22 and the protective cover 23 of the silk powder combined with the plasma arc gun body 1 , and the other protective gas provided by the protective gas storage device 12 is output from the external gas protective cover 3 . output.
  • the temperature acquisition module is mainly composed of a thermal imaging acquisition instrument 7 and a thermal imaging acquisition control part 14.
  • the thermal imaging acquisition control part 14 includes thermal imaging acquisition and analysis software, and the thermal imaging acquisition instrument 7 is located in the silk powder combined with the plasma arc gun body 1.
  • the temperature distribution of the formed component part and the interlayer temperature of the stacked formed component can be monitored in real time; the maximum acquisition temperature of the thermal imaging collector 7 is 2000°C.
  • the high-speed camera acquisition module is mainly composed of a high-speed camera 8, a fiber laser, and a high-speed camera acquisition control part 13.
  • the high-speed camera acquisition control part 13 includes high-speed camera acquisition software, and the high-speed camera 8 is also located in the silk powder combined with the plasma arc gun body.
  • the high-speed camera 8 is used to collect the topographic photos of the plasma arc, the molten droplet and the formed part in the process of stacking and forming, and the maximum number of frames collected is 4000 frames per second;
  • the fiber laser is mainly used to illuminate the metal droplet 17 and metal molten pool 19;
  • the high-speed camera software is mainly used to collect arc photos, and process the photo information in time according to the self-designed image analysis algorithm.
  • the process parameter digitization module 15 includes an acquisition and measurement part and a negative feedback control part; the acquisition and measurement part is used for real-time acquisition of process parameters of the stacking forming process; As well as the processing and analysis of process parameter data, the negative feedback adjustment of the process parameters of the accumulation forming is carried out in real time.

Abstract

一种等离子电弧增材制造形性一体化成形装备系统,包括丝粉结合等离子电弧模块、温度采集模块、高速摄像监控模块、工艺参数数字化模块(15)和外置气体单元。温度采集模块实时监测堆积成形过程中已成形部分的温度;高速摄像监控模块采集堆积成形过程中等离子电弧、熔滴以及已成形部分的形貌图像信息;工艺参数数字化模块(15)获取温度采集模块、高速摄像监控模块的测量信息,并实时对堆积成形工艺参数进行负反馈调节。还涉及一种等离子电弧增材制造方法。该装备系统和方法能够实时监控与调控电弧、精确控制成形构件的化学成分,可实现大尺寸、复杂金属梯度结构件的一体化成形。

Description

一种等离子电弧增材制造形性一体化成形装备系统 技术领域
本发明属于等离子电弧增材制造技术领域,涉及一种等离子电弧增材制造形性一体化成形装备系统。
背景技术
电弧增材制造作为近年来发展最为迅速的零件制造技术,其利用钨极或者丝材与已成形部分形成电弧熔化金属丝材,通过分层切片、层层堆积实现金属构件的直接成形,与传统的制造技术相比,具有成形效率高、材料利用率高、可成形任意复杂金属构件的优势,被广泛应用于航空航天、船舶以及石油化工等领域中关键构件的成形。
现有技术中等离子电弧增材制造装备系统存在以下的缺陷与不足:首先,堆积大尺寸构件时,热输入量的增加以及热积累现象,极易造成成形构件成形精度的下降,如何平衡热输入量与成形效率时当前亟待解决的问题之一;其次,现阶段大部分堆积成形构件成形质量调控一般是在完成堆积后,即依据成形质量在来调整参数,难以实现实时调控;再次,现阶段等离子增材制造合金化以涂覆材料或者更换丝材为主,涂覆材料的均匀性难以保证,更换丝材的流程以及成本较高,且特殊元素的合金化难以实现。现阶段的等离子电弧增材制造技术难以实现大尺寸、复杂金属梯度结构件的形性一体化成形。
技术问题
有鉴于此,本发明提供一种等离子电弧增材制造形性一体化成形装备系统,该装备系统融合有丝粉结合等离子电弧模块、温度采集模块、高速摄像监控模块、工艺参数数字化模块,能够实时监控与调控电弧、精确控制成形构件的化学成分,可实现钛合金、不锈钢、高温镍基合金等大尺寸、复杂金属梯度结构件的形性一体化成形。
在此处键入技术问题描述段落。
技术解决方案
本发明解决上述问题的技术方案是:一种等离子电弧增材制造形性一体化成形装备系统,其特殊之处在于,包括:
丝粉结合等离子电弧模块、温度采集模块、高速摄像监控模块、工艺参数数字化模块和外置气体单元;
所述丝粉结合等离子电弧模块包括三轴运动机构、丝粉结合等离子电弧枪体、送丝单元、送粉单元、等离子电弧电源单元、水冷单元;
三轴运动机构带动丝粉结合等离子电弧枪体实现X、Y、Z三轴方向移动,
丝粉结合等离子电弧枪体包括由内到外包括钨极、水冷喷嘴、夹层和保护罩;
所述夹层内设有送粉通道,送粉通道与送粉单元连接,水冷喷嘴通过管路与水冷单元连接;等离子电弧电源单元,用于提供形成等离子电弧的电源;
所述温度采集模块用于实时监测堆积成形过程中已成形部分的温度;
所述高速摄像监控模块用于采集堆积成形过程中等离子电弧、熔滴以及已成形部分的形貌图像信息,
所述工艺参数数字化模块用于获取所述温度采集模块、所述高速摄像监控模块的测量信息,并实时的对堆积成形工艺参数进行负反馈调节。
进一步地,上述外置气体单元包括外置气体保护罩和保护气储存装置,保护气储存装置用于对外置气体保护罩提供保护气,外置气体保护罩位于丝粉结合等离子电弧枪体附近。
进一步地,上述温度采集模块包括热成像仪、热成像采集与分析软件,热成像的最高采集温度为2000℃。
进一步地,上述高速摄像监控模块包括高速摄像相机、光纤激光器以及高速摄像采集软件;
高速摄像相机用于采集堆积成形过程中等离子电弧、熔滴以及已成形部分的形貌照片,最高采集帧数为4000帧/秒;光纤激光器主要用于照亮金属熔滴以及金属熔池;高速摄像软件主要用于采集电弧照片,并依照自行设计的图像分析算法,及时处理照片信息。
进一步地,上述工艺参数数字化模块包括采集测量部分与负反馈调控部分;采集测量部分,用于实时采集堆积成形过程的工艺参数;负反馈调控部分,为总控部分,即通过分析热成像数据、高速摄像数据以及工艺参数数据的处理和分析,实时的对堆积成形工艺参数进行负反馈调节。
进一步地,上述送丝单元为旁路送丝。所述送丝单元包括送丝机构和送丝控制部分。
进一步地,上述送粉通道的数量为四个,四个送粉通道分别间隔90°阵列分布在夹层中。
进一步地,上述送丝单元分可以实现直径0.8-1.6mm丝材的送给,送粉单元可以实现粒度为60~80目的合金粉的输送。
另外,本发明还提出一种等离子电弧增材制造方法,其特殊之处在于,包括以下步骤:
1)利用三维模型软件建立待成形构件的三维模型,并生成成形路径;
2)依据堆积成形构件的成分和性能要求,结合丝材、粉材的过渡系数,选定丝材,并结合丝材的化学成分计算配的粉材的化学成分,并结合构件的熔敷速度确定丝材与粉材的进给速率;
3)确定工艺参数:依据成形质量需求以及成形材料的成分,确定等离子电弧的脉冲频率、占空比、电流等;
4)利用上述等离子电弧增材制造形性一体化成形装备系统堆积成形构件;
5)分别利用热成像仪、高速摄像相机对堆积过程中的温度分布以及电弧弧柱形貌、金属丝材熔滴以及金属熔池进行观察,并结合工艺参数数字化模块适时修正堆积成形工艺参数,实现对堆积成形的工艺参数进行负反馈调节,进而实现构件的堆积成形。
有益效果
本发明的优点:
(1)本发明中对等离子电弧增材制造系统的关键组件进行了改进,其中通过采用丝粉结合等离子电弧增材制造,在利用等离子电弧熔化钛合金丝材的过程中,利用电弧枪内部的喷粉通道,向等离子电弧弧柱区域添加不同种类的金属合金粉,利用引入的合金粉调控钛合金丝材堆积过程中的工艺稳定性,并利用合金化改善钛合金等离子电弧增材制造构件的组织,提高等离子电弧增材制造钛合金构件的力学性能。
(2)本发明通过配置温度采集模块、高速摄像监控模块等多个组件,可以实时对堆积成形过程中的温度分布、成形形貌以及电弧稳定性进行观察,并辅助于工艺参数数字化模块对等离子电弧增材制造的工艺参数进行负反馈调节,可以实现高精度、实时自动化控制,进而实现大型、复杂金属构件的形性一体化成形。
附图说明
图1为本发明所构建的等离子电弧增材制造形性一体化装备系统示意图;
图2是本发明系统的工作流程示意图;
图3是本发明系统的丝粉结合复合枪体的结构示意图;
图4为图3的俯视图;
图5为图3的剖视图。
其中:1-丝粉结合等离子电弧枪体,2-送丝机构,3-外置气体保护罩,4-堆积金属,5-三轴运动机构,6-堆积基板,7-热成像采集仪,8-高速摄像相机,9-送丝控制部分,10-送粉控制部分,11-等离子电弧电源单元,12-保护气储存装置,13-高速摄像采集控制部分,14-热成像采集控制部分,15-工艺参数数字化模块,16-金属丝材,17-金属熔滴,18-金属粉末,19-金属熔池,20-钨极,21-水冷喷嘴,22-夹层,23-保护罩,24-送粉通道。
本发明的最佳实施方式
为使本发明实施方式的目的、技术方案和优点更加清楚,下面将结合本发明实施方式中的附图,对本发明实施方式中的技术方案进行清楚、完整地描述,显然,所描述的实施方式是本发明一部分实施方式,而不是全部的实施方式。基于本发明中的实施方式,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施方式,都属于本发明保护的范围。因此,以下对在附图中提供的本发明的实施方式的详细描述并非旨在限制要求保护的本发明的范围,而是仅仅表示本发明的选定实施方式。
本发明旨在提供一种新型的等离子电弧增材制造形性一体化装备系统,其中通过对等离子电弧增材制造系统各个组成部分的设计以及布局优化,并且引入丝粉结合电弧枪、温度采集、高速摄像以及工艺数字化话监控等模块等,形成紧凑、易操作、自动化程度高的等离子电弧增材制造形性一体化装备系统。利用该装备系统能够实现各种不同材料金属构件的高精度、高质量成形。
一种等离子电弧增材制造形性一体化成形装备系统,包括丝粉结合等离子电弧模块、温度采集模块、高速摄像监控模块、工艺参数数字化模块15和外置气体单元。
所述丝粉结合等离子电弧模块包括三轴运动机构5、丝粉结合等离子电弧枪体1、送丝单元、送粉单元、等离子电弧电源单元11、水冷单元;三轴运动机构5带动丝粉结合等离子电弧枪体1实现X、Y、Z三轴方向移动;丝粉结合等离子电弧枪体1包括由内到外包括钨极20、水冷喷嘴21、夹层22和保护罩23;所述夹层22内设有送粉通道24,送粉通道24与送粉单元连接,水冷喷嘴21通过管路与水冷单元连接;等离子电弧电源单元11,用于提供形成等离子电弧的电源。
所述温度采集模块用于实时监测堆积成形过程中已成形部分的温度;所述高速摄像监控模块用于采集堆积成形过程中等离子电弧、熔滴以及已成形部分的形貌图像信息,所述工艺参数数字化模块15用于获取所述温度采集模块、所述高速摄像监控模块的测量信息,并实时的对堆积成形工艺参数进行负反馈调节。
作为本发明的一个优选实施例,上述外置气体单元包括外置气体保护罩3和保护气储存装置12,保护气储存装置12用于对外置气体保护罩3提供保护气,外置气体保护罩3位于丝粉结合等离子电弧枪体1附近。
作为本发明的一个优选实施例,上述温度采集模块包括热成像仪、热成像采集与分析软件,热成像的最高采集温度为2000℃。
作为本发明的一个优选实施例,上述高速摄像监控模块包括高速摄像相机8、光纤激光器以及高速摄像采集软件。高速摄像相机8用于采集堆积成形过程中等离子电弧、熔滴以及已成形部分的形貌照片,最高采集帧数为4000帧/秒;光纤激光器主要用于照亮金属熔滴17以及金属熔池19;高速摄像软件主要用于采集电弧照片,并依照自行设计的图像分析算法,及时处理照片信息。
作为本发明的一个优选实施例,上述工艺参数数字化模块15包括采集测量部分与负反馈调控部分;采集测量部分,用于实时采集堆积成形过程的工艺参数;负反馈调控部分,为总控部分,即通过分析热成像数据、高速摄像数据以及工艺参数数据的处理和分析,实时的对堆积成形工艺参数进行负反馈调节。
作为本发明的一个优选实施例,上述送丝单元为旁路送丝,所述送丝单元包括送丝机构2和送丝控制部分9。
作为本发明的一个优选实施例,上述送粉通道24的数量为四个,四个送粉通道24分别间隔90°阵列分布在夹层22中。
作为本发明的一个优选实施例,上述送丝单元分可以实现直径0.8-1.6mm丝材的送给,送粉单元可以实现粒度为60~80目的合金粉的输送。
另外,本发明还提出一种等离子电弧增材制造方法,包括以下步骤:
1)利用三维模型软件建(UG、ProE等)立待成形构件的三维模型,并生成成形路径;
2)依据堆积成形构件的成分和性能要求,结合丝材、粉材的过渡系数,选定丝材,并结合丝材的化学成分计算配的粉材的化学成分,并结合构件的熔敷速度确定丝材与粉材的进给速率;
3)确定工艺参数:依据成形质量需求以及成形材料的成分,确定等离子电弧的脉冲频率、占空比、电流等;
4)利用上述等离子电弧增材制造形性一体化成形装备系统堆积成形构件;
5)分别利用热成像仪、高速摄像相机8对堆积过程中的温度分布以及电弧弧柱形貌、金属丝材16熔滴以及金属熔池19进行观察,并结合工艺参数数字化模块15适时修正堆积成形工艺参数,实现对堆积成形的工艺参数进行负反馈调节,进而实现构件的堆积成形。
实施例
参见图1和图2,该等离子电弧增材制造系统主要包括丝粉结合等离子电弧模块、温度采集模块、高速摄像监控模块、工艺参数数字化模块15和外置气体单元以及其他辅助性构件等,下面对其逐一进行具体解释说明。
所述丝粉结合等离子电弧模块包括三轴运动机构5、丝粉结合等离子电弧枪体1、送丝单元、送粉单元、等离子电弧电源单元11、水冷单元。参见图3-图5,丝粉结合等离子电弧枪体1包括由内到外包括钨极20、水冷喷嘴21、夹层22和保护罩23。所述夹层22内设有送粉通道24,送粉通道24分别间隔90°阵列分布,送粉通道24与送粉单元连接,水冷喷嘴21通过管路与水冷单元连接;等离子电弧电源单元11,用于提供形成等离子电弧的电源。
所述三轴运动机构5,可以实现X、Y、Z三轴方向移动,丝粉结合等离子电弧枪体1、送丝机构2、外置气体保护罩3固定在Z轴上,三轴运动机构5可带动丝粉结合等离子电弧枪体1实现X、Y、Z三轴方向移动。
送丝单元包括送丝控制部分9和送丝机构2;送粉单元包括送粉控制部分10。所述送丝控制部分9、送粉控制部分10分别位于三轴运动机构5的左侧、上方,送丝控制部分9可以实现直径0.8-1.6mm丝材的送给,送粉控制部分10可以实现粒度为60~80目的合金粉的输送。
三轴运动机构5设置在工作台上,工作台上固定堆积基板6,堆积基板6上为堆积金属4,在丝粉结合等离子电弧枪体1下方形成金属熔池19,送丝机构2送入金属丝材16,送粉控制部分10通过送粉通道24喷出金属粉末18。保护气储存装置12提供的一路保护气从丝粉结合等离子电弧枪体1的夹层22和保护罩23之间的空隙输出,保护气储存装置12提供的另一路保护气从外置气体保护罩3输出。
所述温度采集模块主要由热成像采集仪7与热成像采集控制部分14组成,热成像采集控制部分14包括热成像采集与分析软件,热成像采集仪7位于丝粉结合等离子电弧枪体1的右侧,可以实时对已成形构件部分的温度分布以及堆积成形构件的层间温度进行监测;热成像采集仪7的最高采集温度为2000℃。
所述的高速摄像采集模块主要由高速摄像相机8、光纤激光器、高速摄像采集控制部分13组成,高速摄像采集控制部分13包括高速摄像采集软件,高速摄像相机8也位于丝粉结合等离子电弧枪体1的右侧,高速摄像相机8用于采集堆积成形过程中等离子电弧、熔滴以及已成形部分的形貌照片,最高采集帧数为4000帧/秒;光纤激光器主要用于照亮金属熔滴17以及金属熔池19;高速摄像软件主要用于采集电弧照片,并依照自行设计的图像分析算法,及时处理照片信息。
工艺参数数字化模块15包括采集测量部分与负反馈调控部分;采集测量部分,用于实时采集堆积成形过程的工艺参数;负反馈调控部分,为总控部分,即通过分析热成像数据、高速摄像数据以及工艺参数数据的处理和分析,实时的对堆积成形工艺参数进行负反馈调节。
以上所述仅为本发明的实施例,并非以此限制本发明的保护范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的系统领域,均同理包括在本发明的保护范围内。

Claims (9)

  1. 一种等离子电弧增材制造形性一体化成形装备系统,其特征在于:
    包括丝粉结合等离子电弧模块、温度采集模块、高速摄像监控模块、工艺参数数字化模块和外置气体单元;
    所述丝粉结合等离子电弧模块包括三轴运动机构、丝粉结合等离子电弧枪体、送丝单元、送粉单元、等离子电弧电源单元、水冷单元;
    三轴运动机构带动丝粉结合等离子电弧枪体实现X、Y、Z三轴方向移动,
    丝粉结合等离子电弧枪体包括由内到外包括钨极、水冷喷嘴、夹层和保护罩;所述夹层内设有送粉通道,送粉通道与送粉单元连接,水冷喷嘴通过管路与水冷单元连接;
    等离子电弧电源单元,用于提供形成等离子电弧的电源;
    所述温度采集模块用于实时监测堆积成形过程中已成形部分的温度;
    所述高速摄像监控模块用于采集堆积成形过程中等离子电弧、熔滴以及已成形部分的形貌图像信息,
    所述工艺参数数字化模块用于获取所述温度采集模块、所述高速摄像监控模块的测量信息,并实时的对堆积成形工艺参数进行负反馈调节。
  2. 根据权利要求1所述的一种等离子电弧增材制造形性一体化成形装备系统,其特征在于:
    所述外置气体单元包括外置气体保护罩和保护气储存装置,保护气储存装置用于对外置气体保护罩提供保护气,外置气体保护罩位于丝粉结合等离子电弧枪体附近。
  3. 根据权利要求2所述的一种等离子电弧增材制造形性一体化成形装备系统,其特征在于:
    所述温度采集模块包括热成像仪、热成像采集与分析软件。
  4. 根据权利要求3所述的一种等离子电弧增材制造形性一体化成形装备系统,其特征在于:
    所述高速摄像监控模块包括高速摄像相机、光纤激光器以及高速摄像采集软件;
    高速摄像相机用于采集堆积成形过程中等离子电弧、熔滴以及已成形部分的形貌照片;光纤激光器用于照亮金属熔滴以及金属熔池;高速摄像软件用于采集电弧照片,并依照图像分析算法处理照片信息。
  5. 根据权利要求4所述的一种等离子电弧增材制造形性一体化成形装备系统,其特征在于:
    所述工艺参数数字化模块包括采集测量部分与负反馈调控部分;采集测量部分,用于实时采集堆积成形过程的工艺参数;负反馈调控部分,为总控部分,即通过分析热成像数据、高速摄像数据以及工艺参数数据的处理和分析,实时的对堆积成形工艺参数进行负反馈调节。
  6. 根据权利要求5所述的一种等离子电弧增材制造形性一体化成形装备系统,其特征在于:
    所述送丝单元包括送丝机构和送丝控制部分。
  7. 根据权利要求6所述的一种等离子电弧增材制造形性一体化成形装备系统,其特征在于:
    所述送粉通道的数量为四个,四个送粉通道分别间隔90°阵列分布在夹层中。
  8. 根据权利要求7所述的一种等离子电弧增材制造形性一体化成形装备系统,其特征在于:
    所述送丝单元分可以实现直径0.8-1.6mm丝材的送给,送粉单元可以实现粒度为60~80目的合金粉的输送。
  9. 一种等离子电弧增材制造方法,其特征在于,包括以下步骤:
    1)利用三维模型软件建立待成形构件的三维模型,并生成成形路径;
    2)依据堆积成形构件的成分和性能要求,结合丝材、粉材的过渡系数,选定丝材,并结合丝材的化学成分计算配的粉材的化学成分,并结合构件的熔敷速度确定丝材与粉材的进给速率;
    3)确定工艺参数:依据成形质量需求以及成形材料的成分,确定等离子电弧的脉冲频率、占空比、电流等;
    4)利用如权利要求1-8任一所述的等离子电弧增材制造形性一体化成形装备系统堆积成形构件;
    5)分别利用热成像仪、高速摄像相机对堆积过程中的温度分布以及电弧弧柱形貌、金属丝材熔滴以及金属熔池进行观察,并结合工艺参数数字化模块适时修正堆积成形工艺参数,实现对堆积成形的工艺参数进行负反馈调节,进而实现构件的堆积成形。
PCT/CN2021/138117 2021-02-08 2021-12-14 一种等离子电弧增材制造形性一体化成形装备系统 WO2022166414A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110182650.2 2021-02-08
CN202110182650.2A CN112828430A (zh) 2021-02-08 2021-02-08 一种等离子电弧增材制造形性一体化成形装备系统

Publications (1)

Publication Number Publication Date
WO2022166414A1 true WO2022166414A1 (zh) 2022-08-11

Family

ID=75933416

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/138117 WO2022166414A1 (zh) 2021-02-08 2021-12-14 一种等离子电弧增材制造形性一体化成形装备系统

Country Status (2)

Country Link
CN (1) CN112828430A (zh)
WO (1) WO2022166414A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115685881A (zh) * 2022-11-07 2023-02-03 北京科技大学 基于计算智能的低应力高精度电弧增材工艺控制方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112828430A (zh) * 2021-02-08 2021-05-25 深圳先进技术研究院 一种等离子电弧增材制造形性一体化成形装备系统
CN114951930A (zh) * 2021-02-23 2022-08-30 深圳先进技术研究院 一种等离子电弧增材制造装置及方法
CN113333976B (zh) * 2021-05-28 2022-07-19 南京理工大学 碳化钨粉芯丝材双感应与电弧复合加热增材装置及方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105618895A (zh) * 2016-01-06 2016-06-01 江苏烁石焊接科技有限公司 一种丝-粉-气-电弧同轴的3d打印装置
CN108788406A (zh) * 2018-07-04 2018-11-13 西南交通大学 一种轻金属基复合材料构件及其制备方法
US20190176266A1 (en) * 2016-05-13 2019-06-13 Linde Aktiengesellschaft Method and device in particular for generatively producing and coding a three-dimensional component
CN110548960A (zh) * 2019-10-15 2019-12-10 湖北汽车工业学院 一种超声振动辅助电弧增材制造多材料构件的方法
CN110802300A (zh) * 2019-11-13 2020-02-18 南京航空航天大学 一种电弧增材制造过程中成形精度与质量控制的设备与方法
CN111545870A (zh) * 2020-05-13 2020-08-18 南京航空航天大学 一种功能梯度材料双丝双电弧增材制造系统与方法
CN112122741A (zh) * 2020-08-14 2020-12-25 江苏理工学院 一种电弧增材制造过程中的焊道成形控制系统及其参数优化方法
CN112828430A (zh) * 2021-02-08 2021-05-25 深圳先进技术研究院 一种等离子电弧增材制造形性一体化成形装备系统

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101733550B (zh) * 2010-01-09 2012-04-25 苏州大学 一种送丝送粉复合激光熔覆成形方法及装置
CN107262878B (zh) * 2017-06-16 2019-06-07 华中科技大学 一种形性一体化的金属构件增材制造系统
CN210817909U (zh) * 2019-04-30 2020-06-23 兰州理工大学 一种硼元素原位强化的梯度钛合金等离子弧增材制造装置
CN110293294A (zh) * 2019-04-30 2019-10-01 兰州理工大学 一种硼元素原位强化的梯度钛合金等离子弧增材制造方法
CN110548961A (zh) * 2019-10-15 2019-12-10 湖北汽车工业学院 一种金属基层状复合材料及其电弧增材制造方法
CN111037052B (zh) * 2019-12-26 2021-09-07 西安铂力特增材技术股份有限公司 电弧增材制造成形检测反馈补偿系统及检测反馈补偿方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105618895A (zh) * 2016-01-06 2016-06-01 江苏烁石焊接科技有限公司 一种丝-粉-气-电弧同轴的3d打印装置
US20190176266A1 (en) * 2016-05-13 2019-06-13 Linde Aktiengesellschaft Method and device in particular for generatively producing and coding a three-dimensional component
CN108788406A (zh) * 2018-07-04 2018-11-13 西南交通大学 一种轻金属基复合材料构件及其制备方法
CN110548960A (zh) * 2019-10-15 2019-12-10 湖北汽车工业学院 一种超声振动辅助电弧增材制造多材料构件的方法
CN110802300A (zh) * 2019-11-13 2020-02-18 南京航空航天大学 一种电弧增材制造过程中成形精度与质量控制的设备与方法
CN111545870A (zh) * 2020-05-13 2020-08-18 南京航空航天大学 一种功能梯度材料双丝双电弧增材制造系统与方法
CN112122741A (zh) * 2020-08-14 2020-12-25 江苏理工学院 一种电弧增材制造过程中的焊道成形控制系统及其参数优化方法
CN112828430A (zh) * 2021-02-08 2021-05-25 深圳先进技术研究院 一种等离子电弧增材制造形性一体化成形装备系统

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115685881A (zh) * 2022-11-07 2023-02-03 北京科技大学 基于计算智能的低应力高精度电弧增材工艺控制方法

Also Published As

Publication number Publication date
CN112828430A (zh) 2021-05-25

Similar Documents

Publication Publication Date Title
WO2022166414A1 (zh) 一种等离子电弧增材制造形性一体化成形装备系统
CN113352012B (zh) 旁路等离子弧双丝复合的增材制造装置与方法
CN103476523B (zh) 用于通过固体自由成型制造来构建金属物件的方法和装置
CN107096923B (zh) 基于激光增材制造的高熔点高熵合金球形粉末的制备方法
WO2020062341A1 (zh) 一种激光增材装置及其增材制造的方法
CN107262878B (zh) 一种形性一体化的金属构件增材制造系统
CN107470619A (zh) 一种金属零件的增材制造方法
CN109482874A (zh) 基于图像监测控制激光增材中凝固组织形态的方法及系统
Ye et al. Study of hybrid additive manufacturing based on pulse laser wire depositing and milling
Liu et al. Research progress of arc additive manufacture technology
Wang et al. Research on trajectory planning of complex curved surface parts by laser cladding remanufacturing
CN107557703B (zh) 一种3d打印制备长纤维增强金属基复合材料的方法
CN105478975B (zh) 基于远心视觉传感的端接微束等离子焊接成形控制方法
CN104526168A (zh) 一种电熔成形超低碳超细晶合金钢材料
CN111203639B (zh) 一种基于高速摄像下的双激光束双侧同步焊接填丝熔滴过渡监控系统及方法
CN114433980A (zh) 一种电弧增材制造过程中熔池尺寸的控制装置和方法
CN111545908A (zh) 一种增材制造零件t型结构双激光束双侧焊接装置与方法
CN112404712A (zh) 一种用于热塑复合材料与金属激光连接的气体冷却装置与方法
Xu et al. Exploring the inclined angle limit of fabricating unsupported rods structures by pulse hot-wire arc additive manufacturing
CN109317784A (zh) 大型零件3d打印的设备
CN109352139A (zh) 一种氧可控框架类金属零件gtaw电弧增材制造系统及方法
WO2023142212A1 (zh) 一种闭环控制激光功率改善工件塌边问题的装置和方法
Kim et al. High-throughput directed energy deposition process with an optimized scanning nozzle
CN110538997A (zh) 一种激光预熔覆辅助等离子增材制造设备与方法
CN109332851A (zh) 大型零件3d打印的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21924407

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE